4Sight
Programmers Guide

IRIS-40 Series

% 15§ SiliconGraphics
Computer Systems
Document number: 007-2001-030



4Sight Programmer’s Guide

GL/DGL Interfaces
NeWS
Window Manager

Document Version 3.1

Document Number 007-2001-030
(Includes 4Sight Programmer'’s Guide Update
Document Number 007-2001-031)

11/ 90



Technical Publications:
Robert Reimann, Claudia Lohnes, Kevin Walsh
Engineering:

Peter Broadwell, Mark Callow, Dave Ciemiewicz
Kipp Hickman, Allen Leinwand, Rob Myers
Gary Tarolli, Michael Toy, Glen Williams

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer

Software clause at 52.227-7013. Contractor/manufacturer is Silicon

Graphics Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-
7311.

4Sight Programmer’s Guide

Document Version 3.0

Document Number 007-2001-030
(Includes 4Sight Programmer’s Guide Update
Document Number 007-2001-031)

Silicon Graphics, Inc.
Mountain View, California

The words IRIS, Geometry Link, Geometry Partners, Geometry Engine
and Geometry Accelerator are trademarks of Silicon Graphics, Inc.
IRIX is a trademark of Silicon Graphics, Inc.

PostScript is a trademark of Adobe Systems, Inc.

NeWS is a trademark of Sun Microsystems, Inc.




Contents

1. Introduction

2. Making GL Windows

2.1 Input Focus

2.2 Opening and Closing Wmdows

2.3 Setting Window Constraints .
2.3.1 Setting Constraints for Existing

Windows

2.4 Changing Windows Nonmteractlvely (from w1th|n a
Program) . .

2.5 Other Window Routlnes

2.6 Subwindows

2.7 Programming Hints
2.7.1 Graphics Initialization
2.7.2 Shared Facilities
2.7.3 The Event Queue .
2.7.4 Window Manager Devices

2.8 Sample Program: Single Buffer Mode

2.9 Sample Program: Double Buffer Mode

3. Making Pop-up Menus

3.1 Defining a Pop-up Menu .

3.2 Calling up a Pop-up Menu

3.3 Advanced Menu Formats .
3.3.1 Binding a Function to a Menu Entry,f .
3.3.2 Binding a Function to a Whole Menu, F .
3.3.3 Drawing a Line Under a Menu ltem, |
3.3.4 Making a Nested (Rollover) Menu, m
3.3.5 Resetting to Default Values, n .
3.3.6 Making a Title Bar, t .
3.3.7 Setting the Value of a Selecnon X

G1-1

G2-1
Ga-1
G2-2
G2-3

G2-10

G2-12
G2-14
G2-18
G2-19
G2-19
G2-19
G2-20
G2-20
G2-21
G2-23

G3-1
G3-2
G3-4
G3-6
G3-8
G3-8
G3-8
G3-9
G3-10

G3-10
G3-10



3.4 An Example from cedit, a Color Editing
Program NN
3.5 Sample Program

. Controlling Multiple Windows froim a Single
Process .
4.1 Using Window Identmers
4.2 Example Program .
4.3 Managing Multiple Monitors and Screens
4.3.1 The Behavior of Windows on Auxiliary
Screen .
4.3.2 Switching Input Focus to Another
Screen

. Using the IRIS Font Manager
5.1 The Font Manager Interface
5.1.1 Available Fonts
5.1.2 Device Independence
5.1.3 Importing Fonts
5.1.4 Font Metrics
5.1.5 Font Specification and Slzmg
5.1.6 Font Transformation
5.2 The Font Search Path
5.3 Late Binding of Fonts .
5.4 Font Manager Routines
5.4.1 Initializing Fonts
5.4.2 Sizing Fonts
5.4.3 Setting Fonts
5.4.4 Rendering Fonts
5.4.5 Getting Font Information
5.4.6 Changing Font Environments
5.4.7 The Font Cache . .
5.4.8 Adjusting Widths to Match Laser
Printers
5.4.9 Transforming the Page
5.5 Example . .o

G3-11

G3-13 ( ~\

G4-1
G4-1
G4-2
G4-8

G4-9

G4-10

G5-1
G5-2
G5-2
G5-3
G5-3
G5-4
G5-5
G5-5
G5-7
G5-7
G5-8
G5-9

G5-10

G5-11

G5-12

G5-13

G5-16

G5-17

G5-19
G5-20
G5-22




6. Using the Distributed Graphics Library
6.1 Comparing the DGL with RPC .
6.2 Installing the DGL .
6.2.1 DGL Service
6.2.2 inetd Configuration
6.2.3 dnserver Configuration

6.3 Running Graphics Library Programs with the

DGL
6.3.1 Default Connectlon
6.3.2 Using rlogin .
6.4 Writing DGL Programs
6.4.1 New Graphics Library Routlnes
6.4.2 Modified Graphics Library Routines
6.4.3 A Trivial Example . .
6.4.4 Graphics Library Compatlblhty
6.5 Developing Programs .
6.5.1 Compiling
6.5.2 Linking
6.5.3 Reserved Symbols
6.6 Using Multiple Server Connections
6.6.1 Graphics Input .
6.6.2 Local Graphics Data .
6.6.3 Possible Applications
6.7 Limitations and Incompatibilities
6.7.1 Limitations .
6.7.2 The callfunc Routine .
6.7.3 Pop-up Menu Functions .
6.7.4 Interrupts and Jumps
6.8 Error Messages
6.8.1 Client Messages
6.8.2 Server Messages .
6.8.3 Exit Status

A: Textport and Keyboard Data
A.1 Escape Sequences Recognized by wsh
A.2 IRIS-4D Series Keyboard Codes
A.3 Using wsh with GL Clients

G6-1
G6-2
G6-2
G6-3
G6-3
G6-3

G6-4

Gé-4

G6-5

G6-5

G6-5

G6-9
G6-12
G6-13
G6-13
G6-13
G6-13
G6-14
G6-15
G6-15
G6-15
G6-15
G6-16
G6-16
G6-17
G6-17
G6-17
G6-18
G6-18
G6-19
G6-20

GA-1
GA-1
GA-6
GA-10



B: Maximizing DGL Performance . . . . . . . . . . GB-1

B.1 Analyzing Performance . . . e e e e e GB-1
B.2 Monitoring Communication Traﬁlc e e e e e GB-4
B.3 Locating Bottlenecks . . . . e e e e e GB-7
B.3.1 Communications Bottlenecks e e e e e GB-7
B.3.2 Raster Subsystem Bottlenecks . . . . . . . GB-8
B.3.3 Graphics Server Bottlenecks . . . . . . . . GB-8
B.3.4 Client Program Bottlenecks . . . . . . . . GB-9
B.3.5 Reducing Communication Traffic . . . . . . . GB-10
B.3.6 Handling One-way Traffic with Display
Lists . . . e e e v v . . . GB-10
B.3.7 Handling Turnaround Delays e e e e e e . . GB-11

—jv—=




List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 3-3.
Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table A-1.

Table A-2,
Table A-3.

Window Constraint Routines
Window Control Routines
Miscellaneous Window Routines .
Pop-up Menu Routines .

Default Return Values

Summary of Advanced Menu Formats .

Font Manager Routines .
dglopen Error Values
DGL Client Exit Values .
DGL Server Exit Values

ANSI Identifiers for the Escape
Sequences .

wsh Escape Sequences

IR1S-4D Series Keyboard Codes .

G2-4
G2-12
G2-14

G3-1

G3-6

G3-7

G5-8

G6-8
G6-18
G6-20

GA-1
GA-2
GA-7






List of Figures

Figure 5-1.  FontManager FontMetrics . . . . . . . . G54
Figure A-1. IRIS-4DKeyboard . . . . . . . . . . . GA®6

—Vii—






Introduction

4Sight is an integrated windowing environment for IRIS workstations. With
4Sight, you can combine the best aspects of network-distributed 2-D
graphics and high-performance 3-D graphics seamlessly on the IRIS screen.

4Sight supports programs that employ the high-performance, dedicated
graphics available from the IRIS Graphics Library, as well as programs
written for NeWS, and X1, two industry-standard networked graphics
protocols. 4Sight also supports the Distributed Graphics Library (DGL), a
version of the IRIS Graphics Library that allows GL programs to be
displayed across a network in a fashion similar to that of NeWS client
programs. Multiple windows containing GL, DGL, PostScript or X11 client
programs can exist on the screen simultaneously, under the control of a
single, uniform window manager. Using PostScript, you can customize and
extend the appearance and function of the windows, icons, menus, and
controls which make up the window manager’s user interface.

1.1 4Sight Design Overview

4Sight manages the screen and input resources (e.g., the mouse and
keyboard) of the IRIS workstation. These resources are managed by 4Sight
under a client/server paradigm. Graphics programs (clients) request screen
space in the form of windows from a server that manages the limited screen
area on their behalf.

4Sight currently supports four different kinds of graphics clients: GL, DGL,
PostScript, and X11. These clients are supported via three distinct servers:
the DGL server, the NeWS server, and the X11 server. These servers are
integrated within 4Sight to provide a unified set of window services and a
seamless appearance on the screen. Each server presents the specific
communications interface(s) appropriate for its matching client programs.

Version 3.0 Introduction 1-1



Figure 1 shows the relationships between the two 4Sight servers and their

clients.
( ‘)

X11 server

DGL server [¢ | Gt interface

NeWS
(PostScript)
client

IRIS Window Manager

NeWS server

A

Figure 1-1. 4Sight Interface Architecture

The following two sections briefly describe the three kinds of 4Sight clients,
how they relate to their respective servers, and their respective features. (
Following these is a fourth section describing the IRIS Window Manager.

1.1.1 The GL/DGL Interfaces

Dedicated, high-performance 3-D graphics are supported in 4Sight by the
Graphics Library (GL) interface, an extension to the NeWS server. The
Graphics Library uses this interface for its windowing functions; use of the
GL interface guarantees the highest graphics performance available on the
IRIS workstation.

The Distributed Graphics Library (DGL) interface consists of a separate

server that communicates both with DGL client programs and with the

4Sight NeWS server. The DGL server allows you to display the graphics of

a GL program on a remote machine, via a TCP/IP connection. This gives

the IRIS a 3-D networked graphics capability, though at reduced (
performance due to limitations in communication speed over a network. ‘

1-2  4Sight Programmer’s Guide IRIS-4D Series




For more information on program development using the GL interface and
the DGL, see Section 1 of this manual, ‘‘Using the GL/DGL Interface’’, and
the Graphics Library Programming Guide.

1.1.2 NeWS

The Network-extensible Window System (NeWS) server is the central
functional component in 4Sight’s architecture. NeWS is a distributed,
extensible window system developed by Sun Microsystems. In its central
organizing role under 4Sight, the NeWS server manages access to the IRIS
hardware for event generation and distribution, window manipulation, and
display resource arbitration (See ‘“The IRIS Window Manager’’, below). In
addition, the NeWS server supports 2-D network-distributed graphics based
on the PostScript imaging model. NeWS application programs access these
services via their own NeWS client interface, which communicates with the
central NeWS server. For more information on NeWS client programs, see
Section 2 of this manual, ‘‘Programming in NeWS’’.

1.1.3 The X Window System

The X11 server provides an interface for programs written for the X
Window System, Version 11R3, developed by an industry consortium at
MIT. X11 was designed to provide a distributed, standard window system
for the UNIX workstation community. X11 is provided in 4Sight so you
can run local or remote X11 clients on your IRIS screen. X11 is provided as
an execute-only environment shipped standard with 4Sight. You can order
the X11 development package as a software option from Silicon Graphics,
Inc.

1.1.4 The IRIS Window Manager

Although 4Sight provides the raw facilities for window management, it does
not implement any specific user interface itself. Instead, the IRIS Window
Manager is implemented in NeWS; it is a PostScript process running inside
the NeWS server. The Window Manager consists of PostScript routines
defining the appearance and function of windows, icons, menus, and
controls, and the way input events interact with them. Thus, to customize or

Version 3.0 Introduction 1-3



extend the Window Manager, you need only alter these PostScript functions,
or add new ones to suit your needs. For more information, see Section 3 of
this manual, ‘‘Programming the IRIS Window Manager’’.

1.2 Important Reading

Section 1 of this manual, ‘‘Using the GL/DGL Interface’’, assumes
knowledge of the material covered in the Graphics Library Programming
Guide.

Sections 2 and 3 of this manual, ‘‘Programming in NeWS”’, and
“‘Programming the IRIS Window Manager’’, assume knowledge of the
material covered in the PostScript Language Reference Manual. 1If you are
unfamiliar with PostScript, you should also consider the companion book
PostScript Language Tutorial and Cookbook to be required reading.

1.3 Style Conventions

This manual uses the following style conventions:

e IRIX'M commands and filenames appear in italics, and references to
entries in the IRIX documentation are followed by a section number in
parentheses. For example, cc(1) refers to the cc manual entry in Section 1
of the IRIX User’s Reference Manual.

e In IRIX command line syntax descriptions, square brackets surrounding
an argument indicate that it is optional. Variable parameters in IRIX
command line syntax descriptions appear in italics.

e In text descriptions, command line options are denoted by bold font (e.g.,
the -1 option to Ip).

e In text descriptions, IRIS Graphics Library and DGL subroutines appear
in typewriter font. PostScript NeWS) commands and operators
follow the style conventions adopted by the PostScript Language
Reference Manual.

1-4 4Sight Programmer’s Guide IRIS-4D Series




e All example programs and code segments appear in typewriter font.

e System messages in examples appear in typewriter font. Example
text that you must type appears in bold typewriter font.

Version 3.0 Introduction 1-5






Section 1:

Using the GL/DGL Interfaces

Document Version 3.1






1. Introduction

The Graphics Library interface (GL interface) to the NeWS server allows
you to create programs that use the high-performance 3-D graphics provided
by the Graphics Library in combination with the user interface provided by
the 4Sight windowing environment.

This part of the 4Sight Programmer’s Guide covers five major topics:
¢ making GL windows

* making pop-up menus

e controlling several GL windows from a single process

* using the IRIS Font Manager

» using the Distributed Graphics Library (DGL)

There is also an appendix that provides a list of wsh (textport) escape
sequences, the GL routines that issue some of these escape sequences, and
an appendix describing performance issues involving the DGL.

The GL interface consists of Graphics Library routines that pass information
to 4Sight’s NeWS server. This allows the window manager to
accommodate the windowing needs of the GL client program. The
following chapters list and briefly describe each routine of the GL interface.
Because the GL interface supports both C and FORTRAN, the descriptions
for all of these routines provide syntax information in both languages.

The DGL interface consists of a separate server that communicates both
with DGL client programs and with the 4Sight NeWS server. You can run
almost any existing GL program as a DGL client simply by re-linking it
with the DGL library. See Chapter 6, ‘‘Using the Distributed Graphics
Library’’, for complete instruction on its use.

Version 3.1 Introduction G1-1






2. Making GL Windows

This chapter explains how to create and manipulate GL windows from an
application program. Section 2.1 describes input focus in the IRIS Window
Manager. Sections 2.2 through 2.6 describe the Graphics Library routines,
which are the building blocks for programming with the GL interface.
Section 2.7 gives general hints for writing GL client programs. Sections 2.8
and 2.9 contain sample programs: one that uses single buffer mode and one
that uses double buffer mode.

A GL window is a window in which an Graphics Library application
program draws an image. A text window runs a IRIX shell. You create GL
windows with the Graphics Library routines described in this chapter.

2.1 Input Focus

The 4Sight window manager uses the ‘‘follow focus’’ input focus paradigm.
Input focus goes to the window over which the mouse cursor lies.

To direct input to a window that is not underneath the mouse cursor:

1. move the mouse cursor over the window to which you want to direct
input

2. press and hold any key (the ctrl or shift keys are good choices)
3. move the mouse out of the window border while still holding the key

Your input remains directed to the original window until you let go of the
key; at that point, input goes to whatever lies undemeath the cursor.

Version 3.1 Making GL Windows G2-1



2.2 Opening and Closing Windows

Use the GL winopen routine to open a window. Use the GL winclose
routine to close a window.

winopen

Use winopen to create a graphics window as defined by the current values
of the window constraints. This new window becomes the current window.
If this is the first time that your program has called winopen, the system
also initializes the graphics system.

Except for size and location, the system maintains default values for the
constraints on a window. You can change these default window constraints
if you call the routines minsize, maxsize, keepaspect,
prefsize, prefposition, stepunit, fudge, iconsize,
noborder, noport, imakebackground, and foreground before
you call winopen. If a window’s size and location (or both) are left
unconstrained, the system allows the user to place and size the window.

After opening a window, winopen resets all global state attributes (this
includes window constraints) to their default system values. (For a listing of
the global state attributes and their default values, see the documentation for
greset.) winopen also queues the pseudo devices INPUTCHANGE and
REDRAW.

When using the Distributed Graphics Library (DGL), the window identificr
also identifies the window’s graphics server. A valid window identifier
consists of a 32-bit positive integer. The DGL directs all graphics input and
output to the current window’s server; subsequent Graphics Library
subroutines are executed by the window’s server.

The name argument to winopen appears on the window’s title bar. When
you stow the window to an icon, this text also appears on the window’s
icon. (Use wintitle to change the caption that appears on the title bar
Use icontitle to change the caption that appears on the icon.) You can
also use winopen to place specified windows on the desktop, as described
in Section 3 of this manual, ‘‘Programming the IRIS Window Manager’’.

If you are programming in FORTRAN, winope takes an additional
argument, length, the length of the string supplied as the name
argument.

G2-2 4Sight Programmer’s Guide IRIS-4D Series

(



The returned value for winopen is the graphics window identifier for the
window just created. Use this value to identify the graphics window to
other graphics functions. If no additional graphics windows are available,
this function returns —1.

For information on using winopen with the Distributed Graphics Library
(DGL), see Chapter 6, *‘Using the Distributed Graphics Library’’.

long winopen (name)
char namel[];

integer*4 function winope (name, length)
character* (*) name
integer*4 length

winclose

winclose removes a window. This routine is only useful for multi-
window applications. Exiting a program automatically closes any windows
it created. The gid parameter is the graphics identifier for the window.
(The returned value of the winopen function that created the window.)

void winclose (gid)
long gid;

subroutine winclo (gid)
integer*4 gid

2.3 Setting Window Constraints

You can control the size, location, and shape of graphics windows from a
GL client program. Calling winopen without first specifying any of these
characteristics allows you to open a window of any size or shape anywhere
on the screen. But if you want something specific, such as a small square
window with a border, you can specify the desired size and shape.

Use the window constraint routines (see Table 2-1) to specify window
characteristics. Call these routines before opening a window with
winopen. (For instructions on changing the characteristics of an existing
window, see the description of winconstraints.)

Version 3.1 Making GL Windows G2-3



When you interactively change a window, the 4Sight server (NeWS) applies
the constraints that you specify. Interactively changing a window means
sweeping out a window with the mouse, or using pop-up menus to change

the size, shape, or position of a window. To change windows

noninteractively (that is, from an application program), see Section 2.4.

G2-4 4Sight Programmer’s Guide

Use To specify

foreground Program runs in foreground
fudge Small increase in size
iconsize Size of window’s icon
imakebackground Process that draws background
keepaspect Aspect ratio

maxsize Maximum size

minsize Minimum size

noborder No window borders

noport Graphics routines without window
prefposition Size and location

prefsize Size, in pixels

stepunit Sizing increment )

Table 2-1. Window Constraint Routines

IRIS-4D Series




foreground

foreground makes a program run in the foreground. By default, when you
first call winopen in your program, the 4Sight server runs your program in
the background. If you precede your first call to winopen with a call to
foreground, the 4Sight server runs your graphics program as a foreground
process. When a program runs in the background, it does not normally
receive input from the stdin.

Acall to foreground applies only to the first call to winopen.

void foreground ()

subroutine foregr

fudge

fudge adjusts the size of a graphics window so that a program can draw a
border or add a heading. You can use fudge and stepunit together.

void fudge (xfudge, yfudge)
long xfudge, yfudge;

subroutine fudge (xfudge, yfudge)
integer*4 xfudge, yfudge

Version 3.1 Making GL Windows G2-5



iconsize

iconsize specifies the new size (in pixels) of a window when it is redrawn
or "stowed" as anicon. (Call iconsize before you call winopen or, if the
window already exists, before you call winconstraints. See2.3.1.)

When users stow a window, the 4Sight server sends a REDRAWICONIC
event to the graphics queue. Your program can then read the
REDRAWICONIC event from the event queue and, if you want, describe
the icon to use for the window. If your program gives no special icon
description, the icon is the image of whatever the window contained when
the user stowed the window.

Note: Programs using iconsize must call reshapeviewport fora
REDRAWICONIC event. This ensures that the image drawn for
the icon is appropriately scaled. Such programs must also call
gdevice for both the WINFREEZE and WINTHAW events (see
Section 2.7.4, ‘“Window Manager Devices’’).

If your program does not call iconsize, the window manager handles all the
details of freezing the window, drawing the icon, and thawing the window
when the user "opens” the icon (see winicons(SW)). Your program only
needs to call iconsize when you want to take control of how the icon is
drawn.

void iconsize(x,y)
long x, y;

subroutine icons (x,y)
integer*4 x, y

G2-6 4Sight Programmer’s Guide IRIS-4D Series

(



imakebackground

imakebackground sets up a process that draws the background of the
window manager’s screen. Use this routine to create nonstandard (for
example, patterned) backgrounds. The process must first draw the
background and then read the event queue. The process redraws the
background for every REDRAW event in the event queue (see Section
2.7.3). A program that declares itself as imakebackground stops any
previous imakebackground program.

void imakebackground()

subroutine imakeb

keepaspect

keepaspect specifies the aspect ratio (proportions or width-to-height ratio)
of the graphics window. You can resize the graphics window, but its aspect
ratio stays the same. Use keepaspect (1,1) to ensure that the graphics
window is always square. Use keepaspect (4, 3) to ensure that the
graphics window maintains the ratio four units wide to three units high, no
matter how large or small the user resizes the window to be.

void keepaspect (x, y)
long x, y;

subroutine keepas (x, y)
integer*4 x, y

maxsize

maxsize specifies a maximum size for the graphics window. The default
maximum size is 1280 pixels wide (x) by 1024 pixels high (y).

void maxsize (x, y)
long x, y;

subroutine maxsiz(x, y)
integer*4 x, y

Version 3.1 Making GL Windows G2-7



minsize

minsize specifies a minimum size for the graphics window. You cannot
interactively reshape the graphics window to be smaller than this minimum
size. The default minimum size is 80 pixels wide by 40 pixels high.

void minsize (x, y)
long x, ¥y’

subroutine minsiz (x, y)
integer*4 x, y

noborder

By default, a window has a border around it. To make a new window
without borders, call noborder before you open the window. To remove
the borders from an existing window, use noborder with
winconstraints (see section 2.3.1).

void nobordex ()

subroutine nobord

noport (
noport tells the 4Sight server that the program requires no screen space.

You can use this routine in programs that use the GL only to read or write

the color map. Aftera call to noport, the next call to winopen will not

create a window on the screen, but all graphics commands remain enabled.

Calling winconstraints resets noport.

void noport ()

subroutine noport

G2-8 4Sight Programmer’s Guide IRIS-4D Series




prefposition

prefposition specifies the preferred location and size of the graphics
window. The window initially appears on the screen at the preferred
location, but you can subsequently drag the window to a different location.
You cannot resize a window that you create when prefposition is active.

void prefposition(xl, x2, yl, y2)
long x1, x2, yl, y2;

subroutine prefpo (xl, x2, yl, y2)
integer*4 x1, x2, yl, y2

prefsize

prefsize specifies the size of the graphics window as x pixels by y pixels.
When prefsize is in effect, you cannot interactively resize the graphics
window. When you open a window with a preferred size, you automatically
grey out and deactivate the "Resize" item from the Window (frame) menu.
You also automatically hide and deactivate the resize brackets normally
displayed in the window comers.

void prefsize(x, y)
long x, y;

subroutine prefsi(x, y)
integer*4 x, y
Stepunit

stepunit enforces a "granularity” to changes in the size of a graphics
window. All changes to the size of the graphics window are in steps of xunit
pixels in the horizontal and yunit pixels the vertical. See the Graphics
Library Reference Manual for more information.

void stepunit (xunit, yunit)
long xunit, yunit;

subroutine stepun (xunit, yunit)
integer*4 xunit, yunit

Version 3.1 Making GL Windows G2-9



2.3.1 Setting Constraints for Existing Windows

You can call any of the 12 window constraint routines just before you call
winopen. The 4Sight server applies these constraints when it opens the
window. To respecify constraints for a window that is already open, follow
these steps:

1. Call the desired series of window constraint routines (see Table 2-1).

2. Call winconstraints.

winconstraints

winconstraints restricts the size, location, or shape of a window as
specified by the first 11 routines in Table 2-1. foreground does not work
with winconstraints.

void winconstraints ()

subroutine wincon

winconstraints performs two functions:
1. It sends any current constraints on the window to the 4Sight server.
2. It resets all constraints to their default values (excluding foreground).

The code sample below removes all old constraints and subjects future
resizing of the window to a 400x400 pixel minimum, with a square aspect
ratio.

winconstraints () ;
minsize (400, 400);
keepaspect (1, 1);
winconstraints () ;

When you call winconstraints, the appearance of the window does not
immediately change. To put the changes into effect, you must interactively
reshape the window with the mouse or from a pop-up menu.
winconstraints uses the constraints that were set since the last time you
created a window or called winconstraints.

G2-10 . 4Sight Programmer’s Guide - IRIS-4D Series




To remove all previous constraints, call winconstraints twice without
any new constraints; the first call resets any constraints which may have
been set previously, the second call sends the default values of the
constraints to the 4Sight server.

winconstraints () ;
winconstraints () ;

So, to open a window that starts out having a 1:1 aspect ratio, which under
some condition (such as a menu choice) can not grow larger than 400 pixels
by 400 pixels (while maintaining 1:1 aspect ratio), and under a different
condition can grow to any size with any aspect ratio, you would write code
that looks like this:

keepaspect (1, 1);
winopen (name) ;
...code. ..

maxsize (400, 400);
keepaspect (1, 1);
winconstraints () ;
...morecode. ..
winconstraints () ;
winconstraints () ;

. . .remainder of program . .

Version 3.1 Making GL Windows  G2-11



2.4 Changing Windows Noninteractively (from
within a Program)

This section describes how to give a program the same control over
windows that you have when using pop-up menus. You can move, resize,
push, and pop windows from your program. Table 2-2 lists the routines that
perform these tasks.

Routine Task
winmove Move the current graphics window
winpop Pop the current graphics window to front

winposition Move and reshape the current graphics window

winpush Push the current graphics window to back

Table 2-2. Window Control Routines

The 4Sight server performs the operations in Table 2-2 on the current
graphics window, which you can set with winset (see Section 2.5, Other
Window Routines).

winmove

winmove moves the lower-left corner (origin) of the current graphics
window to screen location (x, y), measured in pixels. The size and shape of
the window do not change. The 4Sight server erases the parts of the
window over the background and sends REDRAW events to any windows
exposed by the move.

void winmove (orgx, orgy)
long orgx, orgy;

subroutine winmov
integer*4 orgx, orgy

winposition and winmove acton the current graphics window despite
any constraints you have set. The window constraint routines (see

Table 2-1) affect only the interactive reshaping or moving of windows.
When you use winmove to move a window, it does not have to stay in the

G2-12  4Sight Programmer’s Guide IRIS-4D Series




same position forever. Later, if you interactively move it (i.e., by using
pop-up menus), it is subject to the constraints that were in effect at the last
callto winconstraints.

winpop

winpop pops the current graphics window in front of all other windows and
icons on the screen. When you pop a window, it covers all the windows that
occupy the same portion of the screen.

void winpop ()

subroutine winpop

winposition

winposition sets the position and size (in pixels) of the current graphics
window to the coordinates (x/, yI) and (x2, y2). You can specify any two
corners with the two x and two y coordinates. The 4Sight server
automatically erases the window at the old position. winposition acton
the current graphics window despite any constraints you have set. The
window constraint routines (see

Table 2-1) affect only the interactive reshaping or moving of windows.
When you use winposition to move a window, it does not have to stay in
the same position forever.

void winposition (x1, x2, yl, y2)
long x1, x2, yl, y2;

subroutine winpos (x1, x2, yl, y2)
integer*4 x1, x2, yl, y2

winpush

winpush pushes the current graphics window behind all other windows and
icons on the screen. When you push a window, all overlapping windows
obscure it.

void winpush ()

subroutine winpus

Version 3.1 Making GL Windows G2-13



2.5 Other Window Routines

This section describes the graphics window routines shown in Table 2-3.

Routine Task

endfullscrn End full-screen mode

fullscrn Enable the entire screen for writing
getorigin Return the origin of thé graphics window
getsize Return the size of a graphics window
icontitle Give a window’s icon a title

reshapeviewport  Putviewport at current graphics window position

screenspace Put the program in screen space

windepth Return depth of window in window stack
winget Return identifier of current graphics window
winset Set the current graphics window

wintitle Make a title bar for the current graphics window

Table 2-3. Miscellaneous Window Routines

endfullscrn

endfullscrn ends full screen mode. The screenmask and viewport are
reset to the boundaries of the current graphics window. The current
transformation is unchanged. See the Graphics Library Programming
Guide, Chapter 7, ‘‘Coordinate Transformations’”’.

void endfullscrn ()

subroutine endful

G2-14 4Sight Programmer’s Guide IRIS-4D Series



fullscrn

fullscrn enables the entire screen for writing. It sets the screenmask and
the viewport to the entire screen, with respect to the physical screen origin,
not the origin of the graphics window. When you use this routine, graphics
processes are not protected against interference from each other.

void fullscrn()

subroutine fullsc

getorigin

getorigin returns the position of the origin (lower-left corner) of the
graphics window.

void getorigin (x, y)
long *x, *y;

subroutine getori (x, y)
integer*4 x, y

getsize

getsize returns the size of the graphics window in pixels.

void getsize(x, y)
long *x, *y;

subroutine getsiz(x, y)
integer*4 x, y

icontitle

icontitle sets the title of the current window’s icon. The title is center-
justified, and appears near the top edge of the icon. The extra FORTRAN
argument, length is the number of characters in name.

void icontitle (name)
char name[];

subroutine iconti (name, length)

character * (%)
integer*4 length

Version 3.1 Making GL Windows G2-15



reshapeviewport

reshapeviewport sets the viewport to the current dimensions of the
graphics window.

void reshapeviewport ()

subroutine reshap

screenspace

screenspace puts the window in screen space. Graphics positions are
expressed in absolute screen coordinates. (Normally, when you open a
window, (0,0) is the lower-left corner of the window, rather than the lower-
left corner of the screen.) In screen space, (0,0) is the lower-left corner of
the screen. To get the upper-right corner of the screen, call the GL routine
getgdesc. Call getgdesc (GD_XPMAX) for the the x coordinate. Call
getgdesc (GD_YPMAX) for the y coordinate. Putting the program in
screen space allows you to read pixels and locations outside the graphics
window. (Note that when doing this, the user must maintain input focus to
the window as described in section 2.1.)

void screenspace ()

subroutine screen

windepth

windepth measures how deep a window is in the window stack. To
determine the relative stacking order of windows on the screen, compare the
returned value of this function for the various windows. The larger the
value returned by windepth, the deeper the window is on the stack. gid
is the graphics id number of the window whose depth you want to measure.

long windepth (gid)
long gid;

integer*4 function windep (gid)
integer*4 gid

G2-16 4Sight Programmer’s Guide IRIS-4D Series




winget

winget returns the graphics window identifier (gid) of the current graphics
window.

long winget ()

integer*4 function winget ()

winset

winset makes the specified graphics window the current window. gid is
the window’s graphics id number. When a new current window is set, most
graphics modes (such as color, setpattern, and zbuffer) are
changed to reflect the graphics environment of the new current window.

For information on using winset with the Distributed Graphics Library
(DGL), see Chapter 6, ‘‘Using the Distributed Graphics Library’’.

void winset (gid)
long gid;

subroutine winset (gid)
integer*4 gid

wintitle

wintitle makes a title bar for the current graphics window, which you can
set with winopen.

Calling wintitle ("") removes the title bar of the current graphics
window. The name argument is displayed on the left-hand side of the title
bar. The extra FORTRAN argument, length, is the number of characters in
name.

void wintitle (name)
char name[];

subroutine wintit (name, length)

character* (*) name
integer*4 length

Version 3.1 Making GL Windows G2-17



2.6 Subwindows

The GL Interface supports GL subwindows, borderless windows that are
positioned and clipped relative to a parent GL window. Possible uses for
GL subwindows include dialogue and alert boxes.

swinopen

swinopen creates a GL subwindow. parent_id is the gid of the parent
subwindow. If an existing subwindow’s gid is specified, the parent of that
subwindow becomes the parent of the new subwindow for purposes of
positioning (see below). The new subwindow inherits the current graphics
window state, and becomes the new current window.

After calling swinopen, the application must call winposition to
specify the location of the subwindow with respect to the origin of the
parent window. Imaging in the subwindow is limited (clipped) to the area
of the parent window.

When using the DGL (see Chapter 6, ‘‘Using the Distributed Graphics
Library’), the parent_id also identifies the graphics server associated with
the window. The DGL directs all subsequent GL input and output to the
server associated with parent_id.

swinopen queues INPUTCHANGE and REDRAW.

long swinopen (parent_id)
long parent_id;

integer*4 function swinop (parent)
integer*4 parent

G2-18 4Sight Programmer’s Guide IRIS-4D Series

(

(



2.7 Programming Hints

When you program under the window manager, be aware of the special
considerations listed in the sections below.

2.7.1 Graphics Initialization

winopen initializes window graphics. Older IRIS products used a routine
called ginit. ginit disables all window manager functions; only one
such program may run at a time. Starting anew ginit program while
another is running kills the first one. To maintain compatibility with older
IRIS products, programs using ginit still work. However, you should
now use winopen instead.

2.7.2 Shared Facilities

Although each graphics program is independent of the others, they must
share the graphics resources. All IRIS-4D’s support the simultaneous
display of windows that use different display configurations (e.g., RGB with
single-buffer, color index with double buffering, RGB with double buffering
and overlay planes, etc.).

But the hardware imposes a limit on how many different types of windows
you can open simultaneously. The hardware must maintain descriptions for
each display configuration you are using. Fortunately, windows can share
the display configurations, so you do not need a separate display
configuration for each window.

The IRIS-4D (B and G models) can correctly handle the simultaneous
display of up to three display configurations. The 8-bitplane Personal Iris
can handle up to four, and the full-bitplane Personal Iris and the IRIS-4D
GT can simultaneously display up to 16 different display configurations.

If you try to use more types of window than you have display
configurations, the system does the best is can by taking resources from the
display configuration for the least recently touched window. As a result, the
display for some "old" window might change color or look a little strange.
However, if you access that window again, it takes back the resources it
needs)emat the expense of some other window display configuration.

Version 3.1 Making GL Windows G2-19



In addition to sharing window display configurations, the system also
requires that graphics programs cooperate in their color map usage if the
programs run simultaneously and use color index mode. Likewise, windows
created by a single program must share line patterns, raster fonts, and cursor

glyphs.

2.7.3 The Event Queue

Each graphics program has an event queue (see the Graphics Library
Programming Guide, Section 5.3, ‘‘The Event Queue.”” A REDRAW event
appears in the queue under these circumstances:

* The user moves or reshapes a window.
e Part of a window is uncovered.
* The display mode changes.

An INPUTCHANGE event appears on the queue when a user directs the
input focus to a new window or to the background. The value associated
with the INPUTCHANGE event is the gid (graphics window identifier) of
the window that has input focus, or 0 if the input focus is removed.

2.7.4 Window Manager Devices

The devices listed below are associated with window manager events. See
the Graphics Library Programming Guide, Section 5.3, ‘“The Event
Queue’’, for more information on how to use devices.

REDRAW the window manager inserts a redraw event
each time a window needs to be redrawn. The
REDRAW device is queued automatically.

REDRAWICONIC queues automatically when iconsize is
called. The Window Manager sends this
event when a window needs to be redrawn as
an icon by the program itself.

DEPTHCHANGE indicates an open window has been pushed or
popped. The value of the event is the gid of
the window that has changed. Use
windepth to determine the stacking order.

G2-20 4Sight Programmer’s Guide IRIS-4D Series



WINSHUT when queued, the Window Manager sends this
event when the Close item is selected from a
program’s Window (frame) menu, or when the
close fixture is selected from the title bar of a
program’s window. If WINSHUT is not
queued, the Close item on the program’s
Window menu will appear greyed-out, and
will have no effect if selected.

WINQUIT when queued, the Window Manager sends this
event rather than killing a process when Quit
is selected from a program’s Window (frame)
menu.

WINFREEZE/WINTHAW  if queued, the Window Manager sends these
events when windows are stowed to icons and
later unstowed, rather than blocking the
processes of the stowed windows. These
devices should be queued if the program plans
to draw its own icon (see iconsize )orisa
multi-window application.

INPUTCHANGE indicates a change in the input focus. The
INPUTCHANGE device is queued
automatically.

2.8 Sample Program: Single Buffer Mode

This section contains a program that runs under the window manager in
single buffer mode. keepaspect, winopen, and reshapeviewport are
the only window manager routines required.

The drawit routine executes once. Then, whenever the user interactively
moves the window, drawit executes again. (Because of keepaspect, the
window cannot be reshaped.) reshapeviewport makes sure the
viewport is set to the new location of the current graphics window.

Version 3.1 Making GL Windows  G2-21



M C Program: SINGLE BUFFER MODE
#include <gl/gl.h>
#include <gl/device.h>

main ()
{

short val;

keepaspect (1,1); /* the graphics window can be any

location and size, as long as it’s square */

winopen ("zoing");
drawit () ; /* image drawn the first time */
/* the image is redrawn whenever a REDRAW
appears in the event queue */
while (TRUE) {
if (gread (&val) == REDRAW) drawit();
}
/* NOT REACHED */

drawit ()
{

register int i;

reshapeviewport () ;

color (WHITE) ;

clear();

ortho2(-1.0,1.0,-1.0,1.0);

color (BLACK) ;

translate(-0.1,0.0,0.0);

pushmatrix () ;

for (i=0; i<200; i++) {
rotate(170,'z');
scale(0.96,0.96,0.0);
pushmatrix();
translate(0.10,0.0,0.0);
¢cirec(0.0,0.0,1.0);
popmatrix () ;

}

popmatrix();

G2-22 4Sight Programmer’s Guide

IRIS-4D Series



2.9 Sample Program: Double Buffer Mode

This double buffered program draws a cube that the user rotates by moving
the mouse.

B C Program: DOUBLE BUFFER MODE

#include <gl/gl.h>
#include <gl/device.h>

main ()

{
Angle x, y; /*
short active; /*

Device dev;

short val;

keepaspect (3, 2) ;
winopen ("cube") ;
doublebuffer () ;
geonfig();
qgdevice (WINSHUT) ;
qgdevice (MOUSEX) ;
gdevice (MOUSEY) ;

perspective (400, 3.0/2.0,
translate (0.0, 0.0, -3

rotate (900, 'z’);

x =0;, y=0;

active = 0;

Version 3.1

current rotation of object*/
TRUE if window is attached*/

100000.0) ;

Making GL Windows

G2-23



while (TRUE) ({

drawcube (x,y) ; /* draw into the back buffer */
swapbuffers () ; /* show it in the front buffer */
while (gtest()) { /* process queued events */

dev = gread(&val);
switch (dev) {

case WINSHUT: /* exit program */
gexit () ;
exit (0);
break;

case INPUTCHANGE:
active = val;
break;

case REDRAW:
reshapeviewport () ;
break;

case MOUSEX:
x = val;
break;

case MOUSEY:
y = val;
break;

default:
break;

}
/* NOT REACHED */

G2-24 4Sight Programmer’s Guide

IRIS-4D Series



drawcube (rotx, roty)

Angle rotx, roty;

{
color (BLACK) ;
clear();
color (WHITE) ;
pushmatrix () ;
rotate (rotx, 'x");
rotate (roty,'y’);
cube () ;
scale(0.3,0.3,0.3);
cube () ;

popmatrix();

cube () /* make a cube out of 4 squares */
{

pushmatrix();

side () ;

rotate (900, 'x");

side () ;

rotate (900, 'x");

side () ;

rotate (900, 'x");

side () ;

popmatrix();

side() /* make a square translated 0.5 in the z direction */
{

pushmatrix();

translate (0.0 0.0,0.5);

rect (-0.5,-0.5 0.5,0.5);

popmatrix();

Version 3.1 Making GL Windows G2-25






3. Making Pop-up Menus

This chapter describes routines that your graphics programs can use to
create and interact with pop-up menus. When the user selects an item from
a menu, these routines automatically identify which menu item has been
selected.

Sections 3.1 and 3.2 describe the routines that create and call pop-up menus.
Section 3.3 describes advanced menu formats. Sections 3.4 and 3.5 provide
examples programs that use pop-up menus.

Table 3-1 correlates tasks with pop-up menu routines.

Routine Task

addtopup  Add menu items

defpup Make a menu with items
dopup Call up a menu

freepup Delete a menu

newpup Make a new menu

setpup Enable or disable menu entries

Table 3-1. Pop-up Menu Routines

Version 3.1 Making Pop-up Menus  G3-1



3.1 Defining a Pop-up Menu

If you program in C, you can define a menu in two ways:

e Initialize the menu definition with newpup, and then add menu items to
the definition by calling addtopup.

e Use defpup, which combines the functions of newpup and addtopup. (

If you program in FORTRAN, you must use newpup and addtop to
define your menu. defpup is available only to C programs.

newpup

newpup allocates and initializes a structure for a new menu. This function
takes no arguments and returns a 32-bit integer identifier (pup) for the pop-
up menu.

long newpup()

integer*4 function newpup ()

addtopup
newpup defines an empty menu. To build a menu definition, use both (
newpup and addtopup. addtopup adds menu entries to the bottom of

an existing menu definition (i.e., the menu definition created by newpup).

pup is the menu identifier returned by newpup Or defpup. strisa
character string that specifies the entries in the menu. The string lists the
menu labels from the top to the bottom of the menu. Use a ‘I’ (vertical bar)
between entries.

G3-2 4Sight Programmer’s Guide IRIS-4D Series




The FORTRAN version, addtop, takes an additional length argument,
which specifies the number of characters in the string. Use arg for advanced
menu formats (see Section 3.3). If you are working with a simple menu,
you can supply a zero for arg.

void addtopup (pup, str, arg)
long pup;
char *str;
long arg;

subroutine addtop (pup, str, length, arg)
integer*4 pup

character* str(*)

integer*4 length

integer*4 arg

To define a menu that looks something like this:

first

second
third

use these routines:

C:

menu = newpup () ;
addtopup (menu, "first|second|third", 0);

FORTRAN:

imenu = newpup ()
call addtop(imenu, "first|second|third", 18, 0)

The 18 in the FORTRAN routine is the number of characters in the string,
including the vertical bars.

Version 3.1 Making Pop-up Menus G3-3



defpup

defpup is available in C only. Use defpup to define a new menu its
entries. defpup combines the functions of newpup and addtopup.

long defpup(str [, args] ...)
char *str;
long args;

defpup creates the menu shown above in one step. You can add additional
menu entries with addtopup.

menu = defpup("first|second|third");

setpup

setpup allows you to disable individual entries in a menu. The disabled
entry appears greyed out when the system displays the menu. A greyed out
entry returns no value if the user selects it. pup is the menu identifier
returned by either newpup Or defpup. entry is the position of the menu
entry, indexed from 1. mode determines the display state of the chosen
entry. See the setpup man page for more information on menu items
display modes.

void setpup(pup, entry, mode)
long pup;

long entry;

long mode;

subroutine setpu(pup, entry, mode)
integer pup

integer entry

integer mode

3.2 Calling up a Pop-up Menu

This section describes how a GL client can display previously-defined pop-
up menus. This section also describes how to free the memory associated
with a menu definition.

G3-4 4Sight Programmer’s Guide IRIS-4D Series

(

(

(



dopup

dopup displays a previously defined pop-up menu. pup is the identifier of
the pop-up menu. The code below uses gread and dopup to display a
menu while the user presses the right mouse button. If the user releases the
button while the cursor is off the menu, dopup returns —1. If the user
releases the button while the cursor is on the menu and if the menu
definition does not use an advanced menu format (see Section 3.3), dopup
returns an integer corresponding to the position of the item in the menu.

long dopup (pup)
long pup;

subroutine dopup (pup)
integer*4 pup

To cause the right mouse button to bring up the menu shown in Section 3.1,
use this code:

C:

dev = gread(&val);
if (dev == RIGHTMOUSE) {
if (val == 1) { /* right mouse button is pressed */
menuval = dopup (menu) ;
}
}

FORTRAN:

idev = gread(ival)
if (idev .eq. rightm) then
if (ival .eq. 1) then
imval = dopup(imenu) ;
endif
endif

The user selects “first’, ‘second’, or ‘third’ by positioning the cursor over
one of these items, then releasing the button. The user makes no selection
by releasing the button with the cursor off the menu. Table 3-2 shows the
return value for each possible selection.

Version 3.1 Making Pop-up Menus G3-5



Selection Return Value

first 1
second 2
third

no selection -1

Table 3-2. Default Return Values

To make dopup return values other than the position value of a selected

menu item, see Section 3.3.

freepup

freepup frees the memory used to define a pop-up menu. Freelng this

memory deletes the pop-up menu definition.

void freepup (pup)
long pup;

subroutine freepu (pup)
integer*4 pup

3.3 Advanced Menu Formats

Until now, the strings used in addtopup or defpup to define menu items
were simple. The only special formatting character mentioned has been the
"I" delimiter. This character separates the defining text for multiple menu
items (e.g., "firstlsecondlthird"). However, there are special character

combinations that allow you to:
¢ define the value returned when you select a menu item
* bind a function to a whole menu or to a menu item

¢ make a title bar or a rollover menu

G3-6 4Sight Programmer’s Guide

IRIS-4D Series




You can use these special character combinations with either the
addtopup or the defpup routine. The general rules for using these special
character combinations are:

¢ Put the special character combination at the end of the menu item to
which it applies (before a "I" delimiter, or, if the string defines only one
menu item, before the closing quote).

e Start all special character combinations with a percent sign "%".

¢ Put only one command letter after the percent sign. If you want to use
more than one command letter in a single menu item, use a % before each
(e.g. %t %f).

* Put numeric arguments (if any) immediately after the command letter
(e.g., %x15). If the command takes an argument that is not a number (%f
takes a routine name), use the arg parameter of the addtopup or
defpup routine to specify the non-numeric argument.

You can use more than one special character combination in a single menu
entry. Because there is only one arg parameter in the addtopup oOr
defpup routine, string can contain only one command that takes a non-
numeric argument. To get around this limitation, you can make multiple
calls to addtopup when you define the menu. Below, Table 3-3
summarizes the special character combinations. (Detailed descriptions of
each special character combination follow the table.)

Changes Takes Takes

Command Task return numeric  the arg
value? value? Parameter?
Yof Bind function/menu item yes optional yes
YoF Bind function/whole menu yes optional yes
%1 Underline menu item no no no
%m Make nested menu yes no yes
%n Return default values no no no
Pt Make title no no no
%x Return other values yes yes no

Table 3-3. Summary of Advanced Menu Formats

Version 3.1 Making Pop-up Menus G3-7



3.3.1 Binding a Function to a Menu Entry, f

%f is similar to %F, but %f affects the value returned for its particular menu
item. %f requires an argument: the function that generates the value that
dopup returns for this menu item. You name this function as the arg
parameter of addtopup or defpup.

menu = newpup () ;
addtopup (menu, "first|call %£f", funct);

Selecting "first" causes dopup to retumn the value of 1. Selecting "call"
causes dopup to return the value of funct (2). Call addtopup each
time you want to add another menu entry that has its own function.

3.3.2 Binding a Function to a Whole Menu, F

Use %F to specify a function that affects all values returned by all items in
the menu. %F requires an argument: the function that generates the value
that dopup returns. You name this function as the arg parameter of
addtopup Or defpup.

menu = newpup();
addtopup (menu, "Cardinal %t %F|first|second %x10", funct);

Selecting "first" causes dopup to return the value of funct (1), instead
of 1. Selecting "second" causes dopup to return the value of
funct (10).

3.3.3 Drawing a Line Under a Menu Item, |

Use %] to draw a line under a menu item. You can use this line to mark off
related entries in a menu. For example:

menu = newpup () ;
addtopup (menu, "1lst|2nd|3rd %1|None", 0);

This code creates a menu with a line under the item "3rd".

G3-8 4Sight Programmer’s Guide IRIS-4D Series




3.3.4 Making a Nested (Rollover) Menu, m

Use %m to create a simple nested pop-up menu (a submenu). When you
roll the cursor to the right side of the menu item, you invoke the submenu.
The submenu is like any other pop-up menu and can contain a number of
selections. %m requires an argument: the menu identifier for the pop-up
submenu. Supply the menu identifier as the value of the arg parameter of
either addtopup or defpup.

Note: Because %m takes the submenu’s menu identifier as an argument,
your code must define the submenu before it defines the main
menu. Defining a submenu is the same as defining any other menu.
Call newpup to get the menu identifier, then call addtopup to
add items to the menu.

The code:

submenu = newpup();

addtopup (submenu, "one|two", 0);

menu = newpup () ;

addtopup (menu, "Cardinal %t|above %x5|below %m", submenu);

creates these menus:

below

If you select an item from the submenu, dopup (menu) returns the same
value as dopup (submenu) would. If you display the submenu but don’t
select anything from it, or simply select the menu item without rolling over,
dopup returns —1.

Version 3.1 Making Pop-up Menus G3-9



3.3.5 Resetting to Default Values, n

Use %n to return a menu entry to its default settings. %n takes no
arguments. The menu:

menu = newpup () ;
addtopup (menu, "first|second|third", 0);

is the same as the menu:

menu = newpup () ;
addtopup (menu, "first %n|second %n|third %n", 0);

3.3.6 Making a Title Bar, t

Use %t to create a title bar on a pop-up menu. You cannot select the title
bar; it does not highlight.

menu = newpup () ;
addtopup (menu, "Cardinal st |first|second|third", 0);

This is the same as the first example above, except there is a title bar at the
top of the menu. %t takes no arguments.

3.3.7 Setting the Value of a Selection, x

Use %x to change the numeric value that dopup returns when the user
selects a menu item. For the menu:

menu = newpup () ;
addtopup (menu, "first %x15|second %x7", 0);

Selecting ‘first’ causes dopup to return 15, not 1. Selecting ‘second’
causes dopup to return 7, not 2. When you use %x, you must specify the
numeric value that dopup returns in place of the default.

G3-10 4Sight Programmer’s Guide IRIS-4D Series



3.4 An Example from cedit, a Color Editing
Program

cedit is a simple color editor that runs under the window manager. It is
available on your IRIS-4D Series workstation, in the directory /usr/sbin.

The program brings up a window containing a color control system in which
red, green, and blue sliding bars change the color components of a sample
patch of color. The right mouse button brings up a menu that allows you to
choose from four color systems; the left mouse button selects a color on the
screen to edit and also controls the sliding bars.

The cedit window and menu are created by three lines of code:

keepaspect (1,1);
winopen ("cedit") ;
menu = defpup("colorsys %t|rgb|cmy|hsv|hls");

keepaspect, one of the window constraint routines discussed in Section
2.3, requests a square aspect ratio. You must call keepaspect before
winopen so0 that the window manager enforces this constraint when it
creates the window. The pop-up menu definition creates a menu with title
‘colorsys’ and menu entries ‘rgb’, ‘cmy’, ‘hsv’, and ‘hls’.

The code sample below sets the color system according to the your menu
selection.

dev = qgread(&val);
switch (dev) ({
case MENUBUTTON:
sel = dopup (menu);
if (sel > 0) {
setcolorsys (sel);
newcolor (cc);

break;

When you make a selection from the pop-up menu by using the right mouse
button, dopup (menu) returns a value. Because the pop-up menu definition
does not include any advanced menu formats, the return value is the default:
1 for the first selection (‘rgb’), 2 for the second (‘cmy’), and so on. The
return value is —1 if you don’t make any selection at all.

Version 3.1 Making Pop-up Menus  G3-11



The program then assigns the return value to the variable sel. If sel is
greater than zero (i.e., if you make a selection), then the program sets the
color system accordingly, and calls newcolor, a routine defined in the cedit
program. newcolor sets the color of the sample patch, and sets the sliding
bars to the correct position for that color within the selected color system.

The case statement started in the code sample above continues with
instructions for the middle and left mouse buttons. If you point to a color
outside the cedit window, a click of the middle mouse button changes that
color to the color of the sample patch. A click of the left mouse button
retrieves one pixel and makes the color of that pixel the current color of the
color patch, and you can edit it.

If you know which color system you want to use for editing a color, you can
bypass the ‘colorsys’ menu by giving cedit an argument. The argument
corresponds to the position of the color system in the ‘colorsys’ menu. The
cedit window then appears with the color system already set.

The code fragment shown below, which makes this possible, immediately
precedes the window constraint and winopen routines.

main(argc,argv)
int argc;

char *argv[];

{

int i, J;

if (argc > 1)
setcolorsys (atoi (argv([1l]));

G3-12 4Sight Programmer’s Guide IRIS-4D Series



3.5 Sample Program

This program demonstrates the use of the pop-up menu routines described in
this chapter. The left mouse button puts shapes on the screen if you direct
input focus to the window entitled blop. Choose 'Quit’ from the Window
menu to terminate the program.

H C Program: POP-UP MENU
#include <gl/gl.h>
#include <gl/device.h>

#define CIRCLE 1
#define RECT 2
#define LINE 3

int mainmenu;
int colormenu;
int shapemenu;
int curcolor;
int curshape;

int xorg, yorg;

setshape (n)
int n;
{
curshape = n;

return -1; /* dopup returns this value */

setcolor(n)
int n;
{
curcolor = n;

return 7; /* dopup returns this value */

Version 3.1 Making Pop-up Menus G3-13



main ()

{
short val;
int x, y;
int pupval;

prefsize (400, 300) ;

winopen ("blop");

curcolor = WHITE;

curshape = CIRCLE;

qgdevice (LEFTMOUSE) ;

gdevice (MENUBUTTON) ;

shapemenu = defpup ("shapes %t %F|Circle|Rect|Line", setshape);

colormenu = defpup("colors %t %F|BLUE %x4|WHITE %x7|RED %x1",
setcolor);

mainmenu = defpup("blop %t|shapes %m|color %m|clear|set",
shapemenu, colormenu) ;
makeframe () ;
while (TRUE) {
switch (qread(&val)) {
case REDRAW:
makeframe () ;
break;
case LEFTMOUSE:
if (val) {
getvaluator (MOUSEX) -xorg;
getvaluator (MOUSEY) -yorg;

X

Y
drawshape (curcolor, curshape, x,y) ;

}
break;
case MENUBUTTON:
if (val) {
pupval = dopup (mainmenu) ;
switch (pupval) {
case 3: /* clear */
color (BLACK) ;
clear();

break;

G3-14 4Sight Programmer’s Guide - IRIS-4D Series



case 4: /* set */
color (WHITE) ;
clear();

break;

drawshape (acolor, ashape, x,Vy)
int acolor, ashape, x, y;
{
color (acolor);
switch (ashape) {
case CIRCLE:
circfi(x,y,10);
break;
case RECT:
rectfi (x,y,x+15,y+10);
break;
case LINE:
move2i (x,y);
draw2i (x+20,y+20) ;

break;

makeframe ()

{
reshapeviewport () ;
getorigin (&xorg, &yorg) ;
color (BLACK) ;
clear();

Version 3.1 Making Pop-up Menus G3-15






4. Controlling Multiple Windows
from a Single Process

This chapter describes methods that allow you to create and control multiple
windows from a single process. A typical example might be a two-window
program consisting of a static control panel window and a dynamic display
window. A different type of example would be a multi-windowed editor,
that lets you edit many documents, each in a separate window.

4.1 Using Window ldentifiers

The window manager associates a unique integer name, called the gid
(graphics window identifier), with each window as it is created. This
number allows you to keep track of the window. Window identifiers are not
guaranteed to be unique among different processes, but are always unique
within a given process.

The 4Sight window manager keeps track of the windows that a process
opens. It responds to different UI events by placing various events on the
GL event queue associated with the process that owns the windows. For
example, if the user uncovers (pops) an open window, the window manager
sends a REDRAW event and the window’s gid to the process that created
the window. Your program should use the information it receives from the
event queue to redisplay windows that have been changed by the user.
When your program responds to the REDRAW event, it should always call
reshapeviewport in case the window has been resized.

Version 3.1 Controlling Multiple Windows from a Single Process  G4-1



The code segments below show how to control multiple windows. The
entire program is reprinted at the end of this chapter.

To create the windows, call winopen:
for (1 = 1; i <= nwins; i++) {

wins[i].gid = winopen ("MultiWin");

The wins array of structures saves the gid for each window. The current
graphics window is the window in which drawing and window manipulation
take place. Only one graphics window is current for any process. winopen
makes a newly opened window the current graphics window.

To draw into a particular window, use the winset routine to select a
window as the current window. The program fragment below sets the
current window to val and then clears that window to its current color.

winset (val); /* set to window that needs redrawing */
color (wins[whichwindow (val)].color);
clear();

Each window has its own graphics state. This state includes the matrix
stack, single versus double buffered mode, RGB versus color index mode,
and all the pushable attributes. Exception for winset, if a routine effects
the graphics state, it does so for the current graphics window only. Routines
like gdevice don’t effect the graphics state.

4.2 Example Program

The following program calls gdevice for all pseudo devices that are
important from the standpoint of a multi-windowed application. The
comments in the code describe what a program should do when it receives
these types of events.

G4-2 4Sight Programmer’s Guide IRIS-4D Series




B C Program: MultiWin

/******************************************************************

MultiWin --- program of multiple windows from a single process.

To compile type:

cc ~o multiwin multiwin.c -1gl_s
To run type:

multiwin 3

The argument determines how many windows to open

The left mouse button cycles the color used to redraw the

background of each window.

*******************************************************************/

#include "gl.h"

#include "device.h"

/* scale factor associated with each window id */

static float scalewin[50];

main (argec, argv)
int argc;
char ‘*argv([];
{
Icoord x;
short i, oldx, active;

register dx;

short val;

Angle cumex, cumey, cumez; /* rotation angles */

int nwins; /* how many windows for the cube x/
int win ids[10]; /* window ids 10 windows per process.
int multiwindow;

if (argc < 2) {
printf ("Usage: multicube numberofwindowsOQ);
exit (0);

)

if (lismex()) {

*/

printf ("You must be in the window manager to run multicube0);

exit (Q);

Version 3.1 Controlling Multiple Windows from a Single Process

G4-3



cumex = 0; cumey = 0; cumez = 0;

active = FALSE;

sscanf (argv([1l], "%d", &nwins); /* count how many windows to open*/

/* limit number of windows to somewhere between 1 and 10 */

if (nwins <= 0) { (
printf ("It is meaningless to open fewer than one window\n");
printf ("This program assumes that you want to open 1 window\n");
nwins = 1;

}

else if (nwins > 10) {
printf ("At most, you can open ten windows per process\n");

nwins = 10;

foreground();
/* open all the windows */
for (i = 0; i < nwins; i++) {
win_ids[i] = winopen ("cubes");
doublebuffer () ;

gconfig(); (
perspective (900, 1.0, 1.0, 3.5);

translate (0.0, 0.0, -2.0);
}

qdevice (REDRAW);

qgdevice (INPUTCHANGE) ;
qdevice (LEFTMOUSE);
qdevice (MIDDLEMOUSE);
gdevice (MOUSEX) ;

qdevice (ESCKEY);

/* for each window, calculate the scale factor, * /

/* and then draw initial scene */

for (i = 0; i < nwins; i++) { (
scalewin[win_ids[i]] = 1.0/ (float) (i + 1);

genter (REDRAW,win_ids[i]);

G4-4 4Sight Programmer’s Guide IRIS-4D Series




while (1) {

if (qtest ()) {

switch (qread (&val)) {

case ESCKEY:

gexit();
exit (0);

break;

case REDRAW:

/* redraw only those windows that need to be redrawn*/

winset ((int) val);
reshapeviewport ();

pushmatrix();

cube (WHITE, cumex, cumey, cumez,
popmatrix () ;
break;

case INPUTCHANGE:

if (val)
active = TRUE;
else {
active = FALSE;
for (i = 0; i < nwins; i++)
winset (win_ids[i]);

pushmatrix ();

cube (WHITE, cumex, cumey,

popmatrix ();

break;

case MOUSEX:

Version 3.1

oldx = x;

x = val;

dx = x - oldx;

if (getbutton (LEFTMOUSE))
cumex = cumex + dx;

else if (getbutton (MIDDLEMOUSE))
cumey = cumey + dx;

else if (getbutton (RIGHTMOUSE))
cumez = cumez + dx;

break;

val);

cumez, win ids([i]);

/* rotate x */

/* rotate y */

/* rotate z */

Controlling Multiple Windows from a Single Process

G4-5



for

default:
break;
}
}
(i = 0; i < nwins; i++) {
winset (win_ids[i]);
pushmatrix ();
cube (WHITE, cumex, cumey, cumez, win ids[i]);

popmatrix ();

swapbuffers();

/* end if (gtest()) */
/* end while */

/* draw cube with color, rotation and scale factor

cube - (hue,

cumex, cumey, cumez, winid)

Colorindex hue;

Angle cumex,

int winid;

{

cumey, cumez;

color (BLACK):;

clear ();

rotate (cumex, 'x’);

rotate (cumey, 'y’);

rotate (cumez, 'z');

*/

scale (scalewin[winid], scalewin[winid], scalewin[winid]);

color (hue) ;
move (-1.0, -1.0, -1.0);
draw (-1.0, -1.0, 1.0);

draw (1.
draw (1.

0, -1.0, 1.0);
0, 1.0, 1.0);

draw (-1.0, 1.0, 1.0);

draw (-1.0, -1.0, 1.0);
move (-1.0, -1.0, -1.0);
draw (-1.0, 1.0, -1.0);

draw (1.
draw (1.

0, 1.0, -1.0);
0, -1.0, -1.0);

draw (-1.0, -1.0, -1.0);

move (1.

draw (1.

0, -1.0, -1.0);
0, -1.0, 1.0);

G4-6 4Sight Programmer’s Guide

IRIS-4D Series



move (-1.0, 1.0, -1.0);
draw (-1.0, 1.0, 1.0);
move (1.0, 1.0, -1.0);
draw (1.0, 1.0, 1.0);
move (1.0, 1.0, 0.0);
draw (-1.0, 1.0, 0.0);
draw (-1.0, -1.0, 0.0);
draw (1.0, -1.0, 0.0);
draw (1.0, 1.0, 0.0);

Version 3.1 Controlling Multiple Windows from a Single Process G4-7



4.3 Managing Multiple Monitors and Screens

A monitor is a tangible device, a tube. For the purposes of this discussion, a
screen is a contiguously addressed two-dimensional pixel space. In general,
there are three ways according to which computer systems can provide for
multiple monitors: ( :

¢ one frame buffer displayed on all monitors (one screen repeated on each
monitor)

e separate frame buffers for each screen with discontiguous addressing
across them (one screen per monitor)

e separate frame buffers for each monitor with contiguous addressing
across them all (one screen spread across several monitors— not
supported on Silicon Graphics systems)

Note: Because the addressing to the frame buffers is not contiguous on
Silicon Graphics systems, it is not possible for windows to span
from one screen to the other.

Screens are numbered from O to the returned value of
getgdesc (GD_NSCRNS) minus 1. (

One Screen Repeated on Multiple Monitors

If the monitors are of a different resolution or video timings, the image does
not look right on both monitors simultaneously. This is acceptable when
proofing output to video tape (NTSC) because you can perfect the image on
the high resolution monitor and ignore the image on the low resolution
monitor. You can then make a call to setmonitor to change to NTSC
mode and view the image on the NTSC monitor before writing it to tape.

G4-8 4Sight Programmer’s Guide IRIS-4D Series




Separate Screens for Each Monitor

Silicon Graphics currently offers the M4D/20 with an auxiliary monitor.
The auxiliary monitor has a frame buffer that is independent of the frame
buffer for the main monitor. The images displayed on each monitor are
independent of each other, and the frame addresses are not contiguous so a
window cannot span monitors.

The input devices (the event queue) are system-wide and therefore your
program receives input from all the windows it opened—whether it opened
those windows on the auxiliary or master monitor. However, the
windowing environment on the auxiliary monitor differs considerablely
from that on the master monitor.

4.3.1 The Behavior of Windows on Auxiliary Screen

In the current release, window management is provided only on the master
monitor, screen 0. There is no window management on the auxiliary
screens. The implications of no window management on auxiliary screens
are:

* There can be only one window on an auxiliary screen. winopen fails
(returns —1) if you try to open a second.

* Once opened, a window can not be moved to a different screen.
* windepth always returns top depth for an auxiliary screen window.

» The appearance of pop-up menus on an auxiliary screen differs from their
appearance on the main screen.

* All Window Manager hints (e.g. prefsize) are ignored for the
auxiliary screen window.

* A window on an auxiliary screen ignores callsto swinopen,
winconstraints, winmove, winpop, winposition,
winpush, wintitle, iconsize,and icontitle.

Version 3.1 Controlling Multiple Windows from a Single Process G4-9



4.3.2 Switching Input Focus to Another Screen

There is no window manager feature that the user can use directly to switch
input focus to another screen. To get around this, you need to create a
button/icon or some other device that your program can monitor for input
from the user. When the user signals for a screen change, call
scrnattach.

A process can attach to a window on an auxiliary screen only if it was the
process that created the window. Thatis, you cancall scrnattach (1)
only if yours was the process that did the:

scrnselect (1) ;
winopen( .. );

To get the number of the currently selected screen, call the function
getwscrn. The returned value of this function is the screen number for
the currently selected screen.

G4-10  4Sight Programmer’s Guide IRIS-4D Series

(



5. Using the IRIS Font Manager

The IRIS Font Manager is a service (available to C programs only) that lets
you render characters from specific fonts. The Font Manager also lets you
query the system about those fonts. A font is a group of character
representations (glyphs) of a given typeface in a particular weight and
inclination. The naming conventions for Font Manager fonts parallel those
used in the PostScript programming language and NeWS.

For example, a bold, italic face in Times Roman is called ‘‘TimesRoman-
BoldOblique’’. The Font Manager adopts the NeWS method of offering a
bitmap representation for a selected number of sizes of a font-face:

selecting the closest one appropriate to a request and adjusting character set
widths accordingly. Under special user-controllable circumstances, the Font
Manager creates an exact size (see the discussion of
fmrotatepagematrix, below).

All clients of the window system use the Font Manager, including NeWS
and Graphics Library clients. The public interface to the Font Manager is
defined in the file /usr/include/fmclient.h. A GL program can access the
Font Manager by linking with /usr/lib/libfm.a. To make this link, use the
—Ifm switch on the loader line. For multi-process code, there is a shared
library version of the Font Manager. To link a GL program with this
version of the Font Manager, use the —Ifm_s switch.

NeWS clients continue to use their respective systems as before: there are
no new interfaces except new switches used in programs for converting
fonts created by third-party suppliers (see section 5.1.3, ‘‘Importing
Fonts’’).

Version 3.1 Using the IRIS Font Manager G5-1



If you have used the Graphics Library routine defrasterfont to create
fonts, you can continue to do so; its data format and imaging do not involve
the Font Manager. To maintain compatibility with defrasterfont, the
current character position is maintained when the Font Manager renders
strings. (See cmov in the Graphics Library Reference Manual).

5.1 The Font Manager Interface

The closest paradigm to the way the Font Manager specifies fonts and
renders text is PostScript. While the Font Manager differs from PostScript
in many respects, many of its notions serve as a guide.

A font family is the set of files that make up a font. The characters defined
in these files can vary in size and rotation, but not in font name, weight, or
inclination.

5.1.1 Available Fonts

There are two ways to find out what fonts are available through the Font
Manager. One is to write a program that calls fmenumerate. This
routine returns a list of font families available through the Font Manager.
The other is to list the contents of /usr/lib/fmfonts, looking for any file
ending in ff.

If the font name is long, these filenames are truncated versions of the name
of the font. To find the actual name of the font, run the program strings on a
Jf file. The first line is the name of the font. Actual font data files do reside
in this directory, but interpreting their names to discover the exact sizes of
fonts available can be misleading (see below).

G5-2 4Sight Programmer’s Guide IRIS-4D Series

(




5.1.2 Device Independence

The Font Manager automatically transforms font size requests, depending
on the resolution of the screen and the ‘‘ideal’’, or originating, or ‘‘design’’
resolution of the font. Font size specifications are made in points.
Therefore, asking for a 14-point font on a 96 dpi screen can result in looking
up the font data for an 18-pixel font. This happens if the fonts were
designed for a 72-dpi screen (where 14 points is 14 pixels high). On a 96-
dpi screen, the same 14-point font is only 3/4 the size it would be on a 72-
dpi screen.

Therefore, the closest font (in size) is selected by applying the appropriate
transformation. As mentioned above, this can lead to confusion when trying
to use a listing of f2/usr/lib/fmfonts to determine which exact font sizes
exist. Seeing a file in /usr/lib/fmfonts whose name indicates a 14-point font
does not necessarily mean you actually get that file when rendering 14-point
text.

5.1.3 Importing Fonts

The Font Manager supports all the windowing systems and comes with a
wide variety of fonts. You can add a screen font by purchasing it and using
the dumpfont and bldfamily utilities to converting it to the Font Manager
binary format. These conversion utilities can handle a few different input
formats, but you should try to get the font in Adobe Binary Distribution
Format. Refer to Appendix D of Section 2, ‘‘Programming in NeWS”’, as
well as the bldfamily(1) and dumpfont(1) man pages.

Version 3.1 Using the IRIS Font Manager G5-3



5.1.4 Font Metrics

The metrics (dimensions) of a character are given in the struct fmglyphinfo:

typedef struct fmglyphinfo {

long xsize, ysize;
long xorig, yorig;
float xmove, ymove;

long gtype;
long bitsdeep;
} fmglyphinfo;

/*
/*
/*
/*
/*

dimensions of glyph in pixels */

origin */
move */
glyph type */

depth of pixels, if pixels */

All but two character metrics are long integers. xmove and ymove are
floats. The basic unit of the values in xmove and ymove is the device unit
(pixel). By making xmove and ymove floats, the Font Manager supports the
subpixel positioning information needed by typesetting and graphics
applications. The value yorig is the distance from the bottom of the glyph
to the baseline. The value xorig is the horizontal distance from the current
character position to the left edge of the glyph; either can be a negative
value. xsize and ysize are the character boundaries (for a bitmap glyph, this

is the bitmap size).

j's
xorg xsize
i
A
measurements made O
in the direction of the
arrows are positive
ysize
/,/{ L.(k N
Y \
first current /'

character position
(x.y)

Figure 5-1. Font Manager Font Metrics

G5-4 4Sight Programmer’s Guide

baseline

—~ ¥
xmove \
ymove = 0 for most

non-rotated fonts

l j's and k's yorg
(k's xorg = 0)

second current
character position
(x+xmove, y+ymove)

IRIS-4D Series

(~

(




5.1.5 Font Specification and Sizing

As with PostScript, you must specify the font (by family and point size)
before you can render a string of characters onto the screen. After calling
fminit,call fmfindfont ("FamilyName" ). This routine returns a
handle to the specified font family. To get a specific font within that font
family, call fmscalefont. This routine expects a point size and the
handle returned by fmfindfont. Using this information, scalefont
returns a handle to a specific font. Using this handle, you can then call
fmprstr to render characters in the specified font and point size. (More
flexible ways of rendering text are discussed later.)

5.1.6 Font Transformation

The the following paragraphs describe the transformation paradigm used by
the Font Manager. You do not need to explicitly modify the page matrix to
print scaled text, but you do need to call fmrotate to print rotated text.

The Font Manager maintains an abstract notion of font rendering, called the
page. Think of the page of as a transparent sheet that is superimposed on
the current window. The page maintains a coordinate system for font
rendering. Application programs can make calls to the Font Manager to
modify the page’s transformation matrix. Changing the page’s
transformation matrix changes the appearance of the font in the window.
You can make calls to the Font Manager if you want to render scaled or
rotated text. If you do not want to alter the page’s transformation matrix,
youcanuse fmscalefont to scale the characters and not the page..

Conceptually, there is a distinction between scaling a font and scaling the
characters of a font as they are rendered. The following code first draws a.
one-point high string and then draws a string of two-point high characters.
The text appears larger because the size of the page is doubled. The font is
actually still a one-point high font, but the characters are scaled as they are
rendered.

fontl = fmfindfont ("Times-Roman");
fmsetfont (fontl) ;

fmprstr ("Hello") ;
fmscalepagematrix(2.0);

fmprstr ("World") ;

Version 3.1 Using the IRIS Font Manager G5-5



You can produce an identical effect using the code below. The font drawn
by the code is a true two-point high font, but the page scale is still at a 1:1
ratio. Calling fmprstr draws a string of two-point-high characters.

fontl = fmfindfont ("Times—-Roman");
fmsetfont (fontl) ;
fmprstr("Hello");

font2 = fmscalefont (fontl,2.0);
fmsetfont (font2) ;

fmprstr ("World");

This illustrates the fact that both the font and the page have a transformation
matrix. Before rendering, the font’s transformation matrix is concatenated
with the page’s transformation matrix and the resultant font size is rendered
onto the page. The font’s transformation matrix is stored with the font. The
page’s transformation matrix is stored in the client’s process space. To set
or read the page’s transformation matrix, use the routines:

fmconcatpagematrix
fmgetpagematrix
fminitpagematrix
fmrotatepagematrix
fmscalepagematrix
fmsetpagematrix

Youcanuse acall to fmrotatepagematrix to rotate the page. If you
then render text onto that page, a font of zero-degree rotation appears along
a rotated baseline. fmpr st r maintains the current character position, even
with rotated text.

Here are a few additional details that can control scaling. Currently, you
can scale and rotate only those fonts that have a width vector file. A width
vector file has a fw extension. To test that a width vector file is the right
one for a particular font, run strings on it (as you would for ff family files).
All these files are in the default Font Manager directory /usr/lib/fmfonts.

G5-6 4Sight Programmer’s Guide IRIS-4D Series




5.2 The Font Search Path

Although there is a default directory for font files (/usr/lib/fmfonts), there is
no fixed location for the fonts used by the Font Manager. When the Font
Manager needs font data, it searches a path. You can override the Font
Manager’s default path by setting the environment variable FONTPATH.
Alternatively, you can use fmsetpath to load a new font path. The
argument to fmsetpath is a colon-separated string of directories.

Because the Font Manager searches a path, you can distribute fonts in
different directories. During a font look-up, the Font Manager searches the
directories in the order specified (left to right) by the string given to
fmsetpath. You can use this order to make the Font Manager use a
"local" experimental font but still preserve the official font for other users.

For example, if you put the experimental font in your current directory and
set FONTPATH to .:/usr/lib/fmfonts, the Font Manager uses the
font in the current directory, even if that font also exists in /usr/lib/fmfonts.
If the Font Manager fails to find the font in the current directory, the Font
Manager searches for the font in /usr/lib/fimfonts. Thus users can access the
“official" font while you modify your local version of the font.

5.3 Late Binding of Fonts

The Font Manager does not create a memory-resident version of a font until
it is about to render text onto the screen. Neither fmfindfont nor
fmscalefont put characters in memory (although getting information
about a font can cause part or all of the font to be created or read in from
disk). The font’s residence in memory is controlled by the font cache,
through which all character rendering passes.

Version 3.1 Using the IRIS Font Manager G5-7



5.4 Font Manager Routines

The following sections list the Font Manager routines by function. All Font
Manager routines are callable from C programs. Table 5-1 gives a summary
of each routine.

Task Routine

fmcachedisable Disable cache flushing
fmcacheenable Enable cache flushing

fmcachelimit Return current cache limit in quanta
frconcatpagematrix  Concatenate page matrix
fmenumerate List font family

fmfindfont Prepare font for manipulation
fmfontpath Get a path for finding fonts
fmfreefont Free memory storage for a font
fmgetcacheused Return total number of bytes used by cache
fmgetchrwidth Return width of a character
frngetcomment Return a comment associated with a font
fmgetfontinfo Return overall information about font
fmget fontname Return font’s name
fmgetpagematrix Get page matrix

fmgetstrwidth Return width of a string in pixels
fmgetwholemetrics Get information about each character in a font
fminit Initialize the Font Manager
fminitpagematrix Initialize the page matrix to identity
fmmakefont Associate a matrix with a font
fmoutchar Draw a single glyph
fmprintermatch Toggle printer matching

fmprstr Draw a string in the current font
fmrotatepagematrix  Rotate the page

fmscalefont Scale a font

fmscalepagematrix Scale the page

fmsetcachelimit Set the maximum cache size in quanta
fmsetfont Set the current font
fmsetpagematrix Set the page matrix

fmsetpath Set a path for finding fonts

Table 5-1. Font Manager Routines

G5-8 4Sight Programmer’s Guide

IRIS-4D Series




5.4.1 Initializing Fonts

The following routines perform various font initialization and specification
functions.

fminit
Call fminit to initialize the Font Manager. You must call fminit
before you can make any other calls to the Font Manager routines.

void fminit ()

fmfindfont

Use fmfindfont to get a font handle for a type face. If fmfindfont
can not find the font, it returns a value of zero. Otherwise, fmfindfont
returns a handle to a one-point high font of the specified type. The font
handle contains information about all the sizes and rotations of that face.
fmfindfont uses fmfontpath to locate the proper directory. To find
out which fonts are available, use fmenumerate.

fmfonthandle fmfindfont (face)
char *face;

fmenumerate

Use fmenumerate to startup a callback routine for each font face name
in the font path. fmenumerate uses a string pointer to pass the name of
a font face to the callback routine. fmenumerate expects the name of
the callback routine as an argument.

void fmenumerate (clientproc)
void (*clientproc) ();

Version 3.1 Using the IRIS Font Manager G5-9



For example, the following code uses fmenumerate to send font names
(via string pointers) to the user-defined routine, printname. The
printname routine prints the name of each font to the terminal:

void printname (str)
char *str;

{
printf ("%$s\n", str); (i>

fminit () ;
fmenumerate (printname) ;

5.4.2 Sizing Fonts

The following routines control the size of a font.

fmscalefont

fmscalefont returns a new font handle. Ideally, the size information in (
the new font handle is the size specified by scale. If you request a size for

which there is no font, the Font Manager chooses the closest match

available. The other information in new font handle is copied from the font

handle passed in by fh. Use fmscalefont when you want to scale but

not rotate a font.

fmfonthandle fmscalefont (fh, scale)
fmfonthandle fh;
double scale;

G5-10 4Sight Programmer’s Guide IRIS-4D Series




fmmakefont

fmmakefont returns a new font handle. The transformation matrix passed
in by matrix is multiplied with the transformation matrix in the font handle
passed in by fh. This multiplication can scale the font and rotate the
baseline. If you want to scale the font but do not want to rotate the baseline,
itis easier to use fmscalefont than fmmakefont. Except for size
and rotation information, the information in the new handle is copied from
the handle passed in by fh. Like fmscalefont, if the scaling of a font
requests a font that does not exist, the Font Manager substitutes the closest
match available.

fmfonthandle fmmakefont (fh, matrix)
fmfonthandle *fh;
double matrix([3][2];

Note: Whenusing matrix[3] [2], think of it as a 2X2 transformation
matrix. The last row is reserved for future developement and is
currently ignored.

5.4.3 Setting Fonts

The following routine sets the current font.

fmsetfont

Use fmsetfont to set the current font (font handle). All subsequent
rendering operations use the font handle named by fA. To get a font handle,
use fmfindfont (or fmscalefont or fmmakefont.)

void fmsetfont (fh)
fmfonthandle fh;

Version 3.1 Using the IRIS Font Manager G5-11



5.4.4 Rendering Fonts

The following routines render fonts on the screen.

fmprstr

fmprstr renders the characters in str onto the screen at the current
character position. The font used is the one most recently named by

fmset font. The Font Manager starts rendering at the current character
position and updates the current character position as it renders. Clients
should use the cmov and getcpos graphics library routines to set or read
the current character position.

Before calling fmprstr, you must call cmov to set the current character

position or the results of fmprstr are undefined. If the string is NIL, or
the font does not exist, fmprstr returns —1. Otherwise, fmprstr
returns zero.

long fmprstr(str)
char *str;

fmoutchar

fmout char renders a single glyph, str, from the current font. If the glyph
doesn’t exist, the Font Manager advances the current character position by
the width of a space. If the font does not define a space character, the Font
Manager advances the current character position by the width of the font.
The returned value of fmoutchar is the width moved.

long fmoutchar (fh, ch)
fmfonthandle fh;
unsigned char ch;

G5-12 = 4Sight Programmer’s Guide IRIS-4D Series



5.4.5 Getting Font Information

The following routines return information about specified fonts.

fmgetfontname

fmget fontname gets the name of the font associated with the fonthandle
infh. fmgetfontname writes this information to the location pointed to
by str. Use slento tell fmgetfontname the size of the array pointed to
by str. fmgetfontname does not write more characters than specified
by slen. If there is an error in locating the font or if no name exists for the
font specified by fh, the returned value of fmgetfontname is—1.
Otherwise, the returned value of fmget fontname is the length of the
string actually written to szr.

long fmgetfontname (fh, slen, str)
fmfonthandle fh;

long slen;

char *str;

fmgetcomment

fmgetcomment gets the comment associated with the font handle in fh.
The comment is written to the location pointed to by the str parameter. Use
the slen parameter to tell fmgetcomment the size of the array pointed to
by str. fmgetcomment does not write more characters to str than
specified by slen. If there is an error in locating the font or if no comment
exists for the font specified by fh, the returned value of fmget comment is
-1. Otherwise, the returned value of fmgetcomment is the length of the
string written to str.

long fmgetcomment (fh, slen, str)
fmfonthandle fh;

long slen;

char *str;

Version 3.1 Using the IRIS Font Manager G5-13



fmgetfontinfo

fmget font info writes information to the members of the fmfontinfo
type structure pointed to by the info parameter. The information written to
this structure pertains to the whole font. The finfontinfo type structure is
defined in <fimclient.h>.

long fmgetfontinfo (fh, info)
fmfonthandle fh;
fmfontinfo *info;

The following is a list of possible font information, and what it is used for.

e printermatched means there is a printer widths file corresponding to this
font.

® matrix00, matrix01, matrix10, matrixl 1 are double-precision floats that
provide transformation matrix information in points.

* fixed_width means all the characters in the font are the same width.

e xorig, yorig are the aggregate x-origin and y-origin of the font. yorig is
the distance from the lowest descender to the baseline. xorigin is the
distance from the current position to the left edge of the glyph.

e xsize and ysize are the maximum sizes of the characters in the font, in
pixels.

* height is often the same as ysize, but some fonts use a larger ysize to get
free leading (spacing between lines of text).

e nglyphs is the index of the highest-numbered character. Indexing begins
at 0.

Note: Some indices may not have glyphs assigned to them, but when
you allocate space for fmgetwholemetrics, you should use
nglyphs + 1 as though it were the total number of characters. In
other words, nglyphs is the highest index of a possibly sparse
array.

G5-14 4Sight Programmer’s Guide IRIS-4D Series

(




fmgetwholemetrics

fmgetwholemetrics gets glyph information associated with the font
handle fh and writes it to the finglyphinfo structures pointed to by the
elements of the array fi. You should allocate enough space to contain
nglyphs*sizeof (finglyphinfo).Because fmgetwholemetrics fills
only those structures of the array that have corresponding glyphs in the font
file, you should initialize all the fimglyphinfo structures before calling
fmgetwholemetrics. (For example, you could use calloc to allocate the
space. See malloc(3C) for more information.)

The returned function value of fmgetwholemetrics is 0 if successful. If
fmgetwholemetrics cannot find the font referenced by the fonthandle, the
returned function value is —1.

long fmgetwholemetrics (fh, fi)
fmfonthandle fh;
fmglyphinfo *fi;

fmgetstrwidth

fmget strwidth returns the number of pixels the string occupies in the x
dimension. It uses the subpixel resolution provided in the glyph widths as it
accumulates the width and rounds the sum to the nearest pixel. Rotated
fonts are measured along an untransformed x axis.

long fmgetstrwidth(fh, str)
fmfonthandle fh;
char *str;

fmgetchrwidth

fmgetchrwidth returns the number of pixels the given character
occupies in the x dimension when rendered. This value is rounded to an
integer. If that character glyph does not exist, the width of a space is
returned. If a space does not exist, the width of the font is returned. Rotated
fonts are measured along an untransformed x axis.

long fmgetchrwidth (fh, ch)
fmfonthandle fh;
unsigned char ch;

Version 3.1 Using the IRIS Font Manager G5-15



5.4.6 Changing Font Environments

The following routine affects the environment in which fonts are managed.

fmsetpath

fmsetpath accepts a pointer to a string that describes the current search ( \
path for finding font files. It is a colon-separated list of directories that
originate at the root. The default path is "/usr/1ib/fmfonts".

void fmsetpath (path)
char *path;

fmfontpath

fmfontpath returns a pointer to a string that describes the current search
path for finding font files. Itis a colon-separated list of directories that
originate at the root. The default pathis "/usr/1lib/fmfonts".

char *fmfontpath ()

G5-16  4Sight Programmer’s Guide IRIS-4D Series



5.4.7 The Font Cache

The Font Manager tries to restrict its use of memory for fonts to the amount
set by the fmsetcachelimit command. This command takes a small
integer argument that it multiplies by FMCACHE_QUANTUM (see
<fmclient.h>) to arrive at the maximum number of bytes you want used for
font data. The Font Manager allocates memory for fonts when creating
printer-matched fonts and rotated fonts. When the amount of memory
allocated to these fonts exceeds the limit set by fmsetcachelimit, the
Font Manager scavenges memory to stay within the bounds of the cache
limit.

The cache uses a least-recently-used algorithm to determine what
font—assigned memory it should free. Use fmgetcacheused to find out
the exact number of bytes currently used by font data. fmcachelimit
returns the current limit in quanta of FMCACHE_QUANTUM.

The routines that control and query the cache follow in alphabetical order.
They are followed by a discussion of fmfreefont, which should be
considered along with caching.

fmcachedisable

The Font Manager provides font cache flushing by default. To disable font
cache flushing, call fmcachedisable. The Font Manager continues to
keep track of the space fonts occupy, but does nothing to limit the size of
the space. To restart font cache flushing, call fmcacheenable.

void fmcachedisable ()

fmcacheenable

Use fmcacheenable to re—enable the flushing of least-recently-used
font—assigned memory that is in excess of the cache limit.

void fmcacheenable ()

Version 3.1 Using the IRIS Font Manager G5-17



fmcachelimit

The font cache is the memory space the Font Manager uses to store font
data. fmcachelimit returns the current maximum size of the font data
memory expressed as a multiple of the value FMCACHE_QUANTUM. So,
if fmcachelimit returns a 4, and FMCACHE_QUANTUM is 100,000,
the cache upper limit size is 400,000 bytes. To set the cache limit, use
fmsetcachelimit.

long fmcachelimit ()

fmgetcacheused

fmget cacheused returns the exact number of bytes currently allocated
to the font cache. There are no implied multipliers. The returned value of
this function is the exact number of bytes used.

long fmgetcacheused ()

fmsetcachelimit

fmsetcachelimit accepts a small integer as an argument, multiplies it
by FMCACHE_QUANTUM, and uses the result to reset the upper size limit
of the cache data space. If new-limit is less than one,

fmsetcachelimit resets new-limit to one before multiplying by
FMCACHE_QUANTUM. If new_limit is greater than 100,
fmsetcachelimit does nothing.

void fmsetcachelimit (new_limit)
long new_limit;

G5-18 4Sight Programmer’s Guide IRIS-4D Series

(



fmfreefont

fmfreefont frees the storage associated with a font in a given rotation
and size (as specified in the font handle fh). Deleting a font also deletes the
font handle. To ensure that fmfreefont frees the correct
font/rotation/size instance, be sure that the same page matrix is in force as
when you first queried or rendered from that font.

Because normal usage of the Font Manager does not involve changing the
page matrix, you seldom need to worry about it. But if you find that you
cannot delete a font (or have deleted the wrong font) consider the state of
the page matrix. An easy way to avoid this problem is to call
fmfreefont only when the page matrix is not rotated.

As mentioned above, rotated fonts are created and destroyed as necessary
and don’t need explicit deletion.

void fmfreefont (fh)
fmfonthandle fh;

5.4.8 Adjusting Widths to Match Laser Printers

Many applications render text on the screen to give the user the chance to
proof the text before printing it on a laser printer. For a more realistic
simulation, use laser printer character widths to represent the text.

fmprintermatch

fmprintermatch (0) disables printer matching, fmprintermatch (1)
enables printer matching. When the Font Manager renders (images) a font,
it inspects the state of this variable. If enabled, the Font Manager searches
for a printer widths file that corresponds to the font. If the file exists, and
the font has not yet been sized, the Font Manager creates a new font. The
Font Manager also updates the font handle of the current font so that it has
character widths that correspond to the laser printer’s width scheme.

void fmprintermatch (set)
long set;

Version 3.1 Using the IRIS Font Manager G5-19



5.4.9 Transforming the Page

The page transformation is stated in the page matrix. Use the the following
procedures to inspect or change the state of the page matrix.

Note: When using matrix[3] [2], think of it as a 2X2 transformation
matrix. The last row is reserved for future developement and is
currently ignored.

fminitpagematrix

fminitpagematrix initializes the page matrix to an orthographic
projection.

void fminitpagematrix ()

fmsetpagematrix

fmsetpagematrix loads the page matrix verbatim with matrix mat.

void fmsetpagematrix (mat)
double mat[3] [2];

fmgetpagematrix
fmgetpagematrix retumns the page matrix in mat.

void fmgetpagematrix (mat)
double mat[3] [2];

fmscalepagematrix

fmscalepagematrix uniformly scales the page matrix by scale.

void fmscalepagematrix(scale)
double scale;

G5-20 4Sight Programmer’s Guide IRIS-4D Series



fmrotatepagematrix

fmrotatepagematrix post-concatenates a rotation to the page matrix.
Rotation is measured in a counter-clockwise direction in degrees.

You can also use fmrotatepagematrix to generate a screen font that
is exactly (within one pixel) the specified size. You should try this in a test
program first, to see whether the possible degradation in quality is
acceptable. This "roughness" comes from the need to scale a bitmap font if
that font does not exist at the specified size.

For example, the Font Manager normally renders text using a bitmap font
that is the closest match possible to the requested size. But, if you rotate the
page matrix, even by one 1/1000 of a degree, the Font Manager tries to
create a font that is rotated that much. As a side effect, the Font Manager
also distorts (shrinks or stretches) the page to generate a font that is within a
pixel of the specified size. However, stretching or shrinking a bitmap often
results in "rough” looking characters.

To tryit, call fmrotatepagematrix(.01), then printa string with
fmprstr.

fmrotatepagematrix (angle)
double angle;

fmconcatpagematrix

fmconcatpagematrix post-concatenates the page matrix with mat.

void fmconcatpagematrix (mat)
double mat([3] [2];

Version 3.1 Using the IRIS Font Manager G5-21



5.5 Example

The following example writes a string of green, 25-point characters to a
window, beginning at window coordinate (30, 100). Compile the program
using the following command line options:

cc example.c -o example -1lfm -1lgl

~ For shared libraries, use the following:

cc example.c -o example -lc_s -1fm s -1gl_s

The sample code is below.

#include <gl/gl.h>
#include <gl/device.h>
#include <fmclient.h>

main ()
{
short val;
fmfonthandle fontl, font25;

prefsize(240,210);

winopen ("Hello");

color (BLACK) ;

clear():;

color (GREEN) ;

fminit () ;

/* Exit if can’t find the font family */

if ((fontl=fmfindfont ("Times—Roman")) == 0) exit (1);
/* scale the l-point-high font to 25 points */
font25 = fmscalefont (fontl, 25.0);

fmsetfont (font25);

cmov2i (30, 100);

fmprstr ("Hello World!");

while (TRUE) { /* redraw window if necessary */
if (gread(&val) == REDRAW) {
reshapeviewport () ;
color (BLACK) ;
clear();
color (GREEN) ;
cmov2i (30, 100);
fmprstr ("Hello World!");

G5-22 4Sight Programmer’s Guide IRIS-4D Series




6. Using the Distributed Graphics
Library

The Distributed Graphics Library (DGL) is a facility that allows a process
on one machine to use the graphics resources of any IRIS-4D Series
workstation on the network. The DGL has two parts:

e a client library linked with application programs that serves as the IRIS
Graphics Library interface

* a graphics server, which services requests made by the client graphics
program

The client library converts Graphics Library calls into a byte stream. This
byte stream is transmitted to the graphics server over the Ethernet or other
communication medium. The graphics server program decodes the byte
stream and calls the Graphics Library routines to display the graphics on the
server’s raster subsystem. In this respect, the DGL is a remote procedure
call package for the Graphics Library.

The DGL allows IRIS-4D Series workstations to share the work load for
graphics applications. A typical application might involve the real time
display of an object whose parameters demand a great deal of computation,
for example, the simulation of an automobile suspension system. You could
use a 4Server node to perform the calculations. Then, acting as a DGL
client, display the automobile and its suspension as well as the road surface
on an IRIS-4D Series workstation. Both machines can share the work load
(each doing the task for which it is best suited) resulting in a more balanced
work load and better performance.

Version 3.1 Using the Distributed Graphics Library  G6-1



6.1 Comparing the DGL with RPC

The DGL is a remote procedure call package for the Graphics Library. Itis

not a general remote procedure call (RPC) package, and is not a means for

general distributed processing. The DGL is designed to split applications

that can be partitioned into multiple processes at Graphics Library calls. (

There are many differences between the DGL and RPC standards. Most are
due to the fact that the DGL is just a Graphics Library RPC and no more.
For example, the DGL is non-extensible; it supports only the Graphics
Library routines. For non-graphics communication between client and
server machines, you must use a separate communication link and a second
server process. The DGL offers no facilities for such communications.

Most RPC server processes can talk to multiple RPC clients. The DGL

graphics server process talks to only one graphics client. Each graphics

client talks to its own unique graphics server process. A graphics server

machine can have multiple graphics server processes running

simultaneously, each talking to a different graphics client. IRIS

workstations can run multiple asynchronous graphics processes. The

operating system (not the graphics server) handles the timesharing for the

graphics hardware. These design details allow the DGL to devote one server

per client, perform authentication only upon initialization, and to make other (
optimizations to increase performance. '

6.2 Installing the DGL

The Distributed Graphics Library (DGL) software comes standard with your
workstation and consists of two parts: a client library and a graphics server
daemon. Verify that these two software components exist on your
workstation: the client library is /usr/lib/libdgl.a and the graphics server
daemon is /usr/etc/dgld. If either of these files is missing, contact the
Silicon Graphics Geometry Hotline for assistance.

G6-2 4Sight Programmer’s Guide IRIS-4D Series




6.2.1 DGL Service

The DGL software gets an Internet port number from /etc/services, see
services(4). The standard services file has an entry for ‘‘sgi-dgl’’ that is
commented out. Before using the DGL over the Internet, you must
uncomment this entry on both the client and server machines by removing
the leading ‘‘#’’ character. If you forget to do this, you get error message
saying that the service ‘‘sgi-dgl/tcp’’ is unknown. The DGL client program
prints this error message to stderr; the graphics server daemon prints this
error message to stderr and to the system log maintained by syslogd(1M).

6.2.2 inetd Configuration

The DGL graphics server daemon for tcp socket connections is
automatically started by inetd(1M). inetd reads its configuration file to
determine which server programs correspond to which sockets. The
standard configuration file, /usr/etc/inetd.conf, has an entry for ‘‘sgi-dgl’’
that is commented out. Before using the DGL over the Internet, you must
first uncomment this entry on the server machine by removing the leading
‘“‘#* character. Then, as superuser, type the following command line to
force inetd to reread its configuration file:

killall 1 inetd

If you forget to do this, inetd will not start up the graphics server and the
DGL client program will time out after about 30 seconds with a connection
refused error. To verify that inetd is listening, type the following command
line and look for a line containing "*.sgi.dgl":

/usr/etc/netstat -a

6.2.3 dnserver Configuration

There are no special DGL modifications necessary beyond the normal
4DDN installation and configuration. The DGL graphics server daemon for
4DDN connections is automatically started by dnserver. The file
lusrletc/dn/servers.reg registers the DGL server with dnserver by the name
"DGLD". Consult the 4DDN manuals for more information.

Version 3.1 Using the Distributed Graphics Library G6-3



6.3 Running Graphics Library Programs with
the DGL

Existing Graphics Library programs do not contain any calls that
specifically invoke the DGL server. However, these programs can still be
run as DGL programs without modifying the source code, simply by ( \
relinking them with /usr/lib/libdgl.a (see Section 6.5.2). The DGL library

uses a default set of rules for determining the graphics server, including
getting data from the IRIX environment.

6.3.1 Default Connection

The DGL server is initialized by the routine dglopen, described in
Section 6.4. If dglopen is not called by the program, the DGL library
attempts to open a default connection by calling dglopen with a default
server name and connection type. If any of the following environment
variables is defined, the server name is the vaiue of the defined variabie
highest in the following list:

1. DGLSERVER (
2. REMOTEHOST

If the value of REMOTEHOST is used for the server name, then the
environment variable REMOTEUSER is checked. If REMOTEUSER is
defined, the server name is set to REMOTEUSER @ REMOTEHOST. If
none of the environment variables above are defined, then the server name is
set to the client’s hostname.

The value for the connection type comes from the following ordered list:
1. DGLTYPE if that environment variable is defined

2. DGLTSOCKET if an environment variable is used for the server name
3. DGLLOCAL

The environment variable DGLTYPE can be set to either the symbolic or
numeric value of the connection type, e.g. DGLLOCAL or 1. (

Note: 4Sight must be running on the graphics server for the connection to
be successful. If it is not running, the client will exit with an error.

G6-4  4Sight Programmer’s Guide IRIS-4D Series




6.3.2 Using rlogin

If you use rlogin to remotely log in to an IRIS, REMOTEUSER and
REMOTEHOST are accordingly defined and if DGLSERVER is undefined
then the DGL program by default establishes a connection back to the last
remote machine where you ran rlogin. For example, if you rlogin from
machine A to machine B and then rlogin from machine B from machine C,
REMOTEHOST is set to B on machine C. Therefore, the default graphics
connection would be to B.

6.4 Writing DGL Programs

Writing a DGL program is really no different than writing a Graphics
Library program, except for optimizing performance. The DGL has all the
functionality of the Graphics Library (except where noted in the
incompatibilities section below). Applications that require only one
graphics server need no modifications. Two new routines for managing
server connections have been added for applications that require more than
one graphics server.

6.4.1 New Graphics Library Routines

Two new routines, dglopen and dglclose, have been added to the
Graphics Library. These routines allow a DGL program to open and close
graphics connections to server machines.

dglopen

dglopen opens a DGL connection to a graphics server and makes the new
connection the current connection. The first argument specifies the name of
the server machine, the second argument the type of connection. If the
connection succeeds, dglopen returns the server identifier, a non-
negative integer. Otherwise dglopen indicates a failure by returning a
negative integer, the absolute value of which indicates the reason for failure.

Version 3.1 Using the Distributed Graphics Library G6-5



There are three types of connections supported, DGLLOCAL
DGLTSOCKET, and DGIADDN. DGLLOCAL is alocal connection, the
graphics server is the same machine as the client machine. The first
argument, the server name, is ignored for DGLLOCAL connections. The
graphics server process is forked as a child process and two named pipes are
opened for communication. The pipes are created in the directory /tmp and
are unlinked as soon as they are opened. Although the files are unlinked and
invisible within the directory, their inodes remain allocated until the pipes
are closed. Therefore, the files are guaranteed to be deleted even if the
program crashes.

The second type of connection is DGLTSOCKET, which is a TCP/IP socket
connection. The following sequence of events occurs when a
DGLTSOCKET connection is attempted:

1. The service ‘‘sgi-dgl’’ is looked up in /etc/services to get a port number.
If the service is not found, then an error occurs.

2. The server’s name is looked up in /etc/hosts to get an Internet address.
If the host is not found, then an error occurs.

3. AnInternet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small timeout. If
the connection is refused, the timeout is doubled and the connection
retried. If after several tries, the connection is still refused, an error
occurs.

5. A successful connection is made and the server’s Internet daemon
invokes a copy of the DGL graphics server. The graphics server process
inherits the socket for communicating with the DGL client program.

6. The graphics server uses ruserok(3N) to verify the login. The user id on
the server must be the equivalent (in the sense of rlogin(1C)) to the user
id running the DGL client program or permission is denied.

7. The server process’s group and user id are changed according to the
entry in /etc/passwd.

G6-6 4Sight Programmer’s Guide IRIS-4D Series




The full format for a server name allows for the specification of many
options:

[userid [password]@]hostname[#port][:controller[.screen]][;text]

userid is the user id for running the graphics server; it defaults to the user id
running the DGL client program.

password is optional and is ignored for DGLTSOCKET connections. The
user id on the server must be equivalent to the originating user id or access
is denied.

hostname is the name of the graphics server machine.

port is the port number for establishing a server connection; defaults to the
port number for ‘‘sgi-dgl’’ in /etc/services.

controller is the graphics controller number; it defaults to 0 and is currently
ignored.

screen is the screen number; it defaults to 0 and is currently ignored.
text is a comment field and is currently ignored.

The hostname field can be in either of the following formats:

¢ ASCII hostname, translated through /etc/hosts

® Internet address, see inet(3N)

If the hostname does not begin with a number, it is assumed to be in the
ascii format. Otherwise, it is assumed to be a standard four byte Internet
address.

The third type of connection is DGL4ADDN, which is a DECnet connection.
To establish a DGL4DDN connection, the correct remote password must be
given. The dnserver daemon will then start up a process with the correct
user and group id. In addition, the server uses ruserok(3N) to verify the
login just as in DGLTSOCKET connections.

Version 3.1 Using the Distributed Graphics Library  G6-7



If dglopen cannot successfully open a connection to a server machine, it
returns a negative integer. The absolute value of the returned value is the
error number. If a system call or service is the reason for the failure, then
the error number retumed by the system call (errno or h_errno) is negated
and retumed by dglopen. Otherwise, the DGL software returns a
(negated) value that best indicates the reason for failure. The following

table lists the internally generated error values (defined in <errno.h>): (
Error Value Explanation
ENODEV invalid dglopen type
EACCESS login incorrect or permission denied
EMFILE too many dglopen’s
EBUSY -only one local gconnection allowed
ENOPROTOOPT dgl/tcp service not found in /etc/services
EPROTONOSUPPORT  DGL version mismatch
ERANGE invalid or unrecognizable number representation
ESRCH window manager is not running on the graphics server

Table 6-1. dglopen Error Values

long dglopen (svname,type)

char *svname;

long type

integer*4 dglope (svname, length, type)
character* (*) svname

integer*4 length
integer*4 type

G6-8 4Sight Programmer’s Guide IRIS-4D Series




dgiclose

To destroy a graphics server process and its connection, call dglclose
with the server identifier returned by dglopen. This terminates the
graphics server process, freeing any system resources that it had allocated,
eg. open windows. It also closes the graphics connection and frees any
associated system resources on the client machine. Calling dglclose
with a negative server identifier closes all graphics server connections.

After dglclose is called there is no current graphics window and no
current graphics server connection. Any calls other than dglopen,
dglclose and routines that take graphics window ids as arguments result
in an error upon the next communications buffer flush:

libdgl error (comm): no current connection

Although it is not necessary, it is recommended that dglclose (-1) be
called before exiting a DGL application. This ensures that the graphics
server processes cleanly exit.

void dglclose(serverid)
long serverid;

subroutine dglclo (srvrid)
integer*4 srvrid

6.4.2 Modified Graphics Library Routines

Two existing Graphics Library routines that were obsolete, gflush and
finish, now take on new functionality. In addition, routines that take
graphics window ids as arguments take on additional functionality.

gflush

The DGL client library buffers calls to Graphics Library routines for
efficient block transfer to the graphics server. gflush explicitly flushes
the communication buffers and delivers all buffered, untransmitted graphics
data to the graphics server.

Version 3.1 Using the Distributed Graphics Library G6-9



Some Graphics Library routines (notably those that return data) implicitly
flush the communication buffers. In most programs, the implicit flushing
done by routines that return data is sufficient.

The following example outlines a typical use of gflush. A program calls
some Graphics Library routines that are buffered and not flushed. The
program then either computes or blocks for a while, for some non-graphic
I/0. gflush must be called if the results of the buffered Graphics Library
routines need to be seen before and during the pause.

Another reason for using gflush is to reduce graphics ‘‘jerkiness’’. If the
DGL client is computing data and then sending the data to the graphics
server without implicit or explicit flushes, the data will arrive at the graphics
server in large batches. The server may process this data very quickly and
then wait for the next large batch of data. The rapid processing of Graphics
Library routines followed by a pause results in an undesirable ‘‘jerky”’
appearance. In these cases it is probably best to call gflush periodically.
For example, a logical place to call gflush is after every

swapbuf fers call. Be careful not to do too many flushes, either implicit
or explicit, as this can adversely effect performance.

void gflush{()

subroutine gflush

finish

finish blocks the client process until all previous routines execute. First,
the communication buffers on the client machine are flushed. On the
graphics server, all unsent routines are forced down the Geometry Pipeline
to the bitplanes. Then, a final token is sent and the client process blocks
until the token goes through the pipeline and an acknowledgment has been
sent to the graphics server and forwarded to the client process. finish is
useful when there are large network and pipeline delays.

The following example illustrates a typical use of finish. A client calls
some Graphics Library routines to display an image. The routines all fit into
the server’s network buffers and the image takes 30 seconds to render. The
client wants to wait until the image is completely displayed on the server’s
monitor before displaying a message on the client’s terminal. gflush
would flush the buffers but would not wait for the server to process the

G6-10 4Sight Programmer’s Guide IRIS-4D Series




buffers. finish flushes the buffers and waits not only for the server to
process all the graphics routines, but for the Geometry Pipeline to finish as
well.

void finish()

subroutine finish

winopen

winopen creates a graphics window on the current graphics server
connection and returns a positive integer value identifying the graphics
window, or —1 if no additional graphics windows are available. Window
identifiers are unique within a DGL program. Each window identifier is
composed of the graphics connection identifier (unique within each DGL
client program) and the window number (unique within each server
process). The window identifier therefore also identifies the window’s
graphics server connection. See Section 2.2, ¢‘Opening and Closing
Windows’’ for more information on winopen.

Other Window Routines

At any one time, there is only one current graphics server connection. All
graphics input and output from the DGL client program goes to or from this
server connection. The Graphics Library routines that take graphics window
ids as parameters , eg. winset, windepth, and winclose, change
the server connection to the connection associated with the window
identifier before executing. These routines are the only way to switch
graphics I/0 back to an existing server connection.

Note that the connection identifier returned by dglopen is used only for
closing connections and not for multiplexing connections. Therefore, when
a server connection is created with dglopen, a window should be opened
and its identifier saved before the graphics server connection changes.
Otherwise, there is no way to reconnect to the previous server. See Section
2.5, “‘Other Window Routines’’ for more information on winset.

Version 3.1 Using the Distributed Graphics Library G6-11



6.4.3 A Trivial Example

This section shows in a trivial example how to change a standard Graphics
Library program into a DGL program. The sample Graphics Library
program below clears a window to black and then exits.

#include <gl/gl.h>

main ()
{
winopen ("test");
color (0);
clear ();
gexit ();
exit (0);
}

To change this program into a DGL program that always uses ‘‘host1’’ as
the graphics server, add callsto dglopen and dglclose as follows:

#include <gl/gl.h>

main ()
{
dglopen ("hostl",DGLTSOCKET) ;
winopen ("test");
color (BLACK);
clear ();
gexit ();
dglclose (-1);
exit (0);
}

Although this is a very trivial example, the same rules hold for complex
programs:

1. call dglopen before the very first Graphics Library call
2. call dglclose after the very last Graphics Library call

G6-12 4Sight Programmer’s Guide IRIS-4D Series




6.4.4 Graphics Library Compatibility

The Graphics Library supports only one local connection to the graphics
hardware. To make DGL programs compatible with the Graphics Library,
dglopen and dglclose existin the Graphics Library but perform little
or no function. dglopen checks to make sure the type of connection is
DGLLOCAL. If the type is DGLLOCAL, then dglopen retumns 1,
otherwise it returns -ENODEV. dglclose is a dummy routine in the
Graphics Library and performs no function. DGL programs that open only
one DGLLOCAL connection will function identically when linked with the
Graphics Library.

6.5 Developing Programs

/The DGL provides the same routine interface as the Graphics Library and
therefore there is little difference in the program development methodology.
An existing graphics program can in most cases simply be relinked with the
DGL library.

6.5.1 Compiling

Compiling a program for the DGL is no different than compiling for the
Graphics Library. In fact, there is no need to recompile source files that
have already been compiled into object files. The names for the supported
types of connections, eg. DGLLOCAL and DGLTSOCKET, are defined in
the standard Graphics Library header file.

6.5.2 Linking

To link DGL programs, link with /usr/lib/libdgl.a instead of /usr/libilibgl.a.
It is also necessary to link with the Sun library. The following command
line links the object file foo.o into a DGL executable program:

cc -o foo foo.o -1dgl -lsun

Version 3.1 Using the Distributed Graphics Library G6-13



For languages other than C, link with the wrapper library for the language. The
wrapper library should precede the DGL library on the command line. For
example, if f00.0 in the previous example was a FORTRAN object file then the
following command would link the program:

cc -o foo foo.o -1fgl -ldgl -lsun

Note: The —Zr option does not work with the DGL.

6.5.3 Reserved Symbols

A number of prefixes have been reservered for DGL use. These prefixes all
end with an underscore character and are not likely to cause conflicts with
application programs. The reserved prefixes are listed below for reference:

comm _
data_
decnet _
dgl_
gl_
mem_
pipe__
socket
util

For a complete list of all externally defined symbols, including Graphics
Library routines, use the following command:

nm -B /usr/lib/libdgl.a | grep " [ABCDEGRST] "

G6-14 = 4Sight Programmer’s Guide IRIS-4D Series




6.6 Using Multiple Server Connections

The DGL extends the Graphics Library by supporting connections to
multiple graphics servers from one DGL client program. Server processes
normally reside on different server machines, but they can also reside on the
same machine. The DGL provides mechanisms for creating, multiplexing,
and destroying server connections. There are many special considerations to
be taken when dealing with multiple graphics servers.

6.6.1 Graphics Input

Each graphics server has its own keyboard, mouse, and optional dial and
button box. The graphics input routines, eg. qtest, qread,
getvaluator, setvaluator, gdevice, and noise execute on
the current graphics server. The DGL client program can therefore solicit
input from multiple keyboards and mice. For most programs, it will make
sense to get input from only one graphics server. In all cases, the
programmer must make sure that the current graphics server is correctly set
when graphics input is solicited.

6.6.2 Local Graphics Data

Each server process runs a separate copy of the Graphics Library and has its
own local set of graphics data. For example, linestyles, patterns, fonts,
materials, lights, and display list objects are local to each graphics server.
When graphics data is defined, it is defined only on the current graphics
server; other servers do not define it. One must be careful to reference local
graphics data only on the server where it was defined. If a display list or
font will be used on multiple servers, then it must be defined on each server.

6.6.3 Possible Applications

There are many applications and advantages to using multiple graphics
servers. Here are some of the more common ones.

Some applications may require multiple windows, each with very high
resolution graphics. Multiple windows on the same server machine must

Version 3.1 Using the Distributed Graphics Library G6-15



share one screen’s resolution. However with the DGL, an application can
control multiple server machines, each of which can devote its full screen
resolution to its windows.

Another possible application for multiple servers is for increasing the

performance when displaying multiple views of complex objects. If the

multiple views are displayed on multiple servers, performance can be (
linearly increased by the number of servers. For example, an application

could create a display list for a car on each of the servers that included

material and lighting parameters. Each server could be given a different set

of viewing parameters and then told to display the object.

A slight variation of the previous example is to have each server display a
different representation of the object. For example, one server could display
a depthcued wireframe mesh of the car, another server could display a flat
shaded polygonal representation of the car, and another server could display
a smooth shaded lighted surface representation of the car. If the display list
for each of these representations is very large, multiple servers can eliminate
or reduce paging since each server needs only the display list for its
representation.

6.7 Limitations and Incompatibilities

The DGL has very few limitations and incompatibilities with the Graphics
Library. Below are some of the more important ones.

6.7.1 Limitations

There is currently a limit of one local connection per DGL client program.
The current Graphics Library only offers one direct connection to the
graphics hardware, so no existing programs will fail due to this limitation.

Each graphics server connection is an open file until the connection is

closed. There is a limit of 256 open connections per DGL client program.

It is not likely that this limit will ever be reached because the operating (
system restricts the number of open files per process to a smaller number.

G6-16  4Sight Programmer’s Guide IRIS-4D Series




The DGL client and server require enough memory to contiguously store all
the arguments to a routine. This is seldom a problem as most routines
require very little memory. However, if either a Graphics Library routine
requires massive amounts of contiguous memory, or if the system has very
little available virtual memory, then performance can be adversely affected
or an ‘‘out of memory’’ error can occur.

6.7.2 The callfunc Routine

callfunc is obsolete on the IRIS-4D Series workstations and is provided
in the Graphics Library only for compatibility with previous systems. The
DGL does not implement callfunc. Any referencesto callfunc will
result in an undefined symbol error when loading the program.

6.7.3 Pop-up Menu Functions

The DGL server supports a maximum of 16 unique callback functions.
Freeing pop-up menus does not free up callback functions. If you use too
many callback functions, you get the client error:

libdgl error (pup): too many callbacks

6.7.4 Interrupts and Jumps

You cannot interrupt the execution of a DGL routine or pop-up menu
callback function without returning back to that routine before calling
another DGL routine. This can typically happen if you set an alarm or timer
interrupt to go off and then block the DGL program with a gread call. If
the signal handler does not return back to the gread, eg. it does a
longjmp(3C) to some non-local location, unpredictable results are likely.

Version 3.1 Using the Distributed Graphics Library G6-17



6.8 Error Messages

All DGL info and error messages are output to the DGL message file. The
message file defaults to stderr. DGL error messages have the following
format:

pgm-name error (routine-name): error-text

pgm-name is either “‘libdgl”’ for client errors or *‘dgld’’ for server errors.
routine-name is the name of the system service or internal routine that failed
or detected the error. error-text is an explanation of the error.

6.8.1 Client Messages

Client error messages are in the standard DGL error format and are always
output to stderr. For example, if /etc/hosts does not include an entry for the
server host ‘‘foobar’’, the following error message would be output when a
connection to is requested:

1ibdgl error (gethostbyname): can’t get name for foobar

If the DGL client library detects a condition that is fatal, it exits with an
errno value that best indicates the condition. If a system call or service
returned an error number (errno or h_errno), this number is used as the exit
number. The following table lists all exit values that are internally generated
(not the result of a failed system call or service).

Exit Value  Explanation

ENOMEM  out of memory
EIO read or write error

Table 6-2. DGL Client Exit Values

G6-18 4Sight Programmer’s Guide IRIS-4D Series




6.8.2 Server Messages

Server error messages are in the standard DGL error format and are output
to stderr by default. For example, if /etc/hosts does not include an entry for
the client host, the following error messages would be output:

dgld error (gethostbyaddr): can’t get name for 59000002
dgld error (comm init): fatal error 1

The standard inetd.conf file runs the graphics server with the I and M
options. The I option informs the graphics server that it was invoked from
inetd or dnserver and enables output of all error messages to the system log
file maintained by syslogd(1M). The M option disables all message output
to stderr.

If the DGL server is not working properly, check the system log file for
error messages. Each entry in the SYSLOG file includes the date and time,
identifies the program as ‘‘dgld’’ and includes the PID for the server
process. The rest of the error message is the text of the error message.

Version 3.1 Using the Distributed Graphics Library  G6-19



6.8.3 Exit Status

When the DGL graphics server exits, the exit status indicates the reason for

the exit. A normal exit has an exit status of zero. A normal exit occurs

when either the client calls dglclose or when zero bytes are read from

the graphics connection. The latter case can occur when the client program

exits without calling dglclose or abnormally terminates. (

A non-zero exit status implies an abnormal exit. If the graphics server
program detects a condition that is fatal, it exits with an errno value that
best indicates the condition. If a system call or service returned an error
number (errno or h_errno), this number is used as the exit number. The
following table lists all exit values that are internally generated (not the
result of a failed system call or service).

Exit Value Explanation

0 normal exit

ENODEV invalid communication connection type

ENOMEM out of memory

EINVAL invalid command line argument

ETIMEDOUT connection timed out )
EACCESS login incorrect or permission denied (
EIO read or write error

ENOENT invalid Graphics Library routine number

ENOPROTOOPT  dgl/tcp service not found in /etc/services

ERANGE invalid or unrecognizable number representation

Table 6-3. DGL Server Exit Values

G6-20 4Sight Programmer’s Guide IRIS-4D Series




Appendix A: Textport and Keyboard
Data

This appendix describes the escape sequences recognized by wsh, and the
code sequences generated by the IRIS-4D Series keyboard.

A.1 Escape Sequences Recognized by wsh

Table A-2 lists wsh escape sequences. The escape sequences use standard
ANSI identifiers that are decoded as follows:

7-bit character code  8-bit character code (hexadecimal)

CSI ESC [ 0x9B
DCS ESCP 0x90
ST ESC\ 0x9C

Table A-1. ANSI Identifiers for the Escape Sequences

For example, to set the title in the wish title bar to ‘‘Remote host’’, the
sequence

DCS 1 . y Remote host ST
is generated by the following C code:

printf ("%c%cl.y%s%c%c",’\033’,’P’,"Remote host",”\0337,7\\");

where ESC is the octal 033.

Version 3.1 Textport and Keyboard Data GA-1



Sequence

Semantics

012
\015
007
\010
\011
\013
\014
ESCD
ESCE
ESCH
ESCM
ESCc
CSInA
CSInB
CSInC
CSInD
CSIH
CSIr;cH
CSlcg
CSInL
CSInM
CSIn
CSInP
CSInX
CSI code K

CSI code J

line feed
carriage returmn
bell
backspace
horizontal tab
vertical tab (behaves like line feed)
form feed (behaves like line feed)
index
next line
horizontal tab set
reverse index
reset to initial state (default attributes)
move the cursor up 7 lines; sticks at the top
move the cursor down 7 lines; sticks at the bottom
move the cursor right # columns; sticks at the right
move the cursor left n columns; sticks at the left
cursor home
move the cursor to row r and column c; these values start at 1
clear tab at column ¢
insert n lines
delete n lines
insert n characters
delete n characters
erase n characters
erase in line
code = 0: erase to end of line from the current cursor
column, inclusive
co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>