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CHAPTER 1

GENERAL DESCRIPTION

1.1 Introduction

This chapter provides a brief overall
description of the Gould V6 Central
Processing Unit (figure 1-1). The main
elements of the three-slot CPU are the
(Microsequencer (MS) Unit, Instruction
Execution (IE) Unit, and Cache SelBUS
(CS) Unit). The Model 8001 Input/Output
Processor (IOP) with an IOP related device
interface board (IOP-DI) and the optional
Floating-point Accelerator (FPA) Model
3611 are also shown in the illustration.

1.2 Central Processing Unit (CPU)

The 32-bit CPU is based on a three board
design (MS, IE, and CS Units). The basic
configuration provides the capability of
alterable control store (ACS) and writable
control store (WCS). ACS enables
modification, under software control, of
the basic microprogram elements of the
system. WCS provides the functional
capability of allowing user written
microprograms to be loaded and executed
under software control. These user
programs support applications such as the
scientific accelerator.

1.2.1 Microsequencer (MS) Unit

The MS unit contains the microprogram in
programmable read only memory

(PROM). It processes operations such as
microinstruction decode, microinterrupt
control, increment, jump and branch. The
ACS and WCS functions are implemented
on the MS unit.

1.2.2 Instruction Execution (IE) Unit

The IE unit contains the macroinstruction
pipeline and the 2901 microprocessor. The
unit performs effective address calcu-
lations, operand prefetching, and instruc-
tion execution steps.

1.2.3 Cache SelBUS (CS) Unit

The CS unit contains a fast access
memory, a memory map, and the SelBUS
interface. The cache enables portions of
the main memory to be accessed at high
speed. The memory map transforms
logical addresses into references to actual
locations in main memory or cache. The
SelBUS interface monitors the SelBUS for
externally originated memory reads or
writes and establishes priority for I/O
transfers.

1.3 SelBUS

The SelBUS is a bidirectional and time-
divisional multiplexed bus that provides
signals, power, and ground to the chassis.
SelBUS slots not used for the full
complement of IMMs are available for
regional processing units, input/output
(I/O) processors, or high-speed data
interfaces. The SelBUS contains 184
parallel lines which include a 32-bit
bidirectional data bus, a 24-bit bi-
directional destination bus, and other lines
for control signals, priority, power, and
ground. All SelBUS lines operate syn-
chronously at a 150-nanosecond clock
rate.

The CPU uses the SelBUS as a high-speed
data path to transfer data and commands
between the CPU and either
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the main memory by an IMM, any of the
input/output processors (namely, I/O
channels, I/O controllers), or other
SelBUS-connected modules such as a real-
time option module (RTOM).

1.4 I/O Expansion Chassis

The chassis provides SelBUS expansion and
I/O capabilities. A 50-pin flat cable
connects the chassis to the I/O expansion
chassis MP Bus via the IOP. The I/O
expansion chassis (see figure 1-2) adds
eight bus slots to a basic system. The
expansion chassis is split into two electri-
cally separated sections which permit one
IOP to control all eight device controllers
or allow two IOPs to control four device
controllers each.

The MP bus (see figure 1-2) is a medium-
speed asynchronous bus designed for the
transfer of I/O data. Up to 8 single-slot
I/O controllers can be installed for
connection to the MP Bus.

1.5 Input/Output Processor (IOP)

The IOP is an input/output multiplexing
channel that also utilizes a bipolar bit
slice MP2901 microprocessor. It can
support 124 subchannels with a maximum
bus transfer rate of 384K words per
second. The microprocessor 16-bit data
structure produces 32-bit transfers on the
SelBUS whenever possible. The IOP
communicates with the CPU and main
memory over the SelBUS.

The IOP consists of the following inter-
related elements: a SelBUS interface, a
MP Bus interface, the IOP proper, and
system control panel (SCP) device
dependent logic. The SelBUS interface
provides the communications path
between the IOP and the CPU, or the IOP
and memory. The IOP proper has a
control memory that contains the
microprogram (firmware) for controlling
the SelBUS and IOP interfaces. The IOP
circuits consist of control logic for oper-
ating the MP Bus, the SCP interface, and
the receiver/drivers necessary to
communicate with the MP Bus controllers.

The IOP combines the functions of a real-
time option module (RTOM), the SCP, and
the operator console device, which all
share the same SelBUS interface and
microprocessor. The controllers of the
multiplexing channels are implemented on
12.5 by 15 inch boards. These boards plug
into the I/O expansion chassis.

1.6 Integrated Memory Module (IMM)

The IMM is a high density, memory system
contained on a single 15-inch by 18-inch
printed circuit board. Each IMM board
consists of 256K word (1MB) of metal
oxide semiconductor (MOS) memory,
onboard refresh logic, SelBUS interface
logic, data formatter/error correcting
logic, and associated drivers. With
expansion chassis options, memory
capacity may be increased to a maximum
of 4M words (16M bytes).

IMMs operate with a 600-nanosecond read
access time and a 300-nanosecond write
cycle time. By using fully overlapped read
cycles, the average read cycle time
reduces to 300 nanoseconds. Also, in
respect to the CPU operation, the IMM is
capable of two reads in 900 nanoseconds.
The IMM refresh cycle time is 300
nanoseconds, occuring every 15
microseconds. A two-deep input buffer is
available for all cycles except halfword
and byte write cycles; therefore, the write
halfword/byte cycle time is 600 -
nanoseconds. IMM storage modules may
be, two-way, or four-way interleaved.

The MOS memory is organized into 39-bit
words: 32 data bits plus 7 error correction
bits which are associated with each word
in memory and correct all single-bit
errors. Double-bit errors are detected and
reported.

1.7 Floating-point Accelerator (FPA)
The optional Model 3611 Floating-point

Accelerator (FPA) performs floating-point
addition, subtraction, multiplication, and
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division on single precision (32 bits) and
double precision (64 bits) operands. The
FPA also performs fixed-point
multiplication. The FPA is contained on
two standard size logic boards which
connect directly to the SelBUS (see figure
1-1). The FPA is dedicated to SelBUS
slots A17 and Al8 in the logic/memory
chassis.

1.8 Turnkey Panel and Operator
Console

Figure 1-3 shows the turnkey panel that is
standard with the system. The panel
allows user interaction with the processor
system. The panel includes the master
POWER ON/OFF switch, four functional
LED indicators (RUN, WAIT, HALT,
INTERRUPT) for both CPU and IPU,
system REBOOT pushbutton switch,
MODE selector switch, and a PROCESSOR
SELECT switch.

The operator console is an alphanumeric
CRT used to access the CPU, via the IOP,
for system operation or domestic
commands. It also provides a display of
messages required to operate and maintain
the operating system. The character set
contains a total of 128 displayable
characters (96 ASCII characters plus 32
control characters). It is capable of
displaying 24 lines of information with a
maximum of 80 characters per line.

1.9 Internal Processing Unit (IPU)

An IPU consists of a second set of CPU
boards. This second processor is
configured as an IPU by the turnkey panel
PROCESSOR SELECT switch and
processor identify jumpers on the two CS
units. The IPU provides the facility to
offload tasks from the CPU to the IPU,
thereby increasing the computational
performance of the system. The IPU may
be provided with panel capabilities and
console I/O capabilities by the optional
IPU Console. This option comprises an
IOP, a CRT, and cabling.

1.10 Instruction Repertoire

The CPU instruction set includes fixed-
point and floating-point arithmetic
instructions. The instruction set provides
the computational and data-handling
capabilities required for widely differing
applications. All instructions are fully
detailed in the Reference Manual. The
instruction set includes:

. Register-to-register operations with a
16-bit instruction format to improve
program execution time.

. Fixed-point integer and floating-point
arithmetic operations in single (32-bit)
and double (64-bit) precision formats.

. Complete selection of logical operations
(AND, OR, exclusive OR) for bytes,
halfwords, words, and doublewords.

. Comparison operations for bit, byte,
halfword, word, and doubleword
operands.

. Supervisior call instruction that allows a
program access to specified operating
system services.

. Shift operations (left and right) of word
or doubleword; including logical,
circular, and arithmetic shifts.

. Immediate operand instructions for
greater storage efficiency and increased
speed.

1.11 Operating Mode

The CPU operates in the program status
doubleword (PSD) mode. Individual bits of
the PSD, when set, regulate the memory
environment, the privilege state, and the
addressing option. The PSD mode,
whether the CPU is operating in the
privileged or unprivileged state, creates
the environment required to run the
operating system.
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Figure 1-3. Turnkey Panel

1.11.1 Memory Environments

The CPU may operate in a mapped
environment or an unmapped environment,
which is contingent upon operating
conditions and applications.

Under each of these environments, the
user controls the selection of the
nonextended or extended addressing
options, and these options determine the
rules for logical address generation.

The memory environment is controlled by
the software operating system which also
determines the rules for transposing

logical addresses into physical addresses.

In nonbase mode, the logical address space
beyond the first 128K words may be used
for operands only, and the upper limit of
this space depends on whether the CPU is
operating in the mapped or unmapped
environment. In base mode, the logical
address space may be anywhere in
memory.
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For the mapped environment, the upper
limit of the extended space is 4M words,
and the distribution of the logical address
space within the physical address spaced is
controlled by the memory map.

For the unmapped environment, the upper
limit of the extended space is 4M words,
and all logical addresses are equal to
physical addresses. Indexed addressing is
necessary to achieve addressing above
128K words. In each memory reference
instruction, bits 9 and 10 designate one of
three general-purpose registers to be used
as an index register.

Indirect addressing facilitates table
linkages and permits keeping data sections
of a program separate from procedure
sections for ease of maintenance.

1.11.2 Privileged State

If the privileged state bit in the program
status doubleword is set, privileged
instructions can be executed. If the bit is



reset, any attempt to execute a privileged
instruction will cause a privileged
violation trap.

The privileged state of operation is a
qualifying condition that permits only the
operating system to function. In this
state, the CPU performs the input/output
instructions and all of its control functions
to monitor any part of the system. This is
because the CPU, when operating in the
privileged state, bypasses the map write
protect logic so that any portion of
memory can be accessed.

In the mapped environment with the
privileged bit not set, memory protection
is in effect, and all privileged operations
are prohibited. The unprivileged state of
operation indicates that user access to
memory is permissible. The user may
access the operating system's portion of
memory, but the user cannot write in any
of that space.

1.11.3 Addressing Option

The memory address generation (base or
nonbase) is controlled by the CPU memory
environment (mapped or unmapped). Once
generated by the CPU, the address
calculation is further modified by the
memory addressing option currently in
effect.

In nonbase mode, the memory addressing
options are either extended or
nonextended. The nonextended addressing
option allows the CPU to access instruc-
tions or operands in the first 128K words
of memory. The extended addressing
option provides the access to any bit,
byte, halfword, word, or doubleword
residing anywhere in memory up to 4M
words of logical address space in a mapped
environment, and up to 4M words of
logical address space in an unmapped
environment. A 19-bit address field is
provided in all memory reference
instructions for memory addressing. In
base mode, programs may reside anywhere
in memory.

1.12 Memory Management Hardware

The memory management hardware is a
logical tool that organizes the individual
map blocks of a user's task. The memory
management hardware uses a memory map
(random access memory) to transform
logical space (addresses) into physical
space (addresses).

When the user's task is loaded into
memory, it is dispersed into noncontiguous
map blocks throughout physical memory.
All of the map blocks used for a specific
user's task are considered the physical
(real) space of that task. Physical blocks
of memory can be common to many
logical address spaces. Thus, multiple
users may have access to some of the
same physical address space and share
those common blocks of memory.

The memory management hardware
permits full utilization of all available
memory by allowing user programs to be
loaded into, and executed from, anywhere
in physical memory.

1.13 Memory Interleaving

Memory interleaving is a built-in hardware
feature that distributes sequential
addresses into independently operating
memory modules. Interleaving increases
the probability that a processor can gain
access to a given memory location without
encountering interference from other
processors. Thus, interleaving reduces
memory access time and increases the
throughput rate.

When a system consists of two memory
modules (or a multiple thereof), memory
can be two-way interleaved. If a system
has four modules (or a multiple thereof),
memory can be four-way interleaved.
With two-way interleaving, even addresses
are assigned to the second and fourth
memory modules and odd addresses to the
first and third memory modules. Four-
way interleaving assigns every fourth
address to its respective memory module.

1-7



1.14 I/O Transfers

The CPU supports class 3, E, D, and F I/O
controllers and devices. There is, in fact,
no support provided in the software
operating system for class E operation.
However, the software does support class
D operation (software terminology). Class
E and D may be considered the same, with
the exception that with class D the I/O
device can access up to 16M bytes of main
memory.

1.15 Built-in Reliability and
Maintainability Features

There is error correction in MOS memory
for all memory read accesses.

Address stop features permit the operator
or maintenance personnel to stop on any
instruction address, stop on any memory
read reference address, or stop on any
memory write reference address.

Automatic traps (for error or fault
conditions) have masking capability and
facilitate recoverability under program
control.

CPU traps, which provide for detection of
a variety of CPU and system fault con-
ditions, are designed to facilitate system
recoverability.

1.16 Software

The operating system is the authorized
Gould implementation of UNIX¥, which
supports demand page operation and
standard UNIX utilities.

*UNIX is a trademark of
Bell Laboratories

1.17 Diagnostics

The CPU operates with the followmg
nucleus diagnostics:

CPU Part 1

CPU Part 2

CPU Part 3

Base Register

Trap

Interrupt

Memory Management

Effective Address (F & C bit)

DEXP

Floating Point (firmware),

floating-point accelerator, and fixed to

float/float to fixed

Interval Timer

IOP Console

IPU Trap

Control Store Diag.

Control Store Loader

Multiport Memory

Cache Memory

1.18 Specifications and Leading

Particulars

Specifications and leading particulars are
provided in table 1-1.



Table 1-1

Specifications and Leading Particulars

Word Length
Data Sizes

General-Purpose Registers

Base Registers

Floating-point Arithmetic
(firmware)
Floating-point Accelerator
(firmware)

Logic Board
Dimensions

SelBUS continuous throughput
Power

Voltage

Current IE unit
CS unit
MS unit

Environmental
Operating
Temperature (Celsius)
Relative humidity

Storage
Temperature (Celsius)
Relative humidity

System Integrity features

Memory Management Scheme
MAP
MAP hit RAM
MAP page

32 bit (4 bytes)
1, 8, 16, 32, 64 bits

8 (3 of which can be used for indexing in non
base, or 7 in base register mode)

8

Integral to processor (standard)

Optional

15 by 18 inches (each)

6.67M words/second (26.67M bytes/second)

+5 volts (+5%, -10%)
19.5 amperes
19.0 amperes
22.0 amperes

+10 degrees to +40 degrees
5% to 95%

-40 degrees to +60 degrees
2% to 95%

Memory error detection and correction
circuitry (ECC)

Power fail safe

Arithmetic exception

Privilege violation

Nonpresent memory

2K x 16-bit
128 x 16-bit
2048 word granularity
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CHAPTER 2

INTTIALTZATION, OPERATION, AND SOFTWARE CONTROL

2.1 Introduction

This chapter describes system initializa~
tion and operation. Full details on the
software control of features and options
are provided.

2.2 System Jumpers/Mode Switch

There are several jumper types in a
computer system which must be properly
set before the system is initialized. Since
system modules may vary for different
system models and configurations, special-
purpose jumpers for individual system
modules are not provided here.

The CPU does not affect any of the
SelBUS transfer priority generation or
recognition jumpers. The CPU may be
directly installed into a SelBUS backplane
without changing any SelBUS transfer
priority jumpers, assuming the jumpers
have been previously set for standard
SelBUS communication rules.

The CPU operates at SelBUS priority 0 for
SelBUS I/0O transfers and at pseudo
priority 23 for SelBUS memory transfers.
Pseudo priority 23 results from the
absence of any other SelBUS device
polling on SelBUS priorities 0 through 22.
With both CPU and IPU installed, the CPU
will operate at pseudo priority 23 and the
IPU will operate at priority 22. When an
IPU is installed, SelBUS 22 must be
enabled (SelBUS terminator jumper
removed).

2.2.1 Processor Select Switch

The IPU (internal processing unit) option
consists of a second processor that plugs
into the SelBUS and shares the SelBUS and

memory with the CPU. The IPU differs
from the CPU in that the IPU has limited
I/O capability. The IPU provides the CPU
with the capability of off-loading a task to
the IPU while the CPU starts a new task
or resumes a task in progress.

When a CPU and IPU are installed, or
when a CPU is identified as processor 2,
the SelBUS priority 22 jumper must be
removed (enabled) on the SelBUS
terminator.

In a system with two CPUs, a distinction
must be made between which operates as
processor 1 and which operates as
processor 2. This is accomplished by a
jumper on the CS unit which designates
one of the two CPUs as processor 2. At
system reset, the processor select switch
is examined to determine processor
identity (CPU, IPU, or OFF LINE).

Processor 1 operates at pseudo priority 23
which is the lowest priority on the
SelBUS. When operating at priority 23 the
processor is not required to perform a full
SelBUS poll cycle and only needs to
determine if another SelBUS unit is
polling. This limited poll enables the
processor to execute a one clock memory
write and a four clock memory read
operation after a cache miss.

Processor 2 operates at priority 22 and is
required to perform a full SelBUS poll. A
full poll causes the processor to execute a
two clock memory write and a five clock
memory read after a cache miss.

NOTE: Pl and P2 operate at these stated
priorities regardless of the select
switch.



2.2.2 Automatic Initial Program
Load Jumpers

The CPU provides an automatic initial
program load (auto-IPL) feature that
provides the CPU with the capability of
initiating an initial program load (IPL)
program (software bootstrap program)
during power-up initialization with memo-
ry contents that do not meet the require-
ments of the power-up automatic restart
(auto-restart) feature. Firmware disables
the processor designated as the IPU from
initiating an auto-IPL sequence.

The 16 auto-IPL jumpers are used to
enable the auto-IPL feature and to provide
a 15-bit SelBUS physical address and sub-
address of a dedicated I/O device that
contains the software bootstrap program.
Typically, this I/O device is the system
disc containing the operating system
software. The auto-IPL device must
power up on line.

Figure 2-1 illustrates the position and
function of the auto-IPL jumpers on the
MS board. The enable/disable jumper is a
single bit. The I/O device physical address
field of the jumpers is a 7-bit field, and
the jumpers selected must match the
SelBUS physical address of the dedicated
I/0O device. The I/O device subaddress
field is an 8-bit field that provides the
subaddress of the dedicated device. The
subaddress selected in this field must
match the subaddressing rules of the
corresponding I/O device.

Each jumper inserted in the auto-IPL
jumper group provides a logical one for
functional operation.

2.3 System hitialization
10.
System initialization is a complex
procedure requiring both hardware and
software participation. System
initialization includes the following
functions:

1. System reset is executed by the
hardware or the operator.

IPL of the software bootstrap
program is initiated by the
hardware or the operator.

20

The CPU scratchpad I/O and
interrupt entries are loaded and
the required base addresses in the
scratchpad initialized by the
software bootstrap program.

The dedicated memory interrupt
and trap vector locations are
initialized by the software
bootstrap program.

Rollout of the CPU scratchpad
image to dedicated memory
locations 300 through 6FC occurs,
and if power-up auto restart is to
be used, the scratchpad keyword is
assured to be in the memory
image. This rollout function is
performed by the software boot-
strap program.

Software enables CPU traps.

Software initializes all previously
unused memory words to purge
parity errors or uncorrectable
data errors.

If shared memory is present (other
than CPU-IPU shared memory),
software must describe the shared
memory boundaries (upper
boundary and lower boundary) by
executing the shared memory
control (SMC) instruction. This is
defined in 128K-word blocks.

If an IPU is present and on line
during initialization, software
must enable the read and lock
function in the CPU by executing
the SMC instruction.

If an IPU is present, software in
the IPU must:

a. Initialize the scratchpad.

Execute a SMC to describe
shared memory boundaries if
present. ’

b.

Execute a SMC to enable
read and lock.

C.
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11.

12.

Figure 2-1. Auto-IPL Jumpers, Example

In the CPU and IPU, software
must initialize ACS by copying
PROM to ACS or loading a new
control store image into ACS then
updating the control store image
in ACS by loading applicable
firmware patches.

In the CPU and IPU, with the WCS
present, software must load the

WCS control store image into
WCS.

13.

14.

In the CPU and IPU, software
must enable the ACS mode of
operation by executing a SET CPU
instruction to enable WCS.

In order to retain software loaded
scratchpad, ACS mode, and WCS
contents in both CPU and IPU,
software must ensure that the
CPU keyword is loaded into the
CPU and that the IPU keyword is
loaded into the IPU.




In the preceding list, steps 1 through 3 can
be referred to as CPU initialization, and
steps 4 through 14 can be referred to as
software initialization.

Overall system initialization is executed
in one of two methods as follows:

1. During system power-up se-
quences, where the memory con-
tents are unreliable or designed to
inhibit power-up auto-restart
functions, auto IPL must also be
enabled.

2. By manual usage of the reset and
IPL functions of the system panel.

2.4 CPU/IPU Initialization

Power-up sequencing occurs whenever AC
power is applied to the system and the
power-up and reset signals are gated to
the SelBUS. Power-up sequencing may
cause one of the following three actions:

1. Power-up auto restart
2. Power-up auto-IPL
3. Power-up automatic trap halt

Figure 2-2 provides a flowchart of the
CPU/IPU power-up sequencing. Refer to
Control of Features and Options later in
this chapter for definitions of PROM,
ACS, and ROMSIM modes

2.4.1 Power-up Auto Restart

Power-up auto restart is a standard
feature of the CPU that is designed to
provide the capability of restarting or
continuing a software program that was
interrupted by a power outage. Note that
the power-up auto-restart feature does
not guarantee the integrity of any I/O
operation that was in progress when the
power outage occurred or the physical
positioning of the I/O media following a
power outage.

For correct usage of the power-up auto-

restart feature, the user should also be
familiar with the power-down trap and the
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information provided in the power-down
trap context block. Obviously, a
successful power-down trap must precede
any power-up trap. The power-down trap
sequence is provided and described later in
this chapter. During the power-down
sequence, firmware does not roll out the
CPU and IPU scratchpad keywords, but
does roll out CPU and IPU status words
and configuration words.

For the successful execution of a power-
up auto-restart trap, the following
operating conditions must be met:

1. The CPU/IPU and system must
have been previously intialized
with software traps enabled.

2. Software must maintain the CPU
scratchpad image in the dedicated
memory scratchpad locations 300
through 6FC.

3. The scratchpad image must con-
tain the CPU and IPU scratchpad
keyword.

4. A power-down trap must have
been executed.

5. The integrity of memory must be
preserved during the power outage
(battery backup).

Both CPU and IPU execute similar auto
restart sequences. However, the IPU does
not roll in a scratchpad image and does
not attempt an auto-IPL if the IPU
keyword is incorrect in the memory
scratchpad image.

If any of the preceding conditions are not
met, the power-up auto restart is aborted
and either an auto IPL or an automatic
trap halt is executed. If the above
conditions are met, the CPU/IPU tests for
a pending power-down condition.
Therefore, if another power-down is
pending, the CPU/IPU will hang in an
internal loop, waiting for the power to
fail, thus preventing recursive power-down
traps. If the pending power-down signal is
false, the CPU/IPU transfers control to
the power-up trap software via the power-
up trap context block.
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Figure 2-2. CPU/IPU Power-up Sequencing Flowchart (Sheet 1 of 3)
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Figure 2-2. CPU/IPU Power-up Sequencing Flowchart (Sheet 2 of 3)
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Figure 2-2. CPU/IPU Power-up Sequencing Flowchart (Sheet 3 of 3)
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When the software power-up trap handler
receives control, both the power-up and
power-down trap detection hardware has
been disabled by CPU hardware. The trap
detection hardware will remain disabled
until software executes either a load
program status doubleword (LPSD)
instruction or a load program status
doubleword and change map (LPSDCM)
instruction.

Since the pending power-down signal was
tested prior to the transfer of control to
the power-up trap software, the software
in the power-up trap handler can operate
for a maximum of two milliseconds with-
out enabling the power-up and power-down
trap detection hardware. During this time
period, power-up and power-down traps
are disabled.

Software should make the power-
down/power-up trap handler reentrant.
Once reentrance has been achieved, and
within two milliseconds, software should
reenable the power-up and power-down
detection logic by executing either a
LPSD or LPSDCM instruction.

A restart of the power-down interrupted
software can be achieved by executing a
LPSDCM instruction through the old
program status doubleword (PSD) stored in
the power-down trap context block.

Auto restart can be inhibited by zeroing
the CPU/IPU scratchpad keywords in the
memory scratchpad image.

When the software power-up trap handlers
receive control of both CPU and IPU, the
operating features of the CPU and IPU
have been set to their default values by
the power-up and system reset firmware.
Specifically, the state of the CPU is:

1. The scratchpad memory image has
been loaded into the CPU
scratchpad.

2. All cache banks are enabled.

3. The CPU is operating in the
PROM mode and the content of
the ACS is unknown.
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4. All WCS, if present, has been
initialized to 'long branch to
undefined instruction'.

5. Hardware FPA, if present, is
enabled.

6. Traps are enabled

7. Read and lock is disabled.

8. Shared memory detection is
disabled and the boundary
registers are clear.

9. The CPU internal status word and
configuration word reflect the
current operating state of the
CPU and not the states that were
in effect when power down
occurred.

10. Power up/down sensing is disabled.

11. PSD1 and PSD2 reflect the PSD1
and PSD?2 provided by the CPU
power-up trap context block.

The power-up trap state of the IPU is as
follows:

1. The IPU scratchpad base addresses
(TCB, ICB, and MPL) are set to
default values.

2. All remaining scratchpad in the
IPU is clear.

3. All cache banks are enabled.

4. The IPU is operating in the PROM
mode and the contents of the ACS
is unknown.

5. All WCS, if present, has been
initialized to 'long branch to
undefined instruction’.

6. Hardware FPA, if present, is
enabled.

7. Traps are enabled.

8. Read and lock is disabled.



'9. Shared memory detection is
disabled and the boundary
registers are clear.

10. The IPU internal status word and
configuration word reflect the
current operating state of the IPU
and not the states that were in
effect when power down occurred.

11. PSD1 and PSD2 reflect the PSD1
and PSD2 provided by the IPU
power-up trap context block.

To restore the operating states of the
CPU and IPU, software must use the
status words and configuration words that
were stored in the memory scratchpad
image by the power-down sequence.
Specifically, the IPU scratchpad must be
reloaded and then ACS, WCS, read and
lock, and shared memory must be restored
in both the CPU and IPU.

The IPU power-up software will receive
control approximately 500 microseconds
before the CPU power-up software.
During this time, the IPU software should
not attempt to signal the CPU via the
SIPU instruction since the corresponding
CPU trap will be cleared by the CPU
power-up and reset sequence that is still
in progress. The recommended IPU
power-up software sequence is as follows.

1. Reload the IPU scratchpad.

2. Initialize read and lock and shared
memory boundaries.

3. Save interrupted GPRs and base
registers on a stack (make power-
up software reentrant).

4. Enable power fail sensing by
executing a LPSD or LPSDCM.

5. Wait for a SIPU from the CPU.

6. Continue initialization of ACS and
WCS using CPU resources.

7. Reload base registers and GPRs.
8. Return to software interrupted by

power down, or allow the CPU to
dispatch IPU as required.

2.4.2 Power-up Auto IPL

Power-up auto IPL may occur when the
conditions for a power-up auto restart
cannot be met. Specifically, the con-
ditions that cause an attempt at auto IPL
are:

1. The memory scratchpad image
contains parity errors or
uncorrectable data errors.

2. The memory scratchpad image
does not contain the CPU
scratchpad keyword.

If either of the above conditions are true,
the CPU power-up sequence examines the
16 auto-IPL jumpers located on the MS
board. If the most significant jumper is
true, indicating that auto-IPL is enabled,
the CPU initiates an IPL-I/O sequence to
the SelBUS physical address and sub-
address provided by the remaining 15
jumpers. If the auto-IPL feature is not
enabled, or if a detectable error occurs
within the IPL-I/O sequence, an automatic
trap halt is executed. The specific
functionality of the IPL-I/O sequences is
described later in this chapter.

During auto IPL, the CPU clears memory
location 780. This prevents false
detection of memory errors when ini-
tialiation software accesses the software
control switches (CSWS). Additionally,
scratchpad location @FC is set to the auto
IPL device address to flag auto IPL
restarts. During manual IPL sequences,
scratchpad location @FC is set to zero.

The IPU does not execute an auto-IPL. It
enters the idle loop and waits for the CPU
(software) to initialize it.

2.4.2.1 Auto-IPL Limitations

For the auto-IPL feature to operate
correctly the IPL-I/O device must power
up in an on-line condition and be fully
operable. I/O devices that do not power
up on-line, or devices that do not cor-
rectly position the I/O media during IPL,
cannot be used with the auto-IPL feature.
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I/0 devices that will power up on-line, but
that indicate inoperable status prior to
achieving on-line, will not work with the
auto-IPL feature. However, I/O devices
that indicate "busy" status prior to
achieving on-line will work with the auto-
IPL.

In general, the phase II disc processor, the
input/output processor (IOP) disc pro-
cessor, and the IOP line printer floppy disc
controller function correctly with the
auto-IPL feature. Magnetic tape pro-
cessors, however, do not function with the
auto-IPL.

2.4.2.2 Auto-IPL Abort

During an auto-IPL sequence, the CPU is
executing a tight firmware loop that
monitors the IPL sequence and waits for
the IPL to terminate. In some cases, the
IPL may not terminate, which causes the
CPU to remain in the IPL sequence.
Should this occur, the operator must abort
the IPL sequence using the following
procedure:

1. Use the IOP console and enter the
panel mode (@@P keyboard
sequence).

2. Issue a halt command. Ordinarily,
the CPU will halt; otherwise, an
operator error message is
generated.

3. Ignore the operator error message,
if present, and issue a reset (RST)
command. The CPU should re-
spond with a normal reset
display. If the response is
operator error, the reset sequence
should be repeated.

4. Proceed to manual IPL.

2.4.3 Power-up Automatic Trap Halt
In power-on sequences, where auto restart

and auto-IPL cannot be executed, the CPU
will execute an automatic trap halt.
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The automatic trap halt is characterized
by a halt display on the system control
panel with the interrupt active indicator
turned on. The program counter portion
of the displayed PSD word 1 (PSD1)
indicates the memory address of the trap
vector that caused the automatic trap
halt. Tables 2-1 and 2-2 list the various
causes and malfunctions of automatic trap
halts in the power-up sequence. A more
complete discussion of automatic trap hait
is provided later in this chapter.

2.4.4 IPU Software Initialization

The operating system views the IPU and
CPU as two totally symmetrical pro-
cessors relative to their options and
features. The following listing describes
the procedures that must occur to
initialize the IPU and the software checks
that should occur to ensure that the IPU
and CPU are symmetrical processors. For
the IPU initialization to occur properly,
the IPU software should have a copy of
the current CPU status word and con-
figuration word. All CPU trap vector
locations (TVLs) must be initialized by
CPU software prior to initializing the IPU
(IPU traps are always enabled).

1. IPU read and lock must be
enabled.

2. The IPU shared memory bounda-

ries should be set as designated in
the CPU configuration word.

3. The CPU memory scratchpad
image should be loaded into the
IPU scratchpad. Then, IPU
scratchpad location FO hex must
be set to the correct IPU trap
table base address.

4. If software requires the IPU to
retain its scratchpad contents and
option/feature configuration
through system resets, the soft-
ware must load the IPU keyword
into the IPU scratchpad at
location F7.



Table 2-1
Powerup Automatic Trap Halt Indications and Causes

Display Trap Cause

PSD Word 1 Type

8000 0084 Power up Scratchpad image had memory errors and
or auto IPL was not enabled.

8000 0086

8000 0084 Power up Scratchpad image was okay. Auto restart

or was attempted, but traps were disabled
at the time of the power-down trap. Check
the CPU status word in the memory scratchpad

8000 0086
image.
8000 009C Machine
or check trap
8000 009E

Auto-IPL or IPL-I/O
sequence error.
{See Table 2-2.)

10.

If software requires the IPU to
perform power-up auto restart,
the software must place the IPU
scratchpad keyword in the CPU
memory scratchpad image at
location 6D4.

If the CPU is operating in the
PROM mode, the IPU should be
placed in the PROM mode.

If the CPU is operating in the ACS
mode, the IPU ACS must be
loaded and enabled.

If the CPU is operating with the
hardware FPA disabled, the IPU
FPA should be disabled.

If the CPU FPA is enabled, but
the IPU FPA is either nonpresent
or cannot be enabled, a non-
symmetrical configuration error is
present. In this case, the system
operator should be notified or,
alternatively, the CPU FPA can
be disabled.

The IPU WCS, if present, must be
loaded to match the CPU WCS.

11. If the IPU WCS configuration is
different from the CPU WCS
configuration, a nonsymmetrical
configuration error exists and the
system operator should be
notified.

2.5 Manual IPL

Manual IPL is initiated from the console
by using the system reset and IPL
functions. The specific operations re-
quired to execute reset and IPL are de-
scribed in the console description later in
this chapter. The following description
cover the CPU and system reaction to the
system reset and IPL functions.

2.5.1 Reset

The system reset function can only be
executed while the CPU is in a halt mode
and the halt indicator is on. This
particular restriction is enforced by the
IOP and not the CPU. Similarly, the IPU
and IPU-IOP can initiate the manual
system reset if the IPU is halted. If either
the CPU or IPU initiates the system reset,
both processors are reset.
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Table 2-2
Auto-IPL and IPL. Fault Isolation

NOTE

The following secondary indications are valid when a machine trap—

automatic trap halt occurs during IPL or auto IPL.

Secondary Indication

Cause

Memory locations 0 and 4 contain
data errors or nonspecific data.

Memory locations 0 and 4 contain
@0200 7FFF and @0000 0000.

Memory locations 0 and 4 contain
@0200 0000 and @6000 0078.

The IPL channel is not class F
and memory location 0 contains
a valid macro instruction
(normally a branch instruction).
The branch instruction also looks
like a valid PSD word 1.

The IPL channel is class F and
memory locations 0 and 4 contain
a valid PSD. PSD word 1 also
looks like a branch instruction.

The IPL channel is class F and
memory locations 0 and 4 contain
a class F status doubleword.
Word 2 of the doubleword
indicates channel, subchannel,

or device errors.

Addressed IPL channel was not
present or inoperable.

Addressed IPL channel was not
class F, and no IPL data was transferred
from device to memory.

Addressed IPL channel was class
F, but no IPL data was transferred from
the device to memory.

The IPL has worked and data has

been transferred from the device to
memory. The bootstrap software should
be memory resident. Insure that the
automatic trap halt did not occur as a
result of the bootstrap software.

IPL data has been transferred

from the device to memory.

IPL-I/O termination has not occurred
which indicates a malfunction in the
CPU, 1/O channel, or the I/O device.

Class F channel, subchannel, or
I/O device errors.
Also, I/O media flaws.

When the CPU/IPU receives the reset
function, a hardware master clear
signal is generated within the

CPU/IPU and a reset signal is driven

to the SelBUS causing all circuit

cards that plug-in to the SelBUS

to be reset or master cleared.

The CPU/IPU master clear signal
causes the micro PC to be reset, thus
reinitializing the firmware. The master
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clear signal also clears all hardware flags
and registers.

As part of the hardware reset sequence,
the hardware examines the PROCESSOR
SELECT turnkey switch. The hardware

then defines processor 1 as CPU, IPU, or

OFF LINE and processor 2 as CPU, IPU, or

OFF LINE as defined by the turnkey
switch.




When the hardware master clear is
complete, the firmware reinitialization
takes place to restore the CPU to an
operational condition, but in a halted
mode. Figure 2-3 provides a flowchart of
- the firmware reinitialization or system
reset flow.

An overview of the software apparent
reset condition is as follows:

1. The CPU and IPU enter the PROM
mode.

2. The software general-purpose
registers (GPR) are set to zeros.

3. The scratchpad (SPAD) device
entry and interrupt entry dynamic
flags (bits 0 through 3) are set to
zero in scratchpad locations 00
through EF.

4, The cache is cleared.

5. If the CPU or IPU keyword is not
present in the corresponding
scratchpad location F7, the
following default parameters are
set.

a. The trap table base address is
set to 0000 0080 in scratchpad
location FO (0020 trap table
base address in the IPU).

b. The interrupt table base
address is set to 0000 0100 in 6
scatchpad location F1. :

c. The input/output command
doubleword (IOCD) table base
address is set to 0000 0700 in
location F2.

d. The master process list (MPL)
base address is set to 0000
0788 in scratchpad location F3.

e. The CPU or IPU scratchpad
keyword in location F7 is set
to zero.

f. The CPU or IPU status word in
scratchpad location F9 is set
to zero, disabling CPU/IPU
traps.

g. In the IPU only, IPU status
word bit 26 (enable traps) is
set in scratchpad location F9,
enabling only IPU traps.

h. The CPU and IPU shared
memory registers are cleared,
disabling shared memory and
read and lock functions.

i. Both banks of WCS, if present,
are initialized to 'long branch
to undefined instruction’ and
the appropriate WCS bits are
set or cleared in the con-
figuration word to indicate
WCS configuration.

jo All cache banks are turned on,
and the configuration word
cache indicator bits (27 thru
31) are set.

k. If present, the hardware FPA
is enabled and the corre-
sponding bit in the CPU/IPU
status word is set or cleared to
reflect the FPA condition.

NOTE

If the scratchpad keyword
is present, the table base
addresses are not altered.

If the CPU or IPU keyword is
present in the corresponding
scratchpad location F7, the
following parameters are not
changed.

a. The scratchpad table base
address (TVL, IVL, MPL, and
IOCDL).

b. CPU or IPU keyword.

c. CPU or IPU status word.
d. Shared memory registers.
e. The state of read and lock.

f. The contents of WCS, if
present.
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SYSTEM
RESET

HARDWARE DEFINES PROCESSOR NO.1
AS CPU, IPU, OR OFF-LINE AND
PROCESSOR NO. 2 AS IPU, CPU, OR
OFF-LINE AS DETERMINED BY THE
TURNKEY SWITCH

DEFAULT TO PROM MODE

1F NOT ROMSIM MODE

¢

( Power Up ) G

INITIAL
ROGRAM LOAD

FIGURE
2-2

CLEAR GPRS 0 THRU 7
IN CPU AND FPA

CLEAR MP2901, IE UNIT,
AND FPA REGISTERS 8
THRUF

CLEAR CACHE

YES
1PU

GENERATE
SIGNAL PV

GENERATE
SIGNAL CPU

FIGURE
24

IN DEVICE AND INTERRUPT ENTRIES

CLEAR BITS O THRU 3 AND BIT 16

{LOCATIONS @ 00 THRU @ EF)

ZERO SCRATCHPAD
(LOCATIONS @ 100 THRU @ 10F

2A

830402
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Figure 2-3. System Reset Flowchart (Sheet 1 of 11)



YES

CPU

SPAD YES

1PU
SPAD

YES
KEYWORD

KEYWORD
CORRECT

DEFAULT CPU

SET DEFAULT TRAP TABLE
BASE ADDRESS = 0080 IN
SCRATCHPAD LOCATION @ FO

SET DEFAULT INTERRUPT TABLE
BASE ADDRESS = 0100 IN
SCRATCHPAD LOCATION @ F1

3A

NOTES:

THE SCRATCHPAD KEYWORD IS ONLY LOADED INTO THE SCRATCHPAD BY POWERUP AUTO RESTART

DEFAULT iPU

CORRECT

ZERO IPU KEYWORD AT
LOCATION @ F7

SET DEFAULT INTERRUPT TABLE
BASE ADDRESS = 0100 IN
SCRATCHPAD LOCATION @ F1

SET DEFAULT IOCD TABLE
BASE ADDRESS = 0700 IN
SCRATCHPAD LOCATION @ F2

SET DEFAULT MASTER PROCESS
LIST (MPL) BASE ADDRESS = 0788
IN SCRATCHPAD LOCATION @ F3

a4A

3C

OR A TRSC INSTRUCTION DURING SOFTWARE INITIALIZATION OF THE CPU SCRATCHPAD.

THE PRESENCE OF THE KEYWORD INDICATES THAT THE BASE ADDRESSES HAVE BEEN SET BY SOFTWARE

AND MUST NOT BE DEFAULTED DURING SYSTEM RESET.

830411

Figure 2-3. System Reset Flowchart (Sheet 2 of 11)
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DEFAULT CPU
CONTINUED

SET DEFAULT IOCD TABLE BASE
ADDRESS = 0700 IN SCRATCHPAD
LOCATION @ F2

SET DEFAULT MASTER PROCESS LIST
(MPL) BASE ADDRESS = 0788 IN
SCRATCHPAD LOCATION @ F3

DEFAULT IPU
CONTINUED

CLEAR ALL STATUS BITS IN STATUS
WORD. THEN SET ENABLE TRAP BIT
IN STATUS WORD AND STORE IN
SCRATCHPAD LOCATION @ F9

SET DEFAULT IPU TRAP TABLE
BASE ADDRESS = 0020 IN SCRATCHPAD
LOCATION @ FO

ZERO KEYWORD IN @ F7

CLEAR CPU STATUS WORD IN
SCRATCHPAD LOCATION @ F9

CLEAR UPPER AND LOWER SHARED
MEMORY REGISTERS. TURN OFF READ

AND LOCK (D

EFAULT SMC)

CLEAR UPPER AND LOWER SHARED
MEMORY REGISTERS TURN OFF READ
AND LOCK (DEFAULT SMC)

47

CHECK FILL WCS

SET WCS ADDRESS = 1000 I

CHECK FOR WCS

WRITE TO WCS LOCATION 1000

5A

830410
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Figure 2-3. System Reset Flowchart (Sheet 3 of 11)




READ CPU/IPU STATUS WORD FROM
SCRATCHPAD LOCATION @ F9

ACS
MODE BIT

NO

SET IN STATUS
WOV

YES

<

YES

SET (CRAM) ORDER TO
ENTER ACS MODE

SET ACS MODE BIT IN CPU/IPU
STATUS WORD IN SCRATCHPAD
LOCATION A F9

ROMSIM
MODE

NO

<

8B

830409

Figure 2-3. System Reset Flowchart (Sheet 4 of 11)
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5A

CHECK FOR WCS
CONTINUED

READ WCS LOCATION 1000

READ DATA YES

EQUAL WRITE
DATA

CHECK FILL WCS

RESET BIT 16 IN R (STATS)
TO INDICATE THAT WCS 1000 THRU
1FFF 1S NON PRESENT

SET SCRATCHPAD LOCATION @ 1FO =0,
WHICH INDICATES THE UPPER LIMIT
OF A JWCS INSTRUCTION
(EFFECTIVELY INHIBITS JWCS)

FILL WCS

READ PROM OR ROMSIM LOCATION
800 TO GET A MICROWORD FOR ‘LONG
BRANCH TO UNDEFINED INSTRUCTION’

WRITE ‘LONG BRANCH TO UNDEFINED
INSTRUCTION’ IN WCS LOACTIONS
1000 THRU 1FFF

CHECK FILL WCS

SET BIT 16 IN R(STATS} TO INDICATE
THAT WCS 1000 THRU 1FFF IS PRESENT

SET SCRATCHPAD LOCATION
@ 1F0 = 2000, WHICH IS THE UPPER
LIMIT +1 OF A JWCS INSTRUCTION

>

SET WCS ADDRESS = 2000

CHECK FOR WCS

WRITE TO WCS LOCATION 2000

6A

830408

2-18

Figure 2-3. System Reset Flowchart (Sheet 5 of 11)




CHECK FOR WCS
CONTINUED

READ WCS LOCATION 2000

READ DATA YES

EQUAL WRITE
DATA

CHECK FILL WCS

RESET BIT 17 IN R (STATS)
TO INDICATE THAT WCS 2000
THRU 2FFF IS NON PRESENT

FILL WCS

READ PROM OR ROMSIM LOCATION
800 TO GET A MICROWORD FOR ‘LONG
BRANCH TO UNDEFINED INSTRUCTION’

WRITE ‘LONG BRANCH TO UNDEFINED
INSTRUCTION’ IN WCS LOCATIONS
2000 THRU 2FFF

CHECK FILL WCS

SET BIT 17 IN R {STATS) TO INDICATE
THAT WCS 2000 THRU 2FFF IS PRESENT

1PU YES

NO

830412

Figure 2-3. System Reset Flowchart (Sheet 6 of 11)
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DEFAULT CPU DEFAULT IPU
CONTINUED CONTINUED
READ CPU CONFIGURATION WORD READ IPU CONFIGURATION WORD
FROM SCRATCHPAD LOCATION @ 1FE. FROM SCRATCHPAD LOCATION @ 1FE.
CLEAR ALL BITS EXCEPT IPU PRESENT CLEAR ALL BITS EXCEPT IPU PRESENT

SET CACHE MEMORY CONTROL (CMC)=

SET CACHE MEMORY CONTROL (CMC) =
@01F, WHICH TURNS ON ALL CACHE @ 01F, WHICH TURNS ON ALL CACHE
BANKS AND INSTRUCTION PREFETCH. BANKS AND INSTRUCTION PREFETCH.
‘OR’ THE CMC ENABLE BITS INTO THE ‘OR’ THE CMC ENABLE BITS INTO THE
CPU CONFIGURATION WORD CPU CONFIGURATION WORD |

‘OR’ WCS PRESENT BITS FROM R (STATS)

‘OR’ WCS PRESENT BITS FROM R (STATS)
INTO CONFIGURATION WORD. THEN INTO CONFIGURATION WORD. THEN
STORE CONFIGURATION WORD IN STORE CONFIGURATION WORD IN
SCRATCHPAD LOCATION @ 1FE

SCRATCHPAD LOCATION @ 1FE

CLEAR CPU STATUS WORD IN sc
SCRATCHPAD LOCATION @ F9

8A

830413

Figure 2-3. System Reset Flowchart (Sheet 7 of 11)
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DEFAULT TO PROM MODE OF
OPERATION. NOTE: IF IN ROMSIM
MODE, THE HARDWARE IGNORES

THIS COMMAND

< v

DEFAULT TO PROM MODE OF
OPERATION. NOTE: IF IN ROMSIM
MODE, THE HARDWARE IGNORES

THIS COMMAND

CONT. SET SCRATCH

ZERO SCRATCHPAD LOCATIONS
@ F5 AND F6 (CLEAR CURRENT
PSD1 AND PSD2

SET CURRENT ACTIVE INTERRUPT
LEVEL = @ 007F0000 IN SCRATCHPAD
LOCATION @ FA

SET NUMBER OF ACTIVE INTERRUPTS
=0 IN SCRATCHPAD LOCATION @ FB

SET PSEUDO INTERRUPT ENTRY
FOR LEVEL 7F =@ O0FFFFFF IN
SCRATCHPAD LOCATION @ FF

CLEAR MAP HIT RAM

CLEAR PIPELINE

SET R(TRACE) = @ 80000000 TO
INDICATE CPU HALTED

9A

830414

Figure 2-3. System Reset Flowchart (Sheet 8 of 11)
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SET STATS = @ 80000000 TO ENABLE
PRIVILEGED MODE AND DISABLE
EXTENDED MODE, BASE MODE, AND
ARITHMETIC EXCEPTION TRAP

READ CPU/IPU CONFIGURATION WORD
FROM SCRATCHPAD LOCATION @ 1FE

NO ROMSIM

FLUSH PIPELINE AND SET PROGRAM
COUNTER (PC) EQUAL TO ZERO.
CLEAR ERRORS AND RESET
ADDRESS STOPS

MODE

SET (FPA), ENABLE HARDWARE
FLOATING POINT

SETBIT 18 IN CONFIGURATION WORD
TO INDICATE ROMSIM MODE

= =

CLEAR CONDITION CODES AND
ISSUE HALT ORDER

SET (TRACE) TO INDICATE THE
VALIDITY OF R (TRACE)

SET (ENAUTOUINT) TO ENABLE
AUTOMATIC MICROINTERRUPTS

SET (UNBLOCK) TO UNBLOCK
INTERRUPTS

ENABLE SOFTWARE INTERRUPTS

10A

8304156
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Figure 2-3. System Reset Flowchart (Sheet 9 of 11)




CPU
TRAP OR
IPU TRAP SIGNAL
PRESENT

NO

SET BIT 19 IN CONFIGURATION WORD
TO INDICATE THE PRESENCE OF AN 1PU

>

RESET CPU TRAP/IPU TRAP

SAVE CPU/IPU CONFIGURATION IN
SCRATCHPAD LOCATION @ 1FE

A

830416

Figure 2-3. System Reset Flowchart (Sheet 10 of 11)
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IPL

IS ENTRY FROM
IPL, POWERUP, OR

PANEL SYSTEM RESET

SYSTEM RESET ’

POWERUP
RETURN TO
IPL

FIGURE 24

RETURN TO
POWERUP

FIGURE 2-2

CPU SENDS TO THE SYSTEM PANEL
THE CONTROL SWITCHES ADDRESS

1. ARSTX-REQUEST CSWS ADDRESS
2. READY

3. RSTX-REQUEST CSWS ADDRESS
4. DRT-SEND CSWS ADDRESS

5. WDOT-CSWS ADDRESS

VIA THE FOLLOWING SelBUS SEQUENCE:

PROGRAM STATUS WORD VIA THE
FOLLOWING SelBUS SEQUENCE:

1. ARSTX-SEND FUNCTION
2. READY

3. RSTX-SEND FUNCTION
4. DRT-READ PSW

5. WDOT-PSW (PSD1)

CPU SENDS TO THE SYSTEM PANEL THE

EXITTO
IDLE LOOP

830417
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Figure 2-3. System Reset Flowchart (Sheet 11 of 11)




10.

11.

12.

13.

14.

15.

16.

17.

g. The WCS, SMC, and CMC
configuration word bits.

h. Cache memory control.

i. The enabled/disabled state of
the hardware FPA.

jo The content of the ACS.

k. If the CPU/IPU was operating
in the ACS mode prior to the
system reset, the ACS mode
of operation is restored.

The scratchpad current PSD1 and
PSD2 in locations F5 and F6 are
set to zero.

The current active interrupt
level is set to 007F0000 in
scratchpad location FA.

The number of active interrupts
are set to zero in scratchpad
location FB.

The pseudo interrupt entry for
level 7F is set to OOFFFFFF in
scratchpad location FF.

The map hit RAM is cleared.

The instruction pipeline is
cleared and all pending errors are
purged.

The CPU/IPU PSD Word 1 is set
to 8000 0000 to indicate the
privileged state with a program

counter value of zero (CPU
halted).

Interrupts are enabled and
unblocked.

The HALT indicator is turned on.

The CPU/IPU power-fail, panel
attention traps, and micro-
interrupts are enabled.

The CPU/IPU initializes the ad-
dress of the console control
switches (CSW) by using a SelBUS
CPU to panel communication
sequence.

18. The CPU/IPU sends to the
console the current PSD1 display
via a CPU or IPU to panel
SelBUS communication
sequence. At reset, the PSD1 is
8000 0000.

19. The CPU/IPU enters the firm-
ware idle loop and is ready to
begin software instruction
execution when a halt-to-run (run
command) is received from the
console.

20. The panels display the CPU and
IPU PSD1 and the contents of the
memory location addressed by

PSDI1 in a program status word
(PSW) display.

2.5.2 Imitial Program Load

The IPL function can only be executed
while the CPU is in the halt mode and the
halt indicator is on. The IPL cannot be
executed while the CPU is in the run
mode. The restriction to IPL execution is
enforced by both the CPU and the IOP.
IPL cannot be executed in the IPU.

For descriptive purposes, the IPL function
can be divided into seven major sequences
as follows:

1. The CPU receives the IPL signal
(command) while halted and
executing the firmware idle loop.
The IPL command is enabled via
the console.

2. The CPU executes a limited firm-
ware system reset as shown within
the figure 2-3 flowchart.

3. The CPU clears scratchpad loca-
tion @FC to indicate a manual
IPL.

4. The CPU initiates a SelBUS com-
munications sequence with the
IOP to obtain the IPL I/O device
address.
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5. The CPU initiates a SelBUS
communication sequence with the
IPL I/O device's channel to
determine the channel's SelBUS
I/O protocol; either class E or
class F.

6. The CPU initiates a SelBUS
sequence for an IPL-start I/O.
The IPL-start I/O specifies a
binary data read, starting at
memory location zero.

7. The CPU waits for the IPL 1/O
data transfer to be completed,
indicating that the software
bootstrap program has been loaded
into memory from the IPL device.

8. The CPU fills the instruction
pipeline and begins execution of
the software bootstrap program.
The software bootstrap must
initialize the remaining elements
of the CPU and system.

NOTE

Memory location 780 is not
cleared during manual IPL.

Figure 2-4 is a flowchart of the IPL
sequence. For auto-IPL, figures 2-2 and
2-3 each contain portions of the auto-IPL
sequence.

2.5.2.1 Firmware Reset

During IPL, the CPU performs a limited
firmware reset. Since a hardware reset is
not performed, the I/O channels and
devices are not reset. Therefore, the
manual IPL must always be preceded by a
system reset function to assure that all
I/O channels are reset.

The limited firmware reset executes the
functions of a normal firmware reset,
except it does not clear the software
general-purpose registers. Since the GPRs
are not cleared, they may be loaded prior
to an IPL by a panel function. If an IPL is
executed, without an intervening system
reset, the contents of the preloaded GPRs
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will be passed through the IPL sequence to
the software bootstrap program at the
conclusion of the IPL sequence.

The limited firmware reset causes all
scratchpad base addresses to be set to
their default values. This assures that an
automatic trap halt will function correctly
in an IPL and software bootstrap
sequence.

All operating features (WCS, SMC,
ACS/PROM, and CMC) are set to their
default values as described under the
System Reset heading.

2.5.2.2 IPL Device Address

An IPL device address consists of a 15-bit
right-justified number. The most-
significant seven bits are the I/O channel
physical SelBUS address, and the eight
least-significant bits are the device
address or subaddress.

The IPL device address may be acquired
from one of the four sources which follow:

1. In auto IPL, the IPL address is
sourced from 16 auto-IPL address
jumpers located on the MS board.

2. A console IPL address zero may be
entered via the console. IPL
address zero is meaningless, but
causes the CPU firmware to use
the default IPL address located in
scratchpad location F4. This
default IPL address is the same
address used for the last pre-
viously successful IPL since a
power-up sequence had occurred.
However, if this is the first IPL
following a power up, the scratch-
pad default IPL address may be
unreliable.

3. A 15-bit, nonzero, right-justified,
IPL address may be entered with
the IPL command from the
console. This IPL address is
transmitted to the CPU which
does not check the address
validity. If the IPL at this address
is successful, the address is stored
in scratchpad location F4 as the
new default IPL address.



INITIAL
PROGRAM LOAD

NOTE:

CONSOLE

PANEL.IPL

CLEAR CPU SCRATCHPAD
KEYWORD IN LOCATION @ F7

LINK TO SET SYSTEMS CONSTANTS.1
(FIGURE 2-3). RETURN IN-LINE.
NOTE: THIS ROUTINE CLEARS AND
SETS ALL SCRATCHPAD AND
FEATURES TO THEIR DEFAULT
VALUE AS DEFINED THE TEXT
COVERING SYSTEM RESET

REQUEST {PL DEVICE ADDRESS
FROM THE 10P VIA THE FOLLOWING
SelBUS SEQUENCE.

1. ARSTX-SEND IPL ADDRESS
2. READY

3. RSTX-SEND IPL ADDRESS
4. DRT-IPL ADDRESS

CLEAR AUTO IPL FLAG IN
SCRATCHPAD @ FC

PANEL
IPL ADDRESS
=0

NO

ENTER WHEN IPL
ENTERED VIA THE

AUTO IPL

FROM FIGURE 2-2
SHEET 2

USE THE IPL DEVICE ADDRESS
FROM THE AUTO-IPL JUMPERS

FETCH SCRATCHPAD DEFAULT IPL
DEVICE ADDRESS FROM SPAD
LOCATION @ F4 AND USE
THIS IPL ADDRESS

USE THE IPL DEVICE ADDRESS
RECEIVED FROM THE I0P/CONSOLE

AUTO.IPL1

2A

830403

Figure 2—4. Initial Program Load Flowchart (sheet 1 of 5)
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IPL CLASS F IPL
FORMAT AND EXECUTE A SelBUS FORMAT CLASS F IPL I0CD AND STORE
‘IDENTIFY PROTOCOL’ SEQUENCE IN MEMORY LOCATIONS 0 AND 4
TO THE ADDRESSED IPL DEVICE 10CD = 02000000 )
= 60000078

1. ARSTX-IDENTIFY PROTOCOL
2. READY
3. RSTX-IDENTIFY PROTOCOL
4. DRT-PROTOCOL DATA

FOR CLASSE=0

FOR CLASS F = 0000F000

READ 120 BYTES INTO LOCATION 0
WITH COMMAND CHAIN AND SUPPRESS
{INCORRECT LENGTH

FORMAT AND EXECUTE A CLASS
F SelBUS LOAD RAM.

1. ARSTX-LOAD RAM
2. READY

3. RSTX-LOAD RAM
4. DRT

ANY
1/0 ERRORS

1/0
ERROR
(NOTAOR I/O
TIMEOUT)

YES
YES

NO

SAVE I/O0 PROTOCOL DRT iN
SCRATCHPAD LOCATION @ F8

PROTOCOL
DRT =CLASS F

AUTOMATIC
TRAP HALT

3A AUTOMATIC
TRAP HALT

830404

Figure 2-4. Iitial Program Load Flowchart (sheet 2 of 5)
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FORMAT AND EXECUTE CLASS F
IPL START 1/0 (IPL-SIO}
/O COMMAND LIST ADDRESS =0

1. ARSTX-IPL-SIO
2. READY

3. RSTX-IPL-SIO
4. DRT

ANY
1/0 ERRORS

NO

AUTOMATIC
TRAP HALT

FETCH MEMORY, LOCATION 0 WHICH
CONTAINS IPL NEW PSD1 STORE PSD1
IN SCRATCHPAD LOCATION @ FD

1PL
TERMINATION
INTERRUPT

WAIT FOR
IPL TERMINATION

YES

IPL DATA TRANSFER
COMPLETE

¢

FORMAT WORD 2 OF
IPL 10CD = 60000078

FETCH MEMORY LOCATION 4

FORMAT AND EXECUTE CLASS F
ACKNOWLEDGE AND DEACTIVATE
SelBUS SEQUENCE

1. AICT-ACK AND DEACK
2. READY

3. ICT-ACK AND DEACK
4. DRT STATUS STORED

AUTOMATIC
TRAP HALT

UNEXPLAINED

MEMORY

/0 ERROR LOCATION 4
PREMATURE =1PL IOCD 2
INTERRUPT 60000078

IPL DATA
TRANSFER
IN PROGRESS

SAVE STATUS ADDRESS FROM DRT

ANY
I/0 ERRORS

YES

ADD 4 TO STATUS ADDRESS
AND FETCH MEMORY WORD

IPL TERMINATION STATUS WORD 2
STORE IN SCRATCHPAD
LOCATION @ 102

4B

AUTOMATIC
TRAP HALT

830405

Figure 2—4. itial Program Load Flowchart (sheet 3 of 5)
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CLASS E IPL

FORMAT AND EXECUTE CLASS E LOAD
RAM SelBUS SEQUENCE

1. ARSTX-TD8000

2. READY

3. RSTX-TD8000

4. WDOT-LOAD RAM

1/0
ERRORS
(NO TA OR
TIMEOUT)

AUTOMATIC
TRAP HALT

FORMAT CLASS E IPL 10CD AND STORE
IN MEMORY LOCATIONS 0 AND 4
IOCD = 02007FFF

BINARY READ 7FFF BYTES TO
MEMORY LOCATION 0

NOTE:

PSD2 = 00004000
NOT MAPPED
INTERRUPTS
BLOCKED

5A

CLASSF IPL

FORMAT AND EXECUTE CLASS F
DISABLE CHANNEL INTERRUPT

1. ARSTX-DCi
2. READY

3. RSTX-DCI
4. DRT

ANY
1/0 ERRORS

YES

ERROR

FLAGS INIPL

TERMINATION

STATUSWORD
2

NO

BLOCK INTERRUPTS, TURN
OFF MAP MODE

SAVE IPL DEVICE ADDRESS IN
SCRATCHPAD LOCATION @ F4
FETCH IPL PSD1 FROM
SCRATCHPAD LOCATION @ FD

FILL INSTRUCTION PIPELINE
ACCORDING TO IPL PSD1 ENTER
RUN MODE

IPL
COMPLETED

AUTOMATIC
TRAP HALT

830406

Figure 2-4. lnﬂiallhuupmuhILoadJFhmwchart(sheetélof!ﬂ

2-30




AUTOMATIC
TRAP HALT

I CLASS E IPL

FORMAT AND EXECUTE CLASS E IPL
START I/O {IPL-SIO) SelBUS SEQUENCE

1. ARSTX-TD8000
2. READY

3. RSTX-TD8000
4. WDOT-IPL-SIO

1/0
BUSY OR
RETRY

YES

1/0

ERRORS
(NO TA OR
TIMEOUT)

1/0

ERRORS
(NO TA OR
TIMEOUT)

YES

AUTOMATIC
TRAP HALT

SAVE IPL DEVICE ADDRESS
IN SCRATCHPAD LOCATION @ F4

SET PSD1 TO 80000000 PRIVILEGED
MODE AND PROGRAM COUNTER =0

FILL INSTRUCTION PIPELINE
ACCORDING TO PSD1
ENTER RUN MODE

FORMAT AND EXECUTE CLASS E
TD8000 SelBUS SEQUENCE

1. ARSTX-TD8000
2. READY

3. RSTX-TD8000
4. DRT

/o
BUSY OR

RETRY WAIT FOR

IPL TO COMPLETE

NOTE:

PSD2 = 00000000
NOT MAPPED
UNBLOCKED

IPL
COMPLETED
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Figure 2-4. Initial Program Load Flowchart (sheet 5 of 5)
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4. In manual IPL sequences, if the
IOP panel function is inoperable or
nonpresent, the CPU will generate
a physical and subaddress of 0100
hex, and then attempt to IPL from
this address.

Any I/O device may be used for IPL,
providing that the device, its channel, and
controller meet the following criteria:

1. Binary I/O read is supported.

2. The channel supports the SelBUS
identify I/O protocol sequence.

3. The channel and controller support
the SelBUS IPL-start I/O sequence
and IPL input/output command
doubleword.

4. The I/O media can be auto-
matically or manually positioned
to the start of the IPL records.

2.5.2.3 IPL Identify I/O Protocol

The CPU initiates the SelBUS identify I/O
protocol communications sequence in
order to determine the I/O protocol of the
addressed IPL channel, controller, and
device as either class E or class F. The
I/O protocol of the IPL channel deter-
mines the type and rules of further SelBUS
communications during the SelBUS
sequence.

In general, class F IPL is considered more
accurate and adaptable than class E IPL
for the following reasons:

1. Class F IPL rules are universally
interpreted by the CPU and I/O
channel; whereas, class E rules are
interpreted differently by differ-
ent I/O channels.

2. Class F rules provide for command
and data chaining which allows
IPL to be adapted to variable or
fixed length record devices.
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3. Class F rules provide for a
termination status transfer to the
CPU which informs the CPU of
the integrity of the data loaded
into memory. The CPU aborts the
IPL sequence if any IPL I/O errors
are present.

The IPL identify protocol data return
transfer (DRT) is stored into scratchpad
location F8. Bits 16 through 19, equal to
F, indicate a class F protocol. Any other
configuration in bits 16 through 19 is class
E protocol. Bits 0 through 15 and 20
through 31 are I/O channel dependent bits.

2.5.2.4 IPL IOCDs

To control the IPL data transfer, the CPU
formats and stores into memory locations
0 and 4 an input/output command
doubleword. In class F rules, the IOCD
specifies the following:

1. A binary read command

2. A data transfer starting address of
0

3. A data transfer count of 120 bytes

4. A flag byte that specifies
command chaining and suppress
incorrect length indicator.

Subsequent IOCDs to complete the
command chain and an input/output
command list (IOCL) must be read into
memory from the IPL device media.
Table 2-3 illustrates the contents of
memory during the class F IPL sequence.

In class E rules the IOCD specifies the
following:

1. A binary read command

2. A data transfer starting address
of 0

3. A data transfer count of 7FFF
transfers. (The interpretation of
the transfer count as byte, half-
word, or word is channel
dependent.)

Table 2-4 illustrates the contents of
memory during class E IPL sequence.



Table 2-3
Class F IPL. Memory Contents

Memory contents before IPL-start I/O

Location Contents
0 0200 0000 CPU-formatted
4 6000 0078 IOCD
8 Irrelevant

Memory contents after IPL data transfer but before IPL termination (all memory

data has been read from the IPL device)

Location Contents
0 8000 00XX PSD word 1 PSD
4 0000 4000 PSD word 2
8 IOCD word 1 IOCD
C IOCD word 2
IOCL
XX-8 Termination IOCD word 1
XX-4 Termination IOCD word 2
XX Instruction
XX+4 Instruction
Software
bootstrap

Memory contents after IPL termination

Location Contents
0 YY00 00XX Status word 1 Termination status doubleword
4 000C 0000 Status word 2 stored by the IPL channel. YY is the
subaddress of the IPL device and XX is
the next IOCD address
8 IOCD word 1 IOCD
C IOCD word 2
IOCL
XX-8 Termination IOCD word 1 IOCD
XX-4 Termination IOCD word 2
XX Instruction
XX+4 Instruction
Software
bootstrap

Note: Some F class channels post IPL termination status in memory at locations
other than location zero. In these cases, the IPL PSD is not overwritten with

termination status.
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Table 24
Class E IPL. Memory Contents

Memory contents before IPL-start 1I/O

Location Contents
0 0200 7FFF CPU-formatted
4 000 0000 IOCD
8 Irrelevant

Memory contents after IPL data transfer (all memory data has been read from the
IPL device)

Loocation Contents
0 Instruction
4 Instruction
Software
Bootstrap

Table 2-5 illustrates the format of the first IPL record in class F IPL.

Table 2-5
Class F First IPL Record Format
Byte Contents
0 through 3 CPU program status doubleword (PSD) word 1
4 through 7 CPU PSD word 2
8 through 15 Input/output command doubleword
NOTES

1. This IOCD may complete the chain initiated by the
CPU IPL IOCD or may specify additional chaining.

2. If additional chaining is specified, additional
IOCDs must be supplied starting in byte 16.

16 through (XX-1) Additional IOCDs as required
XX through End Software bootstrap
NOTE

The bootstrap can be in a subsequent record,
read by the IPL I/O command list.
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2.5.2.5 IPL Start I/O

The IPL start I/O (IPL-SIO) is a CPU-
initiated, SelBUS communication sequence
to the IPL channel and device. The start
I/O initiates the IPL data transfer and
specifies the memory locations of the
IOCD. Some I/O channels actually
perform implicit media positioning as a
result of the IPL start I/O sequence. For
example, the disc channel executes a seek
track zero, head zero, and sector zero as a
result of the IPL start I/O sequence.

The IPL start I/O sequence is always
preceded by a CPU initiated SelBUS load
RAM sequence which informs the I/O
channel of its SelBUS identity with
respect to SelBUS physical (channel)
address and interrupt level.

For IPL sequence, a pseudo interrupt level
of 7F is assigned to the I/O channel;
however, this interrupt level is only used
to terminate class F IPL sequences and is
not used at all in class E sequences.

2.5.2.6 IPL Data Transfers

The IPL data transfer is controlled by the
IOCD stored at memory location zero.
The IOCD specifies the command (binary
read), the starting memory data transfer
address (location 0), and the transfer
count. In class F IOCDs, the flag byte
specifies command chaining and suppress
incorrect length indicator.

In class E IPL sequences, the amount of
data transferred is dependent upon the I/O
channel interpretation of the IOCD
transfer count. Some class E channels
terminate data transfer on transfer count
zero or end of record, whichever comes
first. Other class E channels will read
multiple records until the IPL transfer
count of 7FFF is exhausted. There is no
problem for variable length record media,
such as magnetic tape, since the IPL
record can be up to 7FFF bytes in length.

However, a problem occurs for fixed
length record media, such as cards or disc,
since the bootstrap program cannot
determine the amount of data read into
memory. Therefore, generalized IPL
software bootstrap programs do not exist
for class E IPL, and each bootstrap
program is custom-tailored to the IPL
channel, controller, device, and media.

In class F IPL sequences, the CPU formats
and stores the first IOCD into memory
locations 0 and 4 to form an input/output
command list (IOCL). The remaining
IOCDs to complete the IOCL are read into
memory from the IPL media. The first
IOCD controls the data transfer of the
first 120 bytes of data. A minimum of one
additional IOCD, required to complete the
command chain started by the first IOCD,
must be read into memory starting at
location 8. The first 8 bytes of the IPL
record must contain a CPU program status
doubleword (PSD) that indicates the
memory starting location of the software
bootstrap program. The CPU PSD will
overlay the first IOCD in memory when
the IPL record is transferred to memory.

Table 2-5 illustrates the format of the
first IPL record in class F IPL.

In general, the class F JOCL may consist
of any IOCDs that are required to read the
entire bootstrap program into memory.
The IOCD commands may include the
channel initialization (INCH) command
and media positioning commands. These
commands do not cause attention status
indicators which cause the premature
termination of the IOCL chaining
function. If the IOCL contains an INCH
command, the status stored by the IPL
termination may be to a memory location
other than the standard location 0.

Figure 2-6 illustrates the format of the
diagnostic tape/disc distribution facility.
The diagnostic facility software is loaded
by an IPL function.
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DISC/TAPE DIAGNOSTIC MEDIA

BOOTSTRAP LOADER

ON IPL, LOADS DIAGNOSTIC
SYSTEM FROM DISC OR TAPE

OVERLAY LOADER

LOAD AND EXECUTE ANY LEVEL 1
DIAGNOSTIC, INCLUDING
DIAGNOSTIC EXECUTIVE PROGRAM

OBJECT 1

OBJECT CODE FOR ALL
LEVEL 1 DIAGNOSTICS

OBJECT 2

OBJECT CODE FOR ALL
LEVEL 2 DIAGNOSTICS

830466

Figure 2-6. Diagnostic Tape/Disc Distribution Facility Format

2.5.2.7 IPL Termination

IPL termination is defined as the point in
time when the IPL data transfer from the
IPL media to memory is completed. IPL
termination under class E protocol is
determined differently than under class F
protocol.

In class E protocol, the CPU will cycle
TD8000 SelBUS communication transfers
while the IPL data transfer is in
progress. For the duration of the data
transfer, the class E channel responds to
the TD8000 communication sequence with
an I/O channel busy indication. When the
I/O channel no longer responds with the
busy indication, IPL termination has
occurred. A busy indication can be any
one of the following responses:

1. SelBUS I/O retry signal
2. SelBUS channel busy signal

3. Bit 16 true in a SelBUS TD8000
data return transfer.

Class E protocol has no provisions for an
IPL termination status transfer; therefore,
the CPU cannot determine if I/O errors
occurred during the IPL sequence. When
IPL termination occurs the CPU enters
the fill pipeline sequence and attempts to
execute the IPL data starting at memory
location 0.

In class F protocol, IPL termination is
identified by the occurrence of a pseudo
interrupt, generated by the IPL channel
and sent to the CPU. The CPU responds
to the pseudo interrupt with a SelBUS
acknowledge and deactivate communi-
cation sequence.

When the I/O channel receives the
acknowledge and deactivate command, it
stores a termination status doubleword
into memory locations 0 and 4. The I/O
channel then sends to the CPU a status
stored condition code configuration and
the memory address of the termination
status doubleword. The condition code
configuration and status memory address
are sent to the CPU in a data return
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transfer as part of the SelBUS ack-
nowledge and deactivate communication
sequence. :

Note that if the IPL input/output
command list contained a channel
initialization (INCH) command, the
termination status will be stored in
memory locations other than 0 and 4.
However, the memory address of the
termination status doubleword is com-
municated to the CPU as part of the class
F protocol. Unfortunately, the termina-
tion status address is not stored in
memory, and is therefore, not software
apparent.

The format of the class F channel status
doubleword is provided with the class F
I/O description in the CPU reference
manual. Essentially, the first word of the
doubleword pair contains the next JIOCD
address, and the second word contains the
termination status flags in bits 0 through
15.

When IPL termination occurs, the CPU
examines the termination flags to
determine if the IPL data transfer was
error free. If no I/O errors occurred, the
CPU will complete the IPL sequence. If
errors are present, the CPU executes an
automatic trap halt.

In the termination flags (word 2, bits 0
through 15) of the termination status
doubleword, only bits 12 and 13, device
end and channel end, should be set. The
following termination flag bits must be
false:

1. Bit 3, channel program check
2. Bit 4, channel data check
3. Bit 5, channel control check
4. Bit 6, interface check
5. Bit 7, chaining check
6. Bit 8, busy
7. Bit 9, status modifier
8. Bit 10, attention
9. Bit 14, unit check
10. Bit 15, unit exception

Normally, the termination status

doubleword is stored in memory locations
0 and 4, overlaying the CPU program

2-38

status doubleword, read from the first IPL
record. This overlay presents no problem
since the CPU reads the PSD from
memory locations 0 and 4 and stores the
PSD internally prior to IPL termination.

2.5.2.8 CPU Fill Pipeline

CPU f{ill pipeline refers to that portion of
the IPL sequence which sets the operating
state of the CPU, fills the instruction
pipeline, and passes control to the soft-
ware bootstrap program. The fill pipeline
sequence is different for class E and class
F protocols. If IPL errors have been pre-
viously detected, the fill pipeline sequence
is not executed, but instead an automatic
trap halt is executed.

In class E rules the operational state of
the CPU is established by the CPU firm-
ware as follows:

1. The CPU is placed in the run
state.

2. The contents of the software
GPRs are unchanged.

3. All I/O devices and interrupt
devices have been reset.

4. The CPU is privileged.
5. The condition codes are zero.
6. Extended addressing is off.
7. Base mode is off.
8. Arithmetic exception is disabled.
9. Macro program counter is set to
zero.
10. Mapped environment is off.
11. The map CPIX and BPIX fields are
set to zero.

12. Interrupts are unblocked.



13. The effective program status
doubleword is
@8000 0000 PSD word 1
@0000 0000 PSD word 2

14. Software instruction begins at
memory location 0.

In class F rules the operational state of
the CPU is established by the IPL program
status doubleword and the CPU firmware
as follows:

1. The CPU is placed in the run
state.

2. The contents of the software
GPRs are unchanged.

3. Al I/O devices and interrupt
- devices have been reset.

4. The CPU privileged state is
determined by IPL PSD word 1.

5. The condition codes are
determined by IPL PSD word 1.

6. Extended addressing is determined
by IPL PSD word 1.

7. Base mode is determined by IPL
PSD word 1.

8. Arithmetic exception
enable/disable is determined by
IPL PSD word 1.

9. The value of the macro program
counter is determined by IPL PSD
word 1.

10. Mapped environment is off.

11. The map CPIX and BPIX fields are
set to zero.

12. Interrupts are blocked.

13. The effective program status
doubleword is:
IPL PSD1 : PSD word 1
@0000 4000 : PSD word 2

14. Software instruction begins as
determined by IPL PSD word 1.

2.6 Powerdown Sequence

The power-down sequence consists of a
hardware/firmware sequence that is
designed to detect a SelBUS power-fail
signal and then transfer control to the
software power-down trap handler. The
purpose of the power-down trap is to
provide the required parameters for a
subsequent power-up auto restart
sequence when power is restored to the
system. Figure 2-7 provides a flowchart of
the power-down sequence.

The power-down hardware consists of the
power-fail detection hardware and the
corresponding CPU hardware. The power-
fail detection hardware senses a pending
power failure and generates the SelBUS
power-fail signals. The CPU/IPU
hardware detects the SelBUS power-fail
signal and translates the SelBUS signal
into a firmware event that can be
scheduled. The SelBUS power-fail signals
consist of three signals that occur in a
timed sequence as follows:

1. The power-fail (LPF) signal occurs
first, indicating that
approximately two milliseconds of
reliable power remain.

2. The reset (LRESET) signal occurs
approximately two milliseconds
after the power—fail signal. The
LRESET signal forces the CPU
and all devices connected to the
SelBUS to a reset state.

3. The power-fail memory (LPFM)
signal occurs approximately ten
microseconds after the reset
signal. The LPFM signal protects
the memory from inadvertent
signals during the actual power
down.

The CPU/IPU hardware detects the
SelBUS power-fail signal and immediately
generates a power-fail event signal to the
firmware which will schedule the power-
fail event. The power-fail event is
scheduled at the following points:

1. Between instructions
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START

POWER DOWN

SET (DIS.PWRF) TO DISABLE
POWER FAIL SENSING

NO

YES

ROLLOUT CPU STATUS WORD INTO
MEMORY SCRATCHPAD IMAGE @ 6E4

ROLLOUT IPU STATUS WORD INTO
MEMORY SCRATCHPAD IMAGE @ 6E8

ROLLOUT CPU CONFIGURATION
WORD INTO MEMORY SCRATCHPAD
IMAGE @ 6E0

ROLLOUT IPU CONFIGURATION
WORD INTO MEMORY SCRATCHPAD
IMAGE @ 6EC

VECTOR TO SOFTWARE CPU
POWER-DOWN TRAP

VECTOR TO SOFTWARE IPU
POWER-DOWN TRAP

END

END

830418
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Figure 2~7. Powerdown Sequencing Flowchart




2. During an instruction sequence, or
an interrupt-I/O sequence, as
follows:

a. After every indirect fetch that
produces a subsequent indirect
fetch

b. After a SelBUS advance trans-
fer and while the CPU is wait-
ing for ready (I/O or interrupt
operations)

c. At certain predefined points in
long instruction sequences,
such as firmware floating-
point.

3. While the CPU is halted.

Note that the power-fail event is not
scheduled in the following sequences:

1. While the CPU is waiting for an
1I/O or memory DRT

2. Following the last indirect fetch
of an indirect chain

3. Between doubleword fetches or
doubleword instruction stores

4. Between multiple fetches/stores
executed in the load/store file
instructions.

If a power fail occurs while the CPU/IPU
has halted, the corresponding bit in the
status word will be set in the CPU/IPU
status word. The CPU status word
indications are provided in table 2-6.

The CPU/IPU trap status words and con-
figuration words will be stored in the
power-down trap context block during the
power-down sequence. The CPU and IPU
scratchpad keywords are not rolled out to
memory during power down; they must be
placed in the memory scratchpad image by
software for a successful auto restart.

. It becomes a software responsibility to
determine if the power-fail interrupted
process can be restarted via the software
power-up trap.

After the CPU/IPU has detected and
scheduled the power fail, it stores the
current CPU/IPU status words in the
memory scratchpad image. The scratch-
pad image status word is used by the
power-up auto restart sequence to deter-
mine if traps were enabled during the
power-down sequence. If traps were
enabled, the firmware disables subsequent
power-fail detection and executes a
standard trap to the power-down trap
handler. If traps were not enabled, the
CPU/IPU executes an automatic trap
halt. Power-fail detection remains dis-
abled until software executes either a load
program status doubleword (LPSD) or load
program status doubleword and change
map (LPSDCM) instruction. Power-up
software must also use the status words
and configuration words to reconfigure the
CPU/IPU to the same configurations that
were in effect prior to the power fail.

Assuming that traps were enabled when
the software power-down trap handler
receives control of the CPU, a minimum
of 1.5 milliseconds exists before
instruction execution is stopped by the
reset signal. In this time interval,
software must store the general-purpose
registers and base registers into memory
to preserve their contents during the
power outage.

During the power-down sequence, the CPU
rolls out only the current CPU status word
to memory location 6E4 and the CPU con-
figuration word to memory location 6EO.
The IPU rolls out only the current IPU
status word to memory location 6E8 and
the IPU configuration word to memory
location 6EC.

Scratchpad memory image locations 6D4,
6EQ, 6E8, and 6EC are normally defined
for alternate uses. However, during
power-down sequences, these image
locations are redefined by CPU/IPU
firmware to provide the functionality
required for the auto-restart feature.
Table 2-7 lists these scratchpad
redefinitions.
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Table 2-6
CPU Read Status Word Format

Bit Status
Bit 00 =0 Unprivileged mode
=1 Privileged mode
01-04 Not used
05 =0 Extended addressing disabled
=1 Extended addressing enabled
06 =0 Base register mode disabled
=1 Base register mode enabled
07 =0 Arithmetic exception trap disabled
=1 Arithmetic exception trap enabled
08 =0 Map disabled
=1 Map enabled
09-19 = Not used
20 =0 Write to ACS and WCS disabled
=1 Writes to ACS and WCS enabled
21 =0 PROM mode enabled
=1 ACS mode enabled
22 =0 FPA present and enabled
=1 FPA not present
23 =0 Privileged mode halt trap disabled
=1 Privileged mode halt trap enabled
24 =0 Interrupts are unblocked
=1 Interrupts are blocked
25 =0 Software traps are disabled
(Automatic trap halt is enabled)
=1 Software traps are enabled
26 = Not used
27 =0 CPU configuration
=1 IPU configuration
28-31 = CPU model indicator
0000 = 32/55 CPU
0001 = 32/75 CPU
0010 = 32/27 CPU
0011 = 32/67 CPU
0100 = 32/87 CPU
0101 = 32/97 CPU
0110 = DP 67 CPU
0111-1111 = Not defined (reserved)
2.7 Internal Processing Unit (IPU) CS Units. At the hardware level, the two
processors are identical; they share the
An IPU consists of a second set of CPU same SelBUS and memory. The IPU
boards. This second processor is provides the facility to offload tasks from
configured as an IPU by the turnkey panel the primary CPU, thereby increasing the
PROCESSOR SELECT switch and pro- computational performance of the
cessor identity jumpers located on the two system. Although both processors share
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Table 2-7
Power Up/Down Scratchpad
Memory Image Location Redefinition

Memory Power Up/Down Normal Scratchpad
Image Redefinition and Address Definition and Address
Address Definition Address Definition Address
6D4 IPU Keyword IPU - F7 Current PSD2 F5
X'13254768'
6E0 CPU CPU - 1FE Identify Device F8
Configuration Protocol DRT
Word
6E8 IPU Status IPU - F9 Current Active FA
Word Interrupt
6EC ruU IPU - 1FE Number of FB
Configuration Active
Word Interrupts

the SelBUS, they cannot share I/O
channels that plug into it since SelBUS
protocol does not provide for I/O channel
sharing between multiple processors. The
optional IPU Console provides the IPU
with panel capabilities and console I/O
capabilities.

The following text is subdivided into IPU
operation, IPU characteristics, and IPU
console.

2.7.1 IPU Operation

Both the CPU and IPU processors share a
common SelBUS. However, they do not
communicate with each other via SelBUS
transfers. One processor may gain the
attention of the other by using one of two
unidirectional SelBUS lines designated
SIGNAL IPU and SIGNAL CPU.

The SIGNAL IPU SelBUS line originates in
the CPU and is received by the IPU. This
line is driven by the CPU when software
executing in the CPU uses the signal IPU
(SIPU) instruction. When this signal is
received by the IPU, it causes the IPU to
execute a CPU/IPU trap (assuming traps

and interrupts are unblocked in the IPU).

Software residing in the CPU/IPU trap

handler of the IPU must define the
meaning and purpose of the CPU/IPU trap.

Similarly, the SIGNAL CPU SelBUS line
originates in the IPU and is received by
the CPU. When software residing in the
IPU uses the SIPU instruction, the SIGNAL
CPU line is driven by the IPU. When this
signal is received by the CPU, it causes
the CPU to execute an IPU/CPU trap
(assuming traps and interrupts are
unblocked in the CPU). Software residing
in the IPU/CPU trap handler of the CPU
must define the meaning and purpose of
the IPU/CPU trap. The IPU and CPU trap
handler software can communicate via
their common memory.

In both the CPU and the IPU, if a
CPU/IPU or IPU/CPU trap occurs while
interrupts are blocked, the trap will
become pending and will remain pending
until traps are unblocked. If a second trap
occurs while a first trap is pending, the
second trap is lost. However, the first
trap remains pending until traps are
unblocked.

2-43



As far as the operating system is con-
cerned, the CPU and the IPU are totally
symmetrical processors. Therefore, when
using the IPU, the operating system takes
an entire task and places it in the IPU for
execution. The task executes in the IPU
until: the task requests an operating
system service that cannot be executed in
the IPU (software restriction), executes an
IPU restricted instruction (hardware
restriction), generates a hardware/-
software error, or reaches normal
completion.

During the time that the IPU is executing
a task, the CPU is free to resume task
scheduling or a second task. When the
task terminates in the IPU, the IPU
software signals the CPU and CPU soft-
ware must then determine the reason for
the termination. If the cause of termi-
nation is an error, the task will be
aborted. If the cause of termination is a
request for an IPU restricted service or
instruction, the CPU performs that
service or instruction on behalf of the
IPU. The CPU then returns control of the
task to the IPU.

Since the operating system uses the IPU at
task level, the performance of a single
task is not improved by using the IPU.
However, when considered in a multi-task
environment, the total system throughput
is increased by the IPU since two tasks
may execute simultaneously (one in the
CPU and one in the IPU).

In order to comply with the software
concept, the CPU and IPU must be sym-
metrical in that they have the same
options and produce the same results.
However, a notable exception is that the
IPU does not have the ability to perform
system level I/O operation. This is due to
both IPU hardware and software, which
causes operating system calls for I/O
activity or I/O instructions to be trapped
back to the CPU. The CPU then performs
the I/O activity for the IPU (task).

Both processors (CPU and IPU) must be

defined with the same options and
features at system configuration time.

2-44

These include alterable control store
(ACS), writable control store (WCS), and
floating-point accelerator (FPA).

At system initialization time, software
must not enable a feature or option that is
not available or is inoperable in the other
processor.

2.7.2 IPU Operational Characteristics

The IPU operational characteristics are
defined by the IPU hardware and firmware
sequences which differentiate IPU exe-
cution from CPU execution. The follow-
ing paragraphs define and describe these
differences.

The IPU is provided with a full set of error
detection traps plus one additional trap
that does not exist in the CPU. This addi-
tional trap is the IPU undefined instruc-
tion trap, caused by the block external
interrupt (BEI) instruction. I/O instruction
operation codes are defined as valid or
invalid for the CPU or IPU. This infor-
mation is contained in table 2-8. Full de-
tails of I/O classes are provided in later
paragraphs under the heading of I/O Class
Identification.

To differentiate IPU traps from CPU traps
in the common memory, the IPU trap
table base address in scratchpad location
FO is set to a different value than that
used for the CPU trap table base

address. Normally, the IPU trap table
base address is set to 20, while the CPU
trap table base address is set to 80. Table
2-9 lists the CPU and IPU traps and their
default trap vector locations. Since traps
are always enabled in the IPU, CPU soft-
ware must initialize all IPU trap vector
locations before initializing the IPU.

I/0 and interrupt instructions, are not
catagorically undefined in the IPU.
However, they are rejected as IPU un-
defined when used with standard classes of
1/0 such as class F, 3, and E.



Table 2-8

IPU and CPU I/O Classes
I/0
Class CPU IPU Description
3 Valid Undefined IPU Trap CPU Interval Timer
Valid Undefined IPU Trap CPU Real-time Clock
and External Interrupts
F Valid Undefined IPU Trap CPU IOP Channel
Devices
B jInvalid. System Check Valid IPU Interval Timer
Trap
6 [Invalid. System Check Valid IPU Real-time Clock
Trap and External Interrupts
7 [Imvalid. System Check Valid IPU IOP Channel
Trap Devices
Table 2-9
IPU and CPU Trap Vector Locations
Trap CPU Trap IPU Trap
Number Vector Vector
(Hex) (Hex) (Hex) Definition
00 80 20 Power fail trap
01 84 24 Poweron trap
02 88 28 Memory parity trap
03 8C 2C Nonpresent memory trap
04 90 30 Undefined instruction trap
05 94 34 Privilege violation trap
06 98 38 Supervisor call trap
07 9C 3C Machine check trap
08 A0 40 System check trap
09 A4 44 MAP fault trap
0A NU 48 Undefined IPU instruction trap
0B AC 4C Start IPU or IPU finished
0oC BO 50 Address specification error
0D B4 54 Console attention
OE B8 58 Privilege mode halt trap
OF BC 5C Arithmetic exception
10 Cco 60 Cache fault
11 C4 64 Demand Page Fault
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More specifically, extended I/O instruc-
tions such as ECI, DCI, SIO, etc., cannot
be executed to class F devices but they
may be executed to class 7 devices.
Command device (CD) and test devices
(TD) instructions cannot be executed to
class 3 or E (D) devices, but they may be
executed to class B devices. Interrupt
control (EI, DI, etc.) instruction cannot be
executed to class E devices, but they can
be executed to class 6 devices. The new
I/O and interrupt classes (6, 7, and B) are
used to define I/O and interrupts dedi-
cated to the IPU, and these devices exist
only with the IPU console option (describ-
ed in later paragraphs).

The standard I/O and interrupt device
classes (3, E, and F) are used to define I/O
and interrupts dedicated to the CPU. If
the CPU attempts to access a device
defined for the IPU, CPU firmware causes
a CPU trap.

Normally, the IPU and CPU can use the
same base address for the interrupt table
and master process list.

The IPU is provided with a different
scratchpad keyword from the CPU. The
different keyword ensures that firmware
can determine the correct scratchpad
default values when CPU and IPU roles
are reversed by means of the turnkey
panel PROCESSOR SELECT switch and
the execution of a system reset.

As is the case in the CPU, the presence of
the correct keyword in the scratchpad
inhibits the firmware from establishing
default values for the scratchpad table
base addresses and defaulting all options
and features.

At system configuration time, one
common scratchpad image can be
developed for the CPU and IPU if:

1. The IPU console option is used.

2. Software I/O channel addresses and
interrupt levels are chosen such that
the software addresses are mutually
exclusive of the CPU I/O software
channel addresses and interrupts.
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The exceptions to the commonality be-
tween the scratchpad image are the IPU
trap table base address and keyword.
Handling these as exceptional cases in
software causes no major problems to the
IPU hardware and firmware, since the IPU
does not automatically roll in the scratch-
pad image.

At power-down time, the IPU rolls out
only two scratchpad locations. These are
the IPU status word and the IPU configu-
ration word. The memory locations used
for the power-down rollout are located in
the CPU scratchpad memory image, and
are locations in that image that are not
required by the CPU for auto restart at
powerup.

At powerup, the IPU firmware checks a
location in the CPU memory scratchpad
image for the presence of the IPU
keyword. If the keyword is present, the
IPU scratchpad is cleared, all options and
features are defaulted, and the trap table
base address is set to 020. At this point,
the IPU enters the IPU power-up trap
sequence for auto restart, and software
must complete the initialization. During
powerup, no scratchpad locations are
rolled into the IPU.

At powerup, if the IPU keyword is not
present in the CPU memory scratchpad
image, the IPU clears its scratchpad base
addresses and defaults all options and
features. It then enters the halt state and
firmware idle loop to wait for a CPU/IPU
trap.

2.7.3 IPU Console

IPU I/O capability is provided by the
optional IPU Console. Basically, this
option comprises an IOP, CRT, and
cabling. The IOP firmware and hardware
is designed to interface with different
SelBUS lines and the IPU I/O SelBUS
interface. The IPU Console is dedicated
for operation with the IPU and cannot be
accessed by the CPU. Similarly, all other
SelBUS I/O channels are dedicated to CPU
operation and cannot be accessed by the
IPU.



The primary purpose of the IPU Console is
to provide the IPU with panel function
capabilities. It provides all the panel
functions that are available to the CPU
except for IPL and control of clock
override. With this option, it is possible
for IPU software to use the I/O console
device, the real-time clock, the interval
timer, and external interrupt levels
provided by this IPU Console IOP.

IPU software uses standard I/O and
interrupt control instructions to control
I/O and external interrupt levels. IPU
firmware then uses the contents of the
IPU scratchpad device and interrupt
entries to determine if the I/O device
(channel) or interrupt level specified can
be operated by the IPU. Specifically, the
I/O class field of the device and interrupt
entry is used to determine if the I/O
device/interrupt can be controlled by the
IPU.

2.7.3.1 IPU Console Configuration

When configuring the option into the
CPU/IPU system, all of the physical
addresses, channel addresses, device
addresses, and interrupt levels assigned
and dedicated to the CPU must be
known. The IPU Console is then assigned
to a physical address with channel ad-
dresses, device addresses, and interrupt
levels that are unique to it. This
technique allows the development of a
single scratchpad image for the CPU and
IPU with the only IPU differences being
the IPU trap table base address and the
IPU keyword.

It is feasible to assign software channel
addresses, device addresses, and interrupt
levels to the IPU Console that are also
used in the CPU to describe different
channels and devices. However, this
would require the development and
maintenance of two separate scratchpad
images; one for the CPU, the other for the
IPU. The interrupt table base address
would also have to be different from the
IPU interrupt table base address.

The recommended technique for
configuring the IPU Console is to use
unique channel addresses, device
addresses, and interrupt levels with one
scratchpad for the CPU/IPU pair.

The following paragraphs describe specific
parameters for configuring the IPU
Console.

2.7.3.1.1 Physical Address

The IPU Console must be configured at a
unique physical address occupying an odd
and even address pair to provide channel
and interrupt functionality. To be used by
the IPU, the IOP must have a physical
address that is divisable by four. As an
example, if physical address 74 is used,
when communicating to the panel
functions of the IOP, the IPU firmware
uses physical address 02. For the real-
time clock, interval timer, and external
interrupt functions of the IOP, the odd
physical address variation of the IOP
standard physical address must be used
(e.g., address 75).

2.7.3.1.2 Channel Address

The IPU Console channel address is made
up of the software 7-bit address of the
channel and the IPU scratchpad address
for that channel device entry. This
channel address should be unique when
compared with the CPU channel
addresses. Normally, the channel address
will match the IPU Console physical
address. This facilitates the I/O software
address to physical address mapping
scheme (provided by the IPU scratchpad).

The channel address must be used with the
extended I/O instructions to communicate
with the I/O channel or its interrupt

level. When the channel address is
appended to the 8-bit subaddress, software
can use the channel and subaddress with
the extended I/O instructions to com-
municate with IPU I/O device (console,
floppy disc, etc.).
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2.7.3.1.3 Channel Subaddress

Channel subaddresses and device
subaddresses should be assigned to
conform with standard IOP
configurations. In many cases, such as
console receive and transmit functions,
the channel and device subaddresses are
dedicated to specific device functions.
Standard subaddress assignments should be
used whenever possible to avoid potential
confusion between the CPU IOP and the
IPU Console IOP configurations.

2.7.3.1.4 Channel Interrupt Level

The IPU Console interrupt level should be
assigned to a unique level within the range
00 to 6F. The channel interrupt value plus
80 provides the hexadecimal address in the
IPU scratchpad of the IPU Console
channel interrupt entry.

The channel interrupt level (when used as
a word pointer, or index, and added to the
interrupt table base address obtained from
the IPU scratchpad) provides the interrupt
vector location (IVL) for the IPU Console
IOP channel interrupt. Software must
initialize the IVL and provide an interrupt
context block (ICB) for the IPU Console
channel interrupt in the same manner as
for a CPU IOP channel interrupt. The ICB
must be formatted according to standard
extended I/O (class F) protocol.

2.7.3.1.5 Interval Timer Device Address

The interval timer in the IPU Console IOP
should be assigned to a unique software
device address. The software device
address provides the address for IPU
software command device (CD) and test
device (TD) instructions to communicate
with the interval timer in the IPU Console
IOP. The software device address also
provides the address in the IPU scratchpad
of the IPU Console IOP interval timer
device entry. The device entry serves as
the mapping function to convert the
software device address into a SelBUS
physical address and subaddress of the
interval timer in the IPU Console IOP.
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The device entry must contain the odd
address variation of the IPU Console IOP
physical address pair.

2.7.3.1.6 Interval Timer Interrupt Level

The interval timer in the IPU Console IOP
should be assigned to a unique interrupt
level. The software interrupt level
provides the interrupt level for the
software interrupt control instructions (EI,
DI, etc.) to communicate with the interval
timer in the IPU Console IOP. The soft-
ware interrupt level, with 80 added, pro-
vides the interval timer interrupt entry.
The interrupt level must be in the range
00 to 6F.

The software interrupt level (when used as
a word pointer, or index, and added to the
interrupt table base address obtained from
the IPU scratchpad) provides the IVL for
the interrupt timer. Software must
initialize the IVL and provide an ICB for
the interval timer in the IPU Console IOP.

The IPU scratchpad interrupt entry pro-
vides the physical and subaddress of the
interval timer in the IPU Console IOP.
The physical address must be the odd
variation of the IPU Console IOP address
pair.

207 03. l .7 Real—time ClOCk
Interrupt Level

The IPU Console IOP real-time clock
interrupt level functions as any other IPU
Console IOP interrupt level with the
exception that this level automatically
requests interrupts at an ac line frequency
rate if the level is enabled.

The IPU Console IOP real-time clock
should be assigned to a unique software
interrupt level. The software interrupt
level provides the interrupt level for
software interrupt control instructions (EI,
DI, etc.) to communicate with the IPU
Console IOP real-time clock interrupt
level. The software interrupt level, when
added to 80, provides the IPU scratchpad
address of the IPU Console IOP real-time
clock interrupt entry.



The software interrupt level (when used as
a word pointer, or index, and added to the
interrupt table base address obtained from
the IPU scratchpad) provides the IVL for
the IPU Console IOP real-time clock.
Software must initialize the IVL and
provide an ICB for the IPU Console IOP
real-time clock.

The scratchpad interrupt entry provides
the physical and subaddress of the IPU
Console IOP real-time clock. The physical
address must be the odd variation of the
IPU Console IOP physical address pair.

2.7.3.1.8 External Interrupt Levels

The IPU Console IOP external interrupts
should be assigned unique software
interrupt levels. These software interrupt
levels function as previously described for
the real-time clock interrupt with the
exception that the external levels do not
automatically request an interrupt, if
enabled.

2.7.3.2 I/O Class Identification

The I/O instructions used to control the
CPU and IPU I/O devices and interrupts
are identical. To differentiate between
those devices controlled by the CPU and
those controlled by the IPU, the IPU
scratchpad device and interrupt entries
use I/O classes that are subsets of the
CPU I/O and interrupt classes.

The following paragraphs describe the IPU
I/O classes as subsets of the corresponding
standard CPU I/O classes. In all cases,
the subset I/O classes only relate to those
I/O devices and interrupts that are
controlled by the IPU Console IOP. The
subset I/O class identification value is
obtained by taking the standard class field
from the device and interrupt scratchpad
entries and ones-complementing the most
significant bit of the 4-bit class field.
Therefore, class 7 is the subset of class F,
class B is the subset of class 3, and class 6
is the subset of class E.

2.7.3.2.1 Class 7

Class 7 I/O describes the IPU Console IOP
channel devices. Each of these channels
and devices obey class F (extended I/O)
protocol rules. Class 7 is the subset of
class F. Class 7 is defined only in the IPU,
and must be used in scratchpad channel
(device) and interrupt entries to specify
the IPU Console IOP channel and devices.

2.7.3.2.2 Class B

Class B I/O describes the IPU Console IOP
interval timer and its associated interrupt
level. Class B is the subset of class 3, and
the IPU Console IOP interval timer obeys

class 3 (CD/TD) protocol rules.

Class B must be used in the device and
interrupt scratchpad entries to describe
the IPU Console IOP interval timer.

2.7.3.2.3 Class 6

Class 6 describes the IPU Console IOP
real-time clock interrupt and external
interrupts. Class 6 I/O identifies those
interrupt levels that obey class E interrupt
protocol (EI, DI, etc.) but are dedicated to
operation with the IPU Console IOP. The
real-time clock and external interrupts
are classified as non-I/O interrupts in both
the CPU and IPU.

In the CPU, non-I/O entries have a class
field of zero. However, the class field is
not verified. In the IPU, non-I/O inter-
rupts must have a class field equal to 6 to
indicate validation for IPU operation.

The external interrupts (non-I/O) have
only scratchpad interrupt entries (no

device entries). The entry is defined as
non-I/O by bit 8 equal to one.

2.8 Automatic Trap Halt
The automatic trap halt feature is a

firmware sequence designed to report
traps to an operator when software cannot
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handle the trap. Automatic trap halts can
occur in one of the following conditions:

1. When software traps are disabled

2. When there are memory errors
during powerup auto restart

3. Whén there are memory errors or
I/O errors during IPL or auto IPL.

4. If the firmware detects an error
while in a firmware trap handler,
and the trap handler is trying to
report the same type of trap error
(recursive trap error).

Automatic trap halts are not used for the
arithmetic exception trap or a supervisor
call. If an arithmetic exception occurs
while traps are disabled, it is ignored. A
supervisor call is handled normally.
Automatic trap halt indications are as
follows.

1. The CPU/IPU is halted.

2. The interrupt active indicator is
on; however, no interrupts are
active.

3. The PSD word 1 display has
indicated the dedicated trap
vector address in the program
counter. In some cases, the
halfword flag is on but should be
ignored.

4. Memory location 680 contains PSD
word 1 at the time of the trap
(690 for IPU).

5. Memory location 684 contains PSD
word 2 at the time of the trap
(694 for IPU).

6. Memory location 688 contains the
CPU trap status word (698 for
IPU).

7. Memory location 68C contains the
contents of R(DVC) which is
either a scratchpad device entry
or an interrupt entry and is valid
only if the old PSD word 1 and the
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CPU trap status word indicate
that an I/O or interrupt sequence
was in progress (69C for IPU).

The IPU normally has traps enabled and,
therefore, does not normally execute
automatic trap halts. In the case of
software disabling IPU traps, memory
locations are provided for IPU trap halt
indicators.

2.9 CPU/IPU Scratchpad

A 256-location by 32-bit scratchpad
memory is provided in the CPU/IPU
hardware. The CPU/IPU scratchpad pro-
vides an emulation work area, storage for
the I/O device entries, interrupt structure
information, and various base addresses.

The I/O device entries and interrupt
entries are part of the initial con-
figuration list (ICL) which is loaded during
initialization. (The system configuration
information remains in the processor
scratchpad as long as power is applied to
the processor.) I/O device entries are
used to map software device addresses
into SelBUS physical addresses. Interrupt
entries are used to map software interrupt
levels into SelBUS physical addresses.

An allocation table for the scratchpad is
provided in figure 2-8. The allocation
table also indicates the memory address of
the memory scratchpad image.

Software is responsible for loading both
CPU and IPU scratchpads during system
initialization. Only scratchpad locations
00 thru F4 and location F7 (keyword) must
be loaded. The remaining scratchpad
locations are initialized by the system
reset functions of the processors.
Scratchpad locations FO (trap table base
address) and F7 (keyword) are the only
locations that must be different in the
CPU and IPU scratchpads.

2.9.1 Scratchpad Image
Normally only one scratchpad image is

required for CPU/IPU operation, with the
exception of the IPU trap table base



MEMORY SCRATCH-

IMAGE PAD DECIMAL
ADDRESS ADDRESS
300 0 CHANNEL - DEVICE O 0

DEVICE ENTRIES

4FC 7F CHANNEL - DEVICE 7F 127

500 80 INTERRUPT LEVELO 0

INTERRUPT ENTRIES

Y \ Y

68C EF INTERRUPT LEVEL 6F M
6CO FO TRAP TABLE BASE ADDRESS (CPU =080, IPU = 020) NOTES 1, 2
6C4 F1 INTERRUPT TABLE BASE ADDRESS (= 100) NOTES 1,3
6C8 F2 10CD BASE ADDRESS (CLASS E) (= 700) NOTES 1,3
6CC F3 MASTER PROCESS LIST (MPL) BASE ADDRESS (= 788} NOTES 1,2
6D0 F4 DEFAULT IPL ADDRESS
6D4 F5 CURRENT PSD2
6D8 F6 RESERVED
6DC F7 SCRATCHPAD KEY (CPU = X‘ECDAB897’)
(IPU = X'13254768’)
6EO F8 IDENTIFY DEVICE PROTOCOL DRT
6E4 F9 CPU STATUS WORD
6E8 FA CURRENT ACTIVE INTERRUPT
6EC FB NUMBER OF ACTIVE INTERRUPTS
6F0 FC AUTO IPL DEVICE ADDRESS (=0 IN MANUAL IPL)
6F4 FD RESERVED
6F8 FE RESERVED
6FC FF INTERRUPT LEVEL 7F = 00FFFFF

NOTE 1. DENOTES LOCATIONS THAT MUST BE PROVIDED BY THE SOFTWARE FOR ICL.

NOTE 2. THE TRAP TABLE AND THE MASTER PROCESS LIST MUST RESIDE
IN THE FIRST 128K WORDS OF MAIN MEMORY.

NOTE 3. THE INTERRUPT TABLE AND INPUT/OUTPUT COMMAND DOUBLEWORD
MUST RESIDE IN THE FIRST 128K WORDS OF MAIN MEMORY.

840025

Figure 2-8. Allocation of CPU/IPU Scratchpad
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address and the IPU keyword. Software
should maintain a copy of the CPU/IPU
scratchpad image in memory starting at
memory location 300. The scratchpad
memory image is used by both CPU and
IPU during the power down sequence to
roll out the CPU and IPU status and
configuration words (table 2-6). During
the power-up sequence, if memory has
been preserved by battery backup, the
CPU and IPU use the scratchpad memory
image to auto restart.

Figure 2-8 illustrates the memory
allocation for the scratchpad memory
image, while table 2-7 lists the exceptions
to the image that occur during power-
down and power-up sequences.

The scratchpad memory image does not
provide a unique location for the IPU trap
table base address. This scratchpad
location in the IPU is always defaulted to
0020 and, for all practicable purposes, is
not relocatable.

2.9.2 Scratchpad Keyword

The scratchpad keyword is used to
indicate the validity of the scratchpad
contents. When the keyword is present in
the scratchpad, the processor assumes
that the software has loaded the scratch-
pad and set all options and features to the
desired configuration. As long as the
keyword remains in the scratchpad, the
software settings of the scratchpad,
features, and options will be retained
through subsequent system reset
functions.

If the keyword is not present in the
scratchpad, the processor establishes the
default setting for the table base ad-
dresses and all features and options.

The keyword is always forced to zero by
the processor when the processor is initial
program loaded or when the processor
changes modes (CPU to IPU or IPU to
CPU).
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Diagnostic software that is testing the
cache, ACS, WCS, or shared memory must
always run with the keyword set to zero.
The absence of the keyword ensures that
the processor can re-establish the correct
default settings for the processor options
and features if a system reset occurs.

The scratchpad keyword in the scratchpad
memory image is used to indicate the
validity of the scratchpad memory image
during power-up sequences with battery
back-up. If the keyword is missing in the
memory image, the processor assumes
that the entire memory image is faulty
and will not attempt to auto restart.
Instead, the processor either auto-IPLs or
auto-trap halts.

If the keyword is in the scratchpad image,
the processor will attempt an auto restart,
assuming the other conditions for auto
restart have been met.

2.9.3 Device Entry

Figure 2-9 shows the format of the I/O
device entry. The device entry associates
the I/O protocol class with the channel
interrupt priority level, the channel
physical address, and the device
subaddress. Device entries are stored in
scratchpad locations 00 through 7F,
according to the software channel address
field of the entry.

2.9.4 Interrupt Entry

Figure 2-10 shows the format for the
interrupt entry. The interrupt entry
associates the I/O protocol class with the
IOP/RTOM interrupt or the I/O interrupt
identity, the interrupt priority level, the
channel address, and the device
subaddress. Interrupt entries are stored in
scratchpad addresses 80 through EF. The
software interrupt level, plus 80, provides
an index to interrupt entries.

2.10 Control of Features and
Options

The CPU and IPU provide features and
options which are controlled and
enabled/disabled by software. The



FLAGS

CLASS CHANNEL PRIORITY CHANNEL ADDRESS DEVICE SUBADDRESS

" N 5 n 2 L n A i 3 2

i

i

EEEEECEEEEEEECEEEEEEEEEEEEEE]

0

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FLAGS (UNARY, BITS 0-3)

BITO = RAM LOADED (I/0 CONTROLLER)

BIT 1 = PROGRAM VIOLATION (CLASS 0, 1, 2, AND E)
BIT 2 = ENABLE CHANNEL WCS EXECUTED (CLASS F)
BiT3 = NOTUSED

CLASS (BINARY, BITS 4-7)
VALUE
0 CLASS 0 ‘TLC' LINE PRINTER (INVALID FOR 32/67 CPU/IPU)
1 CLASS 1 'TLC' CARD READER (INVALID FOR 32/67 CPU/IPU)
2 CLASS 2 'TLC' TELETYPEWRITER (INVALID FOR 32/67 CPU/iPU)
3 CLASS 3 IOP/RTOM INTERVAL TIMER AND FAST MULTIPLEXER SYSTEM (CPU ONLY)
7 EXTENDED 1/0 (CLASS F) IPU-IOP {IPU ONLY)
B IPU-1OP INTERVAL TIMER (CLASS 3, IPU ONLY)
E CLASS E STANDARD
F CLASS F EXTENDED /O
CHANNEL PRIORITY LEVEL (BINARY, BITS 8-15)
BIT8 ALWAYS ZERO
BIT 9-15 SERVICE INTERRUPT PRIORITY LEVEL (ONES COMPLEMENT)
CHANNEL ADDRESS (BINARY, BITS 16-23)
BIT 16 ALWAYS ZERO

BITS 1723  IOM, RPU, AND 10P CHANNEL PHYSICAL ADDRESS. (NOTE: IPU-IOP
PHYSICAL ADDRESS MUST BE DIVISIBLE BY 4.}

DEVICE SUBADDRESS (BINARY, BITS 24-31)
(CLASS F AND CLASS 7 SUBADDRESS MUST BE ZERO)

830420

Figure 2-9. CPU/IPU Device Entry Format
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e —— P —— e o p—
FLAGS CLASS R | INTERRUPT PRIORITY CHANNEL ADDRESS DEVICE SUBADDRESS

M & n 3 4 3 3 I I I 3 L L I

EREEER EEEEEEOEEEEEEEEE 1]

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FLAGS (UNARY, BITS 0-3)

BITO = RAM LOADED (/0 CONTROLLER)
BIT1 = NOTUSED

BIT 2 = INTERRUPT ACTIVE

BIT3 = INTERRUPT ENABLED

CLASS (BINARY, BITS 4-7)
VALUE
0 CLASS 0 ‘TLC’ LINE PRINTER (INVALID FOR 32/67 CPU/IPU)
1 CLASS 1 'TLC' CARD READER (INVALID FOR 32/67 CPU/1PU)

2 CLASS 2 ‘TLC’ TELETYPEWRITER (INVALID FOR 32/67 CPU/IPU)

3 CLASS 3 IOP/RTOM INTERVAL TIMER AND FAST MULTIPLEXER SYSTEM (CPU ONLY)
6 IPU-IOP NON 1/0 INTERRUPTS (IPU ONLY)

7 EXTENDED /0 (CLASS F) IPU-10P (IPU ONLY)

B IPU-IOP INTERVAL TIMER INTERRUPT (CLASS 3, IPU ONLY)

E CLASS E STANDARD CD-TD 1/0

F CLASS F EXTENDED 1/0 (CPU ONLY)

1 IOP/RTOM INTERRUPT (NON 1/0) (CPU/IPU)
0 i/0 INTERRUPT (CPU/IPU)

R (BIT8)

INTERRUPT PRIORITY LEVEL (BINARY, BITS 9-15)
SERVICE INTERRUPT PRIORITY LEVEL (ONES COMPLEMENT)

CHANNEL ADDRESS (BINARY, BITS 16-23)
BIT 16 ALWAYS ZERO

BITS 17-23  IOM, RPU, AND |OP CHANNEL PHYSICAL ADDRESS. (NOTE: IPU-IOP
PHYSICAL ADDRESS MUST BE DIVISIBLE BY 4.)

DEVICE SUBADDRESS
(CLASS F AND CLASS 7 SUBADDRESS MUST BE ZERO)

830419

Figure 2-10. CPU/IPU Interrupt Entry Format
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following text describes their operational
characteristics and the software tech-
niques required to control them.

2.10.1 PROM or ACS Modes

The programmable read only memory
(PROM) mode and the alterable control
store (ACS) mode are two mutually
exclusive modes of operation for the
processors. They describe the source of
firmware for the processor, either PROM
or ACS. The PROM or the ACS mode is
enabled or disabled by the SETCPU
instruction. The operating mode can be
monitored by the software read status
(RDSTS) instruction.

2.10.1.1 PROM Mode

The PROM mode is the standard source of
the processor firmware. The PROM Mode
is entered at each powerup, system reset,
and IPL sequence. This mode remains in
effect until the processor is forced into
the ACS mode by software and the
SETCPU instruction.

Once the system has been operating in the
ACS mode, and a system reset occurs, the
processor returns to the ACS mode during
the associated firmware reset sequence
only if the scratchpad keyword is

correct. If the keyword is incorrect, the
processor remains in the PROM mode until
a software command is issued.

Firmware contained in the PROM array
can only be altered by returning the
processor to the manufacturer for PROM
integrated circuit replacement.

The contents of the PROM may be read
under software control by means of the
read writable control store (RWCS)
instruction.

2.10.1.2 ACS Mode

The ACS is the alternative source of
processor firmware. It consists of a

random access memory (RAM) array

containing 4096 locations of 64-bit
microwords. Writes to ACS and reads
from ACS are accomplished by software.

The purpose of the ACS is to provide a
method by which software can be used to
update or enhance the firmware without
having to return the processor to the
manufacturer for PROM replacement.

The normal sequence for using the ACS is
as follows.

1. At powerup, the firmware reset
sequence causes the processor to
operate in the PROM mode.

2. During the software initialization
sequence, software loads the ACS
RAMs.

3. Software verifies (reads and

compares) the contents of the
ACS RAMs.

4. Software causes the processor to
enter the ACS mode of operation.

The write to writable control store
(WWCS) instruction must be used by the
software to write to the ACS RAMs, with
an ACS address in the range 0000 to OFFF
hex. In order for the WCS instruction to
acutally modify the contents of the ACS
RAMs, the following software-controlled
processor conditions must be met.

1. The processor must be operating
in the PROM mode.

2. The enable write to WCS bit must
be set in the processor status
word. This control bit may be set
or reset by the SETCPU
instruction and monitored by the
RDSTS instructions.

In order to read from the ACS RAMs, the
software must use the read writable
control store (RWCS) instruction, with an
address in the range 0000 to OFFFF hex.
The PROM and ACS addresses have the
same range and appear identical.
Therefore, bit 0 of the 32-bit PROM/ACS
address is used to differentiate between
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read ACS versions and read PROM
versions of the RWCS instruction. If bit
0=1, ACS is read. If bit 0=0, PROM is
read.

When the ACS load function is complete,
software should clear the enable WCS
write bit in the processor status word.
This prevents inadvertant WWCS instruc-
tions from destroying the contents of the
ACS or the WCS RAM arrays.

Typically, the ACS may be loaded with
patches or with an entirely new firmware
image. Usually, when the ACS is patched,
the software initially copies the contents
of the PROMs into the ACS and then
changes the ACS locations to be patched
to the new firmware. When entirely new
firmware is loaded into the ACS, the
software ususally clears all of the ACS
RAMs initially then loads the new
firmware into the ACS.

By software and firmware convention,
locations OFFD, OFFE, and OFFF of the
PROM and ACS are reserved locations and
do not contain standard microwords.
These reserved locations are used as
follows:

1. Location OFFD contains the
revision control number of the
firmware set. The revision
control number includes the
development source and object
file name for the firmware set,
plus a subset of the 12-digit Gould
S.E.L. part number of the
firmware set.

2. Location OFFE contains the 64-bit
checksum of the firmware set.
The checksum is computed by
generating the 64-bit sum of all
microwords between 0000 and
OFFD, and then one's comple-
menting the 64-bit sum and
storing it in location OFFE.

3. Location OFFF is reserved by the
development support system/
diganostic processor, and the
content of this location is

2-56

unpredictable. This location is
excluded from checksum
calculations.

If the processor is operating in the ACS
mode, it reverts to the PROM mode at
each system reset. If the scratchpad
keyword is correct, the processor firm-
ware reset sequence causes the processor
to return to the ACS mode. The ACS
contents are not altered by system reset.

During power-up or IPL sequences, the
processor always defaults to the PROM
mode of operation. It remains in the
PROM mode until it is commanded to the
ACS mode by software. If the software
commands the processor to the ACS mode,
and the ACS has not been loaded, the
results are unpredictable. Therefore, the
ACS should always be loaded as soon as is
feasible in the software initialization
sequence.

2.10.1.3 ACS Mode Special
Considerations

The following considerations must be
taken into account when firmware is being
developed for ACS applications.

1. All decode vectors for macro-
instructions reside at dedicated
locations. Similarly, micro-
interrupt vectors and decode
exception vectors reside at
dedicated locations. ACS
applications cannot alter the
vector address; each possible
vector must be accounted for as in
the initial PROM firmware set.

2. When the processor changes from
the PROM to ACS or ACS to
PROM mode, it is effectively
executing a firmware branch.
Firmware in the PROM and the
ACS should be identical where
these changes occur. These mode
changes can only occur in the
system reset flow and in the
SETCPU instruction flow.



2.10.2 Development Support
System/Diagnostic Processor
Mode

NOTE

Support of this mode of
operation is not available

at initial product release.

The following information

is provided to supplement

the PROM and ACS mode text.

This is a third optional mode of operation
for the processors. The functionality for
this option is designed into the proces-
sors. Comprehensive software, designed
for PROM and ACS support, should be
cognizant of the effect of this optional
mode on the PROM and the ACS modes of
operation.

This option provides snapshot and monitor-
ing capability of the processor micro-
operation and the capability of replacing
the processor PROM control store with a
read only memory simulator (ROMSIM)
function. The snapshot and monitor func-
tions have no effect on the operational
characteristics of the processor.

However, the ROMSIM function prohibits
software from altering the contents of the
ACS.

The operator commands of this option
allow it to operate in either of two control
store modes, the PROM mode or the
ROMSIM Mode. The PROM mode allows
the processor to operate as previously
described and the presence of the option is
transparent to the processor software.
The ROMSIM mode uses the ACS RAMs to
hold the processor control store firmware,
and the software cannot write to the

ACS. Also, software cannot command the
processor to operate in the PROM mode.
However, the software can read the ACS
(ROMSIM) or the PROMS.

When the option is operating in the PROM
mode, processor software cannot detect
the presence of the option. Operation in
the ROMSIM mode is indicated by the
ROMSIM status bit in the processor
configuration word. Software can read

the processor (CPU/IPU) configuration
word by executing a read configuration
word variation of the read program status
word two (RPSWT) instruction.

2.10.3 Cache

For the purpose of a description biased
toward the software operation of the
cache, the cache can be considered as four
independent banks. Each cache bank is
2048 locations deep and 32 bits wide.
There are four index arrays, one asso-
ciated with each cache bank. An index
array contains the upper 11 bits of the
associated memory address plus a hit
(valid) bit. Two of the four cache banks
are reserved for instructions, the other
two banks are reserved for operands.
Therefore, instructions cannot be fetched
from the operand cache and operands
cannot be fetched from the instruction
cache.

The cache control logic is always
prefetching to determine if the the
required data (instruction or operand) is
cache resident. If the data is not in the
cache (cache miss), the control logic
fetches the data from memory and stores
it in the cache (assuming the cache is
enabled). The address source for
instruction prefetching is the software
macroprogram counter. The address
source for operand prefetching is the
logical memory address register. The
cache control logic never prefetches
operands unless commanded by the
processor IE Unit. When prefetching or
operand stores are not in progress
(commanded by the IE Unit), the cache
prefetches instructions. These
instructions are presented to the instruc-
tion pipeline in the IE unit, which may
accept or reject the prefetch. If the
prefetch is accepted, the macroprogram
counter address is advanced and the next
logical program counter address is
prefetched. If the prefetch is rejected,
the same logical program counter address
is refetched. This process is repeated
until the prefetch is accepted by the IE
Unit pipeline. The macroprogram counter
(instruction address) and the logical
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memory address register (operand address)
both provide logical addresses. Therefore,
the cache control logic must convert the
logical address to a physical address on
each cache transaction. The map logic in
the CS Unit performs the logical-to-
physical address conversion.

The minimum data quantity fetched from
memory by the cache control logic is one
word (32 bits). However, prefetching is
normally done on a doubleword basis.
Doubleword prefetching is accomplished
by two successive single-word memory
reads for the even and odd addresses of a
doubleword pair. The even and odd pair
may be prefetched in any order (even-odd
or odd-even) depending upon the specific
word address contained in the macro-
program counter or the logical memory
address register. If the software design
contains intermixed instructions and
operands, doubleword prefetching can
intermix instructions and operands in the
operand cache or the instruction cache.
This intermixing produces false cache
misses because operands cannot be
fetched from the instruction cache, and
instructions cannot be fetched from the
operand cache.

For store type instructions, the cache
control logical may store bytes, halfwords,
or words to cache and memory as
required. Doubleword stores are accom-
plished by two successive single word
stores. For single and doubleword stores,
both cache and memory are written to.
For byte or halfword stores, memory is
always written to, but cache is only
written to if a cache hit occurs (addressed
word is in the cache). For byte or half-
word cache writes, only the specified byte
or halfword of the 32-bit word is changed;
the remainder of the 32-bit word is
unchanged. During cache writes caused by
store instructions, only the operand cache
is modified. During store instructions, if
an instruction cache hit is detected by a
cache write, the instruction cache entry is
invalidated.

For an externally initiated memory write,
the cache is read on the next SelBUS
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cycle. If a cache hit is detected at the
address specified by the external write,
the cache location is invalidated.

Doubleword prefetching can cause
operands to be in the instruction cache
and instructions to be in the operand
cache. Therefore, if an instruction or an
operand cache read detects a hit in the
wrong cache and a miss in the correct
cache, a cache miss occurs. The hit data
is discarded, the location is invalidated,
and the cache control logic fetches the
specified data from memory. If a cache
read detects a cache hit in both instruc-
tion and operand caches, the incorrect
type cache hit is invalidated, the data is
discarded, and the data from the correct
type hit (operand or instruction) is used.
This prevents a subsequent memory fetch.

When SelBUS memory read data return
transfers are loaded into the cache, they
are loaded by read transfer type (operand
or instruction). The opposite cache is not
checked for a valid bit (cache hit) at the
specified address. Therefore, a specific
data element (operand or instruction) may
reside in either or both of the caches.
Dual residency of a data element is always
corrected the next time the data element
is referenced by software.

When an IE Unit (firmware generated)
cache read results in a cache miss, the
cache control logic fetches a single word
from memory instead of the standard
doubleword memory fetch.

2.10.4 Cache Control

The cache can be enabled, disabled, and
cleared by software using the cache
memory control (CMC) instruction. The
default state of the processor cache is all
banks turned on. The disable cache
functions are provided for diagnostic
software cache fault isolation. The
operational state (enabled/disabled) of the
cache banks are monitored by the pro-
cessor configuration word and the soft-
ware read configuration word varitation of
the RPSWT instruction.



The cache is also indirectly controlled by
the shared memory control (SMC) instruc-
tion and the IOP panel address stop
functions.

The following subordinate paragraphs
describe the various control functions in
detail. Detailed information on specific
bit formats for the CMC and SMC instruc-
tions are contained in the Reference
Manual.

2.10.4.1 CMC Instruction

In general, the CMC instruction provides
four bits which enable or disable the
corresponding four banks of the cache
(two operand banks and two instruction
banks). Four bits are provided to initialize
the four cache banks, and one bit is used
to enable/disable the instruction cache
during instruction prefetching.

The four enable/disable bits cause a cache
bank to be enabled when the corresponding
bit is set to 1; a bank is disabled when the
corresponding bit is set to 0. A disabled
cache bank does not track (copy) system
memory activity and its contents cannot
be changed. If a disabled cache bank is
enabled, its contents are the same as at
the time it was disabled. Therefore, a
cache bank should never be enabled with~
out first initializing it. The CMC
instruction that enables a cache bank may
also initialize it.

The CMC instruction initialize bits cause
all of the valid bits in the corresponding
cache bank index array to be set to zero.
This effectively clears the cache bank.

If a cache miss occurs due to a disabled
cache bank, the control logic fetches a
doubleword pair from memory. However,
the data returned from memory is not
copied into the cache.

The cache enable/disable instruction pre-
fetch bit causes instruction read misses
when it is set to zero. It enables instruc-
tion read hits when it is set to one. When
this bit is set to one, the cache operates
normally. When set to zero, all instruc-

tion reads result in a cache miss; however,
all system memory activity is copied into
the instruction cache. If a cache miss
occurs due to a disabled instruction pre-
fetch, a doubleword is fetched from
memory and copied into the instruction
cache. Software may enable an instruc-
tion prefetch without initializing the two
instruction cache banks (assuming that the
instruction cache banks are enabled).

2.10.4.2 SMC Instruction

The following description is restricted to
the effects of the SMC instruction on the
cache. The SMC instruction may enable
the read and lock mode, or it may describe
the upper and lower boundaries of a shared
memory region.

When the read and lock mode is enabled,
any read and lock cache transaction issued
by the IE Unit (caused by SBM or ZBM
instructions) causes the cache logic to
force a cache miss and to issue a single
read and lock transaction to the SelBUS
and memory. The data returned from
memory is copied into the cache and
transferred to the IE Unit. Subsequently,
when the IE Unit issues a write and
unlock, the data is written into the cache
and sent to the SelBUS and memory to-
gether with a write and unlock transaction
code. Since the write and unlock data is
written to the cache, any subsequent non
read and lock access of the memory
location (i.e., TBM instruction) should
produce a cache hit.

When the SMC instruction is used to
define shared memory boundaries, there
are two major effects on the cache:

1. Any cache transaction within
shared memory boundaries auto-
matically produces a cache miss,
and all associated data is not
copied into the cache.

2. Any cache read within shared
memory boundaries results in a
singleword fetch instead of a
doubleword fetch. This reduces
SelBUS and shared memory
traffic.
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2.10.4.3 IOP Panel Address Stop

The IOP panel address stop functions are
fully described later in this chapter; the
following description is restricted to their
effects on the cache.

The panel read stop function includes
operand read stop (RS), instruction read
stop (IS), and address stop (AS). When a
read stop is in effect, the CPU and IPU
caches are disabled and all cache read
instructions produce cache misses.
Singleword fetches are used instead of
doubleword fetches to reduce SelBUS
traffic. The associated data is copied into
the cache.

Both CPU and IPU caches are disabled in
order to keep processor execution speeds
symmetrical. The IOP panel write stop
function does not disable the cache.

2.10.4.4 Instruction Store
(nonpresent memory)

Store instructions that produce nonpresent
memory cause the processor firmware to
initialize (clear) all the cache on each
occurrance. The clear cache function is
required because all stores (cache writes)
occur before SelBUS nonpresent memory
is detected.

2.10.4.5 Cache System Reset

The firmware system reset flow, or any
sequence that causes a firmware reset
(auto restart, auto IPL, or IPL), cause all
cache banks to be initated (cleared). If
the scratchpad keyword is correct in the
processor scratchpad during the firmware
reset, the CMC and SMC control functions
revert to the state defined in the pro-
cessor configuration word. If the
scratchpad keyword is incorrect, the CMC
and SMC cache control functions assume
their default states (i.e., all cache banks
enabled and SMC functions disabled).
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2.10.5 Cache Memory Prefetch

The following text provides a summary of
the cache memory prefetch rules.

Data is always fetched from memory in
doublewords (i.e., two back-to-back
singleword SelBUS fetches) unless the
specific transaction is covered by one or
more of the following rules.

1. The IE Unit (firmware) issues the
cache read transaction.

2. The cache is disabled by the IOP
panel address stop functions.

3. The SMC read and lock is enabled
and the IE Unit (firmware) issues a
read and lock transaction.

4. The SMC shared memory bound-
aries are enabled and the effec-
tive physical address of the cache
read is within shared memory
boundaries.

In the preceding rules, cache misses are
forced and singleword reads are issued to
the SelBUS memory unless the specific
software instruction requires a
doubleword. In this case, the cache
control logic issues two singleword SelBUS
reads for the doubleword pair.

2.10.6 Shared Memory

The shared memory features include
allowing individual processors of a
multiprocessor system to communicate
through a common block of memory.
Specifically, these are the read and lock
feature and the shared memory boundary
feature.

Two types of shared memory configu-
rations are common with multiprocessor
systems. One configuration is a CPU and
IPU system, in which the multiprocessors
and shared memory reside on a common
bus as depicted in figure 2-11. In this
configuration, each processor can monitor
SelBUS memory write activity and keep
its cache up to date. The only
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Figure 2-11. CPU/IPU Shared Memory

shared memory feature that is required
for a CPU/IPU shared memory is the read
and lock feature. This is required to
implement interprocessor bit semaphores
described later.

The second type of shared memory con-
sists of a multiple (two or more) SelBUS
configuration, and a processor(s)
associated with each bus. Each SelBUS
communicates to a common multiported
memory to form a multiprocessor (SelBUS)
system. This configuration is illustrated
in figure 2-12. In this configuration, the
processor(s) on SelBUS 1 have no knowl-
edge of the memory activity on SelBUS

2. Therefore, the cache associated with
the processor(s) on SelBUS 1 cannot be
kept up to date with respect to the
memory write activity generated over
SelBUS 2. The reverse is also true for
processor(s) cache associated with SelBUS
2 for write activity generated over SelBUS
1. In this configuration the caches are not
used when memory acceses are made
within the shared memory region. To
implement this requirement, each of the
processors has shared memory boundary
registers which describe the upper and
lower boundaries of the shared memory
region. Any memory access within these
boundaries forces a cache miss, causing
the processor to access the multiported
shared memory. In the remote shared
memory configurations, the read and lock

features must be used to implement
interprocessor bit semaphores.

2.10.6.1 Interprocessor Bit
Semaphores

Interprocessor semaphores are software
defined bit flags. These may be used to
enable or disable access of a processor to
a defined region within shared memory.
Frequently, a bit flag is defined to
indicate when one processor is modifying a
memory region. Access to that region is
prohibited to other processors until
memory modification is complete and the
bit flag is cleared by the first processor.

Since bit flags may be used to control
processor access to memory, multiple
processors may attempt to test or modify
flags within a flag word simultaneously.
With a standard (non read and lock) imple-
mentation of the bit in memory instruc-
tions, confusion can result between proc-
essors, associated caches, and memory.
The read and lock feature can resolve the
bit confusion. The following text
describes how the bit confusion occurs in a
non read and lock implementation, and
how the read and lock eliminates this
confusion. A description is also provided
of the processor internal implementation
of the bit in memory instructions which
include test bit (TBM), zero bit (ZBM), and
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set bit (SBM) instruction. Add bit (ABM)
is deliberately excluded from the
description since ABM should never be
used for semaphore manipulation.

In a non read and lock environment, the
TBM, ZBM, and SBM instructions are
implemented by the following sequence.

1. The processor reads the 32-bit
word containing the specified bit
from memory.

2. The processor sets condition codes
based upon the initial state of the
specified bit. At this point, the
TBM is complete.

3. For the ZBM and SBM
instructions, the processor
modifies the bit in the 32-bit
word.

4. The processor writes the updated
32-bit word to memory.

The entire sequence for ZBM and SBM
requires a minimum of seven SelBUS
cycles. This allows a number of available
SelBUS (memory) cycles for second pro-
cessor to access the same bit and/or word
as the first processor. If the second
processor is also executing a SMB or ZMB
instruction, which requires a read-modify-
write sequence, the first processor would
write its modified data word to the
SelBUS and memory followed by the
second processor. The SelBUS and
memory word write by the second pro-
cessor overlays the data written by the
first processor. This causes any sema-
phore modification generated by the first
processor to be lost and undetected by the
second processor. Table 2-10 shows a
multiprocessror non read and lock SelBUS
sequence example.

Use of the read and lock feature with the
SBM and ZBM bit in memory instructions
prevents a second processor from
inadvertantly destroying bit flags
generated by a first processor. This
assumes that both processors use only SBM
and ZBM instructions to modify bit flags.
The read and lock feature is not applicable
to the TBM or ABM instructions.

The read and lock feature functions by
replacing the normal SelBUS read
transaction of the SBM and ZBM with a
read and lock SelBUS transaction. This
causes the memory module to reject any
subsequent non-write and unlock
transaction to the same address with
memory busy status. The normal word
write of the SBM and ZBM sequence is
replaced with a SelBUS write and unlock
transaction, which causes the memory
module to resume traffic to the address
specified in the read and lock and write
and unlock transactions. The memory ad-
dress of the two transactions must always
be identical.

Different types of memory modules
(different model numbers) react .
differently to read and lock sequences.
However, the end result of the read and
lock is to prevent inadvertant flag
destruction of concurrent SBM and ZBM
sequences by multiprocessors.

The integrated memory module (IMM)
must be jumpered to enable the read and
lock mode (full details are contained in
the IMM Technical Manual). When the
read and lock is received, the specified
address and all addresses within the IMM
range become locked. This prevents all
memory traffic to the IMM until the write
and unlock transaction is received. The
side effect of locking the entire range
(which may be one megabyte) is to reduce
system memory bandwith significantly.
The reduction in memory bandwidth can
be amplified greatly by cache based pro-
cessors if software uses SBM or ZBM
instructions in tight program loops with
read and lock enabled. Example:

SBM Bit01, FLAGS
BCT SET, $ -1W

The processor would remain in this loop
until an outside function (second
processor) clears flag bit 01. If the SBM
and BCT instructions are cache resident,
only the read and lock and the write and
unlock transactions would go to the
SelBUS and memory. With the processor,
the memory containing the
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Table 2-10

Multiprocessor - Non Read & Lock SBM, Example

Location X'1000' = 0000 0000
Processor #1 SBM Bit 01, X'1000'; Processor #2 SBM Bit 02, X'1000'

By or to Processor #1 Processor #2
Cycle | SelBUS Processor #| Internal Internal
1 Word Read P2
2 Word Read P2
3 Empty
4 Word Return P1
=00000000
5 Empty Load Cache
=00000000
6 Word Return P2 Set bit 01
=00000000
7 Word Write Pl Load Cache Load Cache
=40000000 =4000000 =00000000
8 Empty Invalidate Cache
& Set Bit 02
9 Word Write P2 Load Cache
=20000000 =20000000
10 Invalidate Cache

Final Contents:

Location 1000 = 20000000

Cache P1 = invalid
Cache P2 = 20000000
Memory write by P1 is lost

word flags would be locked for 50 to 60
percent of the time. This would have a
significant effect on system available
memory bandwith. A preferred method of
providing the same functionality is as

follows:

TEST TBM Bit01, FLAGS
BCT SET, $ -1W
SBM Bit01, FLAGS
BCT SET, TEST

CONTINUE EQU §$
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In this sequence, if bit 01 is initially set,
the processor holds in a loop that does not
use read and lock until bit 01 is cleared by
a second processor.

2.10.6.2 Interprocessor Semaphore
Considerations '

For an interprocessor semaphore scheme
to be effective, the following rules and
suggestions should be observed.




1. All processors in a multiprocessor
system must use the read and lock
feature.

2. A memory word containing
semaphores (bit variables) must
not contain other types of
variables (byte, halfword etc.).
Semaphore words may contain
constants providing the constant is
not modified.

3. Only the SBM and ZBM instruc-
tions should be used to modify
memory words containing a
semaphore.

4. Software must avoid the use of
tight read and lock loops. If a
holding loop on a semaphore is
required, the TBM instruction
should be used to detect the
semaphore change of state.

Table 2-11 contains a sequence where one
processor is using a TBM to test a flag,
and a second processor uses a zero
memory word (ZMW) to clear the flags.
The ZMW is a non read and lock
instruction. Therefore, the cache of the
first processor becomes unsynchronized
with the corresponding memory location.

2.10.6.3 SMC Read and Lock Control

The following paragraphs describe the
control of the read and lock feature by the
shared memory control (SMC) instruction.

The read and lock feature is enabled or
disabled by bit 07 of the register specified
in the SMC instruction. IF bit 07=1, read
and lock is enabled across the entire
address range of the processor. The read
and lock feature operates only with the
SBM and ZBM instructions. It does not
operate with the TBM or ABM
instructions. The read and lock feature
causes the cache control logic to force a
cache miss on IE Unit generated
(firmware) read and lock transaction
codes. A read and lock singleword read is
issued to the SelBUS and memory. The
write and unlock transaction code can only

be issued by the IE unit (firmware).
During the write and unlock sequence, the
data associated with the write is loaded
onto the cache.

During SBM and ZBM instruction
sequences, the I Unit checks the cache and
map for potential errors prior to enabling
the E Unit read/lock and write/unlock
sequences. If errors are detected, the
execution phase of the SBM or ZBM is
aborted and a trap is initiated. The
precheck of errors includes map invalid,
map write protection (privilege violation),
non present memory, and parity error
(uncorrectable data error).

The read processor configuration word
variation of the read processor status
word two (RPSWT) can monitor the state
of the enable/disable read and lock bit.
When changing the state of this bit,
software should always precede the SMC
instruction with a read processor con-
figuration word, merge the new state of
the read and lock bit with the con-
figuration word, and then execute the
SMC instruction.

Read and lock must be enabled separately
in the CPU and IPU. The read and lock
mode must be used in a CPU and IPU
configuration.

2.10.6.4 SMC Shared Range Control

The following paragraphs describe the
control of the shared memory ranges
provided by the SMC instruction, and the
direct effects on the cache/SelBUS logic.

Bit 01 of the register specified in the SMC
instruction enables or disables the shared
memory range feature (1=enabled,
O=disabled). When the enable is active,
bits 02 through 06 of the register provide
the high boundary and bits 08 through 12
provide the low boundary of the shared
memory range. The two boundary fields
provide the five most significant bits of
the 24-bit memory physical address. This
physical address divides the total memory
address (four megawords) into 32 equal
ranges of 128 kilowords each. The two
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Table 2-11
Multiprocessor Use of Non Read and Lock Instruction
to Modify Semaphore, Example

Processor #1 TBM Bit 01, X'1000"; Processor #2 ZMW X'1000'
BCT SET, $-1W

By or To Processor #1 Processor #2
Cycle | SelBUS Processor # | Interval Interval
1 Word Read P1
2 Empty
3 Word Write P2 Load Cache
=00000000 =00000000
4 Word Return Pl Invalidate Cache
=FFFFFFFF
5 Empty Load Cache
=FFFFFFFF
6 Empty Test Bit 01 and
branch back to TBM
which produces cache
hit. Note: Processor 1
continues in the loop
until some external
event causes cache to
be invalidated

Final results for location X'1000"
Memory = 00000000
Cache Processor #1 = FFFFFFFF
Cache Processor #2 = 00000000

boundary words may specify any single To define the first two 128KW groups of
128KW range, any contiguous group of memory as shared, the lower limit is
128KW ranges, or the entire 4MW (16 defined as zero and the upper limit is
megabyte) address range as the shared defined as one. This designates memory
memory range. locations 000000 through OFFFFC hex as
shared.
To define the first 128KW of memory as In all cases, the low and the high physical
shared, the low and high boundaries are address boundaries for shared memory
defiend as zero. This designates memory must contain the five most significant bits
locations 000000 through 07FFFC hex as of the 24-bit boundary address. If the low
shared. and high boundaries are equal, a single
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128K range is shared. If the high boundary
is 1F and the low boundary is 00 hex, the
entire 4MW address range is shared.

The enabled state of the shared memory
range logic automatically enables the read
and lock mode to any SBM and ZBM
instruction which has an effective physical
address within the shared range. This
function overrides the control normally
provided by the enable/disable read and
lock bit of the SMC instruction.

All instruction fetches or operand fetches,
that have a physical address within the
shared range, cause a cache miss and a
SelBUS singleword read from memory.
The data returned from memory is not
stored in the cache. For all instructions
which cause memory writes (if the write
address is within shared boundaries), the
associated write data is not stored in the
cache. By reverting to singleword pre-
fetching in the shared memory range, the
processor reduces superfluous SelBUS and
memory activity. By not storing the data
associated with the shared memory range
in the cache, the processor eliminates
cache contention between operands/
procedures which may be stored in the
cache and operands/procedures which
cannot be stored in the cache.

The read processor configuration word
variation of the read processor status
word two (RPSWT) instruction monitors
the state of the enable shared memory bit
and the high and low boundary registers.
When software is changing the state of the
shared logic, the SMC instruction should
always be preceded by a read processor
configuration word, a merger of the new
state of the shared memory with the
configuration word, and then the SMC
instruction is executed.

Shared memory ranges must be enabled
separately in the CPU and IPU processors.
2.10.7 Writable Control Store (WCS)

The following paragraphs describe

software initialization and maintenance of
the WCS feature.

The processor provides 8K by 64-bit WCS
locations as a standard feature. For
descriptive purposes, the WCS may be
considered as add on control store to the
PROM or ACS control store. The PROM
and ACS control store is provided for the
standard instruction set. The WCS control
store is provided for a user supplied
instruction set or firmware applications.

Internally, the WCS is divided into two 4K
WCS banks, which are configured by
firmware and initialized separately. The
two 4K banks correspond to the physical
organization of the integrated circuits
residing on the MS Unit. At processor
initialization (which includes auto restart,
auto IPL, IPL and system reset), with an
incorrect scratchpad keyword, the firm-
ware writes a 'long branch to undefined
instruction' microword into each location
in the two WCS banks. The firmware then
reads each location zero relative to the
WCS banks. If the write and read data is
equal, the entire 4K bank of WCS is con-
sidered present and operable, and it is
marked present in the processor con-
figuration word. If the write data and
read data are not equal, the entire 4K
bank is marked non present in the
processor configuration word.

In subsequent system reset sequences, if
the scratchpad keyword is correct, the
firmware does not destroy the contents of
the WCS. It maintains the WCS and the
WCS configuration in the configuration
word through the system reset sequence.

Software initialization of the WCS should
occur during software system
initialization. The software has two
instructions available to initialize and
maintain WCS: read WCS (RWCS) and
write WCS (WWCS). Any software read or
write sequence should always be preceded
by a read processor configuration word
variation of the read processor status
word two (RPSWT) instruction. The
processor configuration word indicates the
firmware status of the two 4K WCS banks
(i.e., present or non present/inoperable).
If software attempts a RWCS or a WWCS
instruction, and the WCS target address
resides in a WCS bank that is non present

2-67



or inoperable, an address specification
trap occurs. Firmware defines a WCS
bank as non present or inoperable if
location zero (relative to the 4K bank)
cannot be written to, read from, or
compared. Whenever an indication is
provided to the software that a WCS bank
exists, but the configuration word
indicates that the bank is non present or
inoperable, the software should notify the
system operator through a console error
message. The control store diagnostic
program can then be used for fault
isolation.

The RWCS instruction is an unprivileged
halfword instruction that specifies two
general purpose registers. The register
specified by the RS field of the instruction
provides the WCS target address and must
be in the range 1000 through 2FFF hex. If
the target address is less than 1000, the
RWCS instruction is specifying a PROM or
ACS location. PROM or ACS depends
upon the state of RS bit 00 which, when
set to 1, specifies an ACS read. If the
WCS target address is greater than

2FFF, or if the address resides in a 4K
WCS bank that is marked non present or
inoperable, an address specification trap
occurs. The RD field of the RWCS
instruction specifies the doubleword
memory address that receives the 64-bit
content of the specified WCS location. If
the memory address is not doubleword
bound, an address specification trap
occurs.

The WWCS instruction is a privileged
halfword instruction that specifies two
general purpose reigsters. The register
specified by the RD field of the instruc-
tion provides the WCS target address and
must be in the range 1000 through 2FFF.
If the target address is less than 1000, the
WWCS instruction is specifying an ACS
location. If the WCS target address is
greater than 2FFF, or if the address
resides in a 4K WCS bank that is marked
non present or inoperable, an address
specification trap occurs. The RS field of
the WWCS instruction specifies the
doubleword memory address of the 64-bit
microword that is written to the specified
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WCS location. If the memory address is
not doubleword bound, an address
specification trap occurs.

Write to WCS sequences must always be
preceded by a SETCPU instruction. This
instruction enables WCS/ACS writes (sets
CPU status word bit 20, bit 20 at 1 =
enable write). If a WWCS instruction is
excuted and WCS writes are not enabled,
an undefined instruction trap occurs.
When the write WCS sequence is
complete, writes should be disabled by a
SETCPU instruction that clears bit 20 of
the CPU status word. The SETCPU in-
struction must always be part of read
status word (RDSTS), modify bit, and
SETCPU instruction sequence as pre-
viously described.

After the WCS has been loaded, the
software should always verify (read and
compare) the WCS contents to ensure that
the WCS RAMs are operable and will
retain the WCS microcode.

User software utilizes the jump to WCS
(JWCS) instruction to actually enter and
initiate execution of WCS microcode. The
JWCS instruction is an unprivileged full-
word instuction with a memory reference
format. The instruction effective byte
address is used as the WCS entry point
address. The final effective address must
be in the range 1000 through 2FFF or an
address specification trap occurs. If the
effective address specifies a 4K WCS bank
that is marked non present or inoperable,
an address specification trap occurs If the
effective address specifies a legal WCS
address that has not been written by
software, an undefined instruction

occurs. This is due to the fact that the
entire WCS address range was initialized
to branch to undefined instruction during
the last firmware processor reset.

2.10.8 Floating-point Accelerator
(FPA) Option

This two-board option cables to the CS
Unit. It requires two SelBUS slots, but
does not use the SelBUS except for power,
ground, and clocks. For a complete



description of the FPA, refer to the
Floating-point Accelerator Model 3611
Technical Manual, Publication Order
Number 303-003020-000.

The FPA, when present and on line, may
be enabled or disabled by software using
the SETCPU instruction to modify CPU
status word bit 22. When bit 22=1, the
FPA is disabled. When bit 22=0, the FPA
is enabled.

The enabled/disabled state of the FPA is
monitored by the CPU status word bit 22
and can be software monitored by using
the read status word (RDSTS)
instruction. The bit definition for status
word bit 22 is:

Bit 22=1 1. The FPA is non present
OR
2. The FPA is off line OR
3. The FPA is software
disabled.
Bit 22=0 The FPA is present, on
line, and software
enabled.

If the software clears bit 22, but it
remains set in the status word, the FPA is
unavailable to software as either non
present or off line. The on line/off line
state of the FPA is controlled by a switch
located on the FPA board set.

When the FPA is present and on line, its
state is software enabled. The software
enabled state is established by the pro-
cessor firmware at the end of the firm-
ware system reset sequence. The contents
of the scratchpad keyword does not effect
the FPA state during the reset sequence.
In actual usage, the hardware reset signal
disables the FPA, but firmware always
enables the FPA at the end of the sub-
sequent firmware reset.

When the FPA is enabled, on line, and
present, it is used by the processor
firmware to improve the performance of
the following instructions.

1. Add floating-point word
(ADFW).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Subtract floating-point word
(SUFW).

Multiply floating-point word
(MPFW).

Divide floating-point word

Add register floating-point word
(ADRFW).

Subtract register floating-point
word (SURFW).

Multiply register floating-point
word (MPRFW).

Divide register floating-point
word (DVRFW).

Add floating-point doubleword
(ADFD).

Subtract floating-point
doubleword (SUFD).

Multiply floating-point
doubleword (MPFD).

Divide floating-point
doubleword (DVFD).

Add register floating-point
doubleword (ADRFD).

Subtract register floating-point
doubleword (SURFD).

Multiply register floating-point
doubleword (MPRFD).

Divide register floating-point
doubleword (DVRFD).

Float integer word to floating-
point word (FLTW).

Float integer doubleword to

floating-point doubleword
(FLTD).

Multiply memory byte (MPMB)
fixed point.
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20. Multiply memory halfword
(MPMH) - fixed point.

21. Multiply memory word (MPMW)
- fixed point.

22. Multiply register to register
(MPR) - fixed point.

In CPU and IPU systems, the FPA option
must be configured symmetrically on both
systems.

It should be noted that the quotients
produced by the firmware implementation
of the divide floating-point instructions
differ in accuracy from those quotients
produced by the FPA option. This
difference is due to the fact that the two
floating point implementations use
different divide algorithms.

2.11 Operator Indicators

The turnkey panel (figure 1-3) is equipped
with LED indicators which denote the
operational state of the CPU and of the
IPU (if the system is configured with this
second processor). A description and
definition of the HALT, RUN, WAIT and
INTRPT indications is provided in the
following paragraphs. Additionally, the
processor state indicators are displayed on
the IOP console CRT whenever an IOP
panel command is executed.

2.11.1 Halt Indicator

The true state of the HALT indicator
denotes that the CPU/IPU has stopped
processing software instructions and has
stopped scheduling software interrupts and
errors. Any interrupts or errors that
become pending while the CPU/IPU is
halted, will remain pending until the
CPU/IPU enters the run state or a reset
function is executed. If I/O was in
progress when the CPU/IPU was halted,
the I/O will continue to normal
completion, except that the I/O
termination interrupt will not be
processed.
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The CPU/IPU may be placed in the hait
state by any of the following events:

1. The execution of a software halt
instruction when the CPU/IPU is
operating in a privileged state
with the privileged state, halt trap
disabled

2. The execution of a control panel,
halt command

3. The occurrence of an address
compare, stop signal from the
control panel

4. The occurrence of an I/O or
memory error during power-up
auto-restart sequence or an IPL
sequence (automatic trap halt)

5. The occurrence of a software
error trap while software traps
are disabled (automatic trap halt).

When the processor is in the halt state,
the firmware is executing an idle loop.
The purposes of the idle loop are as
follows:

1. To schedule power-down traps

2. To schedule control panel, CPU or
IPU communication sequences,
such as GPR reads and writes, or
program counter and PSD reads
and writes

3. To schedule IPL sequences (CPU
only)

4. To schedule system control panel
run commands

5. To execute system control panel
reset sequences

6. In the IPU only, to schedule SIPU
traps initiated by the CPU SIPU
instruction.



2.11.2 Run Indicator

The true state of the RUN indicator
denotes that the CPU/IPU is processing
software instructions and scheduling traps
and interrupts.

The following events cause the CPU or
IPU to enter the run state:

1. A power-up auto restart that is
error free

2. A power-up automatic IPL that is
error free (CPU only)

3. A control panel IPL command that
is error free (CPU only)

4. A control panel run command

5. Temporarily, during a control
panel, instruction step sequence

6. In the IPU, by the occurrence of a
SIPU trap initiated by the CPU
SIPU instruction.

The RUN state can be terminated by the
halt state as previously described.

2.11.3 Wait Indicator

The WAIT indicator denotes that the
CPU/IPU is in a wait state. The WAIT
indicator is only on in conjunction with
either the run or halt indicator. The
occurrence of the wait and halt com-
bination indicates that the CPU/IPU was
halted while in the wait state. The
occurrence of the run and wait com-
bination indicates that the CPU/IPU is
waiting for an interrupt or console
attention trap before processing
continues.

Note that when the CPU/IPU is inter-
rupted or trapped out of the wait state,
the interrupted (or trapped) program
status doubleword stored in the interrupt
or trap context block points directly at
the wait instruction. If the interrupt or
trap handler returns to the point of inter-
rupt or trap, the wait instruction will be
reexecuted.

The wait state can only be entered by a
software wait instruction. The wait state
is terminated by an interrupt or trap.

2.11.4 Interrupt Indicator

The interrupt (INTRPT) active indicator
denotes that the CPU/IPU is operating
with one interrupt level or more in an
active condition. The interrupt active
indicator is also used during automatic
trap halt sequences when an interrupt may
or may not be active.

Excluding automatic trap halt, the
interrupt active indicator is turned on by
one of the following sequences:

1. An interrupt occurs and the
handler operates with interrupts
unblocked, which as a result of an
acknowledge and activate, SelBUS
sequence, causes the interrupt
level to go active.

2. A software activate interrupt
instruction

3. A software activate channel
interrupt instruction.

The indicator can be turned off by either a
deactivate instruction or a deactivate
channel interrupt instruction. Either
instruction deactivates the last active
level in the system.

Note that when the interrupt active
indicator is on, some level of CPU and
system interruptability is inhibited.

2.11.5 Parity Error Indicator

The parity error (PE) indicator on the IOP
console denotes that the CPU has en-
countered a memory parity error during
instruction execution. The PE indicator
turns on when the CPU detects the parity
error during an instruction memory read.
Parity errors cannot be detected by
memory write functions. The PE indicator
remains on for the duration of the soft-
ware parity error trap handler, until the
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handler executes a load program status
doubleword, or a load program status
doubleword and change map instruction,
which turns off the PE indicator. If a PE
trap causes an automatic trap halt, the PE
indicator will remain on until a system
control panel reset function is executed.

By definition, a parity error is a parity
error in a core memory system or an un-
correctable data error in a MOS memory
system.

It is normal for the PE indicator to turn on
when memory is being initialized during
system initialization and software boot-
strap sequences.

2.12 Operator Commands

Table 2-12 lists the system console
commands (matching the command syntax
and definition). Each command syntax and
carriage return (CR) combination input to
the console causes a decoding of the input
characters and execution of the

command. Table 2-13 lists the console
displays that result from these commands.

The following descriptions include some of
the operator commands and their effects
on the CPU/IPU operating states and ad-
dressing environments.

2.12.1 Halt Command

The halt command causes the processor to
exit the run state and enter the halt
state. In some cases, the transition from
run to halt may not be instantaneous, and
both run and halt indicators may turn on
for a period not to exceed two seconds.

When the processor halts, a halt display is
provided on the panel. The halt display
consists of the PSD word 1 and the
memory location (instruction) addressed
by PSD1.

When in the RUN mode, that the address
or program counter value in PSD1 is a
logical address and must be converted to a
physical address through the processor
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map before the correct memory location
can be displayed. The logical to physical
memory address conversion is performed
automatically by the halt display or any
panel read of the processor PSD1.

2.12.2 Run Command

The run command causes the processor to
exit the halt state and enter the run state.
A run LED is provided on the turnkey
panel. A run command may be executed
while the CPU is in a run state. The run
command causes the IOP to exit panel
mode and enter the console mode.

2.12.3 Reset Command

The reset command may only be executed
while the processor is in the halt state.
This command causes a reset signal to be
sent to all devices connected to the
SelBUS. The processor then executes a
firmware reset.

Note

If the CPU is in RUN and the IPU

is halted, the IOP panel associated
with the IPU may execute a reset
command which will reset both CPU
and IPU.

2.12.4 TPL Command

The IPL command may only be executed
while the CPU is in a halt state. The IPL
command causes a limited firmware reset
and then initiates an I/O initial program
load sequence with the IPL device. An
earlier IPL description provides the rules
for using a default IPL device, or using the
IPL device addressed in the panel IPL
command. If the IPL command is
successful, the CPU will enter the run
state, executing the software bootstrap
program. However, if IPL errors are
encountered, the CPU will execute an
automatic trap halt.



Table 2-12
Alphabetical List of System Control Panel Commands

NOTE: CR denotes carriage return following the command.
*** denotes a continuation of the current command.
@@A Attention (when in console mode)
@@cC Enter console mode
@@P Enter panel mode (when in console mode)
AS CR Clear address stop
AS=XXXXXXXX CR Set address stop
BACKSPACE Deletes last character input
BAS CR Read base registers

BASA=XXXXXXXX CR
CLE CR

CNTRL H

CS CR
CS=XXXXXXXX CR
EA CR

GPR CR
GPRA=XXXXXXXX CR
HALT CR

IPL CR

IPL=XXXX CR

IS CR
IS=XXXXXXXX CR
LF

MA=XXXXXX CR
CR

MAV=XXXXXX CR
CR
MD=XXXXXXXX CR
=XXXXXXXX CR

CR

MSGE CR

OVR CR
PC=XXXXXXXX CR
PRIP CR

PSD CR
PSD=XXXXXXXX CR
PSW CR
PSW=XXXXXXXX CR
RS CR
RS=XXXXXXXX CR
RST CR

RUN CR

SECP CR

SHIFT DEL

STEP CR

CR

WS CR
WS=XXXXXXXX CR

Write to base register A

Clear memory

Deletes last character input

Read control switches

Set control switches

Read effective address

Read general purpose registers

Write general purpose register A

Halt

IPL from default address (CPU only)

IPL from XXXX (CPU only)

Clear instruction stop

Set instruction stop

Repeat command (except RST)

Read physical memory address location
*** increment and read memory address
Read virtual memory address location
**¥¥ increment and read memory address
Write memory data

*** jncrement and write memory data
*** jncrement and write previous data
Message

Toggle clock override (CPU only)

Load program counter

Set primary panel (master terminal only)
Read program status doubleword (PSDl and PSDZ)
Write program status word (PSD2)

Read program status word (PSD1)

Write program status word (PSD1)

Clear read operand stop

Set read operand stop

Reset

Run

Set secondary panel (master and slave terminals)
Deletes entire command line (hazeltine terminal only)
Instruction step

*** jnstruction step

Clear write operand stop

Set write operand stop
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Table 2-13
State Indicator Pairs and Listing

Memory address (MA)
Memory address (MA)
Program status word (PSW)

Program status doubleword (PSD)

AS

CS

EA

State indicators are paired with other state indicators as follows:

Memory data (MD)

Control switches (CS)

Instruction (INST)

(Blank)

Address stop set (call three stops set)
Control switch settings is adjacent display (NNNNNNNN)

Effective address in adjacent display (NNNNNNNN)

HALT CPU or IPU in halt mode

INST

INT

IS

MA

MD

OVR

PE

PSD

PSw

RS

RUN

sT

WAIT

WS

Instruction in adjacent display (NNNNNNNN)
Interrupt active

Instruction stop set

Memory address in adjacent display (NNNNNNNN)
Memory data in adjacent display (NNNNNNNN)

Clock override on

Parity error or uncorrectable data error from memory

Program status doubleword in adjacent two displays
(NNNNNNNN NNNNNNNN)

Program status word 1 in adjacent display (NNNNNNNN)
Operand read stop set

CPU in run mode

Stop. One of the address stop conditions has been set and caused the halt

condition
Instruction execution not in progress

operand write stop set
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Normally, the IPL. command should be
preceded by a reset command. After the
reset, the general-purpose registers may
be loaded with the data that is passed
through the IPL sequence to the software
bootstrap program.

IPL cannot be initiated from the IPU
console.

2.12.5 Attention Command

The attention command causes a processor
console attention trap signal. If interrupts
are unblocked, and if no previous console
attention trap is being processed, the trap
will fire and the processor will execute a
console attention trap. When the console
attention trap fires, the processor disables
the trap until trap processing (software
handler) is complete. The software then
executes a LPSD or a LPSDCM instruction
which reenables the console attention
trap.

If an attention command is executed while
software traps are disabled, an automatic
trap halt will occur. If an attention
command is executed while interrupts are
blocked, or a previous console attention
trap is being processed, the attention
command will remain pending until inter-
rupts are unblocked, or a LPSD/LPSDCM
instruction is executed. The attention
command may be used while the processor
is in either a run state or halt state;
however, the console attention trap is only
scheduled by the processor when in the run
state.

2.12.6 Write PSW Command

The write PSW command is specified by
the 'PSW=XXXXXXXX' syntax, where
XXXXXXXX is a 32-bit PSD word 1. This
command is capable of altering the
following:

1. Privileged/unprivileged state (bit 0)

2. Condition codes (bits 1 through 4)

3. Extended/non extended address
(bit 5)

4. Base/non base mode (bit 6)

5. Enable/disable arithmetic
exception (bit 7)

6. The 19-bit CPU program counter
(bits 13 through 31), including the
right halfword flag (bit 30).

7. Bit 31 is not used and has no effect.

The write PSW command may only be
executed while the processor is halted.

2.12.7 Write PC Command

The write PC command is specified by the
"PC=XXXXX' syntax, where XXXXX is a
24-bit right justified program counter
value to be written into the program
counter field (bits 13 through 31) of PSD
word 1.

The write PC command is used to alter
the program counter without altering the
state control bits (bits 0 through 7) of PSD
word 1. The write PC command may only
be used while the processor is halted.

2.12.8 Write PSD2 Command

The write PSD2 command is specified by
the PSD=XXXXXXXX' syntax, where
XXXXXXXX is a 32-bit PSD word 2. This
command may be used to alter the
following:

1. Set mapped or unmapped
environment (bit 0)

2. If mapped (bit 00 = 1), and if bit 15
= 1; retain the map contents and
the current process index (CPIX)
value.

3. If mapped (bit 00 = 1), and if bit 15
= 0; load the new map, using the
CPIX provided by bits 18 through
31.

4. Retain current interrupt blocking
state (bit 16 = 1).
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5. Block interrupts (bit 17 = 1).

6. Unblock interrupts (bits 16 and 17 =
00).

The current PSD word 2 is monitored by
the PSD display. The write PSD2 com-
mand may only be used while the pro-
cessor is halted. In addition, all map
pointers required to describe the map
contents must be preloaded into memory
as described in the memory management
discussion of the processor reference
manual.

2.12.9 Address Stop Commands

The IOP system control panel/operator
console implements four address stop
commands that monitor processor-to-
memory communications. When the 10P
address stop logic detects an address
compare of a processor-initiated memory
operation (read or write), the IOP sends
the processor a SelBUS signal, the system
control panel attention (SCPATTN or
IPPATTN). The SCPATTN or IPPATTN
causes the CPU to exit the run state and
enter the halt state.

The specific commands and their syntax
used to arm the address stop logic are as
follows:

1. 'IS=XXXXXX' which arms the
instruction read stop logic

2. "RS=XXXXXX' which arms the
operand read stop logic

3. 'WS=XXXXXX' which arms the
operand write stop logic

4. 'AS=XXXXXX' which arms instruc-
tion read, operand read, and
operand write stop logic.

In each of the above, XXXXXX is a 24-bit
word-aligned, real address that is used for
the address stop comparison.

The address stop commands may be

entered singularly or in combination to
achieve a multiple mode address stop;
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however, the IOP provides only one
address holding register and one address
comparator. Therefore, only the most
recently entered stop address will be
retained for the address stop comparison.

The read address stop commands (IS, RS,
AS) turn off the CPU cache and IPU
cache. The WS command by itself does
not turn off the processor cache.

The IOP address stop logic may be cleared
singularly by using a IS', 'RS', or 'WS'
command to clear the corresponding stop
function without affecting any other
address stop functions that are set. The
'AS' command may be used to globally
clear all of the address stop functions.

The stop address that is entered with the
address stop command is interpreted as a
24-bit real (physical) address that is word
oriented. If the entered address contains
halfword or doubleword flags (C-bits) in
bits 23 and 24 of the address, these bits
will be masked out when the address is
loaded into the address stop register.
Similarly, the C-bits of a processor
memory access are masked out prior to
the address stop compare so that any
processor access (byte, halfword, word, or
doubleword) of the specified word address
will cause a processor address stop.

When the address stop commands are used
with a processor the stop address may
specify any address the processor will
access, including the dedicated memory
addresses used with I/O, trap, interrupt, or
map load functions, and the processor will
stop.

Address stop may be set while the pro-
cessor is in either the halt or run state.
The state of the address stop logic (stops
that are armed) and the occurrence of
address stops are displayed on the IOP
system control panel/operator console.

2.12.10 Address Stop Characteristics

The following items describe the
operational characteristics of the address
stop.



1.

7.

Instruction read stops cause the
processor to halt prior to the
execution of the specified
instruction.

Operand read or operand write
address stops cause the processor
to halt after the instruction that
caused the specified memory
access is completed.

Operand read or write stops that
specify one word of a doubleword,
or one word of a file (8 words),
causes the processor to halt after
the entire file or the doubleword
access is completed. WS is
imprecise.

If an instruction read stop, and an
error trap relating to the fetch that
caused the instruction read stop,
occur at the same time, the pro-
cessor will stop, but the PSD will
point to the software error trap
handler.

If an operand read or write stop,
and an interrupt or error trap,
occur relating to the memory
access that caused the operand
read or write stop, the processor
will stop, but the PSD will point to
the software interrupt or error trap
handler.

The operand read stop may be used
to detect the processor access of
an indirect word.

The operand read stop may be used
to detect the processor access of a
new PSD, or a map image des-
criptor, during context switching
(trap, interrupt, LPSD, or
LPSDCM).

The operand write stop may be used
to detect the processor store of the
old PSD, or the trap status word,
during interrupt or trap context
switching.

The instruction read stop may be
used to detect the target of a

10.

11.

12.

13.

14.

1.

branch or a branch indirect
instruction.

The instruction read stop may be
used to detect the target of an
execute memory or an execute
memory indirect instruction.

If an instruction read stop is set to
a pair of halfword instructions, the
processor will stop prior to the
execution of both halfword
instructions.

If an instruction read stop occurs,
the run or step commands will
cause the processor to execute the
specified instruction without
stopping a second time. If the
specified instruction is accessed a
third time, the processor will stop
again.

If an instruction read stop occurs,
and an interrupt becomes pending
while the processor is halted; then
when the run command is executed,
the processor will context switch to
the software interrupt handler, and
reexecute the instruction stop when
the software returns control to the
point of interrupt.

The address stop logic may not be
used to detect a memory access of
an I/O channel or SelBUS device
other than the processor.

2.12.11 Step Command

The step command, also referred to as an
instruction step command, causes the
processor to execute one software
instruction. The step command, may only
be used while the processor is in a halt
state.

The following items describe the
operational characteristics of the step
command:

The step command causes the
execution of one halfword or one
fullword instruction. The post-
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10.
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execution PSD and the next
instruction to be executed are
displayed on the system control
panel/operator console.

If the instruction to be stepped is
an execute memory or an execute
register instruction, both the
execute and its target will be
stepped as one instruction.

If the step command causes an
instruction fetch error, the
processor will step into the
software error trap handler or
perform an auto trap halt.

If an interrupt is pending when the
step command is used, the pro-
cessor will step into the software
interrupt handler.

If the step command causes an
operand read or write error, the
processor will step into the
software error trap handler or
perform an automatic trap halt.

If the step command causes an
arithmetic exception error, and the
trap is enabled, the processor will
halt normally with the arithmetic
exception pending. The next step
or run command causes the pro-

cessor to advance into the software

arithmetic exception trap handler.

If the step command causes an in-
struction address stop that was not
the cause of the curreant processor
halt state, the address stop will be
executed and the target instruction
will not be executed.

If the step command causes an in-
struction address stop that was the
cause of the current processor halt
state, the address stop is cleared
and ignored and the target instruc-
tion will be executed.

During a step command, operand
read or write address stops are
ignored.

A step command of a start I/O data

transfer instruction addressed to

the IOP console should not be
performed. If it is performed, the
start I/O will become queued up in
the IOP channel interface, and the
data transfer cannot be executed or
terminated until the processor is
commanded to the run state, and
the IOP system control panel enters
the console mode.

2.12.12 Memory Address Virtual
Command

The memory address virtual (MAV) com-
mand is specified by the syntax
'MAV=XXXXXX', where the XXXXXX is a
24-bit logical address. The IOP sends the
logical address to the processor for con-
version from logical to physical through
the processor's map and memory manage-
ment hardware. The processor then sends
the physical address back to the IOP which
displays the physical address and the
contents of the specified memory
location.

It must be noted that the processor does
not check the validity of the logical
address during the conversion process and
erroneous results can occur if the logical
address is greater than the current
mapping environment and the map con-
tents allow. The MAV command may only
be used while the processor is halted.

2.12.13 Read Effective Address Command

The read effective address (EA) command
is specified by the syntax 'EA' and may
only be executed while the processor is
halted. The EA command causes the
processor to fetch the instruction
addressed by the PSD and compute the
effective logical address of the instruc-
tion, after resolving any indexing and
indirection specified by the instruction.
The effective logical address is then sent
to the IOP for display purposes.

For this command to function correctly,
the instruction addressed by the PSD must
be a memory reference instruction and if
it specifies indirect addressing, the



indirect chain must be free of memory
error.

The effective logical address that is
computed will contain both F-bit (bit 12)
and C-bits (bits 30 and 31) if the processor
is in a nonextended addressing mode. The
logical address in this mode is 20 bits. If
the processor is in the extended address
mode, the F-bit will be omitted, and the
logical address is 24 bits in length.

2.13 Instruction Attributes

The instruction attributes together with
the opcodes, mnemonics, and firmware
vector locations, are listed in table 2-14.
Where applicable, the address specifi-
cation column contains a reference to a
rule number associated with the instruc-
tion attribute. These rules are listed in
table 2-15.
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Table 2-14
Instruction Attributes (Sheet 1 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute Specification
0000 HALT @820 HALF N/A
0001 WAIT @822 HALF N/A
0002 NOP @824 HALF N/A
0003 LCS @826 HALF, MODREG, N/A
LOCKLMAR
0004 ES @828 HALF, MODREG N/A
0005 RND @82A HALF, MODREG N/A
0006 BEI @82C HALF N/A
0007 UEI @82E HALF N/A
0008 EAE @830 HALF N/A
0009 RDSTS @832 HALF, MODREG N/A
000A SIPU @834 HALF N/A
000B RWCS @836 HALF, LOCKLMAR N/A
000C WWCS @838 HALF, LOCKLMAR N/A
000D SEA @83A HALF, LOCKLMAR N/A
000E DAE @83C HALF N/A
000F CEA @83E HALF, LOCKLMAR N/A
0400 ANR @840 HALF, MODREG N/A
0407 SMC @846 HALF, LOCKLMAR N/A
040A CMC @844 HALF, LOCKLMAR N/A
040B RPSWT @848 HALF, MODREG N/A
0800 ORR @850 HALF, MODREG N/A
0808 ORRM @858 HALF, MODREG N/A
0CO00 EOR @860 HALF, MODREG N/A
0CO08 EORM @868 HALF, MODREG N/A
1000 CAR @870 HALF N/A
1400 CMR @880 HALF N/A
1800 SBR @884 HALF, LOCKLMAR, N/A
MODREG
1C00 ZBR @888 HALF, LOCKLMAR, N/A
MODREG
2000 ABR @88C HALF, LOCKLMAR, N/A
MODREG
2400 TBR @890 HALF N/A
2800 TRSW @8ES8 HALF, LOCKLMAR N/A
2C00 TRR @900 HALF, MODREG N/A
2C03 TRC @906 HALF, MODREG N/A
2C04 TRN @908 HALF, MODREG N/A
2C05 XCR @90A HALF, LOCKLMAR, N/A
MODREG
2C07 LMAP @90C HALF N/A
2C08 TRRM @90E HALF, MODREG N/A
2C09 SETCPU @910 HALF N/A
2COA TMAPR @912 HALF, MODREG N/A
2CO0B TRCM @914 HALF, MODREG N/A
2CoC TRNM @916 HALF, MODREG N/A
2C0D XCRM @918 HALF, LOCKLMAR, N/A
MODREG
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Table 2-14
Instruction Attributes ( Sheet 2 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute Specification
2COE TRSC @91A HALF N/A
2COF TSCR @91C HALF, MODREG N/A
340X LA @B3A INVALID RWH, N/A
MODREG, LAORLEA,
MEMREF, FULLWORD
3800 ADR @920 HALF, MODREG N/A
*@940
3801 ADRFW @922 HALF, MODREG N/A
: *@942
3803 SURFW @926 HALF, MODREG N/A
*@946
3804 DVRFW @928 HALF, MODREG N/A
*@948
3805 - FIXW @92A HALF, MODREG N/A
*@9%4A
3806 MPRFW @92C HALF, MODREG N/A
*@94C
3807 FLTW @92E HALF, MODREG N/A
*@94E
3808 ADRM @930 HALF, MODREG N/A
*@950
3809 ADRFD @932 HALF, DMODREG Rule 4
*@952
380B SURFD @936 HALF, DMODREG Rule 4
*@956
380C DVRFD @938 HALF, DMODREG Rule 4
*@958
380D FIXD @93A HALF, DMODREG Rule 4
*@95A
380E MPRFD @93C HALF, DMODREG Rule 4
*@95C
380F FLTD @93E HALF, DMODREG Rule 4
*@95E
3C00 SUR @969 HALF, MODREG N/A
3C08 SURM @964 HALF, MODREG N/A
4000 MPR @924 HALF, DMODREG Rule 5
*@944
4400 DVR @934 HALF, DMODREG Rule 5
*@954
6000 NOR @9A0 HALF, LOCKLMAR, N/A
MODREG
6400 NORD @9B0 HALF, LOCKLMAR, N/A
MODREG
6800 SCZ @874 HALF, LOCKLMAR, N/A
MODREG
6C00 SRA @8A0 HALF, MODREG N/A
6C40 SLA @8A8 HALF, MODREG N/A

¥ HARDWARE FLOATING-POINT VECTOR
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Table 2-14

Instruction Attributes (Sheet 3 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute Specification
7000 SRL @8A4 HALF, MODREG N/A
7060 SLL @8B4 HALF, MODREG N/A
7400 SRC @8EO0 HALF, MODREG N/A
7440 SLC @8E4 HALF, MODREG N/A
7800 SRAD @8Co HALF, DMODREG Rule 5
7840 SLAD @8cCs8 HALF, DMODREG Rule 5
7C00 SRLD @8C4 HALF, DMODREG Rule 5
7C40 SLLD @8D2 HALF, DMODREG Rule 5
800X LEAR @B3C FULLWORD, INVALID N/A
RHW, LOCKLMAR,
MODREG, LEAR,
MEMREF
8400 ANMW @9Co FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD,MEMREF
8400 ANMH @9C1 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8400 ANMD @9c2 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8408 ANMB @9C4 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8800 ORMW @9D0 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8800 ORMH @9D1 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8800 ORMD @9D2 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8808 ORMB @9D4 FULLWORD, INVALID, Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8C00 EOMW @9E0 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8C00 EOMH @9E1 FULLWORD, INVALID Rule 1
RHW, MODREG,
MEMREAD, MEMREF
8C00 EOMD @9E2 FULLWORD, INVALID Rule 1

RHW, MODREG,
MEMREAD, MEMREF
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Table 2-14

Instruction Attributes (Sheet 4 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction
Attribute

Address

Specification

8C08

9000
9000
9000

9008

9400
9400
9400
9408
980X

9COF

A00X

A40X

EOMB

CAMW

CAMH

CAMD

CAMB

CMMW

CMMH

CMMD

CMMB

SBM

ZBM

ABM

TBM

@9%9E4

@9F0

@9F1

@9F2

@9F4

@AO00

@AO01

@A02

@A04

@A10

@A18

@A20

@A28

FULLWORD, INVALID
RHW, MODREG,
MEMREAD, MEMREF

FULLWORD INVALID
RHW, MEMREAD,
MEMREF

FULLWORD INVALID
RHW, MEMREAD,
MEMREF

FULLWORD INVALID
RHW, MEMREAD,
MEMREF

FULLWORD, INVALID
RHW, MEMREAD,
MEMREF

FULLWORD, INVALID
RHW, MEMREAD,
MEMREF

FULLWORD, INVALID
RHW, MEMREAD,
MEMREF

FULLWORD, INVALID
RHW, MEMREAD,
MEMREF

FULLWORD, INVALID
RHW, MEMREAD,
MEMREF

MEMWRT, READCHECK-
STORED LOCKLMAR,
MEMREAD

FULLWORD, INVALID
RHW, FRCWORD,
MEMREF

FULLWORD,
INVALIDRHW,
MEMREF, FRCWORD,
MEMWRT, MEMREAD,
READCHECKSTORE,
LOCKLMAR

FULLWORD,
INVALIDRHW,
FRCWORD, MEMREF,
MEMREAD

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 6

Rule 6

Rule 6

Rule 6
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Table 2-14

Instruction Attributes (Sheet 5 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction

Attribute

Address
Specification

AB0X

ACOX

ACOX

ACOX

ACO08

B00OX

BOOX

B0OOX

B008

B40X

B40X

EXM

LW

LH

LD

LMW

LMH

LMD

LMB

LNW

LNH

@A30

@A50

@A51

@A52

@A54

@A70

@A71

@A72

@A74

@A90

@A91

FULLWORD,

INVALIDRHW,
FRCWORD, MEMREAD,
MEMREF, LOCKLMAR,
DMODREG, MODREG

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG,
MEMREAD, MEMREF

FULLWORD,

INVALIDRHW,

MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

FULLWORD,

INVALIDRHW,
MODREG, MEMREAD,
MEMREF

Rule 6

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1
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Table 2-14
Instruction Attributes (Sheet 6 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute | Specification

B40X LND @A92 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF
B408 LNB @A94 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF
. B8OX ADMW @ABO FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF
B80X ADMH @AB1 FULLWORD, Rule 1
. INVALIDRHW,
MODREG, MEMREAD,
MEMREF

B80X ADMD @AB2 F H\}‘},AV[%W Rule 1
b

MODREG, MEMREAD,
MEMREF

B808 ADMB @AB4 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF

BCOX SUMW @ADO FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF

BCOX SUMH @AD1 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF

BCOX SUMD @AD2 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF

BCO8 SUMB @AD4 FULLWORD, Rule 1
INVALIDRHW,
MODREG, MEMREAD,
MEMREF

C00X MPMW @A40 FULLWORD, Rule 1
+@A60 INVALIDRWH,
DMODREG, MEMREAD,
MEMREF, LOCKLMAR

+ HARDWARE FIXED-POINT VECTOR
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Table 2-14
Instruction Attributes (Sheet 7 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute Specification
C00X MPMH @A41 FULLWORD, Rule 1
+@A61 INVALIDRHW,
DMODREG, MEMREAD,
MEMREF,
LOCKLMAR
C008 MPMB @A44 FULLWORD, Rule 1
+@A64 INVALIDRHW,
DMODREG, MEMREAD,
MEMREF,
LOCKLMAR
C40X DVMW @AF0 FULLWORD, Rule 1
INVALIDRHW,
DMODREG, MEMREAD,
MEMREF
C40X DVMH @AF1 FULLWORD, Rule 1
INVALIDRHW,
DMODREG, MEMREAD,
MEMREF
C408 DVMB @AF4 FULLWORD, Rule 1
INVALIDRHW,
DMODREG, MEMREAD,
MEMREF
C800 LI @A80 FULLWORD, N/A
+@AAQ INVALIDRHW,
MODREG
C801 ADI @A82 FULLWORD, N/A
+AA2 INVALIDRHW,
MODREG
C802 Sul @A84 FULLWORD, N/A
+@AA4 INVALIDRHW,
MODREG
C803 MPI @A86 FULLWORD, Rule 5
+@AAb INVALIDRHW,
DMODREG
C804 DVI @A88 FULLWORD, Rule 5
+@AAS8 INVALIDRHW,
DMODREG
C805 CI @A8A FULLWORD, N/A
+@AAA INVALIDRHW
C806 SvVC @AS8C FULLWORD, N/A
+@AAC INVALIDRHW,
LOCKLMAR

' + HARD FIXED-POINT VECTOR
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Table 2-14

Instruction Attributes (Sheet 8 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction
Attribute

Address

Specification

C807

CCO00 -
CcCo7

CCO08 -
CCOF

DO0X

D40X

D40X

D40X

DX408

D80X

EXR

LF

LFBR

LEA

STW

STH

STD

STB

STMW

@AS8E
+@AAE

@B10-B17

@B18-B1F

@B3E

@ACO

@AC1

@AC2

@AC4

@B00

FULLWORD,
INVALIDRHW

MEMREF, MEMREAD,
ZEROFB

FULLWORD,
INVALIDRHW,
LOCKLMAR, MODREG

FULLWORD,
INVALIDRHW,
MODREG, MEMREF,
LAORLEA

FULLWORD,
INVALIDRHW,
LOCKLMAR
MODREG, MEMWRT
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR
MODREG, MEMWRT
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR
MODREG, MEMWRT
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
MODREG, MEMWRT
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMWRT,
STORECKMAP,
MEMREF

N/A

Rule 3

Rule 3

N/A

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1
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Table 2-14
Instruction Attributes (Sheet 9 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction
Attribute

Address

Specification

D80X

D80X

D808

DCO00 -
DCO07

DCO08 -
DCOF

E000

E000

STMH

STMD

STMB

STF

STFBR

SUFW

SUFD

@B01

@BO2

@B0O4

@B40-B47

@B50-B57

@B80
*@BAO

@B82
*@BA2

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMWRT,
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMWRT,
STORECKMAP,
MEMREF

FULLWORD
INVALIDRHW,
LOCKLMAR,
MEMWRT,
STORECKMAP,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMREF,MEMREF,
STORECKMAP,
MEMWRT, ZEROFB

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMREF,MEMREF,
SOTRECKMAP,
MEMWRT, ZEROFB

FULLWORD,
INVALIDRHW,
MODREG, MEMREF,
LOCKLMAR, MEMREAD,
ZEROFB

FULLWORD,
INVALIDRHW,
MODREG, MEMREF,
LOCKLMAR,
MEMREAD, ZEROFB

Rule 1

Rule 1

Rule 1

Rule 3

Rule 3

Rule 6

Rule 6

* HARDWARE FLOATING-POINT VECTOR
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Table 2-14
Instruction Attributes (Sheet 10 of 15)

Firmware | Instruction Address
Opcode Mnemonic Vector Attribute Specification
E008 ADFW @B90 FULLWORD, Rule 6
*@BBO0 INVALIDRHW,

MODREG, MEMREF,
LOCKLMAR, MEMREAD,

ZEROFB
E008 ADFD @B92 FULLWORD, Rule 6
*@BB2 INVALIDRHW,

MODREG, MEMREF,
LOCKLMAR, MEMREAD,

ZEROFB
E400 - DVFW @BCO FULLWORD, Rule 6
E407 *@BEO INVALIDRHW,

MODREG, MEMREF,
LOCKLMAR, MEMREAD,

ZEROFB
E400 - DVFD @BC2 FULLWORD, Rule 6
E407 *@BE2 INVALIDRHW,

MODREG, MEMREF,
LOCKLMAR, MEMREAD,

ZEROFB
E408 - MPFW @BDO0 FULLWORD, Rule 6
E40F *@BF0 INVALIDRHW

MODREG, MEMREF,
LOCKLMAR, MEMREAD,

ZEROFB
E408 - MPFD @BD2 FULLWORD, Rule 6
E40F *@BF2 INVALIDRHW

MODREG, MEMREF,
LOCKLMAR, MEMREAD,
ZEROFB

E80X ARMW @B30 FULLWORD, Rule 1
INVALIDRHW,
READCHECKSTORE,
LOCKLMAR,
MEMREAD, MEMWRT,
MEMREF

E80X ARMH @B31 FULLWORD, Rule 1
INVALIDRHW,
READCHECKSTORE,
LOCKLMAR,
MEMREAD, MEMWRT,
MEMREF

* HARDWARE FLOATING-POINT VECTOR
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Table 2-14

Instruction Attributes Sheet (11 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction
Attribute

Address
Specification

E80X

E808

ECO00

ECXX

F000

FOXX

F400

F420

F440

ARMD

ARMB

BU

BCT

BFT

BCF

BIB

BIH

BIW

@B32

@B34

@Co00

@Co02

@cC12

@C10

@C20

@C24

@C28

FULLWORD,
INVALIDRHW,
READCHECKSTORE,
LOCKLMAR, MEMREAD,
MEMWRT, MEMREF

FULLWORD,
INVALIDRHW,
READCHECKSTORE,
LOCKLMAR, MEMREAD,
MEMWRT, MEMREF

FULLWORD,
INVALIDRHW,
FRCWORD, BRANCH,
MEMREAD, MEMREF

FULLWORD
INVALIDRHW,
FRCWORD, BRANCH,
MEMREAD, MEMREF

FULLWORD,
INVALIDRHW,
FRCWORD, BRANCH,
MEMREAD, MEMREF

FULLWORD,
INVALIDRHW,
FRCWORD, BRANCH,
MEMREAD, MEMREF

FULLWORD,
INVALIDRHW,
MODREG, FRCWORD,
MEMREF, MEMREAD,
I3NOINDEX, BRANCH

FULLWORD,
INVALIDRHW,
MODREG, FRCWORD,
MEMREF, MEMREAD,
I3NOINDEX, BRANCH

FULLWORD,
INVALIDRHW,
MODREG, FRCWORD,
MEMREF, MEMREAD,
I3NOINDEX, BRANCH

Rule 1

Rule 1

Rule 7

Rule 7

Rule 7

Rule 7

Rule 7

Rule 7

Rule 7
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wACOne

Mnemaonic

F460

F80X

F80X

F80X

F808

F880

BID

ZMH

ZMW

ZMD

ZMB

BL

@C41

@C40

@C42

@C44

@C46

FULLWORD,
INVALIDRHW
MODREG, FRCWORD,
MEMREF, MEMREAD,
I3NOINDEX, BRANCH

FULLWORD
INVALIDRHW,
LOCKLMAR,
STORECHECKMAP,
MEMREF, MEMREAD,
INHIBIT
DOUBLE MEMWRT

FULLWORD,
INVALIDRHW,
LOCKLMAR,
STORECHECKMAP,
MEMREF, MEMREAD,
INHIBIT
DOUBLE MEMWRT

FULLWORD,
INVALIDRHW,
LOCKLMAR,
STORECHECKMAP,
MEMREF, MEMREAD,
INHIBIT,

DOUBLE MEMWRT

FULLWORD,
INVALIDRHW,
LOCKLMAR,
STORECHECKMAP,
MEMREF, MEMREAD,
INHIBIT
DOUBLE MEMWRT

FULLWORD,
INVALIDRHW,
INHIBIT, DOUBLE
FRCWORD,

MEMREF, MEMREAD,
BRANCH, MEMWRT

Rule 7

Rule 1

Rule 1

Rule 1

Rule 1

Rule 7
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Table 2-14

Instruction Attributes (Sheet 13 of 15)

Opcode

Mnemonic

Firmware
Vector

Instruction
Attribute

Address
Specification

F980

FAOX

FA80

FCO00

FCO01

FCO02

FCO03

FCO04

FCO05

FC06

FC17

LPSD

JWCS

LPSDCM

EI

DI

DAI

™D

CD

SIO

@C48

@cC4C

@C4A

@C60

@ceé2

@Co64

@C66

@C68

@C6A

@ceécC

@C70

FULLWORD,
INVALIDRHW,
LOCKLMAR, FRCWORD

FULLWORD,
INVALIDRHW,
LOCKLMAR,
MEMREF

FULLWORD,
INVALIDRHW,
LOCKLMAR,
FRCWORD

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,

LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

FULLWORD,
INVALIDRHW,
LOCKLMAR

Rule 2

N/A

Rule 2

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A_
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Table 2-14
Instruction Attributes (Sheet 14 of 15)

Firmware Instruction Address
Opcode Mnemonic Vector Attribute Specification
FCI1F TIO @C70 FULLWORD, N/A
INVALIDRHW
LOCKLMAR
FC37 HIO @cC70 FULLWORD, N/A
INVALIDRHW,
LOCKLMAR
. Base Mode Only
1008 SCz @874 HALF, LOCKLMAR, N/A
MODREG
1800 SBR @884 HALF, LOCKLMAR, N/A
MODREG
1804 ZBR @888 HALF, LOCKLMAR, N/A
MODREG
1808 ABR @88C HALF, LOCKLMAR, N/A
MODREG
180C TBR @890 HALF N/A
1C00 SRA @8A0 HALF, MODREG N/A
1C20 SRL @8A4 HALF, MODREG N/A
1C40 SLA @8AS8 HALF, MODREG N/A
1C60 SLL @8B4 HALF, MODREG N/A
2000 SRAD @8C0 HALF, DMODREG Rule 5
2020 SRLD @8C4 HALF, DMODREG Rule 5
2040 SLAD @8cCs8 HALF, DMODREG Rule 5
2060 SLLD @8D2 HALF, DMODREG Rule 5
2400 SRC @8E0 HALF, MODREG N/A
2440 SLC @8E4 HALF, MODREG N/A
2802 XCBR @B8EC HALF, LOCKLMAR, N/A
MODREG
2804 TCG @8F0 HALF, MODREG N/A
2805 TGCC @8F2 HALF N/A
2808 CALL/ @8F4 HALF, LOCKLMAR N/A
BSUB
280C TPCBR @8F8 HALF, LOCKLMAR N/A
2803 RETURN @8FA HALF, LOCKLMAR N/A
2C01 TRBR @902 HALF, LOCKLMAR N/A
2C02 TBRR @904 HALF, MODREG N/A

2-93




Table 2-14

Instruction Attributes (Sheet 15 of 15)

Address

MODREG, MEMREF,
MEMREAD, ZEROFB,
LOCKLMAR

Firmware Instruction
Opcode Mnemonic Vector Attribute Specification
3802 MPR @924 HALF, DMODREG Rule 5
*@944
380A DVR @934 HALF, DMODREG Rule 5
*@954
500X LA @B3A FULLWORD, N/A
INVALIDRHW,
MODREG, MEMREF,
LAORLEA
540X STBR @970 FULLWORD, Rule 3
INVALIDRHW,
LOCKLMAR, ZEROFB,
MEMREF,
STORECKMAP,
MEMWRT
5800 - SUABR @980 FULLWORD, N/A
5807 INVALIDRHW,
LOCKLMAR,
5808 - LABR @988 MODREG, ZEROFB, N/A
580F LAORLEA, MEMREF
5C00 - LBR @990 FULLWORD, Rule 3
5C07 INVALIDRHW,
LOCKLMAR, MODREG,
MEMREF,
MEMREAD, ZEROFB
5C08 - CALM/ @99C FULLWORD, Rule 3
5COF BSUBM INVALIDRHW,

* HARDWARE FLOATING-POINT VECTOR
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Table 2-15

Address Specification Rules (Sheet 1 of 2)

Rule
Number

Qualifier or
Type Instruction

Definitions of Conditions
That Would Generate Errors

1

Memory Reference

Multiply or divide
a memory word

Effective address F
and C bits are not
equal to zero

LPSD

LPSDCM

Effective address C
bit not equal to
Zero

Register to
Register double

Register to
register double
shift (precision)

If a doublword instruction is used and the
effective address bit (29) is equal to 1
(base/nonbase)

If a doubleword and the odd register address
bit (8) is equal to 1 (base/nonbase)

If in base mode and the instruction F and C
bits do not equal to the F and C effective
address (used when indexing is modifying the
opcode)

If in base mode and a doubleword and the
effective address bit (29) is equal to 1

If in base mode and a doubleword and the
odd register address bit (8) is equal to 1

If a doubleword modify register instruction
and the odd register address bit (8) is equal
to 1 (base/nonbase)

If F bit is equal to 1 (base/nonbase)

If F bit is equal to zero and effective
address bit (30) is equal to 1 (base/nonbase)

If F bit is equal to 0 and the effective
address bit (31) is equal to 1 (base/nonbase)

If instruction F and C bits are not equal to
the F and C effective address (base mode)

If effective address bit (30) is equal to 1
(base/nonbase)

If instruction F and C bits are not equal to
the F and C effective address

If instruction bit (8) is equal to 1

If instruction bit (11) is equal to 1
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Table 2-15

Address Specification Rules (Sheet 2 of 2)

Definitions of Conditions

Rule Qualifier or
Number Type Instruction That Would Generate Errors
6 Bit in memory If a doubleword and the effective address bit

Execute Memory

Floating Point
Memory Reference

(29) is equal to 1 and it is not an execute
memory instruction (floating point only)

If a doubleword and the odd register address
bit (8) is equal to 1 and it is not an execute
memory instruction (floating point only)

If instruction F and C bits are not equal to
the F and C bit effective address and it is
not an execute memory instruction (base
mode floating point only)

If it is a halfword instruction and not an
execute memory (floating point only)

If it is an execute memory, the F bit flag is
cleared and the effective F bit is equal to 1
(execute memory only)

If it is not an execute memory, the F bit flag
is not cleared and the effective F bit is
equal to 0 (bit in memory only)
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CHAPTER 3

THEORY OF OPERATION

3.1 Introduction

This chapter contains the theory of
operation for the CPU. The introductory
portion of this chapter provides a
functional overview of the CPU. A
comprehensive description for each of the
units (MS unit, IE unit, CS unit) follows
the overview. The latter portion of the
chapter contains detailed descriptions of
the instruction pipeline, cache, and
memory map. References are made to
logic drawing sheet numbers in certain
areas of text and diagrams. These
references are included as supplemental
information for field service personnel.

3.2 Overview

The CPU overview describes the func-
tions, data structure, and data sources for
each of the three units comprising the
CPU. Figure 3-1 depicts the functional
interrelationships of the three umits and
provides a brief description of the major
logic elements contained on each board.
Figure 3-2 is an overall block diagram of
the CPU.

3.2.1 MS Unit

The MS unit contains the following logic
circuitry:

. Micro PC address selection logic
. Cache data out logic

. Scratchpad logic

. Control store logic

. Order structure

. Turnkey panel interface

The text that follows for each portion of
the logic should be used in conjunction
with figure 3-3, the MS Unit Functional
Diagram.

3.2.1.1 Micro PC Address Selection Logic

Functions

1) Decodes macroinstructions into uPC
addresses

2) Provides micro interrupt control
3) Allows address selection

3.2.1.2 Cache Data Out Logic

Functions

1) Used to hold and output the cache
data after operand reads.

3.2.1.3 Scratchpad Logic

Functions

1) Provides an emulation work area and
temporary storage for control panel
functions, I/O device entries, and
interrupt structure information.

3.2.1.4 Control Store Logic
Functions

1) Contains and outputs microwords

2) Allows for Alterable Control Storage
(ACS)

3) Allows for Writable Control Storage
(WCS)
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3.2.1.5 Order Structure
Functions

1) Decodes microword bits into
individual output control signals for
both CROM and CREG cycle orders.

3.2.1.6 Turnkey Panel Interface
Functions

1) Decodes turnkey panel PROCESSOR
SELECT switch

2) Provides driving, buffering, and
latching for inputs and indicators
to/from the IOP and turnkey panel.

3.2.2 IE Unit

The IE Unit consists of the following
circuitry:

. Instruction pipeline
. Set-up logic

. Execution logic

. Test structure

. Order structure

The text that follows for each portion of
the logic should be used in conjunction
with figure 3-4, the IE Unit Functional
Diagram.

3.2.2.1 Instruction Pipeline
Functions

1) Performs instruction decode
2) Provides halfword istruction
detection and metering

3) Provides for indirect sequencing
4) Performs CROM and CREG cycle

functions

3.2.2.2 Set-up Logic

Functions
1) Performs effective address
calculations

2) Performs operand prefetching
3) Generates Logical Memory Addresses
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3.2.2.3 Execution Logic
Functions

1) Executes Macroi.nstructions'
2) Performs Arithmetic/logic operations

3.2.2.4 Test Structure
Functions

1) Monitors external input signals to the

CPU

2) Monitors internal conditions of the
CPU

3) Performs single or multiple signal
tests

3.2.2.5 Order Structure
Functions

1) Initializes or terminates internal
control signals

2) Serves as qualifiers for certain events

3) Registers strobe signals

3.2.3 CS Unit

The CS unit contains the following logic
circuitry:

. SelBUS interface logic

. Operand effective/instruction logical
address logic

. Memory management logic

. Cache memory logic

The text that follows for each portion of
the logic should be used in conjunction
with figure 3-5, the CS Unit Functional
Diagram.

3.2.3.1 SelBUS Interface Logic
Functions

1) Monitors SelBUS for externally
initiated memory writes

2) Establishes SelBUS transfer priority

3) Drives memory and I/O transfer to
SelBUS

4) Monitors SelBUS for response signals

5) Receives SelBUS DRT transfers

6) Monitors for error response signals
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CSUNIT

THE CS UNIT CONTAINS THE FOLLOWING
SelBUS LOGIC CIRCUITRY:

@ SelBUS INTERFACE LOGIC

® OPERAND EFFECTIVE/INSTRUC-
ION LOGICAL ADDRESS LOGIC

® MEMORY MANAGEMENT LOGIC

® CACHE MEMORY LOGIC

MS UNIT

THE MS UNIT CONTAINS THE FOLLOWING
LOGIC CIRCUITRY:

1E UNIT

THE IE UNIT CONTAINS THE FOLLOWING
LOGIC CIRCUITRY:

® INSTRUCTION PIPELINE
® SET-UP LOGIC

® EXECUTION LOGIC

® TEST STRUCTURE

@® ORDER STRUCTURE

ADDRESS GENERATION LOGIC
CACHE DATA OUT LOGIC
SCRATCHPAD LOGIC
CONTROL STORE LOGIC
ORDER STRUCTURE
TURNKEY PANEL INTERFACE

CROM BUS

CAMUX BUS
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ORDER STRUCTURE

‘® DECODES MICROWORD BITS INTO
INDIVIDUAL OUTPUT CONTROL
SIGNALS FOR BOTH CROM AND
CREG CYCLE ORDERS

>

CROM BUS

TURNKEY

PANEL

® 64-BIT DATA BUS
® ROUTES MICROWORD TO CPU
CONTROL LOGIC

Y BUS

_—»

TURNKEY PANEL INTERFACE

® DECODES PROCESSOR
SELECT SWITCH

® PROVIDES DRIVING , BUFFERING,
AND LATCHING FOR TURNKEY
PANEL AND CPU CONSOLE INPUTS
AND INDICATORS

® 32-BIT DATA BUS
ONLY OUTPUT FROM 2901

BUS FROM 2901

[ J
@ MICRO LEVEL COMMUNICATION
[ ]

WRITE TRANSACTION

ADDRESS GENERATION

DECODES MACRO INSTRUCTIONS
INTO tPC ADDRESSES

® PROVIDES MICRO INTERRUPT
CONTROL

® ALLOWS ADDRESS SELECTION

® GENERATES MICRO INSTRUCTION

ADDRESSES

TURNKEY
PANEL

SCRATCHPAD LOGIC

@ PROVIDES AN EMULATION WORK
AREA AND TEMPORARY
STORAGE FOR CONTROL PANEL
FUNCTIONS 1/0 DEVICE ENTRIES,
AND INTERRUPT STRUCTURE
INFORMATION

CAMUX BUS

@® 32-BIT MULTIPLEXED BUS
® DATA IN THE FORM OF
OPERANDS OR INSTRUCTIONS

.CACHE DATA OUT LOGIC

® USED TO HOLD AND OUTPUT
THE CACHE DATA DURING
OPERAND READS

CONTROL STORE LOGIC

@® CONTAINS AND OUTPUTS
MICROWORD

® ALLOWS FOR ALTERABLE
CONTROL STORE (ACS)

® ALLOWS FOR WRITABLE
CONTROL STORE (WCS)

DB BUS

® 32-BIT DATA BUS

@® DIRECT DATA INPUT TO 2901

® PROVIDES FOR SOURCE
DECODE LOGIC
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Figure 3-3. MS Unit Functional Diagram
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ORDER STRUCTURE

® INITIALIZES OR TERMINATES INTERNAL
CONTROL SIGNALS

® SERVES AS QUALIFIERS FOR CERTAIN
EVENTS

® REGISTERS STROBE SIGNALS

v

CROM BUS
@ 64 BIT BUS
® ROUTES MICROWORD TO CPU CONTROL
LOGIC TEST STRUCTURE
® PROVIDES FOR TEST CONTROL ® MONITORS EXTERNAL INPUT SIGNALS TO CPU
® MONITORS INTERNAL CONDITIONS OF CPU >
® PERFORMS SINGLE OR MULTIPLE SIGNAL
TESTS
CAMUX BUS
@ 32 BIT MULTIPLEXED BUS
® PROVIDES DATA PATH BETWEEN CACHE
MEMORY AND PIPELINE INSTRUCTION PIPELINE > SET-UP LOGIC
® DATA IN FORM OF OPERANDS OR ® PERFORMS INSTRUCTION DECODE
INSTRUCTIONS ® PROVIDES HALFWORD INSTRUCTION ® PERFORMS EFFECTIVE ADDRESS
DETECTION AND METERING CALCULATIONS
@ PROVIDES FOR INDIRECT SEQUENCING ® PERFORMS OPERAND PREFETCHING
® PERFORMS CROM AND CREG CYCLE ® GENERATES LOGICAL MEMORY
FUNCTIONS ADDRESS
DB BUS ® CONTAINS 32 BIT UNIDIRECTIONAL 1-BUS —N
: gz BWL??:TEA Y A INPUT TO 2901 EXECUTION LOGIC
NLY DIRECT DAT
® PROVIDES FOR SOURCE DECODE LOGIC ® EXECUTES MACROINSTRUCTIONS
———] ® PERFORMS ARITHMETIC/LOGIC OPERATIONS
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® 32 BIT DATA BUS
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® WRITE TRANSACTION LOGIC
820438

Figure 3—4. IE Unit Functional Diagram
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SelBUS

® 32 BIT BIDIRECTIONAL, MULTIPLEXED BUS
® PROVIDES DATA PATH BETWEEN CPU,
MEMORY, AND /O DEVICES

Y-BUS

32 BIT DATA BUS
ONLY QUTPUT FROM 2901

FROM 2901

SelBUS INTERFACE LOGIC

MONITORS SelBUS FOR EXTERNALLY IN
INITIATED MEMORY WRITES
ESTABLISHES SelBUS TRANSFER PRIORITY
DRIVES MEMORY AND 1/0 TRANSFER

TO SelBUS

RECEIVES SelBUS DRT TRANSFERS

DB BUS

® 328BIT DATA BUS
® DIRECT INPUT TO 2901

“

[ ]
[ ]
® MICRO LEVEL COMMUNICATION BUS
[ J

WRITE TRANSACTION TO CACHE FUNCTION

PHYSICAL MEMORY

ADDRESS BUS <

OPERAND EFFECTIVE/INSTRUCTION
LOGICAL ADDRESS LOGIC

® STORES THE OPERAND
EFFECTIVE LOGICAL ADDRESSES

® COMPUTES AND STORES THE
INSTRUCTION LOGICAL
ADDRESSES

® ACCESSES CACHE MEMORY

LOGICAL MEMORY

CACHE MEMORY LOGIC

PROVIDES HIGH SPEED COPY OF RELEVANT
PORTIONS OFSelBUS MAIN MEMORY
PROVIDES A LOOK AHEAD FUNCTION
CONTAINS SEPARATE CACHE BANKS FOR
INSTRUCTIONS AND DATA (OPERANDS)

EE——

CAMUX BUS

32 BIT MULTIPLEXED BUS

PROVIDES DATA PATH BETWEEN CACHE
MEMORY AND INSTRUCTION PIPELINE
DATA IN THE FORM OF OPERANDS OR
INSTRUCTIONS

ADDRESS BUS <

—
>

MEMORY MANAGEMENT LOGIC

® CONVERTS LOGICAL ADDRESSES TO
PHYSICAL ADDRESSES
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Figure 3-5. CS Unit Functional Diagram
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3.2.3.2 Operand Effective/Instruction
Logical Address Logic

Functions

1) Stores the operand effective logical
addresses

2) Computes and stores the instruction
logical addresses

3.2.3.3 Memory Management Logic
Functions

1) Converts logical addresses to physical
addresses

2) Performs mapping functions

3.2.3.4 Cache Memory Logic
Functions

1) Provides a high-speed copy of
standard SelBUS memory

2) Provides a look-ahead to enhance
CPU performance

3.2.3.5 Machine Cycles

Each microinstruction uses two time
periods for execution: the CROM cycle
and the CREG (control register) cycle (see
figure 4-2). The timing that regulates
these cycles is a single-phase clock that
triggers every 150 nanoseconds throughout
the system.

The CROM cycle refers to functions
performed at the end of the control store
access cycle. These functions are
performed by direct output or decodes of
the CROM without an intervening clock.
Typically these include microsequencing
and operation monitoring (test) functions.

The CREG cycle refers to functions per-
formed from the control store register.
CREG cycle functions require an inter-
vening clock between them and CROM

cycle functions and can provide a result-
oriented operation for a full step (150
nsec) following the CROM step.
Generally, CREG cycle functions control
the data structure and data put-aways.

3.2.3.6 Clock Generation

The system clock is routed to the MS Unit,
IE Unit, and CS Unit as signal LCLKL.
(This is a SelBUS clock. Although the
prefix L is used, the active edge is
positive going.) The clock signals within
each unit are derived from this sytem
clock input. The stop system clock signal
LSTSC is also routed to each unit. LSTSC
stops all clocks with the exception of
L2FREERUNCLK, which is used in ACS
and WCS RAM control. Figure 3-6isa
composite illustration showing basic
timing, three clock levels, active edges
denoted by arrows, and clock widths. The
convention used for clock signal
nomenclature describes each signal; an
example is included in the illustration.
The CPU stopclock HSTOPCLK controls
all clock signals having the suffix S
(stopclocks).

3.3 Microsequencer (MS) Unit

The microsequencer unit contains the CPU
microprogram in PROM; the PROM array
is referred to as the control read only
memory (CROM). The MS unit has
facilities for ACS (alterable control store)
and WCS (writable control store)
functions.

The CPU microprogram counter (uPC) is
located on the MS PCB. The order
structure within the MS Unit generates
(from the CROM microword) CROM
orders, CREG (control register) orders and
latch orders that control the operation of
the MS unit and CPU. Operations such as
macroinstruction decode, microinterrupt
control, uPC increment, uPC jump, or uPC
branch are processed within the MS unit.

The following text is presented in two
major subdivisions: Microsequencer
Components and Microsequencer
Operation.
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3.3.1 Microsequencer Components
(see figure 3-7)

Note

Items in parentheses (xx) denote
logic drawing page numbers. These
are included as supplemental infor-
mation for Gould field service
personnel. Where applicable,
these numbers are also included

on block diagrams.

3.3.1.1 Y Bus and DB Bus

The 32-bit Y Bus is the only output from
the MP2901 (IE Unit). The data is
distributed to the base/index registers (IE
Unit) and, after being buffered (YB Bus),
is routed to the CS Unit and MS Unit.

The 32-bit DB Bus provides the only direct
data input to the MP2901. Inputs to the
DB Bus are provided by the effective
memory address register (IE Unit), the I0
register (IE Unit), or the RAM data out
register (MS Unit). On the MS unit, this
bus originates as the MD Bus. After
buffering on the MS Unit, it is termed the
MDB Bus. ‘It is connected to the DB Bus
at the IE Unit.

3.3.1.2 Right Shifter (34)

The right shifter is 32-bits wide and is
used during cache reads to align data to
byte, halfword, or word boundaries. Input
data to the right shifter is provided by the
CAMUX Bus. The output of the right
shifter is gated to the cache data out even
and cache data out odd registers if it is an
operand read. CAMUX is gated to I3
register if it is an instruction read, and
the 12 indirect register (in the IE unit) if it
is an indirect read. The right shifter is
designed to shift either 1, 2, or 3 bytes to
the right.

3.3.1.3 Cache Data Out Registers (4,35)
Two 32-bit cache data out registers are

provided to receive operands read from
cache. The registers are the cache data

out even and the cache data out odd.
During all operand cache accesses (except
doubleword pairs) the even register always
receives the even or odd cache output.
When the effective address specifies a
doubleword pair, the even register
receives cache outputs from the even
addressed cache words and the odd
register receives cache outputs from the
odd addressed cache words. The output of
the cache data out registers is gated to
the MDB Bus. The output from the cache
data out even register may be gated via
the MDB Bus to the sign extend logic
(sheet 5).

3.3.1.4 I3 and I2 MS Copy Registers (27)

The two I3 MS copy registers are 16-bit
registers that maintain a copy of the right
and left half of I3 register in the IE Unit
(the top level of the instruction pipeline).
The I3 MS copy register is loaded with the
cache output during instruction cache read
operations. The output of only one I3

register is enabled and gated to the I2 MS
copy register.

3.3.1.5 Instruction Decode (28,29)

The instruction decode (vector decode
logic) consists of a decode array driven by
the 12 MS copy register (I2 Bus copy) and
decodes macroinstruction op-code,
augment code, and sub-op-code fields into
uPC addresses. In addition to the op-code
fields the instruction decode also checks
the right hand flag, base mode flag, and
FPA present flag in determining the uPC
address.

The instruction decode (vector decode
logic) relationship between op-codes,
modes (flags), and uPC addresses are
predefined and programmed (burned) into
the decode array. The output of the
instruction decode (the uPC address) is
gated to the 6:1 input address selection
multiplexer. The instruction decode
(decode array) can be considered a look-up
table for op-codes and flags (inputs) versus
uPC addresses (outputs). An instruction in
the instruction decode phase is, at a
minimum, two clocks (300ns) away from
execution.

3-15



3.3.1.6 Decode Save (29)

The decode save register saves the uPC
address output of the instruction decode.
In the event of microinterrupt, the uPC
control may select the output of the
decode save (through the 6:1 mux) to serve
as a microinterrupt return address. The
output of the decode save register is only
used if a valid instruction is in the I1
pipeline register during a microinterrupt
return sequence.

3.3.1.7 Microinterrupt Control (31)

The microinterrupt control hardware
provides a means of interrupting the
firmware out of macroinstruction
emulation sequences. The microinterrupt
must be specifically enabled by the firm-
ware before an interrupt can occur. A
microinterrupt represents an exceptional
event that must be identified and handled
by firmware. The exceptional event may
be an error, a software interrupt or trap,
or may indicate that some hardware
element or interlock requires servicing.
The microinterrupt control hardware
provides a vectorized and prioritized
decode of the conditions causing the
microinterrupt and generates a uPC
address of a firmware routine designed to
handle the exceptional event.

If the exceptional event is an error, trap,
or interrupt, the firmware will not
attempt to return to the sequence in
which the microinterrupt occurred. In the
event of error, trap, or interrupt, the
firmware will activate a firmware trap or
interrupt handler that will in turn activate
a software trap or interrupt handler.

If the exceptional event represents a
hardware element that requires servicing,
the firmware will service that element
and resume processing at the point at
which the microinterrupt occurred. To
accommodate the microinterrupt the
hardware provides a uPC save register to
store the interrupted context. The uPC
save register provides a microinterrupt
return address that must be gated back
through the 6:1 input address selection
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multiplexer to the uPC at the end of the
microinterrupt routine. The micro-
interrupt control hardware does not
provide for nested microinterrupts.

3.3.1.8 6:1 Input Address Selection
Multiplexer (24,25)

The input address selection multiplexer
(6:1 mux) selects the source of the next
uPC address. The address selection
provides uPC branch, jump, and return
capabilities. The selectable address
sources are:

1. Microword (CROM)

2. Decode Save

3. Imstruction Decode

4. IE Unit data structure (YB-Bus)

5. Microinterrupt vector from IE unit
6. uPC Save Register

. Microword (CROM)

The uPC control directs the 6:1 mux
to select either 4, 8, or 12 bits of
CROM bits 52 through 63 to the uPC
during Hop (Seq0), Leap (Seql),
Branch (Seq2), operations.

. Decode save (refer to paragraph
3.3.1.6).

. Instruction decode (refer to paragraph
3.3.1.5).

. IE unit data structure (YB Bus).

. The uPC control directs the 6:1 mux
to select the YB bus input to the uPC
during branch (Seq3) and jump data
orders from CROM.

. Microinterrupt vector. When a
microinterrupt occurs, the
microinterrupt vector generated by
the IE unit is chosen by the uPC and
vectors to a firmware routine where
the microinterrupt is serviced.

. Microprogram counter save register
(refer to paragraph 3.3.1.10).
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Figure 3-7. MS Unit Block Diagram
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3.3.1.9 Microprogram Counter
(uPC) (24,25)

The microprogram counter consists of a
16-bit wide adder, push/pop stack, 4:1
multiplexer, and holding register. The
output of the uPC is the next micro-
instruction address to the control read
only memory (CROM). The uPC output
may also be sent to the uPC latch and/or

gated into the uPC save register.

3.3.1.10 Microprogram Counter Save
Register (26)

The uPC save register is used to hold the
uPC address of a microinterrupted micro-
instruction. The contents of the save
register must be gated back through the
6:1 input address selection multiplexer
(6:1 Mux) to the uPC (microreturn).

3.3.1.11 Microprogram Counter Latch (26)

The uPC latch may be used to capture the
output of the uPC and gate the contents
to the MDB Bus to allow the firmware to
perform uPC relative operations. The
uPC latch is not being utilized within the
CPU at this time.

3.3.1.12 Microprogram Counter Output
Buffer (26)

The uPC output buffers isolate the uPC
during ACS and WCS read and write
operations.

3.3.1.13 WCS RAM Data Registers (2,3,4,5)

The RAM data in register transfers data
from the 32-bit YB bus to the 64-bit
LRAMDATA (CROM) bus. The RAM data
in register is a 64-bit register which
requires two operations to load. This
register feeds the 64-bit LRAMDATA
bus. The ED overlay field of the micro-
word determines whether the output of
the YB Bus is loaded into the MSW or LSW
portion of the RAM data in register.

The RAM data out register transfers data
from the 64-bit LRAMDATA (CROM) bus
to the 32-bit MD bus. The RAM data out

register is a 64-bit register and requires
two operations to gate data to the 32-bit
MD bus. The ES overlay field of the
microword determines whether the MSW
or LSW of the microword (CROM bus) will
be gated to the MD bus.

3.3.1.14 WCS Address Register (12)

The WCS address register is loaded with
bits 16 through 31 of the YB Bus and gated
to the HRAMADDR lines 00 through 15.
The WCS address comes from one of the
GPRs within the MP2901 specified by the
RWCS or WWCS instructions. The register
is used during a read ACS and WCS or
write ACS and WCS.

3.3.1.15 N-Counter (36)

The N-counter is used by the CPU firm-
ware to supply iteration count for
repetative operations such as shift,
multiply, and divide. The N-counter
provides a count for an address
designation in the performance of a jump
or branch. The counter may be loaded
from the leading/trailing zeros detect

logic or from the YB Bus. The ouput may
be gated to the MD Bus.

All flip-flops in each counter simul-
taneously clock so that the outputs change
coincident with each other when
instructed by the count enable order
(LCNTENORD) and internal gating. When
the down count order (LDNCNTORD) goes
low, the counter counts down; and when
high, the counter counts up. Input to the
N-counter is controlled by a 2:1 mux. The
2:1 mux selects either the YB Bus (00
through 07), or the YB Bus via the leading
trailing zeros detector. The N counter
can count up to 256. The N counter
overflow signal (LNOVRFLOW) sets a flag
in the status port that the N counter
contains all ones in the count up mode and
all zeros in the count down mode.
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3.3.1.16 Control Store RAM (12-17)

The control store RAM is a 12K by 64-bit
RAM array that is divided into 8K of WCS
RAM and 4K of ACS RAM. The WCS
RAM locations are considered add-on
control store for the control read only
memory (microprogram control store)
located in PROM. The ACS is a copy
(shadow) of the PROM control store, may
be written into under software control,
and may be the source of the primary
execution microcode when the CPU is in
the operational state. Data to and from
the RAM is by way of the LRAMDATA
Bus (00 through 63). ACS locations can
only be accessed by software WCS
instructions.

3.3.1.17 Control Store PROM (18-21)

The control store PROM is a 4K by 64-bit
control read only memory (CROM) that
contains the CPU microprogram. Data
output from the address PROM is gated to
the LRAMDATA Bus (00 through 63). The
output of the PROM is a microword that is
to be decoded to control the CPU.
Software can read the contents of the

PROM by means of the RWCS instruction.

3.3.1.18 PROM & RAM Bank Enable
Decode (11)

The PROM and RAM bank enable decode
determines which address range the
incoming address falls under by decoding
address lines 00 through 04 and generates
the corresponding bank output enable to
enable either the ACS/WCS RAM or the
PROM.

3.3.1.19 Order Structure (40)

The order structure is an output signal
array that decodes microword bits into
individual output control signals. From
one to four control signals (orders) may be
generated by a single microword. The
order structure provides both CROM and
CREG cycle orders.
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In general, orders are used to initialize or
terminate internal control functions.
Orders may also serve as qualifiers for
certain events and as register strobe
signals. Normally orders are 150 ns
pulses; however, the CPU also provides 16
level-orders that may be ordered to a set-

or-reset state by the firmware.

3.3.1.20 Scratchpad (33)

The scratchpad consists of eight 1024 x 4
RAMs. The data is routed to and from the
MDB Bus. The scratch pad address is
selected by the scratch pad address
selection mux that can select either the
microword (bits 52 through 59) or the YB
Bus (bits 08 through 15) as the address
source. The scratch pad is used to map
software I/O channels, I/0 device ad-
dresses, and software interrupt levels into
SelBUS physical addresses and interrupt
levels. Sixteen locations are reserved for
software apparent parameters such as

interrupt and trap table base addresses.
Only 512 locations of the 1K RAMs are
used to store scratch pad information.
The scratch pad is loaded by the 2901
through the nibble shifter. Locations 100
through 1FF are reserved for firmware
and are not accessible by software.

3.3.1.21 Nibble Shifter (32)

The MS Unit nibble shifter is 32-bits wide
and has the capability of left or right 4-bit
shifts. Right and left shift orders are
CREG orders. The LS.MS. FILL is an
order that tells the nibble shifter to
choose either the LS FILL (bits 28 through
31) or the MS FILL (bits 0 through 3). The
shifter may be zero filled or the result of
the last shift may be used to provide a
two-pass double-precision shift. The
capability of circular shift left or right
also exists.

3.3.1.22 Auto IPL (38)

Auto IPL provides the CPU with the
capability of initiating an initial program
load (IPL) program (software bootstrap



program) during power-up initialization
with memory contents that do not meet
the requirements of the power-up
automatic restart (auto-restart) feature.

Sixteen auto-IPL jumpers are used to
enable the auto-IPL feature and provide a
15-bit SelBUS physical address and sub-
address of a dedicated I/O device that
contains the software bootstrap program.
Typically, this I/O device is the system
disc containing the operating system
software.

3.3.1.23 Serial Interrupt Poll (37)

The duration of the interrupt polling cycle
is controlled by a binary counter that
counts nine clocks and resets to zero. The
interrupt level that wins the poll is fed to
an 8-bit serial to parallel shift register
and the contents gated to two parallel
registers that output to the MDB Bus, bits
08 through 15 and bits 22 through 29. On
the 9th clock after the interrupt poll is
initiated, the parallel registers are gated
to the MDB Bus. The output of the serial
interrupt poll is a ones complement of the
winning interrupt level.

The interrupt EOIP signal is generated
only by the CPU. The IPU samples this
line to synchronize its interrupt logic.

3.3.1.24 ES and ED Field Control (39)

The ES field is derived from CROM bits 20
through 23 (which are the inputs to three
decode demultiplexers) and controls gating
to the MDB Bus. The ES field overlay is
initiated by LESOVLORD. The decoded
outputs are latched before enabling the
DB bus. The latching method assures
proper timing of these signals so that all
coordinating registers receive their
enabling signals within a nominal margin.

The ED field overlay is initiated by CREG
clock and LEDOVLORD. It is used specify
the destination of the MP2901 Y Bus.
Three CREG bits are generated (CREG 41,
42, and 43) to enable other groups within
the order structure.

3.3.1.25 Turnkey Panel Interface (40)

The turnkey panel interface contains logic
to decode the PROCESSOR SELECT
switch on the turnkey panel (CPU/IPU).
The interface contains drivers, buffers,
and latches for indicators on the turnkey
panel and the CPU console.

3.3.2 Microsequencer Operation

3.3.2.1 Microprogram Counter
(see figure 3-8)

The uPC consist of four 4-bit slice
elements that provide a 16-bit data path.
Each element is comprised of an output
register, 4:1 mux, push-pop stack, and full
adder.

. The output register provides a steady-
state output throughout each clock
cycle.

. Each 4:1 input source select multi-
plexer selects, independently, through
the use of control lines S5 and S6, a
4-bit segment of one or more of the
four input sources for the assembly of
the next uPC address.

. The push-pop stack is used for nesting

up to four levels of sub-routine return
addresses. In the LOAD mode, the
top (first) word is loaded with data
from the full adder and any previous
data at that location is lost, all other
locations in the stack remain
unchanged. In the PUSH mode, the
top word is loaded with data from the
full adder and any previous data at
that location, and data in the second
and third word positions, is pushed
down one word location and retained.

. Any data located in the bottom word
position during the push operation is
lost. In the POP mode, data (words)
in the stack are moved up one
position during each pop operation.
Data located in the fourth (bottom)
location, during successive pop
operations, is retained by the bottom
position and duplicated in the third,
second, and finally the first (top)
position, filling the stack with fourth
word location data.
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. The full adder is a four-function ALU;
however, only one of its function is
used for simple incrementation of
input to port B by one by clamping S1
and C-in to a positive voltage and
grounding S2. This function is used
when the sequence field specifies a
NOP, or when HTESTTRUE is low
indicating test false.

3.3.2.2 Microprogram Counter Control

The uPC control receives bits 01, 02, and
03 from the CROM (microword field S),
high test true from the test structure,
CROM orders Push, Pop and Jump Data;
and a signal from microinterrupt control
(interrupt branch decode latch). Output
from the uPC control determines the
source of the next uPC address to access
the RAMs by controlling the 6:1 address
selection multiplexer and the
microsequencer.

3.3.2.3 Microinterrupt Control

The microinterrupt control receives high
test true, microreturn, and decode signals
from the uPC control, and branch taken,
microinterrupt, and flush pipeline signals
from the IE Unit. Outputs from the
microinterrupt control include
SELMICRINT and level 3 clocks that
control the 6:1 mux. The 6:1 mux is a
combination of a 4:1 mux and a 2:1 mux.
The 4:1 mux is controlled by PCSELA,
PCSELB from the uPC control and dis-
abled by the true state of HSELMICROINT
from the microinterrupt control. The 2:1
mux is controlled by HMICROINTDL and
LSELMICROINT and selects either decode
save or the microinterrupt bits from the
IE Unit.

3.3.2.4 Serial Interrupt Poll and IPU Trap

CPU or IPU mode is determined by the
LCPUMODEL signal originating in the MS
Unit. This signal is used as the select
control line to a multiplexer, which
selects either three CPU related lines or
three IPU related lines. These lines are a
serial poll input, an interrupt line, and a
system panel attention line.
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The interrupt polling line, LIPOLL for
CPU or LIPIPOLL for IPU, is driven by the
device having the current highest
priority. The serial interrupt level
represents the priority level gated to the
SelBUS. This is clocked into an eight-bit
parallel-out serial shift register and then
latched for enabling onto the MDB Bus.
The duration of the interrupt polling cycle
is controlled by a binary counter which
counts nine clocks and resets to zero.

The interrupt request line, LINTR for CPU
or LIPINTR for IPU, is driven low at the
end of a polling sequence. The interrupt
request is removed when the polling
device receives an acknowledge.

The system panel attention lines,
LSCPATTN for CPU or LIPATTN for IPU,
indicate that a system panel type input
requires servicing. The CPU or IPU
initiates the required SelBUS sequence.

The end of interupt polling (LEOP) signal
is generated only by the CPU. The IPU
samples this line to synchronize its inter-
rupt logic.

The signal CPU (LSCPU) and signal IPU
(SIPU) lines are used as attention lines
between the two processors. In the CPU
mode, the LSIPU line is driven and the
LSCPU line is sampled. In the IPU mode,
the LSCPU line is driven and the LSIPU
line is sampled. For either mode, a signal
is returned on the driven line which
activates an IPU trap flag (HIPUFF). This
qualifier is routed to the interrupt logic.
Two off-line signals (LCPUOFFLINE and
LIPUOFFLINE) are monitored to prevent
the LSCPU or LSIPU lines from being
driven if the CPU or IPU is off line.

3.3.2.5 Data Flow (see figure 3-9)

3.3.2.5.1 12 Bus

The two I3 registers maintain a copy of
the I3 register in the IE Unit. The I3 copy
registers are loaded with the cache output
during instruction cache read operations.
The output of only one I3 register is
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enabled and gated to the I2 copy

register. The I2 copy register maintains a
copy of the right or left half of the I2
register in the IE Unit (the next
instruction to be executed). The I2
instruction in the IE Unit is in the decode
and effective address calculation phase of
execution. The output of the 12 copy
register is sent to instruction decode.
When I3 contains a fullword or left
halfword instruction, I3 (0-15) are gated to
I2 (0-15). When I3 contains a right
halfword instructions, I3 (16-31) are gated
to I2 (0-15). Two cycles are required to
empty I3 during halfword instruction
sequences.

3.3.2.5.2 Imstruction Decode

The instruction decode logic consists of an
instruction decode ROM array and an in-
struction decode multiplexer. The decode
logic is driven by the I2 register copy and
decodes macroinstruction op-code, aug-
ment code, and sub-op-code fields into
uPC addresses. The decode array checks
the right hand flag, base mode flag, and
FPA present flag in determining the uPC
address. The relationship between op-
codes, modes (flags), and uPC addresses is
predefined and programmed (burned) into
the PROMs. The output of the PROMs
goes to the instruction decode multiplexer
which decodes the uPC vector and a copy
of the vector is put in DECODESAVE
when there is a micro interrupt
acknowledged. The decode ROM array
can be considered a type of look-up table
for op-codes and flags (inputs) versus uPC
addresses (outputs). At a minimum, an in-
struction in the decode phase is two clocks
(300 ns) away from execution.

3.3.2.5.3 Address Selection 6:1 Mux

The 6:1 mux, under the control of the uPC
control and microinterrupt control, selects
the next address to be fed to the micro-
program counter. Steer control for the
6:1 mux is listed in table form as part of
figure 3-9. The 6:1 mux is constructed of
eight dual 4:1 multiplexers and four quad
2:1 multiplexers. Selection of one of the

four inputs of the eight dual 4:1 multi-
plexers is controlled by the three CROM
bits (01, 02, 03), the interrupt branch
decode latch, and the jump data order; the
interrupt branch decode latch must be low
to select CROM bits. Selection of micro-
interrupt vector or decode save of the
quad 2:1 multiplexer is controlled by the
output enable LSELMICROINT and the
select HMICROINTDL.

Selection A (uPC Save). The uPC save
register is used to hold the uPC address of
an interrupted microinstruction. The con-
tents of the save register must be gated
back through the 6:1 mux to the uPC at
the end of the microinterrupt routine.

The uPC save register is used as the
source of the next firmware vector when
the sequence field specifies a six for
microreturn.

Selection B (Decode Save). The decode
save register saves the uPC address output
at the instruction decode. In the event of
microinterrupt, the uPC control may
select the output of the decode save as
the next firmware vector. Sequence field
six microreturn follows by JUMPD the
next cycle specifies that decode save

register is to be used as source to the
uPC.

Selection C (Instruction Decode). The
instruction decode consists of a decode
array and an instruction decode
multiplexer. The instruction decode
decodes macroinstruction op-code, aug-
ment code, and sub-op-code fields into
uPC addresses. In addition to the op-code
fields the instruction decode also checks
the right hand flag, base mode flag, and
FPA present flag in determining the uPC
address. The output of the instruction
decode is gated to the 6:1 multiplexer.
Refer to the table on figure 3-9 for mux
steering bit combination. An instruction
in the instruction decode phase is, at a
minimum, two clocks (300 ns) away from
execution. Sequence field seven JUMPD
indicates that the next instruction is to be
decoded to generate the next uPC address
to access the RAMs.
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Select D (Microinterrupt Vector). The
microinterrupt hardware provides a means
of interrupting the firmware out of
macroinstruction emulation sequences.
The microinterrupt must be specifically
enabled by the firmware before it can
occur. The microinterrupt represents an
exceptional event that must be identified
and handled by firmware. The exceptional
event may be an error, a software inter-
rupt or trap, or may indicate that some
hardware element or interlock requires
servicing.

The microinterrupt hardware provides a
vectorized and prioritized decode of the
conditions causing the microinterrupt.
The hardware provides a uPC address of a
firmware routine designed to identify and
handle the exceptional event.

If the exceptional event is an error, a
trap, or an interrupt, the firmware will
not attempt to return to the sequence in
which the microinterrupt occurred, but
instead will activate a firmware trap or
interrupt handler that in turn activates a
software trap or interrupt handler.

If the exceptional event represents a hard-
ware element that needs servicing, the
firmware will service that element and
resume processing at the point at which
the microinterrupt occurred. To imple-
ment the microinterrupt, a uPC save
register is used to store that interrupted
context. MS Unit hardware does not pro-
vide for nested microinterrupts.

The microinterrupt input to the 6:1 mux
(input D) consists of microinterrupt bits
08, 09, 10 and 11 from the IE unit. When
microinterrupt occurs all 4:1 multiplexers
will be disabled so that the microinterrupt
can be serviced first.

Select E (YB-bus). Input to the 6:1 mux
from the YB bus (IE unit data structure
for data vector jumps) consists of bits 16
through 31. The uPC control directs the
6:1 mux to select the YB bus input to the
uPC during branch (Sequence 3) and jump
data order, which usually associate with
computed branches or JWCS instruction.
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Select F (CROM 48-63). The uPC control
directs the 6:1 mux to select the CROM
input to the uPC during hop (Seq0), leap
(Seql), branch (Seq2), long branch (Seq3,
NOT JUMP data order), and NOP (Seq4)
sequences. These types of special
branches can activate either 4, 8, 12, or
16 bits of the microword. When the
HCROMOL1 signal is high, the four bit
shifter register will provide the select
signals LHOLD1 through LHOLD3 that
distinguish which of the CROM bits (52
through 63) are used for defining the hop,
leap, or branch operations.

3.3.2.6 Micro PC Data Buffer

The uPC data buffer is controlled by
LMICROSEQOE and serves as an isolation
stage for the uPC during PROM, ACS, and
WCS read and write operations.

3.3.2.7 CROM Addressing

Micro PC address bits 00 through 04 are
sent to the bank enable decode where the
bit combination is decoded and the
required bank enable is fed to the PROM,
ACS, or WCS bank containing the desired
microword. Bits 05 through 15 of the uPC
address are used to address the required
microword within the selected bank. The
microword selected from the micro-
program is gated onto the LRAMDATA
bus (bits 00 through 63).

3.3.2.8 Control Store

The MS unit control store consist of
sixteen 4K x 4 PROMs organized into a
64-bit wide by 4K deep array. The control
store is referred to as the control read
only memory (CROM). The microprogram
located in CROM may be replaced or
augmented by a microprogram loaded into
WCS (writable control store). Each CROM
location (address) contains a microword
(see figure 4-1) that provides the basic
unit of control for the CPU.



Within the CPU, the microword is used to
initiate and monitor the execution of
operations. Each microword functions

during two microcycles: the CROM cycle
and CREG cycle.

. The CROM cycle refers to functions
performed at the end of a control
store access. These functions are
performed by direct output or
decodes of the microword without an
intervening clock. Typically these
functions include microsequencing
and monitoring (test) functions.

. The CREG cycle functions refer to
functions performed from the control
store register (CREG). The CREG
cycle functions require an intervening
clock and can provide a result
oriented operation for a full step (150
ns) following the CROM step.
Generally CREG cycle functions
control data structure and data put-
aways.

The CPU provides 16 level-orders (8
from the MS unit and 8 from the IE
unit). The level-orders may be
ordered to a set-or-reset state by
firmware (see figure 3-7).

3.3.2.9 Alterable Control Store (ACS)

The alterable control store is comprised of
16, 4K x 4 static RAM elements to provide
an array of 4K x 64 bits that allows a
shadow control store. ACS may contain a
copy of PROM control store, may be
written into under software control, and
may be the source of the primary
execution microcode when the CPU is in
an operational state.

ACS provides a base level firmware patch
capability that operates under software
control. It is, therefore, unnecessary to
field replace PROM elements containing
factor set firmware.

. ACS Write Instruction. This instruc-
tion causes a doubleword to be
fetched from memory and loaded into
an ACS location. The doubleword

from memory is transferred 32-bits
(one word) at a time by the RAM data
in register to the LMRAMDATA bus
that is 64-bits wide. '

. ACS Read Instruction. This
instruction causes the contents of a
specific ACS address ( a doubleword)
to be gated onto the LRAMDATA bus
where it will perform the same duties
as a PROM microword.

3.3.2.10 Writable Control Store (WCS)

The WCS consists of two banks of sixteen
4K x 4 static RAM elements to provide an
8K x 64-bit RAM array that is accessed by
macrolevel WCS control instructions.
Software operates the WCS by the use of
the SET CPU (set CPU mode), Read CPU
status, write WCS (WWCS), read WCS
(RWCS), and jump WCS (JWCS)
instructions. (See figure 3-7.)

. The SET CPU (set CPU mode) in-
struction is used to switch the CPU
from operating under the main firm-
ware set (PROM) to ACS. The RD
field (bits 6, 7 & 8) of the macro-
instruction will specify the GPR in
the CPU that will define the
operating characteristics of the
CPU. If bit 21=1, the CPU will
operate under ACS control. If bit
21=0, the CPU will operate under
CROM control (default).

. Read CPU status instruction places
the current operational status of the
CPU into the RD register.

. The RWCS instruction causes the
contents at a specific PROM, ACS, or
WCS address (a doubleword) to be
gated onto the LRAMDATA bus and
to the RAM data out registers via the
MDB Bus to the MP2901.

The RWCS memory transfer instruc-
tion causes the contents of a PROM,
ACS, or WCS location to be stored in
memory. The RAM data out register
is 64-bits (one word) wide; therefore,
two transfers must be made to store a
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doubleword in memory. The ad-
dresses of the WCS location and
memory doubleword are provided in
two registers (with the uP2901),
whose addresses are specified in the
RWCS instruction. The RWCS is a
privileged instruction.

. The JWCS instruction is an un-
privileged fullword instruction using
memory reference type format with
byte (F-bit) attribute. The byte
attribute insures that the final
effective address has a linear inter-
pretation of C-bits. The memory
reference format allows an index
register (field x) or an indirect
memory table to be the source of the
final effective address.

. The effective WCS addresses provided
by the JWCS, WWCS, and RWCS in-
structions are absolute addresses.

. The MS unit instruction decode may
decode an instruction op-code
directly into WCS, however the WCS
target address and op-code must be
predefined and burned into the
instruction decode PROMs. Only a
subset of WCS addresses are targets
of instruction decode operations (see
figure 3-2). WCS is used by software
via JWCS instruction.

3.3.2.11 Order Structure

The order structure (see figure 3-7) is an
output signal array that decodes micro-
words into individual output signals. From
one to four orders may be generated by a
single microword. The order structure
provides both CROM (control read only
memory) and CREG (Control Register)
cycle orders and in addition, some orders
are delayed for an additional clock to
provide CREG +1 cycle orders. In general,
orders are used to initialize or terminate
internal control functions. Orders may
also serve as qualifiers for certain events
and register strobe signals. Normally
orders are 150 ns pulses; however, the
CPU also provides sixteen level-orders
that may be ordered to a set-or-reset
state by the firmware.

3-30

The vertical dimension of the order array
(see figure 4-1) is referred to as the order

line-number and the microword provides
two binary encoded fields (01 and 02) to
provide independent order line-number
decodes (line addresses). The horizontal
dimension of the order array is divided
into four order groups. The microword
provides four bits (40, 41, 42 and 43)
within the OE field to select one or more
order groups.

Two orders may be selected simul-
taneously within a given field (one from
each group) if the line numbers of the two
required orders are the same. A maximum
of four orders (two from each field) may
be selected.

The MS unit generates half of the orders
in the order structure. Most of these
orders are used within the MS unit itself.

Microword bits 48 through 51 are clocked
into the control register (see figure 3-7),
bits 42 and 43 control the CREG orders
decode demultiplexer (bit 42 enables order
group 2, and bit 43 enable order group 3).
Output CREG orders are listed in figure 3-
7 and figure 4-1. Group 2 and group 3
orders are derived from CREG bits 48
through 51.

Microword bits 44 through 47 are clocked
directly into the CROM Orders decode
demultiplexer, bits 40 and 41 control
demux output (bit 40 for order group 0 and
bit 41 for order group 1). Output CROM
orders are listed in figure FO3-6 and
figure FO4-1. Group 0 and group 1 CROM
orders are derived from CROM bits 44
through 47. The high state of HCROM 44
insures that orders in the bottm half of
order group 0 or order group 1 are to be
decoded.

The MS unit also generates eight of the
level orders which can be set or reset by
firmware. The firmware settings are
retained by flip-flops until again
processed.



3.3.2.12 Turnkey Panel Interface Logic

The LCPU1IPU2SW, LCPU1OFF2SW,
LCPU2IPU1SW, and LCPU20FF1SW inputs
from the PROCESSOR SELECT switch on
the turnkey panel are routed to a
multiplexer/register in the turnkey panel
interface. The multiplexer select input is
controlled by the HPROCESSORI1L line
which is derived from the jumper on the
CS Unit. This determines the designations
of the two processors as processor 1 and
processor 2. The two outputs from the
multiplexer provide the LIPU and
LOFFLINE signals. These signals are
latched and used to qualify which LEDs
are driven on the turnkey panel.

The remaining circuitry in the interface
includes drivers, buffers, and latches
which monitor and drive the CPU console
functions and indications. The disable
cache (LDSABLCACHE) signal is also
latched and routed via the interface.

3.3.2.13 Leading/Trailing Zeros
Detect Logic

The purpose of this logic is to examine the
Y Bus in order to determine how many
leading or trailing 4-bit nibbles contain
Zeros.

Each one of a series of gates is connected
to monitor one 4-bit nibble of the 32-bit
word on the Y Bus. The outputs from the
eight gates, plus a leading or trailing
zeros firmware term (LLDNCTRLEAD or
LLDNCTRTRAIL) are used to address a
PROM. The PROM produces a 8-bit out-
put corresponding to the number of lead-
ing or trailing zeros detected. A 2:1
multiplexer is controlled by a load counter
(LLDNCTR) signal, and used to select
either Y Bus lines HYB0O through HYB07
or the output from the PROM. The output
from the multiplexer is loaded into the N
counter (up/down counter with load
feature). For a normal load N counter, the
multiplexer selects HYB0O through
HYBO07. For a leading or trailing zeros
detect, the multiplexer selects the PROM
outputs. The ouput from the counter is

routed onto the MDB Bus (HMDB0O0
through HMDB?7) via a buffer controlled by
the LNIPLOE signal.

During a nibble shift operation, as the
shift takes place, the N counter is
automatically decremented.

3.3.2.14 Decode Exceptions (Causes
and Vectors)

A decode exception may be considered as
any of the interrupt exception cases.
Specific causes of an interrupt exception
are power fail, system panel attention,
CPU halt, interrupt request, IPU trap, and
console attention. These conditions
generate an interrupt exception
(LINTEXCPN) to the microinterrupt
vector logic on the IE Unit. Within this
logic, the signal is ORed with the
IOTRACE+] signal to produce an interrupt
(LINTEXCPNIT). This has a different
priority than the normal microinterrupt.

With a valid instruction in I2, signal
HI2DECODEVALID is routed from the IE
Unit pipeline logic to produce an
LI2VALIDINST signal via the MS Unit 12
exception vector logic. If a violated
instruction reaches the I2 stage of the
pipeline, the HIRREFILLPIPE signal is
active. This signal is routed from the IE
Unit pipeline logic to the MS Unit and
used to qualify the I2 exception vector
logic. This is also the case for a map
miss (HI2MAPMISS) or an I2 instruction
fetch error (HI2ZINSTERR). These three
terms are applied to a priority encoder
which generates a group of prioritized
encoded error signals (HIZDERRO08, 09 and
10) and a decode exception signal
(LDCODEEEXCPN). This latter signal
automatically inhibits the I2 valid
instruction (I2VALIDINST) signal,
signifying that the instruction in I2

is invalid. The I2ZVALIDINST signal going
false causes a decode exception to be
sensed by controlling a multiplexer. The
multiplexer selects the encoded error
signals (HI2DERRO8, 09, and 10) and the
error vector is taken (refer to the
following list of decode exception
vectors).
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VECTOR DEFINITION

D20 Decode Exception

D40 Pipeline Violation

D60 Decode Instruction Miss
D80 Decode Instruction Error
DAOQ Not used

DCO Not Uused

DEOQ Invalid Instruction

3.4 Instruction/Execution (IE) Unit

The IE Unit is the instruction/execution
unit. The instruction set-up portion of the
board performs effective address calcu-
lations and operand prefetching while the
execution logic performs the instruction
execution steps. The data paths within
the IE Unit are 32-bits wide while the
control store paths are 64-bits wide. The
IE Unit is under microword control which
controls, initiates, and monitors the
operation of the unit.

The following text is presented in two
major subdivisions: IE Unit Components
and IE Unit Operation.

3.4.1 IE Unit Components (see figure 3-10)
Note

Items in parentheses (xx) denote
logic drawing page numbers. These
are included as supplemental infor-
mation for Gould field service
personnel. Where applicable,
these numbers are included on
block diagrams.

3.4.1.1 CAMUX Bus

The cache multiplexer bus (CAMUX bus)
provides a 32-bit data path from the
cache/SelBUS to the instruction pipeline.
Data transmitted on the bus is in the form
of operands or instructions.

3.4.1.2 Instruction Cache Register I3 (2)
The I3 register is a 32-bit register that

functions as the top level of the instruc-
tion pipeline. This register is loaded with
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the cache output during instruction cache
read operations. The output is then sent
to the I2 register in the instruction
pipeline. A copy of the I3 register is held
in the MS Unit.

3.4.1.3 Right Halfword Register (2)

The I3 right halfword register is a 16-bit
register that receives the right halfword
(bit positions 16-31) from the CAMUX bus
during cache instruction read operations.
When enabled, bit positions 16 through 31
are gated to I2 (00-15) to perform left
shifts of right halfword instructions.

3.4.1.4 I3 Right Halfword and RHW No-Op
Detect Logic (2)

This logic detects and indicates that the I3
left or right haflword contains a halfword
instruction. It is not valid unless the I3
VALID flag is set. The logic also detects
if the right halfword of I3 contains a No-
Op code; the resulting signal is used to
skip right halfword No-Ops.

3.4.1.5 I2 Register (3)

The I2 register is a 32-bit register that
contains the instruction loaded from the I3
register during bump pipe sequences. This
instruction is in the decode and effective
address calculation phase of execution and
is then sent to the Il register in the
instruction pipeline during advance (bump
pipeline) sequences.

3.4.1.6 I2 Indirect Register (4)

The indirect register is a 32-bit register
that is loaded from the CAMUX bus with
the cache output during indirect read
operations. The output of the indirect
register is gated to the I2 bus in the
instruction pipeline.

3.4.1.7 Predecoder (3)

The predecoder comprises three PROMs.
It decodes the instruction in I2 to
determine instruction attributes.



3.4.1.8 I1/I0 Status Register (18)

The 11/10 status register is fed from the 12
predecoder. It is used to generate an
instruction valid or not-valid signal. A
valid signal allows the pipeline to advance
normally. A not-valid signal causes a
vector to a dedicated location; no
operation is performed but the pipeline is
advanced.

3.4.1.9 I2 Bus

The 32-bit 12 bus is used as a uni-
directional communication path for in-
struction decode (vector decode array
logic) or processing within the CPU. In
addition, it serves as a direct link to the
instruction pipeline. I2 register or 12
indirect register.

3.4.1.10 Il Register (21)

The Il register is a 32-bit register used to
hold the next instruction to be executed.
The 11 register is loaded from the I2
register during bump pipe sequences. In
dynamic one clock macroinstructions, the
contents of the Il register relates to the
micro-PC address held in the micro-PC
register during the CROM cycle.

3.4.1.11 Backdate Program Counter (14)

The backdate program counter (PC)
consists of a PROM and a sequencer. It is
responsible for monitoring and counting
the number of instructions loaded into the
13 pipeline register on the IE Unit.

In the case of a halfword instruction or an
uncommitted branch, the macro program
counter (CS Unit) continues to count.
However, the backdate PC is conditioned
to recognize that it is not a fullword and
does not count. The macro PC may be as
many as four instructions ahead of the
relevant one in the IE Unit. To locate the
required instruction address,the value in
the backdate PC is subtracted from the
value in the macro PC. In order to

accomplish this operation, the read
backdate count must always precede the
read program status doubleword by one
cycle unless the pipeline is frozen.

3.4.1.12 Multiplexer (5)

The multiplexer comprises one 2:1 mux
and two 4:1 muxs to select a 4-bit address
from the following sources: either the
indirect register, the I2 register, or the
MP2901 file address registers (E Unit part
of IE Unit). The 4-bit address outputs
from each of the multiplexers is then
routed to access the dual-ported RAM for
the corresponding base register and
general purpose register. I Unit addresses
are examined during the first half of the
150-nanosecond cycle; E Unit addresses
are examined during the last half.

3.4.1.13 General Purpose Register (27,28)

Eight 32-bit general purpose registers
(GPRs) in the 2901 microprocessor are
available for arithmetic, logical, and shift
operations. Each register is used as fixed
or floating point accumulators, or tempo-
rary data storage devices and contain
control information such as data address,
count, or pointers. Registers 0-7 are the
GPRs.

3.4.1.14 Base Register and Index
Register (5,6,7)

A dual ported RAM provides sixteen 32-bit
registers. Registers 1 through 7 are
copies of the GPRs in the MP2901.
Registers 8 through 15 provide the base
registers for the base register addressing
mode of the CPU.

Seven (1-7) of the eight 32-bit base
registers are used during effective address
calculations (24 bits are used, bits 00 thru
07 are truncated). This is accomplished by
adding the contents of the base register
and index register to the relative address
(machine instruction) to yield the actual
memory address (effective and index
register address). Registers 8-15 are the
base registers.
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Seven of the eight 32-bit index registers
are used during effective address calcu-
lations (24 bits are used). The index
registers are I Unit copies of the E Unit
GPRs. Registers 1 thru 7 are the index
registers in base mode. Registers 1 thru 3
are available as index registers in nonbase
mode. Index register 0 is loaded with a
zero value during a power-up or system
reset sequence. If no indexing is required,
index register 0 is used for address
calculation.

3.4.1.15 Base Driver (7)

The base driver receives the 32-bit output
from the base registers and gates it to the
DB bus. It is also used for isolation
purposes on the DB bus.

3.4.1.16 3-way Adder (8)

The 3-way adder is used to add the three
required arguments for the operand
effective address calculation. The
arguments consist of the 16-bit or 19-bit
displacement (zero extended to 24-bits)
from the I-bus, the 24-bit content of the
general purpose register, and the 24-bit
content of the base register. The output
of the 3-way adder is the operand logical
effective address which is gated into the
logical memory address register (LMAR),
on the CS unit, and the effective memory
address register (EFFMAR). The EFFMAR
output is then sent to the 2901 micro-
processor via the DB bus. Any argument
not required for the effective address
calculation is zeroed at the arguments
source. The effective address calculation
requires one microcycle (150 nsec).

3.4.1.17 Effective Memory Address
Register (9,16)

The three 8-bit effective memory address
registers (EFFMAR) are used as temporary
storage devices for the 24-bit operand
logical effective address from the 3-way
adder. The output from the EFFMAR is
then gated to the DB bus under control of
the E Unit part of the IE Unit.
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3.4.1.18 Map Miss MAR (34)

The map miss MAR is loaded by the output
of the three-way adder. If an instruction
or data fetch results in a map miss, the
Map Miss MAR is accessed to provide
information used to calculate the required
physical address. The relevant map
entries are then fetched from cache or
main memory.

3.4.1.19 LMAR Copy (4, 34)

The logical memory address register copy
(LMAR copy) is a 24-bit register that
receives the operand logical effective
address from the 3-way adder and gates it
to the DB bus. it is used for LA, LEA, and
LAB instructions to prevent MAR
conflicts.

3.4.1.20 32-bit Constant (24)

The 32-bit constant consists of four 512 by
8 PROMS. Each PROM outputs directly to
the DB bus to provide predefined 32-bit
constants to the 2901. The address source
for the PROM array is either the micro-
word or the I0 register. The I0 path to the
constant PROMs is used to generate single
bit masks for either the bit in memory or
the bit in register macroinstructions.

3.4.1.21 Sign Extend (20)

The sign extend register extends the sign
bit (bit 24) of the byte constant. It also
sign extends the contents of the I0
register when it contains a halfword. The
output of the extension register provides
the DB bus with a 32-bit word.

3.4.1.22 Byte Constant (20)

The byte constant logic generates a byte
literal for the least significant byte (bits
24-31) of the DB bus. When the byte
literal is gated to the DB bus, it is sign
extended to provide the DB bus with a 32-
bit number.



3.4.1.23 10 Register (23)

The 10 register provides the bottom level
of the instruction pipeline. In dynamic
one clock macroinstructions, the contents
of the I0 register relates to the micro-
instruction CREG cycle. The contents of
the I0 register is gated to the DB Bus as
either a 32-bit fullword or a 16-bit
halfword. This register is loaded each
time the macroinstruction pipeline is
advanced by the firmware.

3.4.1.24 I1/I0 Look Ahead Multiplexer
(25,26)

The 11/I0 look ahead multiplexer enables
the file addresses to be picked up during
the CROM cycle.

3.4.1.25 DB Bus Source Decode

The DB bus supplies the D-input to the
2901 ALU data source selector. The
source decode logic decodes a microword
field and determines which source register
is gated to the 2901 input bus. In turn,
this causes a register in either the IE, CS,
or MS Unit or the CS unit to be gated to
the DB bus. Source decodes are
accomplished in the CROM cycle but
executed in the CREG cycle.

3.4.1.26 Microprocessor 2901 (27,28)

Eight 2901 microprocessors are used in the
CPU to provide a full 32-bit parallel path
required during SelBUS transfers. Each
2901 is a 4-bit slice containing a 16
location dual ported RAM, an 8 function
arithmetic logic unit (ALU), and ALU
operand source input multiplexer, and a 4~
bit register. In addition, the 2901 provides
a bit shift capability, either left or right,
and single or double precision formats.

3.4.1.27 Y Bus

The Y bus is a 32-bit data path that is
used as the only output from the 2901.
The Y bus sends the output to the
GPR/index registers (base, index dual-port

RAM), on the IE unit, and after being
buffered, provides this data to the CS unit
and the MS unit.

3.4.1.28 Y Bus Control (30)

This tristate controller determines the
destination of data from the MP2901 via
the Y Bus using a decode of the microword
ED field. Normally, only one logic
element can receive data at any time.

3.4.1.29 Program Status Word Register (20)

The program status word (PSW) register is
an 4-bit register that contains the
privileged bit (bit 0), extended addressing
bit (bit 5), enable base register mode bit
(bit 6) and the arithmetic exception bit
(bit 7). The PSW register is loaded from
the Y bus and outputs to the DB bus.

3.4.1.30 Condition Code Logic (33)

The condition code logic consists of two
registers, multiplexers, and a 16x48x8
field programmable logic array (FPLA).
The condition codes (CCs) are used as
software indicators to show the results of
an arithmetic and/or logical operation
after an instruction has been performed.
The condition codes may be sourced from
either the Y Bus or the FPLA. The FPLA
enables current CCs for the next instruc-
tion to be examined (look ahead function).

3.4.1.31 CROM Bus

The 64-bit CROM bus is used to carry the
microword from the control store, on the
MS unit, to the test structure, order
structure, and control register (CREG), on
the IE Unit.

3.4.1.32 Test Structure (31)

The test structure is used to monitor
external input signals to the CPU and the
internal conditions of the CPU. It is
capable of performing single or multiple
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signal tests and provides an indication
whether the test is true or false. In the
single test operation, each tested signal
resides in a different group (horizontal
dimension of the array) but contain the
same line number (vertical dimension of
the array) within each group. In a
multiple test operation, the structure
identifies either the presence of a
specified test (test true) or the absence of
all specified tests (test false). In addition,
the test structure provides the ability to
branch or jump on condition true or
condition false.

3.4.1.33 Order Structure (32,14)

The order structure is an output signal
array that decodes microwords into
individual output signals. They are used to
initialize or terminate internal control
functions, serve as qualifiers for certain
events, and register strobe signals. In
addition, the order structure provides both
CROM and CREG cycle orders and, if
delayed, provides CREG+1 cycle orders.

3.4.1.34 Level Orders (34)

Level orders differ from other firmware
orders in that, once set, they remain in
effect until reset. The hexadecimal value
of CROM bits 52 through 55 determine the
level order to be set or reset.

3.4.1.35 Control Register (CREG) (25,26)

The control register provides the
necessary registers and gates to transform
the 64 control read only memory (CROM)
bits, from the MS Unit, into CREG bits for
properly sequencing microinstructions.
The output from the CREG is to the 2901
microprocessor.

3.4.1.36 Clock Generator (34)

The clock generator is provided for
waveshaping and distributing the clock
signal throughout the system. The clock
signal is generated from the master clock
on the SelBUS terminator card at a 150
nsec pulse rate.
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3.4.2 IE Unit Operation

The IE Unit performs the instruction/
execution steps of the emulation of
macroinstructions by the CPU. Primitive
macroinstructions such as load, and
subtract normally are performed in one
clock cycle (150 nsec). The more complex
macroinstructions may require many
microinstruction steps.

The following description is based on the
primary data flow which follows each of
the input/output busses within the IE
Unit. The text should be read and used in
conjunction with figure 3-10, the IE Unit
block diagram.

3.4.2.1 CROM Bus Functions

The CROM bus is a 64-bit data bus that
routes the microword onto the IE Unit for
distribution to the order structure, test
structure, the 2901 control register
(CREG), and the condition code logic.

3.4.2.1.1 Order Structure

The order structure is an output signal
array that decodes microword bits into
individual control signals. It provides both
CROM and CREG cycle orders.

The last eight line numbers (orders) in
order groups 0 and 1 (figure 4-1) are
CROM cycle orders. These orders do not
require clocking and are coded and
generated during each CROM cycle.
CROM bits 40 and 41, from the order
enable field, selects whether order group 0
or order group 1 will be enabled. CROM
bits 44 through 47 select the line numbers
for order groups 0 and 1.

The remaining orders are executed either
during the CREG cycle, which requires a
clock, or the CREG+1 cycle, which -
requires a delayed clock. CREG cycle
orders utilize bits 40 through 43 from the
order enable group and bits 44 through 51
from order group 0/1 and order group 2/3.



The order enable field is a group enable
for all four groups of orders. CREG bit 40
enables order group 0, bit 41 enables order
group 1, bits 42 enables order group 2, and
bit 43 enables order group 3.

The order group fields provide the
necessary control for all functions outside
the data structure that concerns the
CPU. CREG bits 44 through 47 select the
line numbers for order groups 0 and 1 and
CREQG bits 48 through 51 select the line
numbers for order groups 2 and 3. By
including an order enable for all four
groups, it is possible to generate four
individual orders simultaneously per
instruction.

3.4.2.1.2 Level Orders

The level order select field, CROM bits 52
through 55, uses only the P field of the
microword P, C, and H fields. The field is
enabled, and the level order set, by the
LATCH.ORDER. Level orders are reset
by simultaneous LATCH.ORDER and
LATCH.DATA orders.

3.4.2.1.3 Test Structure (see figures 3-11
and 3-12)

The test structure is capable of monitor-
ing all of the internal conditions and
states within the CPU and all of the
external signals input to the CPU that
affects the units operation. It is capable
of performing either a single signal test or
a multiple signal test. CROM bits 04
through 11, which comprise the test field,
determines which signals are to be tested
during the CROM cycle. The test field
consists of four individual test group
enable bits, bits 04 through 07, and a four
bit line number designator field, bits 08
through 11. The horizontal dimension of
the test structure matrix is called a group
(bits 04 through 07) and the vertical
dimension of the matrix is called a line
number (bits 08 through 11).

In the single test operation, each tested
signal resides in a different group but
contains the same line number within each

group. In a multiple test operation, the
test structure identifies either the
presence of a specified test (test true) or
the absence of all specified tests (test
false). The output from the test structure
is routed to the micro-PC on the MS Unit.

3.4.2.1.4 Control Register

The control register (CREG) receives
CROM bits 40 through 51 from the order
groups and CROM bits 52 through 55 from
the P-field of the microword. The 2901
CREG is responsible for transforming the
CROM bits from the MS Unit into CREG
bits for properly sequencing
microinstructions. The output from the
CREQG is to the 2901 microprocessor.

CROM bits 52 through 55, from the P-
field, are used to generate ALU shift
codes, condition code select, and latch
order select signals.

3.4.2.1.5 Condition Code Logic

Condition codes are used as software
indicators to show the results of an
arithmetic and/or logical operation after
an instruction has been performed. The
condition code logic consists of two
registers, multiplexers, and a 16 x 48 x 8
field programmable logic array (FPLA).

Condition codes are set in the CREG+1
cycle (the cycle following the CREG
cycle). During the execution of instruc-
tions, either CREG bits 52 through 55 of
the microword or the output of the over-
lay PROM is selected to determine the
condition code rules. The condition code
selection is dependent upon the output of
the ALU and on the input to the FPLA.
The condition code rules are then appli-
cable for that condition code setting. The
condition code selection and condition
code rules are shown in table 3-1. The
branch condition true (BCT), branch con-
dition false (BCF), and branch function
true (BFT) instructions allow branching on
the condition codes and also testing of the
condition codes.

3-39



0v-¢

N A "1I-€ 231

L

2amonxng IsaL, 3

V/SY0ES8

SIGNALS TO BE
TESTED FROM

MS, CS AND
LINESO -7 LINES 8 - F IE UNITS J
FROM
v v v v v v v
09 - 11 (DO -7 09 - 11 (D0 -7} 09 - 11 (00 -7) 09 - 11y (D0 -7) 09 -11 (DO -7) 09- 11y (00 -7) 09 -1, (D0 -7) 09-11 {D0-7)
> GPRO g ’ GPR1 GPR2 » GPR3 GPRO GPR1 » GPR2 . GPR3
8:1 MUX 11 MU 8:1 MUX 8:1 MUX 8:1 MUX 8:1 MUX 8:1 MUX 8:1 MUX
04 s 05 s x 06 s 07 s 04 s 05 s 06 s 07 o s
9 W —>q w w >q w Y W o I w > w > w
] 9 b T Y T
CROM BUS
+Vi4)
v \A A
00 4A 3A 2A 1A 4B 3B 2B 1B 00 4A 3A 2A 1A 4B 3B 2B 1B
0E —pof o
BRANCH CONDITION BRANCH CONDITION
TRUE 2:1 MUX FALSE 2:1 MUX Y QUTPUT = DG - D7 INPUT
08 08
a4y 3Y 2Y 1Y — 4y 3y _2v 1y W OUTPUT = DO - D7 INPUT
YYyYVvVY YYVvVY
6 6 & 0o
N —1
HTEST TRUE TO MS UNIT




TESTS

BITS 4,5,6, and 7
o111 1011 1101 1110 o |1 S 4la T iz RA lis RB
Bits REGISTER | REGIST
89,1011 GROUP 0 GROUP 1 GROUP2 | GROUP3 SEQUENCE TEST " 'S
" o 0 g G ) BT a-0 2901 290
=0, BR. FIL .
GROUP 0 | A-ADDR(0-F)|B-ADDR
! " erm | ' T BIT5=0
0001 LCROMO FLAG PRIV MAP § Leap |seLecT TesT| 1FMA=1 IF MA
GROUP 1
2 2 2 2 5
' SCPATTN o RETRY BUSY BIT6=0, R(R)
0010 NOTA BRANCH |seLect Test]  RIR)
croup2 | 10678 108,7,
3 3 3 3
3 1
IADDR DADDR N. BIT7=0
AEXP ' R(RO!
0011 STOP sTOP FPA BUSY LBRANCH |SELECT TEST (|§_(5R7ol1) (IO-G( 7 5
3 n - 3 GROUP 3
D. D. 4 BITS8-11, |2 2 R(S)
0100 HALT NOTA1 TIMOUT D- PE NOP SEE RiS) (10:9.10
TESTS (108,10,11) 10,
5 S 5 5 = 3
N.CACHE. 3
0101 PWR FAIL N.NOVR W.NOTA BUSY L URTN
6 6 g © 3 4 a
N. MULTI.
0110 N.FPA AEPEND CYCLE CC TEST RETURN
e |7 7 7 7 5 3 =
o111 ] TRACE INTREQ INTRENA | UPATTN JUMPD
2
z B
g AEXP ® [ 6 8
1000 z : EN.LOCK | ROMSIM RISO) BR(BR
1 EN (109,10=1) | (106,78
5 S S 5 5
1001 FLAG gﬂg' EFMAR30 N.INT. BRIIR) BR{BR
EXCPN {10-13,14,15) | (106,7,
ry A (A A =
1PU BR(BR) BRIIBS
1010 READY TRAP 1030 RD.EQO 106,78 | (09,10,
B F ia rB 9
N.FPA. 10. BR(BRO)
CMBT
1011 1 SAVED AEDATA  |REFILL. PIPE (106,7,=1)
C c C c F
BR(BS)
1100 UNBLOCK BASE EXT (10-9,10,11)
HD OMAP 1l D D BR(BB)
1101 MISS MAP.INV MPCO7 (10-13,14,15)
JE E Te
MAP N.INDR.
1110 N.PL PROT MISS
F F F F
1111 CACHE.
N.IPU WIT
" 840026

Figure 3-12. Microword Test Structure
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Table 3-1
Condition Code Select

Creg+l Condition
Bits Code [Condition
52 53 54 55 Select Codes Condition Code Rules

0 0 0 O SET CC(A) CC1 Is set if an airthmetic exception occurs

ccC2 Is set if the result (of an ALU function)
is greater than zero

CC3 Is set if the result is less than zero
CC4 Is set if the result is equal to zero

0 0 0 1 SET CC(AM) CCl1 Retains same code as old CC1
cc2 Is set if the result is greater than zero
CC3 Is set if the result is less than zero
CC4 Is set if the result is equal to zero

0 01 O SET CC(L) CCl1 Always zero
ccC2 Is set if R0-31 is greater than zero
CC3 Is set if R0-31 is less than zero
CC4 Is set if R0-31 is equal to zero

0 01 1 SET CC(D) CCl1 Is set if an arithmetic exception occurs
cc2 Is set if (R,R+1) is greater than zero
CcC3 Is set if (R,R+1) is less zero
CC4 Is set if (R,R+1) is equal to zero

01 0 O SET CC(BIT) CCl1 Is set if R, set bit location (SBL), is equal

to one

CC2 Is set if CC1 was one
CC3 Is set if CC2 was one
CC4 Is set if CC3 was one

0 1 0 1 SET CC(Y) CcCl1 Is set if Y Bus bit 1is 1
CC2 Issetif YBusbit2is 1
CC3 Issetif YBusbit 3is 1
CC4 Is set if Y Bus bit 4is 1

01 1 0 SET CC(M) CCl1 Always zero
CcC2 Always zero
CC3 Always zero
CC4 Is set if the result is zero

0111 SET CC(LSHIFT) CC1 Is set if an arithmetic exeception occurs
ccC2 Always zero
CC3 Always zero
CC4 Always zero
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Table 3-1 (Cont.)
Condition Code Select

Creg+l Condition
Bits Code Condition
52 53 54 55 Select Codes Condition Code Rules

1 0 0O SET CC (CA) cCl1 Always zero

CC2 Is set if register D is greater than
register S

CC3 Is set if register D is less than register S
CcC4 Is set if register D is equal to register S

1 0 01 SET CC (INDIR) CCl1

ccz2
CC3

CC4

Is set if the indirect bit of the word is
equal to one and the effective word
location (EWL1) in memory is equal to
one

Is set if (I) is equal to one and EWL2 is
equal to one

Is set if (I) is equal to one and EWL3 is
equal to one

Is set if (I) is equal to one and EWL4 is
equal to one

During the next ALU function, and
dependent upon CREG bits 52 through 55,
the new condition codes are selected, set,
and interpreted during the next clock
cycle.

3.4.2.2 Cache Multiplexer Bus Functions

The cache multiplexer bus (CAMUX bus)
routes instructions to the I3 stage of the
pipeline, indirect words to the I2 indirect
register, and operands to the MS Unit.

The CAMUX Bus is the only direct data
input to the instruction pipeline which
consists of four serially interconnected
registers. The top level of the instruction
pipeline I3 and I3 RHW is loaded with the
cache output during instruction cache read
operations. The I3 right halfword register
provides halfword instruction detection
and metering. When enabled, bit positions
00 through 15 are disabled and bit
positions 16 through 31 are gated to bit
positions 00 through 15 in the I2 register
to perform left shifts of right halfword
instructions.

During the next bump pipe sequence
(advance pipeline) the 12 register is
loaded. This instruction is in the decode
and effective address calculation phase of
execution. The decode portion of I2 (I2
predecode) provides a look ahead function
to determine whether the current macro-
instruction in I2 is a branch, memory
reference, memory read or write type
instruction.

The 12 indirect register is loaded with the
32-bit cache output during indirect read
operations.

3.4.2.3 MAR Polling Logic

The MAR polling logic is responsible for
loading the logical memory address
register (LMAR) when a memory
reference instruction is decoded in the
pipeline. As a valid instruction is clocked
from I3 to 12, the I2 decode attribute
PROMs examine the register to determine
whether a memory reference instruction is
present. If it is, a decode memory
reference (HDCODEMEMREF) signal is
generated which provides the enable to
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maintain the set condition of the poll
MAR flip-flop. This flip~flop is normally
set, unless reset by an external event, and
it generates a load MAR enable
(LLDLMAREN) signal. This causes CS
Unit logic to clock the contents from the
3-way adder on the IE Unit to the LMAR
register, and then onto the LMAR Bus (CS
Unit). The LMAR holds the effective
logical address while it is converted to a
physical address which is used to address
the cache memory. The preceding
sequence of events is repeated for every
memory reference instruction that is
clocked into the pipeline.

3.4.2.4 Operand/Transaction Request
Logic

During normal operation, a transaction
request and a transaction code are routed
to the CS Unit (cache) at the start of the
first cycle. The transaction is then
accepted and completed on the CS Unit,
and the IE Unit transaction logic is reset.

The transaction code is derived from the
latched outputs of the decode attribute
PROM. When the request setup takes
place, the PROM outputs are routed to a
priority encoder via a transparent latch.
They are also routed via an edge-triggered
D-type register in parallel with the

latch. The priority encoder produces a
three-line output which is applied as the B
input to a 2:1 multiplexer. The output of
the multiplexer is routed to the CS Unit.
Firmware generated transaction codes
(CREGS56 through CREG59) may also be
selected via the A input to the multiplexer
and routed to the CS Unit on the same
lines.

The load logical memory address register
enable (LLDLMAREN) signal enables the
transaction request logic. A flip-flop,
corresponding to the type of transaction
request, is set and an operand request
(HOPRREQ) signal is generated. This
signal is used at the CS Unit to signify
that whatever is going to be driven on the
transaction lines is valid. HOPREQ also
enables the priority encoder. The
transaction code is then sent to the CS
Unit where it is accepted and completed.
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If the transaction is an operand request,
an operand output enable (LOPROE) signal
is generated, which outputs the contents
of the LMAR onto the logical address

bus. This address is translated into a
physical address by the map and then used
to address the cache. LOPROE is also
used to reset the transaction logic by
disabling the hold paths.

In the event of a microinterrupt, map
miss, etc., the transaction codes are saved
in the edge-triggered register (in parallel
with the transparent latch) by inhibiting
the clock. When the microinterrupt has
been serviced, the stored transaction code
is again presented to the CS Unit. In the
case of an operand request, the contents
of the LMAR is retained during the micro-
interrupt and the CS Unit re-executes the
transaction.

3.4.2.5 Cache Transfer Type Logic

When an instruction is loaded into the 12
pipeline register, the decode attribute
logic (PROM) outputs control signals
corresponding to the type of transaction.
In the case of cache type transactions,
these signals are latched into the cache
transfer type logic and encoded to
indicate the type of transaction. The
codes are routed to cache control logic in
the CS Unit. Table 3-2 lists the priorities
allocated, the transfer types, and the
functions involved in each transaction.

3.4.2.6 Microinterrupt Logic

Microinterrupts are special control signals
that serve two functions: shows that an
external event has happened that requires
attention or that an internal error in the
CPU has occurred. The logic necessary to
sense microinterrupts is enabled by the
microinterrupt signal from the
automicrointerrupt logic. Similarly, the
order structure outputs three enable order
signals which perform the same function.
However, these three signals sense certain
groups or levels of microinterrupts. For
discriptive purposes, these groups are
classified as groups A, B, and C.



Table 3-2
IE Unit Cache Transcations

Code/
Priority Type Functions
0 Indirect a. Uses LMAR.

b. F and C bits = 0.

c. Cache output to I2
indirect register.

1 Odd Read a. Uses LMAR.

b. F and C bits = doubleword.

c. LMAR29 = 1.

d. Cache output to cache data
out register LSW.

2 Instruction Read a. Used by branch
instructions.

b. Uses LMAR.

c. F and C bits ignored and
forced to zero.

d. Cache output to I3
register.

3 Store Check Map a. Uses LMAR and effective
F and C bits.

b. Causes cache logic to
check map for map miss,
invalid map, or potential
write protect errors.

c. Does not write to cache.

4 Read Check Store a. Uses LMAR.
' b. Uses effective F and C bits.
However, F and C bits are
normally forced to zero by
a forceword decode attribute

c. Cache output to cache data
out register MSW.

d. Causes cache logic to
check map for map miss
invalid map, or potential
write protect errors.

CONTINUED
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Table 3-2
IE Unit Cache Tramnsactions (Cont.)

Code/

Priority Type Functions

5

Map a. Causes a map read
operation.

b. Uses LMR and effective F
and C bits.

c. Can produce map errors
(miss, invalid, etc.).

d. Does not access cache.

e. Causes effective physical
address to be loaded into
the physical MAR.

f. Normally coded with a
decode attribute that locks
LMAR and preserves
physical MAR until
released by firmware.

g. Used by LEAR op code.

Data Read a. Uses LMAR and effective
F and C bits (F and C
cannot be doubleword,
refer to Odd Read).

b. Cache output to cache data
out register MSW.

c. Also used to fetch MSW of
doubleword pair. In this
case, LMAR29 is forced to
zero for even word read.

No Operation a. Causes no cache or map
operation.

b. Indicates the quiescent
state of the set-up logic.
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Operand request must be true for the cache control logic to accept
transaction type (code).

Operand request must stay true until after the transaction code is
accepted by the cache control logic.




Table 3-3
Microinterrupt Priority Levels

Priority Location Group Definition

0 D08 A 1) FPA arithmetic exception
pending
2) IE Unit arithmetic exception if

arithmetic exception enabled

1 D18 A 1) IO TRACE+1 (instruction step)
2) Power fail

3) System panel attention

4) CPU halt

5) Interrupt

6) IPU trap

7) Attention

2 D28 B 1) Data (operand) MAP MISS

3 D38 B Data operand errors
1) Data time out

2) Data parity error

3) Data MAP invalid

4) Data protect error

4 D48 C

5 D58 A

6 D68

7 D78

5) Data no transfer acknowledge

1) FPA arithmetic exception
pending

1) Address specification error

2) Data (operand) address stop

Not used

Not used

Group A, initialized by the
LMICROINTAENORD signal, is an overall
global event which occurs only once per
instruction. This group handles all error
including the remaining groups (B and C
are subsets of A). Group B, initialized by
the LMICROINTBENORD signal, attempts
to find an error that is directly related to
the instruction being executed. Once the
interrupt has been serviced, the CPU
returns to that instruction and resumes
operations from the stop point. Group B
errors are generally data errors or, more
specifically, operand related data errors
for instructions that perform multiple

memory operations. Group C, initialized
by the LMICROINTCENORD signal,
relates to Floating Point Exception errors
and is only used with WCS programs.
Table 3-3 shows the priorities, vector
locations, group allocations, and
definitions of the interrupts.

A priority encoder is responsible for
deciphering all the possible errors and
then generating the correct micro-
interrupt vector based on the priority of
the errors. The error signals are then
ORed together to generate the actual
microinterrupt. The microinterrupt signal
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is routed to the microinterrupt delay latch
on the MS Unit. This latch is in the hold
state and remains in hold untii the next
leading 75-nanosecond clock edge. The
purpose of the latch is to meet the hold
cycle times required by the .
microsequencer. When the CREG cycle
clocks from the CREG clock enable signal,
the microinterrupt latched signal and the
clock PC generate the H and L select
microinterrupt signals. The H select
microinterrupt signals causes two 4:1
multiplexers to be disabled. The L select
microinterrupt causes a 2:1 multiplexer to
be enabled.

When the L select microinterrupt signal is
generated, the microinterrupted signal is
steered to the B side of the 2:1 mux which
generates the actual microinterrupt
vector. As this vector is generated, the
PC clock, CREG+1 clock, and the CC
clocks remain enabled whereas the current
CREG cycle clock is disabled. The PC
then starts the CROM cycle of the actual
microinterrupt. At this point, the CREG
clock is disabled for one additional cycle.
However, throughout this whole sequence,
the execute clocks remain disabled. Then,
as the CREG cycle of the actual micro-
interrupt is performed, the execute clocks
are enabled and the execution cycle
begins. This flushes the pipeline of all
instructions after the one that caused the
interrupt.

As the microinterrupt is performed, the
control logic on the MS Unit saves the
current PC by inhibiting the PC save
clock. If the instruction was being
clocked into I1 at this time, it is inhibited
by the clock decode save but retains the
vector associated with the instruction in
I1. This is the point at which the micro-
interrupt active condition is entered. This
is the only time an instruction, with this
type of microinterrupt, is held in I1 for
longer than one cycle. Everything relating
to that instruction though, is saved (the
address is held in LMAR and the decode
vector is held in decode save). The
microinterrupt active signal is routed to
the IE Unit inhibiting all operand
prefetching (effectively freezing the
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CACHE) and instruction execution until a
microinterrupt return signal is returned or
a flush pipe is performed.

An operand MAP MISS is the only inter-
rupt from which a microreturn is
performed. This allows the CPU to
continue operations from the point before
the microinterrupt (after the MAP is
loaded with the correct data). Any other
microinterrupt will flush and refill the
pipeline or vector to a TRAP location. If
an operand MAP MISS occurs, the CPU
holds instruction execution while the
operand is fetched and loaded into the
MAP. It then reinitializes the transaction
logic on the IE Unit. The remaining
microinterrupt circuitry is held pending
until the transaction is complete. If the
operand miss was caused by an indirect
fetch, the CPU is unresettable and the
pipeline must be flushed and refilled to
continue.

On the return, the CROM cycle micro-
interrupt return signal sets a flip-flop, in
the microsequencer logic, as it goes into
the CREG cycle. This steers the PC input
mux to select the PC save register during
the next CROM cycle address. This is the
instruction that was interrupted out of.
However, if the instruction contains a
JUMP D decode, then the decode save
register is selected. This utilizes the
circuitry previously described except that
the signal is steered to the A side of the
2:1 mux (using the H select microinterrupt
signal). This causes the next micro PC
address to come from the decode save
register so that two JUMP D orders are
not performed sequentially.

If the CROM cycle advanced the pipeline
with a JUMP D order and then the micro-
interrupt was performed, the return would
be back to that CROM cycle. Therefore,
anything coded into the CROM cycle has
the tendency to be executed twice. To
alleviate this, if there is a JUMP D order
in the line that is being returned to, the
logic prevents the CPU from entering the
CROM cycle and goes directly into the
CREG cycle.



In a stopclock condition, each stopclock
signal is active. The HSTOPCLK]1 signal
removes the enable to the CREG clock
signal H3CREGCLK via the CREG, 1/O
and condition code logic. Also, the qualify
CREG clock (HQUALCREGCLK) signal
goes false, and the I1 and IO pipeline
clocks, together with the condition code
clock (HCLKCC), are inhibited via the
pipeline clocks and CPU stopclock logic.

If a microinterrupt occurs (providing a
branch taken condition does not exist), the
HMICROINT signal becomes active and
the CREG clocks are enabled. As the
microinterrupt occurs, a program counter
clock is generated at the MS Unit which
causes it to accept the vector. The
HMICROINT signal is latched to produce
an LMICROINTL signal, which is routed
via the logic to activate the
HQUALCREGCLK signal. This is used to
generate a sequence of clocks which
control pick up at the microinterrupt
address.

The output of the MS Unit is clocked into
the CREG cycle. At this time, the
condition code clock (HCLKCC) is still
inhibited. One cycle later, HCLKCC is
enabled and the circuitry is reset to the
conditions prevailing before the micro-
interrupt occurred.

The microinterrupt enable order
(LMICROINTCENORD) and the LMAR
check busy (LCHCKLMARBUSYORD) are
generated from an order decoder that is
qualified by a stopclock. The micro-
interrupt vectors to produce LSTOPCLK
and these orders are inhibited.

3.4.2.7 I2 Bus Functions

The I2 bus is a 32~bit unidirectional
communication path that feeds the I2
indirect register and the Il stage of the
pipeline.

The I1 register is loaded during the next
bump pipe sequence but is advanced auto-
matically one clock after being loaded.
This register holds the instructions while
the vector target is being accessed during

the CROM cycle and while the cache/map
is being accessed during an operand
request. The output of the Il register is
to the I0 register.

The 10 register holds the instructions
during the execution phase. The contents
of the I0 register are transferred to the
execution logic (2901 DB bus) under
firmware control. The firmware controls
the following:

The sign extend feature is used during
the execution of immediate type
macro instructions and may be sign
extended when transferred to the
execution logic. Bits 00 through 15
are gated to the DB bus as either all
zeros (zero sign extend) or all ones
(ones sign extend) according to the
state (one or zero) of bit 16 (halfword
sign bit).

. Bits 06 through 08 are implemented in
an up-counter IC array.

Bits 06 through 08 may be used to
address the software GPRs in the
2901 (registers 0-7). This implements
the instruction format RD field (read
or write).

. Bits 06 through 08 may also be used
for read or write access of base
registers 0 through 7 in the dual-
ported RAM. This is an alternative
interpretation of the instruction
format in the RD field.

. Bits 09 through 11 may be used to
access the software GPRs in the
2901. This implements the instruc-
tion RS field (read or write).

. Bits 09 through 11 may also be used
for read or write access of the base
registers 0 through 7 in the
alternative interpretation of the
instruction format RS field.

. Bits 11 through 15 are implemented in
a down counter array. Count=0
(minimum) detection logic is used as a
firmware test. The firmware test is
used during the execution of shift
type macroinstructions.
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. Bits 13 through 15 are used to address
the base registers 0 through 7 in the
set-up logic dual-ported RAM. This is
a read only access and implements
the instruction format BR field.

The I0 register outputs to the DB bus and
to the A and B address multiplexers. The
A and B address multiplexers supply an
input to the A and B input ports of the
2901. These ports are used to address the
RAM in the 2901. During microinterrupts
the output from the A and B address
multiplexers are routed to the A and B
save registers. After the microinterrupt
sequence, the save registers reroute the
data either back into the A and B address
muliplexers or to the set-up logic dual-
ported RAM.

The dual-ported RAM provides sixteen 32-
bit registers. Registers 1 through 7 are
copies of the software general purpose
registers (2901) and registers 8 through 15
provide the base registers for the base
register addressing mode of the CPU.

In the non-base mode three of the eight
GPRs may be used as index registers and
in the base register mode seven of the
eight GPRs may be used as index
registers. In either of the modes GPRO
contains all zeros and is used for indexing
when no indexing is specified by the macro
instruction located in the I2 register.

Of the eight base registers, seven are used
as base registers during effective address
calculations. During macro instructions
that do not specify basing or during the
non-base mode operation, the base
register output of the dual ported RAM is
forced to logical zeros to inhibit basing.

The A and B port register addresses for
the RAM may be generated by the I bus
instruction or from the microword. Data
written into the RAM is sourced from the
Y bus and can be read from the B port of
the RAM directly to the DB bus. During
effective address calculations both the A
and B port 24-bit outputs are gated to the
3-way adder.
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The 3-way adder is used to add the three
required arguments for the operand
effective address calculation. The
arguments are either the 16 bit or 19 bit
displacement (zero extended to 24 bits)
from the I bus, the 24 bit content of the
index register, and the 24 bit content of
the base register. The output of the three
way adder is the operand logical effective
address which is gated to the effective
memory address register and the logical
memory address counter register (on the
CS Unit). If any argument is not required
for the effective address calculation, it is
zeroed at the argument source.

The effective memory address register is
used as temporary storage device for the
output of the three-way adder during the
load effective address and load address
instructions.

3.4.2.8 DB Bus Functions

The DB bus is a 32-bit data bus that
provides the only direct data input to the
2901. Inputs to the DB bus are routed
from the effective memory address
register, which provides the operand
logical effective address, the I0 register,
which provides the cache output from the
CS unit, or the RAM data out from the MS
unit. In addition, the program status word
register, the byte constant , and the 32 bit
constant registers output to the DB bus.
Each of these inputs to the DB bus were
previously described.

3.4.2.9 Y Bus Functions

The Y bus is a 32-bit data bus that is used
as the only output from the 2901. The
data is distributed to the base/index
registers (as previously described) and
after being buffered, is sent to both the
CS Unit and MS Unit.

3.4.3 Microprocessor Operation
The 2901 microprocessor is contained on

the IE Unit. Eight of these 4-bit slice
microprocessors are used to provide the



full 32-bit parallel path required by
SelBUS transfers. Each 2901 contains a
16-word by 4-bit dual-ported RAM, a high
speed eight function arithmetic unit, and
associated circuitry for shifting, decoding,
and multiplexing.

Figure 3-13 is a block diagram of the
2901. Each of the major functional
elements comprising the microprocessor
are discussed in the following paragraphs.

3.4.3.1 Microinstruction Decode

Nine bits of the microinstruction word
(figure 3-13) contain three groups of three
bits each for selecting the arithmetic
logic unit (ALU) internal source operands,
the ALU function to be performed, and
the resultant shift and internal
destinations.

CROM bits 25 through 27, from the
internal source (IS) field, select the
contents of the registers internal to the
2901. These bits identify the register (R)
and sequence (S) combinations, from the R
and S fields, that are the source operands.

CROM bits 29 through 31, from the ALU
field, determine the eight different ALU
functions to be performed.

NOTE

CROM bit 28 comprises a bit position
in the ALU function decode but is

not considered an integral part of

the microinstruction decode. Bit 28

is the carry-in (Cn) bit which is the
initial carry-in to the 2901. If an

ALU function requires, or uses, the
ones complement, the carry-in is not
used. If a function requires the

twos complement, the carry-in is used.

CROM bits 33 through 35, from the
internal destination (ID) field, select the
destinations that are internal to the

2901. The internal destinations consist of
the RAM register and the Q register.

3.4.3.2 Shifting

Two types of shifters are used to allow for
RAM shifting and Q-register shifting.
Each of the input data fields to the RAM
and to the Q-register are driven by a three
input multiplexer and each shifter is
controlled from the microinstruction
decode inputs, CROM bits 33 through 35
and CROM bits 54 and 55.

The RAM shifter has two ports, RAM 0
and RAM 3, each consisting of a buffer-
driver with a three state output and an
input to the multiplexer. The three input
multiplexer allows the ALU data outputs
to be entered, shifted left one bit position
(multiplied by two), shifted right one bit
position (divided by two), or not shifted in
either direction. The output from the two
ports is dependent upon the
microinstruction decode inputs.

Similarly, the Q-shifter has two ports, Qo0
and Q3, which work in much the same
manner as the RAM shifter. In the no-
shift mode, the multiplexer enters the
ALU data into the Q-register. In either
the shift up or shift down mode, the
multiplexer selects the Q-register data
appropriately shifted up or down.

Two sets of 4-to-1 multiplexers support
the different possible increase of shifting
entries as governed by the microword shift
code. One multiplexer is for left shift and
the other for right shift. This con-
figuration provides a wraparound for the
Q-register or for the sign extend

function. CROM bits 54 and 55 from the
P-field provide the shift code selections.

Shift overflow logic produces the sign bit
on the most significant bit. The
exclusive-OR indicates that during the 0
to 31 shifts in the multiply operation, the
sign was changed by a shift overflow as
noticed by the condition code logic. This
is indicated by the shift overflow signal
because the sign of the word was
changed. Inputs to the 4 to 1 multiplexers
provide a sign bit for logical right shift for
the division routine.
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Figure 3-13. Four-bit Slice Microprocessor Block Diagram




3.4.3.3 Random Access Memory (RAM)

The D-input brings 32 bits of data from
the DB bus directly into the ALU data
source selector. This input can also be
used to modify internal data files. Data in
any of the 16 words of the 2901 file can be
read from the A-port of the RAM address-
ed by the 4-bit address field input.
Similarly, data in any of the 16 words of
the RAM, as defined by the B-address
field input, can be read simultaneously
from the B-port of the RAM. The same
code applied to the A-select field and B-
select field causes identical file data to
appear at both the RAM A-port and B-port
outputs simultaneously. When writing into
the RAM, the B-address field defines the
destination register of the ALU operation.

3.4.3.4 Q-Register

The Q-register is a 32-bit register used as
an accumulator or as a holding register for
other applications. However, it is
primarily intended for multiplication and
division routines.

3.4.3.4.1 Multiplication Routine

The multiplication routine uses the
conditional add and shift method. The
least-significant bit of the Q-register in
the 2901 determines whether the ALU
source operands are either A and B (add
multiplicand to partial product) or zero
and B (add nothing to partial product).

The ALU function in the hardware
influences the multiplier to determine
whether to do the add/test-and-shift left
function or just the shift-left function.
When the multiplier bit is one, the A and B
is added and then shifted left. When the
multiplier and/or multiplicand are zero,
for this particular bit, only the B is
shifted.

3.4.3.4.2 Division Routine

The division routine conditionally
subtracts the divisor from the dividend
and then the quotient is shifted right. The
equal-to-zero and sign outputs of the 2901
select the appropriate operands for

subtraction and shift right. This hardware
assist influences the dividend to determine
whether a subtract-and-shift right
function will occur or just a shift-right
function. If subtraction has occurred, a
bit is shifted into the least-significant bit
of the Q-register to form the partial
quotient.

3.4.3.5 Arithmetic Logic Unit (ALU)

The ALU control bit inputs are affected
by the CROM word. The CROM bits
involved are selected from the entire
microinstruction decode order. The
outputs from the ALU control registers
are the inputs to the 2901 which
determines the ALU function to be
performed during the CREG cycle.

The ALU is cascadable to a 32-bit wide
path over the eight devices by using a
look-ahead carry mode. The technique for
cascading the ALU sends all carry
generate and carry propagate signals of
each device to a carry-look~ahead
generator.

The ALU is capable of performing three
binary arithmetic and five logic operations
(refer to table 3-4) on the two 32-bit input
words from the data source selector. The
R-input field is driven from a two-input
multiplexer which provides either the data
from the RAM or the direct data inputs
from the DB bus. The S-input field is
driven from a three-input multiplexer
supplied by the A-port or B-port of the
RAM or the Q-register. Both multiplexers
also have an inhibit capability; that is, no
data is passed, which is equivalent to a
zero-source operand. The D-input to the
ALU is used to allow external registers or
data to be input to the 2901.

3.4.3.6 Data Outputs

Data outputs from the 2901 are
distributed to several destinations as
determined by CROM bits 33 through 35.
These outputs are driven externally to the
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Table 3-4
ALU Function Control

Microcode

CROM Bits ALU Symbol
Mnemonic 31 30 29 Function (See figure 4-1)
ADD L L L R PLUS S R+S
SUB R L L H S MINUS R S-R
SUB S L HL R MINUS S R-S
OR L HH RORS R:S
AND HLL R AND S R&S
NOT RS HL H NOT R AND S %R&S
EX OR HHL R EX-OR S RIS
EX NOR HHH R EX-NOR § %(R!S)

Y bus or routed internally for storage in
the RAM registers or the Q-register. A
two-input multiplexer governs the data
output to the Y bus so that either the A-
port of the RAM or the ALU is selected.

The RAM data out, which is a 32-bit data
word, is routed to the Y bus. The Y bus
sends the data to external registers on the
IE unit. These GPR's are identical to the
registers in the 2901. In addition, the Y
bus routes the RAM data out to the CS
unit and the MS unit.

The outputs from the ALU consist of the
following:

G

P

Cn+4
F3
F=0000

The G and P outputs are the carry
generate and carry propagate signals.
These signals are sent to the carry-look-
ahead generators to speed up the binary
arithmetic function.

The Cn+4 output is the carry out signal
from the most significant nibble. The
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output then becomes the carry-in bit,
which goes back to the 2901 as the least
significant nibble. In addition, it is used
as the carry flag in the status register.

The 6,—P, and Cn+4 outputs are also used
for cascading the eight 2901's.

The F3 output is the sign bit. This signal
is the most significant output bit of the
ALU and designates the positive or
negative result of the ALU operation.

The F=0000 output is the zero detect
signal. This signal goes high when all the

2901 F outputs are low, indicating that the

resultant ALU operation is zero.

Both the F3 and F=0 outputs are sent to
the test structure on the IE Unit.

3.4.3.7 Stopclock Logic

The signals monitored by the stopclock
logic are listed in table 3-5 together with
the definitions. The logic isuses an
HSTOPCLK signal to the MS, IE, and CS
Unit to stop appropriate clocks. In-some
cases, a STOPOPRFETCH signal is also

routed to the cache logic in the CS Unit to

stop operand prefetching; these are
indicated in the table.




Table 3-5

IE Unit Stopclock Conditions

Signal

Definition

IHSTOPCLK
Generated
( Y or N)

STOPOPRFETCH
Generated
(Y or N)

LCASTOPCLK

LRDWRSTOPCLK

LEMARSTOPCLK

LCACHEBUSYSTOPCLK

LSTOPFORDATA

LLMARSTOPCLK

LBCKPSTOPCLK

LMICROINTL

Issued when attempt is
made to access cache
data out, and it is
marked invalid.

Isused to stop execution
logic during a RAM read
or RAM write cycle.

Issued when there is an
attempt to load EMAR
while previous EMAR has
not achieved EMAROE
(output enabled).

Issued when there is no
EMAREOQE after a Bus
Request E or when there
is no OPROE after a Bus
Request L.

Issued to wait for data
when a memory reference
instruction is valid in

the I1 stage but results

in a cache miss.

Issued to stop the
clock for doubleword
instructions.

Issued whenever the
firmware reads the
backdate PC and feeds
the count into the
MP2901.

Issued to exit the CPU
from the execution step
when there are operand
related related errors
or other external events

Y

N
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Figure 3-14. CS Unit Block Diagram
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Table 3-5

IE Unit Stopclock Conditions (Cont.)

Signal

Definition

HSTOPCLK
Generated
(Y orN)

STOPOPRFETCH
Generated
(Y or N)

LBRANCHSTOPCLK

LINTORBRANCH+1

LMRTNSTPFORDATA

LXTRLSTOPCLK

Issued when a branch
instruction is in the
10 stage. Stops the
CREG cycle of a
branch+1 instruction
from being executed.

Issued one cycle after
BRANCHT or when a
microinterrupt is
detected.

Issued when a mciro-
interrupt is in the I1
stage and is unable to
gain OPROE due to a
cache miss.

Issued by the Floating-

Y

N

stop the CPU.

point accelerator to

3.5 Cache SelBUS (CS) Unit

The text is subdivided into introductory
material, brief descriptions of the major
component parts of the CS Unit, and
operational information describing the
functional interrelationships of the
component parts.

3.5.1 Introduction (see figure 3-14)

The major areas of the CS Unit are the
map, the cache, and the SelBUS interface.
The primary communication busses are the
SelBUS, the YB Bus, the DB Bus, the
logical memory address bus (LMAR Bus),
and the CAMUX Bus. The SelBUS is the
external port. The YB bus and the DB bus
are the two primary micro-level busses
between the CS unit and the IE unit and
form the internal port. The YB bus is the
output of the 2901 microprocessor. The
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DB bus is the external input to the 2901.
The LMAR bus routes the logical address
gener ted by the set-up functions on the IE
Unit (from the 3-way adder). The bus
output of the cache to the set-up logic is
the cache multiplexer (CAMUX) bus. The
CAMUX bus carries operands or
instructions.

The CPU operates in two different modes
which are, in essence, determined by the
firmware. When the CPU is in the idle
loop, its operation may be considered in
terms of a stand-alone microprocessor en-
vironment. When the CPU is actively
processing instructions and is no longer in
the idle loop, all three units (MS, IE, and
CS) operate separately.

Primarily, in the microprocessor environ-
ment, the YB bus and the DB bus input and
output the cache-in function. This
function uses the EMAR (execution logic)




on the CS Unit. If a memory write trans-
action or an I/O type transaction via the
SelBUS is required, the EMAR is used to
write an address. Then, for a write
transaction, the data is routed to the CS
unit on the YB bus. This data is passed
through the cache data in register and is
loaded into the SelBUS data out register;
the address goes through the map if
required. Eventually, the data and address
are output onto the SelBUS (data on the
data bus, address on the destination bus).

Cache transfer type logic is contained in
the IE Unit. Table 3-2 (IE Unit
description) lists the transfer types, the
priorities allocated, and the functions
involved in each transaction. The trans-
action codes are routed to the cache
control logic in the CS Unit.

A memory write transaction can be
mapped or unmapped as designated by
specific transaction codes generated by
the microprocessor (i.e., a derivation of
the microword). The data is also looked-
up in the cache and, if present, it is
updated. If the data is not present, it is
put into the cache and simultaneously
written to the main memory via the
SelBUS.

If an I/O-type transaction is requested,
mapping and the cache are not envolved.
However, access to the cache is inhibited.
while the I/O transaction goes through.

The macro PC is used as the address
source for an instruction read. For a data
read, either the LMAR or the EMAR is
used as the address source. The address
may or may not be mapped. If the
operand is found in the cache, it is read
from the cache and output onto the DB
bus via the cache data out register (MS
Unit).

If the cache is empty, or if a cache miss
occurs, a cache control line is used to
signify that the data or instruction must
be read from main memory. A SelBUS
transaction is then generated which routes
the physical address (mapped or
unmapped) to the PMAR and the DRT
PMAR. The address is output onto the

SelBUS destination bus together with
appropriate SelBUS tags which define a
memory read operation. After the data
read transfer, a data return transfer
(DRT) is generated. The physical address
is decoded at the cache interface logic
and the data on the bus is gated into the
SelBUS data in register. This data is
routed through the left shifters and the
3:1 cache multiplexer and loaded into the
cache data out register. The data is
simultaneously put into the cache and
transferred to the IE Unit via the cache
data out register and the DB bus (MS
Unit).

The PMAR is always loaded, regardless of
whether the data is output on the SelBUS
or not. However, the PMAR copy register
is only loaded for operand reads and
operand writes. When a transaction is
routed via the PMAR to the SelBUS, the
address is copied into the DRT PMAR
holding register. The corresponding data
return from the memory is accompanied
by physical address tags and not a whole
physical address. Therefore, when data is
returned, the address held in the DRT
PMAR is used to drive PMAR B0 and
PMAR B1 for the cache put-away cycle.

3.5.2 CS Unit Components

The following paragraphs provide brief
descriptions of the major component parts
of the CS Unit.

NOTE

Items in parentheses (xx) denote
logic drawing page numbers. These
are included as supplemental infor-
mation for Gould field service
personnel. Where applicable,
these numbers are also included

on block diagrams.

3.5.2.1 EMAR (9)

The CS Unit effective memory address
register is fed from the DB Bus. It is used
to address the RAM arrays (cache banks,
index RAMS, and valid RAM) via the
LMAR Bus and the PMAR Bus.
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3.5.2.2 Macroprogram Counter (34)

The macro PC is a 22-bit counter register
oriented to a word boundary. It is
incremeted by one every time an instruc-
tion word is fetched from main memory or
cache.

3.5.2.3 Input Source Multiplexer (34)

The address that is loaded into the macro
PC may be from either the YB bus or the
logical memory address register (LMAR)
bus. The 2:1 input source multiplexer is
used to determine the source. During
context switching (load map time) and
load program status doubleword
sequences, the address is loaded from the
YB bus. The LMAR bus is used as the
source for branch instructions.

3.5.2.4 I3 PC Register (31)

The I3 PC register holds the address of the
instruction which is currently in the I3
register on the IE Unit.

3.5.2.5 LMAR Counter (33)

The logical memory address register
(LMAR) counter receives the 24-bit output
of the three-way adder on the IE Unit and
holds the effective logical address while it
is converted to a physical address and used
to address the cache memory. It is used
as a counter to access sequential logical
addresses as in the load or store double-
word instruction and the load or store file
instruction. The LMAR counter is a word
oriented register and its apparent width is
controlled by the CPU addressing mode.
The output of the LMAR counter may be
routed to the macro PC via the 2:1 input
source multiplexer during branch
instructions.

3.5.2.6 MAR Comparator (13)
The memory address register (MAR)

comparator compares the contents of the
I3 PC register with the contents of the
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LMAR counter. If the compared logical
addresses are the same, and the
macroinstruction being executed is a
store, the macroinstruction pipeline will
be violated. In this case, the output signal
from the comparator is routed to the IE
Unit and used to refetch the information
in the I3 register after the store.

3.5.2.7 Map RAM (37)

The 2K by 16-bit map RAM functions as
the primary element for converting logical
addresses into physical addresses. A four-
megaword logical address space is
provided in mapped-extended or mapped-
based address mode.

3.5.2.8 Map Hit RAM (35)

The map hit RAM contains 1024 16-bit
locations; however only 128 locations are
used. Each bit in the map hit RAM
corresponds to a register in the map RAM
and indicates whether the register has
been loaded or not. The hit RAM is reset
during each change of map contents.

3.5.2.9 Map Bypass Multiplexer (37)

The map bypass multiplexer is used to
select either the 11 most significant bits
of the MADDR bus (physical address) or
the 11-bit output of the map RAM. The
selected 11 bits are appended to the 13
least significant bits of the PADDR bus to
form the physical memory address bus
(PMAR bus).

3.5.2.10 Cache Memory (25,26)

The total cache memory comprises sixteen
4K by 4 RAM ICs, providing an 8K word
cache. The cache is divided into two 4K
word banks, cache bank 0 and cache bank
1. Each bank is addressed in parallel by
the 11 least significant physical memory
address bits from the PMAR bus (plus one
instruction/operand bit).



3.5.2.11 Cache Index RAMs (18,19)

Each cache bank has an associated cache
index RAM which tracks the storage of
memory words in any given location.
There are four 4K by 12 cache index
arrays, two assigned to instructions and
two assigned to data. The index RAMs are
addressed in parallel by the 11 least
significant physical memory address bits
from the PMAR bus. The contents of each
index RAM is a valid bit and the most
significant 11 bits of a physical word
address.

3.5.2.12 Cache Data In Register (9)

The 32-bit cache data in register receives
cache write data from the IE Unit via the
YB bus.

3.5.2.13 Left Shifters (11,12)

There is one left shifter associated with
each of the two cache banks. The 32-bit
shifters are required during cache writes
to align data to byte, halfword, or word
boundaries. The data received by the left
shifters is always right justified and comes
from either the SelBUS data in register or
the cache data in register. The SelBUS
data in register is used as the source
during DRT copies into cache. The cache
data in register is the data source for CPU
cache writes.

3.5.2.14 Index MAR Buffers (14)

Two 11-bit memory address (MAR) buffers
are provided, one for each bank of index
RAMs. Both buffers drive the low-order
11 bits of the physical memory address
during writes to the index RAMs.

3.5.2.15 Cache Comparators (18,19)

The four cache comparators compare the
high-order 11 bits of a 22-bit physical
word address with the output from each of
the four index RAMs. This is used to
determine in which cache bank a
requested memory word is located.

3.5.2.16 Cache Multiplexer (27,28)

The 3:1 cache multiplexer is used to route
data onto the CAMUX bus from either of
the two cache banks or from the SelBUS
data in register.

3.5.2.17 Shared Memory Detect Logic (6)

In a system with two CPUs, the area of
memory from 128K up to the maximum of
four megawords may be shared. Upper
and lower shared memory limits are
defined by software. A comparator
associated with the shared memory detect
logic compares this limit information with
the PADDR bus. If an access to shared
memory is detected, the output from the
comparator is used to provide a cache
miss signal to the cache control logic in
the CS Unit and the cache is bypassed.
The requested information is fetched from
SelBUS memory one word at a time.

3.5.2.18 SelBUS Data Out Register (10)

The SelBUS data out register holds data
during I/O and memory write transfers.
The register is loaded from the YB bus
(via the cache data in register). The data
is gated to the SelBUS (data bus) under
control of the SelBUS interface logic.

3.5.2.19 Physical Memory Address
Register (PMAR) (5)

The PMAR holds the physical memory
addresses or I/O device addresses during
output transfers to the SelBUS. The
PMAR is loaded from the PADDR bus and
the addresses are gated to the SelBUS
(destination bus) under control of the
SelBUS interface logic.

3.5.2.20 Data Return Transfer
(DRT) PMAR (6)

The DRT PMAR holds a physical memory
address while a memory read is in
progress. The contents of the register is
used to address the cache when the DRT is
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copied into it. The DRT PMAR is loaded
from the PMAR and its contents may be
gated to the PADDR bus.

3.5.2.21 SelBUS Data In Register (2,3)

The SelBUS data in register receives data
from the SelBUS during DRTs. If the DRT
is a response to a memory read, the
contents of the register is copied into
cache. If the DRT is a response to an I/O
SelBUS transfer, the contents of the
register is transferred through the cache
data structure to the cache data out
register (MS Unit) and out to the IE Unit
on the DB bus. In this case, the cache is
not altered.

3.5.2.22 SelBUS PMAR (4)

The SelBUS PMAR receives the memory
address of an externally generated SelBUS
memory write, and this is used to address
the cache. If the addressed word is in the
cache, it is invalidated. The SelBUS
PMAR is loaded from the SelBUS
(destination bus), and its contents may be
gated to the PADDR bus to address the
cache.

3.5.2.23 Map Data In Registers (2,3)

There are two 16-bit map data in
registers, designated odd and even. They
are loaded in parallel with one 32-bit
memory word from the SelBUS (data

bus). The contents of each register may
be individually gated to the map RAM
write data lines during firmware map load
sequences.

3.5.2.24 PMAR Copy Register (8)

The PMAR copy register is loaded from
the PMAR bus whenever an operand
address is converted from logical to
physical and loaded into the PMAR. The
contents of the PMAR copy register is
routed to the IE Unit, via the DB bus,
during load real address instructions. This
address copy is also used during an
operand map miss sequence.
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3.5.3 CS Unit Operation (see figure 3-14)

The functional interrelationships between .
the major component parts of the CS Unit
are described in the following

paragraphs. The description is subdivided
by logical function into effective address
logic, memory management logic, cache
memory logic, and SelBUS interface.

3.5.3.1 Effective Address Logic

The effective address logic comprises the
hardware registers, counters, and address
necessary to compute and store both
operand effective logical addresses and
instruction logical addresses.

The instruction logical address logic
comprises the macroprogram counter
(macro PC) and an associated 2:1 input
source multiplexer. The macro PC isa
22-bit counter register oriented to a word
boundary. It is incremented by one each
time an instruction word is fetched from
main memory or cache. The address that
is loaded into the macro PC may be from
either the YB bus or the logical memory
address (LMAR) bus; the input multiplexer
is used to determine the source. During
context switching (load map time) and
load program status doubleword
sequences, the address is loaded from the
YB bus. The LMAR bus is used as the
source of branch instructions.

A majority of the operand effective
address logic is contained in the IE Unit
and is described in the text beginning at
paragraph 3.4. However, the logical
memory address register counter (LMAR
reg counter) and the memory address
(MAR) comparator are contained in the CS
Unit. Also, the cache multiplexer bus
(CAMUX bus) originates in the CS Unit.

The LMAR register counter receives the
24-bit output of the three-way adder (on
the IE Unit), via the LMAR bus, and holds
the effective logical address while it is
converted to a physical address and then
used to access the cache memory. It is
used as a counter to access sequential
logical addresses as in the load or store



doubleword instruction and the load or
store file instruction. Using the register
as a counter obviates the need to re-
compute the effective logical address.
The LMAR counter is a word oriented
register and its apparent width is
controlled by the CPU addressing mode.
The width may be either 17 bits for a 19-
bit logical address mode or 22 bits for a
24-bit extended logical address mode. The
output of the LMAR counter may be
routed to the macro PC (via the 2:1 input
source multiplexer) during branch
instructions. For branch instructions, the
LMAR counter first contains the target
address then, after incrementing, it con-
tains the target address plus one word.
The memory address register (MAR) com-
parator compares the contents of the I3
PC register with the contents of the
LMAR counter register. If the logical
addresses are the same, and the macro-
instruction being executed is a store, the
macroinstruction pipeline will be
violated. In this case, the output signal
from the comparator is routed to the IE
Unit (I3 and I2 status register pipeline
violation circuitry) and used to refetch the
instruction in the I3 register after the
store.

3.5.3.2 Memory Management Logic

The memory management logic provides
the hardware necessary to convert logical
addresses into physical addresses. The
hardware comprises the following
functional elements: the map RAM, the
map hit RAM, and the map bypass
multiplexer.

The 2K by 16-bit map RAM functions as
the primary element for converting logical
addresses into physical adresses. Each
map entry contains a valid bit, four write
protect bits, and an 11-bit map block
address. The 11-bit map block address
facilitates 2K word map blocks; each map
block provides 2K word granularity. Each
of the four write protect bits provides a
512-word write protection granularity.
Since the map RAM is 2K words deep, a
four-megaword logical address space is
provided in mapped-extended or mapped-
based address modes.

The map RAM is addressed via the map
address bus (MADDR bus). Data to be
written into the map RAM is routed from
the cache output or via the SelBUS and
two map data in registers (odd and even).
Each of these 16-bit registers contains a
single map entry fetched from the main
memory under control of firmware con-
tained on the IE Unit. Since this is a word
fetch, two map entries are brought in each
time.

Conversion from a logical address into a
physical address is performed by address-
ing the map RAM with the most signifi-
cant 11 bits of a 24-bit logical address.
The output produced is an 11-bit physical
map address which is appended to the 13
least significant bits of the logical
address. The resultant 24-bit address is
used to access cache or main memory.

Context switch time (load map time) is
minimized by organization which uses a
look-aside buffer technique. The map hit
RAM is the look-aside buffer.

The map hit RAM contains 1024 16-bit
locations; however, only 128 locations are
used. Each bit in the map hit RAM corre-~
sponds to a register in the map RAM and
indicates whether the register has been
loaded or not. During each change of map
contents, the hit RAM is reset. When the
map is subsequently accessed, the corre-
sponding hit RAM bit is not set. This
causes a map miss microinterrupt to be
routed to the IE Unit. The required pair
of map entries are fetched from main
memory or cache and the corresponding
bits in the hit RAM are set.

Bit checking of the hit RAM is accom-
plished by using the most significant 11
bits of a 24-bit logical address. The first
seven bits address one of the 128
locations. The next four bits select one of
the 16 hit RAM output bits.

The hit RAM is addressed via the MADDR
bus. Data may either be written to the hit
RAM over the YB bus or via bit generaton
logic (in the first case, via the map hit
register). The YB bus is the data source
when the hit RAM is reset or when an
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initial configuration is loaded into it. The
bit generation logic array is essentially a
single-bit generator (one of 16) which
causes one bit to be ORed into the current
contents of a hit RAM word. The bit
generation array is used to update single
locations during dynamic updates of the
map RAM locations. The single output of
the hit RAM is the miss signal. This is
separated into an instruction map miss
signal and an operand map miss signal and
routed to the IE unit microinterrupt logic
or decode exception logic.

The map bypass multiplexer is used to
select either the 11 most significant bits
of the MADDR bus (logical address) or the
11-bit output of the map RAM. The
selected 11 bits are appended to the 13
least significant bits of the PADDR bus to
form the physical memory address bus
(PMAR bus). The MADDR bus is selected
via the multiplexer whenever the CPU is
unmapped or temporarily unmapped due to
IE unit firmware I/O transfers or physical
memory accesses. At all other times, the
bypass multiplexer selects the map RAM
output to generate the PMAR bus. The
PMAR bus is routed to the following
locations: the four cache RAMs, the four
cache hit comparators, the physical
memory address register (PMAR), the
PMAR copy register, and the data return
transfer (DRT) PMAR holding register.

3.5.3.3 Cache Memory Logic

The cache memory logic provides a high-
speed copy of relevant portions of
standard SelBUS memory. The cache
hardware comprises the following
functional elements: cache RAMs, cache
index RAMs, index RAM comparators,
cache data in registers, left shifters, index
MAR In buffer, cache multiplexer, right
shifter (MS Unit), cache data out odd and
even registers (MS Unit), indirect register
(IE Unit), I3 register (IE Unit), data return
transfer (DRT) PMAR holding register,
and shared memory detect logic.

The total cache memory comprises sixteen

4k by 4 RAM ICs, providing an 8K word
cache. The cache is divided into two 4K
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word banks, cache bank 0 and cache

bank 1. Each bank is addressed in parallel
by the 11 least significant physical
memory address bits from the PMAR bus
(plus one instruction/operand bit).

Each cache bank has an associated cache
index RAM which tracks the storage of
memory words in any given location.
There are four 4K by 12 cache index
arrays, two assigned to instructions and
two assigned to data. Again,the index
RAMs are addressed in parallel by the 11
least significant physical memory address
bits from the PMAR bus. The contents of
each index RAM is a valid bit and the
most significant 11 bits of a physical word
address.

In order to determine if a specific memory
location is cache resident, a 22-bit
physical word address is presented to the
cache and index RAMs. The lower-order
11 bits of this address select the same
location in a group of six RAMs (two
cache and four index RAMs). The high-
order 11 bits of the address are routed to
four comparators where they are
compared with the output from each of
the index RAMs. If the comparison is
good (equal), and if the selected index
RAM location is marked valid, the
requested memory word is located in the
cache within the bank determined by the
index RAM that generated the equal
comparison. If no equal comparison is
found on any index RAM output, the
requested memory word is not in the
cache.

In order that the cache contains a reliable
copy of SelBUS main memory, each exter-
nally originated SelBUS memory write
must be monitored and used to invalidate
the cache if the specified memory byte,
halfword, or word is in the cache. For the
same reason, CPU memory-writes to
cache must also be written to SelBUS
memory. For CPU byte or halfword-
writes to cache and main memory, if the
word containing the byte or halfword is
not in cache, the cache will not be
changed. However, the byte or halfword
will be written to memory.



During normal operation, starting from a
reset state, the valid bits in the index
RAMs are reset to zero. When the CPU
begins to execute instructions, operands
and instructions are read from the cache.
However, a cache miss occurs causing the
control logic to read memory using SelBUS
memory read transfers (MRTs). The re-
quested data is returned from memory in
SelBUS data return transfers (DRTSs).
Each DRT received by the CS unit is
stored in the cache. The 11 most signifi-
cant physical memory address bits are
stored in the corresponding index RAM
location and, if the memory location did
not indicate an error (parity error or
uncorrectable data error), the corre-
sponding valid bit in the index RAM is
set. When the cache is updated, the
requested data is simultaneously routed to
the instruction pipeline register (I3
register on the IE unit) or to the operand
holding register (cache data out registers
on the MS Unit).

To increase the speed of the cache fill-up
sequence each time a cache miss occurs
on a read access, the control logic reads a
doubleword pair from SelBUS memory and
stores the doubleword in the cache. The
doubleword is fetched using back-to-back
memory read transfers (MRTs) to the even
and odd memory word locations. The
control logic always reads doublewords
even though the cache access may have
been for a byte or for a halfword.
Operand alignment is performed (if
required) as the data is read out of the
cache to the cache data out registers.
One exception is if the CPU accesses a
memory location in a shared memory
block; in this case, the control logic only
reads one word.

With a 4M-word main memory and a 4K-
word cache, there are 1024 possible
memory words that can exist in any given
cache location (either operand or
instruction). The cache bank can hold only
two of the 1024 possible alternatives.
When a particular cache location in both
banks is valid, and the CPU accesses a
third memory location for the given cache
location, a conflict exists as to which of
the two banks the third location will be

loaded into. This conflict is resolved in
the least recently used (L.R.U.) circuitry
which records cache access to the two
banks. Whenever a cache bank is
accessed, a flag is set to indicate that
access. Another flag, corresponding to
the other bank, is reset. When a conflict
occurs, the flags are sampled and the
cache bank indicating least recent use is
loaded. Whenever a choice between banks
is made, the states of the flags are
changed.

Each of the cache banks (0 and 1) are 4K
by 32-bit RAMs. Within each bank, there
is a 2K operand cache and a 2K instruction
cache. Each location contains one 32-bit
memory word. A cache bank is addressed
by the 11 least significant bits of the
PADDR bus, excluding the two C bits of
the PADDR bus. data is written to, or
read from, the cache banks on a common
input/output bus. Data may be written to
the cache either via the SelBUS data in
register or via the cache data in register
through one of the two banks of left
shifters. The SelBUS data in register is
used to copy data return transfers (DRTSs)
into the cache. The cache data in register
is used for source data during CPU writes
to the cache.

An instruction is read from the cache
through the cache multiplexer to the
pipeline I3 register (on the IE unit). Data
is read from the cache through the cache
multiplexer and the right shifter (MS unit)
to the cache data out odd/even registers
(MS unit).

In a system with two CPUs, the area of
memory from 128K up to the maximum of
4 megawords may be shared. The actual
area to be shared is defined by software in
mimimum blocks of 128K, and it is imple-
mented by information routed in on the
YB bus to the shared memory detect logic
register. The information determines an
upper and a lower memory limit. The
associated comparator compares this
information with the PADDR bus. If an
access to a shared memory block is
detected, the output from the comparator
is used to provide a cache miss signal to
the cache control logic on the CS unit and
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2,5.3.4 521875 Interface

The 5elBUS interface logic performs the
following main functions:

. Monitors the SelBUS for externally
initiated memory writes.

. Establishes SelBUS transfer priority.

. Drives memory and I/O transfers out to
the SelBUS and monitors the SelBUS
response signals.

. Receives transfers from the SelBUS
(DRTs) and monitors the error response
line.

The primary function is to monitor the
SelBUS for externally initiated memory
writes. This function ensures that the
cache contains a reliable copy of SelBUS
memory. The SelBUS memory address of
each externally initiated memory write is
captured and a cache access at this
address is initiated. If a cache hit is
identified, the corresponding cache index
RAM location is invalidated.

Transfer priority is established in one of
three ways depending upon the transfer
type (I/O or memory) and the CPU mode
(CPU or IPU). I/0 transfers are made at
the highest SelBUS transfer priority (0). If
an attempt by the cache to access the
SelBUS is not granted, priority 0 is
allocated to it. Memory transfers (read or
write) can be made at either pseudo
priority 23 or SelBUS priority 22,
depending upon the CPU mode and the
priority selection jumper located in the
SelBUS interface logic. The CPU, or one
of the CPU/IPU pair, operates at pseudo
priority 23 which signifies the absence of
another SelBUS device polling at transfer
priorities 0 thru 22. In this mode, the
SelBUS interface logic is polling each time
a CPU-originated cache access occurs. If
a cache miss is indicated, a SelBUS
transfer (read or write) will be executed
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o2 0P and IPU conligaration,

the pair must operate at SelBUS transfer
priority 22. The interface operating at
priority 22 cannot poll the SelBUS for
transfer priority until one clock after the
cache access. Therefore, this memory
cycle time is one clock longer. A jumper
in the SelBUS and polling transfer logic
determines the priority regardless of
whether the processor is operating as CPU
or IPU. The jumper in position selects
priority 22, and the associated processor is
referred to as processor 2. For memory
read transactions, a code is returned with
the operand or instruction which signifies
whether it is an odd or even word
transfer. The codes are as follows:

80 - operand even
word fetch

82 - operand odd
word fetch

PROCESSOR 1 81 - instruction even

word fetch

82 - instruction odd
word fetch

84 - operand even
word fetch

86 - operand odd

word fetch

instruction even

word fetch

87 - instruction odd
word fetch

PROCESSOR 2 85

A third function of the SelBUS interface is
to format and execute the requested
SelBUS transfer (assuming SelBUS transfer
priority has been established). If SelBUS
transfer priority has not been established
(i.e., won), the interface withholds the
transfer for an available SelBUS transfer
cycle. After a SelBUS transfer cycle has
been executed, the interface monitors the
SelBUS response lines to determine if the
transfer was accepted by the addressed
SelBUS device. For I/O transfers, the
interface informs the IE unit firmware of
the state of the transfer as follows:



accepted, rejected (addressed channel not
present), rejected (channel busy), rejected
(channel retry).

If a memory write transfer is accepted,
the transfer cycle is complete. If a
memory read is accepted, the interface
conditions itself to receive a data return
transfer (DRT). If a memory read or write
is rejected due to non-present memory,
the error is reported to the IE unit
depipeline logic and the IE unit test
structure. If the memory is busy, and the
transfer is rejected, the interface samples
the SelBUS echo lines. These lines are
used to select one of four SelBUS memory
inhibit lines which indicates a continuing
memory busy condition. When the select-
ed memory inhibit line goes false, the
Interface automatically retrys the the
memory transfer, including re-establishing
SelBUS transfer priority.

The fourth function of the SelBUS inter-
face is to receive DRTs from I/O and
memory SelBUS devices. For I/O DRTs,
the contents of the DRT is transferred
through the cache data structure to the
data cache register. At this stage, the
data is available to the IE unit. The
contents of an I/O DRT is not stored in
the cache. With memory DRTs, the con-
tents of the DRT is stored in the cache,
and the corresponding index RAM is
marked valid only if the SelBUS has not
indicated that the DRT contained a
memory parity error or an uncorrectable
data error. If a memory error has
occurred, the index RAM location is
marked invalid and the memory error
signal is routed to the IE unit depipeline
logic and test structure.

The SelBUS interface data structure
contains the following functional
elements: the SelBUS data out register,
the physical memory address register
(PMAR), the DRT PMAR, the SelBUS data
in register, the SelBUS PMAR, the map
data in odd and even registers, and the
PMAR copy register.

The SelBUS data out register holds data
during I/O and memory write transfers.
The register is loaded from the YB bus

(via the cache data in register) the data is
gated to the SelBUS (data bus) under
control of the interface logic.

The PMAR holds the physical memory
addresses or I/0O device addresses during
output transfers to the SelBUS. The
PMAR is loaded from the PADDR bus and
the addresses are gated to the SelBUS
(destination bus) under control of the
interface logic.

The DRT PMAR holds a physical memory
address while a memory read is in
progress. The contents of the register is
used to address the cache when the DRT is
copied into it. The DRT PMAR is loaded
from the PMAR and its contents may be
gated to the PADDR bus.

The SelBUS data in register receives data
from the SelBUS during DRTs. If the DRT
is a response to a memory read, the
contents of the register is copied into the
cache. If the DRT is a response to an I/O
SelBUS transfer, the contents of the
register is transferred through the cache
data structure to the cache data register
and out to the IE unit on the DB bus. In
this case, the contents of the cache is not
altered.

The SelBUS PMAR receives the memory
address of an externally generated SelBUS
memory write, and this is used to address
the cache. If the addressed word is in the
cache, it is invalidated. The SelBUS PMAR
is loaded from the SelBUS (destination
bus), and its contents may be gated to the
PADDR bus to address the cache.

There are two 16-bit map data in
registers, designated odd and even. They
are loaded in parallel with one 32-bit
memory word from the SelBUS (data

bus). The contents of each register may
be individually gated to the map RAM
write data lines during firmware map load
sequences.

The PMAR copy register is loaded from
the PMAR bus whenever an operand
address is converted from logical to
physical and loaded into the PMAR. The
contents of the PMAR copy register is
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Figure 3-15. Instruction Pipeline Block Diagram
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routed to the IE unit, via the DB bus,
during load real address instructions. The
contents of the PMAR copy register are
also used during an operand map miss
sequence.

3.6 Imstruction Pipeline

The instruction pipeline is a direct channel
for information through which machine in-
structions pass from source to user. The
source being defined as a location in
memory and the user being the 2901
Microprocessor.

Minimum cycle time for completion of an
instruction through the entire pipeline is
four clock cycles. During these four clock
cycles; a minimum of eight operations for
the memory reference instructions need to
be accomplished. For descriptive
purposes, each of the eight operations are
categorized into four different stages of
the pipeline. These are: Backing Store
Stage (I3), Decode Stage (I2), Vector Stage
(I1), and Execute Stage (I0). Figure 3-15 is
a simplified block diagram outlining the
different stages of the pipeline and in
which clock cycle each operation occurs.
The I3 and I2 stages may be considered as
asynchronous in that instructions are
continually fetched into the pipeline. The
I1 and IO stages are synchronized to the
execution phase of the instruction. The
following lists the operations that need to
be performed per each stage:

1. Backing Store (I3)

a) Load I3 from CACHE
memory

2. Decode (12)
a) Perform Instruction Decode
b) Compute Effective Address
3. Vector (I1)
a) Access the decode address in
the PROMs or perform the

CROM cycle of the Control
Store Array (vector target)
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b) Translate the physical
address
c) Perform the operand fetch

4. Execute (I0)

a) Execute the instruction
b) Fetch another instruction

3.6.1 Backing Store Stage (I3)

The backing store stage is the top level of
the instruction pipeline. Normally, this
stage of the pipeline is used as a holding
register for the instructions. However, it
also provides halfword instruction
detection and right halfword no operation
(NOP) detection.

The CAMUX bus clocks the instruction
into the I3 registers on both the MS unit
and IE unit. Full word instructions are
gated to the two 16 bit I3 registers on the
IE unit and the two 16 bit I3 copy registers
on the MS unit. During the next clock
cycle, this instruction is advanced to the
decode stage (I2) of the pipeline. The MS
copy of this instruction only gates the left
halfword to the decode stage. Two half-
word instructions can be packed in one
fullword. During the backing store
sequence, either a fullword instruction or
two halfword instructions may be loaded
into the I3 register. A predecoder
monitors the output of the I3 register to
determine if it is a fullword or a halfword
pair. In the case of a fullword, all 32 bits
are advanced to the I2 register. For a
halfword pair, the left halfword (bits 00
thru 15) is advanced to the I2 register
first. The next time that the I3 register is
enabled, the right halfword (bits 16 thru
31) are loaded into the I2 left halfword
register (bit positions 00 thru 15). When
the I3 register contains a left halfword
and a no operation (NOP) instruction in
the right halfword, the sequence is
different. In order to avoid a NOP during
the next half cycle, if the halfword is
valid, the I3 right halfword NOP detect
logic decodes the I3 right halfword. If the
right half of the I3 halfword contains a
NOP opcode and a NOP sub op code, a
signal is sent to the I3 halfword detect
PROM. This signal is used to skip a right



halfword NOP. The I3 halfword detect
PROM then determines whether or not the
halfword is valid. The following con-
ditions must be met in order for the
halfword to be advanced through the
pipeline:

. I3 valid flag is set in the I3 status
register

. HI3HWORD signal is true

. HIBLHWORD signal is false

Table 3-6, I3 Instruction Attribute
Decode, lists the signal names and
describes their functions that qualify
either a fullword instruction or halfword
instruction. Once all the conditions are
satisfied, and during the next clock cycle,
either the fullword or halfword instruction
is advanced to the decode stage of the
pipeline.

When the I3 register transfers that in-
struction, the cache is then enabled and
routes another instruction into the I3
register. This is accomplished by the
macro program counter (macro PC). The
macro PC provides a look ahead function
that points to the next sequential address,
for a cache fetch during the next cycle.
The cache then routes the data to the
Backing Store Stage of the pipeline. This
sequence of events allows the pipeline to
remain full at all times which speeds up
the execution of instructions. The cache
always prefetches an instruction unless it
is busy. A signal is returned from the IE
Unit, to the cache, to signify that the
prefetch has been accepted together with
the increment macro PC enable signal. If
this enable signal is not returned, the
same instruction is refetched.

Table 3-6
I3 Instruction Attribute Decode

Signal

Function

LI3NOINDEX

LIBRHWNOP

LININVLDRHW

halfword.
HI3BHWORD
HI3LHW

HIBLHWQUAL
LIBLHWQUAL

I3 Halfword Detect PROM decodes for opcode F4 which
represents the Branch after incrementing by a Byte,
Halfword, Word, and Doubleword instructions. Inhibits
indexing and index register conflict checks during non-
indirect or first cycle indirect sequences at the decode stage

Decodes I3 right halfword. Indicates right half of I3 has a
NOP opcode and a NOP sub opcode. Signal is used to skip
right halfword NOPs.

Decoded only when I3 right halfword register is gated to I3
Bus bits 00-15. Indicates that the opcode present is invalid.
Normally, identifies fullword opcodes found in the right

Indicates that I3 left or right halfword contains a halfword
instruction. Not valid unless the I3 valid flag is set.

Indicates that I3 contains a left and right halfword pair.
The left half is next to be gated to decode stage. Not
valid unless I3 valid flag is set.

NOTE

If I3 is valid, HI3HWORD is true, and
HI3LHW is false, then I3 contains a right
halfword that must be gated to I2
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3.6.2 Decode Stage (I2)

The decode stage of the instruction
pipeline performs the decode and
effective address calculations for the
remainder of the pipeline. Both the
effective address calculation and the I2
decode steps are performed in parallel to
enhance system operation.

The I3 registers from the backing store
stage of the pipeline transfer the in-
struction into the two 16 bit I2 registers
during the next clock cycle. Also during
this time, bits 00 through 15 are clocked
into the I2 copy register on th MS unit.

The I2 registers in the decode stage per-
form a three fold operation: decodes in-
structions, requests an operand prefetch,
and addresses the set-up logic.

The 12 predecoder determines the type of
instruction to be executed and from where
the instruction is processed. Branching
instructions, load/store instruction, and
memory write instructions are processed
from the two 16 bit I2 registers. Memory
indirect read operations are performed
from the I2 indirect register. The output
from the registers are gated to the vector
stage (I2) for processing.

Simultaneously, the outputs from the I2
registers address the base and index
registers of the IE Unit GPR copy (dual
ported RAM). During an effective address
calculation, the contents of the base and
index registers are gated to the three way
adder, depending upon whether the in-
struction is nonbased or based. In the
nonbased mode, general purpose registers
(GPRs) 1, 2, and 3 output a 24 bit address
(bits 8-31) to the 3-way adder. The actual
GPR selected is dependent upon bits 9 and
10 from the I2 register. A 19-bit offset
value (bits 13-31), from the I2 register, is
also routed to the 3-way adder. The 3-
way adder sums the two values and out-
puts either a 24 bit logical address, if
extended mode is used, or a 19 bit logical
address, if nonextended mode is used.

In the base mode, all seven of the GPRs
(1-7) may be used as index registers and
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are selectable dependent upon bits 9,10,
and 11 from the I2 register. A 24 bit
address is routed from the GPR's to the 3-
way adder. The base register also
provides a 32-bit address to the 3 way
adder with the first eight bits truncated.
However, the offset value is only 16 bits
wide and the upper 8 bits are zero
extended. These three values are summed
in the 3-way adder which outputs a 24-bit
logical address. In base mode, all eight
base registers (0-7) are available, but only
seven (1-7) are available for base address
calculation.

The following describes the properties
associated with the non base and base
modes and extended and nonextended

modes:

. Non based - non extended - non mapped
mode
logical address equals physical
address
maximum address for instruction or
data is 128 KW
no write protect

. Non based - non mapped - extended
mode
logical address equals physical
address
maximum instruction address is
128 KW
maximum data address is 4 MW

. Non based - non extended - map mode

maximum logical address for
instruction or data is 128 KW

maximum physical address is 4 MW

MAP Page is 2 KW granularity

write protection is 4 blocks per MAP
page

write protect block is 512 word
granularity

. Non based - mapped - extended mode
maximum logical instruction address
is 128 KW
maximum logical data address is
4 MW
maximum physical address is 4 MW
write protect is 4 blocks per page
at 512 W per block



. Non mapped - base mode

logical address equals physical
address (4 MW)

does not support indirect addressing

seven GPRs (1-7) are available for
memory indexing

seven base registers (1-7) are
available for base effective
addressing calculation

no memory write protection

. Mapped - Based

logical address equals physical
address (4 MW)

does not support indirect addressing

seven GPRs (1-7) are available for
memory addressing

seven base registers (1-7) are
available for base
effective address calculations

memory write protect is 4 blocks per
page at 512 W per block

The I2 register, bit positions 00-15, also
outputs to the instruction/transaction
request decode logic. If an operand
request is contained within the
instruction, the logic decodes it and
request an operand fetch. This request is
then latched into the transaction request
latch and, during the next clock cycle,
accesses the CACHE.

The MS copy of the I2 register contains bit
positions 00-15. Basically, this register is
used as a temporary holding register for
the instruction decode logic. The instruc-
tion decode logic, which contains the
vector decode, decodes the macro-
instruction op-code, augment code, and
sub-op-code fields into micro program
counter (uPC) addresses. The decode
hardware decodes the uPC vector. If a
valid instruction is being passed through
the pipeline, the I2 register sends a valid
signal to the decode multiplexer. The
decode vector then accesses the uPC input
multiplexer. However, a not valid signal
causes a vector to a dedicated location.
No operation is performed, but the pipe-
line is advanced. As soon as a valid signal
is received from the I2 register, the de-
coder vectors to the normal location.
Table 3-7, I2 Instruction Attribute
Decode, lists the signal names and
describes the function of each signal.

The micro PC input multiplexer (6:1 mux)
receves the address from one of six
sources: uPC save register, decode save
register, YB-Bus (output from 2901), or
from the control store (CROM). The
output of the 6:1 mux, under the control
of the uPC control and microinterrupt
control, selects the next address to be fed
to the microprogram counter.

The decode stage outputs are transferred
to the vector stage during the next clock
cycle.

3.6.3 Vector Stage (I1)

The vector stage of the pipeline is the
beginning of the CROM cycle for the
execution of instructions. This portion of
the logic calculates the physical address,
performs the operand fetch, accesses the
decode information in the PROMs, an
performs the CROM cycle of the Control
Store Array (vector target).

During the vector stage, the logical
address is output to the MAP RAM on the
CS unit. Conversion from a logical to a
physical address is performed by ad-
dressing the MAP RAM with the most
significant 11 bits of the 24-bit logical
address. This output is then appended to
the 13 least significant bits to form the
24-bit physical memory address. This
address then accesses the CACHE or Main
Memory.

An operand fetch is performed in the same
manner as the instruction fetch.

However, once the MAP RAM is accessed,
the output is asserted to the cache
multiplexer on the CS unit. Both the
vector stage and execute stage of the
pipeline are in the wait mode until the
operand is fetched. When the data is
returned, it is written into the cache and
simultaneously loaded into the cache data
out register on the MS unit (via the cache
multiplexer and the CAMUX bus).

The Micro Program Counter (uPC) on the
MS unit is responsible for selecting
decoded information from the PROMs and
performing the CROM cycle of the control

3-73



Table 3-7
I2 Instruction Attribute Decode

Signal

Function

LDCODEMEMREF
'HDCODEMEMREF

LDCODEMEMREAD

HDCODEMEMWRT

LDCODEZEROFBIT

LDCODELEAR

HDCODELAORLEA
LDCODELAORLEA

HDCODEINHDBLE

LSTORECKMAP

LREADCHKSTORE

Decoded from op-code bits I2B00-05 and indicates the
instructions which have a memory reference format used
with load and store type instructions. Used to enable the
Poll MAR logic.

Decoded from op-code bits 12B00-05. Used with opcodes
that require a memory read. Generates read transaction
codes. Read transaction code may be overlapped with
higher priority transaction code such as Load Effective
Address Real or Branch instructions. Also used to enable
F & C bits for doubleword read operations.

Decoded from op-code bits I2ZB00-05. Used to indicate the
opcode will do a memory write as either a first or second
transaction (such as store word). Used as status flag for
pipeline violation testing.

Decoded from opcode bits 12B00-05. Causes the instruc-
tion or indirect word (F Bit) to be forced to zero in
instructions where the F bit is an opcode bit (floating
point instructions).

Decoded from op-code bits I2B00-05. Used to generate a
MAP transaction code. Overrides a read transaction for
Load Effective Address Real Instrucitons.

Decoded from op-code bits I2B00-05 and indicates opcodes
34 or DO is non based mode or op-code 50(LA) in base
mode. Used to load the effective MAR with effective
address and arm the effective address interlock logic.
Does not generate a CACHE transaction unless an indirect
operation is encountered.

Decoded from opcode bits 12B00-05. Indicates that
doubleword C-bits must be overridden. Used with Load
Effective Address Real and Zero Memory Doubleword
opcodes.

Decoded from opcode bits 12B00-05 and 12B00-08. Indi-
cates that an instruction will do a write to memory. It
requires a MAP access to predetermine if potential store
errors (priveledged violation, map miss, or map invalid)
exist. Used to cause a CACHE check map transaction
code. Does not cause an actual CACHE or memory
access.

Decoded from opcode bits I2B00-05 and 12B-15. Indicates
the opcode requires both a CACHE read and write.

Causes a cache transaction code which indicates the cache
must check for potential store errors during CACHE read
operations.
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Table 3-7 (Cont.)
I2 Instruction Attribute Decode

Signal Function

HLOCKLMAR Decoded from op code bits I2B00-05 and 12B-15 or 12B00-
08. Causes the logical MAR to be marked busy when the
HLOCKLMAR signal enters I1. LMAR continues until a
FLUSHPIPE, IRELEASELMAR, or BRANCH TAKEN order
is given. Causes any subsequent instruction that uses
LMAR to be frozen in I2 until the LMAR is released. It is
used by instructions that:

. put away to registers addressed by I bits 9, 10, 11

. put away to Base Registers

. require LMAR or physical MAR during their
execution steps

. perform memory writes or operand perfetching that
could potentially cause a conflict with the I/O
instructions.

HMODREGTYPE Decoded from opcode bits I2B00-05 and 12B-15. Indicates
the instruction does a register put-away and a potential
index register conflict exists.

HDMODRETYPE Decoded from opcode bits I2B00-05 and 12B-15. Indicates
double modify register type instructions. Marks
immediate multiply and divide type instructions. If both
modify register signals equal 1, the I2 register or lower
contains an execute memory or execute register

instruction.
HDCODEBRANCH Decoded from op-code bits I12B00-08. Indicates branch in-
LDCODEBRANCH structions with memory reference formats where the

branch target may be directly fetched. Causes an
instruction read CACHE transaction code which overrides
the read transaction codes. Inhibits Operand Request but
sets Branch Request. Used with a FORCEWORD decode
attribute.

LDCODEFRCWORD Decoded from op-code bits I2B00-08. Indicates that the
instruction F & C bits must be ignored for the CACHE
transaction. Used with branch instructions.
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store array (vector target). The uPC input
multiplexer outputs an address selected
from one of six sources. The uPC contains
a full adder which selects either the direct
data in, from the input multiplexer, the
sequential address, which is the program
counter address incremented by one, or
the sub-routine return address from the
control register. Figure 3-15 illustrates
the uPC and the functions of each
element. The 4-bit register is used to hold
the CROM address during the CROM
access cycle. The output from the uPC is
the next macroinstruction address to the
control store array.

The Il register, loaded from the I2
register at the beginning of the CROM
cycle, is used as a holding register for the
instructions. The Il register is auto-
matically advanced to the I0 register at
the end of the CROM cycle unless an I or
E Unit wait exists. The CREG cycle then
starts the execute stage.

3.6.4 Execute Stage (I0)

The final stage of the instruction pipeline
is the execute stage. It is responsible for
executing macro instructions, generating
microinstructions, performing
arithmetic/logic operations, and decoding
microinterrupts. This information is now
in the CREG cycle.

The 10 register automatically receives the
instruction from the Il register during this
clock cycle. The I0 register holds the
instruction during the execution phase and
is advanced only under firmware control.
If advanced, the 11/I0 look ahead multi-
plexer is enabled. This is also controlled
by the firmware. During the CROM cycle,
signal HADVANCEI1 is used as the select
control line to the I1/10 look-ahead
multiplexer. HADVANCEII at 1 selects
the I1 file address. HADVANCE Il at 0
selects the I0 file address. The output of
the MUX is dependent upon whether the
operation is a read or write data to the
internal registers of the 2901 or the dual-
ported RAM. The A address multiplexer
only selects read file addresses whereas
the B address multiplexer selects both
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read and write file addresses. The actual
register selected is dependent upon CROM
bits 12-15 (for A register select) or CROM
bits 16-19 (for B register select). The
three bit fields (bits 6-8,9-11, and 13-15)
output from the multiplexer were
previously described in detail, in the I bus
functions section of this chapter. The
RAM register selection was previously
described in the microprocessor operation
portion of this chapter. Figure 3-16 shows
the I1/10 look ahead multiplexers, the
register A and B multiplexer/registers,
and their relationship with the 2901
microprocessor.

The control store array outputs the CROM
information to the control register
(CREG) and to the Register A and B
multiplexer/registers. The CROM bits to
the Register A and B multiplexer/
registers, as shown in figure 3-16, are for
the 2901 register selection. The CROM
bits gated to the control register are
transformed into CREG bits for properly
sequencing microinstructions. The
microword output from the CREG is gated
directly into the 2901 via the CROM bus.
The microword provides the basic control
for the entire CPU. Chapter 4 is devoted
to a description of the microword.

Arithmetic and/or logical operations are
computed by the 2901. The 2901 is
effectively the termination of the instruc-
tion pipeline. All outputs from the
pipeline are gated to the 32 bit Y-Bus
which distributes the data to both the CS
unit and MS unit.

Once these four cycles have been
completed, and after an instruciton has
been executed, the cycles continue
running repeatedly.

3.6.5 Advance Pipeline Routines

The pipeline is advanced by the firmware
jump decode (JUMPD) sequence order. It
is advanced without regard to the test
conditions coded within the JUMPD. The
specified test conditions (true or false)
only controls the Micro Program Counter
(uPC) input multiplexer. It also
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determines if the decode vector is taken
(test true) or uPC+1 (test false) is taken
(refer to figure 3-8).

The JUMPD sequence order generates the
BUMPPIPE signal on the MS unit. The
BUMPPIPE signal is used to advance the
pipeline. It is a CROM cycle signal which
may be inhibited by either the CREG
cycle of a microinterrupt return sequence
or by a STOPCLOCK signal.

In the case of a microinterrupt return, the
CROM cycle of the JUMPD (BUMPPIPE)
is executed prior to the microinterrupt.
Therefore, it must be inhibited during the
microinterrupt return sequence in order to
prevent a double BUMPPIPE order.

A STOPCLOCK inhibit of a BUMPPIPE
signal can happen under varing circum-
stances; however, the two primary con-
ditions for a STOPCLOCK inhibit signal
are:

The instruction in execution causes a
microinterrupt.

The instruction in I1 required a
CACHE access and did not gain
access to the CACHE (CACHE miss).

The BUMPPIPE signal is a CROM cycle
that is generated by the microinstruction
which represents the macroinstruction in
I1. However, the macroinstruciton in I1
must be executable by one micro-
instruction. If a macroinstruciton rquires
two or more microinstructions for exe-
cution, the macroinstruction resides in I0
before the BUMPPIPE signal is
generated. In this case, Il is invalid until
the next time that the pipeline is
advanced.

Although the BUMPPIPE signal is used to
qualify the clocks for the pipeline
registers, it functions in both the CROM
and CREG cycles as follows:

CROM Cycle: The entire pipeline is

advanced assuming the rules for
advancement are met.
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CREG Cycle: The IO register is
advanced a second time. If Il is
invalid, then I0 is invalidated during
the second advance. :

The general rules for advancing the
pipeline are as follows:

I3 is advanced if:
a) 12 is empty.
b) 12 is full but is advanced to Il
during the advance.

13 is loaded with a new instruction
from cache or invalidated if the
cache output is invalid. I3 is loaded
with a valid instruction if:

a) I3 is empty.
b) I3 is full but is advanced to 12
during the advance.

13 is not loaded with a new instruction
or is invalidated if:

a) I3 contains a right halfword
instruction that has not been
advanced (or will not be
advanced) to I2 during this
advance.

b) I3 is full and I2 if full and
cannot be advanced during
this advance.

c) I3 contains a Branch Target
instruction and the associated
branch instruction has not
been committed. In this case
I2 will be invalidated if
advanced.

12 is advanced if:

a) The instruction in I2 requires
a logical MAR access and if
LMAR access was achieved.

b) The instruction in I2 requires
a logical and effective MAR
access and the access was
achieved.

c) All direct addressing related
to the instruction in I2 has
been resolved. '

d) The instruction in I2 does not
have an index register
conflict with either the
instruction in I1 or I0.



If I2 can not be advanced or if 12 is
invalid, then Il will be set invalid.

I1 advances automatically one clock
after it is set valid unless a
STOPCLOCK condition is present.
The automatic advance is used since
the contents of Il represents a micro
instruction CROM cycle which can
only be true for one clock cycle. The
STOPCLOCK condition only effects
the I2, I1, and I0 levels of the
pipeline. The stop clock also
indicates either a microinterrupt of
the instruction in IO or the lack of a
required cache access by the instruc-
tion in Il.

I1 can be advanced by either:

a) The automatic advance of a
valid instruction from I1 to
10.

b) The CREG cycle of a JUMPD
(BUMPPIPE) sequence.

If I1 is invalid during an advance
sequence, then I0 will be invalidated
by that advance.

3.6.6 Pipeline Conflict Logic

The purpose of the piepline conflict logic
is to detect conflicting instruction con-
ditions in the pipeline. An example of a
conflict is when a prefetched instruction
is currently resident in the pipeline, but is
due to be modified by one of the instruc-
tions that precede it. The conflict is
detected by comparing the LMAR and the
I3PC (N+2 LMAR) address register
contents. :

Pipeline conflicts occur most commonly
with store instructions. When an in-
struction that modifies memory is de-
coded, and an address match is detected, a
conflict exists. In this case, the IE Unit
does not use the instruction currently in
I3PC, but refetches the instruction using
the same address.

3.6.7 Pipeline Violation Logic

The pipeline violation logic checks the
status of the pipeline for a specific
instruction sequence. If a store in-
struction, which modifies memory, is in
the execute stage of the pipeline, the
remaining pipeline registers may contain
invalid data. With this type of violation,
the pipeline is flushed and refilled with
the valid data that the store instruction
(executed in I0) put into memory. The
sequence of events is monitored and
executed by the pipeline violation PROM.

The pipeline violation PROM checks status
flags relating to instructions contained in
the pipeline. If pipeline register I0
contains a store instruction, and that
instruction is executed, the PROM deter-
mines whether the remaining instructions
in the pipeline are still valid and whether
or not they are halfwords. This is
accomplished by comparing the contents
of the LMAR with the contents of the
I3PC register (CS Unit). If the comparison
is good, the comparator outputs an address
equal (HADDREQUAL) signal, which is
sent to the violation PROM. The PROM
simultaneously checks the store instruc-
tion in I0 against the contents of the I2
and I3 registers. If a match occurs, a
pipeline violation is evident.

In the event of a pipeline violation, a flip-
flop is set to output a refill pipeline
(HI2REFILLPIPE) signal. This signal is
routed to the MS Unit and a decode
exception is generated. This causes the
vector logic to stop generating true
vectors and to generate exception
vectors. The instruction in I3 is
simultaneously clocked into I2; however,
the corresponding status flag is not set
which invalidates the instruction. When
this instruction moves into the execute
(I0) stage, the firmware reads the refill
pipeline signal, the prefetched data is
flushed from the pipeline, and the pipeline
is refilled with the new data put into
memory by the store instruction.

An exception to the sequence occurs when
10 contains a store instruction and I1
contains a branch instruction. In this
case, a pipeline violation exists but the
branch flushes the violation.
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3.6.8 Address Specification Errors

An address specification error occurs
when a particular instruction violates
address specification rules applicable to
that instruction. Table 2-14 lists the
instruction operation codes together with
their attributes and refers to the rules
applicable for op codes by number. The
conditions (rules) that generate address
specification errors are listed in a
separate table (table 2-15).

The vectors and rule terms for an address
are generated in the MS Unit when the
instruction is at the precode (I2) stage.
Up to two variations of the rule terms (0,
1 and 2) are also generated depending upon
which sub-decode PROMs are being used.
The output from the two PROMs is routed
through a 2:1 multiplexer/latch which
effectively acts as an Il stage holding
latch. The rules governing the address are
clocked into the I1 pipeline register to-
gether with the instruction. The two rule
PROMs on the IE Unit decipher the ad-
dress specification rules plus the various
signal conditions of the pipeline contained
in I1. This determines whether one of the
address specification rules is applicable.
If it is, an HILASERROR signal, an
HIOASERROR signal, and the instruction
with which the error is associated are
clocked into I0. This generates a
microinterrupt vector signal which is
routed back to the MS Unit and used to
generate a microinterrupt.

3.6.9 Auto Microinterrupt

This feature is set automatically when the
system is reset by enabling the enable
auto microinterrupt level order. Once
enabled, it remains set until the system is
powered down unless micro diagnostics are
being run. In this case, the auto micro-
interrupt feature is disabled.

The auto microinterrupt is only effective
as a valid instruction goes into the 10
stage, and only on the first cycle of a
multicycle instruction. If an instruction,
which is being decoded and routed into I0,
contains a decode exception, an auto
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microinterrupt does not occur since the
decode exception has priority.
Conversely, if the instruction does not
contain a decode exception, the flip-flop
is enabled for one cycle as the instruction
goes into I0 and is then disabled.

The auto microinterrupt logic monitors
the I0 stage for instructions that contain a
microinterrupt. The logic then causes the
microinterrupt to be accepted. If an
instruction contains nested micro-
interrupts, the logic handles all of them
until the instruction becomes executable.
This is accomplished by generating a
return signal (HICRORTNTL) from the
microinterrupt to the microinterrupt
logic, thereby reenabling the logic for an
additional cycle.

3.7 Cache

The cache is loaded at medium speed from
SelBUS main memory. It is then accessed
at high speed. This technique, employing
the fast access cache memory, is used to
attain higher operating speeds. Figure
3-17 is a block diagram of the relevant
hardware.

3.7.1 Introduction

At any time, the cache can only contain a
copy of portions of the much larger main
memory. The actual data written into the
cache is determined by the assumption of
certain basic principles. The principle of
program locality infers that programs
have a tendency to make most accesses in
the region of locations accessed in the
recent past. Programs typically execute
instructions in straight lines or small
loops, with the next few accesses likely to
be a few words ahead of or behind the
current instruction. Logic elements such
as stacks grow and shrink from one end,
with the next few accesses near the
current top. Also, hardware data
elements are often scanned sequentially.
The cache uses these behavioral charac-
teristics by bringing in extra words on
each access to main memory (look ahead)
and keeping copies of recently used words
(look back).
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Programs tend to contain common blocks
of data (operands), as opposed to inter-
mixing instructions and operands.
Advantage is taken of this tendency by
providing separate instruction and operand
caches. This also ensures that data
written into the cache will not overwrite
instructions.

Since the cache contains only portions of
main memory, its effectiveness is based
on the percentage of time that the
required data can be fetched from the
high-speed cache rather than the lower
speed main memory. A cache HIT occurs
if the data is found in the cache. A cache
MISS occurs if the data is not found in the
cache and has to be fetched from main
memory.

3.7.2 Primary Organization

The cache memory comprises 16 4K by 4-
bit RAM ICs configured to provide an 8K
by 32-bit word cache. The total cache is
divided into two 4K banks, designated
bank 0 and bank 1. Each of the 4K banks
is further subdivided into a 2K operand
cache and a 2K instruction cache. Each
location contains one 32-bit memory word,
excluding parity or error correction bits.

With one 2K-word operand or instruction
cache and a 4M-word main memory, there
are 2048 possible memory words that can
be stored in any given location. However,
there are two 2K-word operand caches and
two 2K-word instruction caches. In the
worst case of a 4M-word program con-
sisting entirely of instructions, only two of
the 2048 possible alternatives can be
cache resident at any time. A cache index
array is provided to track the storage of
words in the cache locations. The index
array comprises four 4K by 12-bit RAM
ICs. Two index RAMs are assigned to
cache bank 0 and two are assigned to
cache bank 1. In each case, one index
RAM is associated with instructions and
the other with operands (data). Each
index RAM location contains the 11 most
significant bits of a physical word address
(only 11 of the 12 bits in each location are
used).

A valid RAM is used to signify whether
locations in the cache banks contain valid
information. The valid RAM comprises
two 4K by 4-bit RAM ICs. Each single bit
in the valid RAM corresponds to a cache
location (data and instruction locations in
both cache bank 0 and cache bank 1).
Therefore, every location in the cache can
be marked valid or invalid.

3.7.3 Cache Addressing

The cache banks, the index RAMs, and the
valid RAM are addressed in parallel by a
22-bit physical word address (HPADDROS8
thru 29) from the physical memory address
bus. Address bits HPADDRI19 thru 29 are
routed via the RAM driver to select the
same location in all seven RAMs (two
cache, four index, and the valid RAM).
Address bits HPADDROS thru 18 are
routed around the RAMs to four
comparators to be compared with the
output from each index RAM.

3.7.4 Write to Cache
Writes to cache are executed either via

the SelBUS data in register or via the
cache data in register. Data is routed in

* from the SelBUS over the LD00 thru 31

lines into the SelBUS data in register
during data returns from main memory.
Data is routed from the YB bus over the
HYBO0O thru 31 lines into the cache data in
register during CPU to cache writes. Both
of these registers transfer data onto a
common 32-bit bus (HDINOO thru 31).
Depending upon whether the data is to be
written into cache bank 0 or cache bank 1,
one of the two left shifters aligns the data
to byte, halfword, or word boundaries.

The appropriate cache bank is then loaded
via the HOLEFSHOO thru 31 lines or the
H1LEFSHO0O thru 31 lines.

To increase the speed of the cache fill-up
sequence, the control logic reads a double-
word pair from SelBUS main memory and
stores the doubleword in the cache. The
cache logic always reads doublewords even
though the cache access may have been
for a byte or a halfword. The doubleword
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is fetched using back-to-back memory
read transfers (MRTs) to the even and odd
memory words. An exception is if the
CPU accesses a memory location in a
shared memory block. In this case, the
control logic only reads one word.

3.7.5 Least Recently Used (L.R.U.)
Circuitry

Both cache banks are addressed in parallel
and valid data can exist in the same
location in both banks. When it is required
to load data into the cache under these
circumstances, a decision is made to
determine into which bank the new data
will be loaded. This decision is based upon
which cache bank was last used (actually,
which was least recently used). A RAM in
the L.R.U. circuitry is always addressed in
parallel with the cache banks, index
RAMs, and valid RAMs. The 12-bit
address to the 4K by 4-bit L.R.U. RAM
comprises the HIDR19B0 thru 29B0 lines
and a signal which indicates whether a
cache instruction bank or a cache data
bank has been accessed. Two of the four
data I/O lines from the RAM are used as
flags (HOLRU and HILRU) to indicate
which cache bank has been used least
recently for any addressed location (one
flag is set, the other is reset). These
indications are always provided, but they
are only used if a cache write conflict
exists. If a conflict exists, the flags are
sampled to detect which cache bank was
used least recently. The data is then
written into this bank, since the bank most
recently used is likely to contain more
relevant information which should be
retained. A write enable signal (LWRITEO
or LWRITE]) is issued to the appropriate
cache bank via the RAM Driver.

3.7.6 Externally Originated Writes

The cache must contain a reliable copy of
SelBUS main memory. Therefore, each
externally originated memory write must
be monitored (byte, halfword, or
fullword). This is the primary function of
the SelBUS interface. The SelBUS

memory address of each externally origin-
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ated memory write is captured and a
cache access is initiated. A cache hit
signifies that information exists in the
cache under that address. However, this
data is now incorrect because new data
has been written to main memory under
that address. The cache resident data
must, therefore, be invalidated. This is
accomplished by resetting the valid bit in
the corresponding valid RAM location.
The data that is now invalid remains
inaccessible in the cache until it is
overwritten with valid data.

3.7.7 CPU Write to Cache

In order to avoid discrepancies between
the cache and main memory, all CPU
writes to cache must also be written to
main memory. The memory address is
captured at the SelBUS interface and the
information is written over the SelBUS to
that location in main memory.

3.7.8 Read From Cache

In order to determine if a specific memory
location is cache resident, the seven
RAMs are addressed as previously
described. If one of the outputs from the
comparators signifies equal comparison on
the HICOMP or HDCOMP lines, the speci-
fic memory location is cache resident.
This can only occur if the information in
the cache is marked valid in the valid
RAM. The addressed output bit from the
valid RAM is applied to the comparators
together with the HPADDROS8 thru 18
lines. It is compared with a permanent
high logic level forming the twelfth bit on
the other input to each comparator (11-bit
output from the index RAM and perma-
nent high at comparator). Determination
of whether the word is in cache bank 0 or
cache bank 1 is inherently made by the
index RAM that generated the equal
comparison.

If no equal comparison is found, the
specified memory location is not cache
resident. This is decoded as a cache miss
by the cache control logic, and the
required information is fetched from main
memory.



During normal operation, starting from a
reset state, the bits in the valid RAM are
reset. When the CPU begins to execute
instructions, an attempt is made to read
operands and instructions from the

cache. Since the bits in the valid RAM
are reset, a cache miss occurs. The
control logic takes over to fetch the
required information from SelBUS main
memory using SelBUS memory read trans-
fers (MRTs). The requested information is
returned using SelBUS data return trans-
fers (DRTs). Each DRT received is stored
in the cache. The 22-bit physical address
is routed in on the LDTO0O thru 21 lines.
At the SelBUS MAR, the HPADDRI19 thru
31 lines are output onto the physical
memory address bus to address the cache
banks, index RAMs, and valid RAM via the
RAM driver. The HPADDROS8 thru 18 bits
are routed via the PMAR buffer and
stored in the corresponding location in the
index RAMs. Also, providing there are no
errors (parity, etc.), appropriate bits in
the valid RAM are set.

Handling of the information fetched from
main memory varies according to whether
it is an instruction or an operand. The
requirement for an operand fetch is
detected at the I2 stage of the pipeline
(decode stage). If the operand is not found
in the cache, it must be fetched from
main memory before the instruction can
be executed. The instruction is advanced
to the I1 (CROM stage). The Il and IO
(execution stage) are then stopped until
the operand is fetched. When the data is
returned, it is written into the cache and
simultaneously loaded into the cache data
out register on the MS unit (via the cache
multiplexer and the CAMUX bus) for use
by the instruction in the pipeline.
Operand alignment is performed (if
required) by right shifters on the MS unit
before the data is loaded into the cache
data out register.

An instruction fetch varies in two ways
depending upon whether execution of the
instruction in the I0 stage of the pipeline
is finished. If execution of the instruction
is not finished, the pipeline is still full. In

this case, the returned data is written to
the cache. When the instruction in I0 has
been executed, the pipeline flows, and the
13 register (predecode stage) is empty.
The cache is then accessed and the
instruction is loaded into 13.

If the instruction in the I0 register has
been executed by the time the new in-
struction has been fetched from main
memory, the I3 register is already
empty. The new instruction is written
into the cache and simultaneously loaded
into I3.

3.7.9 Cache Memory Control Register

The cache memory control (CMC) instruc-
tion is used to clear and to turn on/off the
cache banks. The contents of a specified
general purpose register are loaded into
the cache memory control register on the
CS Unit via the Y Bus (YB23 through
YB31). The bit pattern then determines
how the cache is controlled. If set, bits 23
through 26 clear instruction cache bank 0,
instruction cache bank 1, operand cache
bank 0, and operand cache bank 1
respectively. If set, bits 27 through 30
enable (turn on) the cache banks in the
same respective order (bit 27 instruction
cache bank 0, bit 30 operand cache bank
1). If bits 27 through 30 are reset, the
corresponding cache banks are disabled
(turned off). Bit 31 is normally used for
diagnostic purposes. If bit 31 is reset, the
instruction cache banks are bypassed.

3.7.10 Cache Shifter (F and C Bits)

The F and C bits in a memory reference
instruction control the cache shifters.
The F bit determines whether the
operation is a word or byte type. The C
bits determine the shift. The F and C bits
are routed from the SelBUS and used to
address a decode PROM as signals HFBIT
and HCBIT30/31 respectively. The output
from the PROM controls the related shift
logic on the MS Unit. The data type
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(doubleword, word, halfword, or byte) and
the shifts for combinations of F and C bits
are as follows:

F BIT C BITS DATA
12 30 31 TYPE SHIFT
0 0 0 32-bit No shift
word
0 0 1 Left Shift bits
half- 00-15 to
word 16-31
0 1 0 64-bit No shift
double-
word
0 1 1 Right No shift
half-
word
1 0 0 Byte 0 Shift bits
00-07 to
24-32
1 0 1 Byte 1 Shift bits
08-15 to
24-31
1 1 0 Byte 2 Shift bits
16-23 to
24-31
1 1 1 Byte 3 No shift

Sign extension is required for both left and
right halfword data types. For a left half-
word, bit 16 is examined after the shift
has been done. If bit 16 is a logical 0, bits
00 through 15 are filled with Os (i.e., bytes
0 and 1 = 00 hex). If bit 16 is logical 1,
bits 00 through 15 are filled with all 1s
(i.e., bytes 0 and 1 = FF hex). A right
halfword is sign extended in the same way,
but there is no prior shift. Byte data
types are always right justified.
Therefore, bit 00 through 23 are zero
extended (i.e., bytes 0, 1, and 2 = 000 hex).

3.7.11 Shared Memory Detection

In a system with two CPUs, the area of
memory from 128K up to the maximum of
4M words may be shared. In this case, the
external path to the shared memory is by
way of alternate ports. Therefore, one
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CPU cannot monitor memory transactions
that occur through the other port. Unless
100 percent of memory transactions can
be monitored, the cache cannot be kept up
to date.

The actual area of memory to be shared is
defined by software in the form of an
upper and a lower limit in blocks of 128K
words. This information is routed in on
the YB bus and stored in a register within
the shared memory detector circuitry.
Accesses to main memory are constantly
monitored and compared with the infor-
mation stored in the limit register. If an
access to the area of shared memory is
detected, the cache is bypassed and the
read or write is executed directly to or
from main memory.

In a system two CPUs, if one CPU
generates a set bit in memory (SBM) or
zero bit in memory (ZBM) instruction, a
read and lock (R&L) is generated within
the specified shared memory boundaries.
The other CPU is then prevented from
performing a SBM or a ZBM instruction
until the original instruction is complete.
However, the second CPU can perform
other memory transactions (memory read,
memory write) during the time that the
R&L is active.

In a system with a CPU/IPU configuration,
which share the same private memory, all
of the memory is locked out until the
instruction is completed.

3.7.12 Instruction/Operand Stop

Functions such as break points may be
implemented at the CRT panel. These
include instruction stop (IS), operand read
stop (RS), and operand write stop (WS).
Two sets of panel attention and I/O ready
lines from the SelBUS are monitored
(LSCPTTN and LREADY for the CPU,
LIPPTN and LIPREADY for the IPU).
These lines are used to sense and control
address stops. The mode, CPU or IPU, is
detected at the MS Unit and signal HIPU
is used to select the appropriate lines via
a multiplexer. The selected ready line is
routed via SelBUS tag logic to produce an



HRDY flag which is examined by the
firmware. The corresponding panel
attention line is routed via error status
logic to produce either a qualify address
stop (HQULADST) signal for an instruction
stop or an operand address stop
(HADDRSTOPERR) signal. In the case of
the IS and RS functions, the cache is
turned off and the processor reverts to the
single-word fetch mode (as opposed to
double-word fetches from cache).

3.8 Writable Control Store (WCS)

Entry and use of the WCS, together with
some basic user notes, are provided in the
following paragraphs. Detailed software
control and initialization information is
contained in Chapter 2.

3.8.1 Entry and Use

Entry into WCS from software is accom-
plished using the JUMP WCS macro-
assembler instruction. This instruction
allows the user to jump to any of the 4K
or 8K locations within WCS (which were
initialized when WCS was loaded) where
vector addresses (in microcode) are stored
which address routines within the WCS.
When calling any of the WCS user written
routines from software, the user accesses
these routines through JUMP WCS.

The writing of WCS is accomplished using
the WRITE WCS macroinstruction. The
reading of WCS is accomplished using the
READ WCS macroinstruction. The proto-
col and use of the WCS instructions are
fully covered in the Reference Manual.

The use of each WCS instruction is briefly
described in the following list.

1. Jump WCS instruction. To allow
the user access to the WCS.

2. Write WCS instruction. Allows
the user the ability to write to the
WwWcCs.

3. Read WCS instruction. Allows the
user to read the contents of
WCS. This allows the user to
verify the contents of the WCS
against the data that was loaded
into the WCS, and accommodates
storage and retrieval of data in
WCS. The user may desire to use
WCS for temporary storage of
program data. This instruction
allows retrieval of that data.

4. Set CPU instruction. Used to
switch the CPU from operating
under the main firmware set
(PROM) to ACS. RD(bits 6, 7 & 8)
of the instruction will specify the
GPR in the CPU that will define
the operating characteristics of
the CPU. If bit 21=1, the CPU
will operate under ACS control. If
bit 21=0, the CPU will operate
under CROM control (default).

5. Read CPU status instruction
places the current operational
status of the CPU into the R
register.

3.8.2 WCS User Notes

When utilizing the WCS, the following
points should be noted.

1. If there is no keyword in the
scratchpad, system Reset
initializes all locations in WCS,
requiring the user to reload.

2. Power failure destroys the
contents of WCS, necessitating
that the user reload all of the
WCS.

3. The JWCS instruction is addressed
in the range of 1000-2FFF.

4. All executable code contained in
WCS is written in microcode.
Standard assembler coding is not
executable by WCS.
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3.9 Memory Map

The memory management hardware
permits full utilization of all available
memory and includes memory allocation
and protection (MAP). Figure 3-18isa
block diagram of the relevant memory
management hardware.

3.9.1 Introduction

Any user's task requires a certain amount
of storage space (logical space), and
sequential software-generated logical
addresses are assigned to the program.
However, in order to make the most
efficient use of available memory in a
multiprogram environment, programs are
not necessarily stored sequentially within
the physical memory. Therefore, for a
program to run, the logical addresses must
be converted into physical addresses. As a
basic definition, mapping is the mode of
operation in which software-generated
logical addresses are transformed through
the memory map so that they become
references to actual physical locations in
main memory. Different users may have
access to some of the same physical ad-
dress space and occasionally share these
common blocks of memory.

A program may be dispersed into non-
contiguous 2K-word blocks throughout the
physical memory. The map image of a
given task tracks this dispersion. All map
images are controlled by the software
operating system. When the CPU is
operating in the mapped environment,
firmware monitors all programs that are
currently running and appropriate parts of
the map images are brought in as
required. The techniques used to clear a
map image, load another, and access it are
fast enough to ensure that programs
appear to run concurrently.

Normally, the map contains the required
data, the logical to physical address
conversion is performed, and the cache or
main memory is accessed. However,
under certain circumstances, registers in
the map may not be loaded or they may be
loaded with invalid data. An indication of
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either of these conditions is provided. If
an empty or invalid map location is ad-
dressed, a map miss signal is generated
and routed to the IE unit asa
microinterrupt. A sequence is initiated to
fetch the required map entry from cache
or main memory, validate it, and load it
into the map. The map is then
reaccessed. During this time, the
macroinstruction pipeline is frozen if the
miss occurred on an operand fetch; it is
flushed and refilled if the miss occurred
on an instruction fetch.

3.9.1A Demand Page Overview

The demand page tools provided by the
CPU are organized around the map logic.
The map logic provides 2048 map
registers. Each map register designates a
2048-word (8K-byte) block of physical
memory. The total logical address space
provided by the map logic is 4 megawords
(16 megabytes).

The demand page scheme functions in the
mapped mode of operation by detecting
accesses to invalid memory blocks. An
invalid memory access is defined as an
instruction or operand access where the
map register describing the memory block
has its valid (V) bit set to the zero
(invalid) state. The map image descriptor
list (MIDL) containing the map image
descriptors (MIDs or map registers) is
described in later paragraphs; the format
is shown in figure 3-19.

The basic hardware/software assumption
for the demand page scheme is that when
a logical memory block is defined as
invalid, the referenced memory block is
not resident in memory but is available on
the backing store I/O device (disc). When
a software access to an invalid memory
block is detected, the CPU firmware
connects the invalid access to the demand
page fault trap. The error reporting
technique used in generating the old PSD
stored in the demand page fault trap
context block (TCB) causes the program
counter portion of the old PSD to point
directly at the instruction causing the
invalid memory access. The invalid



memory block described by the demand
page fault trap is corrected by the
software, and the instruction pointed to by
the old PSD of the TCB is restarted.
Normal instruction execution is then
resumed.

To correct the invalid memory error and
correct the demand page fault trap,
software must transfer the logical
memory block from the backing store
device to physical memory and set the
physical address of the block into the
memory map register image together with
the map valid bit. Typically, the memory
protection access code must also be
configured together with accompanying
zero states of the memory modify bit and
the memory access bit in the map register
memory image. When the correct map
register memory image has been defined
and generated, the software program and
the instruction causing the demand page
fault trap may be resumed by the
execution of a Load Program Status
Doubleword and Change Map (LPSDCM)
instruction with the old PSD of the
demand page trap context block as the
target of the LPSDCM instruction. The
context of the offending program must be
preserved from the time a demand page
fault trap occurs until the program is
resumed. This is accomplished by placing
the program context on a software stack
relative to the offending program.

3.9.1B Demand Page Fault Trap Handling

After the occurrence of each demand page
fault trap, software decisions are made to
handle the trap correctly. The CPU
demand page tools provide assistance in
two areas of the decision making

process: determination of the logical
block number that produced the demand
page fault trap (invalid indication), and
map block utilization for cases where
insufficient unallocated physical memory
remains to hold the requested memory
block.

3.9.1B.1 Logical Block Determination

On each occrrrence of the demand page
fault trap, CPU firmware formats the map

register number (logical map block
number) of the faulting block into bits 21
through 31 of the sixth word of the
demand page fault TCB. Bit 0 of the sixth
word is used to indicate whether the
demand page fault trap was caused by an
instruction memory access or an operand
memory access. Bit 0 set (1) indicates
that the demand page fault trap was
caused by an instruction memory access at
the address specified by the old PSD of
the TCB. Bit O reset (0) indicates that the
trap was caused by an operand access, and
the old PSD specifies the instruction
associated with the operand effective
address caused the trap. Again, in both
cases, the logical map block number of the
faulting block is provided in bits 21
through 31 of the sixth word of the
demand page fault TCB.

3.9.1B.2 Map Block Utilization Bits

See figure 3-19. Each internal map
register and its map image descriptor
(MID) provide two bits (M and A) that
describe the utilization of the associated
memory block. The memory modify bit
(M), when set, indicates that software had
modified the corresponding memory block
since it was loaded into memory. The
memory access bit (A), when set, indicates
that the corresponding memory block has
been accessed (used) by software since it
was loaded into memory.

The M and A bits are reset (0) in the map
register image when the corresponding
memory block is loaded into physical
memory. The map valid bit (V) should be
set (1) in the map register image (the M
and A bits have no definition if it is
reset). When the correct map register
image has been defined, it may be loaded
into the internal map registers by
executing a LPSDCM instruction.

If the program accesses a valid memory
block with the M and A bits reset (0) in
the corresponding internal map register,
the CPU causes one or both of these bits
to become set in order to define the type
of access to the memory block. The
relevant bits in the map register image

3-89



06-€

L |

weierq YOoId 3rempaeq juowadeuepy Liowop “§I-€ 2

v 24

PHYSICAL
MEMORY
ADDRESS

BUS

16
HYB16-31 |
7 16
YBBus SET MAP LHITMOO-15 , | emux
ENTRY 4 AND MAP HMAPMISS
SETM00-15 )° Loae b ERROR F——————>
L .
DECODER L 0ATA ¥ —p LOGIC[ 355
l36 10
35 v
LLDMAPHITRAM 4 WRITE ENABLE
! HIT MAP
o HMADDROS-14 RAM
1 3 —> |35 DATA
y 4 SELECT
24 HMADDR15-18 HMADDR15-18 L4 INPUTS J
'r HPADDR19-31 13 N
7
LOGICAL I y
MEMORY HMADDRO8-18 ,
ADDRESS L 1
BUS A
HMADDROB'18
MAP
RAM
WRITE ENABLE
LWRMAPRAM P DATA 1/0 [-3—7-
* A A
LLDMAPRIGHT
QUTPUT ENABLE 2 | n
H100CLKF A r > 2:1 "
. .
: HPADDROS-1
. s DDROB1E . o
HEVECAREGCLK 1HMAPos-18_ ! ¥ sLock aooRESs MUX =]
7P 37
16 MAP IN ®
camuxisa1 1% LN Lcoree P
- EVEN 4
SelBUS
DATA HMAPVALID
INREG —P»] I 3
CACHE CAMUX BUS 32 f
CACHE P>
Bi?K —»1 v va “
1mapos-18 '
CACHE —P» |27.2a 4
BANK
1 cAamuxoo-15 6 HMAPVALID
7>
©) 4 (1) HP1, HP2, HMBIT, HABIT
2
Iz 7
LLDMAPLEFT
H100CLKF OUTPUT ENABLE
HSETMRAM I

L200%8




saaonns eye( Swddeyy -61-¢ SNty

7 @8uey)
$28058

16-¢

MAP IMAGE DESCRIPTOR

BITS0& 1 0= INVALID
PRIVILEGED aTs | sivs
PsD2 Y 1a | 2818 1= VALID
BIT 32 (M) 0 = UNMAPPED ENVIRONMENT ) [ o NO ACCESS ALLOWEED BITS3 818 0~ A FIRST WRITE (MODIFY) YO THE
- MAP BLOCK HAS NOT OCCURRED
1 = MAPPED ENVIRONMENT 0 ] 1 NO ACCESS ALLOWED 1= A FIRST WRITE (MODIFY) TO THE
MAP BLOCK HAS OCCURRED
BIT 47 (R) 0 = CHANGE MAP IMAGE 9 ! 2 READ/WRITE/EXECUTE .
1 = RETAIN MAP IMAGE 0 1 1 READ/EXECUTE ACCESS ONLY 8ITS 4820 G~ A FIRST READ OR WRITE (ACCESS)
1 o o READ/WRITE/EXECUTE T o ““‘E':‘” OCCURRED
1= A FIRST READ OR WRITE (ACCESS)
BITS 60 -63 MPL INDEX (BITS 61 - 63 ALWAYS 0) s ° ' READ/EXECUTE ACCESS ONLY TO THE MAP BLOCK HAS OCCURRED
! ! i READ/WRITE/EXECUTE BITS 616 & 21-3) 11-8I1T ADDRESS, DEFINES A SPECIFIC MEMORY
1 1 ) READ/EXECUTE ACCESS ONLY BLOCK OF 2K WORDS
PROGRAM STATUS DOUBLEWORD TWO MAP IMAGE DESCRIPTOR LIST (MIDL)
32 47 50 0 1 2 34 6 16 16 17 18 19 20 21 3
() RESERVED R CPIX 000 v]rijP2i M} A] BLOCK ADDR. |V [P1}P2]M] A BLOCK ADDR.
2 3
SCRATCH PAD
ENTRY A 5
'MPL BASE ADDR. . MASTER PROCESS LIST (MPL)
(F3) [ 16 31
R COUNT A
MSD pae et e e e e e e e e R ——— I"J HALFWORD ENTRIES fv
MIDOL ADDRESS 1
32 63
N
[ A ‘ =
> p DOUBLEWORD ENTRIES par'}
* : MIDL
] COUNT
T I N — Nt N+2
MIDL ADDRESS
N+3 N+4
MSD
N+B N+6
BIT 0 (ENTRY ZERO ONLY} 0 = LOAD ADDRESSED MIDL
1 = RETAIN LOADED MIDL
BIT 0 (ALL OTHER ENTRIES) 0 = THIS ENTRY POINTS TO
A COMPLETE IMAGE
1 = THERE IS A BORROW FROM
ANOTHER MIDL WHICH MUST
BE EVALUATED FIRST
8ITS 16 - 31 COUNT OF HALFWORDS TO LOAD
BITS32-63 ADDRESS OF MIDL




are also set to prevent having to roll out
the map register contents during context
switches. The set state of the M and A
bits in internal map register prevents the
CPU from detecting unmodified or unac-
cessed conditions. When the CPU has
loaded a memory map register image
containing the M and A bits in the set
state, the map logic will not sense
subsequent modifies or accesses to the
corresponding memory block.

3.9.2 Memory Mapping Data Structures

Figure 3-19 depicts the software memory
mapping data structures used by the CPU
to load its map. The master process list
(MPL) and the map image descriptor list
(MIDL) must be kept in memory on double-
word boundaries. These contain the infor-
mation required by the CPU to load the
map. MPLO is normally reserved for the
operating system (OS). The remaining

MPLs are used for tasks (programs) within

the OS.

3.9.2.1 Current Process Index

The second word of the program status
doubleword (PSD) contains the current
process index (CPIX) field. The 14-bit
CPIX field provides the index that is used
to locate the map segment descriptors
(MSDs) in the MPL, thereby providing a
link from the PSD to the map image
descriptors (MIDs). The CPIX must point
to a doubleword boundary; therefore, the
three least significant bits of the 14~bit
field are always zero.

3.9.2.2 Master Process List

The map segment descriptors (MSDs) are
contained in the MPL. The address of the
MPL is set at system reset time by loading
a predetermined scratchpad cell (F3 hex)
with the 24-bit physical MPL address.

This location points to MSDO. Therefore,
when the CPIX = 0, the MIDs for MSDO
are used. If the CPIX is not equal to zero,
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the CPIX and location F3 are added
together. The result of this addition
points to the MSD entry other than MSDO
(on a doubleword boundary).

In the format of an MSD entry, bit 0 of
word 0 is interpreted one way for MSDQ
and another way for all other MSDs. For
MSDQO, bit 0 is considered as the retain bit
(R). For any other MSD, bit 0 is con-
sidered as the include bit (). A load
program status doubleword and change
map (LPSDCM) instruction for a context
switch require that the map be changed.
The firmware then determines the appro-

" priate MSD to retrieve by adding the CPIX

portion of PSD2 to the MPL base address
located in the scratchpad (location F3).
When this MSD is retrieved, the firmware
analyses bit 0 (I bit). If bit 0 is equal to
zero, all maps described by the CPIX are
used. The hit RAM is zeroed and the look-
aside buffer pointer points to the CPIX
MSD.

If bit 0 of the retrieved MSD is equal to
one, the firmware examines MSDO. If bit
0 (R bit) is equal to zero, an absolute load
of all maps described by MSDQ occurs and
the CPIX offset is computed. This occurs
once during system initialization and after
changes to the MSDO map block.

Bit 0 of MSD0 equal to one signifies that
the map blocks of MSDO must be retained
and the computed CPIX offset must be
used. Therefore, the executing task uses
the map blocks defined by the computed
CPIX offset MSD to translate the logical
address of the instruction or operand into
a physical memory address while retaining
the map blocks of the OS (MSDO).

The only time that bit 0 of MSDO = 0 and

" bit 0 of the computed CPIX MSD =1 is

during offline diagnostic testing and once
after each reset.

A fault condition occurs if the CPIX =0
and bit 0 of MSDO = 1.

Bits 1 through 15 of word 0 in the MSD
format are reserved for future use. Bits
16 through 31 are the segment count
which signifies the number of map block
entries in the MIDL.



Word 1 of the MSD contains the MIDL
pointer. This is the physical address of
the first map image descriptor (MID) in
the MIDL. The MIDL must point to a word
address (bits 30 and 31 are set to zero).

3.9.2.3 Map Image Descriptor List

The MIDL maps logical addresses into
physical addresses. Each MIDL entry
associates a map block of the logical
address space with a map block of physical
memory. The MIDL contains 2048 map
image descriptors (MIDs). Each MID
specifies a 2048-word block of physical
memory.

3.9.2.4 Map Image Descriptor

Each MID is a halfword entry (16 bits) in
the MIDL. An MID contains an 11-bit
block address, a valid/invalid bit (V), two
write protect bits (P1 and P2), a modify
bit (M), and an access bit (A). Figure 3-19:

shows the format and defines the states of -

the V, P,'M, and A bits.

The 11-bit block address designates a
2048-word block of physical memory. The
V bit is used to assign a valid or invalid
status for memory accesses. An invalid
memory access is defined as an instruction
or operand access to a memory location -
where the MID describing the associated
memory block has its V bit reset to the
invalid (0) state.

The P bits are used to determine whether
the designated memory block may be
written to (write protected) or read from
(read protected). Writes to memory may
be prevented in the unprivileged and
privileged modes. Full details for the
states of the P1 and P2 bits and the
corresponding read/write status are
contained in figure 3-19.

The M and A bits are used to define the
utilization of the associated memory
block. The M bit is set whenever a first
write occurs to the corresponding memory
block. This indicates that software has
modified the memory block since it was

first loaded into memory. The A bit is set
when the coresponding memory block has
been accessed (used) by software for the
first time since it was loaded into
memory. Once the M and A bits have
been set, subsequent modifies or accesses
are not sensed by the map logic.

3.9.2.5 Map Initialization

When a new PSD is being enered into the
CPU, there are three possible CPU actions
relating to the map.

When the unmapped mode is set, the CPU
deactivates the map for the duration of

‘the execution of this PSD. (An unmapped

indication in the PSD overrides the
LPSDCM instruction.)

When the LPSD instruction is used to load
the PSD and the mapped mode is set, the
CPU activates the map circuitry and uses
whatever is in the map.

Except for the two preceding cases, entry
of a new PSD into the CPU results in new
information being loaded into the map.

Information relating to the actual number
of map entries that have been loaded is
retained in the CPU in order to prevent
access to an entry in the map above that
number. If a logical address of the
process causes the CPU to generate a map
index that is greater than the number of
loaded entries, the CPU asserts a map
fault trap.

3.9.3 Map Entries

Each 16-bit halfword entry (MID,
previously described) in the map RAM has
the following hardware signal nomencla-
ture assigned to it: 11-bit bock address =
HMAP08-18, valid bit = HMAPVALID,
write protect bits = HP1 and HP2, modify
bit = HMBIT, and access bit = HABIT.

3.9.4 Map Load

During firmware map load sequences
(context switch time), data is routed from

Change 2
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the cache or main memory one 32-bit
word at a time. This data constitutes two
16-bit map entries, and it is selected via
the cache multiplexer out onto the
CAMUX bus. Data in the CAMUXO00 thru
31 lines is clocked into the map in
registers., These two registers are loaded
in parallel by the HEVECAREGCK clock
signal, and their outputs are enabled by
the LLDMAPLEFT and LLDMAPRIGHT
signals so that they may be individually
written to the map RAM. The load and
write enable signals are generated by MS
Unit firmware.

If a map access is initiated and the
relevant hit bit is not set, the information
must be fetched from cache or main
memory. A check is always made to see if
the required map entries are cache
resident. However, for a majority of map
loads, the data will not be in the cache
and a fetch from main memory is
implemented. The map is then reaccessed
for the required block address.

The time required to load the map is
minimized by organization which uses a
look-aside buffer technique. The hit map
RAM functions as the look-aside buffer.

3.9.5 Look-aside Buffer(Hit Map RAM)

Load map time (context switch time) is
minimized by using a look-aside buffer
technique. The hit map RAM actually
contains 1024 (1K) 16-bit locations;
however, only 128 locations are used.
Each single bit in the hit RAM corresponds
to a register (16 bits) in the map RAM,
and indicates whether the register has
been loaded or not.

The look-aside buffer speeds up the time
required to clear the map during a load
sequence. Instead of sequentially clearing
all 2048 locations in the map RAM, the
locations in the hit RAM are cleared by
loading a reset pattern set up on the YB
bus. Each register in the hit RAM
corresponds to 16 registers in the map
RAM. Therefore, the map RAM can be
completely cleared in 128 cycles. There is
no need to actually clear the contents of
the map RAM since the hit RAM bits
provide the overriding factor and, in
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effect, signify whether the information in
the map RAM is usable or not,

Bits in the hit RAM are checked by using
the most significant 11 bits of the 24-bit
logical address. The lower order seven
bits (HMADDROS thru 14) address one of
the 128 locations, while bits HMADDRI15
thru 18 are used as data select inputs at
the 16:1 multiplexer to select one of the
16 bits from the addressed location. The
selected bit is monitored by the map error
logic and used to generate the HMAPMISS
signal if appropriate (i.e., if the hit RAM
bit signifies that the corresponding map
RAM register has not been loaded). The
HMAPMISS signal is divided into two
separate signals which are routed to the
microinterrupt logic on the IE unit. These
two signals reflect the distinction between
an operand map miss and an instruction
map miss. ‘

If an operand read or write results in a
map miss, a data map miss (HDMAPMISS)
signal is generated. This results in an,
immediate microinterrupt at the IE utiit.
A memory read sequence is initiated and
the required pair of map entries are
fetched from cache or main memory,
validated, and loaded into the map. The
macroinstruction pipeline is frozen until
the map is reaccessed for the required
data.

If an instruction fetch results in a map
miss, a map miss error is associated with
the instruction loaded in the I3 pipeline
register. At the I2 decode stage of the
pipeline, the IE unit initiates a memory
read sequence. The required pair of map
entries are fetched from cache or main
memory. During this time, the macro-
instruction pipeline is flushed. The map is
then reaccessed for the required infor-
mation, the pipeline is refilled, and the
instruction stream is continued.

Data may be written to the hit RAM
either over the YB bus or via bit
generation logic. In both cases, the data
is routed via the set map entry logic onto
the LHITMOO thru 15 lines. The YB bus
(HYB16 thru 31) is the data source when
an initial configuration is loaded into the
hit RAM or when the hit RAM is reset.
The bit generation logic consists of a



decoder which operates on logical memory
address bits HMADDRI15 thru 18 and de-
codes to one of 16 mutually exclusive
outputs on the LSETMO00 thru 15 lines.
The hit RAM is updated by entering data
into the appropriate register via parallel
OR functions. This ensures that only the
relevant bit in the 16-bit register is
changed to signify that the corresponding
map register has been loaded, the other 15
bits remain unchanged.

3.9.6 Map Bypass Multiplexing

A 2:1 multiplexer is used to select either
the 11 most significant bits of the logical
address (designated HMADDROS thru 18)
or the 11-bit output from the map RAM.
The HMADDROS thru 18 lines are selected
only when the CPU is in the unmapped
mode, or temporarily unmapped, due to IE
unit firmware transfers or physical
memory accesses. At all other times, the
map RAM output is selected via the
multiplexer.

3.9.7 Logical to Physical Address
Conversion

Conversion from a logical to a physical
address is performed by addressing the
map RAM with the most significant 11
bits (HMADDROS thru 18) of the 24-bit
logical address. (The hit map RAM is
addressed at the same time via the
HMADDROS thru 14 lines). The output
produced on the map RAM I/O lines is an
11-bit physical address. After selection
through the 2:1 map multiplexer, this 11-
bit output is appended to the 13 least
significant bits (designated HPADDR19
thru 31) to form the 24-bit physical
memory address. This address is routed
over the physical memory address bus and
used to access the cache or main
memory. The most significant 11 bits
address a block of 2K locations, the next
11 bits address a specific location within
the 2K block, and the two least significant
bits may be used to specify one of the four
bytes within the location.
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CHAPTER 4

MICROPROGRAMMING

4.1 The Microword

The 64-bit, fifteen field microword
provides the basic unit of control for the
CPU. Figure 4-1 illustrates the
microword fields and their associated 1
microinstructions. Subsequent tables of )
this chapter will give detailed descriptions

of the individual microinstructions and

their functions.

The Microsequencer (MS) Unit control
store consists of thirty-two 2K by 4-bit
programmable read-only-memories
(PROMS), organized into a 64-bit wide by
4K-word double deep array. This control
store is known as the control read-only-
memory (CROM). A microword is burned
into each CROM location (address), the
sum of all microwords being the micro-
program or firmware.

The CROM may be replaced by the alter-
able control store (ACS) or augmented by
the writable control store (WCS) which are
also located on the MS Unit board. The
ACS and WCS are random access memory
(RAM) rather than PROM and are under
software control.

Although the microprogram counter (uPC),

with its 16-bit wide path, is able to

address any one of 64K different word

locations, only the 12 least-significant

uPC bits, 04 through 15, are needed to

address the 4K-word PROM or ACS. 2.
Additional uPC bits 02 and 03 are used

when addressing the WCS. The ACS is

enabled through software control.

Logic drawings referred to in this chapter
are the Microsequencer (MS) Unit,
130-103654, the Cache SelBUS (CS) Unit,
130—103 655, and the Instruction
Execution (IE) Unit, 130-103656.

4.2 Firmware Responsibility

The firmware is responsible for control of
the CPU hardware to accomplish the
following operations:

Decode the macroinstructions into
microinstruction sequences that
perform the following:

a. Fetch operands from memory
and/or the register set.

b. Modify the operands as
specified by the
macroinstruction.

c. Set condition codes to indicate
the results of the operand
modification; that is, overflow,
result zero, positive, or
negative.

d. Store the modified operands
back into memory or the
register set as required.

e. Translate macroinput/output
and interrupt control instruc-
tions into SelBUS physical
addresses and transfer
sequences (SelBUS protocol)
that cause the macrolevel
addressed channel/device to
perform the required function;
that is, input data, output
data, enable interrupt, etc.

Monitor the macroexecution
stream for the occurrence of
errors (nonpresent memory,
privilege violations, power fail,
etc.). If an error does occur, the
firmware must do the following:

a. Identify the error.

b. Prioritize the error.
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Figure 4-1. Microword
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c. Schedule the error by
executing a trap sequence.

d. Perform a software context
switch to a trap handler
program.

3. Monitor the macroexecution
stream for the occurrence of
interrupts. If an interrupt occurs,
the firmware must do the
following:

a. Identify the level of interrupt
(priority).

b. Execute an interrupt sequence.

c. Perform a software context
switch to a specific interrupt
handler program.

4. Monitor the macroexecution
stream for the occurrence of
control panel communications. If
control panel communication does
occur, the firmware must do the
following:

a. Perform the requested
function; that is, run, halt, etc.

b. Translate the requested
function into a SelBUS
sequence (protocol) with the
system control panel.

4.3 Machine Cycles

Each microinstruction uses two time
periods for execution: the CROM cycle
and the CREG (control register) cycle (see
figure 4-2). The timing that regulates
these cycles is a single-phase clock that
triggers every 150 nanoseconds throughout
the system.

The CROM cycle refers to functions
performed at the end of the control store
access cycle. These functions are
performed by direct output or decodes of
the CROM without an intervening clock.
Typically these include microsequencing
and operation monitoring (test) functions.
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The CREG cycle refers to functions per-
formed from the control store register.
CREG cycle functions require an inter-
vening clock between them and CROM
cycle functions and can provide a result-
oriented operation for a full step (150
nsec) following the CROM step.
Generally, CREG cycle functions control
the data structure and data put-aways.

At the beginning of each CROM cycle the
uPC, from its internal register, sends '
address bits which will fetch the next
microword from the CROM. The contents
of the microword (CROM bits) are fanned
out to various locations in the CPU to
arrange, in advance of the clock edge,
functions that are to occur during the
CREG cycle.

On the next clock, the CROM bits pass
through the CREG f{lip-flops and fan out
to control the entire data structure. All
elements that operate synchronously with
the ALU need the full 150 nanosecond
cycle time, so everything in the data
structure runs from the control register.

When an instruction N is fetched, it is
clocked through a CROM cycle and a
CREG cycle. When instruction N
progresses from the CROM cycle to the
CREG cycle, a subsequent instruction N+1
is clocked into the CROM cycle.
Likewise, when instruction N is clocked °
into the CREG+1 cycle, instruction N+1
starts the CREG cycle, and a subsequently
fetched instruction N+2 enters the CROM
cycle. Testing of each instruction is done
near the end of the CROM cycle, and the
test results must be true about 10
nanoseconds before the end of the cycle.
Tests related to the execution (CREG
cycle) of instruction N must be coded in
instruction N + 1. Execution related tests
include ALUZ, ALUPOS, etc. CREG+1
cycle functions include cache and map
transactions and setting of condition
codes.
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Figure 4-2. CROM Cycle and CREG Cycle Descriptions

4.4 Microword Field Descriptions

The following paragraphs describe the
microword fields and their operation. For
detailed information on the individual
functions of these fields, see tables 4-1
through 4-25 at the end of this chapter.

4.4.1 Sequence Field

The sequence (S) field, CROM bits 00
through 03, specifies the details of the
branch function (or sequence) when a
branch is selected, and determines the
test results required to enable that
branch.

CROM bit 00, when low, generates a
branch condition true and, when high, a
branch condition false capability. That is,
if branch condition false is selected and
the test results are false, then the branch
is taken. This is accomplished in the test
structure where CROM bit 00 is used as
the enable input of a 2:1 multiplexer and,
inverted, as the enable input of a second

2:1 multiplexer. The 4-bit outputs of the
two multiplexers are fed to the same
inputs of an or gate and the resulting
output is the HTESTTRUE signal to the
uPC control. If the HTESTTRUE signal is
true, the selected sequence is performed;
if false, the next sequential step in the
microprogram is fetched and executed.

CROM bit 01 is input, through a 2:1
multiplexer and an inverter, to the enable
input of a decoder/demultiplexer. CROM
bits 02 and 03 are used as the select bits
to the decoder/demultiplexer and, with
the CROM bit 01 high/true, select the
inactive (NOP), the decode jump (JUMPD),
the top of stack pickup (RETURN), or the
return from microinterrupt (URTN).

There are four types of special branch
instructions which select either 4, 8, 12,
or 16 bits of the microword. To provide
these, CROM bits 01 through 03 are also
connected to a 4-bit shift register whose
output, with CROM bit 01 low/false, is the
select signals LHOLDO1 through
LHOLDO3. These signals, through a series
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of gates, control which of CROM bits 48
through 63 are to be used to provide the
address of the next microword when a
branch is specified.

The sequence field can be considered part
of the test structure since it controls
some of the uPC operation. All sequence
operations controlled by the sequence
field are conditional, based on the test
results and whether CROM bit 00 is in the
pranch condition true or branch condition
false state.

4.4.2 Test Field

The test (T) field, CROM bits 04 through
11, determines which signals are to be
tested, in the test structure, during the
CROM cycle. The test field consists of
four individual test group enable bits
(CROM bits 04 through 07) and a 4-bit line
number designator field (CROM bits 08
through 11).

The test structure is a matrix of input
signals that are selected, by the test field
bits, and multiplexed into a single signal
(HTESTTRUE) which is sent to the uPC
control. This signal determines whether a
jump, if specified, will be taken. The test
structure is capable of monitoring all of
the internal conditions and states within
the CPU and all of the external signals
input to the CPU that may affect its
operation.

The horizontal dimension of the test
structure matrix is called a group and is
controlled by CROM bits 04 through 07.
The vertical dimension of the matrix is
called a line number and is controlled by
CROM bits 08 through 11.

Each of CROM bits 04 through 07, when
low, can enable a specific group of tests
by activating one of four 16:1 multiplexers
in the test structure. CROM bits 08
through 11, the control inputs to the 16:1
multiplexers, determine the specific line
of the chosen test group to be tested.
Multiple groups may be enabled, but all
tests selected must have the same line
number.
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For a multiple test BCT (CROM00=0), the
test structure enables a branch if any one
of the specified tests is high. If all
specified tests are low, the test structure
disables the branch.

Equation:
HTESTTRUE=TEST1:TEST2:TEST3
:TEST4 (: Equals OR )

Syntax:

IF TEST1:TEST2:TEST3:TEST4*GO
TO BRANCH

For a multiple test BCF (CROMO00=1), the
test structure enables a branch if any one
of the specified tests is low. If all
specified tests are high, the test structure
disables the branch.

Equation:
HTESTTRUE=%TEST1:%TEST2

<% TEST3:%TEST4 (% Equals NOT)
Syntax:
IF%TEST1:TEST2:TEST3:TEST4*GO
TO BRANCH

4.4.3 Register A Field

The register A (RA) field, CROM bits 12
through 15, determines the A-port address
of one of the 16 registers (0 through F) in
the uP2901, the base register file and the
floating-point accelerator (FPA) file.
Additionally, the value of CROM bit 24,
the macro A bit, controls the source of
the A-port address.

When the MA bit is zero, the hexadecimal
value of CROM bits 12 through 15 directly
represents an A-port address in the range
of 0 through F.

When the MA bit is one, CROM bits 12
through 15 are used with a multiplexer
which selects bit combinations from the
IMUX Bus and uses their hexadecimal
value to determine the A-port address.
The IMUX Bus can source either the Il or
10 register, depending on the state of the
HADVANCEIO signal.

The A-port addresses are determined at
the end of the CROM cycle and used
during the CREG cycle. Since data can
only be read from the A-port, the RA field
register can only be used as a source.



4.4.4 Register B Field

The register B (RB) field, CROM bits 16
through 19, determines the B-port address
of one of the 16 registers (0 through F) in
the uP2901, the base register file and the
floating- point accelerator (FPA) file.
Additionally, the value of CROM bit 32,
the macro B bit, controls the source of the
B-port address.

When the MB bit is zero, the hexadecimal
value of CROM bits 16 through 19 directly
represents a B-port address in the range of
0 through F.

When the MB bit is one, CROM bits 16
through 19 are used with a multiplexer
which selects bit combinations from the
IMUX Bus and uses their hexadecimal
value to determine the B-port address.
The IMUX Bus can source either the I1 or
I0 register, depending on the state of the
HADVANCEIO signal.

The B-port addresses are determined at
the end of the CROM cycle and used
during the CREG cycle. Since data can be
both written into and read from the B~
port, the RB field register can be used as
both a source and a destination.

4.4.5 External Source Field

The external source (ES) field (CROM bits
20 through 23) selects the DB or MDB Bus
data source to be fed to the direct data
inputs (DO through D3) of the uP2901 and
to the scratchpad.

CROM bits 20 through 23 are input to the
DB and MDB Bus control circuitry on the
MS, IE, and CS Units. From the control
circuitry, the enable signals to the
selected data source are generated and
held, in latching flip-flops, until the next
clock (CREG cycle). This latching method
assures proper timing of these signals so
that all coordinating sources are enabled
within a nominal margin.

The ES field can address 16 possible
external sources; however, an additional
16 sources can be chosen through use of
the ES overlay (ES.OVL) CROM order.

4.4.6 Internal Source Field

The internal source (IS) field, CROM bits
24 through 27, determines the sources,
within the uP2901, of the two 4-bit ALU
input words R and S.

CROM bit 24, though part of the IS field,
is used as the macro A (MA) bit by the RA
field (paragraph 4.4.3). The MA bit
controls the source of the A-port address.

CROM bits 25 and 27 are fed to flip-flops
where they are converted to CREG cycle
signals. If a multiply or divide order has
not been given, CROM bit 26 passes
through the ALU shift multiplexer and a
flip-flop, where it also becomes a CREG
cycle signal. These CREG cycle signals
are then fed, in parallel, to the I0 through
I2 inputs of the eight uP2901s where they
control the ALU source operand decode.

The ALU performs its logic and arithmetic
operations on two 4-bit input words R and
S. The R-input field is driven from a 2-
input multiplexer, while the S field is
driven from a 3-input multiplexer. Both
multiplexers also have an inhibit
capability; that is, no data is passed. This
is equivalent to a zero source operand.

The ALU R-input multiplexer has the
RAM A-port and the direct data inputs (D)
connected as inputs. Likewise, the ALU
S-input multiplexer has the RAM A-port,
the RAM B-port and the Q register
connected as inputs. This multiplexer
scheme gives the capability of selecting
various pairs of the A, B, D, Q and 0
inputs as source operands.

4.4.7 ALU Function Field

The ALU function (+) field, CROM bits 28
through 31, selects one of eight ALU
functions to be performed by the uP2901.
These functions include three binary
arithmetic and five logic operations.

CROM bit 28, the most-significant bit of
the field, is the Cn bit. This bit serves as
the carry-in bit to the least-significant
uP2901. The carry-in bit is used for
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arithmetic operations only, having no
effect on logic operations. If an ALU
function requires, or uses, the ones
complement, the carry-in will not be used;
however, if a function requires the twos
complement, the carry-in will be given.

CROM bits 29 through 31 are fed to inputs
of the CREG flip-flops. On the next
CREG clock, these CREG cycle signals
feed the I3 through I5 inputs of all eight
uP2901s where their octal value is
decoded and used to select the internal
ALU function.

4.4.8 Internal Destination Field

The internal destination (ID) field, CROM
bits 32 through 35, determines the
destination, within the uP2901, of the
results of the ALU operation. The ALU
results are also sent to the uP2901's Y-
port output.

CROM bit 32, though part of the ID field,
is used as the macro B (MB) bit by the RB
field (paragraph 4.4.4). The MB bit

controls the source of the B-port address.

CROM bits 33 through 35 are clocked
through CREG f{lip-flops where they
become CREG signals HIC06 through
HICO08. These signals feed the I6 through
I8 inputs of the eight uP2901s where their
octal value is decoded and used to select
the ALU destination.

In adddition, signal HICO07 is used to
control the ALU shift multiplexers when
an ALU shift is specified, and signal
HICO08 is used by the condition control
logic in indicating a shifter overflow.

4.4.9 External Destination Field

The external destination (ED) field, CROM
bits 36 through 39, selects the Y or YB
Bus data destination to be loaded from the
Y-port outputs, YO through Y3, of the
uP2901s.

CROM bits 36 through 39 are clocked

through CREG flip-flops into the CREG
cycle. The resulting CREG bits are then
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input into the Y Bus control circuitry on
the MS, IE and CS units. From the control
circuitry, a load signal is sent to the
specified destination and the Y or YB Bus
bits are loaded.

The ED field can address 16 possible
external destinations; however, an
additional 16 destinations can be chosen
through use of the ED overlay (ED.OVL)
CROM order.

4.4.10 Order Enable and Order
Group Fields

The order enable (OE) and order group (O1
and O2) fields, CROM bits 40 through 51,

determine which orders are to be enabled

in the order structure.

The order structure is an output signal
array that decodes microwords into
individual output signals. From one to
four orders may be generated from a
single microword. In general, orders are
used to initialize or terminate internal
control functions. Orders may also serve
as qualifiers for certain events and
register strobe signals.

The order structure provides both CROM
and CREG cycle orders. Some orders are
delayed for an additional clock to provide
CREG+1 cycle orders.

The horizontal dimension of the order
array is called a group and is controlled by
CROM bits 40 through 43. The vertical
dimension of the array is called a line
number and is controlled by CROM bits 44
through 51.

Each of CROM bits 40 through 43, when
low, can select a specific group of orders
by enabling one of twelve decoder/-
demultiplexers in the IE and MS units. Up
to four different groups may be enabled at
one time.

The O1 and O2 fields, CROM bits 44
through 47 and 48 through 51 respectively,
select the individual line numbers within
the enabled groups. These CROM bits are
input to the decoder/demultiplexers and
their hexadecimal value determines the



chosen line numbers. Since group 0 and 1
line numbers are controlled by the Ol
field and group 2 and 3 line numbers are
controlled by the O2 field, it is possible to
select two different line numbers with one
microword.

4.4.11 P, C and H Fields

The P, C and H fields, CROM bits 52
through 63, are able to perform multiple
functions, including addressing and code
selection. These fields are used singly, or
in combination with each other, to provide
the various field-lengths required. This
combining of fields allows the microword
to perform several functions simulta-
neously if their binary codes agree. The
following paragraphs describe these field
combinations and their functions.

4.4.11.1 L Branch Address Field

The long branch address field, CROM bits
48 through 51, combines the O2, P, C and
H fields. The contents of this field are
used to replace the entire sixteen bits of
the uPC. The long branch function is
provided for the possibility of add-on RAM
(WCS). The limit of the long branch is any
of 64K lines in the @0000 through FFFF
range.

4.4.11.2 Branch Address Field

The branch address field, CROM bits 52
through 63, combines the P, C and H
fields. The contents of this field are used
to replace the twelve least-significant bits
of the uPC during the CROM cycle, leav-
ing the remaining four bits unchanged.
Since the limit of this function is any of
4096 lines in the @000 through FFF range,
a BRANCH will allow a sequence from any
point in the firmware to any other point.

4.4.11.3 Leap Address Field

The leap address field, CROM bits 56
through 63, combines the C and H fields.
The contents of this field are used to

replace the eight least-significant bits of
the uPC during the CROM cycle, leaving
the remaining eight bits unchanged. This
allows a branch to any of 256 lines in the
@00 through FF range.

4.4.11.4 Hop Address Field

The hop address field, CROM bits 60
through 63, uses only the H field. The
contents of this field are used to replace
the four least-significant bits of the uPC
during the CROM cycle, leaving the
remaining twelve bits unchanged. This
allows a branch to any of sixteen lines in
the @0 through F range.

4.4.11.5 Literal/Scratch Address Field

The literal/scratch pad address field,
CROM bits 52 through 59, combines the P
and C fields. This field provides an
address for either the scratch pad or the
32-bit constant (literal) PROM.

4.4.11.6 Byte Constant Field

The byte constant field, CROM bits 52
through 59, combines the P and C fields.
This field provides a byte literal for the
byte constant register in the IE unit.

4.4.11.7 CC Select Field

The condition code select field, CROM
bits 52 through 55, uses only the P field.
The hexadecimal value of this field deter-
mines the rules to be used in setting the
condition codes. This field is enabled by
the SETCC(X) (group 2, line F) or
SETCCI1(X) (group 0, line 7) CREG orders.

4.4.11.8 L-Order Select Field

The level order select field, CROM bits 52
through 55, uses only the P field. Level
orders differ from other firmware orders
in that, once set, they remain in effect
until reset. The hexadecimal value of this
field determines the level order to be set
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or reset. This field is enabled, and the
level order set, by the order
LATCH.ORDER (group 2, line 0). Level
orders are reset by giving the orders
LATCH.ORDER and LATCH.DATA (group
3, line 0) simultaneously.

4.4.11.9 ALU Shift Codes Field

The ALU shift codes field, CROM bits 54
and 55, uses the two least-significant bits
of the P field. In ALU shift operations,
the value of this field determines the type
and direction of shift and the ALU
registers involved. The field, enabled
when CROM bit 33 is equal to one, is used
in conjunction with the internal desti-
nation field (CROM bits 32 through 35).

4.4.11.10 SelBUS Codes Field

The SelBUS codes field, CROM bits 56
through 59, uses only the C field. The
hexadecimal value of this field determines
the type of transfer to take place on the
SelBUS. The field is enabled by either the
BUSREQ.E order (group 3, line E), which
uses the execution memory address
register (EMAR) for the transfer, or the
BUSREQ.L order (group 3, line F), which
uses the logical memory address register
(LMAR).

Any one of sixteen possible SelBUS codes
may be addressed by this field; if the
TTYPE.OVL order (group 0, line 2) is given
at the same time, a different set of
SelBUS codes (SelBUS overlay codes) may
be addressed.

Table 4-1
Sequence Field CROM 00 through 03 (Sheet 1 of 2)

Reference:

Influenced by:

MS Unit logic drawing 130-103654, sheets 23 through 25

Results of the basic test field

Influences: Address interpretation of CROM bits 48 through 63 and the next uPC
address

General: The binary value of CROM bit 00 determines the test results required
to enable the selected branch or sequence.
If CROM bit 00 = 0, Branch condition true
If CROM bit 00 = 1, Branch condition false
The octal value of CROM bits 01 through 03 determines the details
of the branch function (or sequence) when a branch is selected.

Value Syntax Detailed Definition

0 *HOP Hop. The HOP command causes the four bits of the H field
(CROM bits 60-63) to replace the four least-significant bits
of the uPC during the CROM cycle. The other twelve uPC
bits remain unchanged.

Limit of HOP: Any of 16 lines in the 0-F range.

1 *LEAP Leap. The LEAP command causes the eight bits of the C
and H fields (CROM bits 56-63) to replace the eight least-
significant bits of the uPC during the CROM cycle. The
other eight uPC bits remain unchanged.

Limit of LEAP: Any of 256 lines in the 00-FF range.
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Table 4-1
Sequence Field CROM 00 through 03 (Sheet 2 of 2)

Value Syntax Detailed Definition

2 *BRANCH Branch. The BRANCH command causes the twelve bits of
the P, C and H fields (CROM bits 52-63) to replace the
twelve least-significant bits of the uPC during the CROM
cycle. The other four uPC bits remain unchanged.

Limit of BRANCH: Any of 4096 lines in the 000-FFF range.

Locations 000-FFF represent 4K of CROM; therefore, in the
CPU, the BRANCH will allow a sequence from any point in
the firmware to any other point.

3 *LBRANCH Long branch. The LBRANCH command causes the sixteen
bits of the O2, P, C and H fields (CROM bits 48-63) to
replace all sixteen bits of the uPC.

Limit of LBRANCH: Any of 64K lines in the 0000-FFFF
range.

The LBRANCH is provided for the addressing of WCS. The
LBRANCH is also used during the JUMP.DATA CROM order
(group 1, line C) which selects the 16 least-significant YB
Bus bits (bits 16 through 31) as the branch address if the
test is true.

4 *NOP No operation. The NOP command causes no sequence
operation to be performed. The uPC is incremented by one.
5 *URTN Microreturn. The URTN command is used after a micro-

interrupt has been serviced. The URTN causes the contents
of the uPC save register to be the address of the next
microinstruction.

6 *RETURN Return. The RETURN command operates in conjunction
with a link and push. The link causes the desired branch,
and the push puts the present uPC+1 address into the FILO-
type push/pop address stack within the uPC. The address
stack is four deep.

The RETURN command causes the last address placed in
the stack to be used as the next uPC address after a return
from a subroutine. Thus, the execution will continue on the
next microinstruction after the last link and push. A pop
order must also be issued with the return to eject the last
address from the stack and make it available to the uPC's
internal register.

7 *JUMPD Decode jump. The JUMPD command causes the pipeline to
be advanced (bumped). This occurs regardless of the test
coded with the JUMPD. The specified test condition (true
or false) only controls the uPC input multiplexer and
determines if the decode vector (test true) or the uPC+1
(test false) is taken. If the test is false, the decode vector
for the instruction moving into the Il register, at the end of
the JUMPD CROM cycle, is lost.
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Table 4-2
Test Field CROM 04 through 11

Reference: IE Unit logic drawing 130-103656, sheet 31

Influenced by:  Bit 00 of the sequence field

Influences: Bits 01 through 03 of the sequence field

General: The binary value of CROM bits 04 through 07 determines the test

matrix groups to be enabled. CROM bits 04 through 07 are low/true;
therefore @F indicates that no test is enabled. Any number of test
groups may be enabled simultaneously.

CROM bit 04 =0 Test group 0 enabled
CROM bit 05 =0 Test group 1 enabled
CROM bit 06 =0 Test group 2 enabled
CROM bit 07 =0 Test group 3 enabled

The hexadecimal value of CROM bits 08 through 11 determines the
appropriate line of the test matrix.

See paragraphs 4.4.2 for examples of multiple test equations and
syntaxes.

See tables 4-3 through 4-6, test groups 0 through 3 respectively, for
detailed definitions of the individual tests.
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Table 4-3
Test Group 0 (Sheet 1 of 3)

Value

Syntax

Signal

Detailed Definition

TRUE

LCROMO

SCPATTN

IADDRSTOP

HALT

PWRFAIL

+V{4)

LCROMO00

HSCPATTNL

HIOIADDR-
STOP

HCPUHALT

HPWRFAIL

The TRUE test is used to force a true
test condition. This test is used for un-
conditional branches.

CROM bit 00 is low/true. This test
indicates that the output of the CROM
bit 00 NAND gate is low/true; that is,
branch condition false has been

selected. See the TEST.CC (group 2, line
C) and TEST.ALUZ (group 3, line C)
orders.

System control panel attention, latched.
This test indicates that the IOP panel
function needs servicing by the
processor. The indication is generated by
the IOP console when the SelBUS system
control panel signal is on for more than
one cycle. The HSCPATTNL signal is
cleared by the CPU with the UPACK
order (group 2,

line 2).

Instruction address stop. The instruc-
tion in the IO register has an address stop
pending.

CPU halt. This test indicates that the
CPU is halted and microinstructions are
no longer being executed. The test is
driven from the reset output of the
run/halt flip-flop. The flip-flop is set by
the RUN order (group 3, line 4) or the IOP
panel, and reset by the HALT order
(group 3, line 2) or the IOP panel.

Powerfail. This test indicates that a
powerup or powerdown sequence has
occurred. When powerfail is tested at
CROM location 000, it is a powerup
sequence; in all other cases, it is a power-
down. Powerfail can be inhibited by level
order 3 (DIS.PWRF).
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Table 4-3
Test Group 0 (Sheet 2 of 3)

Value

Syntax

Signal

Detailed Definition

N.FPA

TRACE

AEXP.EN

FLAG

READY

ISAVEOQ

LFPAPRESENT

HTRACEL

HAEXCPEN

HFLAGL

HRDY

HISAVEOQ

Floating-point accelerator is not

present. This test indicates that the
floating-point accelerator is not on-line.
The test is driven from the enable/disable
switch, S1, on the floating-point
accelerator, or by setting or resetting the
FPA level order (value B).

Trace, latched. This is a test of the set
output of level order E (TRACE). A
positive test result indicates that the
CPU is in an instruction-step (single-step)
mode.

Arithmetic exception trap enabled. This
test indicates that the CPU is operating
and should detect an arithmetic exception
if one exists. The arithmetic exception
trap is enabled by bit 07 of PSD1.

Flag, latched. This is a test of the set
output of level order 8 (FLAG). The
FLAG indicates that the context of the
CPU has been temporarily altered, due to
an interrupt, and must be restored before
processing is resumed.

1/O response ready. This is a test of the
set output of the ready flip-flop. The
test indicates that the I/O channel,
addressed by a previous advance transfer
SelBUS code (AICT or ARSTX), has
responded with a ready signal. The ready
flip-flop is reset by either AICT or
ARSTX, set by the LREADYX signal from
the SelBUS, and preset by the
CLEAR.ERROR order( group 3, line 9).

10 register bits 11 through 15 are equal to
zero. This test indicates when bits 11
through 15 of register I0 are equal to
zero. The test is used with shift
instructions to identify shift count zero.
The register is decremented by use of the
DNCNTISAVE order (group 1, line D).
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Table 4-3
Test Group 0 (Sheet 3 of 3)

Value Syntax Signal Detailed Definition

C UNBLOCK HUNBLOCK | Interrupts unblock. This is a test of the set
output of level order F (UNBLOCK). The
test indicates when interrupts are
unblocked. The test is used for PSD2 bits
16 and 17. The unblock interrupt latch is
controlled by software, using the BEI (block
external interrupts) and UEI (unblock
external interrupts) macroinstructions.

D DMAP.MISS HDMAPMISS | Data map miss. This test indicates that the
CPU's map needs to be updated. The test is
true after an access (read or write) has been
attempted to an address that has not been
loaded into the CPU's map. The test is
driven from the cache transaction status
logic. The signal is not true until one cycle
after the cache transaction.

E N.IPL LIPLSWL Not initial program load, latched. This test
indicates that a firmware initial program
load (IPL) is to be performed. The test is
driven from the turnkey panel interface
circuit in the MS Unit.

F N.IPU LIPUMODEL | Not IPU mode, latched. This test indicates
that the IPU mode has not been selected.
The test is driven from the PROCESSOR
SELECT switch logic in the MS unit.
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Table 4-4
Test Group 1 (Sheet 1 of 3)

Value

Syntax

Signal

Detailed Definition

ALUZ

ERR.FLAG

D.NOTA

DADDRSTOP

D.NOTA1

HFEOL

HERRFLAGL

HDNOTA

HDADDR-
STOP

HDNOTA

ALU output equal to zero, latched. This
test indicates that the 32-bit output of
the uP2901s is equal to zero. This test
is valid one clock after the ALU
function and will remain valid for one
clock. The ALUZ test should be coded
two clocks after the ALU operation is
coded.

Error flag, latched. This is a test of the
set output of level order 9

(ERR.FLAG). The firmware uses this
flag when exiting sub-routines to
indicate that a memory or I/O error was
detected in the sub-routine.

Data fetch, no transfer acknowledge.
This test indicates that the memory
operand or I/O channel addressed by the
last memory operand read or I/O bus
transfer was not present (non-present
memory or I/O channel). This condition
is cleared by the CLEAR.ERROR order
(group 3, line 9). The test is driven from
the cache data out status register in the
CS Unit. This test is equivalent to the
D.NOTALI1 test (group 1, line 4).

Panel data address stop. This test
indicates that the panel has detected an
operand (data) write or read address
stop. The stop normally relates to the
previous instruction. The address stop is
cleared by the CLEAR.ERROR order
(group 3, line 9).

Data fetch, no transfer acknowledge.
This test indicates that the memory
operand or I/O channel addressed by the
last memory operand read or I/O bus
transfer was not present (non-present
memory or I/O channel). This condition
is cleared by the CLEAR.ERROR order
(group 3, line 9). The test is driven from
the cache data out status register in the
CS Unit. This test is equivalent to the
D.NOTA test (group 1, line 2).
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Table 44
Test Group 1 (Sheet 2 of 3)

Value Syntax Signal Detailed Definition

5 N.NOVR NOVRFLOW Not N-counter overflow. This test
indicates that the contents of the N-
counter are not equal to @FF in the up-
count mode, and not equal to @00 in
the down-count mode. See the
CNTENORD (group 2, line 1) and
DNCNTORD (group 3, line 1) orders).

6 N.AEPEND | LFPAAEPEND Not arithmetic exception pending. This
test indicates that an arithmetic
exception has not occurred in the
hardware floating-point accelerator
during a floating-point instruction.

7 INTREQ HINTREQ Interrupt request. This test indicates
that an interrupt is requesting service.
This signal may be inhibited by the
reset conditions of latch order F
(UNBLOCK) and the interrupt enable

flip-flop.
8 Not Used.
9 | ADD.SUB LFPAMDATA Add/subtract operation. This test

indicates that either an add or a
subtract operation is taking place in
the floating-point accelerator.

A IPUTRAP HIPUTRAP Internal processing unit trap. This is a
test of the set output of the IPU trap
flip-flop in the MS Unit. The test
indicates that the flip-flop has been set
by a SIPU signal (level order 7) from
another processor. The flip-flop is
reset by the RSTIPUTRAP order (group

3, line 3).
B N.FPA. LFPAAEDATA Not floating-point arithmetic excep-
AEDATA tion. This test indicates that the

currently addressed floating-point
accelerator registers do not contain
arithmetic exception data.

C BASE HBASEMODE Base register mode. This test indicates
that the CPU is operating in the base
register mode. The base register mode
is enabled by bit 06 of PSD1.
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Table 44
Test Group 1 (Sheet 3 of 3)

Value

Syntax

Signal

Detailed Definition

MAP.INV

MAPPROT

HDMAPINV

HDPROERR

Map data invalid. This test indicates
that the current map data entry is
invalid. The test is driven from the
cache data out status register in the CS
Unit.

Map data entry is protected. This test
indicates that a write transaction has
been attempted to a memory address
that is write protected. The test is
driven from the cache data out status
register in the CS Unit. This test is
valid only when the CPU is in the
unprivileged mode.

Not Used.

4-18




Table 4-5
Test Group 2 (Sheet 1 of 3)

Value

Syntax

Signal

Detailed Definition

ALUPOS

PRIV

RETRY

N.FPABUSY

D.TIMOUT

W.NOTA

LSIGNL

HPRIV

HRETRY

LFPABUSY

HDTIMOUT

HWRNOTA

ALU output is positive, latched. This
test indicates that the ALU sign bit
(ALU bit 0) is a logical zero. The test is
valid one clock after the ALU function
and will remain valid for one clock. The
ALUPOS should be coded two clocks
after the ALU operation is coded.

Privileged mode. This test indicates
that the CPU is operating in the privi-
leged mode. This mode is enabled by bit
00 of PSD1.

Retry SelBUS response. This is a test of
the set output of the retry flip-flop.
The test indicates that an attempted
SelBUS transaction has failed to occur
and the CPU must try the transaction
again. This condition is reset by the
CLEAR.ERROR order (group 3, line 9).

Not floating-point accelerator busy.
This test indicates that the floating-
point accelerator is not busy.

Data time out. This is a test of the
cache data out status register. The test
indicates that, during a SelBUS read
sequence, the data return transfer (DRT)
counter has timed out before receiving a
DRT signal from the addressed device.
This condition is cleared by the
CLEAR.ERROR order (group 3, line 9).

Data write, no transfer acknowledge.
This test is driven by the write error
status flip-flop. The test indicates that
the transfer acknowledge (TA) signal
was not received from the addressed
device during a data write operation.
This condition is cleared by the
CLEAR.ERROR order (group 3, line 9).
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Table 4-5
Test Group 2 (Sheet 2 of 3)

Value

Syntax

Signal Detailed Definition

MULTI.
CYCLE

INTRENA

EN.LOCK

EFMAR30

1030

IOREFILL.
PIPE

HMULTICYCLE | Multiple-cycle instruction. This is a
test of the set output of level order C
(MULTI.CYCLE). The test indicates
that the firmware is in the process of
executing a multiple-cycle memory
reference type instruction (e.g., LF,
STF, CALL, RETURN).

HINTREN Interrupt enable. This is a test of the
set output of the interrupt enable flip-
flop. This test indicates that interrupts
are enabled. The set output of the
interrupt enable flip-flop also
influences the results of the INTREQ,
IPUTRAP and UPATTN tests. The flip-
flop is set by the SETINTEN order and
reset by the RSTINTEN order.

HENLOCK Enable lock transfer. This test is
driven from the lower shared memory
limit register. The register is enabled
when the L.SHARED.MEM (value 04)
external destination is chosen. This
test indicates to the firmware that the
software has executed a shared
memory control macroinstruction, and
the CPU is operating in a read and lock
environment. This will cause the
firmware to issue a DREAD.LOCK
(SelBUS code C) transfer instead of a
DREAD (SelBUS code 6) transfer.

HIOEFFLMAR30 | Effective MAR bit 30. This test
indicates that effective memory
address register bit 30 is set. The test
is driven from the IO register.

HIOB30 I0 register bit 30. This test indicates
that I0 register bit 30 is set. The test
is driven from the IO register.

HIOREFILLPIPE | IO register, refill pipeline. This test in-
dicates that the pipeline needs to be
refilled. The test also indicates a
pipeline violation where a memory
store target has been prefetched into
the pipeline. The test is driven from
the I0 register.
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Table 4-5

Test Group 2 (Sheet 3 of 3)

Value

Syntax

Signal

Detailed Definition

EXT

MPCO07

N.INDR.
MISS

CACHE.HIT

HEXT

HMPCO07

LIONIDRMISS

LMISST

Extended addressing mode. This test
indicates that the CPU is operating
in the extended addressing mode.
The extended addressing mode is
enabled by bit 05 of PSD1.

Macroprogram counter bit 07. This
test indicates that macroprogram
counter bit 07 is set, indicating a
macroprogram counter overflow.
The test is driven from the
macroprogram counter.

Not indirect map miss. This test
indicates that a map miss has
occurred as a result of an indirect
memory reference type instruction.
The test is driven by the 10 status
register.

Cache hit. This test, used for micro-
diagnostic purposes, indicates that a
memory read has resulted in a cache
hit. The test is driven from the cache
control circuitry.
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Table 4-6

Test Group 3 (Sheet 1 of 2)

Value

Syntax

Signal

Detailed Definition

ALUNEG

MAP

BUSY

AEXP

D.PE

N.CACHE.

BUSY

HSIGNL

HMAPL

HBUSY

HAEXP

HDPE

LCACHE-
BUSYL

ALU output is negative, latched. This
test indicates that the ALU sign bit
(ALU bit 0) is a logical one. The test is
valid one clock after the ALU function
and will remain valid for one clock.
The ALUNEG should be coded two
clocks after the ALU operation is
coded.

Mapped mode, latched. This is a test
of the set output of level order D
(MAP). The test is used to determine
when the CPU is operating in the
mapped mode. The mapped mode is
enabled by bit 00 of PSD2.

Device is busy. This is a test of the set
output of the busy flip—flop. The test
indicates that a SelBUS transaction
failed to take place because the
addressed device was busy. This
condition is cleared by the
CLEAR.ERROR order (group 3, line 9).

Arithmetic exception. This is a test of
the set output of the arithmetic
exception flip-flop. The test indicates
that an arithmetic exception has
occurred. The flip-flop is set by either
the output of the condition code field-
programmable logic array (FPLA) or
the SETAEXP order (group 2, line E).
The flip-flop is reset by the RSTAEXP
order (group 3, line D). This test
excludes FPA arithmetic exceptions.

Data parity error. This test indicates
that a parity error has been detected
during a data read transaction from
memory. This condition is cleared by
the CLEAR.ERROR order (group 3, line
9). The test is driven from the cache
data out status register.

Cache not busy, latched. This test in-
dicates that the cache memory is not
busy. The test is driven from the I/O
clock circuitry in the CS Unit, and
latched in the IE Unit.
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Table 4-6
Test Group 3 (Sheet 2 of 2)

Value Syntax Signal Detailed Definition

6 CCTEST HCCTEST Condition code test. This test is driven
from the condition code logic in the IE
Unit. A true test result indicates that
one or more of the condition codes, in the
tested combinations listed below, are
equal to one. The octal value of I0
register bits 06 through 08 determines the
CC combinations to be tested.

I0 bits Combination tested
06-08

0 I0 register bit 04
CCl1 ‘

CC2

CcC3

CC4

CC2:CC4

CC3:CC4

CC1:CC2:CC3:CC4

7 UPATTN HATTN User panel attention (console interrupt).
This test indicates tht the IOP attention
function on the IOP console CRT has been
executed, and the panel is calling for
attention. The test is driven from a flip-
flop in the turnkey panel interface
circuit.

8 ROMSIM HROMSIM ROM simulator mode. This test indicates
that the MS unit is operating with a
Development Support System (DSS) or
Instrumentation Interface Unit (IIU)
attached, and ACS is under DSS or IIU
control, replacing PROMs.

9 N.T. LINTEXCPN Not interrupt exception. This test, when
EXCPN low, true, indicates that the MS unit
detects a power fail, system panel
attention, CPU halt, interrupt request,
IPU trap, or console attention exception
condition.

A RD.EQO HIORDEQUO RD field is equal to zero. This test
indicates that the I0 RD field (bits 06
through 08) is equal to zero.

B CMBT HCMBT Cache map boundary test is used to
detect multiple operand instruction that
crosses the map block boundaries. If such
cross boundary occurs it will result in an
address specification trap.

C-F Not Used.

NN WY -
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Table 4-7

Register A Field CROM 12 through 15 (Sheet 1 of 2)

Reference:

General:

IE Unit logic drawing 130-103656, sheet 25

If MA (CROM bit 24) = 0, the hexadecimal value of CROM bits 12
through 15 directly represents the A-port address of one of the 16
registers (0 through F) in the uP2901s, the IE Unit base register file, and
the floating-point accelerator (FPA) file.

If MA = 1, CROM bits 12 through 15 are used with a multiplexer which
selects bits from the IMUX Bus and uses them to determine the A-port
address of one of the 16 registers (0 through F) in the uP2901s, the IE
Unit base register file, and the FPA file. Inputs to the multiplexer are
detailed in the following table.

File addresses are picked up at the end of the CROM cycle and used in
the CREG cycle. If the instruction in the Il register is moving into the
10 register (HADVANCE I0) during the CROM cycle, then the Il register
is the file address source; otherwise, the I0 register is the source.

To be construed as an RA function by the assembler, the syntax must
appear to the right of the =sign. The IR () or BR () syntax also forces a
value of 3 in the ES field (CROM bits 20 through 23); the FPR () syntax
forces a value of D into the ES field.

In the uP2901, the LSB is 00 and the MSB is 03.

Value

Syntax

Detailed Definition

R(R) or
IR(R) or
BR(R) or
FPR(R)

R(RO) or
IR(RO) or
BR(RO) or
FPR(RO)

R(S) or IR(S)
or BR(S) or
FPR(S)

A-port address bits 00 through 03 are driven by IMUX
Bus bits 08, 07, 06 and CROM bit 12 respectively.
CROM bit 12 is equal to zero. Used with arithmetic or
logical add, subtract, multiply, divide, load and store
instructions.

A-port address bits 01 through 03 are driven by IMUX
Bus bits 07, 06 and CROM bit 12 respectively.

Address bit 00 is driven to a logical one. CROM bit 12 is
equal to zero. Used to select an odd register during
doubleword instructions.

A-port address bits 00 through 03 are driven IMUX
Bus bits 11, 10, 09, and CROM bit 12 respectively.
CROM bit 12 is equal to zero. Used with register to
register instructions.

Not Used.
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Table 4-7

Register A Field CROM 12 through 12 (Sheet 2 of 2)

Value Syntax Detailed Definition

6 R(SO) or A-port address bits 01 and 02 are driven by I0 register
IR(SO) or bits 10 and 09 respectively. Address bit 00 is driven to
BR(SO) or a logical one and bit 03 is driven to a logical zero.
FPR(SO) Used to select an odd register for register to register

doubleword instructions.

7 R(IR) or A-port address bits 00 through 03 are driven by I0
IR(IR) or register bits 15, 14, 13, and CROM bit 12 respectively.
BR({IR) or CROM bit 12 is equal to zero.

FPR(IR)

8 R(BR) or A-port address bits 00 through 03 are driven by I0
IR(BR) or register bits 08, 07, 06 and CROM bit 12 respectively.
BR(BR) or CROM bit 12 is equal to one. The ES field (CROM bits
FPR (BR) 20 through 23) is forced to equal three (I.FILE). Used

only to address a base register.

9 R(BRO) or A-port address bits 01 through 03 are driven by I0
IR(BRO) or register bits 07, 06 and CROM bit 12 respectively.
BR(BRO) or Address bit 00 is driven to a logical one. CROM bit 12 is
FRP(BRO) equal to one. The ES field (CROM bits 20 through 23) is

forced to equal three (I.LFILE). Used only to address a
base register.

A R(IBS) or A-port address bits 00 through 03 are driven by I0
IR (IBS) or register bits 11, 10, 09, and CROM bit 12 respectively.
BR(IBS) or CROM bit 12 is equal to one. The ES field (CROM bits
FPR(IBS) 20 through 23) is forced to equal three (IL.LFILE). Used

only to address a base register.

B-E Not Used.

F R(BB) or A-port address bits 00 through 03 are driven by I0.
IR(BB) or Register bits 15,14,13, and CROM bit 12 respectively
BR(BB) or CROM bit 12 is equal to one. The ES field
FPR(BB) (CROM bits 20 through 23) is forced to equal three

(LFILE). Used only to address a base register.
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: Table 4-8
Register B Field CROM 16 through 19 (Sheet 1 of 2)

Reference:

General:

IE Unit logic drawing 130-103656, sheet 26

If MB (CROM bit 32) = 0, the hexadecimal value of CROM bits 16
through 19 directly represents the B-port address of one of the 16
registers (0 through F) in the uP2901s, the IE Unit base register file, and
the floating-point accelerator (FPA) file.

If MB = 1, CROM bits 16 through 19 are used with a multiplexer which
selects bits from the IMUX Bus and uses them to determine the B-port
address of one of the 16 registers (0 through F) in the uP2901s, the IE
Unit base register file, and the FPA file. Inputs to the multiplexer are
detailed in the following table.

File addresses are picked up at the end of the CROM cycle and used in
the CREG cycle.

If the instruction in the Il register is moving into the I0 register
(HADVANCEIO) during the CROM cycle, then the I1 register is the file
address source; otherwise, the I0 register is the source.

An RB field value can be an internal destination, an external destination,
or an internal source, but never an external source. For internal and
external destinations, the syntax appears to the left of the = sign; for
internal sources, the syntax must appear to the right of the = sign and
also to the right of an arithmetic operator in a double-operand
expression. If the syntax appears on both sides of the =sign, the RB
values inside both sets of parentheses must be equal.

Either internal and external combination may be to the left of the =
sign. For example, R(R)= is an internal destination, FPR(R),R(R)=1is a
combination of an external destination and an internal destination, and
R(R), BR(R)= is a combination of an internal destination and an external
destination.

The IR () syntax forces a value of 3, the BR () forces a value of 7, and
the FPR () forces a value of B into the ED field (CROM bits 36
through 39).

In the uP2901, the LSB is 00 and the MSB is 03.

Value

Syntax Detailed Definition

R(R) or B-port address bits 00 through 03 are driven by IMUX
IR(R) or Bus bits 08, 07, 06 and CROM bit 16 respectively.
BR(R) or CROM bit 16 is equal to zero. Used with arithmetic
FPR(R) or logical add, subtract, multiply, divide, load and store
instructions.
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Table 4-8

Register B Field CROM 16 through 19 ( Sheet 2 of 2)

Value Syntax Detailed Definition

1 R(RO) or B-port address bits 01 through 03 are driven by IMUX
IR(RO) Bus bits 07, 06 and CROM bit 16 respectively. Address
BR(RO) bit 00 is driven to a logical one. CROM bit 16 is equal
FPR(RO) to zero. Used to select an odd register during

doubleword instructions.

2 R(S) or B-port address bits 00 through 03 are driven by IMUX
IR(S) or Bus bits 11, 10, 09, and CROM bit 16 respectively.
BR(S) or CROM bit 16 is equal to zero. Used with register to
FPR(S) register instructions.

3-7 Not Used.

8 R(BR) or B-port address bits 00 through 03 are driven by I0
IR(BR) or register bits 08, 07, 06 and CROM bit 16 respectively.
BR(BR) or CROM bit 16 is equal to one. Used only to address a
FPR(BR) base register.

9 R(BRO) or B-port address bits 01 through 03 are driven by I0
IR(BRO) or register bits 07, 06, and CROM bit 16 respectively.
BR(BRO) or Address bit 00 is driven to a logical one. CROM bit
FPR(BRO) 16 is equal to one. Used only to address a base register.

A R(IBS) or B-port address bits 00 through 03 are driven by I0
IR(IBS) or register bits 11, 10, 09, and CROM bit 16 respectively.
BR(IBS) or respectively. CROM bit 16 is equal to one. Used
FPR(IBS) only to address a base register.

B-F Not Used.
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Table 4-9
External Source Field CROM 20 through 23 (Sheet 1 of 5)

References: MS Unit logic drawing 130-103654, sheet 39
CS Unit logic drawing 130-103655, sheet 39
IE Unit logic drawing 130-103656, sheet 30
General: Provides input to the D-port of the uP2901, by means of the DB Bus,
from sources detailed in the following table.
For additional external sources, see External Source overlay,
table 4-10.
Value Syntax Signal Detailed Definition
0 CP.STATS LCPUSTATOE CPU status. The contents of the cache
data out and IO status registers are fed
to bits 08 through 31 of the DB Bus.
For definitions of CPU status word
bits, see the CPU Status Word
Indications table in Chapter 2.
1 10 LIOBUSOE & I0 Bus. The contents of the I0 register
LIOBUSSEOE are fed to bits 00 through 31 of the DB
Bus.
2 N.SHIFTER LSHIFTEROE & Nibble shifter. The contents of the
LMDBOE nibble shifter are fed to bits 00 through
31 of the DB Bus. The N counter
counts down by one.
3 IR() or LBASETODBOE Base file. The A-port output of one of
BR() BR( )sixteen dual-ported RAM registers

is fed, via the base drivers, to bits 00
through 31 of the DB Bus. The address
of the selected register is controlled by
the RA field (table 4-7) of the
microword and the value of the MA bit
(CROM bit 24).
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Table 4-9

External Source Field CROM 20 through 23 (Sheet 2 of 5)

Value

Syntax

Signal Detailed Definition

CACHE.
DOUT.MSW

CACHE.
DOUT.LSW

CACHE.
DOUT.SE

LEVEHWSEOE, Cache data out most-significant word.

LEVEWORDOE & The contents of the cache data out

LMDBOE even (MSW) register are fed to MDB
Bus bits 00 through 31. The input to
the register comes from the right
shifter. CACHE.DOUT.MSW and
CACHE.DOUT.LSW (external source
value 5) must be used on the first
microinstruction of a macroin-
struction emulation sequence. After
the first microinstruction, the cache
data out registers may be changed by
subsequent operand prefetching by the
I unit portion of the IE unit. If the
emulation sequence cannot comply
with this restriction, then the
operation code must lock LMAR when
moving through the pipeline from the
12 register to the Il register via the
decode attribute mechanism.
Standalone microcode may inhibit
prefetching via the STOP.PREFETCH
order (group 0, line 0), which stops
both operand and instruction
prefetching.

LODDWORDOE & Cache data out least-significant word.

LMDBOE The contents of the cache data out
odd (LSW) register are fed to MDB Bus
bits 00 through 31. The input to the
register comes from the right
shifter. See the definition of
CACHE.DOUT.MSW (external source
value 4) for parameters for the use of
this source.

LEVEHWSEOE, Cache data out sign extend. The con-

LMDBOE & tents of the cache data out sign-

LCACHESEOE extend register are fed to MDB Bus
bits 00 through 15 and cache data out
even (MSW) register bits 16 through 31
are fed to MDB Bus bits 16 through
31. The input to the register comes
from the right shifter.
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Table 4-9
External Source Field CROM 20 through 23 (Sheet 3 of 5)

Value

Syntax

Signal

Detailed Definition

PSW

BYTE
CONSTANT

LITERAL

LPCOE &
LMPCTODBOE

LDBSEOT7EN,
LBYTESEOE,
LBYTECTOE &
LHWSEOE

LLITPROMOE

Program status word (PSW). The 4-bit
4-bit contents of the PSW status
register are fed to DB Bus bits 00 and
05 through 07. The condition code
logic feeds DB Bus bits 01 through 04.
DB Bus bits 08 through 31 are fed from
the macroprogram counter (MPC) via
the MPC buffer. Bits 08 through 29 are
the contents of the MPC, while bit 30
indicates that the next instruction is a
right halfword. Bit 31 indicates that
the last instruction was a right
halfword.

Byte constant. A byte literal is fed
from the P and C fields (CROM bits 52
through 59) of the microword to bits 24
through 31 of the DB Bus. The byte
sign bit (CROM bit 52) is extended to
fill DB Bus bits 00 through 23. This
means that only numbers from decimal
+127 to -128 or hexadecimal 0000007F
to FFFFFF80 may be expressed.

Literal PROM. A selected 32-bit
literal is fed to DB Bus bits 00 through
31 from the 32-bit constant PROM.
The PROM address is determined by
the hexadecimal value of P and C f{ields
of the microword (CROM bits 52
through 59). Any word from the 512
word by 32 bit literal file can be
addressed by this source. The literal
file can also be addressed by external
source BITMASK.M (value E), the
external source overlay BITMASK.R
(value 0), and the S.L.H.BANK order
(group 0,line A).
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Table 4-9
External Source Field CROM 20 through 23 (Sheet 4 of 5)

Value

Syntax

Signal

Detailed Definition

EFMAR

10.SE

FPA.E

FPR()

BITMASK.M

LEFFMAREN

LDBSEOT7EN,
LIOBUSSEOE,
LHWSEOE &
LIOHWSE
LIOHWSE

LAEEN

LBITMASKMEN,
LBITMASKMOE &
LLITPROMOE

Effective memory address register.
The contents of the logical MAR copy
register are fed to DB Bus bits 00
through 04, 12, 30 and 31. The
contents of the effective MAR are fed
to DB Bus bits 05 through 11 and 13
through 29.

I0 Bus sign extended. I0 register bits
16 through 31 are fed to DB Bus 16
through 31. Look-ahead mux bit 16
(the sign bit) is extended to feed DB
Bus bits 00 through 15.

Floating-point arithmetic exception.
The output of the add/subtract unit's
arithmetic exception register is fed to
DB Bus bits 00 through 07. The output
of the multiply/divide unit's
arithmetic exception register is fed to
DB Bus bits 16 through 31.

Floating-point file. The A-port output
of one of the sixteen dual-ported RAM
registers in the floating-point file is
fed to DB Bus bits 00 through 31. The
address of the selected register is
controlled by the RA field (table 4-7)
of the microword and the value of the
MA bit (CROM bit 24).

Bit mask memory. A selected 32-bit
literal is fed to DB Bus bits 00 through
31 from the 32-bit constant PROM.
The PROM address is determined by I0
bits 06 through 08 and effective
LMAR bits 30 and 31. Any of the first
32 words from the 512 word by 32 bit
literal file can be addressed by this
source. This source is used for bit in
memory (e.g., TBM) type instruc-
tions. The literal file can also be
addressed by external source
LITERAL (value 9) and external
source overlay BITMASK.R (value 0).
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Table 4-9

External Source Field CROM 20 through 23 (Sheet 5 of 5)

Value Syntax Signal Detailed Definition
F BCK.PC LDBSEQT7EN, Backdate program counter. The 4-bit
LBYTESEOE, output of the backdate instruction
LHWSEOE, counter is fed, via a buffer, to DB Bus
LBCKPCOE & bits 27 through 31. DB Bus bit 31 is
HBCKPC held at zero, aligning the backdate

program counter output to a halfword
boundary. DB Bus bits 00 through 26
are filled with zeros.

To backdate the macroprogram
counter, the read backdate count
(BCK.PC) must always precede the
read PSW (PSW, external source value
7) by one cycle, unless the pipeline is
frozen via an uncommitted branch
mechanism.

The BCK.PC must be coded no earlier
than the second cycle following a
FLUSH.IO order (group 0, line 9). The
BCK.PC CREG cycle may cause a
one-cycle stopclock if a pipeline
update PC count sequence is in
progress. BCK.PC prevents pipeline
changes during the CREG+1 cycle.
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Table 4-10
External Source Overlay CROM 20 through 23 (Sheet 1 of 3)

References: MS Unit logic drawing 130-103654, sheet 39
CS Unit logic drawing 130-103655, sheet 39
IE Unit logic drawing 130-103656, sheet 30

General: Provides input to the D-port of the uP2901, by means of the DB
Bus, from sources detailed in the following table.

This field, enabled when the ES.OVL order (group 1, line A) is
selected, replaces the ES field shown is table 4-10.

Value Syntax Signal Detailed Definition
0 BITMASK.R LBITMASKREN, Bit mask register. A selected 32-bit
LBITMASKROE & | literal is fed to DB Bus bits 00 through
LLITPROMOE 31 from the 32-bit constant PROM.

The PROM address is determined by I0
bits 06 through 08, 14, and 15. Any of
the first 32 words from the 512 word by
32 bit literal file can be addressed by
this source. This source is used for bit
in register (e.g., TBR) type instruc-
tions. The literal file can also be
addressed by external sources LITERAL
(value 9) and BITMASK.M (value E).

1 PMAR.COPY | LPMARCOPYOE | Physical memory address copy

register. The contents of the PMAR
copy register are fed to DB Bus bits 00
through 31. Bits 30 and 31 are the C
bits, bits 08 through 29 are the physical
address from the PMAR Bus, bit 07 is
the LMAR F bit, and bits 00 through 06
are held at zero. The operation code
using this function must lock LMAR or
stop prefetching to prevent prefetch
destruction of the address in the PMAR
copy register.

2 MAP.MISS LMAPMISSEN, Map miss memory address register. The
LDBSEOT7EN & contents of the map miss MAR are fed
LMAPMISS- to Bus bits 08 through 31. DB Bus bit 31
LMAROE is held at zero, aligning the map miss

MAR output to a halfword boundary.
DB Bus bits 20 through 30 are fed the
logical address bits 08 through 18 from
the 3~-way adder. DB Bus bits 00
through 19 are zero-filled. This source
is valid only for operand addresses
generated by the I unit portion of the
IE unit. LMAR is automatically locked
by a map miss microinterrupt.
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Table 4-10
External Source Overlay CROM 20 through 23 (Sheet 2 of 3)

Value

Detailed Definition

Syntax Signal
LMAR.COPY | LDBSEOT7EN,
LMARCOPYEN,
LLMARCOPY &
LLMARCOPYOE

RAMDATA LMDBOE &
OUT.MSW LRAMDATA-
OUTMSWOE

RAMDATA LMDBOE &
OUT.LSW LRAMDATA-
OUTLSWOE

RDMAPCON | LRDMAPCON

INT.LVL LINTLVLOE &
LMDBOE

Logical memory address copy register.
The contents of the LMAR copy
register are fed to DB Bus bits 08
through 29 DB Bus bits 30 and 31 are
fed by the C bit logic. Bits 00 through
07 are zero-filled. This source code is
valid only for operand addresses
generated by the I-unit portion of the
IE unit. LMAR is automatically locked
by a map miss microinterrupt. This
source does not track the increment
LMAR order (group 1, line 4). The
operation code using this function must
lock LMAR or stop prefetching to
prevent prefetch destruction of the
address in the LMAR copy register.

RAM data out most-significant word.
RAMDATA Bus bits 00 through 31 (the
most significant word) are fed to MDB
Bus bits 00 through 31 via the RAM
data out register. RAMDATA Bus bits
00 through 31 contain CROM bits 00
through 31 after an ACS, WCS, or
PROM read.

RAM data out least-significant word.
RAMDATA Bus bits 32 through 63 (the
least-significant word) are fed to MDB
Bus bits 00 through 31 via the RAM
data out register. RAMDATA Bus bits
32 through 63 contain CROM bits 32
through 63 after an ACS, WCS, or
PROM read.

Read map contents. The contents of
the demand page (DP) map hit register
are fed to the DB bus. The map read is
initiated by the DP map page modified
and DP map access microinterrupts.

Serial interrupt poll. The output of the
serial interrupt poll circuit is fed to
MDB Bus bits 08 through 15 and 21
through 29. '
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Table 4-10
External Source Overlay CROM 20 through 23 (Sheet 3 of 3)

Value

Syntax

Signal

Detailed Definition

B-D

SCRATCH

N&IPLADDR

PCLATCH

MDB.BUS

DB.BUS

LSCRATCHOE &
LMDBOE

LNIPLOE &
LMDBOE

LPCLATCHOE &
LMDBOE

LMDBOE

Scratch pad. The contents of the
selected scratch pad address are fed to
DB Bus bits 00 through 31. The scratch
pad can be addressed either by YB Bus
bits 08 through 15 or by the P and C
fields (CROM bits 52 through 59) of the
microword. The scratch pad has 512
addressable locations. See the S.L.H.
BANK order (group 0, Line A).

N counter and initial program load
address. The 16-bit IPL address is fed
to DB Bus bits 16 through 31. The 8-bit
output of the N counter is fed to MDB
Bus bits 00 through 07. The input to
the N counter is the YB Bus.

Microprogram counter latch. The
contents of the uPC latch register are
fed to MDB Bus bits 16 through 31.

Not Used.

MDB.BUS Bits 00 through 31 of the
MDB Bus are filled with ones and gated
to bits 00 through 31 of the DB Bus.
This source allows microdiagnostics to
check for shorted bits.

DB Bus. Bits 00 through 31 of the DB
Bus are filled with ones. This source
allows microdiagnostics to check for
shorted bits.
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Table 4-11
Internal Source Field CROM 24 through 27

Reference: IE Unit logic drawing 130-103656, sheet 26
General: CROM bit 24 = MA, the macro-A bit, used with the RA field (see
table 4-7).
The octal value of CROM bits 25 through 27 determines the
sources, within the uP2901, of the two 4-bit ALU input words R
and S. These words are used by the ALU as detailed in table 4-12.
Value R Source S Source
0 RAM A-port Q register
1 RAM A-port RAM B-port
2 0 Q register
3 0 RAM B-port
4 0 RAM A-port
5 Direct data input (DB Bus) RAM A-port
6 Direct data input (DB Bus) Q register
7 Direct data input (DB Bus) 0
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Table 4-12

ALU Function Field CROM 28 through 31

Reference: IE Unit logic drawing 130-103656, sheet 26
General: CROM bit 28 = Cn, the carry-in bit, used in arithmetic operations
only.
The octal value of CROM bits 29 through 31, along with the Cn bit,
determines the arithmetic or logical operations which will be
performed on the input words R and S by the ALU.
See table 4-11 for R and S sources and table 4-13 for the
destination of the results of the ALU operation.
MULTIPLY (group 0, line D) and DIVIDE (group 1, line E) orders
may modify the least-significant bit (bit 33) of the ID field.
Cn- Value Syntax Detailed Definition
0 0 R+S R plus S
1 0 R+S+1 R plus S plus 1
0 1 -R+S-1 S minus R minus 1
1 1 -R+S S minus R
0 2 R-5-1 R minus S minus 1
1 2 R-S R minus S
X 3 R:S ROR S
X 4 R&S R AND S
X 5 %R&S R-NOT AND S
X 6 RIS R EX-OR S
X 7 %(R1S) R EX-NOR S
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Table 4-13
- Internal Destination Field CROM 32 through 35

Reference: IE Unit logic drawing 130-103656, sheet 26

General: CROM bit 32 = MB, the macro-B bit, used with the RB field (see
table 4-8).
The octal value of CROM bits 33 through 35 determines the
destination, within the uP2901, of the results of the ALU operation
(see table 4-12).
If CROM bit 33 = 1, the ALU results are shifted, right or left,
before reaching the chosen destination. See the ALU shift field,
table 4-23, for detailed shift descriptions.

Value Syntax Detailed Definition

0 Q The ALU results are fed to the Q register and the Y
Bus.

1 NOD No internal destination. The ALU results are fed
only to the Y Bus.

2 R(B)EX. The ALU results are fed to the RAM register chosen

DEST R(A) by the RB field (table 4-8). The contents of the RAM
register chosen by the RA field (table 4-7) are fed to
the Y Bus.

3 R(B) The ALU results are fed to the RAM register chosen
by the RB field (table 4-8).

4 R(B,SRZD) The ALU results are shifted right and then fed to
both the Q) register and the RAM register chosen by
the RB field (table 4-8). The ALU results are also
fed, unshifted, to the Y Bus. See the SRAD, SRLD,
and SRLRQ shifts in table 4-23.

5 R(B,SRX) The ALU results are shifted right and then fed to the
RAM register chosen by the RB field (table 4-8). The
ALU results are also fed, unshifted, to the Y Bus.
See the SRA, SRL, and SRC shifts in
table 4-23.

6 R(B,SLZD) The ALU results are shifted left and then fed to both
the Q register and the RAM register chosen by the
RB field (table 4-8). The ALU results are also fed,
unshifted, to the Y Bus. See the SLAD, SLLD, and
SLCRQ) shifts in table 4-23.

7 R(B,SLX) The ALU results are shifted left and then fed to the

RAM register chosen by the RB field (table 4-8). The
ALU results are also fed, unshifted, to the Y Bus.
See the SLA, SLL, and SLC shifts in table 4-23.
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Table 4-14
External Destination Field CROM 36 through 39 (Sheet 1 of 3)

References: MS Unit logic drawing 130-103654, sheet 39
CS Unit logic drawing 130-103655, sheet 39
IE Unit logic drawing 130-103656, sheet 30

General: Sends the Y port output of the uP2901, by means of the YB Bus, to
destinations detailed in the following table.

For additional external destinations, see External Destination
overlay, table 4-16.

Value Syntax Signal Detailed Definition

0 N.SHIFTER Nibble shifter. YB Bus bits 00
through 31 are fed to the nibble
shifter. The nibble shifter is always
loaded regardless of which external
destination is selected.

1 CMC LLDCMCREG Cache memory control. YB Bus bits
27 through 31 are loaded into the
cache memory control register.

2 CACHE.DIN LLDCACHDIN Cache data in register. YB Bus bits
00 through 31 are loaded into the
cache data in register.

3 IR() LWRBRFILE Instruction file if B file address is
not equal to zero. YB Bus bits 00
through 31 are written to a register
specified by the B file address. If
the B file address is equal to zero,
this function is inhibited.

4 L.SHARED.MEM | LLDSHMREGL Lower shared memory limit regis-
ter. YB Bus bits 07 through 12 are
loaded into the lower shared memory
limit register.

5 STATS LLDPSWSTAT Program status word status regis-

ter. YB bus bits 00 and 05 through
07 are loaded into the PSW status

register. These bits indicate CPU
status where:

00 = Privileged mode

05 = Extended addressing mode
06 = Base mode

07 = Arithmetic exception trap
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Table 4-14
External Destination Field CROM 36 through 39 (Sheet 2 of 3)

Value Syntax Signal Detailed Definition

6 PC LLDPCFROMY Macroprogram counter. YB Bus bits
09 through 30 are loaded into the
macroprogram counter via the input
source multiplexer.

7 BR() LWRBRFILE Base file. Y Bus bits 00 through 31
are written into a selected register
in the base file dual-ported RAM.
The register address is controlled by
the RB field of the microword and
the value of the MB bit (CROM bit
32).

8 MAP.HIT.REG LLDMHITREG Map hit register. YB Bus bits 16
through 31 are loaded into the map
hit register.

9 U.SHARED.MEM | LLDSHMREGH Upper shared memory limit regis-
ter. YB Bus bits 07 through 12 are
loaded into the upper shared memory
limit register.

A EMAR LLDEMAR Execution memory address register.
YB Bus bits 00 through 31 are loaded
into the execution memory address

register.
B FPR() LCPUTOFILE & | Floating-point file. Y Bus bits 00
LWRBRFILE through 31 are written into a

selected register in the dual-ported
RAM of the floating-point acceler-
ator. The register address is
controlled by the RB field of the
microword and the value of the MB
bit (CROM bit 32). This destination
also writes to the I file RAM if the B
file address is not equal to zero

C A/S.MSW Add/subtract unit most-significant
word. One word from the DB Bus
and one word from a selected FPA
file register are loaded into the two
single-precision (MSW) operand input
registers in the FPA's add and
subtract unit. The register address is
controlled by the RB field of the
microword and the value of the MB
bit (CROM bit 32).
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Table 4-14

External Destination Field CROM 36 through 39 (Sheet 3 of 3)

Value

Syntax

Signal

Detailed Definition

A/S.LSW

M/D.MSW

M/D.LSW

Add/subtract unit least-significant
word. One word from the DB Bus and
one word from a selected FPA file
register are loaded into the two double-
precision (LSW) operand input registers
in the FPA's add and subtract unit. The
register address is controlled by the RB
field of the microword and the value of
the MB bit (CROM bit 32).

Multiply/divide unit most-significant
word. One word from the DB bus and
one word from a selected FPA file
register are loaded into the two single-
precision (MSW) operand input registers
in the FPA's multiply and divide unit.
The register address is controlled by
the RB field of the microword and the
value of the MB bit (CROM bit 32).

Multiply/divide unit least-significant
word. One word from the DB bus and
one word from a selected FPA file
register are loaded into the two double-
precision (LSW) operand input registers
in the FPA's multiply and divide unit.
The register address is controlled by
the RB field of the microword and the
value of the MB bit (CROM bit 32).
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Table 4-15
External Destination Overlay CROM 36 through 39 (Sheet 1 of 3)

References: MS Unit logic drawing 130-103654, sheet 39
CS Unit logic drawing 130-103655, sheet 39
IE Unit logic drawing 130-103656, sheet 30
General: Sends the Y port output of the uP2901, by means of the YB Bus, to
destinations detailed in the following table.
This field, enabled when the ED.OVL order is selected, replaces
the ED field shown in table 4-14.
Value Syntax Signal Detailed Definition
0 NOD No destination.
1 RAMDATA | LLDRAM- RAM data in most-significant word.
IN.MSW DATAINMSW YB Bus bits 00 through 31 are loaded into
the RAM data in most-significant word
register.
2 RAMDATA | LLDRAM- RAM data in least-significant word.
IN.LSW DATAINLSW YB bus bits 00 through 31 are loaded into
the RAM data in least-significant word
register.
3 RAM.ADDR | LLDRAMADDR | RAM address. YB Bus bits 16 through 31
are loaded into the RAM address register.
4 N LLDNCTR N counter. YB Bus bits 00 through 07 are
loaded directly into the N counter.
5 SCRATCH. LLDSCRATCH- | Scratchpad address. YB Bus bits 00
ADDR ADDR through 15 are loaded into the scratchpad
address register. The register is enabled
by the S.ADDR order (group 3, line 7).
6 N.L.ZERO. LLDNCTR- Count number of nibbles of leading
CNT LEAD zeros. YB Bus bits 00 through 31 are fed
to the leading/trailing zeros detection
PROM, where the number of nibbles of
leading zeros is counted. The 8-bit result
is loaded into the N counter.
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Table 4-15
External Destination Overlay CROM 36 through 39 (Sheet 2 of 3)

Value

Syntax

Signal

Detailed Definition

9-A

N.T.ZERO.
CNT

SETMCON

FPR()

A/S.MSW

A/S.LSW

LLDNCRT-
TRAIL

LSETMCON

LCPUTOFILE
LWRBRFILE

Count number of nibbles of trailing

zeros. YB Bus bits 00 through 31 are fed
to the leading/trailing zeros detection
PROM, where the number of nibbles of
trailing zeros is counted. The 8-bit result
is loaded into the N counter.

The DP map hit register is loaded from
the Y Bus after setting the modify bit (bit
19) or the access bit (bit 20).

Not Used.

Floating-point file. Y Bus bits 00
through 31 are written into a selected
register in the dual-ported RAM of the
floating-point accelerator. The register
address is controlled by the RB field of
the microword and the value of the MB
bit (CROM bit 32). This destination also
writes to the I file RAM if the B file
address is not equal to zero.

Add/subtract unit most-significant

word. One word from the DB bus and one
word from a selected FPA file register
are loaded into the two single-precision
(MSW) operand input registers in the
FPA's add and subtract unit. The register
address in controlled by the RB field of
the microword and the value of the MB
bit (CROM bit 32). ‘

Add/subtract unit least-significant

word. One word from the DB bus and one
word from a selected FPA file register
are loaded into the two double-precision
(LSW) operand input registers in the
FPA's add and subtract unit. The register
address is controlled by the RB field of
the microword and the value of the MB
bit (CROM bit 32).
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Table 4-15

External Destination Overlay CROM 36 through 39 (Sheet 3 of 3)

Value

Syntax

Signal

Detailed Definition

M/D.MSW

M/D.LSW

Multiply/divide unit most-significant
word. One word from the DB bus and one
word from a selected FPA file register
are loaded into the two single-precision
(MSW) operand input registers in the
FPA's multiply and divide unit. The
register address is controlled by the RB
field of the microword and the value of
the MB bit (CROM bit 32).

Multiply/divide unit least-significant
word. One word from the DB bus and one
word from a selected FPA f{ile register
are loaded into the two double-precision
(LSW) operand input registers in the
FPA's multiply and divide unit. The
register address is controlled by the RB
field of the microword and the value of
the MB bit (CROM bit 32).
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Table 4-16
Order Enable and Order Group Fields CROM 40 through 51

References: MS Unit logic drawing 130-103654, sheet 40
IE Unit logic drawing 130-103656, sheet 32

General: The binary value of CROM bits 40 through 43 determines the order
groups to be enabled. CROM bits 40 through 43 are low/true;
therefore, @F indicates that no order group is enabled. Any number
of groups may be enabled at the same time,

CROM bit 40 =0 Order group 0 enabled
CROM bit 41 =0 Order group 1 enabled
CROM bit 42 =0 Order group 2 enabled

CROM bit 43 =0 Order group 3 enabled

The hexadecimal value of the order group 0/1 (CROM bits 44 through
47) and order group 2/3 (CROM bits 48 through 51) fields specify the
individual lines within their enabled groups.

The two order group pairs, 0/1 and 2/3, operate independently. This
means that the line chosen in group 0 need not agree with the line
chosen in group 2/3.

Orders 8 through F of order groups 0 and 1 are CROM cycle orders.
All other orders are CREG cycle orders.

For detailed definitions of individual orders see tables 4-17 through
4-20.
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Table 4-17
Order Group 0 (Sheet 1 of 5)

Value

Syntax

Signal

Detailed Definition

STOP.
PREFETCH

TTYPE.OVL

LRELEASE.
LMAR

LSTOPPRE-
FETCHORD

LTTYPEOVLORD

LIRELEAS-
LMARORD

Stop prefetch. The output of this

order is connected to the prefetch logic
in the I unit portion of the IE unit. The
order causes the I unit to immediately
cease operand prefetching, and to
cease instruction prefetching when
both the I3 and I2 registers are full.
The effects of this order are cleared by
either the JUMPD sequence (value 7) or
the FLUSH.PIPELINE order (group 3,
line B).

Not Used.

Transfer type overlay. The output of
this order is connected to the cache
transfer type logc. The order replaces
the SelBUS codes field (table 4-24) with
the SelBUS overlay field (table 4-25).
This order is used in conjunction with
either the BUSREQ.E (group 3, line E)
or the BUSREQ.L (group 3, line F)
order.

Release logical memory address re-
gister. The output of this order is
connected to the load LMAR logic
circuitry. The order is used by the
firmware to release a hold which has
previously been placed on the LMAR.
This order is equivalent to the
RELEASE.LMAR order (group 2, line
D).
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Table 4-17
Order Group 0 (Sheets 2 of 5)

Value

Syntax

Signal

Detailed Definition

CIRC.SHIFT

LS.MS.FILL

LCURRENTORD

LLSNORD

Circular nibble shift. The output of
this order is connected to the select
inputs of the three 2:1 multi-plexers
in the nibble shifter. The order is
used in conjunction with either the
RN.SHIFT (group 2, line 6) or the
LN.SHIFT (group 2, line 5) order.

With the RN.SHIFT order, YB Bus bits
00 through 31 are shifted right four
bit positions. Bits 28 through 31,
shifted beyond the bit 31 position, are
entered in the bit 00 through 03
positions. With the LN.SHIFT order,
YB Bus bits 00 through 31 are shifted
left four bit positions. Bits 00 through
03, shifted beyond the bit 00 position,
are entered in the bit 28 through 31
positions.

Least-significant most-significant
nibble fill. The output of this order is
fed to the select input of the 2:1
multiplexer in the MS unit's Y Bus
control. The order is used in
conjunction with either the RN.SHIFT
(group 2, line 6) or the LN.SHIFT
(group 2, line 5) order. If the order is
given, the least-significant YB Bus
nibble of the previous nibble shift (bits
28 through 31) is fed to the nibble
shifter; if not given, the most-signi-
ficant nibble (bits 00 through 03) is
fed. In the nibble shifter, a RN.SHIFT
shifts the word four bits to the right,
bits 28 through 31 are discarded, and
bit positions 00 through 03 are filled
with the least-significant bits of the
previous nibble shift. A LN.SHIFT
shifts the word four bits to the left,
bits 00 through 03 are discarded, and
bit positions 28 through 31 are filled
with the most-significant bits of the
previous nibble shift. This order
provides two pass, double-precision
nibble shift capability.
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Table 4-17

Order Group 0 (Sheet 3 of 5)

Value

Syntax

Signal

Detailed Definition

ZERO.FILL

SETCC1(X)

RDACS

HZROFILLORD

LSETCCORDL

LRDACSORD

Zero nibble fill. The output of this
order is fed to the strobe inputs of
the three 2:1 multiplexers in the
nibble shifter. The order is used in
conjunction with either the
RN.SHIFT (group 2, line 6) or the
LN.SHIFT (group 2, line 5) order. A
RN.SHIFT shifts the word four bits
to the right, bits 28 through 31 are
discarded, and bit positions 00
through 03 are zero-filled. A
LN.SHIFT shifts the word four bits
to the left, bits 00 through 03 are
discarded, and bit positions 28
through 31 are zero-filled.

Set condition codes. The output of
this order is fed to the carry-save
flip-flop and the condition code
FPLAs. The order sets the
condition codes according to the
rules detailed in table 4-21. The (X)
is a variable determined by the
hexadecimal value of CROM bits 52
through 55. This order is equivalent
to the SETCC(X) order (group 2,
line F). This is a CREG order used
in the CREG+1 cycle.

Read alterable control store (ACS)
RAM. This order, when given with
the RAMRD order (group 1, line 8),
causes the data at the ACS location
addressed by the contents of the
RAM address register to be loaded
into the RAM data out MSW regis-
ter and the RAM data out LSW
register. This is a CROM order
used in the CREG cycle.
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Table 4-17
Order Group 0 (Sheet 4 of 5)

Value Syntax Signal Detailed Definition

9 FLUSH.IO LFLUSHIOORD Flush I0 register. The output of this
order is gated to the backdate
program counter, the I0 register,
and the IO status register. The
order clears the I0 register, any
error status pending against it, and
decrements the backdate program
counter. This is a CROM order used
in the CREG cycle.

A S.L.H.BANK HHIIBANKORD & | Scratchpad/literal high bank.
LHIBANKCREG The output of this order is fed, via
CREQG registers, to the scratchpad
and 32-bit constant (literal)

PROM. The order enables the CPU
to address the high bank (@ 100
through 1FF) of the scratchpad and
literal PROM. This is a CROM
order used in the CREG cycle.

B Not Used.

C ED.OVL LEDOVLORDL External destination overlay. The
output of this order is connected to
the Y Bus control circuitry in the
CS, IE, and MS units. The order
replaces the external destination
field (table 4-14) with the external
destination overlay (table 4-15)
when an external destination
(CROM bits 36 through 39) is
specified. This is a CROM order
used in the CREG cycle.
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Table 4-17

Order Group 0 (Sheet 5 of 5)

Value

Syntax

Signal

Detailed Definition

MULTIPLY

PUSH

POP

LMULTORD

LPUSHORD

LPOPORD

Multiply. The output of this order is
gated to the ALU shift multiplexer in the
IE unit.

This is a CROM cycle order in which the
least-significant bit of the Q-register in
the uP2901 is used to select an internal
source R-S combination. The order is
used in the multiply macroinstruction to
produce either the R(A), R(B) combi-
nation, if the least-significant bit of the
Q-register is one, or the 0, R(B) com-
bination, if the least-significant Q-
register bit is zero. This hardware assist
provides a look at the multiplier to
determine whether to do an add-and-shift
or a shift only.

On the clock prior to the MULTIPLY
order, a single-precision shift to a dummy
register must be performed to provide a
look at the least-significant Q-register
bit.

Push uPC stack. The output of this order
is gated to the S3 and S4 inputs of all four
4-bit-slice elements of the microprogram
counter. The order causes the top level
of the 4-word stack to be filled with the
output of the full adder. Previous data
residing in the top three words are pushed
down one level in the stack and the
bottom word is written over and lost.

Pop uPC stack. The output of this order
is gated to the S3 input of all four 4-bit-
slice elements of the microprogram
counter. The order causes the words in
the 4-word stack to be moved up one
location. The top word in the stack is
fed, through a 4:1 multiplexer, to the
internal register of the uPC. The bottom
word of the stack remains at that
location as well as being pushed up to the
third level.
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Table 4-18
Order Group 1 (Sheet 1 of 5)

Value

Syntax

Signal

Detailed Definition

CLR29

UINTEN.A

EXECRH

UINTEN.B

LCLKLMAR-
BUSYORD &
LEUNITCLR?29

LMICROINT-
AENORD

HXCUTERHWORD

LMICROINT-
BENORD

Clear LMAR bit 29. The output

of this order is fed, via error

status circuit, to the LMAR counter in
the CS unit. The order clears LMAR
counter bit 29 and increments the
macroprogram counter. This order is
used to store the second word in a
doubleword store operation.

Enable A microinterrupts. The
output of this order is fed to the
microinterrupt vector circuitry in the
IE unit. The order enables both the A
and B groups of microinterrupts. The
A group includes the LINTEXCPINT,
LADDRSTOPINT, and LAEXPINT
signals. See the UINTEN.B (group 1,
line 3) order for group B details.

Execute right halfword. The output of
this order is fed to the I3 status
register. The order causes the I3 right
halfword flag to become set when
valid data is loaded into the I3
register from the CAMUX Bus. This
order is used with the EXM right and
EXPR macro instructions.

Enable B microinterrupts. The out-
put of this order is fed to the micro-
interrupt vector circuitry in the IE
unit. The order enables the B group of
microinterrupts. This group includes
the LDERRORINT, LDMAPMISSINT,
and LAEXPINT signals. These
interrupts are also enabled by the
UINTEN.A (group 1, line 1) and
INCLMAR. & UINTEN.B (group 1, line
5) orders.
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Table 4—18
Order Group 1 (Sheet 2 of 5)

Value Syntax Signal Detailed Definition

4 INCLMAR LCLKLMAR- Increment LMAR. The output of
this order is gated to the LMAR
counter in the CS unit. The order
causes the contents of the LMAR
counter to be incremented by one

word.
5 INCLMAR. LMICROINT- Increment LMAR and enable B
&UNITEN.B BENORD, microinterrupts. The output of this
LCLKLMAR- order is gated to the LMAR counter
BUSYORD & in the CS unit and fed to the micro

LINCLMARORD interrupt vector circuitry in the IE
unit. The order combines the func-
tions of both the INCLMAR (group
1, line 4) and UINTEN.B (group 1,
line 3) orders.

6 UINTEN.C LMICROINT- Enable C microinterupt. The
CENORD output of this order is connected to
the microinterrupt Vector
circuitry. This order enables WCS
microcode to detect and handle
FPA arithmetic exceptions.

7 USECARRY LUSECARRYORD | Use carry-out. The output of this
order is fed to the set input of the
use carry flip-flop in the IE unit.
The order is used with doubleword
arithmetic instructions. The order
allows the carry-out from the first
word of the instruction to be used
as the carry-in to the second word
of the instruction.

This order must be coded with the
first arithmetic operation of the
doubleword pair and must be
accompanied by a SETCC(D) order
(see Table 4-21). The USECARRY
function must be cleared by a
subsequent SETCC(X) order without
a USECARRY order. Normally, this
occurs with the second arithmetic
operation of the doubleword pair.
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Table 4-18
Order Group 1 (Sheet 3 of 5)

Value

Syntax

Signal

Detailed Definition

RAMRD

INHLASTRHW

ES.OVL

LRAMRDORD

LINHLAST-
RHWORD

LESOVLORD

RAM read. The output of this order is
gated to the RAM control circuitry in
the MS unit. The order causes the
read of a 64-bit microword from the
control PROM the writable control
store (WCS) RAM or, when given with
the RDACS order (group 0, line 8), the
alterable control store (ACS) RAM.
The read data is strobed into the 64~
bit RAM data out registers. The word
is addressed from the RAM address
register by use of the RAM.ADDR
external destination (table 4-15, value
3). This is a CROM order used in the
CREG cycle. The order causes a one-
cycle stopclock during the CREG
cycle. It should not be coded with
SelBUS activity in progress.

Inhibit last right halfword. The

output of this order is fed, via CREG
register, to the macroprogram counter
in the CS unit. The order inhibits the
sensing of the right halfword portion
of the previous macroinstruction. The
order is used with branch and link
macroinstructions. This is a CROM
order used in the CREG cycle.

External source overlay. The out-put
of this order is connected to the DB
and MDB Bus control circuitry in the
MS, IE and CS units. The order
replaces the external source field
(table 4-9) with the external source
overlay (table 4-15) when an external
source (CROM bits 20 through 23) is
specified.
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Table 4-18
Order Group 1 (Sheet 4 of 5)

Value

Syntax Signal 1 Detailed Definition

Not Used.

JUMP.DATA LIJUMPDATAORD | Jump data. The output of this
order is fed to the microprogram
counter (uPC) control circuit. The
order will cause the uPC to use YB
Bus bits 16 through 31 as the
source of the next uPC address.
This order is used for computed
branches in firmware. Bits 00
through 03 of the microword S
field must be coded with a long
branch (value 3).

DCNTISAVE LDNCNTI- Decrement 10 register shift
SAVEORD counter. The output of this order
is connected to the enable inputs
of the I0 register shift counter.
When a shift instruction is issued,
bits 11 through 15 (the shift field)
of the I1 register are loaded into
the I0 register shift counter. This
order causes the contents of the
register to be decremented by one
with each clock cycle. The
contents of the counter are
checked after each shift by the
ISAVEO test (group 0, line B).
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Sheet 4-18 .
Order Group 1 (Sheet 5 of 5)

Value

Syntax

Signal

Detailed Definition

DIVIDE

RAMWR

LDIVORD

LRAMWRORD

Divide. The output of this order is

gated to the ALU shift multiplexer in
the IE unit.

This is a CROM cycle order which
used the equal-to-zero and sign
outputs of the uP2901 to select an
internal source R-S combination.
When the FEO signal is high or low and
the HSIGN signal is low, the R(A),
R(B) combination is selected and a
subtract-and-shift occurs. When the
FEO signal is low and the HSIGN signal
is high, the 0, R(B) combination is
selected and only a shift function
occurs.

On the clock prior to the divide order,
a subtract is done to compare the
divisor and dividend. This comparison
generates the HFE(O and HSIGN signals
for the divide order. When the
subtract-and-shift function is
performed, based on the comparison
of divisor and dividend, a one is
shifted into the least-significant bit of
the Q-register. When only a shift is
performed, a zero is shifted into the
least-significant bit of the Q-
register. This is how the quotient is
formed.

RAM write. The output of this order
is fed to the RAM control circuitry in
the MS unit. The order, when level
order 6 (RAM.WREN) is set, causes
the data from the 64-bit RAM data in
registers to be written to the WCS or
ACS RAM. The RAM location is ad-
dressed by RAMADDR bus bits 00
through 15. This is a CROM order
used in the CREG cycle. The order
causes a one-cycle stopclock during
the CREG cycle. It should not be
coded with SelBUS activity in
progress.
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Table 4-19

Order Group 2 (Sheet 1 of 6)

Value

Syntax

Signal .

Detailed Definition

LATCH.ORD

CNTENORD

UPACK

LLATCHORD

LCNTENORD

LUPACKORD

Latch level order. The output of
this order is connected to the level
order latching circuits in the MS
and IE units. When given by itself,
this order sets one of the orders
from the level order select field
(table 4-22) as determined by the
hexadecimal value of CREG bits 52
through 55. When given with the
LATCH.DATA order (group 3, line
0), the order will reset a previously
set level order. A level order can
be directly set or reset by the
special syntax SET(X) or RESET(X),
where X is the name of the level
order.

Enable N counter. The output of
this order is gated to the enable
input of the N counter. This order
enables the N counter to count. If
the DNCNTORD order (group 3, line
1) is also given, or the N counter
selected as an external source, the
count will be in the down direction;
otherwise, the count will be
upward. See the N.NOVR test
(group 1, line 5).

User panel acknowledge. The
output of this order is routed, via
the turnkey interface circuit, to the
turnkey panel. The order is used to
clear panel conditions. For every
signal received by the CPU from
the panel (excluding SelBUS com-
munications), the CPU will respond
with '"UPACK'.
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Table 4-19
Order Group 2 (Sheet 2 of 6)

Value Syntax Signal Detailed Definition

3 RSTINTEN LRSTINTENORD | Reset interrupt enable flip-
flops. The output of this order is
connected to the clear inputs of
the interrupt enable flip~flops in
the MS unit. The order causes
interrupts to be disabled. This
condition will remain until
interrupts are set by the
SETINTEN order (group 2, line
4). The set output of the inter-
rupt enable flip-flops is checked
in the test structure by the
INTRENA test (group 2, line 7).

Interrupts are automatically re-
enabled when the next valid
macroinstruction is executed and
completed. This order is
normally used with uninterrupt-
able pairs of macroinstructions.
For this functionality, the order
must be coded one cycle ahead of
the JUMPD sequence (value 7).

4 SETINTEN LSETINTENORD Set interrupt enable flip-flops.
The output of this order is
connected to the preset inputs of
the interrupt enable flip-flops in
the MS unit. The order causes
interrupts to be enabled. This
condition will remain until inter-
rupts are reset by the RSTINTEN
order (group 2, line 3). The set
output of the interrupt enable
flip-flops is checked in the test
structure by the INTRENA test
(group 2, line 7). ’
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Table 4-19

Order Group 2 (Sheet 3 of 6)

Value

Syntax

Signal

Detailed Definition

LN.SHIFT

RN.SHIFT

LLFSHFORD

LRISHFORD

Left nibble shift. The output of this order is
connected to the nibble shifter. The order can
be given either by itself or in conjunction with
any one of the CIRC.SHIFT (group 0, line 4),
LS.MS.FILL (group 0, line 5), or ZERO.FILL
(group O, line 6) orders. The order causes the
nibble shifter to shift YB Bus bits 00 through 31
four bit positions to the left. Bits 00 through
03 are either discarded or, with the
CIRC.SHIFT order, shifted to the bit 28
through 31 positions. Bit positions 28 through
31 are either filled according to the definitions
of the CIRC.SHIFT, LS.MS.FILL, or ZERO,FILL
orders or, if no additional shift order is given,
with the most-significant YB Bus nibble (bits 00
through 03).

On each nibble shift, YB Bus bits 00 through 03
and 28 through 31 are saved in the LS MS fill
registers for a subsequent nibble shift with an
LS.MS.FILL order (group 0, line 5). Each nibble
shift causes the N counter to automatically
decrement by one.

Right nibble shift. The output of this order is
connected to the nibble shifter. The order can
be given either by itself or in conjunction with
any one of the CIRC.SHIFT (group 0, line 4),
LS.MS.FILL (group 0, line 5), or ZERO.FILL
(group 0, line 6) orders. The order causes the
nibble shifter to shift YB Bus bits 00 through 31
four bit positions to the right. Bits 28 through
31 are either discarded or, with the
CIRC.SHIFT order, shifted to the bit 00
through 03 positions. Bit positions 00 through
03 are either filled according to the definitions
of the CIRC.SHIFT, LS.MS.FILL, or ZERO.FILL
orders or, if no additional shift order is given,
with the most-significant YB Bus nibble (bits 00
through 03).

On each nibble shift, YB Bus bits 00 through 03
and 28 through 31 are saved in the LS MS fill
registers for a subsequent nibble shift with an
LS.MS.FILL order (group 0, line 5). Each nibble
shift causes the N counter to automatically
decrement by one.

4-58




Table 4-19
Order Group 2 (Sheet 4 of 6)

Value

Syntax

Signal

Detailed Definition

SCR.WRITE

RSTADDR-
STOP

FPA.A

LSCRATCH-
WRORD

LFPAAORD

Scratchpad write. The output of this order
is fed to the write-enable inputs of the
scratchpad RAMs and the output-enable
inputs of the nibble shifter. The order
enables YB Bus bits 00 through 31, after
passing through the nibble shifter and MDB
Bus, to be written into the scratchpad.
The scratchpad is addressed either by the
contents of the microword's P and C fields
(CROM bits 52 through 59) or by YB Bus
bits 08 through 15 when the S.ADDR order
is given and the SCRATCH.ADDR external
destination is chosen.

Not Used.

Reset address stop. This order clears
pending address stops before a halt is
executed.

Floating-point accelerator order A. The
output of this order is fed to the FPA.
This order is used in conjunction with the
FPA.B order (group 3, line A) to direct
either the add/subtract unit to add or
subtract, or the multiply/divide unit to
multipy or divide. In order to work
properly, the orders must accompany, on
the same clock, a load of either the
add/subtract unit or the multiply/divide
unit, as determined by the external
destination (see tables 4-15 and 4-16,
values C through F).

These orders are given by use of special
syntax statements. FP.ADD or FP.MPY
gives both the FPA.A and FPA.B orders.
FP.SUB or FP.DIV gives only the FPA.A
order. The multiply/divide unit also does
an integer multiply by use of the
FIXED.MPY syntax statement, which will
given the FPA.B order only.

If the floating~point macroinstruction is
double precision, two clock cycles are
required. On the first clock, the
add/subtract or multiply/divide unit is
loaded with the least-significant word. On
the second clock, the most-significant
word is loaded and the FP.ADD, FP.SUB,
FP.MPY, or F.DIV syntax is given.
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Table 4-19
Order Group 2 (Sheet 5 of 6)

Value

Syntax

Signal

Detailed Defintion

BU

TEST.CC

RELEASE.
LMAR

LBRNCHAL-
WAYSORD

LTESTCC-
BRNCHORD

LIRELEAS-
LMARORD

Branch unconditional. The output of
this order is connected to the CPU
stopclock circuitry in the IE unit. The
order causes the macroprogram
counter to be loaded with the contents
of the LMAR counter register and the
CPU to unconditionally branch to that
memory location. This order is used
with branch unconditional and branch
and link macroinstructions.

Test condition codes. The output of
this order is connected to the CPU
stopclock circuitry in the IE unit. The
order causes the condition codes test
signal (HCCTEST), qualified by the
HCREGOO signal, to be tested.

If HCREGO00=1 (BCF) and HCCTEST is
false (0) or if HCREG00=0 (BCT) and
HCCTEST is true (1), then the
macroprogram counter is loaded with
the contents of the LMAR counter
register and the CPU branches (macro
branch) to that memory location. If
HCREGO00=0 (BCT) and HCCTEST is
false (0) or if HCREG00=1 (BCF) and
HCCTEST is true, then the branch is
refused and the CPU continues. For
test details, see test group 3, line 6
(table 4-6).

Release logical memory address
register. The output of this order is
connected to the load LMAR logic
circuitry. The order is used by the
firmware to release a hold which has
previously been placed on the LMAR.
This order is equivalent to the
I.RELEASE.LMAR order (group 0,
line 3).
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Table 4-19
Order Group 2 (Sheet 6 of 6)

Value

Syntax

Signal

Detailed Definition

SETAEXP

SETCC(X)

LSETAEXPORD

LSETCCORDL

Set arithmetic exception trap. The
output of this order is gated to the set
input of the arithmetic exception flip-
flop in the IE unit. The order sets the
arithmetic exception flip-flop, giving
a positive AEXP test (group 3, line 3)
result. If arithmetic exceptions and A
microinterrupts are enabled, the
arithmetic exception trap is set. The
trap is reset by the RSTAEXP order
(group 3, line D).

Set condition codes. The output of
this order is fed to the carry-save
flip-flop and the condition code
FPLAs. The order sets the condition
codes according to the rules detailed
in table 4-21. The (X) is a variable
determined by the hexadecimal value
of CROM bits 52 through 55. This
order is equivalent to the SETCC1(X)
order (group 0, line 7). This is a
CREG order used in the CREG +1
cycle.
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Table 4-20
Order Group 3 (Sheet 1 of 4)

Value

Syntax

Signal

Detailed Definition

LATCH.DATA

DNCNTORD

HALT

RSTIPUTRAP

RUN

LLATCH-
DATAORD

LDNCNTORD

LHALTORD

LRSTIPU-
TRAPORD

LRUNORD

Latch order data. The output of this
order is connected to the data inputs of
the level order latches in the MS and IE
units. This order, when given with the
LATCH.ORD order (group 2, line 0),
resets a previously set level order from
the level order select field (table 4-22).
A level order may be directly reset by
the special syntax RESET(X), where X is
the name of the level order.

Decrement N counter. The output of
this order is gated to the up/down input
of the N counter. The order, when the
CNTENORD order (group 2, line 1) is
given, causes the N counter to count
downward. If this order is used by itself
(no CNTENORD), the N.NOVR test
(group 1, line 5) indicates whether the N
counter contents are equal to zero or
not equal to zero. If this order is not
given, the N.NOVR test indicates
whether the N contents are equal to
@FF or not equal to @FF.

Halt. The output of this order is gated
to the clear input of the run/halt flip-
flop in the turnkey panel interface. The
order resets the run/halt flip-flop, light-
ing the HALT LED and giving a positive
result to the HALT test (group 0, line
4). The run/halt flip-flop is set by the
RUN order (group 3, line 4) or by the
control panel function.

Reset IPU trap. The output of this

order is gated to the reset input of the
IPU trap flip-flop in the MS unit. The
order resets a previously set IPU trap.

Run. The output of this order is fed to
the preset input of the run/halt flip-flop
in the turnkey interface panel. The
order sets the run/halt flip-flop, lighting
the RUN LED on the turnkey panel and
giving a condition of false to the HALT
test (group 0, line 4). The run/halt flip-
flop is reset by the HALT order (group 3,
line 2) or by the control panel function.
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Table 4-20
Order Group 3 (Sheet 2 of 4)

Value Syntax Signal Detailed Definition

5 STOP.EVENT LSTOPEVENTORD | Stop event. The output of this
order is connected to a counter in
the Development Support System
(DSS) or the Instrumentation
Interface unit (IIU). If, while in the
DSS mode, the microprogram
counter (uPC) reaches @DEO
(invalid instruction), this order arms
the DSS counter. If, after a count
of 256 cycles, the uPC is still at
@DEQ, control is passed back to the
CPU DSS or IIU. This order is used
as a troubleshooting aid.

6 Not Used.
S.ADDR LSCRATCH- Scratchpad address. The output of
ADDRORD this order connects, directly and via

an inverter, to the output-enable
inputs of the two scratchpad
address register flip-flops. When
given during a scratchpad operation,
the order causes YB Bus bits 08
through 15 to be used as the source
of the scratchpad address. If,
during a scratchpad operation, the
order is not given, the scratchpad
address is determined by the
hexadecimal value of the micro-
word's P and C fields (CROM bits 52
through 59).

8 Not Used.

9 CLEAR.ERROR | LCLEARERROR Clear errors. The output of this
order is gated to flip-flops in the
SelBUS tag and error status
circuits. The order sets the ready
signal and clears busy, retry, data
fetch no transfer acknowledge, data
write no transfer acknowledge, and
instruction address stop errors.
This order gives positive results to
the READY (group 1, line A) test,
and negative results to this
IADDRSTOP (group 0, line 3),
D.NOTA (group 1, line 2), D.NOTA1
(group 1, line 4), RETRY (group 2,
line 2),W.NOTA (group 2, line 5),
and BUSY (group 3, line 2) tests.
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Table 4-20
Order Group 3 (Sheet 3 of 4)

Value

Syntax

Signal

Detailed Definition

FPA.B

FLUSH.
PIPELINE

TEST.ALUZ

RSTAEXP

LFPABORD

HFLUSHPIPE,
LFLUSHPIPE] &
LFLUSHPIPE2

LTESTALUZ-
BRHORD

LCLRAEXPORD

Floating-point accelerator order B.
The output of this order is fed to the
FPA. This order is used in conjunction
with the FPA.A order (group 2, line A)
to direct either the add/subtract unit
to add or subtract, or the multiply/-
divide unit to multiply or divide. For
a more detailed description of this
syntax, see the definition of the
FPA.A order on table 4-19.

Flush pipeline. The output of this
order is fed to locations in the IE, CS,
and MS units, including pipeline status
registers and the backdate program
counter. The order marks all instruc-
tion registers and their status invalid,
and clears the backdate program
counter.

Test if ALU result is equal to zero.
The output of this order is connected
to the CPU stopclock circuitry in the
IE unit. The order causes the ALU
result equals zero signal (HFEOL),
qualified by the HCREGOO signal, to
be tested.

If HCREGO00=1 (BCF) and HFEOL is
false(0) or if HCREG00=0 (BCT) and
HFEOL is true(l), then the macro-
program counter is loaded with the
contents of the LMAR counter
register and the CPU branches (macro
branch) to that memory location. If
HCREG00=0(BCT) and HFEOL is
false(0) or if HCREG00=1(BCF) and
HFEOL is true, then the branch is
refused and the CPU continues.

Reset arithmetic exception trap. The
output of this order is gated to the
reset input of the arithmetic excep-
tion flip-flop in the IE unit. The order
resets the arithmetic exception flip-
flop, which, in turn, resets the arith-
metic exception trap. The trap is set
by the SETAEXP order (group 2, line
E).
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Table 4-20

Order Group 3 (Sheet 4 of 4)

Value

Syntax

Signal

Detailed Definition

BUSREQ.E

BUSREQ.L

LEUNITAREQORD

LEUNITBREQORD

EMAR SelBUS request. The output
of this order is connected to the
cache transfer-type logic in the IE
unit. The order causes the
execution memory address register
(EMAR) to be used for a SelBUS
transaction. The type of transfer is
determined by the hexadecimal
value of CROM bits 56 through 59.
The transfer type is detailed in
either the SelBUS codes field (table
4-24) or, if the TTYPE.OVL order
(group 0, line 2) is also given, the
SelBUS overlay field (table 4-25).
This is a CREG order used by the
CS unit in the CREG+1 cycle. If
the CS unit does not accept the
transaction, a CREG+1 stop clock
results. IE unit prefetching must be
stopped when this order is used.

LMAR SelBUS request. The output
of this order is connected to the
cache transfer-type logic in the IE
unit. The order causes the logical
memory address register (LMAR) to
be used for a SelBUS transaction.
The type of transfer is determined
by the hexadecimal value of CROM
bits 56 through 59. The transfer
type is detailed in either the SelBUS
codes field (table 4-24) or, if the
TTYPE.OVL order (group 0, line 2)
is also given, the SelBUS overlay
field (table 4-25). This is a CREG
order used by the CS unit in the
CREG+1 cycle. If the CS unit does
not accept the transaction, a
CREG+1 stop clock results. IE unit
prefetching must be stopped when
this order is used.
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Table 4-21
Condition Code Select Field CROM 52 through 55

Reference: IE Unit logic drawing 130-103656, sheet 33
General: This field sets the condition codes according to the rules in the table
below. The hexadecimal value of CROM bit 52 through 55 deter-
mines the rules to be applied. The field is enabled when the
SETCC(X) (group 2, line F) or SETCC1(X) (group 0, line 7) CREG
order is given. CCs are set during the CREG+1 cycle from latched
ALU results.
Legend:
GT = Greater than + = ALU results are positive
LT = less than - = ALU results are negative
ET = Equal to = ALU results equal zero
AO= Arithmetic overflow NU = Not used (always zero)
SO = Shift overflow EWL= Effective word length
* = To set CC4 for a doubleword operation, the LSW flag and LSW=0 flag must both
be set. The MSW of the doubleword pair is equal to zero.
Value Syntax CC1 CC2 |CC3 |CC4 | Comments
0 SETCC(A) AO + - 0,% Arithmetic.
1 SETCC(AM) | Old + - 0,* Arithmetic masked.
CC1
2 SETCC(L) NU + - 0,* Logical.
3 SETCC(D) AO + - Least-significant word of a
doubleword pair.
4 SETCC(BIT) | Old Old |o1d |Old Used with bit in memory and
bit CC1 |ccC2 |CC3 bit in register instructions.
5 SETCC(Y) Y01 Y02 Y03 (Y04 Set CC's from the Y Bus.
SETCC(M) NU NU |[NU |O0,* Used with compare masked
instructions
7 SETCC SO NU NU NU Left arithmetic shift
(LSHIFT) instructions
8 SETCC(CA) | NU GT LT ET Compare arithmetic. The CC's
show whether the register
contents are greater than, less
than or equal to the memory
operand.
9 SETCC EWL1| EWL2|EWL3|EWL4 | Indirect. CC's are set equal
(INDIR) = = = = to the state of bits 01 through
04 of the contents of the
indirect word addressed in
memory.
A-C Not Used.
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Table 4-22 ;
Level Order Select Field CROM 52 through 55 (Sheet 1 of 3)

References:

General:

MS Unit logic drawing 130-103654, sheet 40

IE Unit logic drawing 130-103656, sheet 14

The hexadecimal value of CROM bits 52 through 56 determines the

level order to be selected from the table below. Level orders are set
by the order LATCH.ORDER (group 2, line 0). Level orders are reset
by giving the orders LATCH.ORDER and LATCH.DATA (group 3, line
0) simultaneously. Level orders may be directly set or reset by the

special syntax SET(X) or RESET(X), where X is the name of the level

order.

- Value

Syntax

Signal

Detailed Definition

PERR

INTACT

WAIT

DIS.PWRF

DIS.UPATTN

CRAM

HPERRORD

HINTACTORD

HWAITORD

HDISPWRFORD

HDISATTNORD

HCRAMORD

Parity error. The output of this order is
connected to the turnkey panel inter-
face. The order is used to drive the PE
indication on the IOP console CRT.

Interrupt active. The output of this order
is connected to the turnkey panel inter-
face. The order is used to drive the
INTRPT LED on the turnkey panel and
the ACT indication on the IOP console
CRT.

Wait. The output of this order is
connected to the turnkey panel inter-
face. The order is used to drive the WAIT
LED on the turnkey panel and the WAIT
indication on the IOP console CRT.

Disable powerfail. The output of this
order is connected to the powerfail
detection logic. When set, the order
prevents the test structure and I2
exception vector circuitry from detecting
a power failure.

Disable user panel attention. The output
of this order is connected to the turnkey
panel interface. When set, the order
prevents the I2 exception vector circuitry
from detecting an attention request from
the user panel.

Control RAM. The output of this order is
connected to the PROM and RAM enable
and RAM control circuitry. When the
order is set, the CPU is controlled by the
microprogram from the alterable control
store (ACS) instead of the PROM.
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Table 4-22
" Level Order Select Field CROM 52 through 55 (Sheet 2 of 3)

Value

Syntax

Signal

Detailed Definition

RAM.WREN

SIPU

FLAG

ERR.FLAG

ENAUTOMINT

FPA

MULTI.CYCLE

HRAMWREN
ORD

HSIPUORD

HFLAGL

HERR-
FLAGL

HENAUTO-
MINTL

RAM write enable. The output of this
order is connected to the RAM write
control circuitry. When set, the order
enables the CPU to write into the
writable control store (WCS) or the ACS
when the RAMWR order (group 0, line 8)
is given.

Signal IPU. The output of this order is

connected to the IPU trap circuitry and
the SelBUS. When given, the order sets
the IPU trap flip—flop in the MS unit of

another processor.

Flag, latched. The output of this order
is connected to the test structure (group
0, line 8). When set, the order indicates
that the context of the CPU has been
temporarily altered and must be
restored before processing is resumed.

Error flag, latched. The output of this
order is connected to the test structure
(group 1, line 1). When set, the order is
used by subroutines to indicate that an
error (memory or I/O) has occurred
during subroutine execution. Status
describing the error will be provided in a
dedicated register.

Enable automatic microinterrupt,
latched. The output of this order is
connected to the I1 status register.

Floating-point accelerator. This order
puts the floating-point accelerator on-
line or off-line. When the order is set,
the FPA is on-line; when reset, the FPA
is off-line.

Multiple-cycle instruction. The output
of this order is connected to the test
structure (group 2, line 6). When set,
the order indicates that a multiple-cycle
memory reference instruction is being
executed.
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Table 4-22 -
Level Order Select Field CROM 52 through 55 (Sheet 3 of 3)

Value Syntax Signal Detailed Definition

D MAP HMAPL Mapping mode, latched. The output of
this order is connected to the test
structure (group 3, line 1) and the map
circuitry in the CS unit. When set, the
order enables operation in the mapped
mode.

E TRACE HTRACEL Trace, latched. The output of this order
is connected to the test structure (group
0, line 7) and the I3 status register in the
IE unit. When set, the order enables the
CPU to operate in the instruction-step
(single-step) mode.

F UNBLOCK HUNBLOCK | Unblock interrupts. The output of this
order is connected to the test structure
(group 0, line C) and the I2 exception
vector circuitry in the MS unit. When
set, the order disables blocking of
external interrupt requests. The order is
controlled by software through use of
the BEI (block external interrupts) and
UEI (unblock external interrupts)
macroinstructions and PSD2 bits 16 and
17.
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Table 4-23

ALU Shift Code Field CROM 54 and 55 (Sheet 1 of 2)

Reference:

Influenced by:

General:

IE Unit logic drawing 130-103656, sheet 29

CROM bits 33 through 35 of the ID field

The ALU shift code field is enabled when CROM bit 33 of the ID
field is equal to 1

Value

Syntax

Detailed Definition

0

SRA

~ SRAD

SLA

SRL

SRLD

SLL

Shift right arithmetic. All RAM bits are shifted right one bit
position. A bit shifted beyond the bit 31 (LSB) position is
truncated. The sign bit (bit 00) is extended right to fill the bit
01 positon.

Shift right arithmetic doubleword. All RAM and Q register
bits are shifted right one bit position. A Q register bit shifted
beyond the bit 31 (LSB) position is truncated. A RAM bit
shifted beyond the bit 31 position enters the Q register at the
bit 00 (MSB) position. The RAM sign bit (bit 00) is extended
right to fill the RAM bit 01 position.

Shift left arithmetic. The sign bit (bit 00) remains
unchanged. RAM bits 01 through 31 are shifted left one bit
position. A bit shifted beyond the bit 01 position is
truncated. A zero is entered at the bit 31 (LSB) position.

Shift right logical. All RAM bits are shifted right one bit
position. A bit shifted beyond the bit 31 (LSB) position is
truncated. A zero is entered at the bit 00 (MSB) position.

Shift right logical doubleword. All RAM and Q register bits
are shifted right one bit position. A Q register bit shifted
beyond the bit 31 (LSB) position is truncated. A RAM bit
shifted beyond the bit 31 position enters the Q register at the
bit 00 (MSB) position. A zero is entered at the RAM bit 00
position.

Shift left logical. All RAM bits are shifted left one bit
position. A bit shifted beyond the bit 00 (MSB) position is
truncated. A zero is entered at the bit 31 (LSB) position.
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Table 4-23

ALU Shift Code Field CROM 54 and 55 (Sheet 2 of 2)

Value

Syntax

Detailed Definition

SRC

SLC

SLCRQ

SRLRQ

SLAD

SLLD

Shift right circular. All RAM bits are shifted right one
bit position. A bit shifted beyond the bit 31 (LSB)
position is entered at the bit 00 (MSB) position.

Shift left circular. All RAM bits are shifted left one bit
position. A bit shifted beyond the bit 00 (MSB) position
is entered at the bit 31 (LSB) position.

Shift left circular RAM and QQ register. All RAM and Q
register bits are shifted left one bit position. A Q
register bit shifted beyond the bit 00 (MSB) position is
truncated. A RAM bit shifted beyond the bit 00 position
enters both the RAM and Q registers at the bit 31 (LSB)
position.

Shift right logical RAM and Q register. All RAM and Q
register bits are shifted right one bit position. Q
register bits and RAM bits shifted beyond the bit 31
(LSB) position are truncated. A zero is entered at both
the RAM and Q register bit 00 (MSB) positions.

Shift left arithmetic doubleword. The RAM sign bit

(bit 00) remains unchanged. RAM bits 01 through 31 and
all Q register bits are shifted left one bit position. A
RAM bit shifted beyond the bit 01 position is

truncated. A Q register bit shifted beyond the bit 00
(MSB) position enters the RAM at the bit 31 (LSB)
position. A zero is entered at the Q register bit 31
position.

Shift left logical doubleword. All RAM and Q register
bits are shifted left one bit position. A RAM bit shifted
beyond the bit 00 (MSB) position is truncated. A Q
register bit shifted beyond the bit 00 position enters the
RAM at the bit 31 (LSB) position. A zero is entered at
the Q register bit 31 position.
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Table 4-24
SelBUS Codes Field CROM 56 through 59 (Sheet 1 of 3)

Reference: IE Unit logic drawing 130-103656, sheet 11

General: The SelBUS codes field is enabled by either the BUSREQ.E order
(group 3, line E) or the BUSREQ.L order (group 3, line F).
The hexadecimal value of CROM bits 56 through 59 determines the
SelBUS transfer type selected from the table below.
Refer to the SelBUS overlay, Table 4-25, for additional SelBUS codes.

Value Syntax 4 Detailed Definition

0 - IND.DREAD Indirect data read. The IND.DREAD transfer is a CPU

data read from main memory or cache similar to the
DREAD (SelBUS code 6). It differs from the DREAD in
that the returned data is fed via the CAMUX bus, to the
I2 indirect register in the IE unit instead of the cache
data out even (MSW) register. This transfer is used only
by the I unit portion and not the E unit portion of the IE
unit.

ODD.DREAD Odd data read. The ODD.DREAD transfer is a CPU data
read from main memory or cache similar to the DREAD
(SelBUS code 6). It differs from the DREAD in that the
returned data is fed, via the CAMUX bus, to the cache
data out odd (LSW) register instead of the cache data
out even (MSW) register.

IREAD Instruction read. The IREAD transfer is a CPU
instruction read from main memory or cache similar to
the DREAD (SelBUS code 6). It differs from the DREAD
in that instructions, rather than data, are being read.
Also, the returned instructions are fed, via the CAMUX
bus, to the I3 registers in the IE and MS units instead of
the cache data out even (MSW) register.

CHK.STORE Check map for store errors. The CHK.STORE transfer
checks a map location (map image descriptor or MID) to
determine if map errors (map invalid, map miss, or map
protect) will occur if a map store is attempted. This
transfer does not write to or read from cache or main

memory.
READ.CHK. Read memory and check map for store errors. The
STORE READ.CHK.STORE transfer reads a location in main

memory or cache. The transfer also checks the same
location in the map (MID) to determine if errors (map
invalid, map miss, or map protect) will occur if a
memory and cache map store is attempted.
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Table 4-24

SelBUS Codes Field CROM 56 through 59 (Sheet 2 of 3)

Value

Syntax

Detailed Definition

MAP

DREAD

NOP.REQ

LMAP.
SETV.E

LMAP.
SETV.O

WRITE

WRITE.
UNLOCK

Map. The MAP transfer causes a logical to physical address
operation and detects any resulting map errors (map miss or
map invalid). The effective physical address is loaded into
the physical memory address register (PMAR).

Data read. The DREAD transfer is a CPU data read from
the cache or main memory. The memory address from the
physical memory address register (PMAR) bus is sent to the
cache and, via the destination bus, to main memory. If the
required memory location is found in the cache, and the
cache information is valid, the main memory read is aborted;
otherwise, the read is from main memory. If the cache is
valid, the data is fed from the cache to the CAMUX Bus. If
main memory is used, the data returns via the data bus to the
CAMUX Bus. At the same time, the CS unit issues a
DRT.WRITE (SelBUS overlay code 5) transfer, which updates
the cache with the new memory location and data. From the
CAMUX Bus, the data is fed to the cache data out even
(MSW) register in the MS unit.

No operation request. The NOP.REQ transfer performs no
SelBUS operation. This transfer is issued by the firmware for
cache synchronization purposes.

Load map from even register and set valid bit. The
LMAP.SETV.E transfer loads a map image descriptor (MID)
from the map even data in register into the map RAM and
sets the MID's valid bit.

Load map from odd register and set valid bit. The
LMAP.SETV.O transfer loads a map image descriptor (MID)
from the map odd data in register into the map RAM and sets
the MID's valid bit.

Write. The WRITE transfer is a CPU data write to main
memory or cache. The memory address from the PMAR Bus
is sent to the cache and, via the destination bus, to main
memory. At the same time, data from the cache data in
register is sent to the cache and, via the data bus, to main
memory.

Write and unlock. The WRITE.UNLOCK transfer is a

CPU write to main memory (WRITE) that will unlock a
previously locked portion of main memory. A CPU that has
implemented a data read and lock on main memory
(DREAD.LOCK) must subsequently issue a

WRITE.UNLOCK. If the WRITE.UNLOCK transfer is not
given, that memory location will be closed to further access,
including the CPU that locked it. This prevents the changing
of memory by any CPU other than the one that originally
issued the lock.
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Table 4-24

SelBUS Codes Field CROM 56 through 59 (Sheet 3 of 3)

Value

Syntax

Detailed Definition

DREAD.
LOCK

WRITE.
N.MAP

RSTX

ICT

Data read and lock. The DREAD.LOCK transfer is a

CPU data read from main memory (DREAD) that locks a
portion of main memory. No other processor can access that
part of memory until the processor that issued the data read
and lock also issues a WRITE.UNLOCK transfer (SelBUS code
B). The DREAD.LOCK is used in zero bit and set bit macro-
instructions.

Write without map. The WRITE.N.MAP transfer is a CPU
write to main memory or cache without use of the map for
address calculations. The memory address from the PMAR
Bus is sent to the cache and, via the destination bus, to main
memory. At the same time, data from the cache data in
register is sent to the cache and, via the data bus, to main
memory.

Read status transfer. The RSTX is used in conjunction with
the ARSTX (SelBUS overlay code D) to request a status
transfer from an I/O channel. After the I/O channel has been
preconditioned by the advance read status transfer (ARSTX)
and the READY signal returned to the CPU, the RSTX causes
the I/O channel to transfer the assembled status to the CPU
via the SelBUS.

Interrupt control transfer. The ICT is used in conjunction
with the AICT (SelBUS overlay code E) to control the
interrupt logic of the SelBUS interface and the microprogram
of the I/O device. This transfer is sent from the CPU to the
I/O channel during interrupt control instructions and
interrupt sequences. After the AICT has preconditioned the
I/O device's firmware, and a READY signal has been returned
to the CPU, the ICT causes the I/O firmware to execute the
interrupt control instruction and send a data return transfer
(DRT) to the CPU. The DRT acknowledges the ICT.
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Table 4-25
SelBUS Overlay CROM 56 through 59 (Sheet 1 of 3)

Reference: IE Unit logic drawing 130-103656, sheet 11

General: The SelBUS overlay replaces the SelBUS codes field, table 4-24, when
enabled by the TTYPE.OVL order (group 0, line 2).
Value Syntax Detailed Definition
0 CLR. Clear instruction cache bank 0. The CLR.CACHE.L0
CACHE.L.O transfer resets the valid bit of one memory location in

bank 0 of the instruction cache. The memory address is
provided by the EMAR register.

1 CLR. Clear instruction cache bank 1. The CLR.CACHE.L1
CACHE.L1 transfer resets the valid bit of one memory location in
bank 1 of the instruction cache. The memory address is
provided by the EMAR register.

2 LMAP. Load map hit RAM. The LMAP.HIT.RAM transfer
HIT.RAM causes the 16 bits from the map hit register to be loaded
into the map hit RAM. The RAM address is provided by
either the EMAR or the LMAR.

3 SETMRAM The set map RAM causes the 16 bits from the DP map
hit register to be loaded into the map hit RAM.
4 DREAD. Data read without map. The DREAD.N.MAP transfer is
- N.MAP a CPU data read from main memory or cache (SelBUS

code 6) without use of the map for address calcula-
tions. The memory address is obtained from the EMAR
register and the result of the data read is fed to the
cache data out even (MSW) register.

5 DRT.WRITE Write returned data from memory into cache. The
DRT.WRITE transfer is a hardware code issued by the
CS unit. When, during a data read transfer (DREAD),
the addressed memory location is not found in cache, the
data is read from the same location in main memory.
The returned data is sent to one of the cache data out
registers, the I2 indirect register, or the I3 registers. At
the same time, the CS unit gives the DRT.WRITE
transfer, updating the cache with the new memory
location and data.

6 INVALIDATE. Invalidate cache location. The INVALIDATE.CACHE
CACHE transfer invalidates a single cache memory location.
When a main memory location is modified by an I/O
controller, this transfer is used by the CS unit hardware
to invalidate the corresponding location in cache.
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Table 4-25

SelBUS Overlay CROM 56 through 59 (Sheet 2 of 3)

Value

Syntax

Detailed Definition

CACHE.
DINTOI3

CLR.CACHE.
D.0

CLR.CACHE.

D.1

READ.L
CACHE

WRITE.I
CACHE

WDOT

ARSTX

Cache data in to I3. The CACHE.DINTOI3 transfer is
used by the firmware to insert data into the instruction
pipeline. Data is fed, via the CAMUX bus, from the
cache data in register to the I3 registers in the IE and
MS units.

Clear data cache bank 0. The CLR.CACHE.D.O transfer
resets the valid bit of one memory location in bank 0 of
the data cache. The memory address is provided by the
EMAR register.

Clear data cache bank 1. The CLR.CACHE.D.1 transfer
resets the valid bit of one memory location in bank 1 of
the data cache. The memory address is provided by the
EMAR register.

Read from instruction cache. The READ.L.CACHE
transfer enables the firmware to read directly from the
instruction cache without using the SelBUS. This
transfer is used for microdiagnostic purposes.

Write to instruction cache. The WRITE.IL.CACHE
transfer enables the firmware to write directly to the
instruction cache without using the SelBUS. This
transfer is used for microdiagnostic purposes.

Write data or order transfer. The WDOT is used in con-
junction with the AWDOT (SelBUS overlay code F) to
initiate or halt operations within an I/O channel. After
the advance write data or order transfer (AWDOT) has
determined that the I/O channel is operating and
available, the WDOT is sent to the 1/0 channel. The
channel is addressed by destination bus bits 09 through
15. The individual peripheral device is specified by the
subaddress field of the WDOT destination bus. The I/O
channel does not execute a bus transfer response to the
WDOT.

Advance read status transfer. The ARSTX is used in
conjunction with the RSTX (SelBUS code E) to request a
status transfer from an I/O channel to the CPU. The
ARSTX is sent from the CPU to the selected I/O chan-
nel. This preconditions the I/O channel for a status
transfer and causes the requested status to be assem-
bled. When the requested status is assembled and ready
for transfer to the CPU, the I/O channel issues a
READY signal to the CPU via the SelBUS. The CPU
responds to the READY signal by sending a read status
transfer (RSTX) to the I/O channel. All advance
transfers clear the ready flip-flop in the CS unit.
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Table 4-25

SelBUS Overlay CROM 56 through 59 (Sheet 3 of 3)

Value

Syntax

Detailed Definition

AICT

AWDOT

Advance interrupt control transfer. The AICT is used in
conjunction with the ICT (SelBUS code F) to control the
interrupt logic of the SelBUS interface and the I/O
device's firmware. The AICT originates in the CPU and
preconditions the microprogram of the I/O device for
interrupt control action. The I/O device's firmware
performs the setup procedures required before the
interrupt control action can be executed. When the I/0
device is ready to execute the interrupt control
instruction, it generates a READY signal to the CPU via
the SelBUS. The CPU responds to the READY signal by
sending an interrupt control transfer (ICT) to the I/O
channel. All advance transfers clear the ready flip-flop
in the CS umit.

Advance write data or order transfer. The AWDOT is
used in conjunction with the WDOT (SelBUS overlay code
C) to initiate or halt operations within an I/O channel.
The AWDOT is sent from the CPU to the I/O channel to
assure that the channel is both operating and available.
If these conditions are met, a READY signal is sent from
the I/O channel to the CPU. The CPU responds to the
READY signal by issuing a write data or order transfer
WDOT to the I/O channel. All advance transfers clear
the ready flip-flop in the CS unit.
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