
SiCortex Ice9 Specification

This document is SiCortex Confidential.

May 14, 2014

SiCortex Confidential

May 14, 2014 2 Rev 51328

Contents

1 Overview 41
1.1 Some History . 41
1.2 The System . 42
1.3 ICE9 . 43

1.3.1 Goals . 43
1.4 Overall Block Diagram . 44

1.4.1 Processor Cores . 44
1.4.2 L2 Cache . 44
1.4.3 Memory Controller . 44
1.4.4 PCI-Express Controller . 44
1.4.5 Fabric . 44

1.4.5.1 DMA Engine . 44
1.4.5.2 Fabric Switch . 44
1.4.5.3 Link Controllers . 46
1.4.5.4 Link Subsystem . 46

1.4.6 Clock Generator . 46
1.4.7 Miscellaneous . 46

1.5 Latency Calculations . 46
1.5.1 Links and Wire-Handling Latency . 46
1.5.2 ICE9 to ICE9 Latency . 47

1.6 Address Map . 47

2 Internode Link 49
2.1 Overview . 49
2.2 Differences, Bugs, and Enhancements . 50

2.2.1 Product and Chip Pass Differences . 50
2.2.2 Known Bugs and Possible Enhancements . 50

2.3 Reference Documents . 50
2.4 SERDES Fabric Links . 50
2.5 8B/10B code . 51
2.6 The Lane Transmitter (Txlane) . 51

2.6.1 Synchronizer setup between sclk and txclkP . 52
2.6.2 Txlane data latency estimates . 53
2.6.3 Txlane module ports (This port list is not complete. Needs portlist Spec from AnalogBits) . 53
2.6.4 8B10B code Validation Plan . 53
2.6.5 Verification Checklist: (This section is not complete) . 53

2.7 The Lane Receiver (Rxlane) . 54
2.7.1 Clock Alignment and Synchronizer setup between Rxlane and Framer transfer 55

2.7.1.1 SkipBeat Handshake . 55
2.7.1.2 The RxClk alignment . 56

2.7.2 The Framer Module . 56
2.7.2.1 The clock alignment and synchronizer setup . 57
2.7.2.2 Framing Function and flag-LaneHealth . 57

2.7.3 The Wordsync function . 57
2.7.4 Rxlane to Framer data latency estimates . 58

3

SiCortex Confidential CONTENTS

2.7.5 Rxlane module ports . 59
2.7.6 8B10B code Validation Plan . 59
2.7.7 Verification Checklist: . 59

2.8 The Fabric Link Receiver . 60
2.8.1 Status Flags required by RxLinkSync and RxLC . 61
2.8.2 RxLinkSync Routine . 62
2.8.3 Verification Checklist: . 63

2.9 The Fabric Link Transmitter . 63
2.9.1 Status Flags required by TxLC . 64
2.9.2 TxLinkSync Routine . 65
2.9.3 Verification Checklist: . 66

2.10 Reset bring-up sequence . 66
2.10.1 When do Link Registers Get Reset . 67

2.10.1.1 AnalogBits QPMA Registers . 67
2.10.1.2 QSC Registers . 67
2.10.1.3 FLT and FLR link Registers . 67

2.10.2 Enabling Links . 67
2.10.2.1 Determine QPMA Impedance Settings . 68
2.10.2.2 Configure QPMA Calibration Settings . 68
2.10.2.3 Initialize SkipBeat Functions . 68
2.10.2.4 Enable the Links . 68

2.11 Diagnostic Modes . 68
2.11.1 NearEndLoopback Mode . 69

2.11.1.1 Link-0 . 69
2.11.1.2 Link-1 . 69
2.11.1.3 Link-2 . 69

2.11.2 FarEndLoopback Mode . 69
2.11.3 Bit-Blasting Mode . 69
2.11.4 ATE Testing of Analogbits ABICDR43 . 70
2.11.5 PLL Bypass Mode Testing of Analogbits ABICDR43 . 70

2.12 Error recovery procedure . 71
2.12.1 Force Retraining . 71

2.13 Bring-Up Failure Points . 71
2.14 Registers That Can Prevent Link Coming Up . 74
2.15 Common Registers and Definitions . 75

2.15.1 Package Attributes . 75
2.15.2 Definitions . 75
2.15.3 Link Symbols . 75
2.15.4 Flr Events . 76
2.15.5 Flt Events . 76

2.16 FLT Registers . 76
2.16.1 R FltxSoftReset . 76
2.16.2 R Fltx FC Lane Control Register . 77
2.16.3 R Fltx Lane Status . 78
2.16.4 R FltxInvCFc . 78
2.16.5 R FltxDispFc . 79
2.16.6 R FltxAltNull . 79
2.16.7 R FltxHeartbeat . 80
2.16.8 R FltxDriveError . 80
2.16.9 R FltxTxLcStatus . 81
2.16.10R FltxTxLcControl . 81
2.16.11R FltxTxLcCount . 81
2.16.12R FltxS2WaitTime . 82
2.16.13Fltx Manual Override Rotator (MOR) . 82
2.16.14R FltxFarEndLoopback . 83
2.16.15R FltxBBDiag . 83

May 14, 2014 4 Rev 51328

SiCortex Confidential CONTENTS

2.16.16Fltx BBDiagStatus . 84
2.17 FLR Registers . 85

2.17.1 R FlrxSoftReset . 85
2.17.2 R FlrxLinkStatus . 85
2.17.3 R FlrxLinkControl . 86
2.17.4 R FlrxRotator . 86
2.17.5 R FlrxRxLcStatus . 86
2.17.6 R FlrxLaneHealth . 87
2.17.7 R FlrxWSyncMode . 87
2.17.8 R FlrxWSyncStatus . 88
2.17.9 R FlrxHeartbeat . 89
2.17.10R FlrxRxLcControl . 89
2.17.11R FlrxRxLcCount . 90
2.17.12R FlrxS2WaitTime . 90
2.17.13Flrx Lane Invalid Character Error Register . 91
2.17.14Flrx Lane Disparity Error Register . 91
2.17.15R Flrx Lane Status Register . 92
2.17.16Flrx Lane Control Register . 92
2.17.17Flrx Manual Override Rotator (MOR) . 93
2.17.18R FlrxBBDiag . 94
2.17.19Flrx BBDiagStatus . 95

2.18 FLR/FLT Register Allocation . 96
2.18.1 Flr0 . 96
2.18.2 Flr1 . 96
2.18.3 Flr2 . 96
2.18.4 Flt0 . 96
2.18.5 Flt1 . 97
2.18.6 Flt2 . 97

2.19 Quad Serdes Physical Media Access (QPMA) . 97
2.19.1 Calibration and Impedance Control of the driver and Receiver 98
2.19.2 Verification Checklist: . 99

2.20 Quad Serdes Control (QSC) Registers . 99
2.20.1 R QscGo . 99
2.20.2 R QscStatus . 99
2.20.3 R QscCA . 100
2.20.4 R QscSerDatAR . 101
2.20.5 R QscSerDatT . 101
2.20.6 R QscSerDatP . 101
2.20.7 R QscQpmaStatus . 101
2.20.8 R QscQpmaImpCalibration . 102
2.20.9 R QscQpmaControl . 103
2.20.10R QscQpmaTestControl . 104
2.20.11R QscInterrupt . 105
2.20.12Qsc TxBBDiag . 106
2.20.13Qsc Lane Status Register . 107
2.20.14Qsc Lane Control Register . 108
2.20.15R QscRxBBDiag . 109
2.20.16R QscRxBBDiagStatus . 110

2.21 Link Unit Implementation Interface . 110
2.21.1 Interrupt Interface . 110
2.21.2 Serial Configuration Bus Interface . 110
2.21.3 Differential Drivers and Receivers . 110
2.21.4 Fabric Switch Interface . 110
2.21.5 The transmitter Handshake Ports . 111
2.21.6 The Receiver Handshake Ports . 113

May 14, 2014 5 Rev 51328

SiCortex Confidential CONTENTS

3 The Dense Fabric Switch 115
3.1 Overview . 115

3.1.1 Specifications . 115
3.2 Differences, Bugs, and Enhancements . 115

3.2.1 Product and Chip Pass Differences . 115
3.2.2 Known Bugs and Possible Enhancements . 115

3.3 Description . 116
3.3.1 Routing . 116
3.3.2 Virtual Channel Assignment . 116
3.3.3 Virtual Channel Arbitration . 117
3.3.4 Flow Control . 118
3.3.5 Error Control . 118
3.3.6 Out-of-Band Channel . 119

3.4 Operation . 119
3.4.1 The Data Link . 120

3.4.1.1 Fabric Packet Header Class . 120
3.4.1.2 Fabric Packet Trailer Class . 121
3.4.1.3 Fabric Data Packets . 121
3.4.1.4 Fabric Packet Idle Class . 121

3.4.2 The Control Link . 122
3.4.2.1 Fabric Control Packet Class . 122

3.4.3 Control Link Use . 122
3.4.4 Error Recovery . 123
3.4.5 Poison . 123
3.4.6 Mission Mode . 124

3.5 Special Communication Paths . 124
3.5.1 The Out-of-Band Communication Registers . 124

3.6 Deadlock Avoidance . 124
3.7 The Switch Architecture . 125

3.7.1 General Organization . 125
3.7.2 Ordering Requirements . 125
3.7.3 Local Arbitration: Within A Crosspoint Buffer . 125
3.7.4 Global Arbitration: Between Crosspoint Buffers . 126
3.7.5 Why Two Levels of Global Arbitration? . 128
3.7.6 Stitching it all Together . 128

3.8 Error Detection and Recovery . 128
3.8.1 CRC Generation and Checking . 129
3.8.2 Handling Poisoned Packets . 129
3.8.3 Transient Bit Errors on the Link . 129
3.8.4 Corrupted VC . 130
3.8.5 Corrupted Route . 130
3.8.6 Corrupted Buffer Index . 130
3.8.7 Corrupted LSN . 131
3.8.8 Misc. Bad Data (CRC Mismatch) . 131
3.8.9 Uncorrectable ECC Error in Packet Store or Replay Buffer 131
3.8.10 Uncorrectable ECC Error on Data to DMA Engine . 131
3.8.11 Uncorrectable ECC Error on Data from DMA Engine . 131
3.8.12 Upstream Link Goes Down . 131
3.8.13 Downstream Link Goes Down . 131

3.9 The Control/Status Register Path . 132
3.10 Components and Hierarchy . 132

3.10.1 Switch Top level . 132
3.10.1.1 External Ports . 132
3.10.1.2 Serial Configuration Bus Interface . 133
3.10.1.3 Interrupt Outputs . 133
3.10.1.4 The DMA to Fabric Switch Interface . 134

May 14, 2014 6 Rev 51328

SiCortex Confidential CONTENTS

3.10.1.5 The Fabric Link Receiver (FLR) to Switch Interface 135
3.10.1.6 The Fabric Link Transmitter (FLT) to Switch Interface 137

3.10.2 Interblock Signals . 138
3.10.3 The Input Block . 138

3.10.3.1 Error Detection and Recovery Table . 138
3.10.4 The Output Block . 140
3.10.5 The DMA Input Block . 140

3.10.5.1 Error Detection and Recovery Table . 140
3.10.6 The DMA Output Block . 141
3.10.7 The Crosspoint Buffer . 141

3.10.7.1 The Arbitration Array . 141
3.10.7.2 The Packet Store . 141

3.11 Pipeline Timing . 141
3.11.1 Summary . 142
3.11.2 Incoming Packet is Stored in Crosspoint Buffer, Arbitrates, and Wins 142
3.11.3 Packet Must Wait for Available Downstream Buffer . 144
3.11.4 Packet Loses Global Arb, but Wins on Second Try . 144
3.11.5 Packet with CRC Error is Poisoned and Sent Anyway . 144
3.11.6 Packet with CRC Error is Dropped . 145
3.11.7 About the Bypass Paths . 146
3.11.8 3 Cycle Latency Path . 147
3.11.9 4 Cycle Latency Path . 147
3.11.105 Cycle Latency Path . 148
3.11.116 Cycle Latency Path (No Bypass) . 148
3.11.12End of Control Packet Arrives, Packets are Acknowledged . 148
3.11.13End of Control Packet Arrives with ErrFlag=1, Causing Replay 149

3.12 FSW Registers and Definitions . 150
3.12.1 Package Attributes . 150
3.12.2 Definitions . 150
3.12.3 Output Mux Select Choices . 151
3.12.4 Replay State Machine . 151
3.12.5 Fabric Switch Control/Status Registers . 151

3.12.5.1 Block Reset Register . 152
3.12.5.2 Block Enable Register . 153
3.12.5.3 Input Block Mode Register . 153
3.12.5.4 Output Block Mode Register . 154
3.12.5.5 PoolMask Register . 154
3.12.5.6 Out-of-Band Upstream Register . 155
3.12.5.7 Out-of-Band Downstream Register . 155
3.12.5.8 Output Block Status Registers . 156
3.12.5.9 Force Error Register . 156
3.12.5.10 Bypass Enable Register . 157
3.12.5.11 Input Block Data Packet CRC Error Counter . 158
3.12.5.12 Input Block Idle Packet CRC Error Counter . 158
3.12.5.13 Input Block Good Packet Counter . 159
3.12.5.14 Input Block Poison Counter . 159
3.12.5.15 Output Block Control Packet Error Counter . 159
3.12.5.16 Output Block Replay Counter . 160
3.12.5.17 DMA Input Block Packet Counter . 160
3.12.5.18 DMA Output Block Packet Counter . 161
3.12.5.19 Upstream Control Packet Capture Registers . 161
3.12.5.20 Interrupt Cause Registers 0, 1, 2 . 162
3.12.5.21 Interrupt Cause Register 3 - For Crosspoint Buffer ECC Errors 164
3.12.5.22 Interrupt Mask Registers . 164
3.12.5.23 Master Interrupt Register . 164
3.12.5.24 Model Magic Register . 165

May 14, 2014 7 Rev 51328

SiCortex Confidential CONTENTS

3.13 Reset and Initialization . 165
3.14 Internal Data Formats and States . 165

3.14.1 Encoding of Buses between FswCsr and FswIbx . 165
3.14.1.1 CsrIbxStat - For csr ibx Stat sa bus . 165
3.14.1.2 IbxCsrStat - For csr ibx Stat sa bus . 166

3.14.2 SCB Performance Events . 167
3.14.3 Encoding of Buses between FswCsr and FswDmai . 168

3.14.3.1 CsrDmaiStat - For csr dmai Stat sa bus . 168
3.14.3.2 DmaiCsrStat - For dmai csr Stat sa bus . 169

3.14.4 Encoding of Buses between FswCsr and FswObx . 169
3.14.4.1 CsrObxStat - For csr obx Stat sa bus . 169
3.14.4.2 ObxCsrStat - For obx csr Stat sa bus . 170

3.14.5 Encoding of Buses between FswCsr and FswDmao . 171
3.14.5.1 CsrDmaoStat - For csr dmao Stat sa bus . 171
3.14.5.2 DmaoCsrStat - For dmao csr Stat sa bus . 172

3.14.6 Encoding of Buses between FswCsr and FswXbx . 172
3.14.6.1 CsrXbxStat - For csr xbx Stat sa bus . 172
3.14.6.2 XbxCsrStat - For xbx csr Stat sa bus . 172

3.14.7 Open issues . 173

4 DMA Engine Microcode 175
4.0.8 Package Attributes . 175

4.1 Introduction . 175
4.2 Goals . 176
4.3 Differences, Bugs, and Enhancements . 176

4.3.1 Product and Chip Pass Differences . 176
4.3.2 Known Bugs and Possible Enhancements . 177

4.4 Model . 177
4.4.1 Terminology . 177

4.4.1.1 DMA Context (formerly Process) . 177
4.4.1.2 Thread . 177
4.4.1.3 Handle . 177
4.4.1.4 Packet . 177
4.4.1.5 Command . 178
4.4.1.6 Segment . 178
4.4.1.7 Errors . 178
4.4.1.8 Transmit . 178
4.4.1.9 Receive . 178
4.4.1.10 Multicast . 179
4.4.1.11 Collective . 179
4.4.1.12 Copy . 179

4.4.2 High-level Hardware View . 179
4.4.3 Canonical MPI Transfer Patterns . 179

4.4.3.1 Eager Transfer . 179
4.4.3.2 Single-ended Messages . 180
4.4.3.3 Rendezvous Exchange . 180

4.5 Queues . 182
4.5.1 Command and Port queues . 182

4.5.1.1 Process quota . 184
4.5.1.2 Command order . 184

4.5.2 Event queue . 184
4.5.2.1 Hardware-generated events . 184

4.5.3 Summary of DMA Engine Queues . 185
4.6 Modes of Operation . 186

4.6.1 Synchronous mode . 186
4.6.2 Asynchronous mode . 186

May 14, 2014 8 Rev 51328

SiCortex Confidential CONTENTS

4.6.3 Interrupt mode . 187
4.6.4 Fabric Processor . 187
4.6.5 Virtualized mode . 187

4.7 Communication state . 187
4.7.1 Transmit state . 187
4.7.2 Receive state . 188
4.7.3 Notifiers . 188
4.7.4 Buffer descriptor . 188

4.7.4.1 Virtual Memory swapping . 189
4.7.5 Route descriptor . 189
4.7.6 Heap . 190
4.7.7 Protected data structures . 191
4.7.8 DMA Engine Common Control/Status . 192

4.8 Commands . 195
4.8.1 Command Header . 195
4.8.2 Send Event Command . 195
4.8.3 Send Cmd Command . 196
4.8.4 Do Cmd Command . 196
4.8.5 Put Bf Bf Command . 197
4.8.6 Put Im Hp Command . 198
4.8.7 Supervise Command . 199
4.8.8 Undefined Commands . 199

4.9 Packet formats . 199
4.9.1 Packet header and check . 199
4.9.2 Packet Types . 200
4.9.3 Direct Transmission: Enq Direct . 200
4.9.4 DMA . 200
4.9.5 DMA End . 201
4.9.6 Wr Heap . 201
4.9.7 Enq Response . 202
4.9.8 Poison . 202

4.10 Notes on Complex Functions . 203
4.10.1 Rendezvous . 203
4.10.2 Stride and Scatter/Gather . 203
4.10.3 Barrier and Collective . 203
4.10.4 Multicast . 203
4.10.5 Out-of-band . 204
4.10.6 Receive Matching . 204
4.10.7 Initialization . 204

4.10.7.1 Black Hole . 204
4.10.7.2 Reset . 204
4.10.7.3 Microcode load . 204
4.10.7.4 Variable binding . 204
4.10.7.5 Initialization of common resources . 205
4.10.7.6 Initialization of process resources . 205

4.10.8 Process Rundown . 206
4.11 Lessons for Next Time . 206

4.11.1 Queue Manager . 206
4.11.2 Additional functionality . 206

4.11.2.1 Enqueue/Dequeue commands . 206
4.11.2.2 Global locks . 206

4.11.3 Microcode . 206
4.11.3.1 Buffer addressing . 206
4.11.3.2 Buffer reset . 206

4.11.4 Copy port . 207
4.11.5 Receive ports . 207

May 14, 2014 9 Rev 51328

SiCortex Confidential CONTENTS

4.11.6 Cache . 207
4.12 Microcode . 207

5 DMA Engine 209
5.0.1 Package Attributes . 209

5.1 Introduction . 209
5.2 Implementation . 209

5.2.1 Top Level Block Diagram . 210
5.2.2 External Interfaces . 211

5.2.2.1 Fabric Switch to DMA receive port X (X=0,1,2) . 211
5.2.2.2 DMA transmit port X to Fabric Switch (X=0,1,2) 211
5.2.2.3 DMA to L2 Cache Switch . 211

5.2.3 Module Hierarchy . 211
5.2.4 DmaUe: Microengine Control Logic . 212
5.2.5 DmaImem: Microengine Instruction Memory . 213
5.2.6 DmaAlu: Microengine ALU . 214
5.2.7 DmaDmem: Microengine Data Memory . 214
5.2.8 DmaRxp: Receive Ports . 218
5.2.9 DmaTxp: Transmit Ports . 220
5.2.10 DmaCopy: Copy Port . 221
5.2.11 DmaCif: Cache Interface . 222

5.2.11.1 Cache Interface Queues . 225
5.2.11.2 Interfaces in DmaCif . 226
5.2.11.3 TaskStart Interface (Microengine to DmaCif) . 226
5.2.11.4 StartIo Interface (DmaCif to microengine) . 226
5.2.11.5 Interface to L2 Cache . 229
5.2.11.6 Cycle Behavior: TaskStart to CmdAddr Bus . 229
5.2.11.7 Memory to DMA Pipeline . 231
5.2.11.8 I/O Access Pipeline (Read and Write) . 231
5.2.11.9 I/O Write Pipeline . 232
5.2.11.10 Task interface pipeline . 232

5.2.12 Microengine Programming . 232
5.2.12.1 Instructions . 232
5.2.12.2 Operand selection . 233
5.2.12.3 Destination Selection . 233
5.2.12.4 ALU operations . 233
5.2.12.5 Sleep Functions . 234
5.2.12.6 Stall . 235
5.2.12.7 Memory Transfer . 235
5.2.12.8 Branch Functions . 235
5.2.12.9 Next Address . 236

5.2.13 Unified Engine . 236
5.2.14 Bandwidth . 236
5.2.15 Matching . 236
5.2.16 Interface registers . 237
5.2.17 Coherence . 237
5.2.18 Alignment . 237
5.2.19 Strides and Scatter/Gather . 237
5.2.20 Output Thread . 237
5.2.21 Input Thread . 238
5.2.22 Thread performance . 238
5.2.23 Queue manager . 238
5.2.24 Port manager . 239
5.2.25 Copy Thread . 239
5.2.26 Timeouts . 239
5.2.27 Error Conditions . 239

May 14, 2014 10 Rev 51328

SiCortex Confidential CONTENTS

5.3 Notes . 240
5.3.1 Rendezvous . 240
5.3.2 Ethernet simulation . 240
5.3.3 Barrier . 240
5.3.4 Cache interface . 241
5.3.5 Performance Counters . 241

5.4 Registers and Definitions . 242
5.5 Microengine Instructions . 242

5.5.1 Instruction Fields . 242
5.5.2 Operand A addressing modes . 242
5.5.3 Operand B addressing modes . 243
5.5.4 Destination Addressing Modes . 243
5.5.5 Special Registers addressed by Operand A . 244
5.5.6 Special Registers addressed by Operand B . 244
5.5.7 Special Registers addressed by Destination . 245
5.5.8 ALU Operation Field . 247
5.5.9 Memory Operation Field . 249
5.5.10 Memory Transfer Length Selection . 249
5.5.11 Sleep Mode Field . 249
5.5.12 Sleep Index Field, when Sleep=HwFlag . 250
5.5.13 Sleep Index Field, when Sleep=TakeMutex or DropMutex . 250
5.5.14 Internal Encoding of Sleep Conditions . 251
5.5.15 Branch Field . 252
5.5.16 Dedicated Microinstruction Addresses . 253
5.5.17 Miscellaenous Constant Definitions . 253
5.5.18 DMA Thread Numbers . 255
5.5.19 DMA Port numbers . 255
5.5.20 DMA Queue numbers . 255
5.5.21 DMA Internal Memory Addresses . 255
5.5.22 DMA Internal Memory Addresses (Mem Field) . 256
5.5.23 Receive Port Buffer State Machine . 256
5.5.24 Receive Port CMUX Select Values . 257
5.5.25 Transmit Port Buffer State Machine . 257
5.5.26 Transmit Port: Packet Builder State Machine . 257
5.5.27 Copy Port Buffer State Machine . 257
5.5.28 Copy Port: Read/Write Memory Buffer Address . 257
5.5.29 Dma Cache Interface Task . 258
5.5.30 Dma Cache Interface: Memory Operation Type . 258
5.5.31 Dma Cache Interface: Type of Task . 259
5.5.32 Dma Cache Interface: Numbering of Queues . 260
5.5.33 Dma Cache Interface: Depth of Queues for ICE9 . 260
5.5.34 Dma Cache Interface: Depth of Queues for TWC9 . 261
5.5.35 Dma Cache Interface: Outstanding Read Table entry . 261
5.5.36 Dma Cache Interface: Outstanding Write Table entry . 261
5.5.37 Dma Cache Interface: Block Read Retry Queue (BrdrQ) for ICE9 261
5.5.38 Dma Cache Interface: Block Read Retry Queue (BrdrQ) for TWC9 262
5.5.39 Dma Cache Interface: Command RDIO Queue (CrdioQ) . 262
5.5.40 Dma Cache Interface: SPCL/INT Queue (CSpclIntQ) for ICE9 262
5.5.41 Dma Cache Interface: SPCL/INT Queue (CSpclIntQ) for TWC9 262
5.5.42 Dma Cache Interface: Data Response Queue (DataRspQ) . 262
5.5.43 Dma Cache Interface: Data Write Queue (DWQ) . 262
5.5.44 Dma Cache Interface: I/O Read Queue (DRDIOQ) . 262
5.5.45 Dma Cache Interface: StartIoQ for ICE9 . 263
5.5.46 Dma Cache Interface: StartIoQ for TWC9 . 263
5.5.47 Dma Cache Interface: StartIoType . 263
5.5.48 Dma Cache Interface: Address memory entry . 263

May 14, 2014 11 Rev 51328

SiCortex Confidential CONTENTS

5.5.49 Dma Cache Interface: MemOut Address Sequencer States . 263
5.5.50 Dma Cache Interface: MemIn Address Sequencer States . 264
5.5.51 Internal Encodings for Microengine Operands . 264
5.5.52 I/O Region Type (DmaIoRegionType) . 264
5.5.53 External I/O Addresses . 264

5.6 Registers Accessible by RDIO/WTIO from Processors . 265
5.6.1 DMA Instruction Memory (IMEM) . 265
5.6.2 DMA Data Memory (DMEM) . 265
5.6.3 DMA Thread Select Register . 265
5.6.4 DMA Thread Pointer Registers . 266
5.6.5 DMA Thread Program Counter Registers . 266
5.6.6 DMA Programmable I/O Control Register . 267
5.6.7 DMA Application Interface Region 0 . 267
5.6.8 DMA Application Interface Region 1 . 267

5.7 Registers Accessible by Serial Configuration Bus . 268
5.7.0.1 Block Reset Register . 268
5.7.0.2 ECC Mode Register . 268
5.7.0.3 ALU Merge Operation Control Registers (added in Twice9) 269
5.7.0.4 Force Error Register . 269
5.7.0.5 Microengine Status Registers . 270
5.7.0.6 Cache Interface Status Registers . 271
5.7.0.7 Rx/Tx Port Status Registers . 271
5.7.0.8 Copy Port Status Register . 272
5.7.0.9 Interrupt Cause Register . 272
5.7.0.10 Interrupt Mask Register . 274

5.8 SCB Performance Events . 274
5.9 Internal Data Formats and States . 275

5.9.1 Encoding of Buses between DmaCsr and DmaUe . 275
5.9.1.1 CsrUeStat - For csr ue Stat ca bus . 275
5.9.1.2 UeCsrStat - For csr ue Stat ca bus . 275

5.9.2 Encoding of Buses between DmaCsr and DmaCif . 276
5.9.2.1 CsrCifStat - For csr cif Stat ca bus . 276
5.9.2.2 CifCsrStat - For csr cif Stat ca bus . 276

5.9.3 Encoding of Buses between DmaCsr and DmaDmem . 276
5.9.3.1 CsrDmemStat - For csr dmem Stat ca bus . 276
5.9.3.2 DmemCsrStat - For csr dmem Stat ca bus . 277

5.9.4 Encoding of Buses between DmaCsr and DmaTxp . 277
5.9.4.1 CsrTxpStat - For csr txp Stat ca bus . 277
5.9.4.2 TxpCsrStat - For csr txp Stat ca bus . 277

5.9.5 Encoding of Buses between DmaCsr and DmaRxp . 277
5.9.5.1 CsrRxpStat - For csr rxp Stat ca bus . 277
5.9.5.2 RxpCsrStat - For csr rxp Stat ca bus . 277

5.9.6 Encoding of Buses between DmaCsr and DmaCopy . 278
5.9.6.1 CsrCopyStat - For csr copy Stat ca bus . 278
5.9.6.2 CopyCsrStat - For csr copy Stat ca bus . 278

6 Processor Segments 279
6.1 Overview . 279
6.2 Specifications . 279
6.3 User Code Visiable Bugs and Enhancements . 280

6.3.1 Product and Chip Pass Differences . 280
6.3.2 Known Bugs and Possible Enhancements (M5KF only) . 281

6.4 Kernel and Performance Bugs and Enhancements . 281
6.4.1 Product and Chip Pass Differences . 281
6.4.2 Known Bugs and Possible Enhancements (M5KF only) . 281

6.5 Complete Documentation . 282

May 14, 2014 12 Rev 51328

SiCortex Confidential CONTENTS

6.6 BIU Description . 282
6.6.1 BIU Ports . 282
6.6.2 D-Cache Reads . 284
6.6.3 I-Cache Reads . 284
6.6.4 Istream Initial Reads . 285
6.6.5 Evictions . 285
6.6.6 IO Writes . 285

6.6.6.1 IO Write Buffer Counter . 285
6.6.7 Cache Instructions . 286
6.6.8 Prefetch Instruction . 286
6.6.9 Sync Instruction . 286
6.6.10 Load Linked and Store Conditional . 286

6.7 Interventions . 287
6.7.1 Intervention Deadlock Avoidance . 288
6.7.2 Example Intervention Cases . 288

6.8 WAIT . 288
6.9 Interrupts . 289
6.10 EJTag . 289
6.11 D Cache ECC . 289
6.12 Scheduling Hazards . 289
6.13 Dual Issue . 289
6.14 Floating Point Pipeline Enhancements . 290

6.14.1 Floating Point Repeat Rate and Latency . 291
6.15 The L2 Cache Segment and Pipelines . 291

6.15.1 The Tag Lookup . 291
6.15.2 The L2 Miss Data Pipeline . 295
6.15.3 L1 Updates Writebacks and Misses . 295
6.15.4 CSW Probe Operations . 297
6.15.5 Putting It All Together . 300
6.15.6 The SLC (slick) and Processor Access Stalls . 300

6.16 Initial Program Load and Processor Start-up . 300
6.17 Memory and IO Ordering Rules and Behavior . 300
6.18 I/O Accesses and Address Decoding . 303

6.18.1 CAC Local IO Registers . 303
6.18.2 CAC Remotely Accessible IO Registers . 303

6.19 Interrupts, Again . 303
6.19.1 CPU Interrupt lines . 303
6.19.2 The Interrupt Cause Registers . 303
6.19.3 The CSW INT Transaction and Writing the Interrupt Cause Registers 304
6.19.4 Interprocessor Interrupts . 304
6.19.5 Machine Check Interrupts . 304
6.19.6 “Slow” Interrupts . 304
6.19.7 Delivering Interrupts to Other Processors . 304

6.20 Error Correction, Detection, Control, and Testing . 304
6.21 Processor/L2 Transactions – NittyGritty Details . 305

6.21.1 Processor L1 Cache Read Miss . 305
6.21.1.1 I-Stream Read L1 Miss, L2 Hit . 305
6.21.1.2 I-Stream Read L1 Miss, L2 Miss . 305
6.21.1.3 D-Stream Read L1 Miss, L2 Hit . 305
6.21.1.4 D-Stream Read L1 Miss, L2 Miss . 306

6.21.2 Processor L1 Cache Write Miss . 306
6.21.3 Processor L1 Cache Bypass Read to Cacheable Memory . 306
6.21.4 Processor L1 Cache Bypass Write to Cacheable Memory . 306
6.21.5 Processor I/O Read . 306
6.21.6 Processor I/O Write . 306
6.21.7 Processor L1 Eviction . 307

May 14, 2014 13 Rev 51328

SiCortex Confidential CONTENTS

6.21.8 L2 Probe to Processor . 307
6.21.8.1 Probe Hits on Clean Block . 307
6.21.8.2 Probe Hits on Dirty Block . 307
6.21.8.3 Probe Misses in L1 . 307

6.22 L2 Responses to Probe Requests . 308
6.22.1 PRBINV . 308
6.22.2 PRBWIN . 308
6.22.3 PRBBRD . 308
6.22.4 PRBBWT . 314
6.22.5 PRBSHR . 314

6.23 L2 Responses to Other CSW Commands . 314
6.23.1 PRBNOHIT . 314
6.23.2 RDIO . 314
6.23.3 WTIO . 314
6.23.4 INT . 317
6.23.5 Incoming Data Completing a Memory Read Operation . 317

6.24 Registers and Definitions . 317
6.24.1 Package Attributes . 317

6.24.1.1 Package . 317
6.24.2 Definitions . 317
6.24.3 Register List . 318
6.24.4 Prefetch Hint Encodings . 319
6.24.5 CPU Performance Counter Events . 319
6.24.6 SCB Performance Core Events . 322
6.24.7 SCB Performance Events . 323
6.24.8 CpuConfig Register . 326
6.24.9 CpuConfig1 Register . 327
6.24.10CpuConfig2 Register . 327
6.24.11CpuFCCR Register . 328
6.24.12CpuWatchLo Register . 328
6.24.13CpuWatchHi Register . 328
6.24.14CpuFEXR Register . 328
6.24.15CpuXContext Register . 328
6.24.16CpuDebug Register . 328
6.24.17CpuDEPC Register . 329
6.24.18CpuPerfCnt Register . 329
6.24.19CpuPerfVPC Register . 330
6.24.20CpuPerfPEA Register . 330
6.24.21CpuFENR Register . 330
6.24.22CpuErrCtl Register . 330
6.24.23CpuCacheErr Register . 331
6.24.24CpuTagLo Register . 331
6.24.25CpuDataLo Register . 331
6.24.26CpuDataHi Register . 332
6.24.27CpuErrorEPC Register . 332
6.24.28CpuDESAVE Register . 332
6.24.29CpuDCR Register . 332
6.24.30CpuFCSR Register . 332
6.24.31CpuIBS Register . 333
6.24.32CpuIBA Register . 333
6.24.33CpuIBM Register . 333
6.24.34CpuIBASID Register . 333
6.24.35CpuIBC Register . 333
6.24.36CpuDBS Register . 334
6.24.37CpuDBA Register . 334
6.24.38CpuDBM Register . 334

May 14, 2014 14 Rev 51328

SiCortex Confidential CONTENTS

6.24.39CpuDBASEID Register . 334
6.24.40CpuDBC Register . 334
6.24.41CpuDBV Register . 334
6.24.42CpuIndex Register . 335
6.24.43CpuRandom Register . 335
6.24.44CpuEntryLo Register . 335
6.24.45CpuContext Register . 335
6.24.46CpuPageMask Register . 335
6.24.47CpuWired Register . 335
6.24.48CpuBadVAddr Register . 336
6.24.49CpuFIR Register . 336
6.24.50CpuCount Register . 336
6.24.51CpuEntryHi Register . 336
6.24.52CpuCompare Register . 336
6.24.53CpuStatus Register . 336
6.24.54CpuCause Register . 337
6.24.55CpuEPC Register . 337
6.24.56CpuPRId Register . 337
6.24.57Ecc Injection Magic Register . 338

6.25 EJTAG Registers and Definitions . 338
6.25.1 EJTAG TAP Instructions . 338
6.25.2 CpuTapIDCODE Register . 339
6.25.3 CpuTapIMPCODE Register . 339
6.25.4 CpuTapDATA Register . 339
6.25.5 CpuTapADDRESS Register . 340
6.25.6 CpuTapECR Register . 340
6.25.7 CpuTapFASTDATA Register . 340

6.26 Cpu Implementation-Only Definitions . 340
6.26.1 Request Commands . 340

6.27 Cac Registers and Definitions . 341
6.27.1 Probe Queue Handler States . 341
6.27.2 Processor Interface Ready State Machine . 341
6.27.3 L2 Cache Pause During Fill State Machine . 342

7 L2 Cache Coherence and Switch 343
7.1 Summary . 343
7.2 Differences, Bugs, and Enhancements . 343

7.2.1 Product and Chip Pass Differences . 343
7.2.2 Known Bugs and Possible Enhancements . 344

7.3 L2 Cache Features . 344
7.3.1 Terminology . 344
7.3.2 Unusual Features . 345
7.3.3 Error Control . 346

7.4 Processor to L2 Cache Interface . 346
7.5 Major Blocks and the General Approach . 346

7.5.1 Supported Operations . 346
7.5.2 Per-Processor Segment . 346
7.5.3 Bidirectional spine structure . 347
7.5.4 Tags . 348
7.5.5 Hashed Index . 348
7.5.6 Outstanding Read CAM (ORC) and Write Back CAM (WBC) 348
7.5.7 Victim Buffer . 348

7.6 I/O and DMA Transactions . 348
7.7 Coherence Interactions . 349

7.7.1 Races . 349
7.7.2 Probes . 349

May 14, 2014 15 Rev 51328

SiCortex Confidential CONTENTS

7.8 Multiprocessor Issues . 349
7.8.1 LL/SC . 349
7.8.2 Lockstep cache thrashing . 349
7.8.3 Deadlock Freedom . 350

7.9 L2 Segment to Memory Interface . 350
7.9.1 Transaction ID . 350
7.9.2 Target . 353
7.9.3 Completion . 353
7.9.4 CSW Bus Arbitration . 353

7.9.4.1 Fairness . 354
7.9.4.2 Worst Case Traffic Analysis . 354

7.9.5 CSW Queuing of Commands and Data . 354
7.9.6 Transfer order . 354

7.10 Detailed Interface and Block Descriptions . 357
7.10.1 The Normal Flow Of Events, Hazards, and General Ordering Cases 357
7.10.2 Transaction Steps and the CSW Buses . 358
7.10.3 The Outstanding Read CAM and the Write Back CAM . 363

7.10.3.1 The ORC . 364
7.10.3.2 The WBC . 364

7.10.4 Transaction Flows . 364
7.10.4.1 D-Stream Read to a Non Resident Block . 364
7.10.4.2 D-stream Read to a Cached Block . 369
7.10.4.3 I-stream Read to a Non Resident Block . 375
7.10.4.4 I-stream Read to a Cached Block . 379
7.10.4.5 D-stream Read to a Cached Block in SHARED State 389
7.10.4.6 D-Stream Write Miss . 393
7.10.4.7 D-Stream Write to Invalidate . 393
7.10.4.8 Block Write to a Non Resident Block . 396
7.10.4.9 Block Write to a Cached Block . 398
7.10.4.10 Block Write to SHARED Location . 404
7.10.4.11 Block Write and Other Probe Collisions with Victimization 406
7.10.4.12 Block Read to a Non Resident Block . 407
7.10.4.13 Block Read to a Cached Block . 410
7.10.4.14 Read from an I/O Location . 415
7.10.4.15 Write to an I/O Location . 416
7.10.4.16 Read after Read Hazard . 417
7.10.4.17 Read after Write Hazard . 420
7.10.4.18 Write After Read Hazards . 421
7.10.4.19 Write After Write Hazards . 421

7.10.5 Interrupt Delivery . 422
7.10.6 Special Communication Commands . 422
7.10.7 WINV, Victim Writebacks and the WriteBack CAM . 424

7.11 WRSTRANS and When Bad Things Happen to Good Blocks . 424
7.12 One Thousand Ships, One Thousand Nights . 425

7.12.1 Read Retry vs. Victim Writebacks . 425
7.12.2 PRBWIN A followed by RDEX A . 425
7.12.3 PRBXXX A While A Is Being Evicted . 426

7.12.3.1 PRBWIN Against an Evicted Block . 426
7.12.3.2 PRBSHR Against an Evicted Block . 426
7.12.3.3 PRBBWT Against an Evicted Block . 426
7.12.3.4 PRBBRD Against an Evicted Block . 427
7.12.3.5 PRBINV Against an Evicted Block . 427

7.12.4 PRBXXX A Just Prior to Evict Attempt on A . 427
7.12.5 Implications for Stimulus Generators and Checkers . 428

7.12.5.1 NOHIT sequencing against writeback data . 428
7.13 Command Fields . 428

May 14, 2014 16 Rev 51328

SiCortex Confidential CONTENTS

7.14 Transaction IDs (TIDs) and TID Busy Signals . 428
7.14.1 TID Allocation – the IO and MEM TID Spaces . 429

7.15 The Parts . 430
7.15.1 The Coherence Controller (COH) . 430

7.15.1.1 Block Diagram . 430
7.15.1.2 Processing Pipeline(s) . 431
7.15.1.3 Recovering from Tag ECC Errors . 432

7.15.2 The L2 Switch (CSW) . 432
7.15.2.1 Bus Stops, Node Numbers, and Transaction Targets 432

7.16 Arbitration at the PS to CSW Port . 432
7.17 Definitions and Enumerations . 437

7.17.1 Package Attributes . 437
7.17.2 Definitions . 437
7.17.3 Processor to L2 Cache Commands . 438
7.17.4 L2 Cache to Processor Commands . 438
7.17.5 L2 Cache to/from Coherence Controller Commands . 438
7.17.6 L2 Cache Coherence Widget States . 438
7.17.7 L2 Segment Cache States . 439
7.17.8 L2 Cache Modified States . 439
7.17.9 L2 Half Block Update Tags . 439
7.17.10L2 Cache Interface Numbers (Bus Stop Numbers) . 439
7.17.11L2 Cache Interface Numbers (Bus Stop Numbers) for TWICE9 439
7.17.12Transaction IDs . 440
7.17.13Transaction IDs for TWICE9 . 441
7.17.14Address Tag and Index Fields for L2 and Coh Tag and Data arrays 442
7.17.15L2 Cache Useful Dimensions . 443
7.17.16Coherence Engine Useful Dimensions . 443
7.17.17Coherence Engine Useful Dimensions for Twice9A . 443
7.17.18Coherence Engine L2 Tag Array Fields . 443
7.17.19SPCL Address Request Fields . 444
7.17.20SPCL CSW Command Fields . 444

7.18 Registers . 444
7.18.1 Cache Probe Control Register . 444
7.18.2 Cache Probe Address Register . 445
7.18.3 Cache Probe Random Address Registers . 445
7.18.4 Cache ECC Injection Register . 446
7.18.5 I/O Addresses in L2 Segment . 446
7.18.6 Interrupt Cause Register . 446
7.18.7 Interrupt Delivery Register . 447
7.18.8 Slow Interrupt Selection Register . 447
7.18.9 Slow Interrupt Status Register . 448
7.18.10L2 Cache ECC Mode Register . 449
7.18.11L2 Cache ECC Test Register . 449
7.18.12L2 Cache Status Register . 450
7.18.13L2 Cache Data ECC Error Address Register . 450
7.18.14CSW ECC Error Address Register . 451
7.18.15L2 Cache Tag ECC Error Address Register . 451
7.18.16L2 Cache ECC Error Syndrome Register . 451
7.18.17L2 Cache Send SPCL Request Address Range . 452
7.18.18Coherence Engine ECC Mode Register . 452
7.18.19Coherence Engine ECC Test Register . 453
7.18.20Coherence Engine ECC Status Register . 453
7.18.21Coherence Engine ECC Error Address Register . 453
7.18.22Twice9+ Coherence Engine ECC Error Address Register . 454
7.18.23Coherence Engine ECC Error Syndrome Register . 454
7.18.24Coherence Engine Active Processor Segment Register . 454

May 14, 2014 17 Rev 51328

SiCortex Confidential CONTENTS

7.19 Register Allocation . 455
7.19.1 CacLoc . 455
7.19.2 Coho . 455
7.19.3 Cohe . 455

8 Memory Controller 457
8.1 Overview . 457
8.2 Differences, Bugs, and Enhancements . 457

8.2.1 Product and Chip Pass Differences . 457
8.2.2 Known Bugs and Possible Enhancements . 458

8.3 General Description . 458
8.3.1 Clocks . 458
8.3.2 Reset and Initialization . 458
8.3.3 Serial Presence Detect . 459
8.3.4 PHY Read Path DLL Calibration . 459

8.3.4.1 Overview of DLL calibration process . 460
8.3.4.2 DLL Calibration flow . 460

8.3.5 DIMM Requirements . 460
8.3.6 Addressing . 461
8.3.7 Interface Between DDR and the Coherence Controller (COH) 463

8.4 DDI Section . 463
8.4.1 Overview . 463
8.4.2 Request Path . 467
8.4.3 Read Shoot Down . 467
8.4.4 Data Path . 467
8.4.5 Requests to non-existent memory . 468
8.4.6 Powerdown . 468
8.4.7 Read Time-Out . 468
8.4.8 Registers and Definitions . 468

8.4.8.1 R DdrxDdcDdpSoftReset - Soft Reset for DDC and DDP 469
8.4.8.2 R DdrxDdcMemCfg1 - Memory Controller Configuration Register 1 469
8.4.8.3 R DdrxDdcMemCfg2 - Memory Controller Configuration Register 2 470
8.4.8.4 R DdrxDdcMemCfg3 - Memory Controller Configuration Register 3 471
8.4.8.5 R DdrxDdcMemCfg4 - Memory Controller Configuration Register 4 472
8.4.8.6 R DdrxDdcMemCfg5 - Memory Controller Configuration Register 5 473
8.4.8.7 R DdrxDdcMemCfg6 - Memory Controller Configuration Register 6 473
8.4.8.8 R DdrxDdcMemCfg7 - Memory Controller Configuration Register 7 475
8.4.8.9 R DdrxDdcDIMMODT - Memory Controller ODT Selection Matrix Configuration . 475
8.4.8.10 R DdrxDdpODT - On-Die-Termination resistance value on ICE9 DDR2-I/O PADs

during reads . 475
8.4.8.11 R DdrxDIMMSize - Size of the DIMM this DDR unit instance is interfacing with. . 476
8.4.8.12 R DdrxDdiMifCfg1 - Memory Interface Configuration Register 1 476
8.4.8.13 R DdrxDdiMifCfg2 - Memory Interface Configuration Register 2 477
8.4.8.14 R DdrxPhyCfg1 - PHY Interface Configuration Register 1 478
8.4.8.15 R DdrxPhyCfg2 - PHY Interface Configuration Register 2 479
8.4.8.16 R DdrxPhyCfg3 - PHY Interface Configuration Register 3 483
8.4.8.17 R DdrxDdpDLLLane0 - PHY Read Lane 0 DLL Configuration Register 484
8.4.8.18 R DdrxDdpDLLLane1 - PHY Read Lane 1 DLL Configuration Register 484
8.4.8.19 R DdrxDdpDLLLane2 - PHY Read Lane 2 DLL Configuration Register 485
8.4.8.20 R DdrxDdpDLLLane3 - PHY Read Lane 3 DLL Configuration Register 485
8.4.8.21 R DdrxDdpDLLLane4 - PHY Read Lane 4 DLL Configuration Register 486
8.4.8.22 R DdrxDdpDLLLane5 - PHY Read Lane 5 DLL Configuration Register 486
8.4.8.23 R DdrxDdpDLLLane6 - PHY Read Lane 6 DLL Configuration Register 487
8.4.8.24 R DdrxDdpDLLLane7 - PHY Read Lane 7 DLL Configuration Register 487
8.4.8.25 R DdrxDdpDLLLane8 - PHY Read Lane 8 DLL Configuration Register 488
8.4.8.26 R DdrxDdpDLLReset - PHY DLL Reset . 488

May 14, 2014 18 Rev 51328

SiCortex Confidential CONTENTS

8.4.8.27 R DdrxDdpCKReset - Reset for CK clock outputs to DIMM 488
8.4.8.28 R DdrxDddRdDelay . 489
8.4.8.29 R DdrxDdiMemLoopBack . 489
8.4.8.30 R DdrxDdiRdPathRst . 490
8.4.8.31 R DdrxDdiRdTimeOut . 490
8.4.8.32 R DdrxDdpCalReset . 490
8.4.8.33 R DdrxDdpCalError . 491
8.4.8.34 R DdrxDdpCalEnable . 491
8.4.8.35 R DdrxDdpCalCounter . 492
8.4.8.36 R DdrxDdpImpedCal . 492
8.4.8.37 R DdrxDdpDataDrv . 494
8.4.8.38 R DdrxDdpDQSDrv . 495
8.4.8.39 R DdrxDdpCmdDrv . 495
8.4.8.40 R DdrxDdiPHYWrptrCopy - This read only CSR is intended to be used for de-

bugging only. The values only become valid after the last outstanding read has
completed. The pointer is gray coded. When all outstanding reads have completed,
the value of the R DdrxDdiPHYWrptrCopy is expected to be 0001, 0111, 1101, or
1011. 496

8.4.8.41 R DdrxDdpHoldFix - This register has be included as a preventive measure. If it
turns out that there are hold time problems with the sending of cmd/addr signals
to the DIMM. Setting bits in this register muxes in delay elements to add additional
hold time margin. 496

8.4.8.42 R DdrxDdpHighSpeedTest - This CSR is only intended for use during chip testing,
where a tester is acting as a DIMM. 496

8.4.8.43 R DdrxDdiECCCaptureEnable . 497
8.4.8.44 R DdrxDdiRdECCCapture0 . 497
8.4.8.45 R DdrxDdiRdECCCapture1 . 498

8.4.9 Register Allocation . 498
8.4.9.1 Ddr0 . 498
8.4.9.2 Ddr1 . 498

8.4.10 Vregs End Of Decl . 499
8.4.11 DDR Performace Events . 499

8.5 DDC Section - DDR2 SDRAM Controller IP Block . 499
8.6 DDD Section - Datapath interface to PHY . 499
8.7 DDP Unit - DDR2 SDRAM PHY IP Block . 500

8.7.1 Overview . 500
8.7.2 Clocks . 500
8.7.3 Address and Command Path . 500
8.7.4 Write Path . 500
8.7.5 Read Path . 500
8.7.6 DLLs . 501

8.7.6.1 DLL Master Adjustment . 501
8.7.6.2 DLL range calculations for Slave0 (DQS preamble enable DLL to match board trace

length to memory) . 501
8.7.6.3 DLL range calculations for Slave1 (DQS 1/4 cycle delay DLL) 501

8.7.7 I/O pads . 502
8.7.7.1 Impedence Calibration . 502

9 Counters, Performance Counters, & OCLA Overview 503
9.1 What’s Available . 503
9.2 Status Bits . 503
9.3 Counters . 504
9.4 CPU Performance Counters . 504
9.5 SCB Performance Counters . 504

9.5.1 Ordinary Counting with SCB Performance Counters . 505
9.5.2 Statistical Counting with SCB Performance Counters . 505

May 14, 2014 19 Rev 51328

SiCortex Confidential CONTENTS

9.6 OCLA . 506
9.6.1 OCLA Driving an External Pin . 506
9.6.2 OCLA as a Counter . 506
9.6.3 OCLA as a Times-of-Occurance Recorder . 507
9.6.4 OCLA as a Logic Analyzer . 507

10 Serial Configuration Bus 509
10.1 Overview . 509
10.2 Specifications . 509
10.3 Differences, Bugs, and Enhancements . 509

10.3.1 Product and Chip Pass Differences . 509
10.3.2 Known Bugs and Possible Enhancements . 510

10.4 Block Diagram . 510
10.5 SCB Master Ports . 510
10.6 SCB Slave Ports . 511
10.7 Custom/Large Structures . 512
10.8 I/O Operations . 512

10.8.1 No responder . 513
10.8.2 Approximate Latency . 513
10.8.3 Software Notes . 513

10.9 SysChain Interface . 513
10.9.1 SysChain Access Requirements . 513
10.9.2 SysChain SCB Write . 513
10.9.3 SysChain SCB Read . 514

10.10Performance Counting . 514
10.10.1True Counting . 514
10.10.2Statistical Counting . 514
10.10.3Counts Causing Interrupts . 515
10.10.4OCLA Triggering . 515
10.10.5Events from OCLA . 515
10.10.6Arbitration . 515
10.10.7Software Notes . 515
10.10.8Writing while Counting . 516

10.11Connecting to SCBS . 516
10.11.1List of Slaves . 516
10.11.2Slave I/O Transactions . 516
10.11.3Slave Performance Counting Interface . 516

10.12SCB Internals . 517
10.12.1PMI Interface . 517
10.12.2SCB Bus Protocol . 517
10.12.3 ICE9 Bit Sequence . 518
10.12.4TWC9+ Bit Sequence . 518
10.12.5Commands . 519

10.12.5.1 Idle . 519
10.12.5.2 Reset . 519
10.12.5.3 AddrH . 519
10.12.5.4 Write . 519
10.12.5.5 Read . 520
10.12.5.6 Count . 520

10.13Chip Reset . 520
10.14Registers and Definitions . 520

10.14.1Package Attributes . 520
10.14.2Definitions . 520
10.14.3Command Enumerations . 521
10.14.4Data Ack Enumerations . 521
10.14.5SCB Performance Events . 521

May 14, 2014 20 Rev 51328

SiCortex Confidential CONTENTS

10.14.6Chip Revision Register . 522
10.14.7Chip Number Register . 522
10.14.8Chip Null Subcomponent Register . 522
10.14.9Chip Speed Register . 523
10.14.10General Purpose IO Register . 524
10.14.11LED Register . 524
10.14.12Attention Chip Register . 524

10.15Debug Attention Interrupt Register . 526
10.16Debug Interrupt Register . 526
10.17Performance Counting Registers . 527

10.17.1 Interrupt Register . 527
10.17.2 Interrupt Mask Register . 528
10.17.3 Interrupt Request Register . 528
10.17.4Performance Control Register . 529
10.17.5Performance Histogram Register . 529
10.17.6Performance Bucket Number Register . 530
10.17.7Performance Enable Register . 530
10.17.8Performance Status Register . 531
10.17.9Performance Bucket Configuration . 531
10.17.10Performance Count Ram . 532

11 On Chip Logic Analyzer 535
11.1 Overview . 535
11.2 Differences, Bugs, and Enhancements . 535

11.2.1 Product and Chip Pass Differences . 535
11.2.2 Known Bugs . 536
11.2.3 Possible Enhancements . 536

11.3 Description . 538
11.4 Package Attributes . 539
11.5 LAC Signals and Innards . 540

11.5.1 What LAC Does . 540
11.5.2 LAC Innards . 540

11.5.2.1 LAC to SCB-Performance-Counters . 540
11.5.2.2 SCB-Performance-Counters to LAC . 541
11.5.2.3 LAC Operation Codes . 541
11.5.2.4 Be Sure To Shut Off CollectTrace . 541

11.5.3 LAC Registers . 542
11.5.3.1 The Control Register . 542
11.5.3.2 The Delay Registers . 542
11.5.3.3 The Aggregate Mask Registers . 542
11.5.3.4 The Aggregate Match Registers . 543
11.5.3.5 The Initial Counter Value Registers . 544
11.5.3.6 The Current Counter Value Registers . 544
11.5.3.7 The FSM RAM . 544

11.5.4 LAC Signals . 545
11.6 Collector Blocks (CTBs) in general . 545

11.6.1 CTB Innards . 545
11.6.1.1 The Control Unit and Muxes . 547
11.6.1.2 The WT Addr Register . 547
11.6.1.3 The Dead Cycle Counter . 547
11.6.1.4 A Dead Cycle Counter Bug . 547
11.6.1.5 The Trace RAM . 547
11.6.1.6 When Can You Read CTB Contents? . 547
11.6.1.7 Do You Need To Shut-Off CollectTrace? . 548

11.6.2 Registers . 548
11.6.2.1 The Collection Control Register . 548

May 14, 2014 21 Rev 51328

SiCortex Confidential CONTENTS

11.6.2.2 The RAM Lowbits . 549
11.6.2.3 The RAM Highbits . 549
11.6.2.4 The Write Address . 549

11.6.3 CTB Signals . 550
11.7 Hints for Using Collector Blocks . 550

11.7.1 Collecting the Event You Triggered On . 550
11.8 Vector Trigger Blocks (TRBVs) in general . 551

11.8.1 SCB Performance Counter Connections . 552
11.8.2 Registers . 552

11.8.2.1 The Trigger Control Register . 552
11.8.2.2 The Trigger Mask Registers . 552
11.8.2.3 The Trigger Match Registers . 553

11.8.3 TRBV Signals . 553
11.9 Codeword Trigger Blocks (TRBCs) in general . 553

11.9.1 SCB Performance Counter Connections . 555
11.9.2 Registers . 555

11.9.2.1 The Trigger Control Register . 555
11.9.2.2 The Trigger Table Registers . 556
11.9.2.3 The Qualifier Table Registers . 556

11.9.3 TRBC Signals . 556
11.10Hints for Using Trigger Blocks . 557

11.10.1Using CodeValid Signals . 557
11.10.2Trigger Clock Domains . 557
11.10.3Uses for the Delay Registers . 557

11.10.3.1 Aligning Mis-Aligned Signals From Same Trigger Block 557
11.10.3.2 Aligning CodeValid or Qualifier with Other Triggers in a Trigger Block 557
11.10.3.3 Aligning Triggers from Different Trigger Blocks . 557
11.10.3.4 Provide Bigger Window for Coinciding Events . 558

11.11OCLA in use – PSx (Processor Segments) . 558
11.11.0.5 Location of OCLA-PSx Blocks and Signals . 558

11.11.1PSx Triggers . 558
11.11.1.1 Processor Segment Trigger Mux 0 . 558
11.11.1.2 Processor Segment Trigger Mux 1 . 559
11.11.1.3 Processor Segment Trigger Mux 2 . 559
11.11.1.4 Processor Segment Trigger Mux 3 . 560

11.11.2PSx Collectors . 561
11.11.2.1 PSx Input Collectors Qualifying Triggers . 561
11.11.2.2 PSx Input Collector Mux 0 . 561
11.11.2.3 PSx Input Collector Mux 1 . 562
11.11.2.4 PSx Input Collector Mux 2 . 562
11.11.2.5 PSx Input Collector Mux 3 . 563
11.11.2.6 PSx Input Collector Mux 4, 5, 6, 7 . 564

11.12OCLA in use – COHx . 564
11.12.0.7 COHx Trigger and Collector Enabling . 564

11.12.1COHx Triggers . 564
11.12.1.1 COHx Codeword Trigger Mux 0: Trigger on incoming command/source/data-op +

tag-results + orc/wbc hit . 564
11.12.1.2 COHx Codeword Trigger Mux 1: Trigger on ORC/WBC behavior + incoming com-

mand . 565
11.12.1.3 COHx Codeword Trigger Mux 2: Trigger on the DDR Interface 565
11.12.1.4 COHx Codeword Trigger Mux 3: Trigger on an Incoming Address 566

11.12.2COHx Collectors . 566
11.12.2.1 Cohx Input Collectors Qualifying Triggers . 566
11.12.2.2 Cohx Input Collector Mux 0 . 566
11.12.2.3 Cohx Input Collector Mux 1 . 567
11.12.2.4 Cohx Input Collector Mux 2 . 567

May 14, 2014 22 Rev 51328

SiCortex Confidential CONTENTS

11.12.2.5 Cohx Input Collector Mux 3 . 568
11.12.2.6 Cohx Input Collector Mux 4 . 568
11.12.2.7 Cohx Input Collector Mux 5, or 6 . 569
11.12.2.8 Cohx Input Collector Mux 7 . 569

11.13OCLA in use – FSW . 569
11.13.1FSW Triggers . 569

11.13.1.1 FSW Codeword Trigger Block Inputs . 569
11.13.1.2 FSW Input Vector Trigger (Mux 0) . 570
11.13.1.3 FSW Input Vector Trigger (Mux 1) . 570
11.13.1.4 FSW Input Vector Trigger Mux 2 . 570
11.13.1.5 FSW Input Vector Trigger Mux 3 . 571
11.13.1.6 FSW Input Vector Trigger Mux 4 . 571
11.13.1.7 FSW Output Vector Trigger Mux 0 . 571
11.13.1.8 FSW Output Vector Trigger Mux 1 . 572
11.13.1.9 FSW Output Vector Trigger Mux 2 . 572
11.13.1.10FSW Output Vector Trigger Mux 3 . 572
11.13.1.11FSW Output Vector Trigger Mux 4 . 573

11.13.2FSW Collectors . 573
11.13.2.1 FSW Input Collectors Qualifying Triggers . 573
11.13.2.2 FSW Input Collector Mux 0 . 573
11.13.2.3 FSW Input Collector Mux 1 . 574
11.13.2.4 FSW Input Collector Mux 2 . 574
11.13.2.5 FSW Input Collector Mux 3 . 574
11.13.2.6 FSW Input Collector Mux 4 . 574
11.13.2.7 FSW Input Collector Mux 5, 6, 7 . 575
11.13.2.8 FSW Output Collectors Qualifying Triggers . 575
11.13.2.9 FSW Output Collector Mux 0 . 575
11.13.2.10FSW Output Collector Mux 1 . 575
11.13.2.11FSW Output Collector Mux 2 . 575
11.13.2.12FSW Output Collector Mux 3 . 576
11.13.2.13FSW Output Collector Mux 4 . 576
11.13.2.14FSW Output Collector Mux 5, 6, 7 . 576

11.14OCLA in use – DMA . 576
11.14.1DMA Triggers . 576

11.14.1.1 DMA Codeword Triggers . 576
11.14.1.2 DMA Vector Trigger Inputs (Mux 0) . 577
11.14.1.3 DMA Vector Trigger Inputs (Mux 1) . 578
11.14.1.4 DMA Vector Trigger Inputs (Mux 2) . 578
11.14.1.5 DMA Vector Trigger Inputs (Mux 3) . 579

11.14.2DMA Collector . 579
11.14.2.1 DMA Input Collectors Qualifying Triggers . 579
11.14.2.2 DMA Input Collector Mux 0 . 580
11.14.2.3 DMA Input Collector Mux 1 . 581
11.14.2.4 DMA Input Collector Mux 2 . 581
11.14.2.5 DMA Input Collector Mux 3 . 582
11.14.2.6 DMA Input Collector Mux 4, 5, 6, 7 . 582

11.15OCLA in use – PMI . 582
11.15.1PMI/PCI/BBS Triggers . 582

11.15.1.1“TrbcPmi” PMI CSW Bus Stop Codeword Triggers 582
11.15.1.2“TrbcPmii” PMI Internal Signal Codeword Triggers 583

11.15.2PMI/PCI/BBS Collector . 583
11.15.2.1 PMI Input Qualifying Triggers . 583
11.15.2.2 PMI Input Collector Mux 0 . 584
11.15.2.3 PMI Input Collector Mux 1 . 584
11.15.2.4 PMI Input Collector Mux 2 . 585
11.15.2.5 PMI Input Collector Mux 3 . 585

May 14, 2014 23 Rev 51328

SiCortex Confidential CONTENTS

11.15.2.6 PMI Input Collector Mux 4 . 585

11.15.2.7 PMI Input Collector Mux 5 . 586

11.15.2.8 PMI Input Collector Mux 6 . 586

11.15.2.9 PMI Input Collector Mux 7 . 586

11.16Register Address Ranges . 587

11.16.1TrbcPs0 . 587

11.16.2TrbcPs1 . 587

11.16.3TrbcPs2 . 587

11.16.4TrbcPs3 . 587

11.16.5TrbcPs4 . 587

11.16.6TrbcPs5 . 588

11.16.7TrbcPs6 . 588

11.16.8TrbcPs7 . 588

11.16.9TrbcPs8 . 588

11.16.10TrbcPs9 . 588

11.16.11TrbcDma . 589

11.16.12TrbvDma . 589

11.16.13TrbcPmi . 589

11.16.14TrbcPmii . 589

11.16.15TrbcCoho . 589

11.16.16TrbcCohe . 589

11.16.17TrbvFswo . 590

11.16.18TrbvFswi . 590

11.16.19TrbcFsw . 590

11.16.20CtbPs0 . 590

11.16.21CtbPs1 . 590

11.16.22CtbPs2 . 590

11.16.23CtbPs3 . 591

11.16.24CtbPs4 . 591

11.16.25CtbPs5 . 591

11.16.26CtbPs6 . 591

11.16.27CtbPs7 . 591

11.16.28CtbPs8 . 592

11.16.29CtbPs9 . 592

11.16.30CtbDma . 592

11.16.31CtbPmi . 592

11.16.32CtbCoho . 592

11.16.33CtbCohe . 592

11.16.34CtbFswi . 593

11.16.35CtbFswo . 593

11.17OCLA Programming Suggestions . 593

11.17.1Ready-To-Use OCLA Scripts . 593

11.17.2Example Code for OCLA . 593

11.17.3Use Our Examples on a Real Machine . 593

11.17.4Create Your Own Counter . 594

11.17.4.1 You might prefer SCB Performance Counters . 594

11.17.5Defensive Programming . 594

11.17.6CTB stuck-at-full . 595

11.17.7Shutting-Off CollectTrace . 595

11.17.7.1 Why would CollectTrace be Left ON? . 595

11.17.7.2 Why is CollectTrace ON a Problem? . 595

11.17.7.3 Is CollectTrace ON? . 596

11.17.7.4 How to Read CTB Contents While CollectTrace is ON 596

11.17.7.5 Fastest Way To Shut Off CollectTrace in Ice9A . 596

May 14, 2014 24 Rev 51328

SiCortex Confidential CONTENTS

12 Clocking, ECC, Test Logic, Reset, and Initialization 597
12.1 Overview . 597
12.2 Differences, Bugs, and Enhancements . 597

12.2.1 Product and Chip Pass Differences . 597
12.2.2 Known Bugs and Possible Enhancements . 598

12.3 Clock generation and distribution . 598
12.3.1 Goals and Features . 598
12.3.2 Sys clk distribution tree . 599
12.3.3 Clock Generation in ICE9 . 600
12.3.4 PCIe clocking . 600
12.3.5 Block diagram of PLL AB . 601

12.3.5.1 Bypass mode in PLL AB . 603
12.3.6 Implementation of PLL AB . 603

12.4 General ECC strategy . 605
12.4.1 ECC Control Register descriptions: . 605

12.4.1.1 ECC Mode Register[1:0] (associated with ECC correction) 605
12.4.1.2 ECC Drive Bad Data Register[1:0] (associated with ECC generation) 605

12.4.2 ECC Status Register Descriptions . 605
12.4.2.1 ECC Error Status Register[2:0] (associated with ECC correction) 605
12.4.2.2 ECC Error Address Register[x:0] - x depends on the size of address space (associ-

ated with ECC correction) . 606
12.4.2.3 ECC Error Syndrom Register[7:0] (associated with ECC correction) 606

12.4.3 ECC Implementation & Test considerations . 606
12.4.3.1 Compiled memories with Synchronous Write Through (SWT) mode 606
12.4.3.2 Compiled memories with Asynchronous Write Through (AWT) and no Synchronous

Write Through (SWT) . 606
12.5 DFT and Test Support . 607

12.5.1 Boundary scan (normal mode) . 608
12.5.2 Stuck-at Scan (test mode 16) . 608
12.5.3 Transition Fault Scan (test mode 17) . 608
12.5.4 PLL Test (test mode 18) . 610
12.5.5 DDR ODT & Drive Strength Parametric Test (test mode 19) 610
12.5.6 Memory BIST and Repair (test mode 0, 20) . 610
12.5.7 DDR Functional Test (test modes 0, 21) . 610
12.5.8 Slow DDR DLL Test (test mode 22) (whether all DLL tests will be used in mfg. test is still

open) . 610
12.5.8.1 DLL low speed test 1 (DLL vendor recommended) 610
12.5.8.2 DLL low speed test 2 (DLL vendor recommended) 611

12.5.9 Fast DDR DLL Test (test mode 23) (whether all DLL tests will be used in mfg. test is still
open) . 611
12.5.9.1 DLL High Speed Test 1 . 611
12.5.9.2 DLL Functional Slave Test . 611

12.5.10PCI Functional Tests (test modes 0, 24, 25, or 26) . 612
12.5.11Fabric Transceiver Functional Test (test modes 27, 28) . 612

12.6 SysChain . 612
12.6.1 SysChain Ordering Rules . 613
12.6.2 Vregs Package . 613
12.6.3 SysChain TAP Constants . 613
12.6.4 SysChain TAP Enumeration . 613
12.6.5 System TAP Instructions . 615
12.6.6 System TAP Instruction Register . 618
12.6.7 System TAP Instruction Register for TWC9 . 618
12.6.8 Device Identification Register . 619
12.6.9 PLL Control Register . 619
12.6.10Reset Control Register . 620
12.6.11Memory Init Register . 622

May 14, 2014 25 Rev 51328

SiCortex Confidential CONTENTS

12.6.12Processor Debug Interrupt Register . 623
12.6.13SMS BIST Contol Register . 623
12.6.14Serial Configuration Bus Interface Register . 624
12.6.15MSP-Hosted Node Attention Register . 625
12.6.16External JTAG Chains . 626

12.7 Global reset . 626
12.8 Boot Timeline . 628

12.8.1 SSP Boot Timeline . 628
12.8.2 MSP Boot Timeline . 628
12.8.3 Pre-DRAM Boot Timeline . 630
12.8.4 DRAM Boot Timeline . 631
12.8.5 Kernel Boot Timeline . 632
12.8.6 Booting the Fabric Switch and Links . 632
12.8.7 Booting the DMA Engine . 632
12.8.8 Rebooting with Fabric Still Up . 633

13 PCI Express Subsystem 635
13.1 Overview . 635
13.2 Differences, Bugs, and Enhancements . 635

13.2.1 Product and Chip Pass Differences . 635
13.2.2 Known Bugs and Possible Enhancements . 636

13.3 Internal Structure . 636
13.4 Known Bugs and Enhancements . 636
13.5 Process Requirements . 636
13.6 Application Layer and the PMI . 636

13.6.1 The Requestor Unit REQ . 638
13.6.1.1 REQ Memory Read Request Handling . 638
13.6.1.2 REQ Memory Write Request Handling . 639
13.6.1.3 REQ IO Read Request Handling . 639
13.6.1.4 REQ IO Write Request Handling . 639
13.6.1.5 REQ Configuration Read Request Handling . 639
13.6.1.6 REQ Configuration Write Request Handling . 639
13.6.1.7 REQ Sub-blocks . 640
13.6.1.8 REQ Exception Handling . 640
13.6.1.9 RC Config Register Access . 640

13.6.2 The Completer Unit CMP . 640
13.6.2.1 Memory Write Operation . 641
13.6.2.2 Memory Read Operation . 641
13.6.2.3 Message Signalled Interrupts . 644

13.6.3 The Control/Status Widget CSI . 644
13.6.3.1 The CSW Interface CIF . 644
13.6.3.2 The Wishbone Interface WBI . 644
13.6.3.3 The RC Register Interface DBI . 646
13.6.3.4 The Phy Interface CRI . 646
13.6.3.5 The PMI Register Block CIN . 646
13.6.3.6 CSI Exception Handling . 646

13.6.4 The Command/Address Multiplexer CMX . 647
13.6.5 The Data Multiplexer DMX . 647

13.7 Valid CSW Operations . 647
13.8 Valid PCI Operations . 647
13.9 Ordering Rules . 648
13.10Auxiary PCI Signals . 648

13.10.1PERST# output . 648
13.10.2MPWRGD# input . 648
13.10.3PWRFLT# input . 648
13.10.4PWREN# output . 648

May 14, 2014 26 Rev 51328

SiCortex Confidential CONTENTS

13.10.5PRSNT# input . 649
13.10.6ATNLED output . 649
13.10.7PWRLED output . 649

13.11Definitions . 649
13.11.1PCI Type Enumerations . 649
13.11.2PCI Format Enumerations . 649
13.11.3PCI Completion Status Enumerations . 649
13.11.4PCI Completion State Machine State Enumerations . 650
13.11.5PCI Block Write State Machine State Enumerations . 650
13.11.6PCI Block Read State Machine State Enumerations . 650
13.11.7PMI Request Result Enumerations . 650
13.11.8Pmi Events . 651

13.12PCI Express Root Complex Registers . 652
13.12.1Device/Vendor ID Register . 652
13.12.2Command and Status Register . 652
13.12.3RevID, Class Code Register . 653
13.12.4Cache Line Size, BIST etc register . 654
13.12.5Base Address Register 0 . 654
13.12.6Base Address Register 1 . 654
13.12.7Bus Number Register . 655
13.12.8 I/O Base/Limit, and Secondary Status Register . 655
13.12.9Non-Prefetchable Memory Base and Limit Register . 656
13.12.10Prefetchable Memory Base and Limit Register . 657
13.12.11Prefetchable Memory Upper Base Register . 657
13.12.12Prefetchable Memory Upper Limit Register . 657
13.12.13I/O Base and Limit Upper Register . 658
13.12.14Capability Pointer Register . 658
13.12.15Expansion ROM Register . 658
13.12.16Bridge Control Register . 659
13.12.17PCI Power Management Capabilities Register . 659
13.12.18PCI Power Management Control Register . 660
13.12.19MSI Capabilities Register . 660
13.12.20MSI Address Register . 661
13.12.21MSI Upper Address/Data Register . 661
13.12.22MSI Data Register . 661
13.12.23PCI Express Capabilities Register 0 . 662
13.12.24PCI Express Capabilities Register 1 . 662
13.12.25Device Control/Status Register . 663
13.12.26Link Capabilities Register . 663
13.12.27Link Control/Status Register . 664
13.12.28Slot Capabilities Register . 665
13.12.29Slot Control/Status Register . 665
13.12.30Root Control Register . 666
13.12.31Root Status Register . 667
13.12.32Advanced Error Reporting Enhanced Capability Header Register 667
13.12.33Advanced Error Reporting Uncorrectable Error Status Register 667
13.12.34Uncorrectable Error Mask Register . 668
13.12.35Uncorrectable Severity Register . 669
13.12.36Correctable Error Status Register . 669
13.12.37Correctable Error Mask Register . 670
13.12.38Advanced Error Capabilities Control Register . 670
13.12.39Advanced Error Capabilities/Header Log Register (1st Dword) 671
13.12.40Header Log Register (2nd Dword) . 671
13.12.41Header Log Register (3rd Dword) . 671
13.12.42Header Log Register (4th Dword) . 672
13.12.43Root Error Command Register . 672

May 14, 2014 27 Rev 51328

SiCortex Confidential CONTENTS

13.12.44Root Error Status Register . 672
13.12.45Root Error Source Identification Register . 673

13.13PMI Control and Status Registers . 674
13.13.1Core Control Register . 674
13.13.2PMI Interrupt Summary Register . 674
13.13.3PMI Interrupt Enable Register . 676
13.13.4LED Blink Rate Register . 678
13.13.5Send Unlock Message Register . 678
13.13.6Send Turnoff Message Register . 678
13.13.7Link Status Register . 678
13.13.8Root-Complex Debug Info . 679
13.13.9Force Ecc Error Register . 679
13.13.10CSI Ecc Error Register . 680
13.13.11CSI Address Error Register . 680
13.13.12DBI 64bit Access Error Register . 681
13.13.13CSI Wishbone Timeout Error Register . 681
13.13.14REQ Ecc Error Register . 682
13.13.15REQ Completion Error Register . 682
13.13.16SYC CSW Ecc Error Register . 683
13.13.17CCW CSW Ecc Error Register . 683
13.13.18CCW SYC Ecc Error Register . 684
13.13.19MSI Address Register . 684
13.13.20Wishbone Timeout Value Register . 685
13.13.21VSM Request Double Word 1 and 2 Register . 685
13.13.22VSM Request Double Word 3 and 4 Register . 685
13.13.23VMI Request Data Register . 685
13.13.24Received Vendor Message Double Word 1 and 2 Register . 686
13.13.25Received Vendor Message Double Word 3 and 4 Register . 686
13.13.26Received Vendor Message Payload Register . 686

13.14PCI Express Phy Registers . 687
13.14.1Less Than Limit Compare Point Register . 687
13.14.2Greater Than Limit Compare Point Register . 687
13.14.3Compare/Scratch Value Mask Register . 687
13.14.4Scratch Space Control Register . 688
13.14.5Scratch Register Comparisons To Limits Results Register . 688
13.14.6Number Of Samples To Count Register . 688
13.14.7Scope Counting Results Register . 689
13.14.8Support DAC Values And Controls Register . 689
13.14.9Resistor Tuning Controls Register . 689
13.14.10ADC Process Results Register . 690
13.14.11Current MPLL Phase Selector Value Register . 690
13.14.12JTAG Chip ID Register (Lower 16 Bits) . 690
13.14.13JTAG Chip ID Register (Upper 16 Bits) . 691
13.14.14Frequency Control Inputs Status Register . 691
13.14.15Various Control Inputs Status Register . 691
13.14.16Level Control Inputs Status Register . 692
13.14.17Creg Control I/O Status Register . 692
13.14.18Frequency Control Inputs Override Register . 693
13.14.19Various Control Inputs Override Register . 693
13.14.20Level Control Inputs Override Register . 694
13.14.21Creg Control I/O Override Register . 694
13.14.22MPLL Controls Register . 695
13.14.23MPLL Test Controls Register . 695
13.14.24Transmit Control Inputs Status Register (Lane 0) . 695
13.14.25Receiver Control Inputs Status Register (Lane 0) . 696
13.14.26Output Signals Status Register (Lane 0) . 696

May 14, 2014 28 Rev 51328

SiCortex Confidential CONTENTS

13.14.27Transmitter Control Inputs Override Register (Lane 0) . 697
13.14.28Receiver Control Inputs Override Register (Lane 0) . 697
13.14.29Output Signals Override Register (Lane 0) . 697
13.14.30Debug Control Register (Lane 0) . 698
13.14.31Pattern Generator Controls Register (Lane 0) . 698
13.14.32Pattern Matcher Controls Register (Lane 0) . 698
13.14.33Pattern Match Error Counter Register (Lane 0) . 699
13.14.34Current Phase Selector Value. Register (Lane 0) . 699
13.14.35Current Frequency Integrator Value. Register (Lane 0) . 700
13.14.36Scope Control Register (Lane 0) . 700
13.14.37Recovered Domain Receiver Control Register (Lane 0) . 700
13.14.38Receiver Debug Register (Lane 0) . 701
13.14.39RX Control Register (Lane 0) . 701
13.14.40RX ATB Register (Lane 0) . 702
13.14.418 Bit Programming Register (Lane 0) . 702
13.14.4210 Bit Programming Register (Lane 0) . 703
13.14.4310 Bit Programming Register (Lane 0) . 703
13.14.44TX ATB Control Register (Set 1) (Lane 0) . 704
13.14.45TX ATB Control Register (Set 2) (Lane 0) . 704
13.14.46TX POWER STATE Control Register (Lane 0) . 705
13.14.47Transmit Control Inputs Status Register (Lane 1) . 705
13.14.48Receiver Control Inputs Status Register (Lane 1) . 706
13.14.49Output Signals Status Register (Lane 1) . 706
13.14.50Transmitter Control Inputs Override Register (Lane 1) . 707
13.14.51Receiver Control Inputs Override Register (Lane 1) . 707
13.14.52Output Signals Override Register (Lane 1) . 707
13.14.53Debug Control Register (Lane 1) . 708
13.14.54Pattern Generator Controls Register (Lane 1) . 708
13.14.55Pattern Matcher Controls Register (Lane 1) . 708
13.14.56Pattern Match Error Counter Register (Lane 1) . 709
13.14.57Current Phase Selector Value. Register (Lane 1) . 709
13.14.58Current Frequency Integrator Value. Register (Lane 1) . 710
13.14.59Scope Control Register (Lane 1) . 710
13.14.60Recovered Domain Receiver Control Register (Lane 1) . 710
13.14.61Receiver Debug Register (Lane 1) . 711
13.14.62RX Control Register (Lane 1) . 711
13.14.63RX ATB Register (Lane 1) . 712
13.14.648 Bit Programming Register (Lane 1) . 712
13.14.6510 Bit Programming Register (Lane 1) . 713
13.14.6610 Bit Programming Register (Lane 1) . 713
13.14.67TX ATB Control Register (Set 1) (Lane 1) . 714
13.14.68TX ATB Control Register (Set 2) (Lane 1) . 714
13.14.69TX POWER STATE Control Register (Lane 1) . 715
13.14.70Transmit Control Inputs Status Register (Lane 2) . 715
13.14.71Receiver Control Inputs Status Register (Lane 2) . 716
13.14.72Output Signals Status Register (Lane 2) . 716
13.14.73Transmitter Control Inputs Override Register (Lane 2) . 717
13.14.74Receiver Control Inputs Override Register (Lane 2) . 717
13.14.75Output Signals Override Register (Lane 2) . 717
13.14.76Debug Control Register (Lane 2) . 718
13.14.77Pattern Generator Controls Register (Lane 2) . 718
13.14.78Pattern Matcher Controls Register (Lane 2) . 718
13.14.79Pattern Match Error Counter Register (Lane 2) . 719
13.14.80Current Phase Selector Value. Register (Lane 2) . 719
13.14.81Current Frequency Integrator Value. Register (Lane 2) . 720
13.14.82Scope Control Register (Lane 2) . 720

May 14, 2014 29 Rev 51328

SiCortex Confidential CONTENTS

13.14.83Recovered Domain Receiver Control Register (Lane 2) . 720
13.14.84Receiver Debug Register (Lane 2) . 721
13.14.85RX Control Register (Lane 2) . 721
13.14.86RX ATB Register (Lane 2) . 722
13.14.878 Bit Programming Register (Lane 2) . 722
13.14.8810 Bit Programming Register (Lane 2) . 723
13.14.8910 Bit Programming Register (Lane 2) . 723
13.14.90TX ATB Control Register (Set 1) (Lane 2) . 724
13.14.91TX ATB Control Register (Set 2) (Lane 2) . 724
13.14.92TX POWER STATE Control Register (Lane 2) . 725
13.14.93Transmit Control Inputs Status Register (Lane 3) . 725
13.14.94Receiver Control Inputs Status Register (Lane 3) . 726
13.14.95Output Signals Status Register (Lane 3) . 726
13.14.96Transmitter Control Inputs Override Register (Lane 3) . 727
13.14.97Receiver Control Inputs Override Register (Lane 3) . 727
13.14.98Output Signals Override Register (Lane 3) . 727
13.14.99Debug Control Register (Lane 3) . 728
13.14.100Pattern Generator Controls Register (Lane 3) . 728
13.14.101Pattern Matcher Controls Register (Lane 3) . 728
13.14.102Pattern Match Error Counter Register (Lane 3) . 729
13.14.103Current Phase Selector Value. Register (Lane 3) . 729
13.14.104Current Frequency Integrator Value. Register (Lane 3) . 730
13.14.105Scope Control Register (Lane 3) . 730
13.14.106Recovered Domain Receiver Control Register (Lane 3) . 730
13.14.107Receiver Debug Register (Lane 3) . 731
13.14.108RX Control Register (Lane 3) . 731
13.14.109RX ATB Register (Lane 3) . 732
13.14.1108 Bit Programming Register (Lane 3) . 732
13.14.11110 Bit Programming Register (Lane 3) . 733
13.14.11210 Bit Programming Register (Lane 3) . 733
13.14.113TX ATB Control Register (Set 1) (Lane 3) . 734
13.14.114TX ATB Control Register (Set 2) (Lane 3) . 734
13.14.115TX POWER STATE Control Register (Lane 3) . 735
13.14.116Transmit Control Inputs Status Register (Lane 4) . 735
13.14.117Receiver Control Inputs Status Register (Lane 4) . 736
13.14.118Output Signals Status Register (Lane 4) . 736
13.14.119Transmitter Control Inputs Override Register (Lane 4) . 737
13.14.120Receiver Control Inputs Override Register (Lane 4) . 737
13.14.121Output Signals Override Register (Lane 4) . 737
13.14.122Debug Control Register (Lane 4) . 738
13.14.123Pattern Generator Controls Register (Lane 4) . 738
13.14.124Pattern Matcher Controls Register (Lane 4) . 738
13.14.125Pattern Match Error Counter Register (Lane 4) . 739
13.14.126Current Phase Selector Value. Register (Lane 4) . 739
13.14.127Current Frequency Integrator Value. Register (Lane 4) . 740
13.14.128Scope Control Register (Lane 4) . 740
13.14.129Recovered Domain Receiver Control Register (Lane 4) . 740
13.14.130Receiver Debug Register (Lane 4) . 741
13.14.131RX Control Register (Lane 4) . 741
13.14.132RX ATB Register (Lane 4) . 742
13.14.1338 Bit Programming Register (Lane 4) . 742
13.14.13410 Bit Programming Register (Lane 4) . 743
13.14.13510 Bit Programming Register (Lane 4) . 743
13.14.136TX ATB Control Register (Set 1) (Lane 4) . 744
13.14.137TX ATB Control Register (Set 2) (Lane 4) . 744
13.14.138TX POWER STATE Control Register (Lane 4) . 745

May 14, 2014 30 Rev 51328

SiCortex Confidential CONTENTS

13.14.139Transmit Control Inputs Status Register (Lane 5) . 745
13.14.140Receiver Control Inputs Status Register (Lane 5) . 746
13.14.141Output Signals Status Register (Lane 5) . 746
13.14.142Transmitter Control Inputs Override Register (Lane 5) . 747
13.14.143Receiver Control Inputs Override Register (Lane 5) . 747
13.14.144Output Signals Override Register (Lane 5) . 747
13.14.145Debug Control Register (Lane 5) . 748
13.14.146Pattern Generator Controls Register (Lane 5) . 748
13.14.147Pattern Matcher Controls Register (Lane 5) . 748
13.14.148Pattern Match Error Counter Register (Lane 5) . 749
13.14.149Current Phase Selector Value. Register (Lane 5) . 749
13.14.150Current Frequency Integrator Value. Register (Lane 5) . 750
13.14.151Scope Control Register (Lane 5) . 750
13.14.152Recovered Domain Receiver Control Register (Lane 5) . 750
13.14.153Receiver Debug Register (Lane 5) . 751
13.14.154RX Control Register (Lane 5) . 751
13.14.155RX ATB Register (Lane 5) . 752
13.14.1568 Bit Programming Register (Lane 5) . 752
13.14.15710 Bit Programming Register (Lane 5) . 753
13.14.15810 Bit Programming Register (Lane 5) . 753
13.14.159TX ATB Control Register (Set 1) (Lane 5) . 754
13.14.160TX ATB Control Register (Set 2) (Lane 5) . 754
13.14.161TX POWER STATE Control Register (Lane 5) . 755
13.14.162Transmit Control Inputs Status Register (Lane 6) . 755
13.14.163Receiver Control Inputs Status Register (Lane 6) . 756
13.14.164Output Signals Status Register (Lane 6) . 756
13.14.165Transmitter Control Inputs Override Register (Lane 6) . 757
13.14.166Receiver Control Inputs Override Register (Lane 6) . 757
13.14.167Output Signals Override Register (Lane 6) . 757
13.14.168Debug Control Register (Lane 6) . 758
13.14.169Pattern Generator Controls Register (Lane 6) . 758
13.14.170Pattern Matcher Controls Register (Lane 6) . 758
13.14.171Pattern Match Error Counter Register (Lane 6) . 759
13.14.172Current Phase Selector Value. Register (Lane 6) . 759
13.14.173Current Frequency Integrator Value. Register (Lane 6) . 760
13.14.174Scope Control Register (Lane 6) . 760
13.14.175Recovered Domain Receiver Control Register (Lane 6) . 760
13.14.176Receiver Debug Register (Lane 6) . 761
13.14.177RX Control Register (Lane 6) . 761
13.14.178RX ATB Register (Lane 6) . 762
13.14.1798 Bit Programming Register (Lane 6) . 762
13.14.18010 Bit Programming Register (Lane 6) . 763
13.14.18110 Bit Programming Register (Lane 6) . 763
13.14.182TX ATB Control Register (Set 1) (Lane 6) . 764
13.14.183TX ATB Control Register (Set 2) (Lane 6) . 764
13.14.184TX POWER STATE Control Register (Lane 6) . 765
13.14.185Transmit Control Inputs Status Register (Lane 7) . 765
13.14.186Receiver Control Inputs Status Register (Lane 7) . 766
13.14.187Output Signals Status Register (Lane 7) . 766
13.14.188Transmitter Control Inputs Override Register (Lane 7) . 767
13.14.189Receiver Control Inputs Override Register (Lane 7) . 767
13.14.190Output Signals Override Register (Lane 7) . 767
13.14.191Debug Control Register (Lane 7) . 768
13.14.192Pattern Generator Controls Register (Lane 7) . 768
13.14.193Pattern Matcher Controls Register (Lane 7) . 768
13.14.194Pattern Match Error Counter Register (Lane 7) . 769

May 14, 2014 31 Rev 51328

SiCortex Confidential CONTENTS

13.14.195Current Phase Selector Value. Register (Lane 7) . 769
13.14.196Current Frequency Integrator Value. Register (Lane 7) . 770
13.14.197Scope Control Register (Lane 7) . 770
13.14.198Recovered Domain Receiver Control Register (Lane 7) . 770
13.14.199Receiver Debug Register (Lane 7) . 771
13.14.200RX Control Register (Lane 7) . 771
13.14.201RX ATB Register (Lane 7) . 772
13.14.2028 Bit Programming Register (Lane 7) . 772
13.14.20310 Bit Programming Register (Lane 7) . 773
13.14.20410 Bit Programming Register (Lane 7) . 773
13.14.205TX ATB Control Register (Set 1) (Lane 7) . 774
13.14.206TX ATB Control Register (Set 2) (Lane 7) . 774
13.14.207TX POWER STATE Control Register (Lane 7) . 775
13.14.208PHY Reset Register . 775
13.14.209Transmit Control Inputs Status Register (Broadcast) . 776
13.14.210Receiver Control Inputs Status Register (Broadcast) . 776
13.14.211Output Signals Status Register (Broadcast) . 777
13.14.212Transmitter Control Inputs Override Register (Broadcast) . 777
13.14.213Receiver Control Inputs Override Register (Broadcast) . 778
13.14.214Output Signals Override Register (Broadcast) . 778
13.14.215Debug Control Register (Broadcast) . 779
13.14.216Pattern Generator Controls Register (Broadcast) . 779
13.14.217Pattern Matcher Controls Register (Broadcast) . 780
13.14.218Pattern Match Error Counter Register (Broadcast) . 780
13.14.219Current Phase Selector Value. Register (Broadcast) . 780
13.14.220Current Frequency Integrator Value. Register (Broadcast) . 781
13.14.221Scope Control Register (Broadcast) . 781
13.14.222Recovered Domain Receiver Control Register (Broadcast) . 781
13.14.223Receiver Debug Register (Broadcast) . 782
13.14.224RX Control Register (Broadcast) . 782
13.14.225RX ATB Register (Broadcast) . 783
13.14.2268 Bit Programming Register (Broadcast) . 783
13.14.22710 Bit Programming Register (Broadcast) . 784
13.14.22810 Bit Programming Register (Broadcast) . 784
13.14.229TX ATB Control Register (Set 1) (Broadcast) . 785
13.14.230TX ATB Control Register (Set 2) (Broadcast) . 785
13.14.231TX POWER STATE Control Register (Broadcast) . 786

13.15Transaction, Link, MAC Layers . 787
13.16PCS, PHY Layers . 817
13.17Power Management . 817

14 I2C Interface 819
14.1 Overview . 819
14.2 Description . 819
14.3 Package Attributes . 819
14.4 Registers and Definitions . 819

14.4.1 I2C Clock Prescale Register . 820
14.4.2 I2C Control Register . 821
14.4.3 I2C Data Register . 821
14.4.4 I2C Command and Status Register . 822
14.4.5 I2C Core Reset Register . 823

14.5 Reset . 823
14.6 Initialization . 824
14.7 Transfer Sequences . 824

14.7.1 Example 1: Byte Writes . 824
14.7.2 Example 2: Byte Reads . 825

May 14, 2014 32 Rev 51328

SiCortex Confidential CONTENTS

14.7.3 Example 3: Unacknowledged Transfer . 826
14.8 External Connections . 826

15 UART 829
15.1 Overview . 829
15.2 Differences, Bugs, and Enhancements . 829

15.2.1 Product and Chip Pass Differences . 829
15.3 Description . 829
15.4 Package Attributes . 829
15.5 Registers and Definitions . 830

15.5.1 Baud Rate Generation using the Clock Divisor Latch . 830
15.5.2 RX/TX Data and Divisor Latch LSB . 831
15.5.3 Interrupt Enable Register (IER) and Divisor Latch MSB . 833
15.5.4 Interrupt Identification Register (IIR) and FIFO Control Register (FCR) 833
15.5.5 Line Control Register (LCR) . 835
15.5.6 Modem Control Register (MCR) . 836
15.5.7 Line Status Register (LSR) . 837
15.5.8 Modem Status Register (MSR) . 838
15.5.9 UART Enable Register . 839
15.5.10UART Reset Register . 840

15.6 Reset . 840
15.7 Initialization . 840
15.8 Interrupts . 841
15.9 External Connections . 841

15.9.1 Module Service Processor Enabled I/O . 841
15.9.2 RS232 Line Voltage Conversion . 842

16 Addressing 843
16.1 Overview . 843
16.2 Differences, Bugs, and Enhancements . 843

16.2.1 Product and Chip Pass Differences . 843
16.3 Physical Address Regions . 843
16.4 PCI Address Regions . 844

16.4.1 Software allocation of PCI address space . 844
16.5 General Behavior . 845

16.5.1 Access size . 845
16.5.2 Read side effects . 845
16.5.3 Illegal Addresses . 845

16.6 Registers and Definitions . 845
16.6.1 Package Attributes . 845
16.6.2 Definitions . 845
16.6.3 Manufacturer Enumeration . 845
16.6.4 Product Enumeration . 846
16.6.5 Address Bus Stop Numbers . 846
16.6.6 Sub-chip IDs . 847
16.6.7 Main Memory Region . 849
16.6.8 PCI Memory Region . 849
16.6.9 PCI IO Region . 849
16.6.10PCI Config Region . 850
16.6.11 Internal SCB Region . 850
16.6.12 Internal Non-SCB Region . 850

17 Pinout 851
17.1 Overview . 851
17.2 Signal List . 851
17.3 List of Normal-Mode Signals and Their Test-Mode Overrides . 854

May 14, 2014 33 Rev 51328

SiCortex Confidential CONTENTS

18 Programming Considerations 861
18.1 Overview . 861
18.2 Memory Transactions and Ordering . 861

18.2.1 The Sync Instruction . 861
18.2.2 I-Stream vs. D-Stream Accesses . 861
18.2.3 I/O ordering . 861
18.2.4 D-Stream vs. I/O Operations and Interrupt Delivery . 861

18.2.4.1 I/O read / Block Write interaction . 861
18.2.5 Oddball Address Spaces and Physical Addressing . 862
18.2.6 Error Traps . 862
18.2.7 Interrupts and Interrupt Handling . 862
18.2.8 Address Aliasing . 862

18.3 The DRAM Controllers . 862
18.3.1 Initial Calibration and Setup . 862
18.3.2 On-the-fly ReCalibration . 862

18.3.2.1 Software filtering of impedance calibration settings 862
18.3.3 DDR Impedance Calibration and Bug 2013 . 864

18.4 Initializing the PMI/PCI Controller . 864
18.4.1 Unused PCI Controllers . 864
18.4.2 PCI Controllers With Connected Devices . 864
18.4.3 PCI Controllers With No Connected Device . 864

19 Differences, Bugs, and Enhancements 865
19.1 Overview . 865
19.2 User Code . 865

19.2.1 Product and Chip Pass Differences . 865
19.2.2 Known Bugs and Possible Enhancements . 865

19.3 Processor Core . 865
19.3.1 Product and Chip Pass Differences . 865
19.3.2 Known Bugs and Possible Enhancements (M5KF only) . 866

19.4 Addressing . 866
19.4.1 Product and Chip Pass Differences . 866

19.5 L2 Cache . 866
19.5.1 Product and Chip Pass Differences . 866
19.5.2 Known Bugs and Possible Enhancements . 866

19.6 Memory Controller . 866
19.6.1 Product and Chip Pass Differences . 866
19.6.2 Known Bugs and Possible Enhancements . 867

19.7 PCI . 867
19.7.1 Product and Chip Pass Differences . 867
19.7.2 Known Bugs and Possible Enhancements . 867

19.8 DMA . 868
19.8.1 Product and Chip Pass Differences . 868
19.8.2 Known Bugs and Possible Enhancements . 868

19.9 Fabric Links . 868
19.9.1 Product and Chip Pass Differences . 868
19.9.2 Known Bugs and Possible Enhancements . 868

19.10Fabric Switch . 869
19.10.1Product and Chip Pass Differences . 869
19.10.2Known Bugs and Possible Enhancements . 869

19.11SCB . 869
19.11.1Product and Chip Pass Differences . 869
19.11.2Known Bugs and Possible Enhancements . 869

19.12LBS . 870
19.12.1Product and Chip Pass Differences . 870
19.12.2Known Bugs and Possible Enhancements . 870

May 14, 2014 34 Rev 51328

SiCortex Confidential CONTENTS

19.13UART . 870
19.13.1Product and Chip Pass Differences . 870

19.14OCLA . 870
19.14.1Product and Chip Pass Differences . 870
19.14.2Known Bugs . 871
19.14.3Possible Enhancements . 872

May 14, 2014 35 Rev 51328

SiCortex Confidential CONTENTS

May 14, 2014 36 Rev 51328

List of Tables

2.1 Timing Budget Spec sheet . 53

4.1 DMA Engine Queues . 186
4.2 Packet Header and Trailer . 200
4.3 Direct Queue Packet Fields . 201
4.4 DMA packet fields . 201
4.5 DMA End packet fields . 202
4.6 Wr Heap packet fields . 202
4.7 Enq Response Packet fields . 202

5.1 TaskStart Interface from Microengine to Cache Interface . 227
5.2 StartIo Interface from Cache Interface to Microengine . 227

6.1 Victimization Rules . 295
6.2 Simple L1 Read Miss – L2 Hit . 297
6.3 Simple L1 Writeback (All L1 writes hit in L2) . 297
6.4 L1 Read Miss, L2 Read Miss, Victim block is in INVALID or SHARE state 298
6.5 L1 Read Miss, L2 Read Miss, Victim block is EXCL, DIRTY, or UPDATED 298
6.6 L1 Read Miss, L2 Read Miss with L1 and L2 evictions . 299

7.1 Memory Bus Port Signals From and To Processor Segment X . 351
7.2 Memory Bus Port Signals From and To DMA or PCI Segment . 352
7.3 Target Addressing . 353
7.4 Queue Depth Requirements for CSW Bus Stops . 355
7.5 Transfer sequence as a function of address . 357
7.6 D-Stream Read to a Non Resident Block: No Victim Writeback . 365
7.7 D-Stream Read to a Non Resident Block – With Victim Writeback 366
7.8 D-Stream Read to a Non Resident Block – Hit on Oustanding Read CAM. 367
7.9 D-Stream Read to a Non Resident Block – Hit on Write Back CAM. 368
7.10 D-Stream Read of Cached Data – No Victim Writeback . 370
7.11 D-Stream Read of Cached Data – With Victim Writeback . 371
7.12 Forwarded D-Stream Read Misses in Probed Cache . 372
7.13 D-Stream Read of EXCLUSIVE Block – ORC Hit . 373
7.14 D-Stream Read of EXCLUSIVE Block – WBC Hit . 374
7.15 I-Stream Read to a Non Resident Block . 375
7.16 I-Stream Read to an Non Resident Block: With Victim Writeback 376
7.17 I-Stream Read to a Non Resident Block – Hit on Oustanding Read CAM. 377
7.18 I-Stream Read to a Non Resident Block – Hit on Write Back CAM. 378
7.19 I-Stream Read to a Cached Block in SHARED State . 380
7.20 I-Stream Read to a Cached Block: With Victim Writeback . 381
7.21 I-Stream Read to a SHARED Block – ORC Hit . 382
7.22 I-Stream Read to a Cached Block In EXCLUSIVE State . 383
7.23 I-Stream Read to a Cached Block In EXCLUSIVE State: With Victim Writeback 384
7.24 I-Stream Read to a Cached Block In EXCLUSIVE State: With Victim Writeback (Continued from

Table 7.23.) . 385

37

SiCortex Confidential LIST OF TABLES

7.25 Forwarded I-Stream Read to a Cached Block Misses in Probed Cache 386
7.26 I-Stream Read to a EXCLUSIVE Block – ORC Hit . 387
7.27 I-Stream Read to a EXCLUSIVE Block – WBC Hit . 388
7.28 D-Stream Read to a Cached Block in SHARED State . 390
7.29 D-Stream Read to a Cached Block in SHARED State ORC Hit . 391
7.30 D-Stream Read to a Cached Block in SHARED State: With Victim Writeback 392
7.31 D-Stream Write to Invalidate an EXCLUSIVE Dirty Block. 394
7.32 D-Stream Flush to Invalidate and EXCLUSIVE Clean Block. 395
7.33 Block Write to a Non Resident Block . 396
7.34 Block Write to a Non Resident Block with a Writeback in Flight from Processor Y 397
7.35 Block Write to a Non Resident Block with a Read in Flight from Processor Y 397
7.36 Block Write to EXCLUSIVE Cached Data . 399
7.37 Block Write to EXCLUSIVE Cached Data (continued from Table 7.36.) 399
7.38 Block Write to Cached Data – Collision With Outstanding Write from a Processor 400
7.39 Block Write to Cached Data – Collision With Outstanding Write From a Cacheless Widget 401
7.40 Block Write to Cached Data – Collision With Outstanding Read . 402
7.41 Block Write to Cached Data – Encountering an Evicted Block . 403
7.42 Block Write to SHARED Data . 404
7.43 Block Write to a Cached Block in SHARED State with a Read in Flight from Processor Y 405
7.44 Block Write Collides with Victimization of Target Block . 406
7.45 Block Read to Non Resident or SHARED Block . 407
7.46 Block Read to Non Resident or SHARED Block – ORC Hit . 408
7.47 Block Read to Non Resident or SHARED Block – WBC Hit . 409
7.48 Block Read to Cached EXCLUSIVE Block . 411
7.49 Block Read to Cached EXCLUSIVE Block – WBC Hit . 412
7.50 Block Read to Cached EXCLUSIVE Block – ORC Hit . 413
7.51 Block Read to Formerly Cached Block . 414
7.52 I/O Register Read . 415
7.53 I/O Register Write . 416
7.54 Read After Read Hazard ORC Release for RDEX, or RDV following RDEX, or RDV 417
7.55 Read After Read Hazard ORC Release for RDEX, or RDV following RDS, or RDSV 417
7.56 Read After Read Hazard ORC Release for RDS, or RDSV following RDEX, RDV, RDS, or RDSV . 418
7.57 Read After Read Hazard ORC Release for BRD following RDEX, RDV, RDS, or RDSV 418
7.58 Read After Read Hazard ORC Release for RDEX, RDV, RDS, or RDSV following BRD to an

UNCACHED Block . 418
7.59 Read After Read Hazard ORC Release for RDEX, or RDV following BRD to an EXCLUSIVE Block 418
7.60 Read After Read Hazard ORC Release for RDS, or RDSV following BRD to an EXCLUSIVE Block 419
7.61 Read After Read Hazard ORC Release for RDEX, or RDV following BRD to an SHARED Block . . 419
7.62 Read After Read Hazard ORC Release for RDS, or RDSV following BRD to an SHARED Block . . 419
7.63 Read After Write Hazard WBC Release for BRD, RDEX, RDV, RDS, or RDSV following BWT,

WINV, RDV, or RDSV . 420
7.64 Interrupt Delivery . 422
7.65 Special Commands . 423
7.66 CSW Commands, Required Fields . 428
7.67 Coherence Controller Command Pipe Actions vs. Tag and CAM Lookups (For transactions that

miss in L2 Master Tags) . 433
7.68 Coherence Controller Command Pipe Actions vs. Tag and CAM Lookups (For transactions that hit

in L2 Master Tags in SHARED State.) . 434
7.69 Coherence Controller Command Pipe Actions vs. Tag and CAM Lookups (For transactions that hit

in L2 Master Tags in EXCLUSIVE State.) . 435

8.1 Recommended DCLK to CCLK relationships . 458
8.2 Supported memory configurations per DDR interface (half of the total main memory connected to

each ICE9 chip). 461
8.3 Data Transfer Order . 461
8.5 Types of Memory writes: . 462

May 14, 2014 38 Rev 51328

SiCortex Confidential LIST OF TABLES

8.7 COH/DDR Interface . 463

11.2 LAC Signals . 545

12.1 PLL AB Pins . 602
12.2 PLL Bypass Control . 603
12.3 PLL VCO Scaling Factors . 604
12.4 MuxScan Test Modes . 609
12.13Clock Output Control Register (2 copies) . 620

15.1 UART Register List . 830
15.3 Divisor Latch Values for Common Baud Rates . 831
15.8 Interrupt ID Field Definitions . 835

May 14, 2014 39 Rev 51328

SiCortex Confidential LIST OF TABLES

May 14, 2014 40 Rev 51328

Chapter 1

Overview

[Last Modified $Id: chipoverview.lyx 25116 2006-09-07 12:56:52Z wsnyder $]
The SiCortex node chip, ICE9, is the building block for SiCortex dense clusters. Its architecture aims for careful

balance between processing power, memory bandwidth, fabric latency, and I/O capability.

1.1 Some History

Way back in January of 2002, Jud Leonard and Matt Reilly got together to figure out what they might be able
to do, given they were interested in systems and silicon. So they started talking to people. Lots of different and
often strange people. 1

One of the conversations, with Tom Knight of MIT, turned to high performance technical computing. Tom
suggested that what the world needed was a “physics engine” – a device that was specifically designed to solve
N-dimensional equations and systems. The traditional supercomputer2 makers had been in decline for some time.
As a result, there wasn’t a whole lot of interesting development going on in the field.

Except for clusters.

After that initial conversation, Jud, Matt, and Bryce Denney did a boatload of research.3 They found that,
while the old-fashioned supercomputer and vector computer business had all but died, and traditional symmetric
multiprocessors were overpriced and underwhelming in the technical market, the cluster server market was booming.
Everywhere they looked, from the Oil Patch (Shell, Exxon/Mobil) to biochemistry, big iron was being replaced by
clusters of PC boxes connected with Ethernet or some expensive point-to-point interconnect.

All these machines were being built by the customers. Big iron - like the SGI Origin, the IBM SP2, and the
various HP/Compaq machines - was just too expensive. At more than $10,000 per SMP processor node, most
customers were abandoning shared memory systems for networked clusters of workstations or 1U rackmount PCs
running Linux. The customers had even adopted a common API, called “MPI” (for “Message Passing Interface”)
as they converted old shared memory codes into message passing applications. But they all ran up against three
problems.

First, PC clusters aren’t very efficient. We found that the typical application in our target markets would
execute about 15 floating point operations (FLOPs) for every access to main memory. So, given a memory access
time of about 120nS and a floating point execution rate of, say, infinite FLOPs per second, the average execution
rate is just 125MFLOPs. Think about that: customers pay for a widget that runs at 3GHz and can crank out 6
billion floating point operations per second, but they only get 2% of that. All the logic that goes into building a
whizzy fast FPU is wasted on these applications. Worse, the 3GHz processor burns about 100W while it spends
most of its time waiting on memory.4

1This is, by no means, an exhaustive history of SiCortex and how we came to be here. The aim here is to outline the thinking and
exploring that led to the current architecture. To keep things brief, I’ve left out the equally important (and far more interesting) story
of how we managed to convince four intrepid VC firms to invest in SiCortex.

2SiCortex defines a “supercomputer” as a high performance machine that costs more to make than the market will pay. We do not
intend to make a “supercomputer.”

3Google rocks.
4Note that we don’t believe that the PC designers are misguided. The hell-for-leather strategy that pushed clock rates is a reasonable

thing to do for applications that fit in cache. Unfortunately, few technical apps fit in cache – even a very large cache. Desktop apps,
however, fit quite nicely. When you consider that $100B is spent on desktop computers every year (compared with $5B or so on
technical servers) the big chip guys are probably designing the right widget for their target market.

41

SiCortex Confidential CHAPTER 1. OVERVIEW

Second, PC clusters tend to be big. High density clusters might fit 2 Opteron or Xeon processors in a 1U rack
slot. But dense packaging produces lots of heat in a small volume. The problem is aggravated by the fact that the
building block is a 1U box. A 1U box is just 1.75” high. It is very hard to jam all the parts of a PC in such a box
and still have room for airflow. All this conspires to spread a typical 100 node cluster over three or four racks.

Finally, parallel applications on PC clusters are limited by the long latency for message passing. Customers
have migrated from shared memory machines to message passing clusters. They developed the MPI specification (it
grew out of earlier work on PVM and other message passing schemes) and have implemented it on hardware ranging
from simple ethernet controllers to Infiniband, Quadrics, and Myricom hardware. Ethernet based implementations
typically impose a cost of 50uS. For about $1,000 per node users could add Infiniband, Quadrics, or Myricom
hardware that could get that latency down to abou 5uS. Our models show that the 500nS latency of the SiCortex
dense fabric could allow applications to scale to ten or even one hundred times as many processors.

The world probably didn’t need a physics engine. But it looked like the world might buy a cluster that was
built to run technical applications.

1.2 The System

The SiCortex Dense Cluster is founded upon four piers:

1. Optimize the balance between raw compute rate (FLOPS or Integer Ops/second) and memory latency and
bandwidth.

2. Provide low-latency user-mode to user-mode transactions to support MPI.

3. Manage power to provide a high ratio of delivered performance per watt.

4. Aim for an order-of-magnitude advantage in delivered performance per dollar.

This last point is the raison d’etre5 for the SiCortex cluster, so we’d better describe what we mean by “delivered
performance.” Our model of a technical computation divides the work into three parts: calculation, memory access,
and communication. So the time to complete a computation is:

Tc = Tcalc +Tmem +Tcomm

Our survey of the applications in the target markets yeilded a large number that, as we said, had a ratio of memory
accesses to floating point operations of 1:15. We ignore all the other operations, as most processors will find a way
to execute them in parallel (or nearly so) with the floating point ops, or will execute them in parallel with the main
memory access. So let’s assume that we have an application that needs to do M floating point ops. Then the time
to completion is

Tc = MTFLOP +
M
15

Taccess +Tcomm

For a modern (say 3GHz P4) processor TFLOP = 0.15nS and Taccess = 120nS. Cranking that in to our model:

Tc = M

(

0.15+
120
15

)

+Tcomm ≈ M
120
15

+Tcomm = 8M+Tcomm

The time to complete the calculation is irrelevant. Applications in this class are all about moving data, and not
about doing arithmetic.

That, of course, still leaves the communications (Tcomm) component. We did a few measurements and found that
many applications fell into a range where 1,000 to 100,000 FLOPs were executed for every message sent. So, we
cranked in a few numbers. Typical Ethernet based implementations of MPI will consume about 50uS of processor
time for every message. Using a rate of say 10K FLOPs per message we get

Tc ≈ 8M+
M

10000
·50000 = (8+ 5)M

Note that 5
11of the computation is consumed by communication overhead. In actual practice, as the number

of processors applied to a problem is increased, the ratio of communication operations to arithmetic operations
increases. This is one of the key limiters on parallelism in our target market. As the communication rate approaches

5raison d’etre (pronounced “rayzohn debtr”) French for “reason to be.” Often used when an author wants to sound classy.

May 14, 2014 42 Rev 51328

SiCortex Confidential 1.3. ICE9

one message for every thousand FLOPs, the communication overhead begins to dominate the solution time. The
SiCortex solution is to reduce the cost of communication to 500nS per operation. This allows practical scaling to
many more parallel processes.

Half a microsecond per message is a pretty tough goal. The best-in-class PCI-resident fabric widgets from
Myricom or Quadrics get down to 5uS or so. We thought about that problem for a while. What we noticed is that
all the previous solutions treated message operations as I/O transactions. They had to: the message widget was
out on an I/O bus. But most I/O systems, if they are optimized at all, are optimized for bandwidth, not latency.
Good MPI support means providing low latency for short transfers, and high bandwidth for long transfers. Putting
an I/O bus (and operating system code, and drivers, and buffer copy operations) between the user’s application
and the message system puts PC based solutions between a rock and a hard place.

The SiCortex approach is to elevate message operations above the I/O system. By closely coupling the fabric
interface to the L2 cache, virtualizing the interface between user mode applications and the fabric, and providing
very low latency message routing, the SiCortex system can provide a 10x improvement in message latencies over
previous best-in-class approaches. The rest of this document describes the approach in detail.

1.3 ICE9

ICE9 is the central component of a large-scale parallel computer system designed to run technical applications
– specifically, those which require large amounts of memory and floating point arithmetic – with superior efficiency.
It will run Linux well, and in particular, provide extraordinary performance to MPI, the message passing interface.
And we will keep the cost very low.

We will integrate in a single device most of the electronic components needed for the system – microprocessors,
caches, memory controllers, fabric switch, DMA engine, and PCI-Express interface. Excluded from the chip are
main memory (commodity DRAMs), point-of-load power regulators, and the control/management system.

The fundamental insight behind SiCortex is that faster processor clock speed is no longer an effective way of
improving time to solution; that in fact, most parallel technical applications spend the bulk of their time waiting
for memory and/or communication between processors.

1.3.1 Goals

Latency We often measure and advertise bandwidth, which sets a strict limit on the throughput available from
computer systems, but it’s useful to recognize that in most circumstances, latency is the more immediate limitation,
because it is generally difficult to get enough parallel activity underway to use the full bandwidth unless each action is
brief. This design focusses on main memory (cache miss) latency, which is the primary determinant of single-stream
performance in this market, and on MPI communication latency, the time required to get a short message (ping)
from a user-mode process on any processor to a waiting user-mode process on the most distant other processor.

• Our goal for the memory latency, measured from a load instruction to use of the data, is 80 ns.

• Our goal for the one-way communication latency, measured by the MPI Ping-Pong test, is 500 ns.

• Our goal for memory bandwidth is 6.4 GBytes/sec, as measured by the McCalpin stream tests.

Power Careful and concerted attention to minimization of power is key to the success of the SiCortex product.
By using a small, low-power microprocessor at its most efficient operating point, we are able to keep its cost very low
and spread the computational workload over a much larger number of streams. This results in far better utilization
of the memory system, which is the bottleneck for delivered performance, but depends on keeping communication
delays minimized.

• Our goal for the power dissipation of the chip is 8-10 watts.

Reliability Large-scale systems are particularly sensitive to reliability concerns, for several reasons. On the one
hand, the statistical probability of failure is proportional to the number of components, so large systems with many
components suffer inherently lower reliability than systems with fewer components. On the other hand, people buy
large systems because they have long-running tasks and strong economic incentives to get them finished quickly, so
system failures create direct financial consequences for the system owners.

The SiCortex system employs a number of techniques to maximize the reliability of the system from the user’s
perspective.

May 14, 2014 43 Rev 51328

SiCortex Confidential CHAPTER 1. OVERVIEW

• Power consciousness: the system is designed to run cool in the worst case under heavy load, and cooler still
when idle, to keep the the reliability high.

• N+1 redundancy of power and cooling systems: Power distribution, from the mains to the module level, is
designed with inherent redundancy, so that a failure within the power supply will not cause any interruption of
service. Similarly, cooling fans are individually replaceable, and provide enough capacity to maintain specified
thermal limits even with one fan inoperative.

• Dual redundancy of the control and management system, allowing the system to survive failures in the control
system without effecting normal operation.

• Modular, message-passing hardware/software architecture: failures of a compute node, its memory, or the
fabric switches do not force system failures. The fabric architecture is able to route around faults, and the
software system is able to restart a checkpointed process on a different processor, so that a failure of one node
need not terminate the application(s) using that node.

• Full SEC/DED Error Correcting Code on main memory and L2 cache, to provide fully automatic recovery
from transient and permanent single-bit errors as well as early warning of deteriorating devices so that they
can be replaced during scheduled maintainance.

1.4 Overall Block Diagram

1.4.1 Processor Cores

ICE9 contains six Mips 5KF processor cores. Each core implements 32KB of instruction cache, 32KB of data
cache, and a 256KB “slice” of the shared L2 cache. The L1 data caches, and the shared L2 cache, are coherent.

1.4.2 L2 Cache

ICE9 implements a shared 1.5MB L2 cache. The cache is composed of 256KB slices that are local to a core.
The L2 cache controller implements global coherency across ICE9.

1.4.3 Memory Controller

ICE9 implements two DDR2 SDRAM memory controllers. Each controller interfaces to one 72b (ECC) unreg-
istered DDR2 DIMM. This provides for 2GB of memory per node at system FCS, with expansion to 4GB and 8GB
as memory technology improves.

1.4.4 PCI-Express Controller

ICE9 implements a PCI-Express controller for I/O. The controller implements 8 PCI-Express lanes, providing
20Gbps of I/O bandwidth per node.

1.4.5 Fabric

ICE9 implements the SiCortex FastFabric, providing three Receive Links and three Transmit Links per node.

1.4.5.1 DMA Engine

The DMA Engine interfaces between the L2 cache and the Fabric switch. It is optimized for MPI operations
and allows user applications to send and receive data without invoking the operating system kernel.

1.4.5.2 Fabric Switch

The Fabric switch implements a four-port crosspoint switch among the three fabric links and the DMA engine.
The switch provides cut-through routing to minimize latency on packets that are destined for another node. The
switch also implements full flow control and error retry to ensure reliable transmission and reception.

May 14, 2014 44 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
1
.4
.

O
V
E
R
A
L
L
B
L
O
C
K

D
IA

G
R
A
M

Central Switch
(CSW)

MIPS 5kF

256KB L2
Segment

PS0..PS5

Misc. I/O
(I2C, SER,
SCB, CSRs)

PCI
Express

PCE

C
o
h
e
r
e
n
c
e

W
i
d
g
e
t

(
C
O
H
O
)

D
D
R

C
t
r
l
r

(
D
D
R
O
)

D
D
R

P
h
y

(
D
D
P
O
)

DMA Engine

Link TX
(FLT0..
FLT1)

Link RX
(FLR0..
FLR1)

C
o
h
e
r
e
n
c
e

W
i
d
g
e
t

(
C
O
H
E
)

D
D
R

C
t
r
l
r

(
D
D
R
E
)

D
D
R

P
h
y

(
D
D
P
E
)

T
o

D
D
R
2

D
I
M
M

(
E
v
e
n
)

T
o

D
D
R
2

D
I
M
M

(
O
D
D
)

To PCI Express
I/O System

Fabric Switch
(FSW)

F
ig
u
re

1
.1
:
T
h
e
S
iC
o
rtex

N
o
d
e
C
h
ip

M
ay

1
4
,
2
0
1
4

4
5

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 1. OVERVIEW

1.4.5.3 Link Controllers

Each link controller implement a single FastFabric transmit or receive link.

1.4.5.4 Link Subsystem

The “Link Subsystem” refers to the Fabric Switch, plus the 3 Link Receivers, plus the 3 Link Transmitters.
When message is “not for me”, it gets sent on to the next ICE9 along the way to it’s destination, only passing
through the SiCortex FastFabric, and doesn’t even enter the DMA Engine in this ICE9. This message will come in
a Receive Link, pass through the Fabric Switch, and exit out a Transmit Link. When possible, no “store & forward”
occurs, with the Fabric Switch immediately knowing which Transmit Link to use from first-FORD information. If
the Transmit Link was available, the beginning of the message is already on the outgoing wires to the next ICE9
before the end of the message has entered this one.

1.4.6 Clock Generator

The clock generator provides internal clocks for ICE9. It generates separate clocks for the cores and L2 caches
(nominally 500Mhz, but variable), the PCI-Express controller (always 250Mhz), the memory controller (266Mhz,
333Mhz, or 400Mhz), and the fabric (nominally 200Mhz, but variable).

1.4.7 Miscellaneous

Other on-chip components include the JTAG controller, the on-chip logic analyzer, and on-chip peripherals such
as I2C, UART, etc.

1.5 Latency Calculations

1.5.1 Links and Wire-Handling Latency

Latency involved with Link Transmitter and Link Receiver handling sending over a differential pair link between
two ICE9 ASICs. The wire propagation delay itself is not included here, but will be included in the table further
below.

Unit or Action Latency Explanation

Transmit Link unit 4.2 ns From flopped-in till first bit out on serial line.
See Internode Link chapter.

9 more bits onto wire 4.5 ns Since Transmit Link latency is till first bit out, and Receive Link
latency is from when last bit in, we must add this time.

Receive Link unit 15.75 ns From last bit in on serial line till flopped-out to Fabric Switch.
See Internode Link chapter.

receive synchronization 2.25 ns Receive Link must synchronize incoming 10-bit characters with the
local s-clock. This takes 0 to 4.5 ns, depending on phase.

Link Subsystem TOTAL 26.7 ns

May 14, 2014 46 Rev 51328

SiCortex Confidential 1.6. ADDRESS MAP

1.5.2 ICE9 to ICE9 Latency

Unit or Action Latency Explanation

sending ICE9: software actions ?
sending ICE9: Processor Hardware ?
sending ICE9: Central Switch ?
sending ICE9: DMA Engine ?
sending ICE9: Fabric Switch ? (>15ns) From when DMA Engine gives transfer to Fabric Switch, till

flopped-in by Transmit Link.
6 hops: “Links and Wire-Handling” 160.2 ns 6 times the 26.7 ns from table above
6 hops: Wire Delay ? 6 times the average wire delay ICE9-ICE9
5 pass-thru ICE9’s: Fabric Switch 75.0 ns 5 times minimum Fabric Switch pass-thru latency of 15ns.

Defined as from flopped-out by Receive Link till flopped-in
by Transmit Link. See Fabric Switch chapter.

receiving ICE9: Fabric Switch ? (>15ns) From when flopped-out by Receive Link, till when given to
DMA Engine.

receiving ICE9: DMA Engine ?
receiving ICE9: Central Switch ?
receiving ICE9: Processor Hardware ?
receiving unit: software actions ?

6-Hop TOTAL

5.5 Hop TOTAL From the 6-Hops total, subtract 20.8 ns and 1/2 of one av-
erage wire delay.

1.6 Address Map

All processor cores in an ICE9 see an identical view of the 36 bit physical address space. The address pace
is split into three major types of sections: cachable memory space, IO space, and PCI-Express spaces. For more
details, see 16.

May 14, 2014 47 Rev 51328

SiCortex Confidential CHAPTER 1. OVERVIEW

May 14, 2014 48 Rev 51328

Chapter 2

Internode Link

[Last Modified $Id: link.lyx 51024 2008-02-15 20:37:33Z rwoodscorwin $]

2.1 Overview

The SiCortex fabric link (we’ll call it “the link”) is data link with embeded clock, eight-bit wide, differential,
all copper, parallel path with a companion serial flow control path. That is, the link is eight lanes of diff pairs,
plus one more lane traveling in the opposite direction to carry flow control information. The eight parallel lanes
carrying data between nodes is called a “Data Link” or “DL”.

Each lane is implemented as a SERDES channel at raw data rate of 2 Gbit/S per lane, or 2 GByte/S per link.

We expect the physical design of the link to be a challenge: some links will traverse only a few inches of PCB
trace, while others may travel through several inches of PCB, a connector, up to 30”of backplane, another connector,
more backplane, yet another connector, and several more inches of PCB. While daunting, we are encouraged by the
fact that several switching systems are carrying significantly higher data rates in similar environments, and that
the technology behind channel compensation, reflection cancellation, and low-loss materials have put the SiCortex
fabric signalling scheme well within the bounds of current technology.

In order to maintain DC balance on each lane, and in order to detect data-corruption, data traveling on each
lane is encoded using a 10B/8B code. Each of the 256 possible 8 bit symbols is recoded into a choice of either of
two 10 bit “characters”. Out of the 1024 possible 10 bit characters, the encoding only uses those where the number
of “1”bits is one greater, one less, or equal to the number of “0”bits. If the number of “1”bits is in excess or deficit,
the code is arranged so that at the end of the next symbol transmission the net excess or deficit (over N symbols,
for all N) is never greater than 1. That’s why there are two 10-bit encodings available for each 8-bit data symbol.

Using 8B/10B encoding scheme, the minimum chunk of data that can be sent over the 8-lane link is 64bits wide
every 5nS. We call this chunk a “FORD” (for “Fabric wORD”).

The 10B/8B code we have chosen allows for a number of valid 10 bit symbols that have no mapping into the 8
bit space. We use six of these symbols as control and management markers for our link protocols. We use:

K28.0 for ANULL (alternate NULL)

K28.1 for SOLS (start of LinkSync)

K28.2 for EOLS (end of LinkSync)

K28.3 for SOP (start of packet)

K28.4 for EOP (end of packet)

K28.5 for NULL

You may run into the term “ES COMMA”which means “NULL or ANULL”.

We use NULL as an “idle” symbol when the link has no other data to carry, as well as for other purposes. Link
will carry data in variable length packets. Each packet begins with an SOP (start of packet) character in lane 0,
and ends with an EOP (end of packet) character in lane0.

To keep interfaces clean and to reduce the amount of byte shuffling that goes on in the fabric part of the chip,
we’ll pass entire FORDs on to the fabric switch logic. The switch datapath is 64bits wide and runs at 1/5 the
fabric clock, called the “Switch Clock” or “sclk.”

For each 8 bit parallel link from node A to node B, there is a one bit wide serial channel from node B to node
A. This link, called the “Control Lane” is used to convey flow-control and buffer status information from a receiving

49

SiCortex Confidential CHAPTER 2. INTERNODE LINK

node back to the node at the other end of the data link. The control lane uses the same 8B/10B dc balance scheme
as the data link. As a result, control link tokens are 8 bits wide and arrive every 5nS.

To communicate between two chips, one chip has an FLT (Fabric Link Transmitter) and the other chip has an
FLR (Fabric Link Receiver). Between the two chips, Eight data lanes go uni-directionally from the FLT to the
FLR, and one control lane goes uni-directionally from the FLR back to the FLT. Inside each chip the FLT or FLR
connects to an FSW unit. FSW is described in chapter “The Dense Fabric Switch”.

Once a Link has been initialized and is sending traffic, three types of Packets are used. Over the 8-lane-wide
data path are sent Data Packets or Idle Packets. Over the one control lane are sent Control Packets. The format
of these packets are described near the beginning of chapter “The Dense Fabric Switch”, in sections The Data Link
and The Control Link.

In these packet formats you will see NULL, ANULL, SOP and EOP, which are recognized by this Internode
Link unit for control and management purposes. All other fields within these three packet types will be constructed
from the normal 256 8-bit data characters, and are treated as payload by Internode Link and just passed through.

2.2 Differences, Bugs, and Enhancements

2.2.1 Product and Chip Pass Differences

1. NEED IMPL: TWC9A fixes certain noise patterns from causing fabric deadlocks, bug2132.

2. NEED IMPL: All FL internal counters’ increment signals should be wired into the SCB counters, bug3488.

2.2.2 Known Bugs and Possible Enhancements

1. Force retraining should always complete, and software shouldn’t have to detect and implement retries.

2. The out-of-band path was never used by software, and could be removed for simplicity if desired.

2.3 Reference Documents

AnalogBits QPMA cores are used within the Links to directly drive and receive the differential signals.
AnalogBits documention is checked-in with svn in directory <project>/specs/ice9/AnalogBits/
These are relevant:
ABIPCCE2 datasheet 20051021v2.pdf “ABIPCCE2 Custom PLL DATASHEET”.
serdes PRM Sicortex v1 1 2 051130.pdf “Serdes PMA Programmer’s Reference Manual”.
serdes test guidelines SiCortex v1 1 1.pdf “Serdes PMA Test Guidelines”

2.4 SERDES Fabric Links

The SiCortex fabric link is eight lane wide in one direction and one lane wide in the other direction. Each lane
is implemented as a high speed serial channel at the raw data rate of 2 Gbs per lane. Each lane will use a SERDES
transmitter/receiver scheme.

In a SiCortex chassis, fabric links are used for inter-ICE9 data exchange among all 972 ICE9 nodes. Each ICE9
connects to six fabric links, three of those via receive ports while the other three are connected to transmit ports.
Each link is a point to point connection between two nodes, so there is a total of (972 x 6)/2 = 2916 fabric links
in a chassis.

Each fabric link is built and operates autonomously. The primary function of the fabric link subsystem design is
(a) to acquire lane framing on all lanes, (b) to acquire word framing among the eight serial lanes in a data link, (c)
to acquire synchronization of the link i.e. bring state of fabric link subsystem to make it usable for data exchange by
fabric switch at both ends of link, (d) once link synchronization is acquired then monitor fabric link to detect error
conditions and when an error is detected then log the error, (e) after acquiring link synchronization continuously
test for loss of link synchronization, and perform re-synchronization of the fabric link when synchronization is lost.

The fabric link subsystem is built using two basic building blocks which are designed by the third party vendor,
AnalogBits Inc. They are the lane transmitter which has SERDES PHY, impedance calibration circuitry, PLL,
and the lane receiver, which has clock and data recovery circuit. The detailed description of the basic building

May 14, 2014 50 Rev 51328

SiCortex Confidential 2.5. 8B/10B CODE

blocks is followed by the description of the Fabric Link Transmitter (TxLink or FLT) and the Fabric Link Receiver
(RxLink or FLR).

2.5 8B/10B code

The 8B/10B code is implemented as per IEEE 802.3-2002 specifications.

2.6 The Lane Transmitter (Txlane)

A lane transmitter data channel is shown in Figure 2.1. A 10-bit wide data path begins at LaneEncoder. The
Txlane latches 10-bit data in aTxDI[9:0] register, serializes it, and transmits serialized bit stream on transmitter
PHY. The Txlane transmits LSB (aTxDI[0]) bit first in time and MSB (aTxDI[9]) bit last in time. The data
transfer rate is equal in both modules and it is at 10 bits every 5nSec or 10-bits at 200 MHz.

Figure 2.1: Transmitter Lane

The Txlane module has PLL which receives inverted copy of sclk (200 MHz) as refclk and generates txclkP (200
Mhz) in known phase relationship with refclk, which is 2-3 bit period plus propagation delay on internal quad clock
tree. The Txlane module uses txclkP as a strobe timing reference signal to transfer data from LaneEncoder. The
PLL also asserts a signal, called aTxClk Stable, indicating when TxClkP is stable and when internal clocks are up
and stable.

May 14, 2014 51 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

LaneEncoder operates in sclk domain at 200MHz. LaneEncoder supports 8-bit wide data path from either
Fabric Switch or from loopback path within link interface. It has one buffered data stage in sclk domain to perform
8B10B conversion of data. It generates 10-bit wide encoded data every clock tick (at 200 MHz) for Txlane.

The 8B10B tables within TX LaneEncoder have 10-bit busses [9,8,7,6,5,4,3,2,1,0] mapped as [a,b,c,d,e,i,f,g,h,j]
on them. TxLane from AnalogBits serialize 10-bit busses [9,8,7,6,5,4,3,2,1,0] such that bit-0 goes first on the serial
line, bit-9 last. So, to send bits in the correct order as per IEEE 802.3-2002 spec, LaneEncoder transmits 10-bit
bus mapped as [j,h,g,f,i,e,d,c,b,a] to the Txlane.

The data transfer between LaneEncoder and Txlane is synchronous and described in section-2.6.1. The Txlane
drives serial data on transmitter PHY at the data rate of 2gbs (giga bits per sec).

The transmitter impedance calibration circuitry controlling Txlane is described in section-2.19.1.

2.6.1 Synchronizer setup between sclk and txclkP

The data transfer between sclk and txclkP is considered synchronous transfer. The synchronous transfer between
sclk and txclkP will be achieved by balancing clock layout and placement constraints among synchronizing cells. In
each Txlane, there are eleven (11) clock endpoints or targets. Of those 11 endpoints, LaneEncoder has 10 endpoints
as clock pins of flops and Txlane has one endpoint as the aRrefclkP input to PLL. The endpoint in TxLane to
aRefclkP will be of inverse polarity than to 10 endpoints in LaneEncoder. The design intent is to balance clock
tree from common source to 11 endpoints or targets for each Txlane. There are total of 27 Txlanes in ICE9, hence,
total of 27 groups of 11 endpoints will be balanced.

The PLL of Txlane generates txclkP which has its rising edge within 2 to 3 bit times (i.e. between 1 nsec-
1.5nsec) of serial data rate plus propagation delays on internal clock tree. Design intent is that TxLane will latch
data on the rising edge of txclkP.

NOTE : The txclkP clock will not be used by LaneEncoder. For LaneEncoder, txclkP is the implicit
clock. However, the goal of synchronous transfer between sclk and txclkP is to meet setup and hold
times wrt txclkP in Txlane. .

The synchronous transfer between sclk and txclkP is achieved by allocating timing budget for timing components
on clock and data path. The timing diagram of figure-2.2 shows delay component of clock and data path.

29
Net-Delay

28
Flop-Delay

{0.5,0.5}

{1,1.5}

{-0.04,0.04}

{0.02,0.05}

{2.2,2.8}{2.2,2.8}

{0.05,0.1}

{0,0.35}

{0,0.05}

{4.95,5.05}
sclk @ 200Mhz

{4.95,5.05}
sclk @ 200Mhz

{0.21,1.77}
Hold

{3.23,4.79}
Set-Up

s_refclk @ pinsof ICE9

sclk (among 10 flops)

encoded_data

aTxDI[9:0]

S_REFCLK(duty cycle variation)

s_refclk_INV @ PLL

txclk (with PLL jitter)

txclk (with PLL delay)

txclkP

Figure 2.2: synchronizer handshake

NOTE: The clock distribution network in chassis will affect the timing budget of ICE9’s internal
clock which may not be represented adequately in the timing budget. The s refclk is signal at the pins

May 14, 2014 52 Rev 51328

SiCortex Confidential 2.6. THE LANE TRANSMITTER (TXLANE)

of ICE9. The sclk is clock signal driving 10 target flops in the LaneEncoder. The output of 10 target flops stabilizes
at aTxDI[9:0] receiver in Txlane. The data setup and hold checks are to be performed on aTxDI[9:0] wrt txclkP.

A copy of s refclk is shown with duty cycle variation as S REFCLK. The inverted copy, called s refclk INV, is
connected to aRefClk pin of PLL in Txlane. The txclk is the clock output of PLL with PLL jitter spec. The txclkP
is the clock output of Txlane wrt to which the setup and hold constraints must be met.

Following spreadsheet specifies timing budget of each component. Note that final design implementation goal
is to have setup and hold margin equalize at aTxDI[9:0] cells.

Row Name Formula Min Max Margin Comment
1 V sclk_period 5 5 5
2 V r_jitter 0.05 0.05 0.05 ICE9 clock input spec.= 50ps
3 V f_jitter 0.05 0.05 0.05 ICE9 clock input spec. = 50ps
4 V duty_cycle 45 45 45 ICE9 internal spec. = WC 45/55
5 V duty_cycle_min ((duty_cycle*sclk_period)/100)-(sclk_period/2)-0.25 -0.25
6 V duty_cycle_max (((100-duty_cycle)*sclk_period)/100)-(sclk_period/2)0.25 0.25
7 V recal_dcycle [duty_cycle_min,duty_cycle_max] -0.25 0.25
8 V sclk_mismatch [0,0.05] 0 0.05 ICE9 internal spec. - BC, WC = 0-50ps
9 V flop_delay [0.05,0.3] 0.05 0.3 ICE9 internal spec, - BC, WC = [50ps, 300ps]
10 V delay_line 0 0 0 ICE9 internal spec - delay line (if required), BC, WC = [0, 0]
11 V rc_delay [0.05,0.1] 0.05 0.1 ICE9 internal spec - BC, WC = [50ps, 100ps]
12 V net_delay delay_line+rc_delay 0.05 0.1
13 V INV_mismatch_in_clk [0.02,0.05] 0.02 0.05 ICE9 internal spec - BC, WC = [20ps, 50ps]
14 P $p3
15 V pll_jitter [-0.04,0.04] -0.04 0.04 AnalogBIts PLL spec - WC, short term jitter = 4ps, long term jitter = 40ps
16 V pll_delay [1,1.5] 1 1.5 AnanlogBits spec. - BC = 2-bit time, WC = 3-bit time
17 V clktree_delay 0.5 0.5 0.5 AnalogBits spec. - BC, WC (estimated) = [500ps, 500ps]
18 V AB_Setup 2 2 2 AnalogBits spec - Setup Constraint of 2ns
19 V AB_Hold 0 0 0 AnalogBits spec - Hold constrint of 0ns
20 C Set-Up [AB_Setup,] 2 <1.23,><1.23,> <==== Setup Margin
21 C Hold [AB_Hold,] 0 <0.21,><0.21,> <==== Hold Margin
22 P $p1

Table 2.1: Timing Budget Spec sheet

2.6.2 Txlane data latency estimates

Data transfer latency estimates are presented below. Latency is calculated from loading of encoded data to
LSB (first) bit on transmitter PHY.

From To BC(ns) WC(ns)

sclk-to-txclkP encoded data aTxDI[9:0] 3.23 4.79
txclkP-to-???? aTxDI[0] ???? TBD TBD
????-to-TXD* ???? TXDP/N TBD TBD

Total Delay encoded data TXDP/N xx xx

2.6.3 Txlane module ports (This port list is not complete. Needs portlist Spec from
AnalogBits)

Signal Names In/Out From/To Description

aRefClkP In LaneEncoder Reference clock for PLL at 200 Mhz.
txclkP Out – Transmit Clock signal at 200 Mhz. This signal is not used.
aRstB In ICE9 reset distributor Asynchronous reset signal.

aTxClk Stable Out CSR module Status signal from PLL indicating the transmit clock is stable.
aTxDI[9:0] In LinkEncoder 10-bit data which is 8B10B encoded. Txlane accepts this data

at frequency of sclk (200 MHz).
TXDP/TXDN Out Primary output pins Differential PHY output. Txlane will drive this data at 2 gbs.

2.6.4 8B10B code Validation Plan

Verification team will get 8b10b code standard from IEEE 802.3 (ethernet) spec. Verification team will verify
and validate each Txlane against 802.3 spec, including negative cases of errors.

2.6.5 Verification Checklist: (This section is not complete)

1. Verify sclk/txClkP synchronizer settings

2. Verify reset function

May 14, 2014 53 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

3. Verify driving bad disparity function tx

4. Verify driving invalid character on tx

5. Verify NearEndLoopback mode

2.7 The Lane Receiver (Rxlane)

A lane receiver data channel is shown in Figure-2.3. The Rxlane module of the diagram will be delivered by
AnalogBits, Inc.

The receiver datapath begins in Rxlane at the differential inputs, Rxdp and Rxdn, of the SERDES receiver PHY.
The baud rate at Rxdp/Rxdn is 2Gbps. The embeded data and clock signals from PHY are separated by the Rxlane.
The Rxlane de-serializes incoming data stream, and drives databus aRxDO[19:0] and clock aRxClkN in the source
synchronous mode to the Framer module. The aRxClkN signal is extracted clock from incoming data stream and it is
operating at 200 MHz. The content of aRxDO[19:0] has data fields in the form of <current 10bits,previous 10bits>.
The Rxlane transmits MSB (aRxDO[19]) bit which has the most recent bit arrived on PHY and LSB (aR<xDO[0])
bit which has the earliest arrived bit on PHY.

The 8B10B tables within Framer has 10-bit busses [9,8,7,6,5,4,3,2,1,0] mapped as [a,b,c,d,e,i,f,g,h,j] on them.
The RxLane from AnalogBits de-serialize 10-bit bus [j,h,g,f,i,e,d,c,b,a] such that bit-a is received first from the
serial line, bit-j last and drives it in that order to Rxlane. So, to receive bits in the correct order as per IEEE 802.3
spec, Framer maps received 10-bit bus as [a,b,c,d,e,i,f,g,h,j].

The data transfer rate in both modules, Rxlane and Framer, is equal and it is at 10-bits every 5 nSec or 10-bits
at 200 MHz.

Figure 2.3: Receiver Lane

The Rxlane has PLL which gets a copy of sclk (200 MHz) on its aRefClkP pin. The SiCortex system uses a single
oscillator to drive the primary clock distribution tree. A copy of the primary clock distribution tree is referenced
by the transmitter to drive the transmitter PHY. Because the origin of both clocks, aRefClkP and the transmitter
clock, is the same oscillator, the difference in frequency between aRefClkP and recovered clock, aRxClkN, from the

May 14, 2014 54 Rev 51328

SiCortex Confidential 2.7. THE LANE RECEIVER (RXLANE)

receiver PHY is 0-ppm. It is important to note that the received clock aRxClkN is extracted from the incoming
datastream, and not from the aRefClkP, even if it does connect to aRefClkP prior to starting CDR (clock and data
recovery) function.

The detailed description of the Framer module is described in section-2.7.2.

2.7.1 Clock Alignment and Synchronizer setup between Rxlane and Framer transfer

The clock alignment between aRxClkN and sclk must take place after both clocks, aRxClkN and sclk, are stable,
PLLs are locked, and the reset signal is deasserted. All data trasfers between Rxlane and Framer are ignored before
the clock alignment step is complete.

Rxlane and Framer handshake exploits the fact that the aRxClkN and aRxDO[19:0] is the source synchronous
transfer. Please note following four salient points about data tranfer between Rxlane and Framer module.

1. The Framer logic design will sample state of aRxClkN signal to find alignment between two clocks, aRxClkN
and sclk, and then adjust aRxClkN for data synchronizing transfer between Rxlane and Framer.

2. The Framer logic design will not use aRxClkN clock to strobe data transfer from aRxDO[19:0].

3. AnalogBits design team will be matching electrical delays on 21 signals, aRxClkN and aRxDO[19:0], from
internal cells of IP to output port of Rxlane.

4. The Sicortex design team will be matching electrical delays on 21 signals, aRxClkN and aRxDO[19:0], from
port of Rxlane to receiver cells in Framer.

The frequency of sclk and aRxClkN is identical and it is 200 Mhz. However, the phase relationship of aRxClkN
wrt sclk is in-determinate because the phase relationship between the two clocks depend on the electrical length of
the receiver lane. For aligning aRxClkN with sclk, Rxlane will allow shifting the phase of aRxClkN in increments
of 1-bit time. The Rxlane will shift the phase of aRxClkN by stretching aRxClkN clock by 1-bit time. The clock
stretching will not be a glitchless operation, however, sampling of aRxClkN will be performed only after the clock
alignment operation is completed.

2.7.1.1 SkipBeat Handshake

Refer to Section-8.1 of“Serdes PMA Programmer’s Reference Manual”for the details of the SkipBeat handshake.
The SkipBeat timing parameter table for Sicortex design is shown below:

.
Parameter Units min max typ

Nskipbeaton aRxClkN period 3 - (15ns @ 200 Mhz) 3 - (15ns @ 200 Mhz) 3 - (15ns @ 200 Mhz)
Nskipbeatrepeat aRxClkN period 31 - (155ns @ 200 Mhz) 31 - (155ns @ 200 Mhz) 31 - (155ns @ 200 Mhz)
Tskipeffective ns TBD TBD TBD

.
The algorithm for aligning aRxClkN with sclk is described below:

Begin:

First_Search :

Move phase of aRxClkN by 1-bit time.

Test logic level of aRxClkN.

If it is 0 then set flag-First_Search and jump to Second_Search else repeat.

Second_Search :

Move phase of aRxClkN by 1-bit time.

Test logic level of aRxClkN.

If it is 1 then set flag-Second_Search and jump to Final_Search else repeat.

Final_Search :

Move phase of aRxClkN by 1-bit time.

Test logic level of aRxClkN.

If it is 0 then set flag-Final_Search and jump to Adjustment else repeat.

Adjustment:

Move phase of aRxClkN by 5-bit times, set flag-Adjustment and exit.

End:

May 14, 2014 55 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

After the receiver clock, aRxClkN, is stable, the worst-case time to complete the skipbeat handshake at 200 Mhz
is calculated as below:

1. The maximum time taken in First Search = 5 skipbeat operations x 31 sclk periods = 5 x (31 x 5) = 775ns

2. The time taken in Second Search = 5 skipbeat operations x 31 sclk periods = 5 x (31 x 5) = 775ns

3. The time taken in Final Step = 5 skipbeat operations x 31 sclk periods = 5 x (31 x 5) = 775ns

4. The time taken for adjustment = 5 skipbeat operations x 31 sclk periods = 5 x (31 x 5) = 775ns

5. Total time in skipbeat handshake = 1 + 2 + 3 + 4 = 3100ns

2.7.1.2 The RxClk alignment

The clock alignment and receiver synchronizer timing diagram is shown in Figure-2.4.

34
Bilateral-Skew

32
Meta_Window : ambiguity

25
Adjustment : 5-bit time

23
PAR Mismatch

18
Rxlane Mismatch

{-0.5,0.5}Meta Stable Region

{0,1}

{-0.05,0.05}

{5,5}{5,5}

<1,>
Hold(min margin)

<0.8,>
Setup(min margin)

SCLK

SCLK_with_jitter

CalRxclk : setup+hold (window)

aRxClkN : Earliest

aRxClkN_with_jitter

aRxDO[19:0]

RxDO[19:0]

adjusted - RxDO[19:0]

adjusted (meta window)- RxDO[19:0]1

adjusted (bilateral skew)- RxDO[19:0]2

Figure 2.4: Clock alignment and Receiver Synchronizer

The timing diagram shows that sclk at 200 Mhz. After adjusting for the jitter spec of sclk, CalRxclk signal shows
metastability region of a flop in TSMC-90G. The timing diagram shows early arrival of aRxClkN signal transitioning
from low-to-high (which will be sampled as going from high-to-low! This is non-intuitive but sampling state of
CalRxclk will observe its output state going from 1 to 0). After accounting for datapath and clock path mismatch,
the databus at RxDO[19:0] will have valid data window which is equal to period of sclk minus data path mismatch
between Rxlane and Framer. The final adjustment of 5-bit time for aRxClkN provides equalized set-up and hold
time at RxDO[19:0] register.

The timing budget for each timing component in clock alignment data path is shown in Figure-2.5. The last
column which is a comment column shows ownership of each line item. The “ICE9 spec” items are owned by
Sicortex while “AnalogBits Spec” items are owned by AnalogBits.

2.7.2 The Framer Module

The Framer module interfaces with Rxlane in slow clock (sclk at 200 Mhz) domain. The block diagram of the
Framer module is shown in Figure-2.3. There are two primary tasks of Framer module are described below.

May 14, 2014 56 Rev 51328

SiCortex Confidential 2.7. THE LANE RECEIVER (RXLANE)

Row Name Formula Min Max Margin Comment
1 V sclk_period 5 5 5 ICE9 clock spec : 200 Mhz
2 V sclk_rise_jitter [-0.05,0.05] -0.05 0.05 ICE9 clock input spec. BC, WC = -50ps, 50ps
3 V sclk_fall_jitter [-0.05,0.05] -0.05 0.05 ICE9 clock input spec. BC, WC = -50ps, 50ps
4 V setup_plus_hold [-0.4,0.4] -0.4 0.4 TSMC 90g FLOP spec : exaggerated window
5 V early_valid_clk -0.5 -0.5 -0.5 sclk_rise_jitter(min) + setup_plus_hold(min) - CDR_rise_jitter(max)
6 V CDR_rise_jitter [-0.05,0.05] -0.05 0.05 AnalogBits PLL spec. - BC, WC = -50ps, 50ps
7 V CDR_fall_jitter [-0.05,0.05] -0.05 0.05 AnalogBits PLL spec. - BC, WC = -50ps, 50ps
8 V Rxlane_mismatch [0,0.1] 0 0.1 AnalogBits spec - BC, WC = 0-100ps
9 V PAR_mismatch [0,0.1] 0 0.1 ICE9 spec. - BC, WC = 0-100ps
10 V adjust_bit_time 5 5 5 ICE9/AnalogBits spec. = Synchronizer Adjustment in bit-time
11 V meta_window [0,sclk_period/5] 0 1 ICE9 spec : Metastable window of a flop = 1ns
12 V bilateral_skew [-0.5,0.5] -0.5 0.5 AnalogBits spec in bit-time - BC, WC = -500ps, 500ps
13 V setup_check 0.4 0.4 0.4 TSMC 90g Flop setup check
14 V hold_check 0.4 0.4 0.4 TSMC 90g Flop hold check
15 C Setup(min margin) [setup_check,] 0.4 <0.8,><0.8,>TSMC 90G, setup constraint check
16 C Hold(min margin) [hold_check,] 0.4 <1,><1,> TSMC 90G, hold constraint check

Figure 2.5: Clock alignment timing budget

2.7.2.1 The clock alignment and synchronizer setup

The clock alignment and synchronizer setup with Rxlane is described in section-2.7.1.

2.7.2.2 Framing Function and flag-LaneHealth

The Rxlane receives serial data stream without any indication of framing boundary and passes 20 bits of de-
serialized data, aRxDO[19:0], at 200 Mhz to Framer. The content of aRxDO[19:0] has data fields in the form
of <current 10bits,previous 10bits>. The Rxlane transmits MSB (aRxDO[19]) bit which has the most recent bit
arrived on PHY and LSB (aTxDO[0]) bit which has the earliest arrived bit on PHY. The Framer has to find framing
boundary of incoming data stream. To aid framing function, all lane transmitters in ICE9 will drive k 28.5 while
framing function is active.

The data on serial lane is 10-bit encoded data, so there are 10 possible framing boundaries within incoming
serial data. Only 1 of those 10 framing boundaries is a valid framing boundary. The Framer forms 10 possible
character strings of incoming data stream. It is assumed that each string is given an identifier, starting from 0 to
9.

A framing controller, called framer, has 10-stage counter called rotator. Rotator stages are from 0 to 9. The
rotator stage is used to select character string identifier.

Framer will find framing boundary of incoming data stream by setting rotator to a stage for 64 consecutive
clock cycles. Framer will validate framing boundary, if and only if, it has received valid K28.5 (NULL) characters
without disparity errors for at least 48 cycles. If framer has not found framing boundary then then it will increment
rotator stage and perform above test again. There are only 10 possible framing boundaries in free running data
stream, hence above scheme will find framing boundary in about (64 x10) = 640 characters.

Time to send 1 character on link is 5nS, so framing will take about (640 x 5) = 3.2uSec.
When Framer is successful in finding a frame within incoming data stream, it sets the flag-LaneHealth indicating

that it is receiving error free K28.5 characters from Rxlane and lane’s health is declared “good”.
After setting flag-LaneHealth, framer switches its function to check for the condition of loss of framing using

credit based algorithm. The framer may now receive ANY of the data or control characters. The framer assigns
health rating of 0xF to the lane. A lane can not receive higher than 0xF count of health rating and lane can not
receive lower than 0x0 count of health rating. When health rating of a lane reaches 0x0, lane is non-usable and it
is declared “bad” and indicated so by clearing of flag-LaneHealth.

The Framer receives a character from a serial lane at the rate of 200 Mhz. The Framer evaluates every character
it received and determines if it is a credit or a debit. A character without an error is a credit and a character with
an error is a debit. The framer adjusts lane’s health rating for every character. If health rating of lane ever reaches
0x0 then framer determines that lane has lost framing, its health status is bad, and clears flag-LaneHealth. When
flag-LaneHealth is reset, the framer re-enters the framing function.

2.7.3 The Wordsync function

The fabric switch transmits and receives 64-bit data (or FORD) to/from the link. Though the transmit link
transmits data on eight transmit lanes wrt to sclk, due to eight seperate physical paths taken from one ICE9 to

May 14, 2014 57 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

another, the data propagation delay mismatch may result among eight lanes. In such case, the Wordsync module
in receiver may observe mismatched arrival times on eight data lanes. The Wordsync function equalizes electrical
delays among eight receiver lanes. The Figure-2.6 shows implementation details of the Wordsync function.

Figure 2.6: Wordsync Function

The Wordsyncing among 8 receiver lanes is achieved in three steps. First step is to measure the propagtion
delay differences among eight lanes. The next step is to increase the electrical delays of the faster lanes (and thus
making them slower). Final step is the validation step of verifying that the total propagation delay of eight receiver
lanes is equal.

The Wordsync module has provision to delay data byte received from the receiver lane by either 1 or 2 or 3 sclk
periods.

To measure the propagation delay difference among eight receiver lanes, a special character k28.1, is sent by
the transmit link on 8 transmitter lanes on the same rising edge of sclk and then in eight Wordsync modules of
the receiver link, the arrival time of k28.1 are is noted. The lanes receiving k28.1 earlier are faster. The Wordsync
module can measure propagation delay difference of upto 3 sclk periods among eight receiver lanes. In next step,
the Wordsync module will increase data propagation delay of the faster lanes and make them equal on all 8 receiver
lanes. The final step is the verification step. In this step, the transmitter will transmit a special character k28.1
again and receiver lanes will validate that all eight of them received k28.1 in the same sclk cycle. Next, the
transmitter transmits all 534 valid 8B10B characters, each character twice, on all 8 lanes. Upon receiving all (536
x 2) characters without an error on all receiver lanes completes the wordsync function.

2.7.4 Rxlane to Framer data latency estimates

Data transfer latency estimates is presented below. Latency is calculated from the last bit (MSB bit of
aRxDO[19:0]) on receiver PHY to decoded data in Framer module in bit time.

May 14, 2014 58 Rev 51328

SiCortex Confidential 2.8. THE FABRIC LINK RECEIVER

From To bit-time

PHY delay Rxlane Rxlane 1
Rxlane multiplexer Rxlane Rxlane 2

CDR Rxlane Rxlane 1
Load Deserializer Rxlane Rxlane 1
aRxDO[19:0] Rxlane Framer 7
link char Framer Framer 10

decoded data Framer Framer 10

Total Delay Rxdp/Rxdn decoded data 32

2.7.5 Rxlane module ports

Signal Names In/Out From/To Description

aRxClkP In Framer Reference clock signal for PLL.
aRxStable Out Framer Status signal indicating that extracted clock aRxCLKN is

stable.
SkipBeat In Framer Handshake signal for clock alignment between Framer and

Rxlane. When asserted, Rxlane will skip aRxClkN clock
by 1-bit time.

aRxDO[19:0] Out Framer Deserialized 20-bit data from receiver PHY.
The content of aRxDO[19:0] has data fields in the form
of <current 10bits,previous 10bits>. The Rxlane trans-
mits MSB (aRxDO[19]) bit which has the most recent bit
arrived on PHY and LSB (aTxDO[0]) bit which has the
earliest arrived bit on PHY. This databus is source syn-
chronous to aRxClkN at 200 Mhz.

2.7.6 8B10B code Validation Plan

Verification team will get 8b10b code standard from IEEE 802.3 (ethernet) spec. Verification team will verify
and validate each Rxlane against 802.3 spec, including negative cases of errors.

2.7.7 Verification Checklist:

1. Verify aRxClkN/sclk synchronizers

2. mis-alignment of aRxClkN among group of 8

3. verify SkipBeat function

4. verify Skipbeat offset variable

5. verify manual operation of clock alignment (or SkipBeat function)

6. Verify force lane-health function

7. Verify enable/disable lane health

8. Verify force Wordsync function

9. Verify Wordsync function through SCB

10. Verify number of data pattern selection in Wordsync function

May 14, 2014 59 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Figure 2.7: Receiver Link

2.8 The Fabric Link Receiver

The Fabric Link Receiver (RxLink or FLR) has eight serial receiver lanes for the data packet transfers and one
serial transmitter lane for the control packet transfers. The RxLink is constructed from eight Rxlane modules,
one TxLane module, one RxLC module which contains eight Wordsync modules, and one LaneEncoder module as
shown in Figure-2.7.

The Fabric switch clock, sclk @ 200 MHz, is distributed to the RxLC and LaneEncoder modules as its primary
clock. Copy of sclk is also distributed to the Rxlane-7 through 0 on their aRefClkP pins. Inverted copy of sclk is
distributed to the Txlane-FC on its aRefClkP pin.

Eight Rxlanes, numbered 7 through 0, receive serial data on receiver PHY, receover data and clock from
the incoming serial data stream, and drive deserialized data aRxDO[19:0] and clock aRxClkN to eight Wordsync
modules. Eight Wordsync modules, numbered 7 through 0, are within the RxLC module. Each Wordsync module
handshakes with one Rxlane module to setup the synchronizer transfer from the Rxlane and then acquire framing
from incoming data stream. Then the RxLC module acquires the Wordsynchronizations among eight Wordsync
modules. After acquiring Wordsynchronization, the RxLC module decodes received data from Rxlanes and then
transfers 64-bit FORD and 3-bit status (SOP, EOP, IDLE) to the fabric Switch every sclk cycle.

The control packets travel in the opposite direction. The control packets originate in the fabric switch. From
there, they travel through the LaneEncoder where they get 8B10B encoded. Encoded data from LaneEncoder move
to aRxDI[9:0] register of the Txlane-FC, which serializes and transmits data on transmitter PHY.

The RxLC module has another output port for supporting RxLink bringup routine, FarEndLoopback and
BitBlasting modes.

The RxLC has a controller called RxLink Controller (RxLC) which has 2 main functions.

1. Acquire link synchronization by executing the hardware routine called RxLinkSync. Upon successful comple-
tion of RxLinkSync, RxLink has acquired link synchronization.

May 14, 2014 60 Rev 51328

SiCortex Confidential 2.8. THE FABRIC LINK RECEIVER

2. After successful completion of RxLinkSync, RxLC enters the state of MissionMode during which RxLink
is functional and the fabric switch at both ends of the RxLink can exchange data and control packets. In
MissionMode, RxLC will act as a link supervisor and keep checking for link errors including loss of link
synchronization. When it detects that link synchronization is lost, then RxLC exits MissionMode and enters
hardware routine RxLinkSync for re-synchronization of RxLink.

In hardware execution routine RxLinkSync, RxLC controller communicates with hardware execution routine (called
TxLC and described later in section-2.9) of corresponding 8-lane transmitter of ICE9 using return path through
LaneEncoder. In hardware execution routine, RxLC is the master and TxLC is the slave. The RxLinkSync routine
gets executed once after power is up, and after PLLs are locked, and the reset signal is negated. The RxLinkSync
routine is entered from MissionMode if loss of link synchronization is detected.

Loss of synchronization, i.e. loss of heartbeat, will occur when any of the following conditions is detected.
Clearing of flag-LaneHealthStatus due to any of the following cases.

(a) loss of signal on serial receiver or due to excessive character errors and/or disparity errors on any of the 8
data lanes,

(b) setting of flag-ForceRetraining through SCB (see section-2.8.1 for explanation),
(c) clearing of flag-Heartbeat from heartbeat timeout on data-lane-0 (see section-2.8.1),
(d) disabling RxLink with SCB RxLcControl Ena bit, SoftReset, or hard reset line.

2.8.1 Status Flags required by RxLinkSync and RxLC

RxLC will have following status flags.

1. Flag-AllRxlanesReset The flag-AllrxlanesReset is set when PLL of all eight RxLanes are locked, and reset
signal is deasserted in all eight RxLanes in their rxfclk domain, and reset signal in sclk domain is deasserted. This
flag is reset when any one of eight PLLs of RxLanes has lost lock, or any one of eight RxLanes has reset signal
asserted, or reset signal in sclk domain is asserted.

2. Flag-LinkHealth Each RxLane provides status of lane’s health in real time through a flag-LaneHealthStatus.
A flag-LaneHealthStatus is set if RxLane has acquired frame, and it is receiving valid data and control characters
from receivers without disparity errors, otherwise flag is reset. Software may also reset flag-LaneHealthStatus
through SCB by setting ClrLaneHealth. There are 8 flags, flag-LaneHealthStatus. The flag-LinkHealth is created
from lane health status. The Flag-LinkHealth is set if all 8 flag-LaneHealthStatus are set otherwise it is clear.

3. Flag-ForceRetraining The hardware execution routine RxLyncSync may be initiated through SCB by
setting flag-ForceRetraining. The transition from 0 to 1 of flag-ForceRetraining causes RxLyncSync to be initiated.
Software should then clear flag-ForceRetraining so it is available for future use.

4. Flag-Heartbeat During MissionMode the RxLink uses a “heartbeat”method of detecting good communica-
tion from the TxLink in the other chip. The following steps describe heartbeat operation:

• When the RxLink achieves MissionMode, flag-Heartbeat is set.

• The fabric switch drives data packets using 8 lanes. The data packets are bounded by SOP (start of packet
char, k28.3) and EOP (end of packet char, k28.4) characters. The transition from SOP and EOP characters
to non-SOP and non-EOP characters detects the heartbeat.

• When the fabric switch is idle, it drives IDLE packets. The transmitter link will drive IDLE packets on lane-0
using NULL (k28.5) or AIDLE (alternate idle char k28.0) characters on link. During idle cycles, transition
from AIDLE character to non-AIDLE character detects the heartbeat.

• During MissionMode, if heartbeat is not detected for consecutive 128 clock cycles, by either of the above
methods, then it is assumed that link has lost heartbeat and flag-Heartbeat is cleared, otherwise it remains
set.

• A loss of Heartbeat causes a loss of MissionMode, and routine RxLyncSync is re-entered.

• Also, if MissionMode is lost for any other reason, flag-Heartbeat will be cleared.

May 14, 2014 61 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

5. Flag-RxLinkSync The flag-RxLinkSync is a status flag. It is controlled by Wordsync module. This flag
is set when link is executing hardware routine RxLinkSync, otherwise this flag is clear. This flag will remain
set if hardware routine RxLinkSync has encountered a failure and/or hardware routine RxLinkSync has not been
completed successfully.

6. Flag-MissionMode The flag-MissionMode is a status flag. It is controlled by Wordsync module. This flag is
set when hardware execution routine RxLinkSync has been successfully completed i.e. routine has been successful
in acquiring lane framing, and word framing. When flag-MissionMode is set, it indicates that RxLink is operational
and control of a link has been transferred to the fabric switch. Setting of flag-MissionMode implies that (i) fabric
switch at both ends will maintain link heartbeat on data transfer in both direction, (ii) spurious lane errors will be
detected by lane controllers as bit errors, and those errors are logged, (iii) spurious bit errors will not make link
unusable, and (iv) persistent bit errors on one or more lanes will cause loss of link health by resetting one or more
flag-LaneHealth(s), which in turn, will force re-entry of the hardware execution routine RxLinkSync by resetting
flag-MissionMode and setting flag-RxLinkSync.

2.8.2 RxLinkSync Routine

Jump to Begin:

• BEGIN:
If (flag-ForceRetraining) then jump to Step-1

• Step-1:
Set flag-RxLinkSync, reset flag-MissionMode, reset flag-Heartbeat.
Force Idle on FORD-to-FabricSwitch, Disable data path from ControlPacket-to-link, Force k 28.5 on TxLane
(send NULL)
(sending k 28.5 without Heartbeat packet will force TxLC to jump to TxLinkSync Routine)
Wait till flag-LinkHealth is set, then jump to Step-2.
(when flag-LinkHealth is set, then all lanes are receiving k 28.5)
Note: If flag-LinkHealth is asserted for less than 3-ticks, then controller will not jump to Step-2 and will
re-enter or remain in Step-1. For each occurance of such case, or each jump to Step-2, R FlrxRxLcCount will
be incremented.

• Step-2:
If (˜flag-LinkHealth) then jump to Step-1
else
Force k 28.5 on TxLane (send NULL)
Wait for time T1 = (R FlrxRxLcControl.Step2WaitTime number of sclks), where
T1(min) = (Rate of Heartbeat + 4 times maximum link delays) = (100 * sclk period) + 4 * 10nS = 500 +
40 = 540nsec
(sending k 28.5 without Heartbeat packet will force TxLC to jump to TxLinkSync Routine)
Jump to Step-3

• Step-3:
If (˜flag-LinkHealth) then jump to Step-1
else
Force pattern of k 28.5 and k 28.0 (send alternate NULL characters at the rate of once every 256 sclk cycles)
Wait to receive pattern of k 28.5 and k 28.0 (wait for TxLinkSync routine to respond)
Jump to Step-4

• Step-4:
If (˜flag-LinkHealth) then jump to Step-1
else
(Note: This is the Wordsync Routine. Refer to Section-2.7.3 for details of the operation.)
Send and wait for first request to return SOLS char (delay calibration cycle request to return SOLS character
k28.1)
Send and wait for second request to return SOLS char (word alignment cycle request to return SOLS character
k28.1)

May 14, 2014 62 Rev 51328

SiCortex Confidential 2.9. THE FABRIC LINK TRANSMITTER

Send and wait for valid verification data patterns (512) and control chars (24) , EOLS (k28.2) being the last
one
After that, send NULLs (k28.5), while still in Step-4.
if (Wordsync error, or data verification error) then
Set error bits and stay in Step-4 until ˜flag-LinkHealth.
else
Wait for EOLS to come back from TxLink in other chip (with no time limit) and then
Set flag-Heartbeat, and jump to END

• END: (enter MissionMode operation)
Set flag-MissionMode, reset flag-RxLinkSync.
Enable data packet path from RxLink-to-FabricSwitch.
Enable control packet path from FabricSwitch-to-RxLink
Become RxLink supervisor, watching for Heartbeat and bit errors.
Log bit error(s) and disparity error(s) observed on RxLink
if (˜flag-LaneHealth) OR (flag-ForceRetraining goes 0-to-1) OR (˜flag-Heartbeat)
Jump to Step-1

2.8.3 Verification Checklist:

1. mis-alignment of rxfclk among group of 8

2. verify framing and loss of framing conditions

3. verify Lane Health Status algorithm

4. verify manual clearing of flag-LaneHealth

5. verify bit errors - invalid characters and disparity errors

6. verify user programmable time delay

7. Set/clear flag-LaneHealthStatus during RxlinkSync from primary input.

8. Asynchronous events flag-ForceRetraining and flag-Heartbeat

9. Set/clear flag-RxLinkSync, flag-MissionMode

10. Enable/disable Rxlc

11. Verify FarEndLoopback mode

12. a. Verify bit-blasting mode
b. Inject disparity error and invalid character error during bit-blasting mode

2.9 The Fabric Link Transmitter

The Fabric Link Transmitter (TxLink or FLT) design has eight serial transmitter lanes for data packet transfers
and one serial receiver lane for control packet transfers. The Txlink is constructed from one LinkEncoder which is
comprised of eight LaneEncoders, eight TxLanes, one Rxlane, and one TxLC module, as shown in Figure-2.8.

Data packets originate at the fabric switch and send 64-bit wide FORD to LinkEncoder every sclk. The FORD
is segmented into eight lanes, each lane carrying a byte. The lanes are identified from 7 through 0. The LinkEncoder
has eight LaneEncoders which are identified as LaneEncoder 7 through 0. The LinkEncoder segments a FORD into
eight lanes and transfers a lane to each LaneEncoder. The LaneEncoder performs 8B10B encoding and transfers
encoded data[9:0] to TxLane. There are eight Txlane modules and they are identified from 7 through 0. The
TxLane serializes data from LaneEncoder and transmits it on SERDES PHY. Thus the data path originates at
fabric switch in byte-x, and then passes through LaneEncoder-x, TxLane-x, and ends at the serial transmitter PHY.

Correspondingly, 8B10B encoded control packets arrive on serial receiver PHY of Rxlane-FC. The Rxlane-FC
will de-serializes data and transfers aRxDI[19:0] to Wordsync module which is part of the TxLC module. The

May 14, 2014 63 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Figure 2.8: Transmitter Link

Wordsync module will decode 8B10B coding and transfer a byte of data every sclk cycle to the fabric switch. TxLC
has another output port for supporting loopback operations.

Fabric switch clock, sclk at 200 MHz, is distributed to the TxLC and the LinkEncoder modules as the primary
clock. True copy of sclk is distributed to Rxlane-FC on its aRefClkP pin. The inverse copy of sclk is distributed to
Txlane modules on their aRefClkP pins as a reference clock.

TxLC has a controller which is responsible for (i) executing hardware routine called TxLinkSync. Upon suc-
cessful execution of hardware routine TxLinkSync, TxLink has acquired link synchronization. (ii) Upon successful
completion of TxLinkSync, TxLC enters the state of MissionMode during which TxLink is functional and switch
fabric at both ends of ICE9 can exchange packets. In MissionMode, TxLC will act as a link supervisor and keep
checking for link errors including loss of link synchronization. When it detects that link synchronization is lost,
then TxLC exits MissionMode and enters hardware routine TxLinkSync for re-synchronization of TxLink. TxLC
has another output port for supporting TxLink loopback path.

In hardware execution routine TxLinkSync, controller TxLC communicates with hardware execution routine
(called RxLC and described earlier in section-2.8) of corresponding 8-lane receiver using return path through
LinkEncoder. In hardware execution routine, TxLC controller acts as a slave and RxLC controller acts as a master.
Hardware routine TxLinkSync gets executed once after power is up, and after PLLs are locked, and the reset signal
is negated. The TxLinkSync routine is entered from MissionMode if loss of synchronization, i.e. loss of heartbeat,
is detected.

Loss of TxLink synchronization will occur when any of the following conditions is detected.

(a) loss of signal on serial receiver or excessive character or disparity errors on fc-lane,

(b) setting of flag-ForceRetraining through SCB (see section-2.9.1),

(c) clearing of flag-Heartbeat from heartbeat timeout on the fc-lane (see section-2.9.1),

(d) disabling TxLink with SCB TxLcControl Ena bit, SoftReset, or hard reset line.

2.9.1 Status Flags required by TxLC

TxLC will have following status flags.

May 14, 2014 64 Rev 51328

SiCortex Confidential 2.9. THE FABRIC LINK TRANSMITTER

1. Flag-LaneHealthStatus RxLane-FC provides lane status through flag-LaneHealthStatus. The flag-LaneHealthStatus
is set if RxLane-FC is receiving valid 8B10B encoded characters from lane, incoming characters are clear of disparity
errors, and has acquired frame, otherwise flag is reset. Software may also reset flag-LaneHealthStatus through SCB
by setting ClrLaneHealth.

2. Flag-ForceRetraining The TxLinkSync routine may be initiated by Software setting flag-ForceRetraining
on SCB. The transition from 0 to 1 of flag-ForceRetraining causes TxLyncSync to be initiated. Software should
then clear flag-ForceRetraining so it is available for future use.

3. Flag-Heartbeat During MissionMode the TxLink uses a “heartbeat”method of detecting good communica-
tion from the RxLink in the other chip. The following steps describe heartbeat operation:

• When the TxLink achieves MissionMode, flag-Heartbeat is set.

• During MissionMode, the RxLink in the other chip drives continuous control packets which will use SOP
(start of packet char, k28.3) character as a marker. The transition from SOP character to non-SOP character
detects the heartbeat.

• During MissionMode, if heartbeat is not detected for consecutive 128 clock cycles, then it is assumed that
link has lost heartbeat and flag-Heartbeat is cleared, otherwise it remains set.

• A loss of Heartbeat causes a loss of MissionMode, and routine TxLyncSync is re-entered.

• Also, if MissionMode is lost for any other reason, flag-Heartbeat will be cleared.

4. Flag-TxLinkSync The TxLC controller maintains a status flag-TxLinkSync. When flag-TxLinkSync is set,
it indicates that TxLC is in hardware execution routine otherwise this flag is reset. This flag will remain set if
hardware execution routine TxLinkSync has encountered a failure and/or routine has not completed successfully.

5. Flag-MissionMode The flag-MissionMode is a status flag. It is controlled by TxLC module. This flag is
set when hardware execution routine TxLinkSync has been successfully completed. When flag-MissionMode is set,
it indicates that TxLink is operational and control of a link has been transferred to the fabric switch. Setting of
flag-MissionMode implies that (i) fabric switch at both ends will maintain link heartbeat on data transfer in both
direction, (ii) spurious lane errors will be detected by FC lane controller as bit errors, and those errors are logged,
(iii) spurious bit errors will not make link unusable, and (iv) persistent bit errors on FC lane will cause loss of
link health by resetting of flag-LaneHealth, which in turn, will force re-entry of the hardware execution routine
TxLinkSync by resetting flag-MissionMode and setting flag-TRxLinkSync.

2.9.2 TxLinkSync Routine

Jump to Begin:

• Begin:
If (flag-ForceRetraining) then jump to Step-1

• Step-1:
Set flag-TxLinkSync, reset flag-MissionMode, reset flag-Heartbeat.
Force Idle on Control Packet-to-Switch, Disable data path from FORD-to-TxLink, Force k 28.5 on all 8
LaneEncoders (send NULL)
(sending k 28.5 without Heartbeat will force receiver to jump to RxLinkSync routine)
Wait till flag-LaneHealthStatus is set, then jump to Step-2
Note: If flag-LinkHealth is asserted for less than 3-ticks, then controller will not jump to Step-2 and will
re-enter or remain in Step-1. For each occurance of such case, or each jump to Step-2, R FltxTxLcCount will
be incremented.

• Step-2:
(when flag-LaneHealth is set, then control lane is receiving k 28.5)
If (˜flag-LaneHealth) then jump to Step-1
else

May 14, 2014 65 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Force Idle on Control Packet-to-Switch, Disable data path from FORD-to-TxLink, Force k 28.5 on all 8
LaneEncoders (send NULL)
(sending k 28.5 without Heartbeat will force receiver to jump to RxLinkSync routine)
Wait for time T1 = (R FltxTxLcControl.Step2WaitTime number of sclks), where
T1(min) = (Rate of Heartbeat + 4 times maximum link delays) = (100 * sclk period) + 4 * 10nS = 500 +
40 = 540nsec
Jump to Step-3

• Step-3:
If (˜flag-LaneHealth) then jump to Step-1
else
Force Idle on Control Packet-to-Switch, Disable data path from FORD-to-TxLink, Enable FarEndloopback
path
Jump to Step-4

• Step-4:
If (˜flag-LaneHealth) then jump to Step-1
else
If EOLS (k28.2) then Disable FarEndloopback path, set flag-Heartbeat, and jump to END
else
Remain in Step-4, continue FarEndloopback, keep watching for EOLS or ˜flag-LaneHealth (no time limit).

• END: (enter MissionMode operation)
Set flag-MissionMode, Reset flag-TxLinkSync
Enable data path from FabricSwitch-to-TxLink.
Enable control packet path from TxLink-to-FabricSwitch
Become TxLink supervisor, watching for Heartbeat and bit errors.
Log bit error(s) and disparity error(s) observed on TxLink
if (˜flag-LaneHealth) OR (flag-ForceRetraining goes 0-to-1) OR (˜flag-Heartbeat)
Jump to Step-1

2.9.3 Verification Checklist:

1. Set/clear flag-LaneHealthStatus during TxLinkSync

2. asynchronous events flag-ForceRetraining, flag-Heartbeat

3. set/clear flag-TxLinkSync, flag-MissionMode

4. Enable/disable TxLC

5. Verify FarEndLoopback mode

6. a. Verify bit-blasting mode
b. Inject disparity error and invalid character error during bit-blasting mode

2.10 Reset bring-up sequence

Following steps are required to bring-up link after reset:
(later on we say what to do to cause each of these steps)

1. Wait for refclk stabilization time = TBD

2. Wait for QPMA Tx PLL(s) lock (aTxClkP stabilization time) = 15 uS

3. a. Wait for calibration time = TBD
b. Wait for QPMA Rx PLL(s) unlock = 10 uS
c. Wait for QPMA Rx PLL(s) lock (aRxClkN stabilization time) = 15 uS
(AnalogBits “ABIPCCE2 Custom PLL DATASHEET”
says 10 uS is enough, but we’ve seen it take slightly longer to lock)

May 14, 2014 66 Rev 51328

SiCortex Confidential 2.10. RESET BRING-UP SEQUENCE

4. Wait for Skip-beat operation. Max Time it takes =
a. max. skipbeat operation before step step = 5 x (31 x 5) = 775ns
b. skipbeat operations before second step = 5 x (31 x 5) = 775ns
c. skipbeat operations before final step = 5 x (31 x 5) = 775ns
d. skipbeat operation at adjustment = 5 x (31 x 5) = 775ns
e. Total time = 775 x 4 = 3100ns

5. Wait for framing. Max time = 3200ns as described in section on framing.

6. Now PMA is ready and LinkSync can begin

7. When link enters MissionMode, invalid character error and disparity error counters may contain non-zero
values. Software must initialize these registers before enabling interrupt from these registers.

2.10.1 When do Link Registers Get Reset

2.10.1.1 AnalogBits QPMA Registers

AnalogBits Internal QPMA Registers only go to their ”reset values” or more-accurately, their ”power-on values”
when the power gets turned on. They are unaffected by either SoftReset registers or the ”hard reset” reset signal
coming into FL. This refers to the registers that are within the AnalogBits QPMA’s, not the QSC registers. These
registers are not directly accessible from the SCB bus.

2.10.1.2 QSC Registers

QSC Registers are reset by the ”hard-reset” reset signal, but are not affected by any SoftReset registers. Most
of the QSC Registers (with the exception of R QscInterrupt) are used to allow indirect access from the SCB bus
to the AnalogBits Internal QPMA Registers.

2.10.1.3 FLT and FLR link Registers

Flt0, Flt1, Flt2, Flr0, Flr1, Flr2 Registers get reset by the ”hard-reset” reset signal, but are not affected by any
SoftReset registers. The SoftReset bit of a particular link affects operation of that particular link only.

For example, writing a 1 and then writing a 0 to R Flr2SoftReset will cause all the control circuitry of Flr2 to
go to their reset values including resetting all the internal state machines of link FLR-2. This will not cause any of
the R Flr2* registers to go to reset values.

2.10.2 Enabling Links

When power first comes on the Links are disabled and non-operational in several ways: QPMA units do not
have valid Impedance Settings, QPMA units do not have valid Calibration Settings, and Link units have their
LinkSync Routines disabled.

After a hard-reset, or SoftReset, if configuration had previously been done during this period of power being
ON, the QPMA units retain their prior Impedance and Calibration Settings, but the Link units have their LinkSync
Routines disabled.

The recommended steps to being up links are :

1. Determine QPMA Impedance Settings, to ”factory values”, or discover them.

2. Configure QPMA Calibration Settings, to saved values, or discover them.

3. Initialize SkipBeat Functions.

4. Enable Links.

May 14, 2014 67 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.10.2.1 Determine QPMA Impedance Settings

Since these settings only depend on the silicon manufacturing process of that particular ICE-9’s individual
QPMA cores, not which slot the board it’s on is plugged in to, the best settings can be determined at the factory,
saved somewhere, and loaded at this time.

If we choose to discover them each time we power-on, or when they’re determined ”at the factory”, they can be
determined by a process of SCB bus writes and reads, without the link being enabled. The status of ICE-9’s at the
other end of Links doesn’t matter.

Ques: what about that link going to a slot with missing board?

QPMA Impedance values are set using SCB register R QscQpmaImpCalibration.The process of discovering
correct values also uses SCB register R QscQpmaStatus. Refer to Analogbit’s PRM manual for further detatils.

2.10.2.2 Configure QPMA Calibration Settings

QPMA Calibration Settings for a particular Link must be determined while that Link is enabled by the procee-
dure above, and correct Impedance Settings must already be loaded.

QPMA Calibration Settings for a particular Link must be determined by trial and error during the same time
period that the ICE-9 at the other end of that Link’s fabric connection is also trying to determine it’s own QPMA
Calibration Settings for Link on that fabric connection.

QPMA Calibration values are set using R QscGo, R QscStatus, R QscCA, R QscSerDatAR, R QscSerDatT,
R QscSerDatP.

Note that the details of “good working algorithm for trial and error”, and what values to try, are not listed here
yet.

When both ends of a Fabric Connection have configured good QPMA Calibration values, each end can see
that because the LinkSync routine will make progress to later steps. This can be seen in R FlrxRxLcStatus and
R FltxTxLcStatus registers by looking at fields Steps and MissionMode.

The ICE-9’s on the two ends of a particular Fabric Connection may be beginning this step at significantly-
different times, differing by thousands of clocks. The early steps of the LinkSync Routines don’t mind this, don’t
time-out, and will have no problem waiting for the other end to start trying Calibration Values. Similarly, the
algorithm for trying values and checking LcStatus will be a repeating loop, continuing long enough for the other
ICE-9 to start trying values.

2.10.2.3 Initialize SkipBeat Functions

For the 3 FLT’s, write 1, and then write 0 to bit SkipBeatEnable in R FltxFcLaneControl, leaving field Skip-
BeatOffset at it’s reset value (unless it has been determined that another value should be used). If QPMA PLLs
are locked on stable clocks, the SkipBeat function is fast enough to complete before you can get the 0 written.

For each lane in each of the 3 FLR’s write 1, and then write 0 to bit SkipBeatEnable in the R FlrxLaneControl
register for that lane, leaving field SkipBeatOffset at it’s reset value (unless it has been determined that another
value should be used).

2.10.2.4 Enable the Links

A Link is enabled by writing 3 times to it’s ”LcControl” register, first to enable it, then to set the ForceRT
bit, then to clear the ForceRT bit. Write 0x2, then write 0x3, then write 0x2 to each of R Flt0TxLcControl,
R Flt1TxLcControl, R Flt2TxLcControl, R Flr0RxLcControl, R Flr1RxLcControl, R Flr2RxLcControl.

Note: All interrupt enables reset to a not-enabled state. If since the last reset interrupts have been enabled, it
is desirable to disable interrupts from links which are about to enter in ForceRT. Also, before enabling link, it is
desirable to clear all interrupts from that link, verify that all interrupt generating conditions are not present.

2.11 Diagnostic Modes

The diagnostic modes are supported to aid in lab debug of links. It is a requirement that for correct operation
in diagnostic mode, the receiver link and the transmitter link at both ends of a link have successfully configured
their respective QPMA calibration settings. Also, at most only ONE of the 3 diagnostic modes described below

May 14, 2014 68 Rev 51328

SiCortex Confidential 2.11. DIAGNOSTIC MODES

(Near End Loopback, Far End Loopback, or Bit-Blasting Mode) should be enabled at any one time for a particular
link or pair of links.

2.11.1 NearEndLoopback Mode

The NearEndLoopback mode of opeartion is supported to verify that receiver path is connected to transmitter
path and thus verify data path from FSW to transmitter link to receiver link to FSW.

In NearEndLoopback mode, a receive data link is connected to a transmit data link and thus receiver lanes
are disconnected from off-chip path from PHY. It is important to note that the transmitter lanes will still drive
transmitter PHY.

All 3 links can be simultaneously configured in NearEndLoopback Mode.

2.11.1.1 Link-0

For connecting FLR0 to FLT0, set LpBkNearEnd[3:0] field of R QscQpmaControl0 and R QscQpmaControl1
register. Also set LpBkNearEnd[0] field of R QscQpmaControl6.

2.11.1.2 Link-1

For connecting FLR1 to FLT1, set LpBkNearEnd[3:0] field of R QscQpmaControl2 and R QscQpmaControl3
register. Also set LpBkNearEnd[1] field of R QscQpmaControl6.

2.11.1.3 Link-2

For connecting FLR2 to FLT2, set LpBkNearEnd[3:0] field of R QscQpmaControl4 and R QscQpmaControl5
register. Also set LpBkNearEnd[3] field of R QscQpmaControl6.

2.11.2 FarEndLoopback Mode

The FarEndLoopback mode of operation is supported to verify that receiver link is loopbacked to transmitter
link in SCLK domain, i.e. Flt0 and Flr0 can be connected, and/or Flt1 and Flr1 can be connected, and/or Flt2
and Flr2 can be connected.

Do not confuse this with the so called “FarEndLoopback” used in the LinkSync Routine, which is within an
individual FLT, FC lane in to the 8 data lanes out.

This FarEndLoopback mode is supported to verify 8 data lanes and 1 flow control lane connectivity from receiver
PHY to transmitter PHY in SCLK domain. The far end loopback path will bypass 10B8B decoding at the receiver
end and 8B10B encoding at the transmitter end.

The far end loopback mode will not invoke skipbeat function, or acquire lane health, or word synchronization.
The far end loopback mode assumes that impedance and calibration circuit for a given link is initialized to

correct settings and skipbeat function for that link is completed successfully.
In FarEndLoopback mode, the mission mode signal going to FSW is de-asserted and thus FSW is disconnected

to/from PHY or fabric switch is bypassed. This would allow the 2 remote Ice9’s that have been connected to each
other through this local Ice9 to bring up MissionMode with each other through this 2-hop link.

All 3 links can be simultaneously configured in FarEndLoopback Mode.

2.11.3 Bit-Blasting Mode

The bit-blasting mode is supported to verify link integrity from a transmitter to a receiver. For a given link, it
is suggessted that bit-blasting mode may be invoked only after both ends of a link have entered in Mission Mode.
The bit-blasting mode does not attempt to invoke skipbeat function, or does not attempt to acquire lane health,
or word synchronization.

Each link may be configured in Bit-Blasting Mode as follows:

1. Verify that Link under test is in mission mode.
This step is not mandatory step but it is strongly suggested because for bit-blasting function to operate
correctly, lane must have successfully completed skipbeat function and acquired lane health. Note that bit-
blasting mode does not attempt to invoke skipbeat function, nor does it attempt to acquire lane health, nor
does it acquire word synchronization.

May 14, 2014 69 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2. Write 0x8800 in R FlrxBBDiag register when FLR is to enter in bit-blasting mode (Refer to section-2.17.18).
Write 0x80FF in R FLtxBBDiag register when FLT is to enter in bi-blasting mode (Refer to section-2.16.16).
This step serves 3 purposes:
(a) It disables heartbeat counter from expiring which disables invoking hardware LinkSync routine.
(b) It disconnects FSW from link by deasserting MissionMode and DataValid signals going to FSW.
(c) It sends NULL and ANULL characters on all driver lanes which keeps other end of link in MissionMode.
This will allow software to manage bit-blasting mode at both ends of link with ease.

3. Write R FlxxDiag register keeping BBMode set and also selecting other fields of this register.
Note that driver lanes which are not selected to drive bit-blasting pattern will drive PNULL (k28.5) patterns.

4. Monitor R FlxxDiagStatus (section-2.17.19 and section-2.16.16) register for results of bit-blasting mode.
There are 2 bits assigned per receiver lane. One bit is Sync-bit and it indicates if receiver lane has acquired
synchronization for configured bit-blasting pattern, and the other bit is Error-bit which indicates if any error
is observed after synchronization is acquired.
By de-selecting lane, both status bits associated with this lane are cleared. By selecting lane again will make
both status bits assocaited with this lane valid. While in BBMode, toggling of lane select field is permitted.

5. Before exiting bit-blasting mode, execute above step-2.

6. Clear R FlxxDiag register to enter in MissionMode again.

2.11.4 ATE Testing of Analogbits ABICDR43

ATE testing of Analogbits ABICDR43 macro can be carried out at speed and in Near-End-Loopback mode.
Instructions for Near-End-Loopback test follows.

1. Execute reset power on sequence in ICE9.

2. Put all seven QPMA in NearEndLoopback mode by writing to R QscQpmaControl registers.
(LpBkNearEnd=1, ForceTxHiZ=1, ForceRxHiZ=1, and clearing rest of the bits)

3. Initiate SkipBeat function in FLR0, FLR1, and FLR2 receiver links. Also initiate Skipbeat function in FLT0,
FLT1, adn FLT2 links.
(toggle SkipBeatEnable bit in all LaneControl registers)

4. Initiate LinkSync routine in FLR0, FLR1, and FLR2 receiver links. Also initiate Skipbeat function in FLT0,
FLT1, adn FLT2 links.
(set Ena bit and then toggle ForceRT bit in all LcControl registers)

5. Wait for 10 microsec (enough time for links to reach MissionMode).

6. Read link status register of FLR0, FLR1, FLR2, FLT0, FLT1, and FLT2 and verify that each link (a) is not
in reset, (b) is in MissionMode, (c) has heartbeat, and (d) has its Step[3:0] field clear.

2.11.5 PLL Bypass Mode Testing of Analogbits ABICDR43

Analogbits ABICDR43 serdes macro (QPMA) has 5 seperate PLL. One is TXPLL and used by four transmitter
lanes. The other four copies are CDRPLL and each receiver lane uses one copy. The PLL Bypass Mode test should
configure all five PLLs of QPMA in bypass mode and then validate data path connectivity from transmitter lane to
corresponding receiver lane. When PLL are in bypass mode, it generates internal high speed clock same as that of
reference clock. Also, this test is intended to be used for structural testing of serializer and deserializer of QPMA.

In PLL Bypass test, once QPMA is configured in PLL bypass mode, the data pattern of all 1’s is driven on
its parallel port TxDI[9:0] and kept unchanged for 100 sclk cycles. Data from parallel port go through serializer
of transmit path, then loops back because of near end loopback, and then gets deserialized in receiver path on
subsequent clock cycles. After “TBD” sclk cycles (but less than 100) cycles later it settles down on receiver parallel
port RxDO[19:0]. Test will check if receiver port has observed all 1’s on all outputs. Test is decalred partially
successful if all 1’s are observed on RxDO[19:0].

Two more test loops as described above are carried out, first for data pattern of 0’s and next one for 1’s. Test
is declared successful only if all 3 data patterns are successfully observed on output port.

May 14, 2014 70 Rev 51328

SiCortex Confidential 2.12. ERROR RECOVERY PROCEDURE

There are 7 instances of QPMA in ICE9. Following steps are recommended for testing PLL in bypass mode of
each QPMA.

1. Configure TXPLL in reset by setting bits TxPllRst of R QscQpmaImpCalibratio.

2. Configure CDRPLL in reset by setting bits of CDRPLLRst of R QscQpmaControl.

3. Configure QPMA in power-up mode by clearing bit so f RxPwrDown of R QscQpmaControl.

4. Disable IDDQ mode of QPMA by clearing IDDQ bit of R QscQpmaControl.

5. Force transmit and receive macro in HiZ by setting ForceTxHiZ and ForceRxHiZ bits of R QscQpmaControl.

6. Enable near end loopback by setting LpBkNearEnd bits of R QscQpmaControl.

7. Enable high frequency transmit and receive clock by asserting TxHFClkDnB and RxHFClkDnB of R QscQpmaTestControl.

8. Wait for 400 sclk cycles (enough time for data input patterns to propagate from TxDI to RxDO register) and
then check if PllBpStatus bits R QscQpmaStatus to verify test result.

2.12 Error recovery procedure

Fabric link CSRs are designed to capture and hold cause and state of the error. These status registers are
cleared by SCB master. The SCB master should clear error state and error status register(s) before reverting to
normal mode of operation.

2.12.1 Force Retraining

The ForceRT bits of csr-2.16.10 and csr-2.17.10 allow forcing retraining sequence on respective controller. The
retraining routine should be forced by SCB master only after clearing of all error states in respective controller.
The retraining routine can also be forced while respective controller is in Mission Mode.

2.13 Bring-Up Failure Points

The link bring-up process can fail at a variety of detectable points. Here is a list of them, and what it may
mean if you fail at each point. Possible example define-names are given in all-capitals for each failure.

The first few are ”whole-node”, and later ones are ”for a link”.
For a given FLR or FTL, these are listed in the same order as the actions (and checks) are done, doing first

the whole-node actions, then the actions for the given FLR or FLT. So, if you fail at a particular point in this list,
that means all previous actions for that link were successful. (exception: ERR FL INIT CODE <n>)

In a failure, it would be nice also say what the other end is, which board/node/link, or have system-sensitive
diags function like ”print link other end(this board, this node, this link)”.

==
These first 4 failure points have to do with calibrating the 7 qpmas:
—————————————————————————-
ERR FL TXPLL NO LOCK=Not all of the Tx PLLs locked. Specifically, failed to get R QscQpmaStatus.TxClkStable

in at least 1 of the 7 qpma’s, after waiting long enough after setting and then clearing the 7 R QscQpmaImpCalibration.RxPllRst
bits.

Look at whether you’ve started chip clocks and voltages correctly. If you still get this, you probably have a bad
Ice9 chip (bad Tx PLL).

Note that if you are using chips that had the normal testing at the chip vendor, the packaged chips have been
tested for this being good. The same is true for failures below where ”bad chip” is likely cause.

—————————————————————————-
ERR FL ZCALIB TOO HI = The determined ZCalib transition point was above the legal range, or ZCom-

pOp was 1 no matter how high a ZCalib was tried, on at least one qpma.
ERR FL ZCALIB TOO LO = The determined ZCalib transition point was below the legal range, or ZCom-

pOp was 0 no matter how low a ZCalib was tried, on at least one qpma.

May 14, 2014 71 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Out-of-legal-range ZCalib transition point in one qpma in an Ice9 supplied proper voltages and clocks, indicates
a bad Ice9 chip.

It’s nice if values, good or bad, go into a log file somewhere, in case in a later step we have excessive bit errors
we’re trying to diagnose.

—————————————————————————-
ERR FL QSC WR FAIL = When setting qpma lanes with A T P R values, at least one lane didn’t get

QscSuccess within a reasonable time.
Since these are done individually, the software knows which ones failed. Repeated failure is due to bad chip,

incorrect software sequence or Qsc addresses, or inadequate wait time.
—————————————————————————-
Once you’ve calibrated the 7 qpmas, you can bring-up (or not bring up) each of the 3 FLTs and each of the 3

FLRs separately. If you don’t have working Ice9s at the other end of some of these 6 links, the others can still be
brought up to MissionMode, and transfer packets.

The following errors must be clear whether it’s FLR or FLT, and which link. This information could be made
part of the error-define-name, or be provided as extra information.

—————————————————————————-
ERR FL RXPLL NO UNLOCK = After resetting Rx PLLs for this link’s lanes, one or more failed to

unlock in a reasonable time. (FLT has only 1 Rx Lane)
You should be able to unlock PLLs no matter what the Ice9 at the other end is doing. Failure here suggests

this Ice9 is bad, or it has bad configuration/clocks/voltages.
—————————————————————————-
ERR FL RXPLL NO LOCK SOME= In this FLR, after unresetting the 8 data lane Rx PLLs, some failed

to lock onto incoming signals in a reasonable time.
ERR FL RXPLL NO LOCK ALL = In this FLR, after unresetting the 8 data lane Rx PLLs, all 8 failed

to lock onto incoming signals in a reasonable time.
ERR FL RXPLL NO LOCK = In this FLT, after unresetting the control lane Rx PLL, it failed to lock

onto incoming signal in a reasonable time.
As shown above, for FLR I suggest writing the small extra code to differentiate between ”all failed to lock” and

”some failed to lock” because ”all failed to lock” strongly suggests that the Ice9 at the other end has not completed
initial calibration, is in reset, or there’s actaully NO Ice9 at the other end.

Rx PLL locking is the first point in the process where we are affected by the Ice9 at the other end. Rx PLL
locking is also the first point in the process where we are affected by bad connections, serious noise on the fabric
between chips, or improper calibration on either end.

Failure to get Rx PLL lock is a condition worse than the ”bit errors” which can cause problems in later steps.
The following can interfere with Rx PLL lock, or cause bit errors and prevent LaneHealth:

- Other end is not yet transmitting.
- Other end has not finished calibration.
- Other end has wrong Tx calibration.
- This end has wrong Rx calibration.
- This Ice9 or other-end Ice9 is in some diagnostic mode (see next section “Registers that can Prevent Link

Coming Up”).
- Signal not strong enough, serious reflections, or noise from outside of the differential pair (wrong Tx or Rx

calibration).
- Unstable Tx clock, other-end Tx PLL has not locked, or other-end sclk not stable.
- One or both signals of differential pair have a bad connection.
- Bad capacitor on differential pair
- Other end is in reset.
- Other end has power problems.
- Other end is on a board that’s not plugged-in.
- Bad Ice9 on either end.
Note that you can get ”false Rx PLL lock”. Reset then unreset of PLL is done to clear old false locks. If the

signal on the differential pair is very bad, has data plus lots of noise, or not being driven but wires are picking-up
noise, the Rx PLL might still lock onto what it sees.

You might check whether PLL locking is coming and going.
If it’s an FLR, Diagnostics should say WHICH rx lanes failed to lock.
—————————————————————————-

May 14, 2014 72 Rev 51328

SiCortex Confidential 2.13. BRING-UP FAILURE POINTS

ERR FL SKIPBEAT FAIL = SkipBeat failed for at least one Rx data lane, when checked more than long
enough after SkipBeat init.

SkipBeat is aligning a divided-by-10 version of the clock formed by Rx PLL locking, with Ice9’s sclk. The most
likely reason for SkipBeat failure is that you no-longer have Rx PLL lock, or it comes and goes.

A valid SkipBeat is one that completes near the specified time period. Waiting far longer and eventually seeing
SbSuccess is not valid. You should restart SkipBeat AFTER aquiring a consistent Rx PLL lock, then look for
success.

—————————————————————————-
ERR FL NO HEALTH = No LaneHealth on at least one Rx lane, when checked a sufficient time after

getting SkipBeatSuccess on all Rx lanes. (FLT has only 1 Rx Lane)
The hardware will continuously try to get LaneHealth, with no software-starting of Rotator needed.
Do you still have Rx PLL lock? Even if you do, try re-doing Rx PLL lock and SkipBeat.
Some reasons listed under ERR FL RXPLL NO LOCK can prevent LaneHealth, even if we have Rx PLL lock.
With a weak signal or noise causing bit errors in an ongoing manner, there may be enough edges with equal

spacing to sustain Rx PLL lock, while causing enough character errors to prevent LaneHealth, or cause LaneHealth
to come and go.

With LaneHealth==0 you should see Rotator trying different values, and character error counts increasing.
A miss-match of configured sclk frequencys between 2 Ice9’s may go unnoticed up to this point, where you are

unable to get LaneHealth.
Do we have R QscQpmaStatus.RefClkStable at both ends?
Is this Ice9 or other-end Ice9 in some diagnostic mode? See next section “Registers that can Prevent Link

Coming Up”.
If it’s an FLR, Diagnostics should say WHICH rx lanes can’t get LaneHealth.
—————————————————————————-
At this point the FLT or FLR is started into the LinkSync routine, which will try repeatedly to go through Step1,

Step2, Step3, Step4, to MissionMode, unless, in uncommon cases, it gets stuck at some step. See ERR FL MISI GONE
below for more details on getting stuck in Steps.

—————————————————————————-
ERR FL SYNC BIT ERRS = Bit errors on at least one lane in this link, even though LinkHealth is good,

while waiting to get to MissionMode.
After getting LinkHealth (same as LaneHealth on all lanes), all bit error counters should be cleared. This

condition is that you got new bit errors, after clearing the counters.
If the number of bit errors is unchanging, wait awhile and the link may still achieve MissionMode.
—————————————————————————-
ERR FL SYNC LOST HEALTH = LaneHealth is false on at least one lane in this link, while waiting to

get to MissionMode.
The hardware will try to recover LaneHealth, and if it can, the link may still make it to MissionMode.
—————————————————————————-
ERR FL SYNC TIMEOUT = MissionMode not achieved on this link after too long a time in state sc-

fab link state syncing.
See ERR FL MISI GONE below for more details on different cases.
If bit errors are not changing, LaneHealth is good, something’s wrong, Link may be stuck, and may need to be

restarted by Software.
—————————————————————————-
The error codes below are for after MissionMode has been achieved. Using different error-defines after Mission-

Mode gives a little more information,
If MissionMode is lost, the hardware will repeatedly try to recover through the LinkSync routine to MissionMode,

unless it gets stuck.
You can read FlrxRxLcStatus or FltxTxLcStatus to see many aspects of link state in one register-read: Mission-

Mode, LinkSync-active, LinkSync Step, whether all Rx PLLs are locked, whether all lanes have LaneHealth.
The following error cases are listed from lightest-to-heaviest badness:
—————————————————————————-
ERR FL MISI BIT ERRS= After MissionMode achieved, MissionMode stays up adequately, but bit errors

keep happening on this link.
—————————————————————————-
ERR FL MISI LCCOUNT HI = MissionMode is up now, but it comes and goes too often.

May 14, 2014 73 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

This error is being reported because ”too many”past reads of LcStatus.MissionMode gave 0, or because FlrxRxL-
cCount or FltxTxLcCount has become ”too high”, or we see that count continue to increment.

—————————————————————————-
ERR FL MISI GONE = After MissionMode achieved, MissionMode is now false in this link. Rx PLLs are

still locked. Rx Lanes have LaneHealth now.
Poll for MissionMode for enough time for Syncing to happen. If still no MissionMode after reasonable time,

Software should re-start the LinkSync routine.
If Steps==1 and is unchanging, or repeately going back to Steps==1, it may have excessive bit errors. Check

all lanes for LaneHealth, and see if BitErrors are changing.
If Steps==2, or a mix of Steps==1 and Steps==2 for a long time, we have a low but consistent rate of bit

errors, preventing Syncing.
In an FLR, if Steps==4 (Step3), with FlrxRxLcStatus.RxLinkSync==1 for a long time, the FLT at the other

end should be looked at. It’s either getting lots of bit errors over the control lane from this FLR, or the control
lane seems dead, or FLT hasn’t been started to do Syncing.

In an FLR, if Steps==8 (Step4) for too long, we have ”the Step4 hang”due to infrequent bit errors, and Software
must restart.

It’s ok for an FLT to have Steps==8 (Step4) for a fairly long time, while the FLR at the other end tries
repeatedly to get MissionMode. But it also might be that the FLR is stuck or has a false-MissionMode. If excessive
time passes, the FLT can try a restart of LinkSync, which can clear some conditions. If it doesn’t, the problem
must be dealt with at the other end, in the Ice9 containing the FLR. At the other end you can see if FLR is stuck
(requiring a restart), or one or more of the data lanes from FLT is having excessive bit errors, or seems dead.

After MissionMode, in FLT and FLR, if no SoftReset has been done, either
(a) MissionMode==1, LinkSync==0, Steps==0, or
(b) MissionMode==0, LinkSync==1, Steps== one of 1, 2, 4, 8.
Any other combination is a (rare) corrupt state, and you should restart the link, doing SoftReset first. After

SoftReset expect MissionMode==0, LinkSync==0, Steps==0.
—————————————————————————-
ERR FL MISI NO HEALTH = After MissionMode achieved, MissionMode is now false in this link. Rx

PLLs are still locked, but LcStatus.LinkHealth==0 consistently with repeated reading, which means at least one
Rx Lane has LaneHealth==0.

—————————————————————————-
ERR FL MISI RXPLL NO LOCK = After MissionMode achieved, MissionMode is now false in this link.

AllReset (or AllRxLanesReset) is 0 which means at least one Rx Lane has lost PLL lock.
ERR FL MISI RXPLL NO LOCK ALL= In this FLR, after MissionMode achieved, MissionMode is now

false in this link. AllRxLanesReset is 0, but furthermore, all 8 bits of FlrxLinkStatus.CdrPllLock are 0, consistently.
This suggests a shut-down or removal of the Ice9 at the other end.

==
ERR FL INIT CODE <n> = Link bring-up failed in one of the places where a software sanity check is

done. This failure had nothing to do with hardware behavior. <n> is a unique number for each such place in the
link bring-up code.

2.14 Registers That Can Prevent Link Coming Up

After any diagnostic or manual mode has been used, like bit-blasting or loopback, you need to either restore all
registers to their normal values or do a hard-reset before attempting normal bring-up. Bring-up software typically
doesn’t write reset values to registers it would not otherwise be writing. Even when bring-up software writes a
register, that software may be carefully leaving-unchanged fields within a register it’s not actively using.

Abnormal configuration in an Ice9’s registers (or the Ice9 at the other end of the Link) can prevent a Link from
coming up to MissionMode.

These registers (or specific fields) could prevent bring-up if badly configured:
—————————
R FltxSoftReset
R FltxFcLaneControl (fields: ForceSkipBeat, SkipBeatOffset)
R FltxAltNull
R FltxHeartbeat (fields: Dis, Threshold)
R FltxS2WaitTime

May 14, 2014 74 Rev 51328

SiCortex Confidential 2.15. COMMON REGISTERS AND DEFINITIONS

R FltxMOR
R FltxFarEndLoopback

R FltxBBDiag
—————————
R FlrxSoftReset

R FlrxWSyncMode
R FlrxHeartbeat (fields: Dis, Threshold)
R FlrxS2WaitTime
R FlrxLaneControl[7:0] (fields: ForceSkipBeat, SkipBeatOffset)

R FlrxMOR[7:0]
R FlrxBBDiag
—————————

R QscQpmaControl[6:0] (all fields other than CDRPLLRst)
R QscQpmaTestControl[6:0]
—————————

Also, if you can’t bring up a link because of excessive interrupts, maybe a link interrupt is inappropriately
enabled, or wasn’t cleared.

2.15 Common Registers and Definitions

2.15.1 Package Attributes

Package

chip fl spec

Attributes

–public rdwr accessors

2.15.2 Definitions

Defines

FL
Constant Mnemonic Definition

10’h7f STEP2 WAIT TIME Sleep timer value. Cycles to wait in step2.

2.15.3 Link Symbols

Enum

FlSymbols
Constant Mnemonic (Code Name) Definition

8’h1c ANULL k28.0 Alternate Null.
8’h3c SOLS k28.1 Start of Link Sync.
8’h5c EOLS k28.2 End of Link Sync.
8’h7c SOP k28.3 Start of Packet.
8’h9c EOP k28.4 End of Packet.
8’hbc PNULL k28.5 Primary Null.
8’hdc k28.6 Reserved.
8’hfc k28.7 Reserved.
8’hf7 k23.7 Reserved.
8’hfb k27.7 Reserved.
8’hfd k29.7 Reserved.
8’hfe k30.7 Reserved.

May 14, 2014 75 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.15.4 Flr Events

The following events are trackable by SCB statistical event counting.

Enum

FlrScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Sclk cycles. Always counts.
8’h01-8’hff Reserved.

2.15.5 Flt Events

The following events are trackable by SCB statistical event counting.

Enum

FltScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Sclk cycles. Always counts.
8’h01-8’hff Reserved.

2.16 FLT Registers

2.16.1 R FltxSoftReset

Register

R FltxSoftReset

Attributes

-kernel

Address

0x0 0000 0000 (plus base address)

Bit Mnemonic Access Reset Type Definition

0 SoftReset RW 0 Reset Link when set. When written 1, transmitter link
remains in reset state. When written 0, the transmitter
link logic come out of the reset state.

Operation of SoftReset

When SoftReset is asserted, all CSRs of FLTx remain unaffected by SoftReset. However, control flops within
FLTx module are intialized to power-on reset value. After de-assertion of SoftReset, software will have to initiate
skipbeat function on its flow control lane and then enable transmit link.

May 14, 2014 76 Rev 51328

SiCortex Confidential 2.16. FLT REGISTERS

2.16.2 R Fltx FC Lane Control Register

Register

R FltxFcLaneControl

Attributes

-kernel

Address

0x0 0000 0004 (plus base address)

Bit Mnemonic Access Reset Type Definition

7 ClrLaneHealth RW 0 Clear lane health.
For every transition of 0-to-1 of this bit, lane health bit
of FC lane is cleared.

6 Reserved.
5 ForceSkipBeat RW 0 Force Skipbeat.

This bit must remain clear when SkipBeatEnable is clear.
When SkipBeatEnable is set : For every transition of 0-
to-1 of this bit, RxClk offset is skipped 1-bit time. This
field is intended to be used in manual setting of RxClk.
This bit should be clear after manual setting of RxClk is
completed.

4 SkipBeatEnable RW 0 Skip Beat Enable.
At the transition from 0-to-1, SkipBeat function is exe-
cuted once using value selected in “SkipBeatOffset”.
To initialize Skip Beat function, write 1 followed by write
0.
For manual setting of skipbeat, write 1, then use
ForceSkipBeat (above), then write this bit 0.

3:0 SkipBeatOffset RW 0x5 SkipBeat Offset.
The receiver RxClk offset is equal to “SkipBeatOffset”bit-
time wrt sclk.
The power-on default value is 5(hex).
This field is 4-bit wide and SkipBeatOffset can be selected
from 0(hex) to 9(hex). The values in this field are modulo-
10.
For applying newer value of SkipBeatOffset, SkipBeatEn-
able should be toggled.

Operating modes of Skipbeat function

At the end of reset sequence, SkipBeatOffset field value defaults to 0x5. It holds offset value in bit-time. At
200Mhz of sclk, bit time is 0.5nsec.

SCB master can modify SkipBeatOffset value and invoke skipbeat function by toggling SkipBeatEnable bit once.
This method triggers skipbeat function with selected SkipBeatOffset value. Please note that during this process, if
any time reset sequence is invoked then SkipBeatOffset will be defaulted to 0x5.

For manual SkipBeat setting, set SkipBeatEnable=1, (the SkipBeat function will run, completing faster than
you can do your next register access), then use single step (sample and move) manual skipbeat algorithm. To
do this, repeatedly (a) sample state of “SbTestaRxClkN” of R FltxLaneStatus register, and (2) move phase of
receiver clock 1-bit time by toggling “ForceSkipBeat”. Note where SbTestaRxClkN transitions 0-to-1 and 1-to-0,
then do additional skips to position the offset correctly relative to those transitions. After desired phase alignment
of receiver clock is achived, SkipBeatEnable bit should be cleared.

May 14, 2014 77 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.16.3 R Fltx Lane Status

Register

R FltxLaneStatus

Attributes

-noregtestcpu -kernel

Address

0x0 0000 0008 (plus base address)

Bit Mnemonic Access Reset Type Definition

23:16 PllLock R x Pll Lock status. Holds lock status of 8 Tx PLLs of QPMA
module.

15:12 Rotator R x Fc lane rotator value.
11:10 Reserved.
9 LaneHealth R x FC lane health status.
8 FcPllLock R x FcPLL lock status. Holds lock status of fc PLL of QPMA

module.
7 Reserved.
6 SbTestaRxClkN R x Test aRxClkN signal.

It holds sampled value of aRxClkN signal from Qpma.
5 SbSuccess R x SkipBeat Success. It indicates status of last skipbeat op-

eration.
When set, indicates that SkipBeat function has been suc-
cessful.

4 SbActive R x SkipBeat Active.
When set, indicates that SkipBeat operation is active.

3 SbFirstSearch R x State of SkipBeat First search function.
When set, indicates that the First Search is completed.

2 SbSecondSearch R x State of SkipBeat Second search function.
When set, indicates that Second search is completed.

1 SbFinalSearch R x State of SkipBeat Final search function.
When set, indicates that Final search is completed.

0 SbAdjust R x State of SkipBeat Adjust function.
When set, indicates that Adjustment is completed.

2.16.4 R FltxInvCFc

Register

R FltxInvCFc

Attributes

-kernel -writeonemixed

Address

0x0 0000 000c (plus base address)

May 14, 2014 78 Rev 51328

SiCortex Confidential 2.16. FLT REGISTERS

Bit Mnemonic Access Reset Type Definition

18 Intr RW1C 0 Invalid Character error interrupt from FltxInvCFc.
This bit is set if IntEna is set AND (Compare ==
Counter).

17 IntEna RW 0 Invalid Character error interrupt enable for FltxInvCFc.
16 Wrap RW 0 Enable wrap mode for FltxInvCFc.

When set, Counter wraps on maximum count.
15:8 Compare RW 0 Invalid character error counter comparator for FltxIn-

vCFc.
7:0 Counter RW x Invalid Character error counter for FltxInvCFc.

Counts up when invalid charater error is detected on lane.
Wraps on maximum count of 8’hFF if Wrap is set.
Note: Counter does not count up in clock cycle in which
FltxInvCFc is being read or written to by SCB.

2.16.5 R FltxDispFc

Register

R FltxDispFc

Attributes

-kernel -writeonemixed

Address

0x0 0000 0010 (plus base address)

Bit Mnemonic Access Reset Type Definition

18 Intr RW1C 0 Disparity error interrupt from FltxDispFc.
This bit is set if IntEna is set AND (Compare ==
Counter).

17 IntEna RW 0 Disparity error interrupt enable for FltxDispFc.
16 Wrap RW 0 Enable wrap mode for FltxDispFc.

When set, Counter wraps on maximum count.
15:8 Compare RW 0 Disparity error counter comparator for FltxDispFc.
7:0 Counter RW x Disparity error counter for FltxDispFc.

Counts up when disparity error is detected on lane. Wraps
on maximum count of 8’hFF if Wrap is set.
Note: Counter does not count up in clock cycle in which
FltxDispFc register is being read or written to by SCB.

2.16.6 R FltxAltNull

Register

R FltxAltNull

Address

0x0 0000 0014 (plus base address)

Bit Mnemonic Access Reset Type Definition

4 Ena RW 1 Enable driving AltNull during IDLE cycle. When clear,
AltNull will not be driven at any setting of ANullRate.

3:0 Rate RW 8 Rate of AltNull during IDLE cycles. When ANullEnable
and setting is 0, only altNull will be driven on IDLE cy-
cles.

May 14, 2014 79 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.16.7 R FltxHeartbeat

Register

R FltxHeartbeat

Attributes

-writeonemixed -kernel

Address

0x0 0000 0018 (plus base address)

Bit Mnemonic Access Reset Type Definition

13 Intr RW1C 0 Heartbeat error interrupt from Fltx.
This bit is set if IntEna is set AND loss of heartbeat occurs
in MissionMode.
All 3 ways of losing MissionMode (force-retraining, loss-
of-link-health, and heartbeat-timeout) are considered a
Heartbeat Error, and will cause a Heartbeat error inter-
rupt. Once Intr bit is set, it will need to be cleared or
disabled to clear the main interrupt from the link.

12 IntEna RW 0 Heartbeat error interrupt enable for Fltx.
11 Init RWS 0 Heartbeat Init.

For every transition of 0-to-1, heartbeat counter is initial-
ized to its reset state once.
Note: Writing 1 to this field has side effect.

10 Dis RW 0 Heartbeat Disable. When set, heartbeat never expires and
thus heartbeat function is disabled.

9:0 Threshold RW 0x080 Heartbeat Threshold. Holds threshold value in max num-
ber of clock cycles during which heartbeat must be de-
tected.

2.16.8 R FltxDriveError

Register

R FltxDriveError

Address

0x0 0000 001c (plus base address)

Bit Mnemonic Access Reset Type Definition

23:16 TBadChar RWS 0 Drive Bad Character.
On transition from 0-to-1, bad character is driven on lane.
Each lane is assigned a bit in this field.

15:8 TBadDisp RWS 0 Drive Bad disparity.
On transition from 0-to-1, bad disparity is driven on lane.
Each lane is assigned a bit in this field.

7:0 TCharError RW 0 Create transmit Error. A bit is assigned to each lane.
A bit is set to reflect created error on lane as per either
TBadChar or TBadDisp field.
In system level testing, error created on lane(s) should
also be detected by corresponding 8B10B decoder lanes
of receiver chip.

May 14, 2014 80 Rev 51328

SiCortex Confidential 2.16. FLT REGISTERS

2.16.9 R FltxTxLcStatus

Register

R FltxTxLcStatus

Attributes

-noregtestcpu -kernel

Address

0x0 0000 0020 (plus base address)

Bit Mnemonic Access Reset Type Definition

8 AllReset R x Holds status of flag-AllLanesReset.
Note that this status field holds status of one receiver lane.
When set, it indicates that PLL is locked and lane has its
reset de-asserted.

7 Linkhealth R x Holds status of flag-LinkHealth.
6 TxLinkSync R x Holds status of flag-TxLinkSync.
5 MissionMode R x Holds status of flag-MissionMode.
4 Heartbeat R x Holds status of flag-Heartbeat.
3:0 Steps R x Holds status of Step-1,2,3,4 of TxLC.

2.16.10 R FltxTxLcControl

Register

R FltxTxLcControl

Attributes

-kernel

Address

0x0 0000 0024 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 Ena RWS 0 Enable TxLinkSync. When set, hardware execution rou-
tine TxLinkSync is enabled. After setting this bit, write
ForceRT bit to initiate TxLinkSync.

0 ForceRT RWS 0 Force Retraining or execute TxLinkSync routine.
ON transition from 0-to-1 of this bit will force re-entry to
TxLinkSync routine.

2.16.11 R FltxTxLcCount

Register

R FltxTxLcCount

Attributes

-kernel

May 14, 2014 81 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Address

0x0 0000 0028 (plus base address)

Bit Mnemonic Access Reset Type Definition

7:0 TxLcCount RW 0 TcLcCount.
Counter holding number of times hardware routine Txlc is
evoked. The counter will count up when TxLc goes from
Step-1 to Step-2. Counter will wrap on maximum count.

2.16.12 R FltxS2WaitTime

Register

R FltxS2WaitTime

Address

0x0 0000 002c (plus base address)

Bit Mnemonic Access Reset Type Definition

9:0 Step2WaitTime RW 0x7F Step2 sleep timer value.
Cycles to wait in step2. Default value is set at 7F(hex)
i.e 127 x 5 = 635ns.

What is Step2WaitTime?

The Step2WaitTime is the time required to insure that Link between two ICE9 is filled with NULL characters
only. The default setting of 0x7f is initialized at power-on which equals the waiting time of 635ns in system when
SCLK is operating at 200 MHz. To change Step2WaitTime setting after power-on, (a) put FLT into SoftReset,
then (b) write the new value into S2WaitTime, and then (c) remove SoftReset. Also it is strongly suggested to
avoid depositing any value lower than 0x0f as Step2WaitTime because such lower value may not be sufficient to
insure that Link between two ICE9 is filled with NULL characters.

2.16.13 Fltx Manual Override Rotator (MOR)

Register

R FltxMOR

Address

0x0 0000 0030 (plus base address)

Bit Mnemonic Access Reset Type Definition

4 ManualOverrideRotator RW 0 Manual override or Force Rotator Setting for flow control
lane.
When set, rotator function in framer is disabled and ro-
tator value specified in RotatorSetting is forced.

3:0 RotatorSetting RW 0 Rotator Setting.
Note that Rotator setting from 0x9 to 0xF are assumed
to be at value of 0x9.

How Manual Rotator Override function works?

Manual Override Rotator (MOR) function may be activated if automatic Linksync routine fails and failure
points to rotator function.

1. To activate MOR, select RotatorSetting (between 0x0 through 0x9) and set ManualOverrideRotator bit.

2. Next, initiate Linksync routine by accessing R-FltxTxLcControl register.

May 14, 2014 82 Rev 51328

SiCortex Confidential 2.16. FLT REGISTERS

3. During discovery of valid RotatorSetting, Rotator field of R FltxLaneStatus is invalid because it captures
rotator setting in automatic Linksync routine. However, Lanehealth field of R FltxLaneStatus will indicate
valid status of lane health. In MOR, if LaneHealth is true then correct rotator setting has been acquired
other wise other values of rotator setting should be tried.

4. During MOR, all fields of R FltxTxLcStatus are valid and content of this register should be used to find
correct rotator setting.

5. After discovering correct rotator setting re-initiate Linksync routine by accessing R-FltxTxLcControl register.

2.16.14 R FltxFarEndLoopback

Register

R FltxFarEndLoopback

Address

0x0 0000 0034 (plus base address)

Bit Mnemonic Access Reset Type Definition

0 FarEndLpBk RW 0 Far End Loopback Mode.
When set, it indicates that Far end loopback mode is ac-
tive.
When set, puts both, the FLT and FLR, with the same
link number into FarEndLoopback mode as described in
section-2.11.2.

2.16.15 R FltxBBDiag

Register

R FltxBBDiag

Address

0x0 0000 0040 (plus base address)

May 14, 2014 83 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

15 BBEnab RW 0 Bit Blasting mode enable.
14:12 FcPattern RW 0 Receive bit-blasting pattern type on flow control lane.

(a) 0x0 - repeat k28.5 (PNULL) 31 times and k28.0 (AN-
ULL) (once)
(b) 0x1 - PNULL (k28.5)
(c) 0x2 - D10.2 (0x4A)
(d) 0x3 - D24.3 (0x78)
(e) 0x4 - IKJPAT pattern to stimulate inter-symbol inter-
ference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

11 FcLaneSel RW 0 Flow control lane select for bit-blasting pattern.
When set, flowcontrol lane is receiving pattern selected by
FcPattern field.

10:8 TxPattern RW 0 Transmitter bit-blasting pattern type.
(a) 0x0 - repeat driving k28.5 (PNULL) 31 times and
k28.0 (ANULL) (once) (b) 0x1 - drive PNULL (k28.5)
(c) 0x2 - drive D10.2 (0x4A)
(d) 0x3 - drive D24.3 (0x78)
(e) 0x4 - drive IKJPAT pattern to stimulate inter-symbol
interference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

7:0 TxLaneSel RW 0 Transmitter lane select for bit-blasting pattern.
A bit is assigned to each of 8 lanes.
When BBEnable and this is set, selected lane is enabled to
drive bit-blasting pattern as selected by TxPattern field.
When BBEnable and this bit is clear, selected lane drives
PNULL (k28.5) pattern.

2.16.16 Fltx BBDiagStatus

Register

R FltxBBDiagStatus

May 14, 2014 84 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

Attributes

-noregtestcpu

Address

0x0 0000 0044 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 FcLaneSync R x Lane synchronization status of flow control lane.
This bit will be set in BBMode, when dlow control lane is
selected to check for FcbbPattern and it finds FcbbPat-
tern.
This bit will remain clear in BBMode, if flow control Lane-
Select bit is clear.

0 FcBBError R x Bit Blasting error on flow control lane.
This bit will be set in BBMode, if LaneSync is set and
thenflow control lane detects BBPattern error. Otherwise
this bit will remain clear. This bit will also remain clear
if flow control LaneSelect bit is clear.

2.17 FLR Registers

2.17.1 R FlrxSoftReset

Register

R FlrxSoftReset

Attributes

-kernel

Address

0x0 0000 0000 (plus base address)

Bit Mnemonic Access Reset Type Definition

0 SoftReset RW 0 Reset Link when set. When written 1, receiver link re-
mains in reset state. When written 0, the receiver link
logic come out of the reset state.
FlrCsr module remains unaffected by SoftReset.

Operation of SoftReset

When SoftReset is asserted, all CSRs of FLRx remain unaffected by SoftReset. However, control flops within
FLRx module are intialized to power-on reset value. After de-assertion of SoftReset, software will have to initiate
skipbeat function on its receiver lanes and then enable receiver link.

2.17.2 R FlrxLinkStatus

Register

R FlrxLinkStatus

Attributes

-noregtestcpu -kernel

May 14, 2014 85 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Address

0x0 0000 0004 (plus base address)

Bit Mnemonic Access Reset Type Definition

9 DrivenBadFcChar RW 0 Drove bad FC character and created transmit Error.
When set, it reflects that transmit error was created
by setting either DriveBadChar or DriveBadDisp of
R FLrxLinkControl.
In system level testing, error created on flow control lane
should also be detected by corresponding 8B10B decoder
lane of receiver chip.

8 PllLock R x Lock status of TxPLL of FC lane.
7:0 CdrPllLock R x Lock status of CdrPLL. Holds lock status of CDR PLL of

eight receiver PLLs in QPMA.

2.17.3 R FlrxLinkControl

Register

R FlrxLinkControl

Address

0x0 0000 0008 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 DriveBadChar RWS 0 Drive bad character.
On transition from 0-to-1, one bad or invalid character is
driven on FC lane.

0 DriveBadDisp RWS 0 Drive bad disparity.
On transition from 0-to-1, one character is driven with
disparity error on FC lane.

2.17.4 R FlrxRotator

Register

R FlrxRotator

Address

0x0 0000 000c (plus base address)

Bit Mnemonic Access Reset Type Definition

31:0 Rotator R x Rotator Status. Rotator status of eight lanes. Each lane
is assigned 4-bit wide field.

2.17.5 R FlrxRxLcStatus

Register

R FlrxRxLcStatus

Attributes

-noregtestcpu -kernel

May 14, 2014 86 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

Address

0x0 0000 0010 (plus base address)

Bit Mnemonic Access Reset Type Definition

8 AllRxLanesReset R x Holds status of flag-AllRxLanesReset.
When set, it indicates that PLL is locked and eight lanes
have their reset signals de-asserted.

7 Linkhealth R x Holds status of flag-LinkHealth.
6 RxLinkSync R x Holds status of flag-RxLinkSync.
5 MissionMode R x Holds status of flag-MissionMode.
4 Heartbeat R x Holds status of flag-Heartbeat.
3:0 Steps R x Holds status of Step-1,2,3,4 of RxLC.

2.17.6 R FlrxLaneHealth

Register

R FlrxLaneHealth

Attributes

-kernel

Address

0x0 0000 0014 (plus base address)

Bit Mnemonic Access Reset Type Definition

15:8 ClrLaneHealth RW 0 Clear lane health.
On transition from 0-to1, lane’s health bit is cleared.
Each lane is assigned a bit in this field.

7:0 LaneHealth R x Lane health status. Each lane is assigned 1-bit field.

2.17.7 R FlrxWSyncMode

Register

R FlrxWSyncMode

Address

0x0 0000 0018 (plus base address)

May 14, 2014 87 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

27:20 MwsEnab RW 0 Manual WordSync Enable.
This field is 8-bit wide and one bit is assigned to each
lane.
When Mws Enab[x] is set, corresponding 2-bit wide lane
selector setting of wsync multiplexer is forced.
When MwsEnab[x] is clear, corresponding wsync multi-
plexer setect setting is set by automatic wordsync opera-
tion.

19:4 Mws RW 0 Manual Wordsync setting.
This field is 16-bit wide and has 8 groups.
Each group is 2-bit wide and assigned to a lane. Bits[5:4]
are assigned to Lane-0, bit[7:6] are assigned to Lane-1,
and so on.
For each lane, 2-bit field holds select value for 4-to-1 wsync
multiplexer.

3:2 Reserved.
1 ForceWsync RW 0 Force Wsync cycle.

On transition from 0-to1 of this bit forces RxLinkSync
routine to enter in Step4.

0 DisVerror RW 0 Disable Wsync pattern verification error. If this bit is set
then pattern verification logic in step-4 does not detect
any errors. Setting of this bit allows successful completion
of step-4.

How Manual Override Wordsync mode works?

Manual Wordsync operation can be invoked if skipbeat and rotator functions are working but unexplained crc
errors (without disparity error(s) and/or invalid character error(s)) are observed. In Manual Wordsync Override
mode, link is forced to enter MissionMode so that characters from all 8 lanes are sent to fabric switch. Though each
lane may be individually forced in Manual Override Wordsync mode (MwsEnab), preferred method is to force all
8 lanes in Manual Override Wordsync mode be setting all bits of MwsEnab field and by selecting individual lane’s
2-bit wordsync setting (Mws).

When MwsEnab is set, once link enters Step4, it stays in Step4 for the duration of time it takes to execute tasks
of step4 (approximately 4 microsec) and then forces link to enter MissionMode. After link has entered MissionMode,
R FlrxWsyncStatus AutoSetting field is invalid but the rest of the bits of R FlrxWsyncStatus are valid.

2.17.8 R FlrxWSyncStatus

Register

R FlrxWSyncStatus

Address

0x0 0000 001c (plus base address)

May 14, 2014 88 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

Bit Mnemonic Access Reset Type Definition

19:4 AutoSetting R x Wsync Auto Setting.
This field is 16-bit wide and has 8 groups. Each group is
2-bit wide and assigned to each lane. Lane-0 has bits[1:0],
Lane-1 has [3:2], and so on.
Reads wsync multiplexer settings in wsync auto opera-
tion.
Reading of this field is invalid if corresponding lane’s
Mws Enab bit is set in R FlrxWSyncMode register.

3 Status R x Status of wordsync operation. Set to 1 when wordsync is
successful.

2 VError R x This status bit is set when verify cycle detects error during
Wsync.

1 Seek R x This status bit is set when wsync cycle is active.
0 Verify R x This status bit is set when verify cycle is active during

Wsync .

2.17.9 R FlrxHeartbeat

Register

R FlrxHeartbeat

Attributes

-writeonemixed -kernel

Address

0x0 0000 0020 (plus base address)

Bit Mnemonic Access Reset Type Definition

13 Intr RW1C 0 Heartbeat error interrupt from Flrx.
This bit is set if IntEna is set AND loss of heartbeat occurs
in MissionMode.
All 3 ways of losing MissionMode (force-retraining, loss-
of-link-health, and heartbeat-timeout) are considered a
Heartbeat Error, and will cause a Heartbeat error inter-
rupt. Once Intr bit is set, it will need to be cleared or
disabled to clear the main interrupt from the link.

12 IntEna RW 0 Heartbeat error interrupt enable for Flrx.
11 Init RWS 0 Heartbeat Init.

For every transition of 0-to-1, heartbeat counter is initial-
ized to its reset state once.
Note: Writing 1 to this field has side effect.

10 Dis RW 0 Heartbeat Disable. When set, heartbeat never expires and
thus heartbeat function is disabled.

9:0 Threshold RW 128 Heartbeat Threshold. Holds threshold value in max num-
ber of clock cycles during which heartbeat must be de-
tected.

2.17.10 R FlrxRxLcControl

Register

R FlrxRxLcControl

May 14, 2014 89 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Attributes

-kernel

Address

0x0 0000 0024 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 Ena RWS 0 Enable RxLinkSync. When set, hardware execution rou-
tine RxLinkSync is enabled. After setting this bit, write
ForceRT bit to initiate RxLinkSync.

0 ForceRT RWS 0 Force Retraining or execute RxLinkSync routine. Setting
of this bit will force re-entry to RxLinkSync routine.

2.17.11 R FlrxRxLcCount

Register

R FlrxRxLcCount

Attributes

-kernel

Address

0x0 0000 0028 (plus base address)

Bit Mnemonic Access Reset Type Definition

7:0 RxLcCount RW 0 RxLcCount.
Counter hoilding number of times hardware routine Rxlc
is evoked. The counter will count up when RxLc goes
from Step-1 to Step-2. Counter will wrap on maximum
count.

2.17.12 R FlrxS2WaitTime

Register

R FlrxS2WaitTime

Address

0x0 0000 002c (plus base address)

Bit Mnemonic Access Reset Type Definition

9:0 Step2WaitTime RW 0x7F Step2 sleep timer value.
Cycles to wait in step2. Default value is set at 7F(hex)
i.e 127 x 5 = 635ns.

What is Step2WaitTime?

The Step2WaitTime is the time required to insure that Link between two ICE9 is filled with NULL characters
only. The default setting of 0x7f is initialized at power-on which equals the waiting time of 635ns in system when
SCLK is operating at 200 MHz. To change Step2WaitTime setting after power-on, (a) put FLR into SoftReset,
then (b) write the new value into S2WaitTime, and then (c) remove SoftReset. Also it is strongly suggested to
avoid depositing any value lower than 0x0f as Step2WaitTime because such lower value may not be sufficient to
insure that Link between two ICE9 is filled with NULL characters.

May 14, 2014 90 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

2.17.13 Flrx Lane Invalid Character Error Register

Register

R FlrxLaneInvC[7:0]

Attributes

-kernel -writeonemixed

Address

0x0 0000 0030 - 0x0 0000 004c (plus base address)

Bit Mnemonic Access Reset Type Definition

18 Intr RW1C 0 Invalid Character error interrupt from FlrxLaneInvC.
This bit is set if IntEna is set AND (Compare ==
Counter).

17 IntEna RW 0 Invalid Character error interrupt enable for
FlrxLaneInvC.

16 Wrap RW 0 Enable wrap mode for FlrxLaneInvC.
When set, Counter wraps on maximum count.

15:8 Compare RW 0 Invalid character error counter comparator for
FlrxLaneInvC.

7:0 Counter RW x Invalid character error counter for FlrxLaneInvC.
Counts up when invalid charater error is detected on lane.
Wraps on maximum count of 8’hFF if Wrap is set.
Note: Counter does not count up when FlrxLaneInvC
register is being read or written to by SCB.

2.17.14 Flrx Lane Disparity Error Register

Register

R FlrxLaneDisp[7:0]

Attributes

-kernel -writeonemixed

Address

0x0 0000 0050 - 0x0 0000 006c (plus base address)

Bit Mnemonic Access Reset Type Definition

18 Intr RW1C 0 Disparity error interrupt from FlrxLaneDisp.
This bit is set if IntEna is set AND (Compare ==
Counter).

17 IntEna RW 0 Disparity error interrupt enable for FlrxLaneDisp.
16 Wrap RW 0 Enable wrap mode for FlrxLaneDisp.

When set, Counter wraps on maximum count.
15:8 Compare RW 0 Disparity error counter comparator for FlrxLaneDisp.
7:0 Counter RW x Disparity error counter for FlrxLaneDisp.

Counts up when disparity error is detected on lane. Wraps
on maximum count of 8’hFF if Wrap is set.
Note: Counter does not count up when FlrxLaneDisp reg-
ister is being read or written to by SCB.

May 14, 2014 91 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.17.15 R Flrx Lane Status Register

Register

R FlrxLaneStatus[7:0]

Attributes

-noregtestcpu -kernel

Address

0x0 0000 0070 - 0x0 0000 008c (plus base address)

Bit Mnemonic Access Reset Type Definition

6 SbTestaRxClkN R x Test aRxClkN signal.
It holds sampled value of aRxClkN signal from Qpma.

5 SbSuccess R x SkipBeat Success. It indicates status of last skipbeat op-
eration.
When set, indicates that SkipBeat function has been suc-
cessful.

4 SbActive R x SkipBeat Active.
When set, indicates that SkipBeat operation is active.

3 SbFirstSearch R x State of SkipBeat First search function.
When set, indicates that the First Search is completed.

2 SbSecondSearch R x State of SkipBeat Second search function.
When set, indicates that Second search is completed.

1 SbFinalSearch R x State of SkipBeat Final search function.
When set, indicates that Final search is completed.

0 SbAdjust R x State of SkipBeat Adjust function.
When set, indicates that Adjustment is completed.

2.17.16 Flrx Lane Control Register

Register

R FlrxLaneControl[7:0]

Attributes

-kernel

Address

0x0 0000 0090 - 0x0 0000 00ac (plus base address)

May 14, 2014 92 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

Bit Mnemonic Access Reset Type Definition

7 ForceSkipBeat RW 0 Force Skipbeat.
This bit must remain clear when SkipBeatEnable is clear.
When SkipBeatEnable is set : For every transition of 0-
to-1 of this bit, RxClk offset is skipped 1-bit time. This
field is intended to be used in manual setting of RxClk.
This bit should be clear after manual setting of RxClk is
completed.

6:5 Reserved.
4 SkipBeatEnable RW 0 Skip Beat Enable.

At the transition from 0-to-1, SkipBeat function is exe-
cuted once using value selected in “SkipBeatOffset”.
To initialize Skip Beat function, write 1 followed by write
0.
For manual setting of skipbeat, write 1, then use
ForceSkipBeat (above), then write this bit 0.

3:0 SkipBeatOffset RW 5 SkipBeat Offset.
The receiver RxClk offset is equal to “SkipBeatOffset”bit-
time wrt sclk.
The power-on default value is 5(hex).
This field is 4-bit wide and SkipBeatOffset can be selected
from 0(hex) to 9(hex). The values in this field are modulo-
10.
For applying newer value of SkipBeatOffset, SkipBeatEn-
able should be toggled.

Operating modes of Skipbeat function

At the end of reset sequence, SkipBeatOffset field value defaults to 0x5. It holds offset value in bit-time. At
200Mhz of sclk, bit time is 0.5nsec.

SCB master can modify SkipBeatOffset value and invoke skipbeat function by toggling SkipBeatEnable bit once.
This method triggers skipbeat function with selected SkipBeatOffset value. Please note that during this process, if
any time reset sequence is invoked then SkipBeatOffset will be defaulted to 0x5.

For manual SkipBeat setting, set SkipBeatEnable=1, (the SkipBeat function will run, completing faster than
you can do your next register access), then use single step (sample and move) manual skipbeat algorithm. To
do this, repeatedly (a) sample state of “SbTestaRxClkN” of R FlrxLaneStatus register, and (2) move phase of
receiver clock 1-bit time by toggling “ForceSkipBeat”. Note where SbTestaRxClkN transitions 0-to-1 and 1-to-0,
then do additional skips to position the offset correctly relative to those transitions. After desired phase alignment
of receiver clock is achived, SkipBeatEnable bit should be cleared.

2.17.17 Flrx Manual Override Rotator (MOR)

Register

R FlrxMOR[7:0]

Address

0x0 0000 00b0 - 0x0 0000 00cc (plus base address)

Bit Mnemonic Access Reset Type Definition

4 ManualOverrideRotator RW 0 Manual override or Force Rotator Setting.
When set, rotator function in framer is disabled and ro-
tator value specified in RotatorSetting is forced.

3:0 RotatorSetting RW 0 Rotator Setting.
Note that Rotator setting from 0x9 to 0xF are assumed
to be at value of 0x9.

How Manual Override Rotator function works?

May 14, 2014 93 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Manual Override Rotator (MOR) function may be activated if automatic Linksync routine fails and failure
points to rotator function.

1. To activate MOR on failing lane, select RotatorSetting (between 0x0 through 0x9) and set ManualOverrid-
eRotator bit.

2. Next, initiate Linksync routine by accessing R-FltxRxLcControl register.

3. During discovery of valid RotatorSetting, values in R FlrxRotator is invalid because it captures rotator setting
in automatic Linksync routine. However, Lanehealth field of R FlrxRxLcStatus will indicate valid status of
lane health. In MOR, if LaneHealth is true then correct rotator setting has been acquired other wise other
values of rotator setting should be tried.

4. During MOR, all fields of R FlrxRxLcStatus are valid and content of this register should be used to find
correct rotator setting.

5. After discovering correct rotator setting re-initiate Linksync routine by accessing R-FlrxRxLcControl register.

2.17.18 R FlrxBBDiag

Register

R FlrxBBDiag

Address

0x0 0000 00d0 (plus base address)

May 14, 2014 94 Rev 51328

SiCortex Confidential 2.17. FLR REGISTERS

Bit Mnemonic Access Reset Type Definition

15 BBEnab RW 0 Bit Blasting mode enable.
14:12 FcPattern RW 0 Flow control bit-blasting pattern type.

(a) 0x0 - repeat driving k28.5 (PNULL) 31 times and
k28.0 (ANULL) (once) (b) 0x1 - drive PNULL (k28.5)
(c) 0x2 - drive D10.2 (0x4A)
(d) 0x4 - drive D24.3 (0x78)
(e) 0x8 - drive IKJPAT pattern to stimulate inter-symbol
interference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

11 FcLaneSel RW 0 Flow control lane select for bit-blasting pattern.
When BBEnab and this bit is set, flowcontrol lane trans-
mits pattern selected by FcPattern field.
When BBEnable and this bit is clear, flow control lane
transmits PNULL (k28.5) pattern.

10:8 RxPattern RW 0 Receiver bit-blasting pattern type.
(a) 0x0 - repeat k28.5 (PNULL) 31 times and k28.0 (AN-
ULL) (once)
(b) 0x1 - PNULL (k28.5)
(c) 0x2 - D10.2 (0x4A)
(d) 0x3 - D24.3 (0x78)
(e) 0x4 - IKJPAT pattern to stimulate inter-symbol inter-
ference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

7:0 RxLaneSel RW 0 Receiver Lane Select for bit-blasting patterns.
A bit is assigned to each of 8 lanes.
When set, selected lane is enabled to check bit-blasting
pattern type selected by RxPattern field.
When clear, selected lane does not check for RxbbPattern.

2.17.19 Flrx BBDiagStatus

Register

R FlrxBBDiagStatus

May 14, 2014 95 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Attributes

-noregtestcpu

Address

0x0 0000 00d4 (plus base address)
Bit Mnemonic Access Reset Type Definition

15:8 RxLaneSync R x Lane synchronization status. A bit is assigned to each
lane.
This bit will be set in BBMode, when corresponding lane
is selected to check for RxbbPattern and selected lane
finds RxbbPattern.
This bit will remain clear in BBMode, if corresponding
lane is not selected.

7:0 RxBBError R x Bit Blasting error. A bit is assigned to each lane.
This bit will be set in BBMode, if corresponding LaneSync
is set and then if selected lane detects BBPattern error.
Otherwise this bit will remain clear. This bit will also
remain clear if corresponding LaneSelect bit is clear.

2.18 FLR/FLT Register Allocation

This chapter instantiates the three copies of the FLR and FLT registers.

2.18.1 Flr0

Register

R Flr0* : R Flrx*

Address

0xE 0D00 0000-0xE 0DFF FFFF

2.18.2 Flr1

Register

R Flr1* : R Flrx*

Address

0xE 1D00 0000-0xE 1DFF FFFF

2.18.3 Flr2

Register

R Flr2* : R Flrx*

Address

0xE 2D00 0000-0xE 2DFF FFFF

2.18.4 Flt0

Register

R Flt0* : R Fltx*

May 14, 2014 96 Rev 51328

SiCortex Confidential 2.19. QUAD SERDES PHYSICAL MEDIA ACCESS (QPMA)

Address

0xE 3D00 0000-0xE 3DFF FFFF

2.18.5 Flt1

Register

R Flt1* : R Fltx*

Address

0xE 4D00 0000-0xE 4DFF FFFF

2.18.6 Flt2

Register

R Flt2* : R Fltx*

Address

0xE 5D00 0000-0xE 5DFF FFFF

Vregs End Of Decl

2.19 Quad Serdes Physical Media Access (QPMA)

The AnalogBits SERDES physical media access macro, referred to as QPMA, has quad transmit and receive
lanes. The transmit and receive lanes within QPMA are identified as X, Y, Z, and W. The QPMA has quad clock
and data recovery (CDR) logic for quad receiver lanes. The QPMA generates four seperate receiver clocks, one
for each receiver lane. The receiver clock is in phase with incoming data streams. The QPMA has one PLL which
generates clocks for four transmit lanes. The QPMA also has the calibration and impedance control circuits for
quad transmitter and receiver channels.

Each ICE9 has 3 fabric links and each fabric link has 9 serdes lanes. Hence each ICE9 will use 7 QPMAs to
constuct 3 fabric links. The Figure-2.9 shows the placement of 7 QPMA in ICE9. They are numbered from 0
through 6. The QPMA6 supports flow control lanes for each of the three links. The QPMA6 will have one pair of
unused transmit and receive lane.

Following table shows the lane assignemnts in QPMA for each of the three fabric links.

Fabric Link Link Lane QPMA QPMA Lane Note

FLT0/1/2 0 0/2/4 T Z
1 0/2/4 T Y
2 0/2/4 T X
3 0/2/4 T W
4 1/3/5 T Z
5 1/3/5 T Y
6 1/3/5 T X
7 1/3/5 T W

FLT0 FC 6 R Z
FLT1 FC 6 R Y
FLT2 FC 6 R W

6 R X Unused

May 14, 2014 97 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Figure 2.9: QPMA Placement in ICE9

Fabric Link Link Lane QPMA QPMA Lane Note

FLR0/1/2 0 0/2/4 R Z
1 0/2/4 R Y
2 0/2/4 R X
3 0/2/4 R W
4 1/3/5 R Z
5 1/3/5 R Y
6 1/3/5 R X
7 1/3/5 R W

FLR0 FC 6 T Z
FLR1 FC 6 T Y
FLR2 FC 6 T W

6 T X Unused

2.19.1 Calibration and Impedance Control of the driver and Receiver

The QPMA has individual transmitter driver impedance control circuitry. The QPMA also has individual
receiver impedance calibration circuitry. The details of the driver and receiver control is described in AnalogBit’s
document “Serdes PMA Programmer’s Reference Manual”.

ICE9 has the driver and receiver handshake interface with QPMA which is called the Quad Serdes Control
(QSC). The QSC has 5 registers which are accessible through SCB. Those 5 registers are QscGo, QscCA, Qsc-
SerDatAR, QscSerDatT, and QscSerDatP. The QscCA holds the address of the target driver or receiver. The

May 14, 2014 98 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

QscSerDat* registers hold calibration values for targeted driver and receiver. By writing 1 to QscGo register, the
QSC will load impedance and calibration values in target driver or receiver. The QSC also has the QscStatus
register which holds the status of the handshake as described in section-2.20.

2.19.2 Verification Checklist:

1. Reset sequence

2. Transmitter channel impedance calibration

3. Receiver channel impedance calibration

2.20 Quad Serdes Control (QSC) Registers

2.20.1 R QscGo

Register

R QscGo

Attributes

-kernel

Address

0xE 6D00 0000
Bit Mnemonic Access Reset Type Definition

0 QscGo RWS 0 Write QSC register for specified QuadSerdes.
On the transition of 0-to-1, targeted QuadSerdes register
is written. The target of the QuadSerdes Register is speci-
fied by R QscCA register and the data values are specified
in R QscSerDatAR, R QscSerDatT, and R QscSerDatP
registers.

2.20.2 R QscStatus

Register

R QscStatus

Attributes

-kernel

Address

0xE 6D00 0004

May 14, 2014 99 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

6 InvalidQadr RW1C 0 Invalid QuadSerdes address.
This bit is set if QSC was invoked with atleast one invalid
Quad Serdes address since previous clearing of this field.

5 InvalidSubQadr RW1C 0 Invalid Sub Quad Address.
This bit is set if QSC was invoked with atleast one invalid
Sub Quad address since previous clearing of this field.

4 InvalidTarget RW1C 0 Invalid Target.
This bit is set if QSC was invoked with atleast one invalid
target address since previous clearing of this field.

3:2 Reserved.
1 QscSuccess R 0 QSC Success.

This bit holds status of the previous QSC transaction.
When set, it indicates that the previous QSC transaction
was a success. When clear, it indicates that the previous
QSC transaction was a failure.

0 Busy R 0 QSC busy.
Holds status of QSC controller. When set, it indicates
that QSC controller is busy.

2.20.3 R QscCA

Register

R QscCA

Attributes

-kernel

Address

0xE 6D00 0010
Bit Mnemonic Access Reset Type Definition

11:8 QscAdr RW 0 QSC Address.
Holds address of QSC. There are total of 7 QSC.
If this field has value greater than 6(hex) then it makes
invalid QSC address.

7:4 QscSubAdr RW 0 QSC Sub Address.
Holds sub address of QSC. There are total of 4 subad-
dresses in each QSC. The encodings of this field is as be-
low:
8(hex) - Sub address W
4(hex) - Sub address X
2(hex) - Sub address Y
1(hex) - Sub address Z
All other encodings (total of 12 of them) makes invalid
QSC sub address.

3:0 QscTarget RW 0 QSC Target.
Holds target of the calibration transaction.
1(hex) - Tx Driver.
2(hex) - Rx Receiver
All other encodings (total of 14 of them) makes invalid
target.

May 14, 2014 100 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

2.20.4 R QscSerDatAR

Register

R QscSerDatAR

Address

0xE 6D00 0014
Bit Mnemonic Access Reset Type Definition

17:0 ASerDatAR RW 0 aSerDatAR Register.
Holds 18-bit value tobe written in either aSerDatA of
aSerDatR register of QSC.
Refer to (a) section-7.3 of Serdes Programmer’s Refer-
ence Manual for Transmitter ouput driver settings and
(b) section-8.3 of Serdes Programmer’s Reference Manual
for Receiver settings.

2.20.5 R QscSerDatT

Register

R QscSerDatT

Address

0xE 6D00 0018
Bit Mnemonic Access Reset Type Definition

17:0 ASerDatT RW 0 aSerDatT Register.
Holds 18-bit value tobe written in aSerDatT register of
QSC.
Refer to section-7.3 of Serdes Programmer’s Reference
Manual for Transmitter ouput driver settings.

2.20.6 R QscSerDatP

Register

R QscSerDatP

Address

0xE 6D00 001c
Bit Mnemonic Access Reset Type Definition

17:0 ASerDatP RW 0 aSerDatP Register.
Holds 18-bit value tobe written in aSerDatP register of
QSC.
Refer to section-7.3 of Serdes Programmer’s Reference
Manual for Transmitter ouput driver settings.

2.20.7 R QscQpmaStatus

Register

R QscQpmaStatus[6:0]

Attributes

-noregtestcpu -kernel

May 14, 2014 101 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Address

0xE 6D00 0020 - 0xE 6D00 0038

Bit Mnemonic Access Reset Type Definition

16:13 PllBpStatus R x PLL Bypass Test Status.
When set, indicates that PLL Bypass Test was successful
for [W,X,Y,Z] lanes.

12 ZCompOp R x Impedance calibrator result.
When 1, Z < nominal.
When 0, Z > nominal.

11:8 CdrDiagOut R x CDRDiagOut.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for detailed explanation.

7 RefClkStable R x RefClk (or sclk) stable.
When set, indicates that sclk is stable. This signal is
generated by CLK GEN.

6 Reserved.
5 TxClkStable R x Set 1024 sclk cycles after ATxClkStable is asserted.

When set, it indicates that TxClk is stable.
4 ATxClkStable R x Set when transmitter clocks are up and stable for

[W,X,Y,Z] lanes.
3 ARxClkStableW R x Set when receiver W-lane clock is bit-locked to incoming

data stream.
2 ARxClkStableX R x Set when receiver X-lane clock is bit-locked to incoming

data stream.
1 ARxClkStableY R x Set when receiver Y-lane clock is bit-locked to incoming

data stream.
0 ARxClkStableZ R x Set when receiver Z-lane clock is bit-locked to incoming

data stream.

2.20.8 R QscQpmaImpCalibration

Register

R QscQpmaImpCalibration

Attributes

-kernel

Address

0xE 6D00 003c

May 14, 2014 102 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

Bit Mnemonic Access Reset Type Definition

18:12 TxPllRst RW 0 TxPLL Reset. A bit is assigned to each QPMA. Thus
bit-12 controls QPMA0 and bit-18 controls QPMA6.
When set, shuts down TxPLL and bypasses RefClk (sclk)
to internal high frequency (1 Ghz) clock.

11:10 Reserved.
9:8 ZCalibType RW 0 Selects which circuitry is calibrated. Asynchronous signal.

The encodeds value are as below:
0 - Calibration shutdown
1 - Calib Tx
2 - Calib Rx
3 - invalid

7 Reserved.
6:0 ZCalib RW 0 Impedance calibration control value. Asynchronous sig-

nal.

2.20.9 R QscQpmaControl

Register

R QscQpmaControl[6:0]

Attributes

-kernel

Address

0xE 6D00 0040 - 0xE 6D00 0058

May 14, 2014 103 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

31:28 CDRPLLRst RW 0 CDRPLL Reset. Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
When set, shuts down CDRPLL and bypasses RefClk
(sclk) to internal high frequency (1 Ghz) clock.

27:24 RxPwrDown RW 0 Receiver power down. Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
When set, the receiver is in power-downmode. This signal
does not include CDRPLL in power-down mode.

23:20 IDDQ RW 0 IDDQ mode. Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
When 1, it is configured for IDDQ mode otherwise the
normal operation.
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

19:16 RxTest RW 0 RxTest mode control over-ride for CDR feedback loop.
Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

15:12 CDRDiagIn RW 0 CDRDiagIn.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

11:8 ForceTxHiZ RW 0 Force driver in HiZ. Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
Its assertion takes precedence over SerTxCtr[1:0] load op-
eration.

7:4 ForceRxHiZ RW 0 Force receiver in HiZ. Asynchronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
Its assertion takes precedence over SerRxCtr[1:0] load op-
eration.

3:0 LpBkNearEnd RW 0 When set, NearEndLoopback mode is enabled. Asyn-
chronous signal.
Lanes are individually controlled. Lane assignment is
[W,X,Y,Z].
When set, a lane is in NearEndLoopback mode.
This bit should be 0 for normal mode of operation.

2.20.10 R QscQpmaTestControl

Register

R QscQpmaTestControl[6:0]

Address

0xE 6D00 0060 - 0xE 6D00 0078

May 14, 2014 104 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

Bit Mnemonic Access Reset Type Definition

15:12 TxHFClkDnB RW 0xF Tx HFClk.
Asynchronous signal.
Lanes are individually controlled. Lane assignement is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

11:8 RxHFClkDnB RW 0xF Rx HFClk.
Asynchronous signal.
Lanes are individually controlled. Lane assignement is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

7:4 RxFDIp1 RW 0 RxFDIp1.
Asynchronous signal.
Lanes are individually controlled. Lane assignement is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

3:0 RxFDIp0 RW 0 RxFDIp0.
Asynchronous signal.
Lanes are individually controlled. Lane assignement is
[W,X,Y,Z].
Refer to “Serdes PMA Programmer’s Reference Manual”
for details.

2.20.11 R QscInterrupt

Register

R QscInterrupt

Attributes

-kernel -writeonemixed

Address

0xE 6D00 0080

May 14, 2014 105 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

7 Intr RW1C 0 Interrupt signal from Fl. Interrupt signal goes to CSW
and it is named fl csw Int sa.
This bit is set if IntEnab is set AND any one or more of
the FltIntr or FlrIntr bits are set.
To clear this bit, first clear all FltIntr and FlrIntr bits that
are set, by clearing Intr bits in the registers listed below,
then write-1 to this bit.

6 IntEnab RW 0 Overall interrupt enable from Fl module.
5:3 FltIntr R x Fltx Interrupt status.

A bit is assigned to capture interrupt status of each Flt
module 2,1, and 0.
The FltIntr bit is set for a specific Fltx when one or
more of the Intr bits in R FltxInvCFc, R FltxDispFc, or
R FltxHeartbeat are set.

2:0 FlrIntr R x Flrx Interrupt status.
A bit is assigned to capture interrupt status of each Flr
module 2,1, and 0.
The FlrIntr bit is set for a specific Flrx when one or more
of the Intr bits in R FlrxHeartbeat, R FlrxLaneInvC[7:0],
or R FlrxLaneDisp[7:0] are set.

2.20.12 Qsc TxBBDiag

Register

R QscTxBBDiag

Address

0xE 6D00 0090

May 14, 2014 106 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

Bit Mnemonic Access Reset Type Definition

4 BBEnab RW 0 Bit Blasting mode enable.
When reset, 10-bit code sent to this transmitter will re-
main at logic level low or at value 0x0.

3:1 TxPattern RW 0 Transmitter bit-blasting pattern type.
(a) 0x0 - repeat driving k28.5 (PNULL) 31 times and
k28.0 (ANULL) (once) (b) 0x1 - drive PNULL (k28.5)
(c) 0x2 - drive D10.2 (0x4A)
(d) 0x3 - drive D24.3 (0x78)
(e) 0x4 - drive IKJPAT pattern to stimulate inter-symbol
interference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

0 TxLaneSel RW 0 Transmitter lane select for bit-blasting pattern.
When BBEnable and this is set, lane is enabled to drive
bit-blasting pattern as selected by TxPattern field.
When BBEnable and this bit is clear, selected lane drives
PNULL (k28.5) pattern.

2.20.13 Qsc Lane Status Register

Register

R QscLaneStatus

Attributes

-noregtestcpu

Address

0xE 6D00 0094

May 14, 2014 107 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

Bit Mnemonic Access Reset Type Definition

15:12 Rotator R x Lane rotator value.
11:10 Reserved.
9 LaneHealth R x Lane health status.
8 CdrPllLock R x CdrPLL lock status. Holds lock status of CDRPLL of

unused receiver in QPMA.
7 Reserved.
6 SbTestaRxClkN R x Test aRxClkN signal.

It holds sampled value of aRxClkN signal from Qpma.
5 SbSuccess R x SkipBeat Success. It indicates status of last skipbeat op-

eration.
When set, indicates that SkipBeat function has been suc-
cessful.

4 SbActive R x SkipBeat Active.
When set, indicates that SkipBeat operation is active.

3 SbFirstSearch R x State of SkipBeat First search function.
When set, indicates that the First Search is completed.

2 SbSecondSearch R x State of SkipBeat Second search function.
When set, indicates that Second search is completed.

1 SbFinalSearch R x State of SkipBeat Final search function.
When set, indicates that Final search is completed.

0 SbAdjust R x State of SkipBeat Adjust function.
When set, indicates that Adjustment is completed.

2.20.14 Qsc Lane Control Register

Register

R QscLaneControl

Attributes

-kernel

Address

0xE 6D00 0098

May 14, 2014 108 Rev 51328

SiCortex Confidential 2.20. QUAD SERDES CONTROL (QSC) REGISTERS

Bit Mnemonic Access Reset Type Definition

7 ClrLaneHealth RW 0 Clear lane health.
For every transition of 0-to-1 of this bit, lane health bit
of lane is cleared.

6 Reserved.
5 ForceSkipBeat RW 0 Force Skipbeat.

For every transition of 0-to-1 of this bit, RxClk offset is
skipped 1-bit time. This field is intended to be used in
manual setting of RxClk. This bit should be clear after
manual setting of RxClk is completed.

4 SkipBeatEnable RW 0 Skip Beat Enable.
At the transition from 0-to-1, SkipBeat function is exe-
cuted once using value selected in “SkipBeatOffset”.

3:0 SkipBeatOffset RW 0x5 SkipBeat Offset.
The receiver RxClk offset is equal to “SkipBeatOffset”bit-
time wrt sclk.
The power-on default value is 5(hex).
This field is 4-bit wide and SkipBeatOffset can be selected
from 0(hex) to 9(hex). The values in this field are modulo-
10.
For applying newer value of SkipBeatOffset, SkipBeatEn-
able should be toggled.

2.20.15 R QscRxBBDiag

Register

R QscRxBBDiag

Address

0xE 6D00 00a0
Bit Mnemonic Access Reset Type Definition

4 BBEnab RW 0 Bit Blasting mode enable.
3:1 RxPattern RW 0 Receiver bit-blasting pattern type.

(a) 0x0 - repeat k28.5 (PNULL) 31 times and k28.0 (AN-
ULL) (once)
(b) 0x1 - PNULL (k28.5)
(c) 0x2 - D10.2 (0x4A)
(d) 0x3 - D24.3 (0x78)
(e) 0x4 - IKJPAT pattern to stimulate inter-symbol inter-
ference (ISI) in ac-coupled system.
Loop of 484 Character:
..... D30.3 (0x7E) 167 times
..... D20.3 (0x74) once
..... D30.3 (0x7E) once
..... D11.5 (0xAB) once
..... D21.5 (0xB5) 51 times
..... D30.2 (0x5E) once
..... D10.2 (0x4A) once
..... D30.3 (0x7E) 4times
..... D30.7 (0xFE) once
.....D20.7, D11.7 (0xF4EB) 128 times

0 RxLaneSel RW 0 Receiver Lane Select for bit-blasting patterns.
When set, selected lane is enabled to check bit-blasting
pattern type selected by RxPattern field.
When clear, selected lane does not check for RxbbPattern.

May 14, 2014 109 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

2.20.16 R QscRxBBDiagStatus

Register

R QscRxBBDiagStatus

Attributes

-noregtestcpu

Address

0xE 6D00 00a4
Bit Mnemonic Access Reset Type Definition

1 RxLaneSync R x Lane synchronization status.
This bit will be set in BBMode, if RxLaneSync e is se-
lected to check for RxbbPattern and finds RxbbPattern.
This bit will remain clear if BBMode is not selected.

0 RxBBError R x Bit Blasting error.
This bit will be set in BBMode, if RxLaneSync is set and
then if selected lane detects BBPattern error. Otherwise
this bit will remain clear. This bit will also remain clear
if RxLaneSelect bit is clear.

2.21 Link Unit Implementation Interface

Following sub-sections list handshake signals to and from link unit.

2.21.1 Interrupt Interface

The “fl csw Int sa” is interrupt generating output signal from link unit. All Link interrupts are communicated
by asserting this output. Refer to CSR section-2.20.11 for further details on interrupts from link unit.

2.21.2 Serial Configuration Bus Interface

The fabric link registers are acessible through the SCB interface. To connect to the SCB, a module must
instantiate an SCB slave module, and connect it to a global SCB chain. The input is connected to chaini scbs dat sr
and the output is connected to scbs chaino dat sr. The SCB bus and the SCB slave module are documented in the
serial configuration bus chapter.

2.21.3 Differential Drivers and Receivers

A link unit drives 27 serial signals on 27 differential drivers and it receives 27 serial signals on 27 differential
receivers. The differential drivers and receivers are part of Analogbit’s QPMA and are described in Analogbit’s
document “Serdes PMA Programmer’s Reference Manual”.

2.21.4 Fabric Switch Interface

Following 8B10B characters will be used on serial lanes.

1. k28.0 (byte = 8’h1c) - alternate NULL character

2. k28.1 (byte = 8’h3c) - SOLS, start of LinkSync used by LinkSync hardware execution routine

3. k28.2 (byte = 8’h5c) - EOLS, end of LinkSync used by LinkSync during by hardware execution routine

4. k28.3 (byte = 8’h7c) - SOP, start of packet, used during MissionMode operation

5. k28.4 (byte = 8’h9c) - EOP, end of packet, used during MissionMode operation

May 14, 2014 110 Rev 51328

SiCortex Confidential 2.21. LINK UNIT IMPLEMENTATION INTERFACE

6. k28.5 (byte = 8’hbc) - NULL or IDLE character

7. Following 8B10B control characters are Reserved. These 6 characters will be verified as part of data pattern
verification cycle in LinkSync hardware execution routine but they are not used in Sicortex serial lane protocol.
k28.6, k28.7, k23.7, k27.7, k29.7, k30.7

The Figure-2.10 shows handshake signals between fabric switch and link interface at the transmitter and at the
receiver. The figure assumes that ICE9-A is the link transmitter of data packets and link receiver of control packets
and ICE9-B is the link receiver of data packets and link transmitter of control packets.

Figure 2.10: Handshake Signals

The data packets and IDLE packets, which are collectively referred to as data packets, begin at SwitchFabric of
ICE9-A and travel from FabricSwitch to TransmitLink of ICE9-A on 64-bit wide data bus (fsw fltx OutDat s2a).
The TransmitLink transmits 64-bit data on 8-lane wide serial link which is connected to ReceiveLink of ICE9-B. The
ReceiveLink of ICE9-B transfers 64-bit wide databus (flrx fsw InDat s0a) and handshake signals to FabricSwitch
of ICE9-B.

Correspondingly, the control packets begin at SwitchFabric of ICE9-B and travel from SwitchFabric to Re-
ceiveLink of ICE9-B on a 8-bit wide databus (fsw flrx CtlDat s3a). Then the link interface of ICE9-B transmits
control and/or data characters on a single serial lane which is connected to ICE9-A. The link interface of ICE9-A
will transfer 8-bit databus (fltx fsw CtlDat s0a) and handshake signals to FabricSwitch of ICE9-A.

2.21.5 The transmitter Handshake Ports

Signal Name From To Description

May 14, 2014 111 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

fltx fsw MissionMode TransmitLink FabricSwitch When clear:
(a) TransmitLink is down and not available for transmit-
ting data or control packets.
(b) FabricSwitch must not assert fsw fltx DatVal s2a sig-
nal. If fsw fltx DatVal s2a signal is asserted and if
fltx fsw MissionMode is clear, then transmitter link may
drive unpredictable characters on serial link causing un-
predictable behavior at the receiver.
When set:
(a) TransmitLink is up, available for transmitting data.
(b) If fsw fltx DatVal s2a signal is clear then Trans-
mitLink will drive either NULL (k28.5) or alternate
NULL (k28.0) characters on all 8 lanes. An alternate
NULL (k28.0) character will be driven every 8th cycle of
fsw fltx DatVal s2a signal remaining deasserted.
(c) If fsw fltx DatVal s2a is set then TransmitLink
will transmit either control or data characters on se-
rial lanes. The status encodings of fsw fltx SoP s2a,
fsw fltx EoP s2a, and fsw fltx Idle s2a are valid if among
those 3 signals, condition of mutual exclusion is met and
the rest of the bytes in FORD are data bytes

fsw fltx DatVal s2a FabricSwitch TransmitLink Data Valid signal.
When set: Indicates that control signals fsw fltx SoP s2a,
fsw fltx EoP s2a, fsw fltx Idle s2a, and data bus
fsw fltx OutDat s2a[63:0] are valid.
When clear: Control signals and data bus are invalid.

fsw fltx OutDat s2a FabricSwitch TransmitLink 64-bit data bus, FORD = {Byte7,Byte6,..Byte0}
fsw fltx SoP s2a FarbricSwitch TransmitLink Start of packet, ignores BYTE0 and sends control char-

acter k28.3 on lane0. Ignore start of packet if either
fsw fltx EoP s2a or fsw fltx Idle s2a is also set.

fsw fltx EoP s2a FabricSwitch TransmitLink End of packet, ignores BYTE0 and sends control char-
acter k28.4 on lane0. Ignore end of packet if either
fsw fltx SoP s2a or fsw fltx Idle s2a is also set.

fsw fltx Idle s2a FabricSwitch TransmitLink Idle packet, ignores BYTE0 and sends control character
k28.5 or k28.0 on lane0 configured in CSR: 2.16.6.
Ignore Idle packet if either fsw fltx SoP s2a or
fsw fltx EoP s2a is also set.

fltx fsw CtlDat s0a TransmitLink FabricSwitch 8-bit databus
fltx fsw NewCtlPkt s0a TransmitLink FabricSwitch When set, indicates marker for new control packet and

databus fltx fsw CtlDat s0a = 8’h7c
fltx fsw DatVal s0a TransmitLink FabricSwitch When fltx fsw MissionMode is clear then,

(a) Fltx fsw DatVal s0a will remian deasserted
(b) fltx fsw CtlDat s0a and fltx fsw NewCtlPkt s0a are
invalid and should be ignored.
If fltx-fsw MissionMode is set then,
(a) If fltx fsw DatVal s0a signal is clear then it in-
dicates that on serial lane neither valid data nor
SOP was detected and hence fltx fsw CtlDat s0a and
fltx fsw NewCtlPkt s0a must be ignored.
(b) If fltx fsw DatVal s0a is set and if
fltx fsw NewCtlPkt s0a is set then it indicates marker
for new control packet (fltx fsw CtlDat s0a = 8’h7c)
otherwise fltx fsw CtlDat s0a has valid data byte.

May 14, 2014 112 Rev 51328

SiCortex Confidential 2.21. LINK UNIT IMPLEMENTATION INTERFACE

2.21.6 The Receiver Handshake Ports

Signal Name From To Description

flrx fsw MissionMode ReceiveLink FabricSwitch When clear,
(a) ReceiveLink is down and not available for receiving
data and transmitting flow control packets.
(b) flrx fsw DatVal s0a signal will remain de-
asserted. Rest of the handshake signals,
flrx fsw SoP s0a, flrx fsw EoP s0a, flrx fsw Idle s0a,
and flrx fsw InDat s0a are invalid and must be ignored.
When set,
(a) If flrx fsw DatVal s0a is clear then the rest of the
handshake signals are undetermined (may be ignored).
(b) If flrx fsw DatVal s0a is set then rest of the handshake
signals are valid.
(c) Flow control signals fsw flrx * are valid signals.

flrx fsw InDat s0a ReceiveLink FabricSwitch 64-bit databus FORD = {Byte7,Byte6,..Byte0}
flrx fsw SoP s0a ReceiveLink FabricSwitch Start of packet, (Byte0 = 8’h7c)
flrx fsw EoP s0a ReceiveLink FabricSwitch End of packet, (Byte0 = 8’h9c)
flrx fsw Idle s0a ReceiveLink FabricSwitch Idle packet, (Byte0 = 8’hbc)

flrx fsw DatVal s0a ReceiveLink FabricSwitch If flrx fsw DatVal s0a signal is clear, then rest of the
handshake signals (flrx fsw SoP s0a, flrx fsw EoP s0a,
flrx fsw Idle s0a, flrx fsw InDat s0a) are undetemined
(and hence may be ignored).
If flrx fsw DatVal s0a is set, then rest of the handshake
signals are valid.
Following five conditions will drive flrx fsw DatVal s0a
signal to logic state 1.
(1) (Byte7 through Byte1 have valid data) & Byte0 has
control character k28.0
(2) (Byte7 through Byte1 have valid data) & Byte0 has
control character k28.3
(3) (Byte7 through Byte1 have valid data) & Byte0 has
control character k28.4
(4) (Byte7 through Byte1 have valid data) & Byte0 has
control character k28.5
(5) (Byte7 through Byte0 have valid data)

fsw flrx CtlDat s3a FabricSwitch TransmitLink 8-bit databus
fsw flrx NewCtlPkt s3a FabricSwitch TransmitLink When fsw flrx NewCtlPkt s3a is set, it indicates

marker for new control packet and the databus
fsw flrx CtlDat s3a is ignored. Serial lane will drive con-
trol character k28.3 on serial lane when this signal is set.

fsw flrx DatVal s3a FabricSwitch TransmitLink When flrx fsw MissionMode is clear then,
(a) ReceiveLink is down and not receiving FORDs or
transmitting control packets.
(b) FabricSwitch must not assert fsw flrx DatVal s3a sig-
nal. If fsw flrx DatVal s3a signal is asserted then link
may drive unpredictable characters on link causing un-
predictable behavior at the receiver
When flrx fsw MissionMode is set then,
(a) If fsw flrx DatVal s3a signal is clear then Trans-
mitLink will drive either NULL (k28.5) or alternate NULL
(k28.0) character on a serial lane.
(b) If fsw flrx DatVal s3a signal is set then status encod-
ings of the rest of the handshake signals are valid.

May 14, 2014 113 Rev 51328

SiCortex Confidential CHAPTER 2. INTERNODE LINK

May 14, 2014 114 Rev 51328

Chapter 3

The Dense Fabric Switch

[Last Modified $Id: fabric.lyx 43331 2007-08-15 18:23:44Z wsnyder $]

3.1 Overview

Each node chip contains a buffered crossbar switch which forms the basic element from which the SiCortex
communication fabric is built. The switch is designed to provide the necessary components of a degree three Kautz
network, though it would be well suited to building a 3-dimensional torus, fat tree, butterfly network, or other
commonly used topology.

3.1.1 Specifications

• 3 input links, 3 output links. Input and output links do not, in general, connect to the same nodes.

• 2 GBytes/sec per link. 8 data lanes per link, plus a forwarded clock and a reverse channel which carries flow
control information.

• Signaling: Max frequency 1 GHz, DC-balanced 8/10 code.

• Best case transit time through idle Fabric Switch: 15 ns. Transit time is measured from when start of packet
is flopped-out by Link till when flopped-in by Link. Transit time increases for Dma-to-Link or Link-to-Dma
packets, or if the downstream switch is congested.

• Maximum packet size: ˜160 bytes (128 byte payload).

• Virtual Channels: 16.

• Buffers: 16 packets at each crosspoint.

• Ordering: Any packets with the same source node, destination node, and VC, following the same path, must
remain in order.

3.2 Differences, Bugs, and Enhancements

3.2.1 Product and Chip Pass Differences

1. None.

3.2.2 Known Bugs and Possible Enhancements

1. The FSW has an architectural performance limit preventing 4 ford packets at max rate, bug1832.

115

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.3 Description

3.3.1 Routing

Packets are assigned fixed routes through the fabric by the originating node. The first FORD of each packet
header contains a string of 2-bit routing codes. (See section 3.4.1.) At each hop, the receiving node examines the
first routing code of the string, which selects among the three fabric link output ports or an escape. If one of the
outputs is selected, the string is shifted right by 2 bits (one code) before transmission to the next node.

Routes are only shifted on packets traveling from IB to OB, not for packets going to or from the DMA.

3.3.2 Virtual Channel Assignment

Each packet is assigned a virtual channel (VC) number when it is created; the VC is chosen according to the
path the packet is to follow, and determines the set of buffers available to the packet at each switch node along
its path. The VC is encoded in the packet header. Each switch node has a programmable function which is
able to conditionally decrement the VC on packets passing through the port. This function is enabled at fabric
configuration time, and specifies for each port and each virtual channel whether or not to decrement VC.

Why do we do this? We use VCs to prevent deadlock in the network. Imagine a network of three nodes
connected in a ring. Node A sends packets to node B, B to node C, and C to node A. Each node can forward a
packet (pass it through) or consume it.

Assume that each node has space for exactly one packet in its input buffer. When a packet arrives in the input
buffer it is examined and either passed along or consumed. A packet is never passed along from one node to the
next unless the sending node knows there is space available in the receiving node’s input buffer. If node A wants
to send a packet to node B, then it holds the packet in A’s input buffer until there is free space in B’s input buffer.
Then the data is sent, and A’s input buffer is made free.

Now imagine that node A wants to send a packet to node C. It will send the packet first to B when B’s input
buffer is empty. B will forward the packet to C when C’s input buffer is empty. Further complicate things by
imagining that at the same time A wants to send packet to C, B wants to send to A, and C wants to send to B.
In the first “cycle,” B will recieve A’s packet, C will receive B’s packet, and A will receive C’s packet. Notice what
happens in the next cycle. A wants to forward the packet it just got from C and put it in B’s input buffer. But
B’s input buffer is filled – it holds a packet destined for C which is stuck at B because C’s input buffer is filled.
Nobody moves. We’re stuck in a deadlock.

Note that we could add more input buffers at each node, but that would just postpone the problem. If we had
two input buffers, we could lock up the network by making sure we send two packets from each node to the node
two hops away. All that it would take is for one node to delay emptying a destination buffer or some small network
delay and all the buffers would fill. The problem is that there is a resource dependency that wraps around in a
cycle. A can’t be free until B is free, but B can’t be free until C is free, and C can’t be free until A is free, but A
can’t be free until...

This deadlock was a showstopper for many complicated topologies until Dally and Sites described a scheme
called “virtual channels” in a 1988 paper. In this scheme they proposed adding “extra” buffers at each network
node, but divided the buffers into classes. That is, buffer number 0 was devoted to virtual channel 0, buffer N to
virtual channel N. Next they designated a specific virtual channel for every packet. A given packet would travel
on this virtual channel from its source to its destination. We could apply this scheme to our three node system by
saying that all messages starting at node C will be sent on virtual channel 1, while all messages from any other
node will travel on channel 0. This breaks the circular dependency, since though A can’t be free until B is free
and B can’t be free until C is free, C’s destination (A’s input buffer for channel 1) is never blocked since channel 1
carries all messages starting at C. (I wish I could do a movie of this one. Ask me to show you on the whiteboard
if this doesn’t make sense – mhr.)

So the first step in applying the virtual channel idea to our network is to identify all the cycles. It is the cycles
that we want to break. But we have a network with 972 nodes. How many cycles are there? Probably a bazillion
or so. Identifying them would be a bit of an issue, so here’s what we do: Number all the nodes from 1 to 972. Each
node K has three links coming from some other nodes (call them A,B, and C) and three links going to other nodes
(call them R,S, and T). Each of these nodes has a number. A node is “less than K” if its node number is less than
K’s node number. Now consider a circular path through a bunch of nodes. Each of those nodes has a number.
For at least one node P in the cycle P’s upstream node in the cycle (the node that connects to P’s input) and P’s
downstream node in the cycle (the node that connects to P’s output) are BOTH less than P. (Draw a cycle of five
or six nodes and number them. Note that you can’t arrange the numbers such that there isn’t some node P that

May 14, 2014 116 Rev 51328

SiCortex Confidential 3.3. DESCRIPTION

fits our description. If you could, then you could build a building such that climbing the staircase would eventually
bring you back to the bottom of the staircase.)

So, now for every path through a node (from one of its three inputs to one of its three outputs) we can identify
which paths fit our criteria of the upstream node and downstream node both being “less” than this node. There
is at least one such path in every cycle within our network. Remember that the idea of virtual channels is to use
buffer assignments to “break the cycle.” The original VC concept assigned a VC to a packet at the start of its path
and the VC was constant for the entire tour. We add a twist. We start a packet on some VC X. Each time it passes
through a node on the route such that the upstream and downstream nodes are both less than the current node,
we decrement the VC. That breaks the cycle. 1

The last remaining trick is to make the initial VC assignment to each packet such that the VC doesn’t get
decremented so many times that it falls below 0. (We provide 16 virtual channels in the SiCortex fabric architecture.)
The likely method we’ll use is to count the number of times the VC will be decremented on a particular route, from
start to finish. It may never be decremented. It can, at most, be decremented no more than (L-1)/2 times for a
route L hops long. So, for a network with a diameter of 7, we need no more than 3 virtual channels. We provide
more than 3 so that some traffic can travel on channels 0,1,2,3 and other classes of traffic can travel on 4,5,6,7. I’m
not sure why anymore.

The fabric switch can support 16 VCs, but if fewer VCs are needed, the extra buffers can be configured as a
pool that is available to traffic on any VC. The PoolMask register specifies which buffers are dedicated and which
are in the common pool. If 6 VCs are needed for a system configuration, set PoolMask to 0xFFC0 and only use
VCs 0-5. The 16-bit value 0xFFC0 indicates that crosspoint buffer entries 0-5 are dedicated to VCs 0-5, and entries
6-15 are pool.

3.3.3 Virtual Channel Arbitration

So now we’ve got every packet assigned to some virtual channel. (And, we’ve noted, the VC may change as the
packet flows through the network.) To avoid the network deadlock we need to provide a separate buffer on each
node chip for each virtual channel. In fact, we go one better than this.

In our simple example of the three node ring, we had a set of VC buffers at each network input port. In the
ICE9 chip, we have a set (16) buffers for each (input,output) pair. That is, traffic arriving at a node’s port 0 and
leaving on port 2 will go into a pool of buffers that is separate from traffic for any other pair of input and output
ports. We call the crosspoint where traffic from input port X to output port Y a crosspoint buffer.

Each crosspoint buffer has a pool of 16 packet buffer entries. One crosspoint buffer (XB) is associated with each
input port and output port pair, and the XB keeps track of:

1. the order in which the packet in each buffer arrived, and

2. the virtual channel to which that packet is assigned.

When a packet is in the XB it waits until the XB knows that there is space for it in the downstream node. For
example, let’s say that a packet arrives on port 0 of node K and is destined to leave on port 2. (We know this
from looking at the routing instruction.) We also know from the routing instruction that when the packet gets to
the downstream node D it will leave on – for example – port 1. Then the XB02 (the crosspoint buffer receiving
data from input port 0 and sending it out on port 2) on node K looks at the “buffer busy mask” for XB?1 on the
downstream node.2In our example, let’s say that the packet is traveling on VC 3. XB02 asks “Is slot #3 in XB?1
on node D empty?” If so, then XB02 can send the packet on to node D and be assured that there is a place for the
packet to go. In fact, since XB02 knows that the packet will go into slot 3, it sets the XBE ENTRY field in the
outgoing packet to tell node D to store the packet in slot #3.

As I noted above, there are 16 slots in the XB packet store. We only use 6 to 8 virtual channels. Slots 0 through
N in the XB are dedicated to VCs 0 to N. (N is defined in the POOLMASK that is set via the FSW POOLMASK
configuration register that is reachable from the CSR interface. See section 3.9.)

At all times, the XB has a conservative estimate of the available buffers in each of four XBs of the downstream
switch (strictly, the available buffers in the XBs for the input port on the downstream node to which this XB’s
output link is connected). If there are free buffers in the pool (buffers not assigned to a specific virtual channel),
the output port selects the oldest packet among its buffers (if the age is known only among packets from the same

1We’re in the process of patenting the scheme I’ve described here, so please, no matter how dull the conversation might get at your
next party, keep this whole story within the SiCortex community.

2I say XB?1 with the ? because we don’t know the input port number that the message arrived on at node D. As it turns out, we
don’t care. K’s XB02 can only cares about the four XB’s in D that are connected to port 2 on node K.

May 14, 2014 117 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

input port, the output port should select among occupied input port buffers on a round-robin basis). If there are
no free buffers in the pool, then only those packets for virtual channels known to have available buffers should be
allowed to arbitrate, and the oldest such packet should be chosen. Once a packet is sent from an output port, the
output block tells all XBs connected to it that the assigned buffer is busy.

The local picture of which downstream buffers are busy is maintained in the output block. Buffers get added
to this list when they are sent downstream. Buffers get freed from this list when a control packet arrives from
the downstream node with a new “link sequence number.” We don’t use packet-by-packet ACKs to signify correct
reception, as this would be rather inefficient. Instead, the downstream link continuously sends control packets. One
field in each control packet carries the sequence number of the last correctly received packet. The upstream node
then frees up any entries in its local list of busy buffers that were consumed by the acknowledged packets.

But the local picture is not complete. The downstream node includes a set of “busy masks” in the same packet
with the last good link sequence number. There are four such masks, one for each of the downstream XB’s connected
to this link. So, the output block maintains four local busy masks and receives four downstream busy masks. For
each downstream XB, the OR of the local and the downstream mask yields a conservative picture of which buffer
entries are free on the downstream node. The local busy mask contains a 1 for each packet in the replay buffer that
hasn’t been acknowledged. As soon as the packet is acknowledged, the local busy bit is cleared.

3.3.4 Flow Control

At the link level, each transmitter assigns a link sequence number (LSN) to every outgoing packet, and includes
that number in the header. The receiver includes the most recently received sequence number (of an error-free
packet) in its buffer status reports flowing up the reverse channel. The transmitter (which receives the buffer
status reports) retains transmitted packets in a replay buffer, deleting a packet from the replay buffer when the
downstream node indicates that it has been successfully received.

Of course, since we’re using the LSN as an acknowledgement mechanism, we have a bit of a startup problem.
Imagine that the transmitter sends its first packet with an LSN of 0. Now imagine that the first packet is corrupt.
Here’s the problem: the downstream node probably sent a control packet to the upstream node even before the
first packet (LSN = 0) arrived. That control packet had to have something in the “last good LSN received” field.
If it was 0, then we’re already fouled up and we haven’t even sent a whole packet yet. So, we start the transmitter
at LSN=2 and start the receiver’s last good LSN register at zero.

3.3.5 Error Control

First, a point to remember: a single-cabinet system has 972 nodes, each with three links consisting of 10 signal
pairs, for a system total of 29160 signal pairs. Operating at 2x10ˆ9 bits per second, we have approximately 6x10ˆ13
bits transmitted and received per second, so for any practical bit error rate, our system will encounter signaling
errors hundreds of times per second. It is therefore essential that we recover quickly and gracefully from the vast
majority of them.

Packet error detection and recovery is performed at the link level. Each receiver calculates a packet checksum,
and verifies it against the checksum provided by the transmitter. The receiver’s status reports back to the trans-
mitter include the sequence number of the most recently received packet, if there has been no error, or the last
packet received prior to an error if there has been an error.

In the event of a detected error, the receiver notifies the transmitter of the error, and the transmitter re-sends
all the packets following the last one correctly received. The output port contains a replay buffer (16 packets in
size), and in the event of an error, rather than re-arbitrating for the packets in the crosspoint buffers, packets replay
from the appropriate point in the replay buffer. This means that crosspoint buffers can be released at the time
they win arbitration for the output port, and do not have to wait for correct receipt. It results in an estimated
error recovery time of about 70 ns.

When operating smoothly, the fabric will achieve cut-through, meaning that the header of a packet will leave
a node’s output port before any error is detected, so a faulty packet may propagate through the network to its
destination. To deal with this problem, the type code in the tail of the packet includes a ”poison” code which is set
at the node which first detects the error, and causes the packet to be discarded when it arrives at a destination.
Packets that develop uncorrectable ECC errors while stored in a packet buffer will also be tagged as “poison.”

May 14, 2014 118 Rev 51328

SiCortex Confidential 3.4. OPERATION

XB00

XB10

XB20

XB30

XB01

XB11

XB21

XB31

XB02

XB12

XB22

XB32

XB03

XB13

XB23

IB0

IB1

IB2

To/From Fabric Link Receivers (flr0, flr1, flr2)
(InDat<63:0> from, CtlDat<7:0> to)

To/From DMA Engine
To: OutDat0<71:0>, OutDat1<71:0>, OutDat2<71:0>

From: InDat0<71:0>, InDat1<71:0>, InDat2<71:0>

OB0

To/From Flt0 (Fabric Link Tx 0)
(OutDat<63:0> to,
CtlDat<7:0> from)

OB1

To/From Flt1
(OutDat<63:0> to,
CtlDat<7:0> from)

OB2

To/From Flt2
(Dat<63:0> to,

CtlDat<7:0> from)

D
M

A
O

2

D
M

A
O

1

D
M

A
O

0

D
M

A
I2

D
M

A
I1

D
M

A
I0

Figure 3.1: Fabric Switch Block Diagram

3.3.6 Out-of-Band Channel

Both upstream and downstream channels carry a specialized out-of-band fields in the packet which deliver
one byte plus handshake information to the immediate neighbor. The byte is deposited in a software-accessible
register in the neighboring switch’s control registers, and the handshake bits maintain the full/empty status of the
corresponding register in the source node. Whenever the handshake bits from the upstream or downstream nodes
change value, an interrupt may be requested. There will be six such registers in each node, one for each upstream
and downstream neighbor. This mechanism allows bidirectional out-of-band communication between neighboring
nodes. It will be used at least for software configuration and management of the fabric, and we can implement
TCP/IP on it if needed. (See sections 3.5.1, 3.4.1, and 3.4.2.)

3.4 Operation

When a packet arrives at the input port of the node (see ?? on page ??) it is re-timed into a sequence of 64 bit
FORDs delivered at 1/5 the clock rate of the fabric (and is resynchronized/forwarded into the node’s own Switch
Clock domain.) All recoding and re-timing is handled by the node link receiver. The switch will then route the
incoming packet to an appropriate output port via one of 15 crosspoint buffers.

The first FORD in each incoming packet (arriving at an input block or IB) contains the virtual channel number
for the packet and the number of the port from which it will leave the switch. Ports 0, 1, and 2 lead to the three
neighbor nodes, while port 3 leads to this node’s DMA engine. The input block may decrement the VC number in

May 14, 2014 119 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

the header FORD (see 3.6) before sending the packet on to one of four crosspoint buffers. (This is based on the
deadlock avoidance mechanism described below.) The link recognizes the first FORD in a packet by the presence
of a start-of-packet marker in lane 0 of the link.

When a packet arrives at a crosspoint buffer, it is written into a free crosspoint buffer entry (XBE) at the
location specified in the first FORD of the packet. (If the location is already occupied, the packet is dropped and
marked “invalid.”) Arriving packets are immediately bypassed to the output block if the crosspoint buffer is not
otherwise sending data to the OB. If the output block is not currently moving a packet, it will pass the bypassed
packet directly to the link output port. Otherwise, the packet will sit in the XBE until it wins a bid for transmission
and is read from the crosspoint buffer. The last FORD in each packet contains an end-of-packet marker in its 8/10
encoded form on lane 0.

The output block is responsible for global arbitration among the packets offered by each of the four attached
XBEs. We want to make sure that packets can be routed back to back, so that if XB00 is sending a packet through
the output block (OB0), then we can immediately follow the end of its packet with the start of a packet from any
of the XBEs. We do this by starting global arbitration a few cycles before the end of a packet is transmitted, so
that a winner is ready in time to fill the next output cycle.

A few elements are not shown in the diagram because they touch nearly everything. The fabric switch contains
a module FswCsr which connects to the Serial Control Bus (SCB). Control register values are distributed from
FswCsr to every module, and status values are sent from every module back to FswCsr. The FswCsr can assert
interrupts to notify processors of an error conditions or when an out-of-band character is received.

3.4.1 The Data Link

The data link is implemented with eight lanes of SERDES, differential, low-swing, channels, each passing bits
between Ice-9 chips at 10-times Ice-9’s internal clock rate. Inside Ice-9, on the interface between each Link unit
and the Fabric Switch unit, one 64-bit Ford is passed on each clock. Each external lane handles 8 bits out of those
64 bits. A series of these Fords represents the flow of Data Packets or Idle Packets.

On any given interface between the Fabric Switch unit and a Link unit, when the signal indicating “valid data”
is asserted, Data Packets or Idle Packets are passing. The Fords themselves don’t indicate boundaries between
packets, separate control signals say what each Ford is. The “SOP” signal indicates the Header, the first Ford of a
Data Packet. The “EOP” signal indicates Trailer, the last Ford of a Data Packet. The “Idle” signal indicates this
Ford is an Idle Packet (Idle Packets are 1 Ford long). Only one of these three signals may be asserted at a time,
and if none are asserted, this Ford is in the middle of a Data Packet.

The format of a Header Ford, a Tailer Ford, and how they join with payload Fords to form a Data Packet are
shown below. Also shown is the format of an Idle Packet.

The encodings of Sop, Eop, and EsComma fields are only meaningful in the 10-bit form, while on a differential
link between Ice-9 chips. Inside Ice-9, between Links and Fabric Switch, we rely on separate SOP, EOP, and Idle
control signals. A TX Link will ignore whatever value the Fabric Switch put in Ford bits 7:0 during the assertion
of SOP, EOP, or Idle, and just manufacture the appropriate 10-bit control character to send over the differential
link. An RX Link will put 8-bit values into Ford bits 7:0 when it receives Sop, Eop, or EsComma 10-bit characters,
but these 8 bits are ambiguous, being the same as certain other ordinary data bytes. Fabric Switch knows these
are not ordinary data bytes because of the control signals.

Although Link units are free to represent EsComma with either NULL or ANULL characters, which according
to the 8b/10b encoding we use would produce different 8-bit values when decoded, the RX Link always puts the
8-bit value for NULL into bits 7:0 when decoding either NULL or ANULL.

Crc32 is created in a manner that doesn’t include Sop, Eop, and EsComma fields, and when judging incoming
Crc32’s, those fields are again excluded.

3.4.1.1 Fabric Packet Header Class

Class

FswPktHdr

May 14, 2014 120 Rev 51328

SiCortex Confidential 3.4. OPERATION

Attributes

Bit Mnemonic Type Constant Definition

w0[7:0] Sop Start of Packet.
w0[11:8] Vc Virtual Channel <3:0>.
w0[15:12] XbeTarget XBE Target <3:0>.
w0[21:16] Reserved
w0[26:22] NumFords How many fords in the packet? Valid values are 4 to 20.
w0[27] HasCtrl This bit is only used by the DMA engine. If 1, the DMA

treats the second ford as a DMA control ford, otherwise
it is treated as payload.

w0[31:28] Lsn Link Sequence Number <3:0>.
w0[63:32] Route Route <31:0>.

w0[63:0] AllBits Header doubleword. Overlaps allowed.

3.4.1.2 Fabric Packet Trailer Class

Class

FswPktTrail

Attributes

Bit Mnemonic Type Constant Definition

w0[7:0] Eop End of Packet.
w0[11:8] Type Packet type (1111 = FSW POISON TYPE).
w0[15:12] ProcessIndex Process Index.
w0[31:16] UnixProcessId UNIX Process ID.
w0[63:32] Crc32 CRC-32.

w0[63:0] AllBits Trailer doubleword. Overlaps allowed.

3.4.1.3 Fabric Data Packets

Ford Bits Content

0 63:0 Header (as shown above)
1 to (last-1) 63:0 Payload, including software header

last 63:0 Trailer (as shown above)

3.4.1.4 Fabric Packet Idle Class

Whenever an output port has no data packets to transmit, it sends an Idle packet, consisting of a single ford
encoded as shown.

Class

FswPktIdle

Attributes

Bit Mnemonic Type Constant Definition

w0[7:0] EsComma ES COMMA (K28.5 NULL or K28.0 ANULL).
w0[15:8] OutOfBand Out of Band Byte.
w0[16] EmptyFlag Empty flag.
w0[17] TakenFlag Taken flag.
w0[18] ErrorAck Error Acknowledge.
w0[31:19] Reserved.
w0[63:32] Crc32 CRC-32.

w0[63:0] AllBits All bits of Idle Packet. Overlaps allowed.

May 14, 2014 121 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.4.2 The Control Link

The control link has one lane, one differential pair between Ice-9 chips, 8-bits wide between the Fabric Switch
unit and Link units. Control Packets are 15 bytes long.

Between Ice-9 chips the start of a Control Packet is indicated by the 10-bit SOP character. Between Fabric
Switch and Link units, the start of a Control Packet is indicated by a NewCtlPkt control signal. This is because
the 8-bit encoding of the 10-bit SOP character is ambiguous, being the same as another ordinary data byte. A Link
unit sending a Control Packet will ignore b0. A Link unit receiving a Control Packet will put the 8-bit encoding of
SOP into b0, and assert NewCtlPkt at that time. Note that CSUM intentionally does not cover the SOP field.

3.4.2.1 Fabric Control Packet Class

Class

FswCtlPkt

Attributes

Bit Mnemonic Type Constant Definition

b0[7:0] Sop Start of Packet. During CRC computation, assume
SoP=0.

b1[3:0] Lsn LSN
b1[4] Reserved
b1[5] ErrFlag Err flag
b1[6] TakenFlag Taken flag
b1[7] EmptyFlag Empty flag
b2[7:0] P0BusyHi P0Busy[15:8]
b3[7:0] P0BusyLo P0Busy[7:0]
b4[7:0] P1BusyHi P1Busy[15:8]
b5[7:0] P1BusyLo P1Busy[7:0]
b6[7:0] P2BusyHi P2Busy[15:8]
b7[7:0] P2BusyLo P2Busy[7:0]
b8[7:0] P3BusyHi P3Busy[15:8]
b9[7:0] P3BusyLo P3Busy[7:0]
b10[7:0] Oob OOB
b11[7:0] Crc3 Running CRC of bytes 0-10. During CRC computation,

assume Crc3=0.
b12[7:0] Crc2 Running CRC of bytes 0-11. During CRC computation,

assume Crc2=0.
b13[7:0] Crc1 Running CRC of bytes 0-12. During CRC computation,

assume Crc1=0.
b14[7:0] Crc0 Running CRC of bytes 0-13. During CRC computation,

assume Crc0=0.

3.4.3 Control Link Use

It is a good idea, in the case of a critical flow control scheme, to assume that packets will be dropped, corrupted,
spindled, mutilated, or otherwise ill treated on their way from source to sink.

As we discussed earlier, flow control is managed by a debit/credit mechanism where the receiving end tells
the sender how much space is available in the receiver’s buffers for each virtual channel and port. As you might
imagine, this scheme works fine in the presence of imperfect knowledge on the part of the transmitter, as long as
the transmitter’s view of the world is always pessimistic: the transmitter must never send a packet for which there
is no room at the receiver.

The receiver will provide this imperfect information by keeping up a continual chatter on the control link. Each
control packet begins with an ES_COMMA tenbit character. Section 3.4.2.1 describes the layout of the control packet.
Each control packet will contain the serial number of the last packet received without error. We’ll call this the
“link sequence number” or LSN. As each packet arrives intact on the data link, the receiver updates the LSN and

May 14, 2014 122 Rev 51328

SiCortex Confidential 3.4. OPERATION

it is sent back in the next control packet. If an error is detected in an arriving packet, the receiver will not update
the LSN and will set the Err Flag entry in the control packet. (The LSN field holds the link sequence number
from the last successfully received packet.) The error flag remains set in all subsequent control packets until a data
link message arrives indicating an error recovery retransmission. (This is done via the Error Acknowledge bit in
Idle packet). The other bits sent along with the LSN are used to manage the out-of-band communication channel
described below.

In addition to the LSN, the control chatter needs to update the availability of up to 16 virtual channels and
a shared buffer pool for each of the four outlets at the end of a data link. (See 3.7 for a discussion of buffer
allocation in the fabric switch.) Each outlet for a switch has 16 buffer slots. The interpretation of a buffer slot
name vs. the virtual channel to which it belongs is programmable – the meaning is determined by agreement
between the downstream and upstream nodes on a link. The control link protocol only specifies the means of
identifying the occupancy for each of the 16 entries in each of the four crosspoint buffers. The control packet
stream carries a current snapshot of the crosspoint buffer entry utilization for each of the four crosspoint buffers.
Each XB (crosspoint buffer – see 3.10.7) has 16 entries. The arbitration unit within the switch determines which
packets may be forwarded to the next node on a path based on the availability of downstream buffer entries. If bit
N is set in PxBusy, buffer slot number N on crosspoint buffer x is currently filled.

Finally, we provide a “out-of-band” communication link between nodes that travels along the control link. The
out of band link is described in section 3.5.1.

3.4.4 Error Recovery

Note that we’re not doing error correction. It turns out that error correction on a 10/8 code is rather expensive.
Parity based schemes (including most SECDED codes) rely on the likelihood of a single bit error being much greater
than a multi-bit error. Unfortunately, it is unlikely that we could construct a mapping from the tenbit space into
the eightbit space that preserves the error bit count. That is, for some ten-bit combination, there will be a single
bit error in the encoded symbol that will result in two or more bits in error for the decoded symbol. Consider a
symbol with an equal number of 1’s and 0’s. Each of the ten possible single bit errors will create a new symbol with
either six 1’s and four 0’s or vice-versa. Each of these ten distance one symbols will decode to some legal eightbit
value. At least one of those must differ in at least two bits from the original (correct) decoded value, because there
are only eight values that are distance 1 from the original value. So the first alternative is a symbol correcting code
that could correct one bad symbol out of 255. The cost of the symbol correction hardware really isn’t worth it.

Simple linear codes are hopeless here. So we’ll use a CRC error detection code.

Every data packet is protected by a CRC error-detection code, and every output port has a replay buffer in
which it records the data packets recently sent on that link (Idle packets are not recorded). The connected input
port records the Link Sequence Number (LSN) of every packet, and as long as the CRC’s are correct, sends the
LSN’s back to the output port via periodic control packets. In the event of a CRC error, the input port stops
updating the returned LSN and instead reports an error in the control packet. The output link uses the LSN of
the last correctly-received packet to look up the position of the erroneous packet in the replay buffer, and re-sends
the corrupted packet and all its successors. When the downstream node receives the retransmitted packet, if the
CRC is correct it updates the returned LSN, and the output link resumes taking packets from the switch when it
has finished retransmission from the replay buffer.

Control packets and idle packets are never replayed. The switch that generates these packets creates new packets
with a new CRC constantly. The switch that receives these packets simply ignores packets which have a bad CRC
and waits to receive the next one.

3.4.5 Poison

When the header of a packet arrives at an input port, the switch immediately arbitrates for use of the selected
output port, and if it’s available, begins outputting the packet. This is called cut-through routing, and is an
important contributor to the performance of the SiCortex fabric. However, it creates a problem if the packet
contains errors that aren’t apparent from the first ford; for example, a packet length error cannot be detected until
we realize that the packet is too long. There is no way to prevent the header from continuing on to its destination
– or if corrupted, some other destination altogether. The solution to this problem is to “poison” the packet. Any
node which detects an error will change the Packet Type field in the packet’s last ford to Poison (and increment a
counter of how often it has poisoned packets). When the packet finally arrives at some destination, the Poison type
will be recognized and counted, but the packet will be otherwise ignored. Switch nodes which buffer a poisoned

May 14, 2014 123 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

packet waiting for an output port are permitted to discard the entire packet, provided that it has not begun output.
For more detail on error recovery, see section 3.8.

3.4.6 Mission Mode

The fabric switch depends on the fabric link transmitter (FLT) and receiver (FLR) to send data to its neighboring
nodes. While the FLT and FLR are being initialized and the link is in training, each link deasserts a signal to the
FSW called MissionMode. While MissionMode is off, the fabric switch ignores everything else coming from that
link, to avoid being confused by the training sequences. Once MissionMode is asserted by a FLR, the switch begins
to accept data packets and send control packets. When MissionMode is asserted by an FLT, the switch waits for
the first good control packet, then begins sending data packets downstream.3

3.5 Special Communication Paths

3.5.1 The Out-of-Band Communication Registers

It is quite handy to have a low bandwidth simple communications path between an upstream and downstream
node. Normally the network topology would not allow communication from a downstream node B back to its
upstream node A without requiring a message to pass through multiple hops.

Half of the sub-band communication path is implemented on the control link, the other half is in the data link.
The control link carries OOB information in every control packet; the data link carries OOB information in Idle
packets, when the link has no data packets to transport.

Each node has six OOB links: three to its upstream neighbors, and three to its downstream neighbors. Each
OOB link is bidirectional, with a send and receive register at each end of the link. Let’s assume that Empty is
high and Taken is low. To use the link, software writes a byte to the send register, and clears the Empty flag. The
fabric transmits the register and flag to the far end of the link as convenient (in Idle or Control packets), and when
they are received without error, the far-end fabric switch writes both to the receive register. The receive register
requests an interrupt when it sees the Empty flag toggle. Interrupt software on the far-end node reads the receive
register, and sets the Taken flag, which then gets passed over the reverse channel and causes an interrupt on the
source node. To return to initial conditions, software on the source node sets Empty again, which propagates and
triggers an interrupt at the receiver. Then software on the receiver clears Taken, which propagates and triggers an
interrupt at the source.

The Out-Of-Band communication is driven entirely by software, so other communication protocols may be
possible as well.

3.6 Deadlock Avoidance

The fabric uses a virtual channel scheme to avoid network deadlock. For more information on virtual channels
and deadlock avoidance, see Section 3.3.2. The fabric switch core makes no changes to virtual channel assignment
for a packet. It is the responsibility of the input block to decrement the virtual channel assignment per the deadlock
avoidance scheme.

For instance, consider a packet arriving at receiver block 0 on virtual channel 3 on a route that dictates a
decrement of the VC number and will leave the chip on port 1. The upstream node has already verified that
crosspoint buffer XB01 has room for a packet on VC3. The incoming packet will consume the appropriate slot
in XB01 and arbitrate for access to a crosspoint buffer entry on the next chip for VC2. The choice of whether
a packet’s VC is decremented is made in the input block for a port. Each IB has a 3-bit DecrementVc register
indicating which (if any) packets get a VC decrement based on the output port selected by the routing field at
the head of the packet. If bit X of the DecrementVc register is set, then VC is decremented for packets whose
destination is output port X. DecrementVc has only 3 bits because packets going to the DMA (output port 3) are
never decremented.

3The link always delays the assertion of datValid two cycles after the assertion of mission mode. The DV infrastructure follows this
implementation.

May 14, 2014 124 Rev 51328

SiCortex Confidential 3.7. THE SWITCH ARCHITECTURE

3.7 The Switch Architecture

3.7.1 General Organization

When an outbound link becomes available, each crosspoint buffer set (four crosspoint buffers connected to the
same output port) must pick the best eligible crosspoint buffer entry to send out. The “best eligible” entry is,
ideally, the oldest. Finding the oldest entry of 16 within a single crosspoint buffer is relatively straightforward and
inexpensive. We call this stage “Local Arbitration.” Once each of the four crosspoint buffers in a set (e.g. XB00,
XB01, XB02, and XB03 in Figure 3.1) has chosen a local candidate, the four local candidates bid against each
other in the “Global Arbitration” phase.

3.7.2 Ordering Requirements

The global ordering rule dictates that packets from the same source, going to the destination along the same
route, with the same virtual channel must be kept in order.

Another way to state the same ordering rule is: If there are any differences in the route or VC number, packets are
allowed to pass each other. Our fabric switch does not bother to compare all the bits of route though; it only looks
at the least significant four bits, which indicate the destination port in this fabric switch and the destination port in
the downstream fabric switch. This is an implementation choice; there are other legal choices. Our implementation
of the fabric switch keeps packets in order only if they

1. arrive on the same input port

2. leave on the same output port (route bits 1:0)

3. are destined for the same output port of the downstream switch one hop away (route bits 3:2)

4. leave on the same virtual channel

To maintain this ordering, every crosspoint buffer must keep a record of the relative age of all of its packets. We
never need to compare packet age between crosspoint buffers, because they are on different routes.

3.7.3 Local Arbitration: Within A Crosspoint Buffer

When there is an opportunity for a packet to be sent out of an output port, each crosspoint buffer contending
for that port selects its oldest eligible packet and sends a “bid” to the output port for that packet. Packets are
eligible if there is a buffer in the downstream fabric switch which can accept the packet. The following paragraphs
describe how the oldest eligible bidder is determined.

Each entry in the crosspoint buffer has a 16-bit wide “age vector” associated with it (where “16” is the number
of entries in a crosspoint buffer). When a new packet arrives with XbeTarget = W, slot W is filled, and its age
vector is set to all 1s except for bit W. At the same time, bit W in ALL the age vectors within this crosspoint
buffer are cleared.

Only “eligible entries” are allowed to bid in a local arbitration cycle. An entry X is eligible if the busy mask
bits from the output port indicate that there is a buffer entry Y at the destination link that can accommodate the
packet in entry X. (That is, entry X – carrying a packet for port P and virtual channel V on the next node – is
eligible only if the next node has space for a packet in XB?P.)

One cycle after each eligible entry has bid, each entry ANDs its age vector with the vector of bids. If the AND
of the two is zero, then the corresponding entry wins the local arbitration. Only one such entry can occur for any
given bid cycle.

A crosspoint buffer performs local arbitration in every cycle to select a local winner. If there is a local winner,
the crosspoint buffer raises a request to its output block. The request consists of the following information about
the local winner:

• Which type of request it is. There are two types of requests:

– Request for Packet Store. If granted, the crosspoint buffer will start reading its memory and start
sending the packet, one ford at a time, to the OB.

May 14, 2014 125 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

– Request for Bypass. If granted, the OB will read packet data from its bypass delay pipeline and send it
out; the crosspoint buffer doesn’t have to send anything. Bypass is only possible during a window of 3
cycles after the start of packet arrives, but during that window the bypass path provides a lower latency
path through the switch.

• Virtual Channel. (Remember that any VC decrement has already been done in the IB.)

• Which output port will the packet use in the downstream switch?

• Which crosspoint buffer entry will the packet use in the downstream crosspoint buffer?

• How many fords in the packet?

The crosspoint chooses a local winner every cycle based on continually-changing information from several sources.
The OB receives control packets and forwards the downstream buffer availability to the crosspoint buffer. When
requests are granted, the winning packet is invalidated so that it doesn’t arbitrate anymore. New packets arrive
and begin to compete for a chance to be the local winner. Because the inputs are changing every cycle, the local
winner may change every cycle and this is perfectly legal, but there’s one caveat. When the grant signal comes
from the output block, it always refers to the local winner that generated a request in the previous cycle.

The output block will ignore any requests that are made at incovenient times, such as during the grant cycle,
during replay, or when the outbound link has gone down.

3.7.4 Global Arbitration: Between Crosspoint Buffers

In the previous section we saw that the crosspoint buffers will make requests to the output block in every cycle.
Each OB sees at most four requests from the four connected crosspoint buffers. Whenever the output port is free,
or is close to the end of a packet, global arbitration looks at the requests and decides what packet will be sent next.

Before describing global arbitration, we must consider what packets are really competing for. Before a packet
can be sent downstream, the switch must be sure that an appropriate buffer is available for it in a downstream
switch’s crosspoint buffer. So, packets are competing for a spot in a particular crosspoint buffer; the packet’s low
2 bits of route4 tells which crosspoint buffer they need to go into when they get there. Also, within a downstream
XB, some XBEs are dedicated to a VC while others can be used by any VC (see PoolMask register). In global
arbitration, we try to ensure fair access to the downstream buffers. If requests from different XBs request the same
NextPort (low 2 bits of route) and VC, they are contending for the same pool of buffers and must be treated fairly.

Global arbitration is done in two stages. The first stage selects the least recently chosen XB which is requesting.
The first stage winner’s NextPort and VC are used in the second stage. In the second stage, we only consider
requests that have the same NextPort and VC as the first stage winner. Often, that narrows it down to just one,
but there might be up to four requests remaining that all have the same NextPort and VC. The second stage
does round-robin arbitration between remaining requests, based on just the history of requests with this same
NextPort/VC combination. The winner of the second stage will be selected to go out the output port as soon as
possible. The XB that wins is recorded in the stage 1 and stage 2 history so that it influences the next global arb.

The following diagram describes the state that is stored to implement the two arbitration stages in one output
block.

4When the packet arrived in the IB, the low 2 bits of route told which output block to send it to. After looking at them, the IB
shifted those 2 bits away. By the time the packet is in the crosspoint buffer, the low 2 bits of route tell which output block it will go
to in the downstream switch.

May 14, 2014 126 Rev 51328

SiCortex Confidential 3.7. THE SWITCH ARCHITECTURE

Stage 1 Arbitration

Global Arbitration Example

0

0

0

0 0 0

0

0

0

0

0

1 1

1

1 1 1

XB02

XB12

XB22

XB32

Find Least Recently Chosen XB that
is requesting. Use a 4x4 Age Vector Matrix.

Stage 2 Arbitration

Do Round Robin by NextPort+VC
using a 64-entry Table of which XB

won last.

vc 0, nextport 0 XB02
XB32
XB02
XB12
XB12

XB22
XB22
XB12
XB02
XB32

vc 0, nextport 1
vc 0, nextport 2
vc 0, nextport 3
vc 1, nextport 0

vc 14, nextport 3
vc 15, nextport 0
vc 15, nextport 1
vc 15, nextport 2
vc 15, nextport 3

. . . .

. . . .

This table shows the XB12 won least
recently, followed by XB22, then XB02.
XB32 won most recently. Eliminate the
rows and columns for the one that is not

requesting, and look for a row full of zeroes.
XB12 is the winner.

XB02, VC=4, NP=7

XB12, VC=0, NP=3

XB32, VC=0, NP=3

XB22 no request

Stage 1 Contenders Stage 1 Result

Three out of four XBs request.
The requests are shown, along with

their VC and NextPort.
XB12, VC=0, NP=3

The stage 1 winner is:

Any requests with the same
VC and NextPort will proceed

to stage 2.

Stage 2 Contenders

XB12, VC=0, NP=3

XB32, VC=0, NP=3

There are two contenders
which had the same VC and NextPort

as the stage 1 winner.

Stage 2 Result

XB32, VC=0, NP=3

Last time there was a stage 2 arb for
VC=0, NP=3, the table says that XB12 won.

Give it lowest priority this time.
XB32 is the winner.

Last step: Update the stage 1 age vector
and stage 2 history table.

In the first stage, we need to know the least-recently-used crosspoint buffer that is requesting, so we maintain
four 4-bit age vectors. The NextPort and VC of the first round winner are used to index into the stage 2 table,
which records the previous winner for each combination of NextPort and VC. The second stage round-robin gives
the previous winner the lowest priority in winning stage 2 this time. After a winner is chosen, the stage 1 age vector
is updated, and the winner’s XB number is stored in the appropriate entry of the stage 2 history table.

After a winner is chosen, the output port sends a Grant signal to the XB saying that the packet was selected to
be transmitted. The XB knows that the grant applies to the request from the previous cycle. The XB clears the
Valid bit on the entry that won, so that a new packet can begin to use that entry. If the request was a “Request
for Packet Store”, then the XB needs to start shipping data to the XB in the following cycle.

Back in the output block, the new winner has declared its XbeTarget along with the request, so the OB can
set a bit in its local pessimistic view of downstream buffer availability. The local pessimistic view is logical ORed
with the buffer busy mask sent to the crosspoint buffers, so that future requests will assume that the buffer is
taken. Eventually, the OB receives an acknowledgment in a control packet, the pessimistic bit is cleared, and the
downstream buffer can be used again.

When a winner is chosen, the OB knows how long the winning packet is and when it will be done. Therefore, it
knows when to allow global arb to run again, just in time to select the next winning packet. Meanwhile, all requests
are simply ignored by the OB. There is no reason that the XB needs to know if global arbitration is running or
not. The OB only sends the XB a message if it wins.

When you combine local arbitration and global arbitration, it is easy to introduce the possibility of starvation.
In several earlier implementations of output arbitration, we discovered cases where a certain traffic pattern in some
XBs could prevent a packet in another XB from ever getting sent out. One important aspect of the scheme described
above is that there is separate round-robin history maintained for the specific resources that packets are competing
for. The NextPort and VC are used in stage 2 because each entry of the table exactly describes the set of buffers

May 14, 2014 127 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

that a packet needs. Using only the VC in stage 2 arbitration would allow a flood of traffic on (VC0, NextPort 0)
to starve traffic on (VC0, NextPort 2). Using only the NextPort in stage 2 arbitration would allow a flood of traffic
on (VC0, NextPort 2) to starve traffic on (VC1, NextPort2). Another important piece is that every requester must
receive information on downstream buffer availability in the same cycle, so that if a buffer becomes available that
allows an old packet to finally go out, it is guaranteed a chance to win local arb and eventually win global arb as
well. Providing information at the same time is easy for the crosspoint buffers; we need to be especially careful
in making bypass decisions. If the bypass decision logic learns of available buffers before the competing crosspoint
buffers, bypass packets could starve normal traffic and break ordering and fairness rules.

3.7.5 Why Two Levels of Global Arbitration?

Matt wrote this section to describe some of the pitfalls of global arbitration schemes that didn’t take into
account NextPort and VC. Bryce left it in the spec because it describes one of the most important problems we’re
trying to avoid.

A single-stage “least recently chosen” scheme is fair, but not immune to livelock. Imagine that there is a packet
X in XB00 that needs VC1 on port 3 in the next chip. At the same time all four XBs (XB00, XB01, XB02, XB03)
are extremely busy and always have packets that are eligible to bid even when packet X can’t. Now imagine that
every time XB00 wins global arbitration, VC1 is busy, but XB00 has traffic for some other VC. This will ensure
that every time VC1 becomes available to XB00, it is the least likely bidder to be chosen. (It wasted its turn on the
traffic for the other virtual channel: the global winner is always XB01,XB02, or XB03 when there is space available
in VC1/P3 of the next chip. The packet in XB00 for VC1 will never win the global bidding: it is stuck. Unlikely?
Yes. Impossible? No. In fact, this bug has surfaced before.

The problem is that we’re doing a two level arbitration where success for an individual requester requires success
at both levels simultaneously. In the case of packet X, it won its own local bid whenever it was eligible (because it
was eventually the oldest packet entry in XB00) but each time it got to bid on a global resource, other traffic in
XB00 had caused the least-recently-chosen token to pass it by.

3.7.6 Stitching it all Together

It is important that we be able to string packets back-to-back through an output port. This means that as the
last bits of a packet are being sent to an output port driver, we need to have the first bits of the next packet queued
up and ready to go. To accomplish this, we have tuned the global arbitration logic so that it chooses a new winner
several cycles before the data is needed at the output mux. By arbitrating several cycles before the end of packet is
transmitted, we cover the delay of arbitration, notifying the winning XB, and starting to read the winning packet.
This implementation does not require skid buffers.

3.8 Error Detection and Recovery

There are several places where bits could get flipped, slipped, spindled, or mutilated. As was indicated above,
we attempt to isolate errors to the link level and retry in the presence of bit errors on the link. Some errors are
recoverable, in the sense that we can retry the transmission and will get the bits across the link on the second or
third try. Other errors may not be correctable in this way. In this latter case, we will “poison” the outgoing packet
so that it will eventually be dropped into the bit-bucket somewhere along its future path.

It should be noted that some errors may be detected well after the packet has begun its trip to the next node
on its path. That is, the head of a packet may have left a node before the tail has been seen and an error has been
detected. This is a problem, and probably the only really tight path in the switch. The IB must detect an error in
the last FORD (possibly a CRC error) and propagate a signal down to the OB in time to cause the OB to change
the packet type in the last FORD of the packet to “POISON.”This is serialized with the creation of the CRC field
that is connected to the same packet. Note that we must generate good CRC for ALL transmitted packets, whether
poisoned or not, otherwise we’ll trigger a retry on the link, since all CRC mismatches are assumed to be caused by
link transmission errors.

Nearly all error detection occurs in the input block, so that crosspoint buffers and output blocks do not have
to worry about error conditions. The input block catches protocol errors such as missing or extra SoP or EoP
markers, packets that are too long or too short to be legal, and CRC errors. Corrupted XbeTarget is detected in
the crosspoint buffer so that avoid overwriting a good packet with a corrupted one. ECC errors are detected as a
packet store or replay buffer entry are read.

May 14, 2014 128 Rev 51328

SiCortex Confidential 3.8. ERROR DETECTION AND RECOVERY

3.8.1 CRC Generation and Checking

All packets (control, data, and idle) are covered by a 32 bit CRC. The algorithm is defined in Crc.sp. (This is
the CRC-32 scheme.) The initial value for the CRC sum, before the first byte or word is cranked in, is 0xFFFFffff.
The final value is NOT complemented before being written into the packet. All bits in the packet are covered by
the CRC except for the SoP field from the link and the CRC value itself. (In the case of data packets, the top 32
bits of the last FORD are the CRC field, the low 32 bits are covered by the CRC.)

Many of the errors below are a subset of a CRC error. But some fields are more likely to confuse the switch
than others. Bit errors in the payload are easy to handle. For the fields that the fabric switch really cares about,
such as the VC, XbeTarget, and route, the recovery mechanism (if needed) is described in a separate section below.

3.8.2 Handling Poisoned Packets

Here is the problem:
Imagine a packet that is corrupted such that, while it had been traveling on VC 3, the VC got changed to VC 4.

This is definitely a bad thing, since our deadlock avoidance mechanism depends on VCs monotonically decreasing.
Any error that causes a VC to decrease in level is tolerable. Errors that bump the VC up can cause a deadlock.

But the deadlock is only an issue for packets that make it into the packet store. If a packet is bypassed from
one node to another, then there was no buffer contention to cause a deadlock. Packets that are stored however,
have the opportunity to negotiate their way into a deadly embrace.

For this reason, when we write a packet into a packet store, we examine the packet type. If the CRC is good
and the packet type is poisoned, we immediately free the packet from the buffer.

This will not prevent a poisoned packet from traveling through the fabric, but it will prevent such a packet from
locking up a packet store slot, which is the source of our potential deadlock.

3.8.3 Transient Bit Errors on the Link

Packets that are corrupted while traveling over the internode link will be resent by the upstream node. This is
how.

Consider two nodes at either end of the link. U is the upstream node, transmitting data to D, the downstream
node. Each packet sent by U carries a serial number (the LSN, or Last Sequence Number) that increments with
each newly transmitted packet and is 4 bits wide. As U’s output block for this link (OB) sends each packet, it will
write the packet to a replay buffer. The replay buffer is indexed by LSN.

D, the downstream node, checks each packet as it arrives for errors. If a packet arrives without error, D loads
the packet’s LSN into the “Last Good Sequence Number” register in the link’s input block (IB). At some time in
the very near future, the current value of the Last Good Sequence Number will be sent back up the control link
from D to U in a control packet.

When each control packet arrives at U, OB will examine two fields. If the Error bit in the first byte of the
packet is clear, then the LGSN from the downstream node will be sent to the replay buffer. The replay buffer will
release all packets up to and including the LGSN, as they have been acknowledged by the downstream node.

If D detects a CRC error, the IB will enter the Error Detected state and will ignore all incoming packets while
in this state. The IB will set the “Error” bit in all outgoing control packets sent to the upstream node.

U will eventually receive a control packet (whose CRC checks out) that has the Error bit set. This tells U that
all packets after the LGSN in that packet were ignored and must be resent. Before beginning the retransmission,
U will send IDLE packets with a bit set in the IDLE FORD indicating that the Error is being acknowledged. The
OB will then wait until it sees a control packet from D that has a clear Error bit.

The IB on node D will see at least one IDLE FORD with the error acknowledge bit set. IB will leave the “Error
Detected” state, clear the Error bit in the first byte of outgoing control packets, and await resumption of the packet
stream from U.

U will then receive a control packet that has the Error bit clear. This is the completion of the link error
handshake. The OB on node U will begin sending packets out of its replay buffer beginning with the LSN after the
LGSN that arrived in the most recent control packet. Once it has resent all the packets in its replay buffer, it will
resume normal operation.

Note that packets are only freed from the replay buffer after U has received some positive acknowledgment from
D via a control packet. The LGSN field tells U that all packets up to and including LGSN have been received
correctly. The replay buffer can hold 16 packets, but in fact the OB stops transmitting if it contains 15 packets.
The entry corresponding to the LGSN that arrived in the most recent control packet must not be used, or the

May 14, 2014 129 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

acknowledgment protocol becomes ambiguous. Example: If LSN3 was received last, and an OB sends data packets
4 through 15 and then 0 through 3, it can’t tell if the next control packet acknowledging LSN3 has acknowledged 0
entries or all 16. To avoid this confusion, the OB would only send data packets 4 through 15 and 0 through 2 and
then wait, avoiding LSN3 because it equals the LGSN.

When the replay buffer is filled, the OB inhibits global arbitration so that no more packets are sent out.
Normally, the replay buffer should never fill up, as the round-trip latency from U to D and back again to U is short
enough that slots in the OB will be freed up more quickly than they are consumed as long as there are no errors
on the control link.5

If the retransmission fails, we’ll keep attempting to retry. Retry events are counted and can cause an interrupt
when the count exceeds a preset threshold. The link logic also maintains counts of framing errors and symbol
translation errors. These are handled in the link control logic.

3.8.4 Corrupted VC

Either the VC got corrupted as part of a CRC error that we’ll find when the EOP comes along, or it was
corrupted at some previous stage and is the result of scrubbing the CRC for a poisoned packet that was generated
by recovery mentioned above. (All packets get good CRC when they’re sent out, even if they’ve been poisoned.)

Sooner or later, some bit error will corrupt a VC. There are two ways we can find that the VC has been
corrupted.

1. We are supposed to decrement the VC and it is already 0. This is flagged as a VcDecrError and the packet
is dropped by the input block. It would be dangerous to allow the packet to continue on to other nodes,
because it has broken the VC decrement rule that allows the fabric to be deadlock-free. In this case the CRC
is good, and we must NOT cause replay because the replayed packet would have the same problem.

2. The buffer index points to a buffer belonging to VC x (as opposed to the free pool) and the packet is traveling
on VC y. In this case, we know the VC is broken and the CRC will not match. (the VC got corrupted on the
wires.) Then we use the normal CRC mismatch recovery mechanism to ask for a retransmission. The IB will
find the CRC mismatch. The packet store should free the buffer.

3.8.5 Corrupted Route

If the route was corrupted on the link, the corruption will cause a CRC mismatch, in which case a poisoned
packet will be delivered to somebody – probably not the intended recipient. In this case the link will retry the
transmission and a good – non-poisoned – packet will be resent. The retry packet will get to the ultimate destination.
The poisoned packet will wander around for a while and either get delivered to some destination – where it will be
discarded as a poisoned packet – or it will arrive at a node where the VC will be decremented from 0. In this latter
case, the packet will be routed to the DMA engine as described in 3.8.4.

As in the case of a corrupted VC, the route could have been corrupted at an earlier stage or as the result of a
flipped bit in the switch (e.g. error in the packet store). In this case, the packet carrying the corrupted route will
be poisoned. In this case, the packet will wander around the network until it is delivered to some node – probably
not the intended recipient – or is dropped because of an exhausted VC.

3.8.6 Corrupted Buffer Index

The packet store (within an XB block) may find that the buffer index of a packet points to a packet buffer entry
that is already full. The packet store will ignore the packet – that is, it will not write the packet into a packet
buffer entry. If the buffer index is corrupted such that it places the packet in an unused buffer, the buffer slot will
still be freed, as the CRC will not match. Packets that arrive with a bad CRC will never occupy packet store space
– at most, they will be deleted from the packet store as soon as the IB tells the XB that the CRC was bad. The
IB will ask for a retransmission, since the CRC will not match.

5What is the worst case delay of acknowledgment, assuming no errors in control packets? A packet P1 is sent downstream that is
20 FORDs long. In the worst case, a control packet begins just as that packet is completing, so it is not acknowledged until the second
control packet. Two control packets take 30 cycles. Add 3 cycles in each direction for latency of the link. The worst case delay is
around 20+30+3+3=56 cycles, which is enough time for 14 minimum sized packets to be sent. So even in the worst case, the replay
buffer should not fill up unless there are bit errors on the link.

May 14, 2014 130 Rev 51328

SiCortex Confidential 3.8. ERROR DETECTION AND RECOVERY

3.8.7 Corrupted LSN

If the LSN field is corrupted in transit, the input block will discover that the CRC is bad. It doesn’t trust the
LSN field until the CRC is checked, so no special recovery mechanism is needed. This type of corruption will just
cause the FswPktCrcError counter to increment.

3.8.8 Misc. Bad Data (CRC Mismatch)

In this case, the IB will detect a bad CRC on the incoming packet. It will change the packet type to Poison as
it forwards the data to the XB and the OB. Also the IB asserts a BadPacket signal to the XB so that the packet
can be discarded from a crosspoint buffer. The IB goes into replay so that the packet will be retransmitted.

3.8.9 Uncorrectable ECC Error in Packet Store or Replay Buffer

This is bad, since we’ll end up with a non-delivered packet. When an uncorrectable ECC error is detected, the
memory module asserts a double bit error flag which tells the OBX output mux to poison the packet. Also a CSR
bit is set which, if enabled by software, will trigger an interrupt.

3.8.10 Uncorrectable ECC Error on Data to DMA Engine

When a crosspoint buffer detects an uncorrectable ECC error, it asserts a double bit error flag which tells the
DMA output block to poison the packet. Also a CSR bit is set which, if enabled by software, will trigger an
interrupt.

3.8.11 Uncorrectable ECC Error on Data from DMA Engine

The ICE9 memory system uses ECC to protect data from the moment it is written to an L2 segment until it
reaches the fabric switch input block. For typical packet data, the processor generates the data in its L1 and asks
the DMA to send it to a remote node. As that packet is sent onto the CSW to the DMA, an ECC code is generated
that moves with the data as it goes through the CSW, DMA packet buffers, and into the fabric switch. In the
fabric switch, the DMA input block corrects ECC errors before sending the data to a crosspoint buffer or to the
output block for bypass. If there is a double bit error, it poisons the packet and asserts BadPacket at EoP time.
(This is the same as what a normal input block does when it discovers any other kind of error.)

3.8.12 Upstream Link Goes Down

The fabric switch monitors the MissionMode signals coming from the 3 fabric link receivers to see if any upstream
link has gone down. If an upstream link goes down, the fabric switch will treat any packets that are currently
being received as error packets and enter replay. It will stop sending control packets upstream while MissionMode
is down, and resume sending them after MissionMode goes back up.

A processor on the node can learn that the upstream link is down by an interrupt from the fabric link, or by
polling the link CSRs.

3.8.13 Downstream Link Goes Down

The fabric switch monitors the MissionMode signals coming from the 3 fabric link transmitters to see if a
downstream link has gone down. If a downstream link goes down, the fabric switch will stop sending any new
packets to the corresponding FLT. Packets that have been sent out already, or are currently being sent out, will
remain in the replay buffer. Any control packets coming from the downstream fabric switch will be ignored while
MissionMode is deasserted. Eventually, the link will go back up, MissionMode will be asserted again, and the
fabric switch will resume its usual output behavior: sending packets downstream as long as buffers are available
and accepting good control packets. There is no mechanism for a processor to extract packets from switch buffers
or to drop packets destined for a bad link. A processor on the node can learn that the downstream link is down by
an interrupt from the fabric link, or by polling the link CSRs.

What happens to the system as a whole if a downstream link goes down forever? The fabric switch detects
the loss of MissionMode from the FLT, and stops sending new packets on that link. Packets accumulate in the
4 crosspoint buffers that feed that output port, and eventually the buffers fill up. Control packets carry that
information to the upstream switch, so its crosspoint buffers start to fill. In the upstream switch, the packets

May 14, 2014 131 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

intended for the downed link fill up its four crosspoint buffers, and other traffic (not routed through the downed
link) gets stuck waiting for available buffers. The congestion propagates back through the fabric and eventually
DMA engines stall because they can’t put any more packets into the fabric. The fabric grinds to a halt.

On the positive side, all of this will resolve itself quickly after the affected link comes back online. But if the link
is determined to be down permanently, what can we do? I will describe a way to recover, in part to demonstrate
why we have decided not to attempt it in this version of the chip. Let’s say that FLT2 on node X reports that the
link is down, and software determines that the link is down for so long that it will never come back up. The fabric
switch crosspoint buffers and replay buffers are full of packets destined for that link. First the processor would
send a LinkDown message to every node, including itself, saying that it must must recompute its routing tables to
avoid the affected link. Sending packets across the fabric as usual would not work, because parts of the fabric may
be stuck by this time. Using the Out-of-Band channels or the system service processor would be possible. When a
node Y receives the LinkDown message, it must send one LastPacketOnRoute packet along each route that touches
the affected link, recompute its routing tables to avoid the downed link, then suspend sending any traffic along
the affected routes until it gets a LastPacketOnRouteAck. Upon receiving LastPacketOnRouteAck, it can resume
normal traffic along the new route. This handshake guarantees that all packets on the old route are delivered before
any packets on the new route. After sending the LinkDown message, node X can start rerouting packets; it pulls
them out of the replay buffer in order, generates a new header that routes the packet to the intended destination
though a working link, and injects it into the fabric via its DMA. (NOTE: The FSW would need a mode that
allows packets to flow into the replay buffer even though MissionMode is down.) Node X may have to do continue
this for a very long time, until it drains the fabric and every DMA engine’s queues of any packets that required
this link. Eventually it starts to see LastPacketOnRoute messages, and sends LastPacketOnRouteAck messages
back to the sender so that they can resume sending traffic normally on the new route. It may be possible to know
exactly how many LastPacketOnRoute messages to expect so that node X knows when to stop rerouting packet,
but it’s probably easier to just do it indefinitely. A maskable interrupt that notifies the processor when the replay
buffer is nonempty might be useful here.

Having said all of that, based on the complexity of recovering from link failures without dropping or reordering
any packets, and the hardware, software, and verification work involved in making this possible, we have decided
NOT to support this. For this version of the chip, our strategy is to hope that the link comes up again, and if it
doesn’t? Packets were lost in the switch, so do a machine check.

3.9 The Control/Status Register Path

3.10 Components and Hierarchy

3.10.1 Switch Top level

3.10.1.1 External Ports

Inputs

chaini scbs dat sr Input chain for Serial Configuration Bus (SCB). All CSRs are accessed through the SCB.

flrX fsw InDat s0a<63:0> Input data from port X, where X is 0,1,2

flrX fsw DatVal s0a True if InDat is carrying valid data.

flrX fsw SoP s0a True if InDat is carrying the first FORD in a packet – (Start-of-Packet)

flrX fsw EoP s0a True if InDat is carrying the last FORD in a packet – (End-of-Packet)

flrX fsw Idle s0a True if this is an inter-packet IDLE FORD – this carries out-of-band and error control
information.

flrX fsw MissionMode When clear, the fabric switch must ignore the SoP, EoP, Idle, DatVal, and InDat
signals coming from Fabric Link Receiver X. When set, the signals from Fabric Link Receiver X are
valid.

fltX fsw CtlDat s0a<7:0> Flow control, error notification, and out-of-band information from port X’s
downstream node.

fltX fsw NewCtlPkt s0a CtlDat should be ignored, the next cycle’s value will be the first byte in a flow
control packet coming from transmit port X’s downstream node.

May 14, 2014 132 Rev 51328

SiCortex Confidential 3.10. COMPONENTS AND HIERARCHY

fltX fsw CtlEoP s0a The byte carried by CtlDat is the last in this control packet.

fltX fsw MissionMode s0a When clear, the fabric switch must not assert fsw fltX DatVal s2a, and it
must ignore any control packet traffic from Fabric Link Transmitter X. After MissionMode goes up, the
fabric switch must not send any data packet until after a good control packet has been received.

dma fsw InDatX s0a<71:0> Data from the DMA engine destined for output port X. Bits 63:0 are the
data, and bits 71:64 are a 64-bit ECC on the data.

dma fsw DatValX s0a Corresponding InDatX is valid

dma fsw SoPX s0a Corresponding InDatX is the first FORD in a packet

dma fsw EoPX s0a Corresponding InDatX is the last FORD in a packet

dma fsw RdyX s1a Port X in the DMA engine is ready for a new packet from switch input port X.

Outputs

scbs chaino dat sr Output chain for Serial Configuration Bus (SCB). All CSRs are accessed through the
SCB.

fsw xxx Int sa Active-high interrupt triggered when any bit in the Interrupt Cause Register which is not
masked by the Interrupt Mask register is set. The processor must determine the exact interrupt cause
by reading CSRs.

fsw fltX OutDat s2a<63:0> Output data to the fabric link transmitter for port X

fsw fltX DatVal s2a Corresponding OutDat is worth looking at

fsw fltX SoP s2a Corresponding OutDat is the first FORD in a packet

fsw fltX EoP s2a Corresponding OutDat is the last FORD in a packet

fsw fltX Idle s2a Corresponding OutDat carries out-of-band and error control information

fsw flrX CtlDat s3a<7:0> Flow control data for the upstream control link from receive port X

fsw flrX NewCtlPkt s3a Corresponding CtlDat should be ignored, next value is the first data in a control
packet.

fsw flrX CtlEoP s3a Corresponding CtlDat should be ignored, this is the last byte in a control packet.

fsw dma OutDatX s2a<71:0> Output data from switch input port X to the receive port buffer X in the
DMA engine. Bits 63:0 are the data, and bits 71:64 are a 64-bit ECC on the data. The ECC protects
against single bit errors in DMA memories, DDR, and the L2 cache.

fsw dma DatValX s2a True if corresponding OutDat is worth looking at

fsw dma SoPX s2a You’ve probably noticed a pattern by now

fsw dma EoPX s2a Corresponding OutDat is the last FORD in a packet

fsw dma BufAvailX s3a If true, the DMA engine may send a transmit packet from DMA engine transmit
buffer X to switch port X.

3.10.1.2 Serial Configuration Bus Interface

The fabric switch’s control/status registers are accessible through the SCB (Serial Configuration Bus) interface.
To connect to the SCB, a module must simply instantiate an SCB slave module, and connect it to a global SCB
chain. The input is connected to chaini scbs dat sr and the output is connected to scbs chaino dat sr.

The SCB bus and the SCB slave module are documented in 10 (the Serial Configuration Bus chapter).
The FSW’s control/status registers are documented in section 3.12.5.

3.10.1.3 Interrupt Outputs

The fabric switch produces an interrupt signal, when certain kinds of errors are detected or when out-of-band
flags toggle. The interrupts are sent to the CSW, which distributes them to processors appropriately. The interrupt
outputs are level sensitive, active-high signals. Interrupts turn on when the condition is first detected, and remain
on until cleared via the SCB.

May 14, 2014 133 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

HDR D0 D1 D2 DN TRAIL

0ns 25ns

Sclk

fsw_dma_BufAvail0_s3a

dma_fsw_DatVal0_s0a

dma_fsw_SoP0_s0a

dma_fsw_EoP0_s0a

><71:0dma_fsw_InDat0_s0a

Figure 3.2: Data Path from DMA Engine Transmit Port 0 to Fabric Switch

3.10.1.4 The DMA to Fabric Switch Interface

Transmit Data Path

dma fsw InDatX s0a<71:0> Data+ECC from the DMA engine destined for output port X

dma fsw DatValX s0a Corresponding InDatX is valid. Asserted only during all data packet cycles including the
SoP and EoP.

dma fsw SoPX s0a Corresponding InDatX is the first FORD in a packet

dma fsw EoPX s0a Corresponding InDatX is the last FORD in a packet

fsw dma BufAvailX s3a If true, the DMA engine may send a transmit packet from DMA engine transmit buffer
X to switch port X.

The DMA input block (DMAI) asserts fsw dma BufAvailX s3a when it has space for at least two packets in
the outgoing crosspoint buffer. A few cycles after reset, BufAvail is asserted because all crosspoint buffers are free.
Afterwards, if a newly arriving packet consumes the next-to-last buffer entry, the DMAI deasserts BufAvail within
five Sclock cycles of the assertion of dma fsw SopN s0a. When two or more buffers become free, the DMAI asserts
BufAvail again. Deassertion of BufAvail is always the result of a packet coming in from the DMA, but assertion of
BufAvail can happen at any time.

The minimum sized packet is four FORDs: two payload FORDS, plus the head and tail FORDs. The maximum
sized packet is twenty FORDs, of which eighteen form the payload.

No retries are ever required on this interface. All packets are assumed to arrive in good health. Single bit ECC
errors will be corrected on the fly before the data enters the XBX.

SoP and EoP are each asserted for exactly one Sclock cycle. The two are always paired, with exactly one EoP
assertion for every assertion of SoP.

The format of the header and trailer FORDs is described in Sections 3.4.1.1 and 3.4.1.2. In the header FORD,
the DMA engine fills in Vc, NumFords, HasCtrl, and Route. The FSW output block fills in XbeTarget and Lsn,
and the link fills in the SoP. In the trailer FORD, the DMA engine fills in Type, ProcessIndex, and UnixProcessId,
and sets Crc32 to zero. The FSW output block fills in Crc32, and the link fills in EoP as the packet goes onto the
wire.

Note that each DMA input block is connected to exactly one output block, so there is no mystery about which
output port the packet will leave on. The route field is NOT shifted in the DMA input block. The two LSBs of
route represent the output port number in the downstream switch. The two LSBs are used in the crosspoint buffer
while arbitrating and selecting a downstream XbeTarget.

Receive Data Path

May 14, 2014 134 Rev 51328

SiCortex Confidential 3.10. COMPONENTS AND HIERARCHY

HDR D0 D1 D2 DN TRAIL

0ns 25ns

Sclk

dma_fsw_Rdy0_s1a

fsw_dma_DatVal0_s2a

fsw_dma_SoP0_s2a

fsw_dma_EoP0_s2a

><71:0fsw_dma_OutDat0_s2a

Figure 3.3: Data Path from Fabric Switch to DMA Engine Receive Port 0

fsw dma OutDatX s2a<71:0> Output data+ECC from switch input port X to the receive port buffer X in the
DMA engine. The DMAO module generates the ECC code on the fly as the packet travels from a crosspoint
buffer to the DMA engine.

fsw dma DatValX s2a True if corresponding OutDat is worth looking at. Asserted only during all data packet
cycles including the SoP and EoP.

fsw dma SoPX s2a You’ve probably noticed a pattern by now

fsw dma EoPX s2a Corresponding OutDat is the last FORD in a packet

dma fsw RdyX s1a Port X in the DMA engine is ready for a new packet from switch input port X.

The DMA engine asserts dma fsw RdyX s1a whenever it has space available in its port X receive buffer. If the
packet sent from the switch to the DMA engine consumes the last such buffer, the DMA engine must de-assert
RdyX within no later than 3 Sclock cycles after the assertion of fsw dma SoPX s2a.

The switch asserts DatVal0, and SoP0 drives the header FORD onto OutDat0, followed by the payload (of no
fewer than 2 payload FORDS, and no more than 18 payload FORDs) and the tail FORD.

Data transfer along this path is assumed perfect. There is no recalculation of CRC, replay logic, length checking,
etc. The only reason ECC is there is to protect the data later on, in DMA memories and beyond.

SoP and EoP are each asserted for exactly one Sclock cycle. The two are always paired, with exactly one EoP
assertion for every assertion of SoP.

There is a potential race in this interface, in which the FSW consumes the last available buffer in the DMA,
the DMA deasserts dma fsw RdyN, but the FSW doesn’t hear in time to suppress the next packet. To avoid this
race, the DMA output block will observe the following rule: it will never assert SoP sooner than 6 sclk cycles after
the previous SoP. This means that very short packets will have a gap after them. Long packets are not affected.

The format of the header and tail FORDs is described Sections 3.4.1.1 and 3.4.1.2.

3.10.1.5 The Fabric Link Receiver (FLR) to Switch Interface

Receive Data Path

flrX fsw InDat s0a<63:0> Data arriving through link receiver port X

flrX fsw DatVal s0a If true, then InDat is worth looking at

flrX fsw Idle s0a If true, then InDat is carrying IDLE FORD information (error control and status)

flrX fsw SoP s0a If true, then InDat is the first FORD of a packet

flrX fsw EoP s0a If true, then InDat is the last FORD of a packet

May 14, 2014 135 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

HDR P0 PN TAIL IDP

0ns 10ns 20ns 30ns

Sclk

><63:0flr0_fsw_InDat_s0a

flr0_fsw_DatVal_s0a

flr0_fsw_SoP_s0a

flr0_fsw_EoP_s0a

flr0_fsw_Idle_s0a

Figure 3.4: Receive Port to Fabric Switch Data Path
Not shown: flt0 fsw MissionMode s0a is asserted throughout.
(P0...PN are FORDs 0 through N of the payload. 4 ≤ N ≤ 18.See Figure 3.4.1.3.
IDP is an IDLE packet FORD. See Section 3.4.1.4.)

The fabric link receivers (FLR0, FLR1, FLR2) send data (flrX fsw InDat s0a<63:0>) and associated control infor-
mation to each of the corresponding input blocks in the fabric switch. Figure 3.6 shows the relative timing between
the control signals and the data. The first FORD is always marked by the presence of the SoP signal, and the last
is marked by EoP. All signals are ignored if DatVal is not asserted.

Note that there must always be exactly one cycle of EoP to follow ever SoP. SoP and EoP should never be
asserted for more than one cycle.

The switch also receives control and status information via IDLE packets. These are identified by the simulta-
neous assertion of both DatVal and Idle. Section 3.4.1.4 shows the format of this packet.

Receive Control Packet Path

fsw flrX DatVal s3a The data on fsw flrX CtlDat s3a is valid

fsw flrX CtlDat s3a<7:0> One byte of information to be sent to the upstream node via receiver port X’s control
link output

fsw flrX NewCtlPkt s3a If true, then ignore CtlDat, this is the start of a control packet. (Next cycle’s CtlDat
will be the first payload byte in the control packet

Each downstream node sends flow control and error information back to the upstream node via the control link
through the appropriate fabric link receiver. Control Packets are 15 bytes long including the SOP symbol that
delimits packets. The packet is covered by a 32 bit CRC. See Section 3.4.2.1 for a description of the packet format.

NewCtlPkt may be asserted for more than one cycle at a time, in this case the start of the next control packet’s
payload is delayed until the deassertion of NewCtlPkt.

The important parts of the control packet regulate both error recovery and buffer allocation.
To review, buffer allocation is performed in the upstream switch. Each time a packet is transmitted by an

upstream switch, it is assigned a slot in the downstream node’s packet store within the appropriate Crosspoint Buffer
(XB) along with a packet sequence number (LSN). The upstream node remembers that buffer B was consumed by
the packet with LSN L in his own LocalBufferBusy mask for the destination output port on the downstream node.6

The upstream node will never assign a packet to a buffer it knows to be in use. The upstream node assumes a
buffer is in use if it is assigned according to the LocalBufferBusy mask, or if it is assigned according to the PxBusy
field in the last received control packet (where ’x’ is the output port number.) The upstream node clears packet
L’s buffer busy bit in the LocalBufferBusy mask when the LSN reported in the last received control packet is equal
to or greater than L.

6Note that the buffer assignment is for a particular crosspoint buffer, so there is a LocalBufferBusy mask for each of the four output
ports on the downstream node. Similarly, the downstream node reports buffer busy status for each of its four output ports.

May 14, 2014 136 Rev 51328

SiCortex Confidential 3.10. COMPONENTS AND HIERARCHY

CB14 CB1 CB2 CB14 CB1 CB2

0ns 10ns 20ns 30ns

Sclk

><7:0fsw_flrX_CtlDat_s3a

fsw_flrX_NewCtlPkt_s3a

Figure 3.5: Fabric Switch to Receive Port Control Data Path
(CB0...CB14 are bytes 0 through 14 in the control packet. See Figure 3.1.)
This picture doesn’t show fsw flrX DatVal s3a and fsw flrX MissionMode s0a, both of which must be asserted
during all 15 bytes of valid Control Packets.

HDR P0 PN TRAIL IDP

0ns 25ns

Sclk

><63:0fsw_flt0_OutDat_s0a

fsw_flt0_DatVal_s0a

fsw_flt0_SoP_s0a

fsw_flt0_EoP_s0a

fsw_flt0_Idle_s0a

Figure 3.6: Fabric Switch to Transmit Port 0 Data Path
(P0...PN are FORDs 0 through N of the payload. 4 ≤ N ≤ 18.See Figure 3.4.1.3.
IDP is an IDLE packet FORD. See Section 3.4.1.4.)

So, this is worth checking. The upstream node should never send a packet that is destined for a buffer that it
should believe is busy. If such an event does occur, the packet will be ignored.

3.10.1.6 The Fabric Link Transmitter (FLT) to Switch Interface

Transmit Data Packet Path

fsw fltX OutDat s2a<63:0> Output data from the switch to the downstream node

fsw fltX DatVal s2a When true, OutDat is worth looking at

fsw fltX SoP s2a When true, OutDat is the first FORD in a transmitted packet

fsw fltX EoP s2a When true, OutDat is the last FORD in a transmitted packet

fsw fltX Idle s2a When true, OutDat is carrying an IDLE FORD.

The transmit data packet path is the complement of the receive data packet path. Relative timing and meaning of
the five signals is identical for both. Figure 3.6 shows the relative timing between the control signals and the data.
Section 3.4.1.4 shows the format of this packet.

Transmit Control Packet Path

fltX fsw DatVal s0a the data on fltX fsw CtlDat s0a is valid

May 14, 2014 137 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

CB14 CB1 CB2 CB14 CB1 CB2

0ns 25ns

Sclk

><7:0flt0_fsw_CtlDat_s3a

flt0_fsw_NewCtlPkt_s3a

Figure 3.7: Transmit Port 0 to Fabric Switch Control Data Path
(CB0...CB14 are bytes 0 through 14 in the control packet. See Figure 3.1.)
This picture doesn’t show flt0 fsw DatVal s3a, which must be asserted during all 15 bytes of valid Control Packets.

fltX fsw CtlDat s0a another payload byte in a control packet

fltX fsw NewCtlPkt s0a When true, ignore CtlDat, the next cycle’s value will be the first byte in a new control
packet. Also indicates the previous byte was the last in a control packet.

The transmit control packet path is the complement of the recieve control packet path. Control packets from the
downstream node arrive at the fabric link transmit block and are forwarded to the output block (OB) in the switch.
The OB parses the control packet (See Section 3.4.2.1) to determine the state of buffer allocation in the downstream
node and to find the latest accepted packet sequence number. The timing and behavior of the two signals in this
path are described in 3.7.

3.10.2 Interblock Signals

Figure 3.8 shows the signals between blocks of the fabric switch.

3.10.3 The Input Block

The input block (IB) distributes incoming FORDs from the attached input port to one the four crosspoint
buffers (XBs) based on the routing field in the packet’s first FORD. The IB also decrements the VC if necessary
and performs CRC checking on the packet as its last FORD passes through. It also checks to detect packets that
have been poisoned. Such packets are removed from the packet store in the XB soon after the last FORD has been
written.

The IB remaps the virtual channel field in the header of each incoming packet based on the deadlock avoidance
routing rules. It also shifts the routing vector two places to the right, by throwing away the two LSBs and shifting
the input block number (0, 1, or 2) into the two MSBs. It uses the DecrVC register for this IB. DecrVC is a three
bit vector, written by the SCB interface. If bit X in the vector for IB Y is set, then all packets arriving on port Y
and destined for port X will have their VC decremented by one. Otherwise the VC field in the packet is unchanged.

Finally, the IB checks the CRC at the end of the incoming packet and signals any detected error back to the
input port and forward to the crosspoint buffers. The CRC field is 32 bits wide and is contained in the last FORD
in the packet. (See Section 3.8.1.)

The IB is also responsible for passing the “free buffer” vector from the arbitration array and the last good
sequence number up to the input port. The IB builds control packets and sends them continuously to the upstream
node. (See 3.4.2.)

3.10.3.1 Error Detection and Recovery Table

The following checks are performed on input data packets. Each of these checks becomes a column in the error
behavior table below.

• Pro: Was there a protocol error? Check that SoP was always followed by EoP, and EoP was always followed
by SoP, and they were never asserted in the same cycle. If so, set IbProtocolErr.

• DV: Was the flrN fsw DatVal signal ever low during the data packet? If so, set IbMissingDatavalid.

May 14, 2014 138 Rev 51328

SiCortex Confidential 3.10. COMPONENTS AND HIERARCHY

Input Block

Crosspoint Buffer

S
o
P
_
s
1
a

Output Block

E
o
P
_
s
1
a

P
o
r
t
S
e
l
_
s
1
a

N
e
x
t
V
C
_
s
1
a

N
e
x
t
P
o
r
t
_
s
1
a

P
o
i
s
o
n
P
k
t
_
s
1
a

B
u
f
I
d
x
_
s
1
a

B
a
d
B
u
f
I
d
x
_
s
2
a

B
M
a
s
k
_
s
2
a

I
n
D
a
t
_
s
1
a

6
4 4 2 4 1
6

S
o
P
_
s
1
a

E
o
P
_
s
1
a

P
o
r
t
S
e
l
_
s
1
a

I
n
D
a
t
_
s
1
a

R
e
q
B
y
p
S
2
_
s
2
a

R
e
q
B
y
p
S
3
_
s
2
a

R
e
q
P
s
t
_
s
2
a

G
n
t
B
y
p
_
s
3
a

N
e
x
t
P
o
r
t
_
s
2
a

N
e
x
t
V
C
_
s
2
a

N
e
x
t
X
b
e
_
s
2
a

N
u
m
F
o
r
d
s
_
s
2
a

O
u
t
D
a
t
_
s
4
a

G
n
t
P
s
t
_
s
3
a

P
o
i
s
o
n
P
k
t
_
s
4
a

D
S
B
M
a
s
k
_
s
2
a

P
k
t
C
a
n
B
y
p
_
s
4
a

D
S
P
o
o
l
M
a
s
k
_
s
1
a

6
4

1
65442

6
4

6
4

Figure 3.8: Interblock Signal Connections

• BNF: Bad NumFords. Was the NumFords field less than FSW MINFORDS PACKET or greater than
FSW MAXFORDS PACKET? If so, set IbBadNumFords.

• Lsn: The LSN should always equal last good LSN plus one (with wrap around at 16). Was the LSN ever
something other than the expected value? If so, set IbMissingLsn.

• LMin: Was the observed packet length less than the NumFords field specified? If so, set IbLengthErrMin.

• LMax: Was the observed packet length greater than the NumFords field specified? If so, set IbLengthErrMax.

• Xbe: Does the XB already have a packet in the buffer that the packet specified in XbeTarget? If so, set
IbBadXbeTargetErr.

• Vc: Did the VC decrement below zero? If so, set IbVcDecrErr.

• Crc: Was there a CRC mismatch on a data packet? If so, increment R FswDataCrcCounter (once per packet).

Based on the result of each of these checks, the input block may decide to

• Drop: Don’t send the packet to the XB or OB, and increment FswPktPoisonCounter. (Dropping of an errored
packet is only possible when error is visible from just the header.)

• Poison: Change the packet type to FSW POISON TYPE, and increment FswPktPoisonCounter.

• Replay: Start replay sequence to ask the upstream node to try again.

• Send: Send the packet normally and increment R FswPktCounter.

The input block behaviors correspond to the different error checks according to the following table. The columns
on the left are all the types of error checks, and a 1 means that the error was detected. The columns on the right
are the action that the fabric switch will perform.

May 14, 2014 139 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Pro DV BNF Lsn LMin LMax Xbe Vc Crc Drop Poison Replay Send

1 x x x x x x x x 0 1 1 0
0 1 x x x x x x x 0 1 1 0
0 0 1 x x x x x x 1 n/a 1 0
0 0 0 1 x x x x x 1 n/a 1 0
0 0 0 0 1 x x x x 0 1 1 0
0 0 0 0 0 1 x x x 0 1 1 0
0 0 0 0 0 0 1 x x 0 1 1 0
0 0 0 0 0 0 0 1 0 1 n/a 0 0
0 0 0 0 0 0 0 1 1 1 n/a 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

3.10.4 The Output Block

The output block performs global arbitration between the four attached crosspoint buffers, maintains a “replay
buffer,” modifies outgoing packets with updated sub-band and error handling information, and computes the new
CRC. The output block stores data for all bypass paths, and for the 3-cycle bypass path the OB decides whether
to allow the bypass or not.

Global arbitration is described in section 3.7.4.
The replay buffer holds up to 15 data packets that were recently sent over the outbound link. Every packet

is recorded in the replay buffer as it is transmitted, and packets are deleted when they are acknowledged by the
downstream switch. Each packet in the replay buffer is stored at a fixed address according to its link sequence
number (assigned by the output block). When an error is signaled on the return control link, the output block
stops sending packets from the crosspoint buffers and sources packets from the replay buffer instead.

3.10.5 The DMA Input Block

3.10.5.1 Error Detection and Recovery Table

The following checks are performed on data packets from the DMA. Each of these checks becomes a column in
the error behavior table below.

• Ecc2Head: Was there a double-bit error in the header of the data packet? If so, set DmaiDoubleBitErr.

• BNF: Was the NumFords field out of range? If so, set DmaiBadNumFords. (NOTE: Check the NumFords
field after ECC correction.)

• Ecc2Other: Was there a double-bit error in any ford other than the header? If so, set DmaiDoubleBitErr.

• Ecc1: Was there a single-bit error in any of the fords of the data packet? If so, set DmaiSingleBitErr.

Based on the result of each of these checks, the input block may decide to

• Drop: Don’t send the packet to the XB or OB. (This is only possible when error is visible from just the
header.)

• Poison: change the packet type to FSW POISON TYPE.

• Send: Send the packet normally and increment R FswDmaiPktCounter.

The DMA input block behaviors correspond to the different error checks according to the following table. The
columns on the left are all the types of error checks, and a 1 means that the error was detected. The columns on
the right are the action that the block will perform. The CSR column gives the name of the flag that is set or the
counter that is incremented.

Ecc2Head BNF Ecc2Other Ecc1 Drop Poison Send

1 x x x 1 n/a 0
0 1 x x 1 n/a 0
0 0 1 x 0 1 0
0 0 0 1 0 0 1
0 0 0 0 0 0 1

May 14, 2014 140 Rev 51328

SiCortex Confidential 3.11. PIPELINE TIMING

3.10.6 The DMA Output Block

3.10.7 The Crosspoint Buffer

3.10.7.1 The Arbitration Array

What does it need to do?

1. Maintain the “buffer busy” bits – set the bits as packets arrive, and clear them as they leave.

2. Remap virtual channel id’s into downstream buffer requirements.

3. Send flow control information back to the input block.

4. Accept flow control information from the output block.

5. Register incoming packets for arbitration.

6. Fire arbitration when appropriate.

7. Launch packets from the crosspoint buffer into the output block.

The arbitration array selects the next XBE to be sent out of the XB based on which buffers are available downstream.
First the XBE equal to the VC is considered; if it’s available the next XBE will be equal to the VC number. Then
all XBE entries whose bit is set in the PoolMask are considered, lowest order bits first. This XBE selection is
part of the local arbitration stage. The arbitration array also keeps track of occupied entries in the XB and sends
updates to the appropriate Input Block (IB) which will then pass the information upstream.

Upon arrival, each packet specifies the destination XBE in its first FORD. The destination is checked against
the packet store’s valid bits. If there’s already a packet in that entry, the packet is ignored and treated as a
BadXbeTargetError. Otherwise, the virtual channel specification from the first FORD is decoded into a 16 bit
vector and ORed with PoolMask and stored for the destination XBE. The destination port on the downstream
node (that is, the next routing token from the FORD) is written into the EntNextPort s2a<1:0> register for
the XBE. At the same time, the entry’s age vector XbeAgeVec s2a<15:0> is set to all 1’s except for the bit in
the age vector corresponding to the destination XBE.

The arriving packet will begin to participate in local arbitration in the following cycle if it’s eligible.

The OB sends each arbitration array updated buffer busy masks for each of the four outbound ports on the
destination node.

3.10.7.2 The Packet Store

The packet store (PS) is a 72 bit by 320 word RAM organized as 16 blocks of 20 words each. Each word consists
of 64 bits of data protected by 8 bits of ECC. Each 20 word block comprises a crosspoint buffer entry (XBE). The
PS gets its input data directly from the input unit (though the ECC is generated in the packet store) and the write
address comes from the arbitration array. Similarly, the arbitration array sends the read address to the PS. The
PS can simultaneously read and write. It runs off of the fabric switch clock (SClock) – nominally 200MHz.

For each XB entry, the packet store also stores a Valid bit, the VC (4 bits) and NextPort (2 bits) in flops, since
those are needed in order to determine eligibility and make requests in every cycle.

3.11 Pipeline Timing

The following tables describe the pipeline stage in which different events occur. A brief version is presented
first, followed by tables with more detailed descriptions.

May 14, 2014 141 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.11.1 Summary

Cycle Description

S0 SoP data arrives from Fabric Link Receiver
S1 IBX checks for errors, modifies header, sends to XBX. XBX stores it.
S2 XBX chooses oldest eligible packet and asserts ReqPst to OBX. XBX starts to

read packet store address 0 for the packet for which it is requesting. OBX does
global arb, then per-VC-and-NextPort arb to select winning packet.

S3 OBX asserts GntPst to winning XBX, which starts to read packet store address
1 of winning packet.

S4 XBX delivers packet SoP to OBX. OBX fills LSN and CRC fields and flops data.
S5 OBX drives SoP data to Fabric Link Transmitter. All outputs are also stored in

Replay Buffer.

3.11.2 Incoming Packet is Stored in Crosspoint Buffer, Arbitrates, and Wins

Each of these tables tells a story of how an input stimulus triggers actions within the block, and how quickly
each block reacts to the stimulus. The first story follows a packet along a common path through the switch. It does
not qualify for bypass, so it is stored in a crosspoint buffer until it wins arbitration and gets sent out. Because this
is a common path that touches almost every subblock of the switch, we have used it to define the cycle numbers
S0 through S5. Other tables will refer back to these cycle numbers as we describe faster and slower paths through
the switch.

May 14, 2014 142 Rev 51328

SiCortex Confidential 3.11. PIPELINE TIMING

Cycle Description

S0 The first ford of a packet (identified by the SoP pulse) is driven from the Fab-
ric Link Receiver to the Fabric Switch IBX. The IBX performs minimal signal
cleanup and then flops the data.

S1 The IBX checks the packet for errors (CRC, length, VC, and more). The routing
string in the header is shifted, the VC is decremented. The IBX forwards packet
data to four crosspoint buffers in mid-S1, along with ibx xbx PortSel wires which
tell which crosspoint buffer is selected. The IBX also forwards packet data to
every OBX to support bypass, but bypass will not be covered in this table.
In the selected XB, compute the new age vectors and set the valid bit for the XB
entry which will accept the packet. The packet store computes ECC and begins
to write the packet on the S2 edge. Or, if the XB already has a packet in that
buffer entry, prepare to raise xbx ibx BadBufIdx in S2.

S2 In the XB, the new age vector and valid bit causes the packet to participate in
local arbitration. If a free buffer is available, the packet is eligible; if it is the
oldest eligible, it wins local arbitration. If any packet is eligible, the XB asserts
xbx obx ReqPst, xbx obx NextVC, and xbx obx NextPort, and it starts to read
address 0 of the packet. Unless global arbitration is inhibited, the OBX performs
global arb betwen the four XBs that drive it. It takes the VC and NextPort of
the winner and arbitrates between any of the four candidate packets that have
the same VC and NextPort as the winner. The result of arbitration is flopped in
OBX.
Meanwhile, the set of XBE valid bits are sent from XBX to IBX
(xbx ibx BMask s2a) so that it can forward them to the upstream switch in
control packets.

S3 OBX asserts obx xbx GntPst signal to the winning XB. The winning packet is
whichever packet caused the XB to request in the previous cycle. (Since local
arb happens constantly based on buffer busy masks, it is conceivable that the
local arb winner in S3 is different from the winner in S2.) The XB starts to read
address 1 of the packet.
As soon as the grant arrives, the XB entry becomes free. The busy mask sent
from XB to IBX reflects this in S4. This sounds scary, but it is safe because we
are now committed to reading the XBE one ford per cycle; no incoming packet
could ever overtake the read. We must be careful with how we represent the
packet length so that it’s not overwritten if a new packet takes this XBE during
the read.

S4 In the XB, the data from address 0 is now available. The XB does ECC correction
and its output mux selects the packet store output and sends it to the OBX. The
XB is responsible for filling in the ”next XB” entry field in the header as it goes
out to OBX. In OBX, the output mux selects data from the winning XB, inserts
an LSN, computes CRC, and the data is flopped.
As the packet header passes through, the length field is captured and used to
decide how long to inhibit arbitration for the next packet. For a minimum length
packet of 4 fords, arb can begin again in S6 so that it completes just in time to
chose the next packet. As the length increases by one, the arb inhibit window
increases by one as well. Arb inhibit is tuned so that a winner is chosen just in
time to be sent immediately after the previous packet ends.
The winning packet will consume a buffer in the downstream switch, and the
OBX must remember that fact in a ”pessimistic busy mask”until a control packet
arrives that acknowledges this packet. The pessimistic busy mask is updated so
that in S4, the busy masks sent to the XBs reflect buffer status after accounting
for the winner selected in S2.

S5 Data comes out of the flop and is sent to Fabric Link Transmitter. At the same
time it is also written into the Replay Buffer, in case the packet needs to be
resent later. The replay buffer recomputes ECC and stores 72 bits of data. If
the packet being sent is only 4 fords long, and any XBs are requesting, global
arbitration can begin in S6.

May 14, 2014 143 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.11.3 Packet Must Wait for Available Downstream Buffer

A packet arrives in a crosspoint buffer, but it cannot arbitrate and be sent out the output port because it is
waiting for a downstream buffer to become free. Let’s assume that we’re not waiting for a pessimistic bit in the
local busy mask; we’re just waiting for the downstream buffer.

Cycle Description

S0 SoP arrives from Fabric Link Receiver
S1 IBX checks for errors, modifies header, sends to XBX. XBX stores it.

Stall 1 The packet requires a downstream buffer that is not available, so it cannot par-
ticipate in local arb. Other packets that need different buffers will continue to
flow.

... Packet gets bored and falls asleep.
Stall N-1 The end of a control packet arrives (from the FLT) which says that the required

buffer has been freed. Control packet data is flopped in the OBX.
Stall N OBX checks the CRC and decides that the control packet is valid. OBX sends

updated busy mask to each XBX. XBX flops the busy mask.
S2 Now the packet is eligible and (if it’s the oldest eligible) wins local arb. The XB

asserts ReqPst to OBX. OBX does global arb, then per-VC-and-NextPort arb to
select winning packet. XB begins to read packet at address 0.

S3 OBX asserts GntPst to winning XBX, which starts to read packet at address 1.
S4 XBX delivers packet SoP to OBX. OBX fills LSN and CRC fields and flops data.
S5 OBX drives data to Fabric Link Transmitter. All outputs are also stored in

Replay Buffer.

3.11.4 Packet Loses Global Arb, but Wins on Second Try

Cycle Description

S0 SoP data arrives from Fabric Link Receiver on IB1 destined for OB2.
S1 IB1 checks for errors, modifies header, sends to XB12. XB12 stores it.
S2 Now the packet is eligible and (if it’s the oldest eligible) wins local arb. The XB

asserts ReqPst to OB2. OB2 does global arb, then per-VC-and-NextPort arb to
select winning packet. XB12 begins to read packet at address 0. But OB2 selects
a packet from XB02 that is 8 fords long instead. Global arb is disabled for 8
cycles.

Stall 1 Packet is still oldest eligible, so XB12 continues to assert ReqPst. But global arb
is disabled so the request is ignored. XB12 reads the packet at address 0 again.

...
Stall 7 Packet is still oldest eligible, so XB12 continues to assert ReqPst. But global arb

is disabled so the request is ignored. XB12 reads the packet at address 0 again.
Stall 8 Global arb is enabled again. This time global arb selects the packet in XB12.
S3 OB2 asserts GntPst to XB12, which finally starts to read address 1 of the packet.

XB12 invalidates the crosspoint buffer entry.
S4 XB12 delivers packet SoP to OB2. OB2 fills LSN and CRC fields and flops data.
S5 OB2 drives data to Fabric Link Transmitter. All outputs are also stored in

Replay Buffer.

3.11.5 Packet with CRC Error is Poisoned and Sent Anyway

Because we do cut-through routing, a packet may already be on its way out to the next node before we discover
an error such as CRC, which is only detectable at the end. All we can do is poison the packet (change the type
field in the last ford) and try to cancel it if it’s still waiting to be transmitted. In this example the packet is 6 fords
long: FORD1 through FORD6.

May 14, 2014 144 Rev 51328

SiCortex Confidential 3.11. PIPELINE TIMING

Cycle Description

S0 FORD1 arrives from Fabric Link Receiver.
S1 IBX checks for errors, modifies header, sends to XBX. XBX stores FORD1.

FORD2 arrives from FLR, and input block continues to compute CRC.
S2 XBX chooses this packet in local arbitration and asserts ReqPst. OBX does

global arb and selects this packet.
S3 OBX asserts GntPst to the winning XBX. XBX clears the valid bit for the XB

entry so that it can be reused.
S4 XBX delivers FORD1 to OBX. OBX fills LSN and flops data.
S5 OBX drives FORD1 to Fabric Link Transmitter.

FORD6 arrives from FLR. The input block computes final CRC and it doesn’t
match the CRC field in FORD6. Now we know there was a CRC error, but the
XB and OBX have already begun to send the packet. The IB changes the packet
type to Poison as it sends to XB, asserts ibx xbx BadPacket s1a, and increments
a CRC error count register. The BadPacket signal causes the XB to clear the
valid bit for the XB entry, but it was already cleared by GntPst in S3 so this has
no effect.

S6 XBX sends FORD3 to OBX. OBX drives FORD2 to FLT.
S7 XBX sends FORD4 to OBX. OBX drives FORD3 to FLT.
S8 XBX sends FORD5 to OBX. OBX drives FORD4 to FLT.
S9 XBX sends FORD6 to OBX. (It already has the Poison type because the IB

changed it.) OBX drives FORD5 to FLT.
S10 OBX drives FORD6 to FLT.

3.11.6 Packet with CRC Error is Dropped

If the errored packet sits around in the crosspoint buffer long enough, we have time to cancel it before it goes
out. In this example, we show how that would work. Consider the same 6-ford packet, but this time the XB was
not able to send it out because of contention for the output port.

It is important to invalidate errored packets that are consuming crosspoint buffer entries. Before long, replay
will provide the good version of the packet and try to put it in the same crosspoint buffer entry. If the entry is still
filled by a bad packet, we would have to keep replaying until the junk packet wins arbitration and gets sent out.

Cycle Description

S0 FORD1 arrives from Fabric Link Receiver.
S1 IBX checks for errors, modifies header, sends to XBX. XBX stores FORD1.

FORD2 arrives from FLR, and input block continues to compute CRC.
S2 XBX chooses this packet in local arbitration and asserts ReqPst. OBX does

global arb, and some other packet is selected. The XBX continues to request for
this packet.

S3 FORD4 arrives in IBX. The XBX continues to request.
S4 FORD5 arrives in IBX. The XBX continues to request.
S5 FORD6 arrives from FLR. The XBX continues to request.

The input block computes final CRC and it doesn’t match the CRC field in
FORD6. Now we know there was a CRC error! The IB changes the packet type
to Poison as it sends to XB, asserts ibx xbx BadPacket s1a, and increments a
CRC error count register. The BadPacket signal causes the XB to clear the valid
bit for the XB entry.

S6 Because the XB entry for the bad packet is no longer valid, the XB stops re-
questing in S6.
There’s still one last way that the packet will be sent out. If in S6, a GntPst
arrives from the OBX, the XB would still have to send the poisoned packet.
(Remember, grants always apply to the request that was made one cycle before.)
Otherwise, the bad packet is dropped.

May 14, 2014 145 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.11.7 About the Bypass Paths

The canonical path through the fabric switch (above) has 6 cycles of latency, but our goal is 3 cycles of latency.
When the switch is not busy and all required resources are available, packets can bypass the crosspoint buffer and
go straight from the input block to the output block. But before we can accept a packet for bypass, we must check
several things.

1. Availability of downstream buffers

2. Eligible packets in any XB contending for the same output port must go first, because they are clearly older

3. Packets arriving simultaneously in other IBXes destined for the same OBX (only one can bypass)

4. The output port may be busy

5. Arbitration in OBX may be disabled because a packet is going out already, or because we are in replay

Usually packets travel from IBX to XBX to OBX, but there are timing concerns about using this path in the
minimum latency case. To solve this, in the start-of-packet cycle, the IBX forwards packet data and all neces-
sary control signals directly to the OBX (in addition to the XBX) as it arrives. In this case, the IBX asserts
ibx obx ReqBypS1 s1a to the OBX, and the OBX decides whether to allow the packet to bypass or not. Since the
OBX does all arbitration between XBs and has complete information about which downstream buffers are free, the
OBX will perform the checks for bypass eligibility as well.

Another common case is that a packet arrives while the OBX is busy, but it becomes free one or two cycles
later. It’s a shame to make these packets wait for the 6-cycle latency path when they could in theory go through
in 4 or 5 cycles. To accomodate these packets that just missed the window of opportunity, we provide two other
bypass options by delaying the data for one or two cycles in a pipeline in the OBX.

The four types of requests presented to the OBX are described below.

Request Signal From/To Description

ibx obx ReqBypS1 s1a IBX to OBX Request to send out the packet that is now being for-
warded from IBX to OBX. If accepted, the latency is 3
cycles.

xbx obx ReqBypS2 s2a XBX to OBX Request to send out the packet that was forwarded from
IBX to OBX one cycle ago. If accepted, the latency
is 4 cycles. This type of request is only allowed if
obx xbx PktCanBypass s1a was asserted in the previous
cycle.

xbx obx ReqBypS3 s2a XBX to OBX Request to send out the packet that was forwarded from
IBX to OBX two cycles ago. If accepted, the latency
is 5 cycles. This type of request is only allowed if
obx xbx PktCanBypass s1a was asserted in the previous
cycle.

xbx obx ReqPst s2a XBX to OBX Request to send out a packet from the XB packet store.
Data will be sent from XBX to OBX one cycle later. If
accepted, the latency is 6 cycles (assuming downstream
buffers are available and packet wins all arbitration on
first attempt).

The OBX considers all requests and chooses a winner. It drives the following signals to tell the XBX what is
going on.

May 14, 2014 146 Rev 51328

SiCortex Confidential 3.11. PIPELINE TIMING

Grant Signal From/To Description

obx xbx GntPst s3a OBX to XBX Indicates that the request made in the previous cycle was
granted, and the XB should drive the packet data to the
OB in the next cycle. The OB can assert GntPst in re-
sponse to ReqPst. The XB invalidates the packet’s XBE
immediately to prepare for a new packet.

obx xbx GntByp s3a OBX to XBX Indicates that the request made in the previous cycle was
granted, and data was already present in the OB. The OB
can assert GntByp in response to ReqBypS1, ReqBypS2,
or ReqBypS3. The XB invalidates the packet’s XBE im-
mediately.

obx xbx PktCanBypass s1a OBX to XBX PktCanBypass=1 tells the XB that it is allowed to use
bypass requests ReqBypS2 and ReqBypS3 starting in the
following cycle. If PktCanBypass=0, it can only assert
ReqPst requests. It is valid all the time, generated based
on the state of the output port.

In the following tables, the 3, 4, 5, and 6 cycle paths through the switch will be described.

3.11.8 3 Cycle Latency Path

This path shows how a packet would see minimum latency through the switch. If all the required resources are
available, the packet can go straight from the input block to the output block with a total latency of 3 cycles (15
ns).

Cycle Description

S0 SoP data arrives from Fabric Link Receiver on IB1 destined for OB2.
S1 IB1 checks for errors, modifies header, sends data to both XB12 and OB2. It

asserts ib1 ob2 ReqBypS1 s1a. Because a downstream buffer is available and
there is no contention, OB2 decides to allow bypass. The OB2 output mux
selects the bypassed data from IB1, fills the LSN and CRC fields and flops the
data. Now we can go straight to S5!

S5 OB2 drives data to Fabric Link Transmitter. All outputs are also stored in
Replay Buffer.
OB2 asserts ob2 xb12 GntByp s2a, to tell XB12 that the incoming packet was
selected for bypass. The XBX clears the valid bit on the XB entry into which
the packet is (still) being written.

3.11.9 4 Cycle Latency Path

Cycle Description

S0 SoP arrives from Fabric Link Receiver on IB1 destined for OB2.
S1 IBX checks for errors, modifies header, sends data to both XB12 and OB2. It

asserts ib1 ob2 ReqBypS1 s1a. But OB2 is still sending out a packet, so the
bypass request is rejected. OB2 places the data in its bypass delay pipeline.

S2 XB12 chooses the oldest eligible packet. If the incoming packet is se-
lected and PktCanBypass was asserted in the previous cycle, XB12 asserts
xb12 ob2 ReqBypS2 s2a.
Let’s say that the OB2 output port is no longer busy and the bypass packet is
selected. OB2 reads from the S2 stage of its bypass pipeline, fills in LSN and
CRC, and sends the packet out immediately. We can skip to S5!

S5 OBX drives data to Fabric Link Transmitter. All outputs are also stored in
Replay Buffer. The OBX asserts ob2 xb12 GntByp s3a to inform XB12 that its
packet won. The XBX clears the valid bit on the XB entry into which the packet
is (still) being written.

May 14, 2014 147 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.11.10 5 Cycle Latency Path

Cycle Description

S0 SoP arrives from Fabric Link Receiver on IB1 destined for OB2.
S1 IBX checks for errors, modifies header, sends data to both XB12 and OB2. It

asserts ib1 ob2 ReqBypS1 s1a. But OB2 is still sending out a packet, so the
bypass request is rejected. OB2 places the data in its bypass delay pipeline.

S2 XB12 chooses the oldest eligible packet. If the incoming packet is se-
lected and PktCanBypass was asserted in the previous cycle, XB12 asserts
xb12 ob2 ReqBypS2 s2a.
But the output port is still busy, so nobody wins.

S3 XB12 chooses the oldest eligible packet. If the incoming packet is se-
lected and PktCanBypass was asserted in the previous cycle, XB12 asserts
xb12 ob2 ReqBypS3 s2a.
Let’s say that the OBX output port is no longer busy and the bypass packet is
selected. OB2 reads from the S3 stage of its bypass pipeline, fills in LSN and
CRC, and sends the packet out immediately. We can skip to S5!

S5 OBX drives data to Fabric Link Transmitter. All outputs are also stored in
Replay Buffer. The OBX asserts ob2 xb12 GntByp s3a to inform XB12 that its
packet won. The XBX clears the valid bit on the XB entry into which the packet
is (still) being written.

3.11.11 6 Cycle Latency Path (No Bypass)

This is the canonical 6-cycle path through the fabric switch again. I include it to contrast it with the bypass
paths. Here you can see how the bypass logic disables itself.

Cycle Description

S0 SoP arrives from Fabric Link Receiver on IB1 destined for OB2.
S1 IBX checks for errors, modifies header, sends data to both XB12 and OB2. It

asserts ib1 ob2 ReqBypS1 s1a. But OB2 is still sending out a packet, and there
are 3 fords left to transfer so bypass is not going to help anybody.
The output block always knows how many fords are remaining, and it uses that
value to produce ob2 xbx PktCanBypass s1a. In every cycle, this signal tells
crosspoint buffers whether they should use bypass requests or packet store re-
quests in the next cycle. In this case, bypass is useless so PktCanBypass would
be deasserted.

S2 XB12 chooses the oldest eligible packet. If any packet is eligible, XB12 as-
serts a request...but which kind of request? It considers using a bypass request,
but it can’t because PktCanBypass was off in the previous cycle. So, it raises
xb12 ob2 ReqPst s2a and starts to read the packet. Global arb selects XB12 as
the winner.

S3 OB2 asserts ob2 xb12 GntPst s3a to the winning XB12, which starts to read
packet store address 1 of winning packet.

S4 XB12 delivers packet SoP to OB2. OB2 fills LSN and CRC fields and flops data.
S5 OB2 drives SoP data to Fabric Link Transmitter. All outputs are also stored in

Replay Buffer.

3.11.12 End of Control Packet Arrives, Packets are Acknowledged

information propagates into the output block and crosspoint buffer. At first, imagine that the replay buffer
contains 3 packets: LSN 6, 7, and 8. The replay write LSN is 9, so the next data packet will have LSN 9. The
replay read LSN is 6. The last acknowledged LSN (AckLSN) is 5.

May 14, 2014 148 Rev 51328

SiCortex Confidential 3.11. PIPELINE TIMING

Cycle Description

S0 The final byte of a control packet arrives at OB0. The data is flopped on the
rising edge of S1.

S1 The CRC is checked, and the control packet is found to be good. Write the
AckLSN, buffer busy masks, out of band data, etc. at rising edge of S2. The
new AckLSN is 7, acknowledging correct receipt of LSNs 6 and 7.

S2 The new downstream busy mask is ORed with the pessimistic busy mask pro-
duced by the replay buffer, and driven from OB0 to its four crosspoint buffers,
which flop the busy mask. In the replay buffer, the read LSN is compared com-
pared with AckLSN. All LSNs up to and including AckLSN are acknowledged,
and the busy mask bits for any buffers that the acknowledged packets consumed
are cleared. The replay read LSN is set to 7.

S3 Crosspoint buffers may now make requests based on the busy bits from the new
control packet. The pessimistic busy mask now shows that LSN6’s and LSN7’s
buffers are available, so the busy mask sent to XBs may change.

3.11.13 End of Control Packet Arrives with ErrFlag=1, Causing Replay

At first, traffic is flowing normally from the crosspoint buffer and control packets are acknowledging packets
without error. This corresponds to Replay State = NORMAL. Then a control packet arrives with ErrFlag=1 and
starts the replay sequence.

May 14, 2014 149 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Cycle Description

S0 The final byte of a control packet arrives at OB0. The data is flopped on the
rising edge of S1 in temporary registers.

S1 The CRC is checked, and the control packet is found to be good. Write the
ErrFlag and AckLSN to registers that are visible to the output block.

S2 In the replay buffer, the read LSN is compared compared with AckLSN. All LSNs
up to and including AckLSN are acknowledged as usual. But because ErrFlag is
asserted, global arb is inhibited starting in S2. Any requests granted in previous
cycles must be completed, but from S2 to the end of replay, no more grants will
be issued. Let’s assume a crosspoint buffer requested in S1 and won. In S2, the
grant goes back to the crosspoint, and the packet is sent out the output mux
during the next few cycles. Wait for the packet SoP to be sent before setting
ErrAck. This guarantees that an idle packet with ErrAck does not sneak out
before the last normal packet.

WaitToAck 1 The packet that won global arb in S1 has reached the output mux.
WaitToAck 2 The packet that won global arb in S1 is sent to the FLT. Now set ErrAck=1 and

ReplayState=HANDSHAKE. The ErrAck will be carried downstream in Idle
packets. Increment replay counter CSR.

Handshake In HANDSHAKE state, global arb is still inhibited. Wait until a new control
packet arrives with ErrFlag=0.

...
Handshake S0 The final byte of a control packet arrives at OB0, containing the ErrFlag bit =

0. The data is flopped on the rising edge of S1 in temporary registers.
Handshake S1 The CRC is checked, and the control packet is found to be good. Write the

ErrFlag and AckLSN to registers that are visible to the output block.
Handshake S2 Once ErrFlag=0, assuming there are packets in the replay buffer, the replay state

is changed to REPLAY, and the replay loop counters are initialized to start at
the first packet after the AckLSN. Begin to read the first FORD of the first
packet to be replayed. If the replay bufer is empty, set ReplayState=NORMAL
and skip to Done!

S3 Memory read cycle. Increment loop counters and start next read.
FIXME: Add one more cycle of delay in HLM to match the Verilog.

S4 Data emerges from replay buffer. Do ECC correction, select replay data on the
output mux, insert LSN (from the replay buffer address), compute CRC and flop
it.

S5 First FORD of replayed data is sent to FLT. Unlike other data packets, don’t
record replay packets in the replay buffer!

Replay 1...N-1 Continue to increment loop counters, read replay buffer, and send packets back-
to-back.

Replay N Replay loop counter reaches the end of the last packet in the replay buffer. Set
replay state=NORMAL.

Done! Because replay state=NORMAL, global arb is enabled again. A packet store or
bypass request could arb and win in this cycle.

3.12 FSW Registers and Definitions

3.12.1 Package Attributes

Package

chip fsw spec

3.12.2 Definitions

Defines

FSW

May 14, 2014 150 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

Constant Mnemonic Definition

32’d04 MINFORDS PACKET Minimum number of fords in a single packet.
32’d19 MAXFORDS PACKET Maximum number of fords in a single packet.
32’d16 LSN MAX How many LSN values are there? This determines the size of some

memories.
32’d15 LSN BITMASK To make LSNs wrap around, AND it with this value.
32’d2 INITIAL LSN The LSN of the first data packet after an output block is reset. The

output block initializes its LSN pointers to this value.
32’d1 INITIAL LGSN After reset, the Last Good Sequence Number register in an input

block is set to this value. INITIAL LGSN + 1 should equal INI-
TIAL LSN.

32’d64 VC NP RR TABLE SIZE Size of the round robin table for every combination of VC and
NextPort. There are 16 VCs and 4 NextPorts, so 64.

4’b1111 POISON TYPE The packet type field in the trailer that is recognized by the switch
is the poison type. The fabric switch spec defines the poison value to
be all ones.

32’d16 XB NUM ENTRIES How many entries in a crosspoint buffer?
32’d4 NUM PORTS How many ports in a switch?
32’d16 NO XBE AVAILABLE For functions that return a crosspoint buffer entry number, this value

means that no crosspoint buffer was available.

3.12.3 Output Mux Select Choices

Enum

FswOutSel
Constant Mnemonic Definition

3’d0 IDLE Send idle packets
3’d1 WINNING XB Send packets from the winning crosspoint buffer
3’d2 BYPASS S1 Send packets from the S1 bypass pipeline
3’d3 BYPASS S2 Send packets from the S2 bypass pipeline
3’d4 BYPASS S3 Send packets from the S3 bypass pipeline
3’d5 REPLAY Send packets from the replay buffer

3.12.4 Replay State Machine

Enum

FswReplayState
Constant Mnemonic Definition

2’d0 NORMAL Normal operation. Global arb enabled, each packet written to the
replay buffer as it is transmitted. Transition to HANDSHAKE if
ErrFlag asserted.

2’d1 HANDSHAKE Assert error acknowledge flag in idle packets. Global arb disabled.
Acknowledge packets up to and including the LSN in control packets.
Wait for ErrFlag to be deasserted and then transition into REPLAY.

2’d3 DELAY REPLAY One cycle delay between HANDSHAKE state and REPLAY state.
2’d2 REPLAY Global arb disabled. Resend packets from the replay bufer starting at

the acknowledged LSN + 1. When the SoP of the last replay packet
is sent, return to NORMAL state.

3.12.5 Fabric Switch Control/Status Registers

This section defines all the CSRs for the fabric switch. All fabric switch registers are accessible through the
SCB (Serial Configuration Bus). Verification code may also use “direct read” and “direct write” methods to access
any register in zero simulation time.

May 14, 2014 151 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

The registers are organized into the following sections: registers that affect the operation of the FSW, perfor-
mance and error counters, and control of interrupts.

3.12.5.1 Block Reset Register

This register allows each block of the FSW to be reset individually. Each block has an active-high signal which
causes that block to change everything back to its initial state and ignore input traffic. The individual resets are
provided so that if one link needs to be reset, only the blocks related to that link would need to be affected.

All blocks start out in reset after power-on, so the fabric will be idle until software deasserts reset to all the
blocks it needs. Normally, software would enable every block by writing all zeroes. But the whole point of separate
reset bits is to reset them separately so here are a few scenarios which would take advantage of this ability. If an
output link is known to be bad, software can keep the OB and the four XBs that drive it in reset. Example: FLT1
is a bad link, so assert reset in bit 4 and bits 12+0*4+1=13, 12+1*4+1=17, 12+2*4+10=21, and 12+3*4+1=25.
Or if software wants to reinitialize the DMA engine, it may want to disable all traffic to and from the DMA; in
that case it would assert reset in DmaiReset and DmaoReset registers until the DMA is ready to receive packets.
Finally, if software needs to reset an entire ICE9, it should also ask neighboring ICE9s to reset the part of their
fabric switch that faces the device that was reset. In the three upstream ICE9’s, the output block should be reset to
clear the replay buffer and any lingering LSN state. (If you want to clear/drain old traffic, reset the four crosspoint
buffers leading to the output block too.) In the three downstream ICE9’s, the input block should be reset to clear
the replay and LSN state.

NOTE: We will not verify 2ˆ27 combinations of reset signals. We will verify the poweron case, operation with
a few blocks permanently disabled, and recovery after an upstream or downstream switch has been reset.

NOTE: When an input block is held in reset, it sends no control packets. This will cause the connected fabric
link receiver to lose its heartbeat and go into retraining. Similarly, when an output block is held in reset, it sends
no idle packets, and the fabric link transmitter will lose its heartbeat and go into retraining. To avoid this, the link
can be reset as well.

Register
R FswBlockReset
Attributes
-noregtest -kernel
Address
0xE 7D00 001C
Bit Mnemonic Access Reset Type Definition

31:27 Reserved
26:12 XbReset RW 0x7fff One bit per crosspoint buffer. Bit 12+X*4+Y affects

crosspoint buffer XY. (There is no crosspoint buffer
XB33.) While XbReset is asserted, invalidate all cross-
point entries.

11:9 DmaoReset RW 0x7 One bit per DMA output block. Bits 11:9 affect
DMAO2,1,0. While DmaoReset is asserted, reset any
state in the Dmao block.

8:6 DmaiReset RW 0x7 One bit per DMA input block. Bits 8:6 affect DMAI2,1,0.
While DmaiReset is asserted, reset any state in the Dmai
block.

5:3 ObReset RW 0x7 One bit per output block. Bits 5:3 affect OB2,1,0.
Reset output block to initial conditions. While ObReset
is asserted, the output block invalidates all entries in the
replay buffer, sets read and write LSN to 2, sets AckLSN
to 1 (pretending it’s received 1 from control packets), and
immediately cancels any packet that is in the process of
being sent. In reset the OB will not update counters or
error flags, and will not send Idle packets.

2:0 IbReset RW 0x7 One bit per input block. Bits 2:0 affect IB2,1,0.
Reset input block to initial conditions. While IbReset is
asserted, the input block will set its LGSN to 1 and clear
any error state. It will not update counters or error flags
and will not send control packets.

May 14, 2014 152 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

3.12.5.2 Block Enable Register

Register
R FswBlockEnable
Attributes
-noregtest -kernel
Address
0xE 7D00 005C
Bit Mnemonic Access Reset Type Definition

31:27 Reserved
26:12 XbEnable RW 0 One bit per crosspoint buffer. Bit 12+X*4+Y affects

crosspoint buffer XY. (There is no crosspoint buffer
XB33.) While XbEnable is low, ignore new packets and
generate no requests.

11:9 DmaoEnable RW 0 One bit per DMA output block. Bits 11:9 affect
DMAO2,1,0. While DmaoEnable is low, ignore requests
from crosspoint buffers so that no traffic is sent to DMA.

8:6 DmaiEnable RW 0 One bit per DMA input block. Bits 8:6 affect DMAI2,1,0.
While DmaiEnable is low, drop any incoming packets by
disabling PortSel signals to XB and OB.

5:3 ObEnable RW 0 One bit per output block. Bits 5:3 affect OB2,1,0.
While ObEnable is low, the output block ignores all re-
quests to send new data packets. It will continue to send
Idle packets so that the out-of-band channel works. Any
data transmission or replay that is in progess when Enable
goes low will continue until it completes.

2:0 IbEnable RW 0 One bit per input block. Bits 2:0 affect IB2,1,0.
While IbEnable is low, the input block will drop any in-
coming packets by disabling PortSel signals to XB and
OB. It will continue to send control packets so that the
out-of-band channel works.

Bug2014: The FSW contains a logic bug which affects the behavior of IbEnable and DmaiEnable. When
IbEnable[N] is low, the input block is supposed to block any packets from entering the crosspoint buffers, and it
does that correctly. But, when an errored packet is detected in input block N and IbEnable[N] is low, input block
N may incorrectly ask the connected crosspoint buffers to erase the packet that was most recently sent there, via
the ibx xbx BadPacket signal. If there is a packet in the crosspoint buffer, it will be cancelled if it hasn’t been
selected to go out the OBX yet. The result is that a packet that was sent from IBX to XBX while IbEnable[N] was
high MIGHT be erased from the crosspoint buffer, if it’s still there when IbEnable[N] is set to low. The same goes
for Dmai. The simplest and most likely software workaround is to always set IbEnable=7 and DmaiEnable=7 and
never touch them. Or, before changing IbEnable or DmaiEnable bits from 1 to 0, ensure that all traffic has flowed
out of the connected crosspoint buffers by watching the BusyMask values in captured control packets. But usually
if you’re going to set these bits to 0, you are expecting packets to be dropped anyway so it may not matter.

3.12.5.3 Input Block Mode Register

There are three mode registers. R FswIbMode[X] describes the behavior of input block X.

Register

R FswIbMode[2:0]

Attributes

-kernel

Address

0xE 7D00 0010 - 0xE 7D00 0018

May 14, 2014 153 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Bit Mnemonic Access Reset Type Definition

31:4 Reserved.
3:1 PktDecrementVc RW 7 Packet decrement VC.

When set, configures IBX to decrement VC field in header
of a data packet. Bit assignment is for [Link-2,Link-
1,Link-0]. The default value is SET.

0 PktCrcEna RW 0 Packet CRC checking enable.
When set, enables CRC checking on incoming data and
idle packets.

3.12.5.4 Output Block Mode Register

There are three mode registers. R FswObMode[X] describes the behavior of output block X.

Register

R FswObMode[2:0]

Attributes

-kernel

Address

0xE 7D00 0000 - 0xE 7D00 0008
Bit Mnemonic Access Reset Type Definition

31:1 Reserved.
0 CtrlCrcEna RW 0 Control packet CRC checking enable.

When set, enables CRC checking on incoming control
packets.

3.12.5.5 PoolMask Register

There are three PoolMask registers. R FswPoolMask[X] affects the behavior of the crosspoint buffers that drive
output block X.

The PoolMask register specifies which buffers are dedicated and which are in the common pool. For example,
the value 0xFFC0 indicates that crosspoint buffer entries 0-5 are dedicated to VCs 0-5, and entries 6-15 are pool.
If traffic is sent on any VC which has no dedicated buffer, deadlock may result.

Register

R FswPoolMask[2:0]

Attributes

-kernel

Address

0xE 7D00 0060 - 0xE 7D00 0068

May 14, 2014 154 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31:16 Reserved.
15:0 PoolMask RW 0xFF00 Sets the PoolMask vector for an output port. The pool

mask is 16 bits wide. If bit X is clear, then buffer slot X
in each of the affected XBs is dedicated to traffic on VC
X, so VC X can safely be used. If bit X is set, then buffer
slot X in each the port’s XBs is considered in the shared
pool, and VC X must not be used. See the discussion of
the XB, Section 3.10.7. The only useful settings consist
of ones in the MSBs followed by zeroes in the LSBs, e.g.
0x8000, 0xF000, 0xFF00, 0xFFF0, 0xFFFE. The default
of 0xFF00 is correct for 8 VCs. We expect that all Pool-
Mask values in all ports in every node will be set to the
same value.

3.12.5.6 Out-of-Band Upstream Register

There are three upstream registers. R FswOobUp[X] is used to send and receive data to/from the upstream
fabric switch via Fabric Link Receiver X. For a description of out-of-band communication, see section 3.5.1. Bits
9:0 are used to send data upstream. Bits 25:16 are used to receive data from the upstream switch.

Register

R FswOobUp[2:0]

Attributes

-kernel

Address

0xE 7D00 0080 - 0xE 7D00 0088
Bit Mnemonic Access Reset Type Definition

31:26 Reserved.
25 RecvEmpty R X Empty flag from the upstream node
24 RecvTaken R X Taken flag from the upstream node
23:16 RecvData R X 8 bits of data from the upstream node
15:10 Reserved.
9 SendEmpty RW 1 Empty flag to be sent to the upstream node
8 SendTaken RW 0 Taken flag to be sent to the upstream node
7:0 SendData RW 0 8 bits of data to be sent upstream

3.12.5.7 Out-of-Band Downstream Register

There are three downstream registers. R FswOobDown[X] is used to send and receive data to/from the upstream
fabric switch via Fabric Link Transmitter X. For a description of out-of-band communication, see section 3.5.1.
Bits 9:0 are used to send data downstream. Bits 25:16 are used to receive data from the downstream switch.

Register

R FswOobDown[2:0]

Attributes

-kernel

Address

0xE 7D00 00A0 - 0xE 7D00 00A8

May 14, 2014 155 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Bit Mnemonic Access Reset Type Definition

31:26 Reserved.
25 RecvEmpty R X Empty flag from the downstream node
24 RecvTaken R X Taken flag from the downstream node
23:16 RecvData R X 8 bits of data from the downstream node
15:10 Reserved.
9 SendEmpty RW 1 Empty flag to be sent to the downstream node
8 SendTaken RW 0 Taken flag to be sent to the downstream node
7:0 SendData RW 0 8 bits of data to be sent downstream

3.12.5.8 Output Block Status Registers

R FswObxStatus[X] describes the state of the replay buffer in output block X.
Register
R FswObxStatus

Attributes

-kernel

Address

0xE 7D00 00D0
Bit Mnemonic Access Reset Type Definition

31:30 Reserved.
29 Ob2ReplayEmpty R X OB2: Replay buffer is empty.
28 Ob2ReplayFull R X OB2: Replay buffer is full.
27:24 Ob2AckedLsn R X OB2: The last LSN that has been acknowledged by the

downstream node.
23:20 Ob2NextLsn R X OB2: LSN that the output block will use next, when

building the next data packet.
19 Ob1ReplayEmpty R X OB1: Replay buffer is empty.
18 Ob1ReplayFull R X OB1: Replay buffer is full.
17:14 Ob1AckedLsn R X OB1: The last LSN that has been acknowledged by the

downstream node.
13:10 Ob1NextLsn R X OB1: LSN that the output block will use next, when

building the next data packet.
9 Ob0ReplayEmpty R X OB0: Replay buffer is empty.
8 Ob0ReplayFull R X OB0: Replay buffer is full.
7:4 Ob0AckedLsn R X OB0: The last LSN that has been acknowledged by the

downstream node.
3:0 Ob0NextLsn R X OB0: LSN that the output block will use next, when

building the next data packet.

3.12.5.9 Force Error Register

This register causes the circuit to intentionally produce errors that the fabric switch knows how to detect. This
will help us to test the error detection logic and error handling software. Any kind of error that we can force
appears in the register description below.

Here are the types of errors that we WILL NOT force in hardware, and the reason why we have chosen not to
do it. I will go through the interrupt cause registers in order that they appear in the text. All OOB interrupts
are triggered by software actions, so they don’t need a force bit. We don’t have special bits that force counters to
wrap, because software can simply set the counter to MAX-1 and then force the event to occur once. VC decrement
errors can be created by software by sending a packet with the DMA engine that has a VC=0 on a route that does
a decrement. LengthErrMax is difficult for hardware to produce without screwing up the logic, so no force bit is
provided. Single bit errors can be forced on all replay buffers using or ObFlipMemBits all crosspoint buffers using
XbFlipMemBits; bit flipping in individual memories one at a time is not supported.

May 14, 2014 156 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

NOTE: There is a restriction on forced errors in output blocks. Only one of bits 8:0 (the output block force
error bits) may be set at a time. For a given type of output block error, you can set WhichOb to all 1’s to generate
one error in each output block, but you cannot generate different kinds of errors at once. To guarantee predictable
behavior, after writing ones into WhichIb or WhichOb, do not write the register again until the WhichIb and
WhichOb bits go down.

Register
R FswForceErr

Attributes

-kernel

Address

0xE 7D00 002C
Bit Mnemonic Access Reset Type Definition

31:30 ObFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word
of data being written to every replay buffer. This allows
software to force single and double bit ECC errors in the
replay buffers.

29:28 XbFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word of
data being written to every crosspoint buffer. This allows
software to generate single and double bit ECC errors in
the crosspoint buffers.

27:24 Reserved
23:21 WhichIb RWS 0 This field controls which input block will generate the

error described in bits 16-20. Bit 21+X controls input
block X. After the error is forced once in an input block,
the corresponding WhichIb bit will be cleared.

20:17 Reserved
16 IbCorruptCtl RW 0 Flip bit 0 of byte 15 of exactly one control packet.
15:13 WhichOb RWS 0 This field controls which output block will generate the

error described in bits 0-12. Bit 13+X controls output
block X. After the error is forced once in an output block,
the corresponding WhichOb bit will be cleared.

12:9 Reserved
8 ObCorruptIdleCrc RW 0 Flip bit 0 of the CRC field in exactly one idle packet.

NOTE: only one of bits 8:0 may be set at a time.
7 ObCorruptPktCrc RW 0 Flip bit 0 of the CRC field in exactly one data packet.
6 ObMissingLsn RW 0 Flip bit 2 of the LSN field in exactly one output packet,

after computing the CRC. (In other words, the packet will
have bad CRC.)

5 ObBadNumFords RW 0 Force the NumFords field to the value 3 in exactly one
output packet, after computing the CRC.

4 ObBadXbeTargetErr RW 0 Flip bit 0 of the XbeTarget field in exactly one output
packet, after computing the CRC.

3 ObProtocolErr RW 0 Leave SoP deasserted for exactly one output packet.
2 Reserved
1 ObMissingDatavalid RW 0 Deassert datavalid during the second ford of exactly one

packet.
0 ObLengthErrMin RW 0 Force EoP during the second ford of exactly one packet.

(It will also be on during at the normal time.)

3.12.5.10 Bypass Enable Register

This register allows software to enable/disable each type of bypass mode. This setting affects all XBs and OBs.
Register

May 14, 2014 157 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

R FswBypassEnable

Attributes

-kernel

Address

0xE 7D00 003C
Bit Mnemonic Access Reset Type Definition

31:6 Reserved
5 XbEnableEccCorr RW 0 Perform error correction and detection in all crosspoint

buffers. When a packet is read from a crosspoint buffer
and sent to an output block, the ECC of each FORD
is checked; this guards against bit errors introduced in
the crosspoint buffer RAM. (Note: For implementation
reasons, this ECC logic lives in the output block.)

4 ObEnableEccCorr RW 0 Perform error correction and detection in all output
blocks. Whenever a packet is replayed, the ECC of each
FORD is checked as it is read from the replay buffer; this
guards against bit errors introduced in the replay buffer
RAM.

3 DmaiEnableEccCorr RW 0 Perform error correction and detection in all DMA input
blocks. When a packet enters the FSW from the DMA,
the ECC of each FORD is checked; this guards against bit
errors introduced by the memory system or in the DMA
TX port register file.

2 EnableBypS3 RW 0 Enable 5-cycle bypass path
1 EnableBypS2 RW 0 Enable 4-cycle bypass path
0 EnableBypS1 RW 0 Enable 3-cycle bypass path

3.12.5.11 Input Block Data Packet CRC Error Counter

One per input block.

Register

R FswDataCrcCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 0020 - 0xE 7D00 0028
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Data Packet CRC error counter.
This counter counts number of data packets with CRC
errors. When the counter wraps around, a bit in the in-
terrupt register is set.

3.12.5.12 Input Block Idle Packet CRC Error Counter

One per input block.

Register

R FswIdleCrcCounter[2:0]

May 14, 2014 158 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

Attributes

-kernel

Address

0xE 7D00 0090 - 0xE 7D00 0098
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Idle Packet CRC error counter.
This counter counts number of CRC errors on idle packets.
When the counter wraps around, a bit in the interrupt
register is set.

3.12.5.13 Input Block Good Packet Counter

One per input block.

Register

R FswPktCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 0030 - 0xE 7D00 0038
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Packet counter.
This counter counts number of good (error-free) data
packets received. When the counter wraps around, a bit
in the interrupt register is set.

3.12.5.14 Input Block Poison Counter

One per input block.

Register

R FswPktPoisonCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 0040 - 0xE 7D00 0048
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Packet poison counter.
This counter counts number of data packets which were
poisoned or dropped by IBX (not packets which had the
poison type as they entered). When the counter wraps
around, a bit in the interrupt register is set.

3.12.5.15 Output Block Control Packet Error Counter

There are three counters in the three output blocks. R FswObCrcErrCounter[X] counts erroneous control
packets in output block X.

May 14, 2014 159 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Register

R FswObCtlErrCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 0050 - 0xE 7D00 0058
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Output block control packet error counter.
This counter counts the number of times the output block
has detected a control packet with an error (CRC or loss
of DataValid). The error counter increments on last byte
of the control packet, so packets that are too short will
not affect the count. When the counter wraps around, a
bit in the interrupt register is set.

3.12.5.16 Output Block Replay Counter

There are three replay counters. R FswObReplayCounter[X] counts replay events in output block X.

Register

R FswObReplayCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 0070 - 0xE 7D00 0078
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Downstream replay counter.
This counter counts the number of times the output block
has gone into replay at the request of the downstream
node. When the counter wraps around, a bit in the inter-
rupt register is set.

3.12.5.17 DMA Input Block Packet Counter

One per DMAI block. R FswDmaiPktCounter[X] counts packets sent from DMA input block X to the FSW.

Register

R FswDmaiPktCounter[2:0]

Attributes

-kernel

May 14, 2014 160 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

Address

0xE 7D00 00B0 - 0xE 7D00 00B8
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Packet counter.
This counter counts number of packets received from the
DMA. When the counter wraps around, a bit in the in-
terrupt register is set.

3.12.5.18 DMA Output Block Packet Counter

One per DMAO block. R FswDmaoPktCounter[X] counts packets sent from FSW to the DMA output block
X.

Register

R FswDmaoPktCounter[2:0]

Attributes

-kernel

Address

0xE 7D00 00C0 - 0xE 7D00 00C8
Bit Mnemonic Access Reset Type Definition

31:0 Count RW 0 Packet counter.
This counter counts number of packets sent to the DMA.
When the counter wraps around, a bit in the interrupt
register is set.

3.12.5.19 Upstream Control Packet Capture Registers

These registers allow software to view the control packets sent upstream. R FswUpCtlCaptureX[Y] captures
word X of the control packets sent by input block Y. Capture only occurs when software writes the CaptureEna
bit in R FswUpCtlWord3[Y].

Register

R FswUpCtlWord0[2:0]

Attributes

-kernel

Address

0xE 7D00 01C0 - 0xE 7D00 01C8
Bit Mnemonic Access Reset Type Definition

31:0 Word R x Bytes 3-0 of the latest control packet. Byte 0 is in the
least significant bits.

Register

R FswUpCtlWord1[2:0]

Attributes

-kernel

May 14, 2014 161 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Address

0xE 7D00 01D0 - 0xE 7D00 01D8
Bit Mnemonic Access Reset Type Definition

31:0 Word R x Bytes 7-4 of the latest control packet. Byte 4 is in the
least significant bits.

Register

R FswUpCtlWord2[2:0]

Attributes

-kernel

Address

0xE 7D00 01E0 - 0xE 7D00 01E8
Bit Mnemonic Access Reset Type Definition

31:0 Word R x Bytes 11-8 of the latest control packet. Byte 8 is in the
least significant bits.

Register

R FswUpCtlWord3[2:0]

Attributes

-kernel

Address

0xE 7D00 01F0 - 0xE 7D00 01F8
Bit Mnemonic Access Reset Type Definition

24 CaptureEna RWS 0 Whenever the CaptureEna bit transitions from 0 to
1, the next control packet will be captured into
R FswUpCtlWord0-3.

23:0 Word R x Bytes 14-12 of the latest control packet. Byte 12 is in the
least significant bits.

3.12.5.20 Interrupt Cause Registers 0, 1, 2

The interrupt cause register contains flags which are set when an event occurs, and cleared by software by
writing a 1 to that bit. The FswIntCause[X] register reflects events that occur in input block X, output block X,
and DMA input block X. While normally we would like to split these up so that all the bits come from the same
block, they are grouped together here to reduce the number of registers that software has to read when an interrupt
occurs.

Register

R FswIntCause[2:0]

Attributes

-kernel

Address

0xE 7D00 0100-0xE 7D00 0108

May 14, 2014 162 Rev 51328

SiCortex Confidential 3.12. FSW REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31 Reserved
30 IbRecvUpTaken RW1C 0 The RecvTaken flag in the R FswOobUp[X]

register has toggled.
29 IbRecvUpEmpty RW1C 0 The RecvEmpty flag in the R FswOobUp[X]

register has toggled.
28 IbPktPoisonCountWrap RW1C 0 FswPktPoisonCounter[X] has wrapped

around
27 IbPktCountWrap RW1C 0 FswPktCounter[X] has wrapped around
26 IbIdleCrcCountWrap RW1C 0 FswDataPktCounter[X] has wrapped around
25 IbDataCrcCountWrap RW1C 0 FswIdlePktCrcCounter[X] has wrapped

around
24 IbMissingLsn RW1C 0 Missing LSN error. When set, indicates that

at least once, the LSN of a data packet was
not equal to the next number in the sequence.

23 IbBadNumFords RW1C 0 Bad NumFords field error. When set, in-
dicates that at least once, the NumFords
field in the data packet header was not
between FSW MINFORDS PACKET and
FSW MAXFORDS PACKET.

22 IbVcDecrErr RW1C 0 Virtual channel decrement error. When set,
indicates that at least once, the virtual chan-
nel decremented below zero and the packet
was redirected to the DMA.

21 IbBadXbeTargetErr RW1C 0 Bad XbeTarget error. When set, indicates
that at least once, the XbeTarget field indi-
cated a crosspoint buffer that was already oc-
cupied.

20 IbProtocolErr RW1C 0 Data packet protocol error. When set, indi-
cates that at least once, SOP/EOP pair was
not observed.

19 Reserved
18 IbMissingDatavalid RW1C 0 Missing Datavalid during data packet. When

set, indicates that DataValid signal has been
observed missing during valid data packet.

17 IbLengthErrMin RW1C 0 Min packet length error. When set, indicates
that the EoP pulse arrived before the Num-
Fords field specified.

16 IbLengthErrMax RW1C 0 Max packet length error. When set, indicates
that the EoP pulse did not arrive when the
NumFords field specified. (Maybe it came
later, or maybe not at all.)

15 Reserved.
14 ObReplayFull RW1C 0 The replay buffer in OBX number X is full.
13 ObRecvDownEmpty RW1C 0 The RecvEmpty flag in the

R FswOobDown[X] register has toggled.
12 ObRecvDownTaken RW1C 0 The RecvTaken flag in the

R FswOobDown[X] register has toggled.
11 ObRepDoubleBitErr RW1C 0 An uncorrectable error has occurred in the re-

play buffer in OB[X]. This means two or more
bits were corrupted, and the ECC corrector
could not fix it.

10 ObRepSingleBitErr RW1C 0 A single bit error has occurred in the replay
buffer in OB[X], and has been corrected.

9 ObReplayCountWrap RW1C 0 FswObReplayCounter[X] has wrapped around
8 ObCtlErrCountWrap RW1C 0 FswObCtlErrCounter[X] has wrapped around
7:5 Reserved.
4 DmaoPktCountWrap RW1C 0 FswDmaoPktCounter[X] has wrapped around
3 DmaiPktCountWrap RW1C 0 FswDmaiPktCounter[X] has wrapped around
2 DmaiBadNumFords RW1C 0 DMA input block has detected a NumFords

value that is out of range.

May 14, 2014 163 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

3.12.5.21 Interrupt Cause Register 3 - For Crosspoint Buffer ECC Errors

Each of the 15 crosspoint buffers detects single bit ECC errors and double bit ECC errors. Each crosspoint
buffer sends that information to the CSR module, which sets one bit in this register for each type. Bits 0 and 16
correspond to XB00, bits 1 and 17 correspond to XB01, etc.

Register

R FswIntCauseXbEccErr

Attributes

-kernel

Address

0xE 7D00 010C

Bit Mnemonic Access Reset Type Definition

31 Reserved.
30:16 DoubleBitErr RW1C 0 There are 15 bits corresponding to 15 crosspoint buffers.

If while reading XBmn, two or more bits are corrupted
in a 64-bit word, bit number (16+4*m+n) is set. Such
errors cannot be corrected.

15 Reserved.
14:0 SingleBitErr RW1C 0 There are 15 bits corresponding to 15 crosspoint buffers.

If a single bit error is found and corrected while reading
XBmn, bit number (4*m+n) is set.

3.12.5.22 Interrupt Mask Registers

For each interrupt cause register, one interrupt mask register controls which conditions can cause the interrupt
to be asserted. R FswIntMask[2:0] enables interrupts for bits in R FswIntCause[2:0]. R FswIntMask[3] enables
interrupts for bits in R FswIntCauseXbEccErr. All bits are readable/writable, even though there are some bits for
which there is not (yet) any cause bit.

Register

R FswIntMask[3:0]

Attributes

-kernel

Address

0xE 7D00 0190-0xE 7D00 019C

Bit Mnemonic Access Reset Type Definition

31:0 IntMask RW 0 If the corresponding interrupt cause bit is ever set, assert
the interrupt.

3.12.5.23 Master Interrupt Register

This register summarizes the four interrupt cause registers, above. By reading R FswIntMaster, software can
decide which interrupt cause registers are worth reading.

Register

R FswIntMaster

Attributes

-kernel

Address

0xE 7D00 004C

May 14, 2014 164 Rev 51328

SiCortex Confidential 3.13. RESET AND INITIALIZATION

Bit Mnemonic Access Reset Type Definition

31 Intr R x Intr is the boolean OR of all other bits in this register. It is
driven to the fsw xxx Int output port, through the CSW,
and a few cycles later ends up in the Slow Interrupt Status
Register in each L2 segment, R CacxSlIntStat (section
7.18.9).

30:4 Reserved.
3:0 WhichIntCause R x Each bit of this tells whether there are any un-

masked interrupt cause bits in one of the four
Interrupt Cause Registers. Specifically, WhichInt-
Cause[X] is asserted when any bit in the expression
(R FswIntCause[X] & R FswIntMask[X]) is set. For X=3,
use (R FswIntCauseXbEccErr & R FswIntMask[3]).

3.12.5.24 Model Magic Register

This register only exists in the high level model. It allows verification code to perform special functions such as
dumping out the state to a log file.

Register

R ModelMagicFsw

Attributes

-noregtest

Address

0xE 7D00 0300

Bit Mnemonic Access Reset Type Definition

31:0 MagicOp W 0 Write with value 1 to make SystemC dump state to log
file.

3.13 Reset and Initialization

3.14 Internal Data Formats and States

The data formats for some internal buses are documented here in the spec to help the SystemC and Verilog
models stay in sync with each other. The only people who would care about these formats are the SystemC and
Verilog authors. Everyone else can safely ignore this section.

3.14.1 Encoding of Buses between FswCsr and FswIbx

3.14.1.1 CsrIbxStat - For csr ibx Stat sa bus

Class

CsrIbxStat

May 14, 2014 165 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:42] U0 Unused. Drive 0.
d0[41] OobUpEmpty Out of band Empty flag to be sent upstream
d0[40] OobUpTaken Out of band Taken flag to be sent upstream
d0[39:32] OobUpChar Out of band character to be sent upstream
d0[31:9] U0b Unused. Drive 0.
d0[8:7] IbNum Tells the IBX its block number: 0, 1, or 2. Purpose: These

bits will get shifted into the MSB of route, as the route is
shifted right by two places.

d0[6] IbCorruptCtl This bit is the IbCorruptCtl bit ANDed with the WhichIb
bit in R FswForceErr. If set, corrupt the next control
packet and set ForceErrDone.

d0[5] EnableIb Enable the IB.
d0[4] ResetIbLow Reset the IB. This signal is active low.
d0[3:1] PktDecVc Packet Decrement VC.
d0[0] PktCrcEna Packet CRC checking enable.

3.14.1.2 IbxCsrStat - For csr ibx Stat sa bus

Class

IbxCsrStat

Attributes

-allowunder

May 14, 2014 166 Rev 51328

SiCortex Confidential 3.14. INTERNAL DATA FORMATS AND STATES

Bit Mnemonic Type Definition

d1[63:0] Oflr0 fsw InDat s0a A copy of flr0 fsw InDat s0a, for OCLA and Performance
Counter

d0[63:48] U0 Unused. Drive 0.
d0[47] Ofsw flr0 NewCtlPkt s3a fsw flr0 NewCtlPkt s3a
d0[46] Oflr0 fsw SoP s0a flr0 fsw SoP s0a
d0[45] Oflr0 fsw EoP s0a flr0 fsw EoP s0a
d0[44] Oflr0 fsw Idle s0a flr0 fsw Idle s0a
d0[43] Oflr0 fsw DatVal s0a flr0 fsw DatVal s0a
d0[42] Oflr0 fsw MissionMode flr0 fsw MissionMode
d0[41] OobUpEmpty Out of band Empty flag received from upstream
d0[40] OobUpTaken Out of band Taken flag received from upstream
d0[39:32] OobUpChar Out of band character received from upstream
d0[31:24] CtlDat 8 bytes of control packet data
d0[23] NewCtlPkt pulse during first cycle of control packet
d0[22] ForceErrDone in the cycle after CorruptCtl causes a control packet to be

corrupted, ForceErrDone is asserted for one cycle to tell
the CSR module to clear the WhichIb bit.

d0[21:13] U0b Unused. Drive 0.
d0[12] IdleCrcErr Received idle packet CRC error.
d0[11] PktMissingLsn Missing LSN error.
d0[10] PktBadNumFords Packet header had bad NumFords field.
d0[9] PktVcDecrErr VC decrement error.
d0[8] PktBadXbeTargetErr Packet header had bad XBE target field.
d0[7] PktProtocolErr Data packet protocol error.
d0[6] PktLengthMismatch Packet size does not match length field in header.
d0[5] PktMissingDatavalid Datavalid is missing during data packet.
d0[4] PktLengthErrMin Min packet length error.
d0[3] PktForceEop Max packet length error.
d0[2] PktForcePoison Force poison bit error.
d0[1] PktRcvdGood Received good (error-free) data packet.
d0[0] PktCrcErr Received data packet CRC error.

3.14.2 SCB Performance Events

The following events are trackable by SCB statistical event counting.

Enum

FswScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Count every cycle. Drive 1 always.
8’h80 FLR0 SOP SoP from receive link 0
8’h81 FLR0 IDLE Idle from receive link 0
8’h82 FLR0 MISSIONMODE MissionMode from receive link 0
8’h88 FLR1 SOP SoP from receive link 1
8’h89 FLR1 IDLE Idle from receive link 1
8’h8A FLR1 MISSIONMODE MissionMode from receive link 1
8’h90 FLR2 SOP SoP from receive link 2
8’h91 FLR2 IDLE Idle from receive link 2
8’h92 FLR2 MISSIONMODE MissionMode from receive link 2

May 14, 2014 167 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

8’h98 FLT0 SOP SoP to transmit link 0
8’h99 FLT0 IDLE Idle to transmit link 0
8’h9A FLT0 MISSIONMODE MissionMode from transmit link 0
8’h9B OB0 BYP S1 Bypass S1 granted from OB0
8’h9C OB0 BYP S2 Bypass S2 granted from OB0
8’h9D OB0 BYP S3 Bypass S3 granted from OB0
8’hA0 FLT1 SOP SoP to transmit link 1
8’hA1 FLT1 IDLE Idle to transmit link 1
8’hA2 FLT1 MISSIONMODE MissionMode from transmit link 1
8’hA3 OB1 BYP S1 Bypass S1 granted from OB1
8’hA4 OB1 BYP S2 Bypass S2 granted from OB1
8’hA5 OB1 BYP S3 Bypass S3 granted from OB1
8’hA8 FLT2 SOP SoP to transmit link 2
8’hA9 FLT2 IDLE Idle to transmit link 2
8’hAA FLT2 MISSIONMODE MissionMode from transmit link 2
8’hAB OB2 BYP S1 Bypass S1 granted from OB2
8’hAC OB2 BYP S2 Bypass S2 granted from OB2
8’hAD OB2 BYP S3 Bypass S3 granted from OB2
8’hB0 DMA FSW SOP0 SoP from DMA port TX0
8’hB1 DMA FSW DATVAL0 DatVal from DMA port TX0
8’hB2 FSW DMA BUFAVAIL0 BufAvail from DMA port TX0
8’hB8 DMA FSW SOP1 SoP from DMA port TX1
8’hB9 DMA FSW DATVAL1 DatVal from DMA port TX1
8’hBA FSW DMA BUFAVAIL1 BufAvail from DMA port TX1
8’hC0 DMA FSW SOP2 SoP from DMA port TX2
8’hC1 DMA FSW DATVAL2 DatVal from DMA port TX2
8’hC2 FSW DMA BUFAVAIL2 BufAvail from DMA port TX2
8’hC8 FSW DMA SOP0 SoP to DMA Port RX0
8’hC9 FSW DMA DATVAL0 DatVal to DMA Port RX0
8’hCA DMA FSW RDY0 Rdy from DMA Port RX0
8’hD0 FSW DMA SOP1 SoP to DMA Port RX1
8’hD1 FSW DMA DATVAL1 DatVal to DMA Port RX1
8’hD2 DMA FSW RDY1 Rdy from DMA Port RX1
8’hD8 FSW DMA SOP2 SoP to DMA Port RX2
8’hD9 FSW DMA DATVAL2 DatVal to DMA Port RX2
8’hDA DMA FSW RDY2 Rdy from DMA Port RX2
8’hFF Reserved.

3.14.3 Encoding of Buses between FswCsr and FswDmai

3.14.3.1 CsrDmaiStat - For csr dmai Stat sa bus

Class

CsrDmaiStat

Attributes

-allowunder
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:4] U0 Unused. Drive 0.
d0[3] EnableEccCorr Enable single bit error correction and double bit error

detection as data is read from the DMA engine
d0[2] ResetDmaiLow Reset the DMAI. This signal is active low.
d0[1] EnableDmai Enable the DMAI.
d0[0] U0b Unused. Drive 0.

May 14, 2014 168 Rev 51328

SiCortex Confidential 3.14. INTERNAL DATA FORMATS AND STATES

3.14.3.2 DmaiCsrStat - For dmai csr Stat sa bus

Class

DmaiCsrStat

Attributes

-allowunder

Bit Mnemonic Type Definition

d1[63:0] Odma fsw InDat s0a dma fsw InDat s0a
d0[63:8] U0 Unused. Drive 0.
d0[7] Odma fsw DatVal s0a A copy of dma fsw DatVal s0a, for OCLA and perfor-

mance counter
d0[6] Odma fsw SoP s0a dma fsw SoP s0a
d0[5] Odma fsw EoP s0a dma fsw EoP s0a
d0[4] Ofsw dma BufAvail s3a fsw dma BufAvail s3a
d0[3] BadNumFords Packet has arrived with NumFords field out of range.
d0[2] IncrPktCount Increment DMA input block packet counter
d0[1] DoubleBitErr ECC corrector in DMA input block has detected a double

bit ECC error.
d0[0] SingleBitErr ECC corrector in DMA input block has detected a single

bit ECC error.

3.14.4 Encoding of Buses between FswCsr and FswObx

3.14.4.1 CsrObxStat - For csr obx Stat sa bus

Class

CsrObxStat

May 14, 2014 169 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Bit Mnemonic Type Definition

d1[63:9] U1 Unused. Drive 0.
d1[8] ObCorruptIdleCrc copy of ObCorruptIdleCrc from R FswForceErr
d1[7] ObCorruptPktCrc copy of ObCorruptPktCrc from R FswForceErr
d1[6] ObMissingLsn copy of ObMissingLsn from R FswForceErr
d1[5] ObBadNumFords copy of ObBadNumFords from R FswForceErr
d1[4] ObBadXbeTargetErr copy of ObBadXbeTargetErr from R FswForceErr
d1[3] ObProtocolErr copy of ObProtocolErr from R FswForceErr
d1[2] U1b Unused. Drive 0.
d1[1] ObMissingDatavalid copy of ObMissingDatavalid from R FswForceErr
d1[0] ObLengthErrMin copy of ObLengthErrMin from R FswForceErr
d0[63:57] U0 Unused. Drive 0.
d0[56:53] EnableBypS3 Enable 5-cycle bypass path. This is a 4-bit vector. Bit

53+x enables bypass from IBx for x=0,1,2, or bypass from
the connected DMAI for x=3.

d0[52:49] EnableBypS2 Enable 4-cycle bypass path. This is a 4-bit vector. Bit
49+x enables bypass from IBx for x=0,1,2, or bypass from
the connected DMAI for x=3.

d0[48:45] EnableBypS1 Enable 3-cycle bypass path. This is a 4-bit vector. Bit
45+x enables bypass from IBx for x=0,1,2, or bypass from
the connected DMAI for x=3.

d0[44] OobWrite Ask OB to force a gap between data packets so that an Idle
packet will be sent carrying the new Oob values. It stays
on until OobWriteAck is sent by the OB. This ensures
that the Oob channel is never completely starved.

d0[43] EnableEccCorrXbData Enable single bit error correction and double bit error
detection on data as it is read from the crosspoint buffer

d0[42] EnableEccCorrReplay Enable single bit error correction and double bit error
detection as data is read from the replay buffer

d0[41] OobDownEmpty Out of band Empty flag to be sent downstream
d0[40] OobDownTaken Out of band Taken flag to be sent downstream
d0[39:32] OobDownChar Out of band character to be sent downstream
d0[31:24] U0b Unused. Drive 0.
d0[23] EnableOb Enable the OB.
d0[22:21] U0d Unused. Drive 0.
d0[20] U0c Unused. Drive 0.
d0[19] CtrlCrcEna Enable CRC checking on control packets
d0[18:17] DriveBadBits Invert bits 1 and 0 of data written to replay buffer, to

force ECC errors
d0[16] ResetObLow Reset the OB. This signal is active low.
d0[15:0] PoolMask Pool Mask.

3.14.4.2 ObxCsrStat - For obx csr Stat sa bus

Class

ObxCsrStat

Attributes

-allowunder

May 14, 2014 170 Rev 51328

SiCortex Confidential 3.14. INTERNAL DATA FORMATS AND STATES

Bit Mnemonic Type Definition

d1[63:0] Ofsw flt0 OutDat s2a A copy of fsw flt0 OutDat s2a, for OCLA and perfor-
mance counter

d0[63:59] U0 Unused. Drive 0.
d0[58:56] BypassPerfCount Bit 56 is high when bypass S1 is granted.

Bit 57 is high when bypass S2 is granted.
Bit 58 is high when bypass S3 is granted.

d0[55:48] Oflt0 fsw CtlDat s0a flt0 fsw CtlDat s0a
d0[47] Oflt0 fsw NewCtlPkt s0a flt0 fsw NewCtlPkt s0a
d0[46] Ofsw flt0 SoP s2a fsw flt0 SoP s2a
d0[45] Ofsw flt0 EoP s2a fsw flt0 EoP s2a
d0[44] Ofsw flt0 Idle s2a fsw flt0 Idle s2a
d0[43] Oflt0 fsw DatVal s0a flt0 fsw DatVal s0a
d0[42] Oflt0 fsw MissionMode flt0 fsw MissionMode
d0[41] OobDownEmpty Out of band Empty flag from downstream
d0[40] OobDownTaken Out of band Taken flag from downstream
d0[39:32] OobDownChar Out of band character from downstream
d0[31:24] U0b Unused. Drive 0.
d0[23:20] AckedLsn The last LSN that has been acknowledged by the down-

stream node.
d0[19:16] NextLsn LSN that the output block will use next, when building

the next data packet.
d0[15:12] XbDoubleBitErr In the ObxCsrStat bus going to output block N, bit 12+M

is set if a double bit error is detected in data coming from
crosspoint buffer MN.

d0[11:8] XbSingleBitErr In the ObxCsrStat bus going to output block N, bit 8+M
is set if a single bit error is detected in data coming from
crosspoint buffer MN.

d0[7] ReplayEmpty Replay buffer is empty.
d0[6] ReplayFull Replay buffer is full.
d0[5] ForceErrDone In the cycle after one of the FswForceErr bits that affect

the output block causes a data packet to be corrupted,
ForceErrDone is asserted for one cycle to tell the CSR
module to clear the WhichOb bit.

d0[4] OobWriteAck Acknowledges the OobWrite signal in CsrObxStat. As-
serted for one cycle when the OobWrite takes effect.

d0[3] IncrCtlErrCount Error in a control packet. The OB asserts this signal
for one cycle when a control packet error is detected. If
DataValid is missing, assert once in the following cycle. If
a CRC mismatch is detected, assert once in the following
cycle. Even if multiple errors are detected, only assert one
time per control packet.

d0[2] IncrReplayCount OB asserts this signal to increment its ObReplay-
Counter. It is asserted during the cycle in which
m FltErrFlag s2a=1 and m FltErrFlag s3a=0.

d0[1] DoubleBitErr The replay buffer has detected a double bit ECC error.
d0[0] SingleBitErr The replay buffer has detected a single bit ECC error.

3.14.5 Encoding of Buses between FswCsr and FswDmao

3.14.5.1 CsrDmaoStat - For csr dmao Stat sa bus

Class

CsrDmaoStat

May 14, 2014 171 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:10] U0 Unused. Drive 0.
d0[9:6] EnableBypS1 Enable 3-cycle bypass path. This is a 4-bit vector. Bit

45+x enables bypass from IBx for x=0,1,2, or bypass from
the connected DMAI for x=3.

d0[5] EnableEccCorrXbData Enable single bit error correction and double bit error
detection on data as it is read from the crosspoint buffer

d0[4] EnableDmao Enable the DMAO.
d0[3] EnableBypS3 Enable 5-cycle bypass path.
d0[2] EnableBypS2 Enable 4-cycle bypass path.
d0[1] U0c Unused. Drive 0.
d0[0] ResetDmaoLow Reset the DMAO. This signal is active low.

3.14.5.2 DmaoCsrStat - For dmao csr Stat sa bus

Class
DmaoCsrStat
Attributes
-allowunder
Bit Mnemonic Type Definition

d1[63:0] Ofsw dma OutDat s2a A copy of fsw dma OutDat s2a, for OCLA and perfor-
mance counter

d0[63:7] U0 Unused. Drive 0.
d0[6] Ofsw dma DatVal s2a fsw dma DatVal s2a
d0[5] Ofsw dma SoP s2a fsw dma SoP s2a
d0[4] Ofsw dma EoP s2a fsw dma EoP s2a
d0[3] Odma fsw Rdy s1a dma fsw Rdy s1a
d0[2] XbDoubleBitErr Double bit error is detected in data coming from the at-

tached crosspoint buffer
d0[1] XbSingleBitErr Single bit error is detected in data coming from the at-

tached crosspoint buffer
d0[0] IncrPktCount Increment DMA output block packet counter

3.14.6 Encoding of Buses between FswCsr and FswXbx

3.14.6.1 CsrXbxStat - For csr xbx Stat sa bus

Class
CsrXbxStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:18] U0 Unused. Drive 0.
d0[17:16] DriveBadBits Invert bits 1 and 0 of data written to crosspoint buffer, to

force ECC errors
d0[15:5] U0b Unused. Drive 0.
d0[4] EnableXb Enable the XB.
d0[3] EnableBypS3 Enable 5-cycle bypass path.
d0[2] EnableBypS2 Enable 4-cycle bypass path.
d0[1] EnableBypS1 Enable 3-cycle bypass path.
d0[0] ResetXbLow Reset the XB. This signal is active low.

3.14.6.2 XbxCsrStat - For xbx csr Stat sa bus

Class
XbxCsrStat

May 14, 2014 172 Rev 51328

SiCortex Confidential 3.14. INTERNAL DATA FORMATS AND STATES

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:0] U0 Unused. Drive 0.

3.14.7 Open issues

May 14, 2014 173 Rev 51328

SiCortex Confidential CHAPTER 3. THE DENSE FABRIC SWITCH

May 14, 2014 174 Rev 51328

Chapter 4

DMA Engine Microcode

by Jud Leonard

[Last modified $Id: dmauc.lyx 43841 2007-08-28 19:09:39Z leonard $].

4.0.8 Package Attributes

Package

chip dmauc spec

Attributes

-dwaccessors

4.1 Introduction

The DMA Engine provides a high-bandwidth interface between the memory system and the fabric switch,
relieving software of the low-level work of repetitively creating packets of memory data and injecting them into the
fabric, or accepting packets from the fabric and distributing their payload to appropriate locations in memory.

This chapter describes the functions and interfaces of the DMA Engine which are implemented in microcode, and
are therefore more or less subject to modification in future revisions of that microcode. The underlying hardware
mechanisms are described in the DMAEngine spec.

The DMA Engine is designed to work closely with both privileged kernel-level device drivers and user-level
library software to provide very low overhead transfers in a protected virtual memory environment. Low overhead
requires that typical transfers can be initiated and completed without invoking kernel-mode or interrupt-level
software at either sender or receiver, and that buffers need not be copied.

The DMA Engine provides two levels of communication between cooperating processes within the system:

• At the first level, user-mode software creates a small information packet on a command queue in its local
memory. The DMA engine pulls the packet off the queue and injects it into the switch fabric with addressing
to deliver it to the desired destination process and error checks to confirm error-free transmission. At the
destination, the DMA engine stores the packet on a user-accessible event queue for processing by software.

• At the second level, rather than generating and processing packets directly, software sets up sufficient state in
the DMA engines at both ends of a transmission to permit the hardware to generate packets at the transmitter
and interpret them appropriately at the receiver. In this case, the DMA engines at both ends are responsible
for managing memory addressing, including generation and verification of physical addresses, for fragmenting
messages into packets, and for reassembly, relieving software of packet-level activity.

For more information about the MPI (Message Passing Interface) standard, visit http://www.mpi-forum.org.

175

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

4.2 Goals

We’ve tried to make the DMA engine to be as simple as practical, while achieving the following functions:

• It should be able to process the packets of outgoing and incoming messages without intervention by software.

• It should be able to keep a modest number of input and output messages in progress concurrently.

• It should dispose of incoming packets it cannot handle by presenting them to software with minimum overhead
(< 100 ns).

• It should be able to pass outgoing packets from software to the fabric with minimum overhead (< 100 ns).

• It should be able to process several packets concurrently, overlapping multiple memory references.

• It should support local memory-to-memory transfers between address spaces on a single node. It should also
provide a fast memory zeroing function.

• For large contiguous messages from one node to any other on an otherwise idle network, it should achieve 2
GB/sec.

• It must protect the integrity of user and kernel processes from unrelated naive, buggy, or malicious user
processes running on the same system. It is not obliged to protect a user process from kernel-mode software
on any node, nor from other processes with which it is communicating. It need not prevent covert channels
or denial of service attacks.

4.3 Differences, Bugs, and Enhancements

4.3.1 Product and Chip Pass Differences

1. NEED IMPL: TWC9A records the address and syndrome of DRAM ECC errors, bug2157.

2. NEED IMPL: TWC9A fixes generation of bad ECC when ECC correction disabled and a 32-bit aligned
packet is read, bug2396. R SdmaEccMode bit 6 (CifCorrEna) enables ECC correction in CIF. This logic is
only needed when the microengine does a BRD from a memory address with bit 2 set (32-bit realignment).
When CifCorrEna is off and the microengine does a BRD from a memory address with bit 2 set, the ECC
written into the DMA’s internal memory (TX or COPY port packet buffer) is incorrectly forced to zero. Data
with corrupted ECC may reach the FSW or main memory when the packet is sent. To workaround, leave
CifCorrEna always set.

3. NEED IMPL: TWC9A fixes non-correction of ECC during 32-bit realignment operations, bug2403. When
the CifCorrEna bit is on, and DMA is doing a read with 32-bit realignment, and there is a single bit error
on the data from the CSW, the RTL does not correct the error. The RTL corrects the error inside the
DmaCifDatacalg modules, but then incorrectly puts out the uncorrected data on cif xxx Data*[63:0] and into
the next DmaCifDatacalg module. But the ECC bits on cif xxx data*[71:64] are the ECC consistent with
the corrected data, so the resulting data appears to have just a single bit error. Workaround: None needed,
as the error will be corrected at the destination of the DMA engine.

4. MIGHTFIX: TWC9A might double the size of the instruction memory, bug3390.

5. MIGHTFIX: TWC9A might fix a performance issue which requires a dead cycle between DMA packets headed
into the FSW, bug597.

6. MIGHTFIX: TWC9A might fix DmaCif RDIO being corrupted by subsequent WTIO from the same core,
bug1991. This can cause RDIOs to return corrupted data when followed immediately by a WTIO from the
same CPU. I/O accesses from different CPUs are not affected, and SPCLs are not affected. When it happens,
the WTIO overwrites the data before it can be sent back to the core, so the RDIO incorrectly returns the
data from the WTIO. To avoid this, either issue a SYNC instruction between the RDIO and WTIO, or
be sure to use the RDIO result before issuing the WTIO. All DMA addresses are affected (RA DmaImem,
RA DmaDmem, RA DmaAppIface0,1, etc.) except for those in the SCB range (RA SDma*). The bug has
only been observed when DMA is in the process of doing lots of block writes and the CSW is heavily loaded.

7. MIGHTFIX: Various possible microinstruction enhancements, bug3392, bug3393, bug3394, bug3395, bug3396.

May 14, 2014 176 Rev 51328

SiCortex Confidential 4.4. MODEL

4.3.2 Known Bugs and Possible Enhancements

4.4 Model

4.4.1 Terminology

4.4.1.1 DMA Context (formerly Process)

The DMA Engine is interacting at any time with the six processors on the same node, and each of those
processors has activities running in user and kernel mode. For this discussion, we’ll refer to each of those activities
as a DMA context. The DMA engine keeps separate state and control information for each of 14 contexts, so as
to minimize the extent to which those activities must use mutual exclusion to coordinate activities. There may be
multiple Unix threads on one or more processors sharing access to a single DMA context. In this case, the software
must manage concurrent access to the hardware.

The DMA engine uses a 4-bit context number (called process index for historical reasons) to uniquely identify
the block of DMA engine state associated with a particular Linux activity. That state includes a 16-bit process ID,
which can be used by software to uniquely identify the Linux activity which manages the DMA context. Whenever
it receives a packet, the DMA engine uses the process index to select a block of process state, and compares the
process ID in the packet to that in the selected state. A mismatch causes the packet to be treated as an unexpected
packet, and a PID Mismatch event is stored on the event queue for DMA context number 0.

4.4.1.2 Thread

The execution model for the DMA Engine is a multithreaded state machine with a thread associated with each
input or output port. Each thread is activated to process a packet as the necessary resources become available:
transmit threads wait for an empty transmit buffer, receive threads wait for a full receive buffer. Each port has
four packet buffers, which spend approximately equal times (˜100 ns) in memory references, processing by a thread,
and moving into or out of the fabric. Queues support communication between transmit and receive contexts, on
the one hand, and software on the other.

There are three threads associated with the three input ports, three more with the three output ports, two with
the copy function (separately for memory read and write), one for queue management, and a specialized thread to
serve I/O register accesses; total 10.

4.4.1.3 Handle

The DMA Engine is accessible to both kernel- and user-mode processes, and it accesses buffers in the virtual
memory address space of whatever process it is serving. To keep this safe, applications describe accessible memory
in terms of handles. A handle is an offset into a table of physical memory addresses (called the Buffer Descriptor
Table, BDT, or the Route Descriptor Table, RDT) approved for use by each process. The tables are writable only
by the kernel, and the BDT may contain contiguous groups of entries describing virtually-contiguous regions of
memory. Handles are used to identify buffer regions, commands, and routes.

4.4.1.4 Packet

The data transport and switching machinery works on units of data called packets, which are individually
addressed, carry separate error detection codes, and include up to 128 bytes of user payload. With overhead,
packets may be as large as 152 bytes. Section 4.9 describes the various packet types supported.

Packets can be categorized into three major classes:

DMA Packets carry up to 128 bytes of message data between application-space buffers.

Command Packets carry instructions to be enqueued and processed by the receiving DMA engine; such com-
mands are treated as if they had been issued by the receiving process at the destination node.

Interprocess Packets carry up to 128 bytes of data entirely determined by software, to be stored on the event
queue of the receiving process.

May 14, 2014 177 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

4.4.1.5 Command

An instruction to the DMA engine, coming from a local processor or received encapsulated in a packet from a
remote processor. Commands are stored on queues in memory while waiting to be performed by the DMA engine.

4.4.1.6 Segment

Messages may be very long – conceivably longer than the physical memory available to a single process. There-
fore, we recognize that the message passing library software may want to break a single message up into a number of
segments for independent transmission. The DMA engine hardware is optimized for the case that both source and
destination buffers for each segment are available when that segment is transferred; that the transfer of an entire
segment will be along a single path, with packets of the segment delivered in order; that most errors will be detected
and corrected at the link level; and that uncorrected errors will be infrequent enough to justify retransmission of
segments as a correction mechanism.

Segments serve an additional purpose as well: on lengthy transfers, we would like to distribute the traffic among
disjoint routes from source to destination. The software on the originating node can fracture a message into multiple
segments and transmit them along available routes to the destination in order to minimize overall message delay
and hotspot congestion in the fabric. For very long messages, the software will enqueue later segments on the fly as
earlier ones complete, to shift load to the fastest available path, and to avoid pinning too much memory at a time.

A segment may consist of a large number of packets, and we don’t want to delay transfer of control information
between nodes while waiting for completion of a segment, so segment transfers are treated as a background activity
within the DMA engine; each output port generates packets for pending control transfers (foreground commands)
in preference to segment transfers (background commands) on the same port.

4.4.1.7 Errors

While we recognize that packets will occasionally be corrupted and/or lost in the fabric, we have designed the
low-level communication hardware to detect and retry corrupted packets, preserving their order, so we expect that
failures at higher levels will be very rare events, and the system is designed to assume that all packets following a
common path between any pair of nodes will be delivered uncorrupted in the order they were transmitted.

Note that the cut-through routing policy implies that a faulty packet may continue to propagate through the
network, possibly even presented to a DMA engine for delivery at the incorrect destination. The switch is responsible
for setting the type code of any corrupted packet to “poison”, and the DMA engine is responsible for discarding
any poisoned packet it receives.

The system is intended to make packet transfer sufficiently reliable that software can assume a transmitted
packet will be delivered, and that foreground messages following a common path will be delivered in the order in
which they were sent. Segment transfers can fail due to BDT faults at the source or destination nodes (indicating
that a needed page has been swapped out); such faults are reported to software, which is expected to swap in the
missing page and retry the transfer.

Software bugs can also prevent received packets from being processed correctly. In these cases, the hardware
notes the errors in passing, and discards the packet.

4.4.1.8 Transmit

Within this chapter, Transmit (abbreviated Tx) is used to refer to the creation of packets and their injection
into the switch fabric, typically starting in the application as MPI SEND; so the transmit side of the engine is
connected to the cache’s Read Data bus; this can cause confusion, because of course the engine receives cache data
to be transmitted through the fabric.

4.4.1.9 Receive

Similarly, Receive (abbreviated Rx) is used to refer to the whole process of acceptance, processing, and storage
of packets coming from the fabric, starting in the application with MPI RECV, and in the fabric with the arrival
of a new packet; even though the engine must transmit memory addresses and data to the cache to store a packet.

May 14, 2014 178 Rev 51328

SiCortex Confidential 4.4. MODEL

4.4.1.10 Multicast

The DMA engine can be directed to produce several output packets directed to processes on various other
nodes in response to a received packet, so that a group of processes can quickly inform members of the group
about collective results. Multicast selectively targets processes so as to reach members of a group quickly without
disruption to other groups.

4.4.1.11 Collective

The engine also implements a decrement and test function which allows another command to be triggered when
a number of messages have been received; this permits the hardware to collect inputs from several sources and
transmit when they have all been received.

4.4.1.12 Copy

The DMA engine is designed to support communication among application processes, whether they are on the
same or different fabric nodes. To that end, the hardware supports local transfer of packets without use of the
switch, but under the same protocol.

4.4.2 High-level Hardware View

The DMA Engine consists of a cluster of interacting state machines. The primary application interface consists
of hardware-managed queues. One set of queues is used by the software to direct fabric activity, and another set is
used by the engine to distribute incoming packets and completion events to the appropriate processes. The DMA
engine is able to accept commands directly from any of the processors on the same chip, or indirectly from external
processes through packets carried over the fabric.

The DMA engine has virtually no interest in the contents of packets, aside from the Route and the Packet type,
which specifies the queue or buffer into which the contents are stored. Packet contents are fetched from and stored
to contiguous blocks of memory.

All transfers are targeted to designated, pre-established destinations: either an event queue used by software,
the DMA command queues used by DMA engine hardware, a reserved region of memory called the heap, or buffer
specifically allocated for the transfer.

And just as a clarification: the DMA engine is not involved in processing packets which pass through the switch
on their way between other nodes – it provides the path into and out of the switch fabric, but packets on their way
from one node to another do not involve the DMA engine on intervening nodes along the path.

4.4.3 Canonical MPI Transfer Patterns

MPI provides three basic message transfer forms: Send/Recv, as specified in MPI-1, depends on the active
participation of application software at both ends of a transfer. One process Sends a message to another process,
which must perform a Receive to get it. The rules for matching sender and receiver essentially require the matching
to occur at the receiver. The operation does not depend on the relative time order in which send and receive
occur. The other forms, specified in MPI-2, are called Get and Put, and are described as single-ended because
each message transfer is entirely specified by one process (the Initiator). The correspondent (Responder) declares a
window in memory, and other members of the communicating group are permitted arbitrary access to that window.

4.4.3.1 Eager Transfer

For short messages, whether single- or double-ended, our goal is to complete the transfer with a minimum
of overhead. Library software on the sending node queues a command to the local DMA engine for immediate
transmission of a Enq Direct packet which identifies the communicator, sender’s rank, tag, and the data. Upon
arrival at the remote destination, the remote DMA engine pushes the packet payload onto the event queue of the
receiving process.

If the receiving process is waiting on a posted receive, the receiving process interprets the packet immediately.
Otherwise, the packet is interpreted by a dedicated fabric processor, if there is one, or as a last resort, by a kernel-
mode interrupt-level device driver. The receiving software is responsible for matching the communicator, rank, and
tag of the packet with a posted receive, if there is one, and otherwise for storing the information to match against

May 14, 2014 179 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

later receives as they’re posted. In eager transfers, the receiving software must copy the message contents to the
destination buffer.

Enq_Direct Packet(s)

Tx Que

Event Que

Switch FabricInitiating Node Responding Node

Send short message

Receive

For intermediate-sized messages (too large for a single packet), software may choose to use Put Im Hp commands
to copy from a buffer in the source application to the heap of the destination process, prior to notifying the receiver
of message availability through an Enq Direct.

4.4.3.2 Single-ended Messages

Once both ends of the communications link have set up buffer descriptors to describe the communications buffers,
one-sided messages, get or put, may be used to move the data. If the sender initiates the transfer, a Put Bf Bf
command is used, if the receiver initiates the transfer, a Send Command containing a Put Bf Bf command is sent
to the transmit-end DMA Engine.

Put Bf Bf waits in a transmit queue for access to the output port required by its route. When it reaches the
head of the queue, it generates a sequence of DMA packets. When the DMA packets arrive at the receiver, the DMA
Engine there places their contents in memory at the specified address. A special DMA END packet terminates
the transfer, at which point the receiving DMA Engine can execute a string of commands to signal software of
completion, or store a fault event to signal failure.

4.4.3.3 Rendezvous Exchange

The sequence for Send/Recv transfer of a long message consists of an initial handshake called a rendezvous,
in which the nodes agree that both are ready for the transfer to take place, with appropriate buffers available in
memory and hardware resources for controlling the transfer.

The rendezvous exchange consists of a single Enq Direct packet from the sender to the receiver in which the
sender notifies the receiver of the existence of the message; its communicator, rank, and tag; and the BDT handles
describing its buffer. When the receiver finds a matching receive, it performs the equivalent of a single-ended Get
to transfer the message, except that the sender’s DMA engine reports a completion event to the sender.

The rendezvous provides sufficient information for the sender and receiver to agree on the alignment of pay-
load data within packets; the receiver acknowleges successful, error-free receipt of message segments, or requests
retransmission of the segment in the event of a timeout or uncorrectable error.

For very long transmissions, the endpoints may agree to transfer several segments concurrently along disjoint
paths, distributing the traffic around any hotspots.

The rendezvous exchange enables very efficient use of hardware, compared to a software-mediated (eager)
transfer, but requires an additional trip to set up.

May 14, 2014 180 Rev 51328

SiCortex Confidential 4.4. MODEL

Enq_Direct Packet

Tx Que

Event Que

Switch FabricInitiating Node Responding Node

Receive

Rx Que

Tx Que

Event Que

Tx Que

Rendezvous Response

DMA Packets

Event Que

Send long message

Match Send & Recv

Ack (optional)

Enq_Direct Packet

Enq_Tx Packet

Rendezvous Request

Rendezvous transfer described To transfer a long message using MPI SEND/MPI RECV, the sequence re-
sembles the following:

• The sending application process calls MPI SEND.

• The sending MPI library decides that the message length is great enough to justify rendezvous protocol (a
compile-time parameter).

• The sending MPI library builds a Send Event command which describes the communicator, sending rank,
and tag of the message, along with a buffer handle and offset for the user’s message buffer. This information is
collectively called a rendezvous request. The library code pokes the DMA engine to tell it there’s a command
on the command queue.

• The DMA engine pops the Send Event command from the process command queue, and translates its route
handle to determine which output port should be used to reach the receiving node. If the foreground context
for that port is available, the command is enabled for immediate output; otherwise it is copied to the port-
specific transmit foreground queue for transmission as available.

• The Send Event command results in delivery of an Enq Direct packet to the receiving node, where it is
matched to the target DMA context and stored on the event queue of that context.

• At some time either before, during, or after all the above, the receiving application process calls MPI RECV.

• The receiving MPI library searches the lists of previously-unmatched Sends. If there is one whose communi-
cator, rank, and tag match the parameters of the current receive, the match is made, and the receiver initiates
a Get Seg sequence, described below. If there is no match, the parameters of the current receive request are
stored to be matched against future sends.

• The receiving MPI library processes the event queue. If it finds a send (either rendezvous or eager), the
library searches the lists of posted receives to find a match.

• Once a match has been made, the library software at the receiver builds a Put Bf Bf command, which
consists of two parts: the information needed by the receiver context to accept DMA packets for the transfer;
and information needed by the sending node to build those DMA packets. Library software enqueues the
Put Bf Bf command inside a Send Cmd command.

• The receiver’s DMA engine sends an Enq Response packet to the sender, carrying the Put Bf Bf command
to be executed to perform the transfer.

• When the Enq Response arrives at the transmitter, it is enqueued to be performed when reaches the head of
the background queue for the appropriate port.

May 14, 2014 181 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

• The sending node generates DMA packets as rapidly as the switch fabric can accept them, and the receiving
node stores them in the destination buffer according to the receive context.

• Upon successful completion of the transfer, the receiver performs an optional command string.

4.5 Queues

The software interface to the DMA Engine consists of a page of control registers which are used by the kernel’s
device driver for configuration setup and diagnostic purposes, plus a set of control pages through which the library
software requests activities by the engine, and through which the engine reports completion of requests and arrival
of new messages. The hardware supports concurrent interaction with 14 DMA contexts, so there are 14 separate
control pages as described in Table ?? below.

The control pages provide a multiport interface to a hardware queue manager which schedules the activities of
the fabric input and output links. It accepts commands from fourteen DMA contexts and responses from three
input links, distributing them into separate queues for each of the output links. It also provides a queue bypass
function which avoids memory writes and reads in the (common) event that the target port is idle.

The memory area allocated for queues should be large enough to make queue overflow very unlikely, but the
hardware will discard any received packet destined for a queue which doesn’t have room for it. It is up to software
to ensure that queues do not overflow; we expect that quotas will be used to ensure that there is space for every
queue entry. Each process is allocated a quota which determines the maximum number of commands it may have
in the port queues at any time; any commands in excess of that limit remain in the process command queue.

For simplicity of software (but not minimal memory use) all queue entries are 128 bytes, a multiple of the L2
cache block size, and are allocated aligned to cache blocks. This avoids issues of false sharing between entries.
Software writes queue entries on the command queue by writing the entry in main memory. The hardware is
informed of the update by a write to a special I/O register. Hardware then reads the command block to see which
output port it needs. (See Figure 5.6)

The block is copied from the command queue, where it was written by software, to the port if idle, or to the
selected port queue.

Port threads are responsible for pulling commands off the port queues as earlier commands complete. A
specialized thread, called the queue manager, accepts commands as they are written by software, sorting them into
the appropriate port queues or inserting them directly into available slots for use by transmit threads.

Each queue is described by a set of three values accessible to the kernel:

1. The memory region used for a queue is described by a buffer descriptor (see paragraph 4.7.4) with the physical
address in bits 35:0, and the negative length of the region in bits 63:36.

2. The read pointer is the physical address of the next item to be removed from the queue (the head of the
queue). If the queue is empty, the read pointer matches the write pointer.

3. The write pointer is the physical address at which the next item should be inserted in the queue (tail).

Both read and write pointers are incremented by 128 until the pointer reaches the end of the memory region, then
it wraps back to the beginning of the region before reading or writing the next entry. The region descriptor length
should be a multiple of 128.

4.5.1 Command and Port queues

The command queue is the mechanism by which applications software directs operation of the DMA Engine. To
send a message, the software writes one or more commands, indicating the location of the data to be used (by buffer
descriptor index, offset, and length), the destination (by route handle), and linkage to appropriate completion notice.
Software notifies the DMA Engine of an addition to the command queue, using an I/O write to fastCmdHdr in
DmaAppIface0 or cmdQWrSize in DmaAppIface1, and the DMA Engine either executes the command immediately
or transfers the entry to the appropriate port queue. For single-packet message transmission, the command queue
item typically contains the entire packet payload; microcode translates the route handle to obtain the routing
information, assembles a packet, and appends a check code before injecting the packet into the fabric.

Software can directly add to the command queue on the local node. Those commands include the ability to
enqueue commands at remote nodes as if they had been initiated by software on that node. This feature is used
for single-ended operations and broadcast, among other purposes.

May 14, 2014 182 Rev 51328

SiCortex Confidential 4.5. QUEUES

Figure 4.1: Command and Event Queues

Process Command Queues

Tx Contexts

0

1

2

0

1

2

DMA

Response

Process Event Queues

Port Queues

Out Port 0

Out Port 1

Out Port 2

In Port 0

In Port 1

In Port 2

Tx_bg

Tx_fg

Cp

TxCp Thread

Tx2 Thread

Tx1 Thread

Tx0 Thread

Cp

RxCp Thread

Rx2 Thread

Rx1 Thread

Rx0 Thread

May 14, 2014 183 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Each process has one command queue which provides access to all the port queues. A transmit command
may use the foreground queue for short control messages; a foreground command takes priority on the output
port it needs, and gets sent as quickly as possible, but in order with respect to other foreground commands on
the same port. The DMA engine thread for each output port services the transmit queues for that port on a
foreground/background basis, servicing foreground transmits in preference to background.

Interface software must exercise care not to overrun pending commands on the command queue, and because
commands for different ports may be serviced out of order, neither cmdQRdPtr nor cmdQRdOffset is a reliable
indication of where the oldest pending command is. Software should use Supervise commands to determine how
much of the command queue region is free.

4.5.1.1 Process quota

The port queues are shared among all processes on a node, so it is important to prevent bugs in one process
from interfering with another; in particular, we must prevent overflow or saturation of the port queues by one
process from damaging another. Therefore, each process is given a quota representing the maximum number of
commands it may have in the port queues at any time, and the port queue regions must be sized to permit the full
quota allocated to all processes in each of the port queues.

The DMA engine suspends processing of the command queue of any process which has reached its quota of
commands in the port queues, and commands received from remote nodes for such a process are enqueued on the
event queue rather than the port queue. Library software is expected to copy such deferred commands to the
command queue, keeping them in order. The DMA engine maintains a count of the number of commands deferred
in this way, and continues deferring remote commands to the event queue until all deferred commands have been
enqueued to the port queues.

4.5.1.2 Command order

The DMA Engine provides a limited set of assurances about the order of command processing:

• Commands from a single process, sent out a single transmit port, will be sent in the order in which they are
queued, except that background commands (Put Bf Bf) may be delayed with respect to newer foreground
commands (any others).

• Foreground commands in a string invoked by Do Cmd or a receive completion and directed to a single transmit
port will be performed in order, but not necessarily ordered with respect to the command queue.

• Commands for multiple contexts or directed out different transmit ports are not ordered.

Combined with the assurances by the fabric of reliable, in-order delivery of packets following the same route and
virtual channels, these conditions are sufficient for the software to ensure consistent ordering of messages where
necessary.

4.5.2 Event queue

The event queue is the mechanism by which the DMA engine notifies software about completion of commands or
errors which prevent completion, and also one of the mechanisms by which software on one node can communicate
with another. Software can select whether the queueing of events raises an interrupt request (see paragraph 4.7.7).
Typically, an entry on the event queue indicates that the transfer described by a transmit or receive context is
complete, or that a remote process has sent a short message directly to this one.

4.5.2.1 Hardware-generated events

• Buffer descriptor invalid

• Unmatched Process ID

• Heap/BDT/RDT index out of bounds

• Diversion for port queue quota

• Segment completion at transmitter/at receiver

May 14, 2014 184 Rev 51328

SiCortex Confidential 4.5. QUEUES

In general, fault events are delivered to the event queue which belongs to the local process which encountered
the fault. When a Put Bf Bf command encounters a tx buffer descriptor fault, the transmitting node sends an
Enq Direct packet whose payload is stored at the receiver as a SegAbort event.

The first word of an event queue entry contains the event type in bits 11:8:

Enum

DmaEventType

Attributes

-allowlc -kernel
Constant Mnemonic Definition

4’d1 heapFault A heap handle exceeds the heap size. The bad heap handle is stored
in d1[31:0]

4’d2 rdtFault A route handle exceeds the RDT size. The bad route handle is stored
in d1[31:0]

4’d3 bdtFault At the receiver, a buffer handle exceeds the BDT size, a buffer descrip-
tor length is too short for the offset requested, or a buffer descriptor
is marked read-only. The swBucket is stored in d1[63:0].

4’d4 cmdFault An illegal command code was encountered. Either the command is
undefined, or it was inappropriate to be issued as a fastCmdHdr. The
command header is stored in d1[63:0].

4’d5 segAbort Reported at the receiver when the transmitter aborted the segment.
The swBucket is stored in d1[63:0].

4’d6 pidMismatch A received packet contained the wrong process id for its selected pro-
cess index. The packet header and trailer are stored in d1 and d2 on
the process 0 event queue.

4’d7 queueFault Software error setting up command or event queue pointers. This
event is stored on the process 0 event queue. The process index of
the failing process is stored in d1.

4’d8 deferredCmd Process received more commands from remote nodes than allowed by
the port quota; any excess are stored on the process event queue. This
event queue entry contains, in d1 up to d14, the payload (a nested
command) of an Enq Response packet which could not be pushed
onto the port queue.

4’d9 rxEndSeg Successful end of segment at receiver. d1 contains swBucket.
4’d10 portFault The txPort hint in a command header differs from the port specified

by the route descriptor in the RDT. The command header is stored
in d1.

Event queue entry Class

DmaEventQueue

Bit Mnemonic Type Definition

d0[7:0] eventLength The “useful length” of the event queue entry, in bytes
d0[11:8] eventType DmaEventType Event type code
d0[63:12] reserved Zeros
d1[63:0] eventData Information specific to the event type, as described above

Event queue entries are written 128 bytes apart, to keep the pointer management as simple as possible. The
event length field indicates the number of bytes of the entry which were actually written by microcode.

4.5.3 Summary of DMA Engine Queues

To wrap up the section on queues, Table 4.1 is a list of all the types of queues that DMA engine interacts with.
Below the table are some notes on the commands or events which are found in each queue. [from Bryce: When
commands and events are more completely defined elsewhere, some of this should be removed.]

May 14, 2014 185 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Table 4.1: DMA Engine Queues

Name Contents Writer Reader How many?
process command queue commands core dma 14: one per Dma Context
process event queue events dma core 14: one per Dma Context
transmit foreground port queue commands dma dma four: one per TX port, plus copy
transmit background port queue commands dma dma four: one per TX port, plus copy

Commands can contain:

• command type

• data to set up transmission

• raw packet data (can contain nested commands for remote DMA)

Events can contain:

• event type

• info about a transfer that completed or failed

• info about an unsolicited packet that arrived

• raw packet data

4.6 Modes of Operation

The DMA Engine hardware needs attention from a programmable processor at the beginning and end, and
occasionally in the midst, of a message transmission. Under various circumstances, the processor selected to do the
work might be the one running the application process, one dedicated as a fabric support processor, or an interrupt
service routine in a designated processor. We distinguish these cases as modes because the literature refers to
heater mode, communication processor mode, etc, to describe similar configurations, but unlike other cases in the
literature, our system switches among the modes freely for optimal performance.

4.6.1 Synchronous mode

The conceptually simplest form of communication between MPI processes is syncronous mode, in which the
sender creates and sends a message, waiting to proceed until it has been received, and the receiver declares an
available buffer for the message, waiting until it has been filled.

In syncronous mode, the processors used by the communicating processes are essentially idle while the commu-
nication is going on, and are therefore the ideal candidates to perform any support and supervisory work required
by the DMA hardware. In the current vision, that includes on the transmit side: maintenance of data structures,
confirmation of error-free transmission, and timeout monitoring. On the receive side, it includes selection and
scheduling of message segments; communicator, rank, and tag matching (CRT match); management of unexpected
message buffers; maintenance of data structures, and timeout monitoring.

4.6.2 Asynchronous mode

Synchronous mode MPI communication allows no overlap between computation and communication, so MPI
also provides asyncronous versions of both Send and Receive to permit the programmer to initiate one or several
message transfers, conduct independent calculations, and then wait for completion of some or all of the transfers.
Those portions of the transfer which take place when the application has finished its calculation and is waiting are
treated as synchronous, in spite of having been initiated with the asynchronous calls; but for the remainder, we
don’t want to slow down the application by interrupting it to service the message.

Therefore the preferred mechanism for dealing with asyncronous message service is to designate one processor as
the “fabric processor”, and run it in a spin loop monitoring the input/event queues for all the others, and servicing
traffic for each as it comes in.

May 14, 2014 186 Rev 51328

SiCortex Confidential 4.7. COMMUNICATION STATE

4.6.3 Interrupt mode

Of course, there are times when there’s nothing to do but compute, and lots of it. During those times, we would
hate to have 1/6 of our compute capability tied up as a fabric processor, so we will return the fabric processor to
the scheduling pool and handle any rare requirements for DMA Engine service as interrupt requests directed to a
designated processor.

4.6.4 Fabric Processor

During those times that the system dedicates one processor on a node as the fabric processor, it will run a
process which has mapped the heap, event queue, and buffer descriptor table of each application process into its
own address space. The fabric processor and application processor interlock access to the event queue by means of
shared variables in the heap to ensure that exactly one of them services every event.

4.6.5 Virtualized mode

It would be a desirable feature if the software were able to multiplex the limited hardware resources among
a larger number of processes, so that descheduled processes (in the Unix sense) were still available to participate
asynchronously in MPI communications. We have had some preliminary discussions about this possibility, but have
not resolved all the protection issues involved. Two models have been discussed:

• Multiplexed applications are linked with a different library, which calls a daemon or kernel service to com-
municate, in a manner similar to MPI over TCP.

• Multiplexed applications timeshare a DMA Context for command and event queues, but external traffic is
actually directed to a kernel-mode driver which demultiplexes to the appropriate address space. [How to
handle remote commands?]

At the moment, this feature is mostly pipe-dream, but if we can devise a reasonable implementation, it would be
desirable.

The simplest implementation of virtualization is provided by the currrent specification: to share the hardware
resources, the operating system kernel stops all the processes of a job, waits for the job’s current traffic to quiesce,
and reassigns the hardware resources to the processes of a new job.

4.7 Communication state

Communicating processes may have a very large number of simultaneously-outstanding message requests; it
is up to the MPI library or equivalent software to schedule message activity, and provide the DMA Engine with
descriptive information about each active message.

In the descriptions which follow, unused or unspecified fields in commands and registers should be initialized as
zero.

4.7.1 Transmit state

The DMA Engine maintains for each output port some transmit (Tx) state in a hardware structure which
describes an outgoing segment during its transfer: a sequence of packets, the buffer from which they are read, and
their destination, which typically consists of a route to a node and a receive context id on that node. (Table ??) It
is loaded by the transmit thread, which assembles the various components from the command, the buffer descriptor
table, and the route descriptor table. When the transmit state has been loaded, the transmit thread is able to
create packets and inject them into the fabric. When a complete segment has been transmitted, a new command
is popped off the transmit queue.

When a transmit command is executed by the DMA engine, the Route Handle is used to lookup a route in the
kernel-controlled route table, and the Buffer Handle is used to obtain the base address and length of a physically-
contiguous region of the buffer. That region may not be as large as the message segment; if it runs out before the
end of the segment, the DMA engine hardware increments the Buffer Handle to obtain a new BDT entry in which
to continue the segment. The engine also clears the offset, so that subsequent packets will come from the beginning
of the next region of buffer.

May 14, 2014 187 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

The DMA engine needs storage for 8 separate transmisions in hardware: foreground (bypass) and background
(bulk) contexts for each output port plus the copy thread. The transmit queues of waiting commands are kept in
memory queues associated with each port. The port-specific queues are written by the queue manager and read by
the port threads as hardware space become available.

4.7.2 Receive state

Every DMA packet carries a 64 bit control word, which contains a buffer handle (2 bytes), a buffer offset (4
bytes) and a notifier (2 bytes). To work efficiently, the microcode implements a buffer descriptor cache with lookup
faster than loading the BD from memory for each packet. This design makes it impossible to carry from one Rx
buffer handle to the next in the middle of a segment. Software will arrange that DMA packets are full cache-line
aligned at the receiver, and segments do not cross page boundaries at the receiver, so this won’t be needed.

Segment transfers can fail because of BDT faults at transmitter or receiver. An attempt to access an invalid
buffer descriptor or to write beyond the end of the buffer descriptor will be detected at the receiver. The receiver
will set a bit in the heap selected by the notifier, and discard the packet. At the end of the segment, the transmit
microcode will send a DMA END packet, which causes the receiver to test the heap for an earlier error. If the
transmit end faults due to a bad buffer descriptor, an ENQ DIRECT packet with a Seg Abort event will be sent
to the receiver.

4.7.3 Notifiers

DMA commands include a 16-bit field, called the notifier, which is used by software to uniquely identify a
segment transfer. In the event of a bdt failure at the receiver, the rxNotifier is used to remember which segment
failed, and upon completion of the transfer, an entry is created on the local event queue, including the notifier of
the failing DMA command and the bdt index responsible for the failure.

4.7.4 Buffer descriptor

Translates a process virtual address range to a contiguous physical address range. Used to describe message
buffers, get/put windows, and queue rings. Contiguous groups of entries are used to describe contiguous regions of
virtual address space which may be discontiguous in physical memory.

More particularly, each DMA Context has a register representing the starting physical address and length of the
buffer descriptor table for that context (see Table ??). The Buffer Descriptor Table (BDT) contains 8-byte entries,
which contains the starting physical address of a buffer and the length of the buffer in bytes. A Buffer Handle,
which appears in DMA command queue entries, is a 16-bit unsigned integer less than the BDT size; the hardware
multiplies it by 8 and adds it to the bdtRegion pointer to identify a specific BDT entry.

A single BDT entry describes a region of memory which is contiguous in both virtual and physical address
spaces; it is not necessarily restricted to a single page, though of course such a restriction is sufficient to ensure
contiguity.

Each BDT entry is valid if its length field is negative. The DMA engine will abort transmission of a sequence
which uses a BDT entry in which the length field is positive or zero. The engine will generate an event queue entry
for the local DMA Context to indicate the BDT entry fault, and will not perform any command string associated
with the successful completion of the command.

On the transmit side, a segment is permitted to wrap off the end of a buffer descriptor and into the next; this
is not allowed on the receive side.

The physical address specified by a buffer descriptor must be aligned to a 64-byte boundary (low 6 bits zero).
Bit 0 of a BDT entry may be set to 1 to indicate that the buffer is read-only; use of such an entry for a receive

buffer will cause a bdtFault.

Buffer Descriptor Class
DmaBufferDesc
Attributes
-kernel

Bit Mnemonic Type Definition

d0[35:0] physAddress Physical address of start of buffer (address must be 64-byte aligned)
d0[63:36] len Length of physically-contiguous region

May 14, 2014 188 Rev 51328

SiCortex Confidential 4.7. COMMUNICATION STATE

Figure 4.2: Buffer Addressing

DMA Engine
DMem Registers

Process
Index

BDT Region

Buffer
Descriptor

Table

handle

Descriptor

Buffer

offset

packet
payload

packet
payload

packet
payload

segment
length

Bits 5:1 of physAddress must be zero to ensure 64-byte alignment of data references. Bit 0 is not interpreted as
an address bit, but if set restricts the buffer to read access only (DMA transfers cannot write; bdtFault is reported
instead).

It is the current plan to make all BDT entries describe one page of memory - 64KBytes. This is large enough
for efficient segment transfer and makes the VM management problem much easier.

4.7.4.1 Virtual Memory swapping

The user processes which depend on the DMA engine for communication services are ordinary Linux processes.
As such, some pages of their virtual address space may not be in memory. Many interprocessor communication
systems deal with this problem by requiring pages with active buffers to be “pinned”, so that they cannot be paged
out. This requires an explicit system call to pin and un-pin the buffers, or constrains the program to fit in the
available memory and keep the entire data space pinned. We have chosen instead to assume that active buffers are
in physical memory, and provide an escape mechanism for the rare cases in which that fails.

When the kernel in any SMP decides to swap out a page, it has to ensure that all processors have invalidated
the page entry in their TLBs; in our system, it must also invalidate any corresponding entries in the BDT, and
invalidate the BD cache in the hardware.

4.7.5 Route descriptor

The Route Descriptor Table (RDT) contains routing directives to get from this node to a specific Unix process
on another node, typically by three disjoint paths. Route descriptors are protected from modification by the user;
they are accessed by handles like buffer descriptors. A Route Handle, which appears in command queue entries, is
a 28-bit unsigned integer less than the RDT size; it identifies a specific RDT entry as an offset relative to the RDT
region.

Each process has a register representing the starting physical address and length of the route descriptor table
(RDT) for that process (see Table ??). It is a software decision whether RDT’s are shared among processes. Each
RDT entry is 8 bytes: 32 bits of routing directives, 4 bits of starting virtual channel number, a 16-bit process id
on the destination node, and a 4-bit index which identifies the hardware process associated with the destination
process id. The Route Descriptor also contains a 2-bit field identifying the output port associated with a path, so
that a command using it can be stored on the appropriate transmit port queue.

All packets are given a path to their destination node and process at the time a command is enqueued in the
source node’s DMA Engine. The path is described by a string of routing directives, one per switch, indicating the
output port to use on that switch. After selecting the output, each switch shifts the routing directive right two
bits, discarding one directive and exposing the next for use at the next switch. Upon arrival at the destination

May 14, 2014 189 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

node, the process id in the packet is compared against that of the context selected by process index to determine
the context in which the packet should be treated.

Route Descriptor Class

RouteDescriptor

Attributes

-kernel
Bit Mnemonic Type Definition

d0[1:0] txPort Output port used for this path
d0[11:8] virtChan Initial virtual channel
d0[15:12] processIndex Remote process index
d0[31:16] processID Remote process id
d0[63:32] path Routing string for switch fabric - shift right each hop

Descriptor Cache The DMA engine caches up to 128 route descriptors and buffer descriptors. Any time that
software modifies the RDT or BDT, it must write the corresponding handle to routeHdlPrefetch or bufferHdl-
Prefetch, respectively, in the DmaAppIface1 for the corresponding context to keep the cache coherent with the
table in memory.

Broadcast We considered creating a broadcast mechanism in the switch, so that a broadcast packet received on
any input port would be replicated on all the outputs, until a time-to-live counter expired. We abandoned that
approach for several reasons:

• While it works extremely well in a perfect Kautz graph, it becomes very messy if there are any dead links or
nodes in the graph, or if there are non-Kautz topologies in the system.

• The packet contents must be the same everywhere, so there is no way to individually identify the target
process(es). As a result, each node must decide whether there is any appropriate target process for each
broadcast message.

• The requirement to replicate a packet to all output ports significantly complicated the switch design, which
associates each packet buffer with an input/output crosspoint.

Instead, the DMA engine has provision for accepting a command (Do Cmd) which directs the transmission of
several output packets to software-selected destinations, allowing the construction of multicast trees with software-
selected fanout, targeting specific processes at each destination node, and creating no new requirements for the
switch fabric.

4.7.6 Heap

There are a number of data structures shared between the DMA engine hardware and the library software, which
may be running on an application processor or the fabric processor; those structures need to be accessible to both,
but the hardware uses physical addresses, while the software uses virtual addresses. To resolve this difference, we
use a region of memory (called the Heap) which is user-writable and contiguous in both physical and virtual address
spaces, and we refer to objects in that space by means of offsets (handles) within the heap. Such objects include
communicators, the temporary values and fanout commands used by barriers and collectives, and unexpected eager
messages.

Objects in the heap are referenced by handles, which are checked against the size of the heap, which is controlled
by the kernel. A handle which exceeds the size of the heap results in a heap handle failure, which will be reported
on the event queue of the local process.

Reserved Heap for Notifiers The first 8K bytes of the heap (addresses below 0x2000) are reserved for use by
the DMA Engine, and must be zero at initialization time; microcode uses bits in that area to record DMA receiver
buffer descriptor faults until they have been reported on the event queue.

May 14, 2014 190 Rev 51328

SiCortex Confidential 4.7. COMMUNICATION STATE

4.7.7 Protected data structures

The hardware presents three interface pages for each of the 14 DMA Contexts it services (one writable by
user mode, one user readable and writeable, and one writable only by the kernel). In addition, the kernel has
direct read-write access to other information stored in the DMA Engine DMEM. Access control is managed by the
processor’s virtual address translation hardware.

It is a choice for software whether and how to use the kernel processes defined by the hardware, but the option
is available to assign one to each processor on a node, so that packets and interrupts can be delivered to a dedicated
processor (a fabric processor, for example) rather than an interrupt routine on one processor which might then have
to notify the scheduler on another, for example. The hardware simply presents the pages as described in Table ??
– software may map them as needed. [Additional process id’s might be useful if we want to deschedule a process
while it communicates or while a priority process runs.] [Offsets are more or less arbitrary, and may change.] XXX
NOTE the DmaProcCtlStatus page is actually just process specific storage cells in DMEM, refer to the DMEM
map. The Write-Only items in DmaAppIFace are addressed by stores through the DMA External I/O addresses
in RA DmaAppIface1 + (ProcessIndex * 0x10000) + offset {where the L2 cache hardware converts them to SPCL
operations on the CSW}. The RO and RW items are addressed through RA DmaAppIface0 + (ProcessIndex *
0x10000) + offset using load (RDIO) and store (WTIO) operations.

Class

DmaProcCtlStatus

Attributes

-kernel
Bit Mnemonic Type (Kernel Access) Definition

d0[31:16] processID KRW 16-bit process id, unique within node
d1[63:0] counters KRW Sixteen 4-bit counters for use by collectives
d2[63:0] cmdQuota KRW Max queued commands for this process, minus 1
d3[63:0] deferredCnt KRW Neg number of remote commands deferred by quota
d4[63:0] eventQRegion KRW Region containing Process Event Queue
d5[63:0] eventQRdPtr KRW Event Queue Read (head) pointer
d6[63:0] eventQWrPtr KRW Event Queue Write (tail) pointer
d7[63:0] heapRegion KRW Region containing Library Heap
d8[63:0] cmdQRegion KRW Region containing Process Command Queue
d9[63:0] cmdQRdPtr KRW Command Queue Read (head) pointer
d10[63:0] cmdQWrPtr KRW Command Queue Write (tail) pointer
d11[63:0] bdtRegion KRW Region containing Buffer Descriptor Table
d12[63:0] rdtRegion KRW Region containing Route Descriptor Table
d13[11:0] eventIntCause KRW Interrupt cause code when event is queued
d13[15:12] eventIntTarget KRW Bus stop number to which interrupt is delivered

[Doublewords d4 through d12 are of type DmaBufferDesc.]

Class

DmaAppIface1

Attributes
Bit Mnemonic (User Access) Definition

d0[63:0] eventQRdSize WO Written by application to indicate size (in bytes) of item
taken from event queue

d1[63:0] cmdQWrSize WO Written by application to indicate size (in bytes) of new
commands

d2[63:0] routeHdlPrefetch WO Written by application with an RDT handle to preload or
invalidate the route cache entry at that offset

d3[63:0] bufferHdlPrefetch WO Written by application with a BDT handle to preload or
invalidate the buffer descriptor cache entry at that offset

Software must write routeHdlPrefetch or bufferHdlPrefetch following any change to the RDT or BDT, respec-
tively, to ensure that the change is recognized by the Dma Engine. The value written is the offset in the RDT
or BDT of the updated entry. If the offset exceeds the size of the selected table, no update occurs, and the Dma
Engine increments qmgrErrorCnt.

Class

DmaAppIface0

May 14, 2014 191 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Attributes
Bit Mnemonic (User Access) Definition

d0[63:0] eventQRdOffset RO Event queue read pointer offset within region
d1[63:0] eventQWrOffset RO Event queue write pointer offset within region
d2[63:0] cmdQRdOffset RO Command queue read pointer offset within region
d3[63:0] cmdQWrOffset RO Command queue write pointer offset within region
d4[63:0] fastCmdHdr WO Header doubleword of Send Event or Send Cmd for fast

launch; a copy of header on command queue

Restriction Registers in DmaAppIface0 and DmaAppIface1 must not be accessed while the DMA Engine has
any threads disabled, or while the countdownHalt bit is set. Doing so can hang the processor. [The restriction on
disabled threads does not currently apply, because we do not use mutex locking in the ioAccess microcode thread.]

The value written to fastCmdHdr must be the same as the header doubleword of the next command on the
command queue, otherwise operation of the command is unpredictable.

Command Queue The command queue is written into memory by software. The first word of the command
contains the payload length, by which the hardware can know how many bytes to read to complete the command.
The DMA engine copies it either directly to the appropriate port, or to the appropriate queue for the required
port, where it will be serviced in order. The length of every queue entry is always 128 bytes, which need not all be
written by the processor.

Application software has two means by which it can notify the DMA engine of a new command on the command
queue:

• By writing a multiple (N) times 128 to cmdQWrSize, software indicates that N new commands have been
added to the queue.

• By writing the header doubleword of a command to fastCmdHdr, software indicates that one new command
has been added to the queue. This function works only for SEND EVENT, SEND CMD, and PUT IM HP
commands, and requires that the txPort field in the header is set correctly. In typical circumstances, this
mechanism allows lower-latency processing of the command.

Command Quota The kernel assigns a quota to each process for the number of commands that it may have
in the port queues at any time. Both local and remote commands are charged against that quota. When the
quota is reached, the DMA engine stops accepting commands from the process command queue, and any received
commands are copied to the event queue rather than a port queue. Any time a received command is sent to the
event queue, the deferred count is incremented, and all further received commands are sent to the event queue until
the deferred count returns to zero. [This is to keep received command processing in order] Software must set bit
16 in the header of any deferred command in the command queue, so that the DMA engine knows to adjust the
deferred count.

The value in the cmdQuota register should be initialized to one less than the maximum number of outstanding
commands allowed to the process; zero indicates that the process is allowed only one command at a time.

Do Cmd can execute a string of commands. Once that string is started (implying that cmdQuota is positive),
it is enqueued in its entirety, even if doing so drives cmdQuota below zero. Therefore, the port queues must be
sized to accomodate a number of commands at least equal to:

[(cmdQuota + (execLimit/128)) * number of processes]
Figure 4.3 outlines the treatment of command quotas and the deferred count.

Interrupt Cause Register 13 (EventIntCause and EventIntTarget) will not cause an interrupt if zero. Bits 11:8
select an interrupt cause register at the processor selected by EventIntTarget, and bits 7:0 overwrite any interrupt
cause value previously in that register. Because there are only 8 interrupt cause registers per processor, bit 11 must
be zero.

4.7.8 DMA Engine Common Control/Status

The Common Control/Status variables, the contents of which are listed in Table ??, are used by the DMA
engine to manage the transmit queues for each output link. These values are typically initialized at boot time and
otherwise ignored by software.

May 14, 2014 192 Rev 51328

SiCortex Confidential 4.7. COMMUNICATION STATE

Figure 4.3: Command Quota and Deferred Count

Cmd Queue

quota<0?

sleep

yes

no
deferred

command?

yes

deferredCnt++

no
port busy?

quota--

yes

no

push onto
port queue

bypass cmd
wake tx thread

Enq_Response
Packet

quota<0?

yes

no
deferredCnt

< 0?

yes

deferredCnt--

no

quota--

push onto
port queuepush onto

event queue

Queue Manager

Receive Thread

Transmit Thread

buffer ready

send packet

port queue
empty?

sleep

pop command
from port queue

quota++

yes

no

Each queue is described by three doublewords, the first of which specifies the physical address and length in
bytes of the memory used by the queue; the second contains a write (tail) address, and the third a read (head)
address. These three doublewords are used directly by the DMA engine, but are not accessible to the application;
the application sees only offsets from the beginning of the queue region, so it is unaware of relocation of the queue
by the operating system when the process is paged out and back in.

Note everywhere a DmaQDesc occurs, the address is a byte address and the length is the negative byte length.

Software should refer to these variables through the names, as defined in the dma.load file; the assignments to
specific dmem offsets are subject to change.

Class

DmaQDesc

Attributes

-kernel

Mnemonic Bit Definition

physAddr d0[35:0] Queue region physical address
len d0[63:36] Queue region negative length in bytes
wrAddr d1[35:0] Queue write (tail) address
wrLen d1[63:36] Queue write negative length hint
rdAddr d2[35:0] Queue read (head) address
rdLen d2[63:36] Queue read negative length hint

Symbol Dmem Offset Type Definition

QmgrErrorCnt 0xe78 Count of commands ignored
ExecLimit 0xf78 Max allowed length of Do Cmd string (in bytes)

UcodeVersion 0xff8 microcode version number
PortQRegion 44*16+port+bg*8 Queue region physical address and length
PortQRdPtr 45*16+port+bg*8 Current read (head) pointer for each port queue
PortQWrPtr 46*16+port+bg*8 Current write (tail) pointer for each port queue

May 14, 2014 193 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Figure 4.4: Data Formats

5660 0481216202428323640444852

Buffer Descriptor, Queue Region, Heap, BDT, & RDT Descriptors

Length of region (negative bytes) Physical Address (byte resolution)

5660 0481216202428323640444852

Route Descriptor

Path String (scan right-to-left) Destination Process ID
Dest
Proc
Index

Virtual
Channel

Tx
Port

5660 0481216202428323640444852

Command

Route Handle Payload
Len

Command

5660 0481216202428323640444852

Packet Header

Path String Virtual
Channel

Start CommaBuffer
Select

Link
Seq
No

5660 0481216202428323640444852

Packet Trailer

CRC-32 Stop CommaPkt
Type

Destination Process ID
Dest
Proc
Index

5660 0481216202428323640444852

Port Queue Entry

Payload
Len

Command

ha
sC

tr
l

Control Ford

Payload 0-13

Local
Proc
Index

5660 0481216202428323640444852

DMA Src/Dst Control

Notifier Index
(multiply by 128)

Buffer OffsetBuffer Index
(multiply by 8)

Route Handle

Num
Fords

de
fe

rr
ed Count

ID
Count
Total

Tx
Port

May 14, 2014 194 Rev 51328

SiCortex Confidential 4.8. COMMANDS

4.8 Commands

The DMA engine receives commands as blocks of data, either written by a processor on the same node, or as
the payload of a received Enq Response packet. In either case, bits 63:32 of the first doubleword of the block are
interpreted as a route handle, which is evaluated in the RDT of the current process to determine what queue and
path to use for the packet. The RDT entry determines the port that will be used by the command, and hence the
appropriate queue for holding the command until the port is available.

Enum

DmaCmdType

Attributes

-kernel
Constant Mnemonic (Queue) (Packet) Definition

4’d0 NOP none none No operation
4’d2 SUPERVISE varies none Supervisory and management functions
4’d3 SEND EVENT Tx fg Enq Direct Deliver data directly to remote event queue
4’d5 PUT BF BF Tx bg DMA Transmit segment from local buffer to remote buffer
4’d8 DO CMD Tx fg any Enable commands found in local heap
4’d9 SEND CMD Tx fg Enq Response Enqueue payload on remote command queue
4’d10 PUT IM HP Tx fg Wr Heap Transmit command data to remote heap

Command encoding is chosen to make command codes match the packet types they send, insofar as possible,
with the valid packet types all coded with even parity (probably not necessary, but we still have plenty of code
space...).

Software must inform the DMA Engine of any new command by writing that command to the next available
128-byte block of the command queue, and either:

• (Standard method) Write the number of new commands times 128 to the I/O register called cmdQWrSize, or

• (fast path for one command only) Write the header of the new command to the I/O register called fastCmdHdr.

4.8.1 Command Header

The first doubleword of every command has a uniform structure, shown here:

Class

DmaCmdHead

Attributes

-kernel
Bit Mnemonic Type Definition

d0[7:0] len Immediate payload length in bytes: 0-112
d0[11:8] cmdtype DmaCmdType Command type code
d0[15:12] pidx Reserved for process index
d0[19:16] countId Do Cmd counter selector
d0[23:20] countTotal Do Cmd counter reset value
d0[25:24] txPort Output port (hint) to be used for command
d0[30:26] reserved Reserved; must be zero
d0[31] deferred Set to indicate deferred remote command

d0[63:32] routeHandle Route handle for path to destination

4.8.2 Send Event Command

The Send Event command instructs the DMA engine to create and send an Enq Direct packet, whose payload
will be stored on the event queue at the destination process. If it isn’t processed immediately, a Send Event
command waits on the Tx fg (foreground) queue.

Class

DmaCmdEvent

Attributes

May 14, 2014 195 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Bit Mnemonic Type Definition

d0[63:0] header Command type is Send Event
d1[63:0] control Reserved; must be zero
d2[63:0] payload First payload data

The length field in byte 0 of the header encodes the payload length, which must be a multiple of 8 and between
8 and 112 bytes.

Software may optionally use the “fastCmd” mechanism to perform a Send Event command, saving significant
overhead if the required output port is idle.

4.8.3 Send Cmd Command

The Send Cmd command instructs the DMA engine to create an Enq Response packet, with a payload to be
processed as a command at the destination node. If it isn’t processed immediately at the source, the Send Cmd
command waits on the source Tx fg queue. The Send Cmd command contains a nested command as its payload;
that nested command will be interpreted at the remote node as if it had been issued by the receiving process,
but the nested command must not be Send Cmd or Supervise. The nested command in the Enq Response packet
determines which command queue (Tx fg or Tx bg) at the remote node receives the command; the route handle
in the packet payload determines the RDT entry selected, and thus the output port selected at the destination.

Class
DmaCmdSendCmd
Attributes

Bit Mnemonic Type Definition

d0[63:0] header Command type is Send Cmd
d1[63:0] control Reserved; must be zero
d2[63:0] payloadHead Payload, a nested command to be enqueued at the receiver
d3[63:0] payloadCtl Payload; control word of nested command
d4[63:0] payloadPay1 Payload of nested command
d5[63:0] payloadPay2 Payload of nested command
d6[63:0] payloadPay3 Payload of nested command
d7[63:0] payloadPay4 Payload of nested command
d8[63:0] payloadPay5 Payload of nested command
d9[63:0] payloadPay6 Payload of nested command
d10[63:0] payloadPay7 Payload of nested command
d11[63:0] payloadPay8 Payload of nested command
d12[63:0] payloadPay9 Payload of nested command
d13[63:0] payloadPay10 Payload of nested command
d14[63:0] payloadPay11 Payload of nested command
d15[63:0] payloadPay12 Nested command payload continues up to 12 doublewords

The length field in the header is variable; it gives the length of the nested command, including its header and
control word. The header of the nested command also has a length field which can be at most 96 bytes.

Queueing of the nested command at the destination is controlled by the cmdQuota and deferredCnt process
variables at the destination. If the deferredCnt is non-zero, or the remaining cmdQuota is negative, the nested
command is pushed onto the event queue with an event type that indicates it is a deferred command, and the
deferredCnt variable is incremented. Otherwise, the command is processed as if it had been pushed onto the
destination node’s command queue by software on that node, and the quota is decremented.

Software may optionally use the “fastCmd” mechanism to perform a Send Cmd command, saving significant
overhead if the required output port is idle.

4.8.4 Do Cmd Command

The Do Cmd command instructs the DMA engine to perform a string of commands which will be found in the
local heap. The string of commands must not include Do Cmd commands. Each command in a string contains its
own route handle and command code, which together determine the queue on which that command waits.

Class
DmaCmdExecute
Attributes

May 14, 2014 196 Rev 51328

SiCortex Confidential 4.8. COMMANDS

Bit Mnemonic Type Definition

d0[11:0] header Command type is Do Cmd
d0[19:16] countId Counter selector
d0[23:20] countTotal Counter reset value
d1[31:0] execHandle Heap handle for first command
d1[63:32] execCount Number of bytes in command string

The countId field identifies one of 16 4-bit counters associated with the target process; Do Cmd decrements
that counter. If the starting value of the counter is zero, the value is replaced by the contents of the countTotal
field and the commands specified by execHandle are enqueued. If the starting value is non-zero, the decremented
count is saved and the specified commands are ignored.

The counters for each process are in the counters register in DmaProcCtlStatus; the counter selected by coun-
tId=0 is in bits 3:0 of that register; the counter selected by countId=15 is in bits 63:60. Counter 0 may be implicitly
accessed by the successful completion of a Put Bf Bf command; it is ordinarily left containing 0.

The execHandle is a byte offset in the heap at which the first command will be found; execCount is the number
of bytes of the commands, and each command is 128 bytes long. ExecCount must not exceed the value in the
ExecLimit register, controlled by the kernel. When Do Cmd executes a command string, all the commands are
enqueued, and cmdQuota is decremented for each, regardless of the sign of cmdQuota; the port queues must
therefore be sized to allow ExecLimit space after cmdQuota is exhausted.

Do Cmd executes foreground commands for each transmit port in the order specified in the command string,
but there is no order guarantee with respect to the command queue, background commands, or other ports.

Unused fields in the header word (length and route handle) must be zero.

Do Cmd must not be issued on the “fast path”; doing so results in a cmdFault.

4.8.5 Put Bf Bf Command

Put Bf Bf commands instruct the DMA engine to create and send a sequence of DMA packets to the remote
node; the packet payload is taken from a buffer identified by a buffer handle. Put Bf Bf commands wait on the
Tx Bg (background) queue for the availability of a transmit context. The implication is that while most commands
following any given route are completed in the order in which they were enqueued by software, Put Bf Bf commands
may be delayed with respect to other commands to the same destination. Put Bf Bf will never be started before
completion of previously-queued commands which use the same route.

Class

DmaCmdPutBf

Attributes
Bit Mnemonic Type Definition

d0[63:0] header Command type is Put Bf Bf, length 32
d1[31:0] segLength Segment length in bytes
d1[63:32] execRouteHandle Route handle to notify of successful completion, or zero if local
d2[31:0] txOffset Byte offset from local buffer descriptor base
d2[47:32] txBufferHandle Local Buffer Descriptor index
d2[63:48] txNotifier Segment identifier for transmitter
d3[31:0] rxOffset Byte offset from remote buffer descriptor base
d3[47:32] rxBufferHandle Remote Buffer Descriptor index
d3[63:48] rxNotifier Segment identifier for receiver
d4[63:0] swBucket Available space for data delivered to receiver event queue
d5[31:0] execHandle Heap offset of receive-completion command string
d5[63:32] execCount Length of receive-completion command string

TxOffset and RxOffset define the starting byte address of the destination and source buffers with respect to
buffer descriptors selected by txBufferHandle and rxBufferHandle on the remote and local nodes, respectively. The
calculation works as follows:

The txBufferHandle is extracted and multiplied by 8; the result is added to the sending process BdtRegion
pointer, where the source buffer descriptor is found. The txOffset (which must be a multiple of 4) is added to the
address in the buffer descriptor to give the starting address of the source buffer.

At the receiver, a similar process interprets the rxBufferHandle and rxOffset in the destination process environ-
ment, except that the rxOffset must be a multiple of 32.

May 14, 2014 197 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

In the event of a buffer descriptor fault (a buffer handle is too large, implying a buffer descriptor outside the
bdt region, or a buffer descriptor with length of zero) the transfer is terminated, and an BdFault (rx) or SegAbort
(tx) event is stored on the event queue at the receiver. There is no direct notification of the transmitter, even if
the fault occurs there.

On the transmit side, the offset plus length of a segment may be allowed to exceed the maximum address implied
by the Tx Buffer Descriptor. In that event, the transmitted data runs to the end of the specified region, then any
excess comes from the region specified by the next buffer descriptor. No such continuation is permitted at the
destination.

Upon successful completion of a segment, the receiver tests the execRouteHandle. If zero, the receiver executes
a string of commands, as described by the execCount and execHandle (same as Do Cmd). If non-zero, the receiver
builds a Do Cmd containing the execCount and execHandle, and sends it as if it were in a Send Cmd with that
execRouteHandle as the route.

Note to software implementors: Library software must be prepared to deal with source and destination buffers
which may have different alignment. The hardware is designed to handle the most common cases, but there are
several conditions which require special handling by software:

• If the destination buffer does not start and end at cache block (32-byte) boundaries, software must use another
mechanism (probably built upon Send Event) to deliver the data which belongs in partial blocks.

• If the destination buffer does not start at a 64-byte boundary, the transfer will make most efficient use of
the memory bandwidth if the library uses a short segment to achieve 64-byte alignment for the bulk of the
transfer.

• If the source and destination buffers do not have the same alignment, the starting offset in the source buffer
should be specified to align the first packet to a 64-byte boundary at the destination.

• If the source and destination buffer alignments differ by an amount which is not a multiple of 4, the alignment
must be adjusted by a software copy before or after the transfer.

DMA Completion

Success

execRouteHandle == 0?

Store local
End_Seg Event

w/ swBucket

Locally,
Do_Cmd w/

execHandle &
execCount

Send_Event
w/ swBucket to

execRouteHandle

Send_Cmd to
execRouteHandle

Do_Cmd w/
execHandle &

execCount

=0 !=0

Tx Fault

Store SegAbort
Event at Receiver

w/ swBucket

Store BD Fault
Event at Receiver

w/ swBucket

Rx Fault

4.8.6 Put Im Hp Command

Put Im Hp commands instruct the DMA engine to send a packet to the remote node; the packet payload
comes directly from the command and is written to the remote heap. Put Im Hp commands wait on the Tx fg
(foreground) queue for the availability of an output port.

Put Im Hp sends a single Wr Heap packet, whose payload comes directly from the command and is written to
the remote heap.

Class
DmaCmdPutImHp

May 14, 2014 198 Rev 51328

SiCortex Confidential 4.9. PACKET FORMATS

Attributes
Bit Mnemonic Type Definition

d0[63:0] header Command type Put Im Hp
d1[31:0] heapHandle Heap offset at destination (aligned 64)
d2[63:0] payload Initial payload doubleword (first of up to 14)

The length field in byte 0 of the header gives the length of the payload in bytes. It must be a multiple of 8, and
the payload will be extended with zeros to the next 32-byte boundary when it is stored at the destination.

Software may optionally use the “fastCmd” mechanism to perform a Put Im Hp command, saving significant
overhead if the required output port is idle.

4.8.7 Supervise Command

The Supervise command provides control mechanisms for management of the DMA engine. It serves as a marker
which writes its payload to the local event queue when all earlier foreground commands for a selected port have
been sent. The marker is intended to provide library software with a reliable indication that space in the command
queue and/or heap is available.

Note that completion of DMA transfers is generally reported by an endSeg event; Supervise is useful for flushing
the commands in the transmit foreground queues.

Class

DmaCmdSupervise

Attributes
Bit Mnemonic Type Definition

d0[63:0] header Command type is Supervise, length 16. Port to mark is specified by txPort 25:24
d1[63:0] control Reserved
d2[63:0] payload First payload data doubleword, copied to Event queue d0
d3[63:0] payload1 Second payload data doubleword, copied to Event queue d1

The Supervise command selects an output port using bits 25:24 of the header, and stores its payload on the
local event queue after processing all earlier commands for the same output port.

Supervise evaluates d0[63:32] as a route handle, like other commands, even though it will be used only to verify
that the port selected by the header matches that selected by the route.

Supervise may not be nested inside Send Cmd.

Software may optionally use the “fastCmd” mechanism to perform a Supervise command, saving significant
overhead if the required output port is idle.

4.8.8 Undefined Commands

Command codes which have not been defined otherwise result in a cmdFault event being stored on the event
queue of the context in which they occur.

4.9 Packet formats

4.9.1 Packet header and check

Packet sizes are multiples of 8 bytes, so that packet boundaries correspond to symbol framing boundaries on
the link. Each 8-byte unit is referred to as a “ford”; see Matt for derivation and justification. Data packets consist
of four or more fords, up to 19. The first ford of every data packet (the header) contains a routing string, a virtual
channel number, a buffer index for the next switch, and a link sequence number for error recovery; the second
ford, called the control word, is interpreted by the receiving DMA engine to control where and how the payload is
stored; the last ford, the trailer, contains the packet type, a 20-bit identification code for the target process at the
destination node, a CRC checksum, and 8 constant bits (which are the translation of the “comma” symbol used to
mark the end of the packet). See Table 4.2. The control word may or may not be present; the hasCtl flag in the
header is set if and only if the word is present.

Idle packets consist of a single ford marked by a comma symbol which is used only by Idle. The remaining bits
may be used for diagnostic or out-of-band information and a CRC checksum.

May 14, 2014 199 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Table 4.2: Packet Header and Trailer

Field Bits Source Definition

Start of Packet 7:0 Switch Start Comma
Virtual Channel 11:8 RDT Current arbitration level
Buffer Select 15:12 Switch Next hop target buffer

21:16 Reserved
NumFords 26:22 Switch Length of packet in fords
HasCtl 27 DMA Set to interpret second ford as control

Link Seq No 31:28 Switch Packet seq no on this link
Route 63:32 RDT 16 2-bit routing instructions

End of Packet 7:0 Switch Terminating Comma
Packet Type 11:8 CmdQ Controls Receiver Processing
Process Index 15:12 RDT Select Control/Status page
Process ID 31:16 RDT Match Unix PID in CS page

CRC 63:32 Switch Error Detection for whole packet

Non-idle packets need a type field, to control their interpretation, and a process id, which must match that
assigned to the receiver by the kernel. This is to prevent confusion when processes are rescheduled or moved
between processors, and to prevent rogue processes from examining or modifying unrelated process memory.

[We still need to define any required debug and performance monitoring features.]

4.9.2 Packet Types

Table 4.9.2 lists the defined packet type codes. Any packet received with an undefined type is reported as an
error and discarded. [Currently, all valid packet types have even parity, to make it that much more difficult to
mistake a corrupted packet. Next we should use the odd-parity codes which are distance 3 from poison. Seems
excessive, at this point, but we have plenty of codes still.]

Enum

DmaPktType
Constant Mnemonic Definition

4’b0011 ENQ DIRECT Push packet payload onto software event queue
4’b0101 DMA Store payload according to receive context
4’b1001 ENQ RESPONSE Push packet payload onto receiver’s command queue
4’b1010 WR HEAP Store payload into process heap
4’b1100 DMA END Signals end of DMA segment
4’b1111 POISON Discard packet

4.9.3 Direct Transmission: Enq Direct

Short messages, consisting of one or a few packets, are sent by the sending process constructing a command
with a route handle and the contents of the desired packet, whose payload is deposited on the event queue of the
receiving process. The event queue is processed by software at the receiver.

Table 4.3 shows the form of a packet whose contents will be deposited on the event queue for processing by
software; similar packets are available to store to the DMA Engine’s command queue. Another form stores to the
heap, using the control doubleword to specify a heap offset.

Enq Direct packets are generated by Event commands.

Event queue entries are all 128 bytes. The DMA engine writes the packet payload, and fills to the next 64-byte
boundary with zeros.

4.9.4 DMA

DMA packets are the heavy truckers of the SiCortex fabric. They carry the high-volume message traffic between
cooperating nodes which have set up matching transmit and receive contexts. In addition to the payload and the

May 14, 2014 200 Rev 51328

SiCortex Confidential 4.9. PACKET FORMATS

Table 4.3: Direct Queue Packet Fields

Field Size (bytes) Source Comments

Header 8 DMA Engine As defined in Table4.2
Control 0 Skipped; hasCtl=0
Payload 8-112 CmdQ For use by software
Trailer 8 DMA Engine As defined in Table 4.2

header/checksum overhead carried by all packets, DMA packets carry a control ford which tells the receiver’s DMA
Engine where to store the payload in the destination buffer. The format of the control ford is shown below:

Class
DmaCmdCtl
Attributes

Bit Mnemonic Definition

d0[31:0] offset Byte offset of packet payload with respect to buffer descriptor
d0[47:32] bufferHandle Index into BDT for buffer descriptor (multiply by 8)
d0[63:48] notifier Bit index into heap for error flag

See Table 4.4.

Table 4.4: DMA packet fields

Field Size (bytes) Source Comments

Header 8 DMA Engine As defined in Table 4.2
Control 8 DMA Engine As defined above, in class DmaCmdCtl
Payload 8-128 Buffer User data
Trailer 8 DMA Engine As defined in Table 4.2

Message buffers are not necessarily aligned with respect to cache blocks, at either the transmitting or the
receiving node, but the DMA engine requires that a received DMA packet must be aligned so that its payload
starting address precisely corresponds to an integral number of L2 cache blocks (64-byte boundary). Therefore, the
transmitting node’s DMA engine may be required to form packets from up to three cache blocks, with alignment
at any 4-byte boundary; library software is obliged to use Enq Direct packets to pass data at the beginning and
end of a message which do not align to a cache block boundary.

The DMA payload length is permitted to be less than a multiple of 32 bytes; in that event, the receiver will
extend the payload with zeros to the next larger 32-byte boundary

When a DMA packet is received, the receiver uses the buffer handle (*8, for a byte address) to obtain a buffer
descriptor from the process BDT. The buffer offset is added to the descriptor base address to obtain the address
at which the payload is stored. In the event of a fault, the payload is not stored, and the microcode sets a flag
in the heap (bit number rxNotifier mod 8 in byte rxNotifier / 64 of the heap). The flag is tested and cleared by
a DMA End packet when the transmitter finishes the segment; if set, the receiver stores a bdtFault rather than
rxEndSeg.

DMA packets are generated by Put Bf Bf commands.

4.9.5 DMA End

A DMA End packet is sent following the final DMA packet of a segment to mark successful transmission. It
contains sufficient information to allow the receiver to store an EndSeg or bdtFault event on the event queue, and if
the transfer was successful, optionally activate a string of dependent commands at the receiver (if execRouteHandle
is zero) or a remote node as specified by the execRouteHandle relative to the receiver’s RDT.

4.9.6 Wr Heap

Wr Heap packets are used to write the Heap communication area allocated by the target process.
Under some circumstances, the sender of a short message may choose to use Wr Heap packets to transfer the

message data to the destination node before matching SEND with RECV, so that software at the destination can
copy the data once a match has been made.

May 14, 2014 201 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

Table 4.5: DMA End packet fields

Field Size (bytes) Source Comments

Header 8 DMA Engine As defined in Table 4.2
Control 8 DMA Engine Notifier and BD Handle as in DmaCmdCtl; execRouteHandle in 31:0
Payload0 8 Command Software “bucket”
Payload1 8 Command Exec Handle and Count
Trailer 8 DMA Engine As defined in Table 4.2

Table 4.6: Wr Heap packet fields

Field Size (bytes) Source Comments

Header 8 DMA Engine As defined in Table 4.2
Offset 8 CmdQ Start offset within Heap
Payload 8-112 CmdQ Data to be written to destination heap
Trailer 8 DMA Engine As defined in Table 4.2

Offset must be a multiple of 64; length must be a multiple of 8. Writes to the heap always modify one to four
aligned 32-byte blocks of memory. Memory beyond the last doubleword of payload is zeroed to the next 32-byte
boundary.

Wr Heap packets are generated by Put Im Hp commands.

4.9.7 Enq Response

A Get request for a large message becomes an Enq Response packet, created by the Initiator as part of a Receive
command. When the initiator is ready to receive a segment, an Enq Response is sent from the initiator to the
responder (Table 4.7), containing a Put Bf Bf command to be used at the remote (responder) node. The command
is processed by the DMA engine at the responder, subject to the same access constraints as if the entry had been
placed on the command queue by local software.

Table 4.7: Enq Response Packet fields

Field Size (bytes) Source Comments

Header 8 DMA Engine As defined in Table 4.2
Control 0 Skipped; hasCtl=0
Payload 16-112 CmdQ Response command executed at destination
Trailer 8 DMA Engine As defined in Table 4.2

Typically, an Enq Response packet contains a Put Bf Bf command which directs transmission of a segment,
but there are valid uses of other command types.

When an Enq Response packet is received by a responder, the responder checks the cmdQuota and deferredCnt
variables for the target process. If the cmdQuota is exhausted (negative) or the deferredCnt indicates there are
previously-deferred commands awaiting service, the response command in the packet is pushed onto the target
process event queue with code deferredCmd, and the deferredCnt process variable is adjusted. This is to prevent
remote commands from overflowing the port queues. Library software associated with the process must recognize
the deferred command and copy it to the command queue, setting bit 31 (deferred) in the header.

4.9.8 Poison

Poison packets are not intentionally generated by the DMA Engine, and are discarded when received. Any
packet may be converted to a poison packet if some link along its path detects a CRC error. That link will request
retransmission, but the corrupted packet may already have left the station, so the poison type code causes it to be
ignored.

May 14, 2014 202 Rev 51328

SiCortex Confidential 4.10. NOTES ON COMPLEX FUNCTIONS

4.10 Notes on Complex Functions

4.10.1 Rendezvous

Rendezvous is the handshake sequence executed between a pair of processors planning to use DMA packets to
pass a large message; it gives both participants the information needed to set up transmit and receive contexts.

Rendezvous is initiated by software injecting a rendezvous request as an Send Event in the command queue. The
request contains communicator, source rank, and tag. It also carries buffer alignment information. The initiating
node sends the request to the responding node, where the DMA engine stores the packet in the event queue so
that software can find a matching receive. Once the match is found, the responding node issues either a Put Bf Bf
command or a Send Cmd containing a Put Bf Bf, which produces a stream of packets. Upon completion of the
segment transfer, the receiving node stores an endSeg event and (if successful) processes its completion command
string.

There are substantial performance consequences from appropriate scheduling of segment transfers at Ren-
dezvous; blindly queueing transfers in a FCFS order may result in severe hotspot congestion. It is up to software
to reorder transfers for optimum performance.

4.10.2 Stride and Scatter/Gather

MPI specifies mechanisms by which the application can build messages that correspond to non-contiguous
memory at the sender and/or receiver. The early plans for the DMA Engine included direct support for such
messages, but they created a problem in that a packet which requires many main memory references may take
much longer to service than its occupancy in any other stage of the communication pipeline; this creates the
prospect of a message of such packets backing up the network in undesirable ways. Therefore, the fabric processor
should be used for assembly and disassembly of non-contiguous messages, either by copying the data to and from
contiguous buffers which are then transferred via rendezvous send/receive, or by transfer of convenient-sized chunks
using directly-queued packets.

4.10.3 Barrier and Collective

A rough model: nodes in a communicator are organized in a tree (branching rate to be determined by experi-
mentation) with a root, intermediates, and leaves. As each node reaches the collective operation:

• Leaf nodes send their contribution (using Wr Heap packets; see Table 4.6) to pre-allocated heap cells in their
immediate parent, an intermediate node.

• Intermediate and root nodes gather the contributions of their children and the local process. This can be in
software, spin-waiting for completion, or using the counting facility in Do Cmd to initiate transmission of the
result toward the root.

• When the contributions from their leaves have all arrived, intermediate nodes send a group contribution to
their parent (again using Wr Heap packets).

• When the root receives all its contributions, it broadcasts the collective result to the entire communicator,
using multicast.

Reduction operations which require arithmetic (sum, max) must defer to software for the arithmetic, but may
choose to gather several layers of inputs through such a tree before invoking software to perform the reduction.

4.10.4 Multicast

The early design included a mechanism called Exploding Broadcast as part of the fabric switch; that approach
has been abandoned for reasons outlined elsewhere. Current plans provide for a multicast mechanism in the DMA
engine, implemented with ordinary point-to-point packets (carrying an Execute command) which can stimulate
execution of multiple commands, sending output packets to software-selected destinations.

May 14, 2014 203 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

4.10.5 Out-of-band

The switch interface includes six pairs of registers corresponding to byte-wide send and receive paths to and from
the immediate adjacent nodes on each of the switch input and output ports. Each register carries a byte of data
plus a handshake bit. When a node writes its send register, the send register’s handshake bit is cleared, and sets
again after software in the remote node reads the corresponding receive register. The remote node’s handshake bit
is cleared when the byte arrives in the receive register, and sets when software reads the register. This mechanism
is used by software in the early stages of configuring the fabric and booting the operating system, and remains
available for any purpose required by software during normal operation.

4.10.6 Receive Matching

We looked for a way to match MPI SEND with MPI RECV in microcode, so that the rendezvous could be
turned around without software intervention. We were unable to devise a satisfactory solution, and for the moment
at least, it’s not under consideration.

4.10.7 Initialization

This subsection will describe the process of initializing and starting the DMA engine in preparation for use,
both at boot time and when a new process is allocated.

4.10.7.1 Black Hole

Upon power-up, the DMA engine, fabric switch, and links are in reset state, but there may be circumstances in
which the initialization sequence is entered with some or all in operation. In particular, after a node crash induced
by hardware or software failure, it is desirable to keep traffic flowing through the switch and links while the node
reboots. To support such cases, the block reset register includes functions which ignore all packets entering or
leaving the switch at its node.

4.10.7.2 Reset

During initialization, the following registers should be set up:

• the block reset register should be set to inhibit traffic into and out of the local interface of the fabric switch

• the thread select register should disable all 10 threads

• the ECC mode register should be set to enable correction

• the force error register should be cleared

• ECC error interrupts should be disabled in the interrupt mask register

After the instruction and data memories have been loaded and the common resources set up, these registers can
be returned to their normal state.

4.10.7.3 Microcode load

The DMA Engine microcode assembler, dmaas, translates a symbolic representation of the microcode (called
dma.lisp) into a numerical representation which specifies the microinstructions themselves and the initial states of
dmem and thread-state variables. This is called the .load format:

4.10.7.4 Variable binding

Many of the DMA registers accessible through I/O reads and writes have values that are important to the
device driver, but the particular address assignments may change from one version of microcode to another. The
microcode .load format provides the necessary information to translate symbols to addresses, and initialization
software is expected to refer to interface registers by using strings to name the register, translating the string to an
I/O space address on the basis of the current .load file (perhaps using SymbolTableMap).

May 14, 2014 204 Rev 51328

SiCortex Confidential 4.10. NOTES ON COMPLEX FUNCTIONS

Microcode version By convention, a microcode variable named ucodeVersion is assigned to location dmem
location 511 (0x1FF). It contains in bits 31:0 the svn revision number at which the source code was committed; in
bits 39:32 an identification code for the API it implements (3 for this specification); and 63:40 are defined according
to the API code.

4.10.7.5 Initialization of common resources

The dma initialization software which runs during the boot process loads the microinstruction memory (using
writes to R DmaImem), dmem constants and global variables (using writes to R DmaDmem), and the thread state
variables (using writes to R DmaThreadPtr[] and R DmaThreadPc[]) as specified in the .load file. The following
table lists the symbols needed for system initialization:

Symbol Index Description (initial value)

portQRegion 0-7 Physical address and length of region reserved for transmit port queue
portQRdPtr 0-7 Transmit port queue read pointer (copy of portQRegion)
portQWrPtr 0-7 Transmit port queue write pointer (copy of portQRegion)
rxErrorCnt - Count of bad packets received

qmgrErrorCnt - Count of context 0 event queue overflows

Certain dmem values refer to physical memory regions which are allocated by the kernel for use by the DMA
Engine. In addition to areas used by each process, each port relies on reserved memory regions in which it can store
a queue. For each queue, there are three doublewords in dmem, called the region descriptor, the write pointer,
and the read pointer; the region pointer and write pointer should be initialized to the same value: in bits 35:0,
the physical memory address of the area of memory allocated for use by the queue (bits 5:0 must be zero); in bits
63:36, the negative length of the allocated region. Thus, if the allocated region is 65,536 bytes (0x10000) starting
at address 0x123456780, the doubleword value should be 0xFFF0000123456780. The read pointer should have the
same address in bits 35:0, but zero in 63:36.

The eight areas allocated for port queues must be non-overlapping, aligned to 128-byte boundaries, and a
multiple of 128 bytes in length.

4.10.7.6 Initialization of process resources

As the system associates operating system processes to process state in the dma engine, it must allocate space
in physical memory for the five communication regions used by each dma process: the heap, the buffer descriptor
table, the route descriptor table, the command queue, and the event queue. The command and event queues
are each described by dmem registers containing read pointer, write pointer, and region descriptor, as described
above for the port queues. The heap, BDT, and RDT are each described by a single dmem register containing a
region descriptor in which bits 35:0 contain the physical address of the start of the region, and bits 63:36 contain
the negative of the region length. The following table lists the symbols needed for initialization of each process,
whenever a new process binding occurs. To avoid an error wrap case, queue Rd and Wr pointers must be initialized
to offset 128 in the region (add 128 to both the address and negative length fields).

Symbol Description

processID Process identifier (16 bits)
counters Sixteen 4-bit counters used by Do Cmd commands (init 0)

eventQRegion Physical address and length of region reserved for event queue to this process
eventQRdPtr Event queue read pointer (copy of eventQRegion)
eventQWrPtr Event queue write pointer (copy of eventQRegion)
cmdQRegion Physical address and length of region reserved for command queue from this process
cmdQRdPtr Command queue read pointer (copy of cmdQRegion)
cmdQWrPtr Command queue write pointer (copy of cmdQRegion)
BDTRegion Physical address and length of region for buffer descriptor table
RDTRegion Physical address and length of region for route descriptor table
HeapRegion Physical address and length of region for process heap
cmdQuota Number of concurrently queued commands available to this process, minus 1
deferredCnt Number of remote commands currently deferred to event queue

eventIntCause Interrupt cause word sent when an event is added to an empty event queue

May 14, 2014 205 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

4.10.8 Process Rundown

This subsection will describe the sequence of events required to deallocate a DMA Engine process.

4.11 Lessons for Next Time

4.11.1 Queue Manager

The performance of this design suffers from a couple of problems.
In the first place, the queue manager must read a command from memory, then translate its route, before

knowing which tx thread will service it. And the requirement to keep commands in order makes it difficult to
evaluate other commands during that process. A better design might require each software process to enqueue
commands into separate queues for each port: 4 command queues per process.

In that model, each transmit thread could scan its own queues, executing fg commands as they were encountered,
and pushing bg commands to the port queue, to be handled when all the fg commands were finished. This would
make processing more efficient, both because of parallelism, and because control information would not need to be
moved from memory buffer to dmem to packet buffer.

It would be necessary to come up with a way of pushing and processing commands received from remote nodes.
They could have their own queue area in memory, treated like a separate process, or they could be pushed through
the background port queue like DMA commands.

The “fastpath” mechanism points the right direction: use it for invocation of all locally-initiated commands
(possibly except do cmd). This allows dispatch to appropriate port thread right away, with RDT access before
command fetch. In most cases, the queue access is needed only for the payload. The Tx thread might have separate
priority levels for fastpath (nothing on queue), enqueue, foreground, and background. Received commands in
Enq Response packets would be enqueued by receiver.

4.11.2 Additional functionality

4.11.2.1 Enqueue/Dequeue commands

There should be a means by which a node can create a ring-buffer queue which is available to all processes in
the same job to insert or remove entries; it may not be important to have more than one such queue per process,
since they can be distributed almost anywhere. If we need only one, it is easier to name, and we can keep the
pointers in hardware. Need ways to report full/empty status on a request.

4.11.2.2 Global locks

It may (or may not) prove useful to create locks which ensure globally that no more than one process has access
to a data structure. Perhaps the general solution is a class of atomic read-modify-write functions.

4.11.3 Microcode

The microcoded engine is convenient for a couple of reasons: it has special-purpose functions, it is multi-
threaded, and it has a fat pipe to memory. It’s inconvenient that it is hard to program (no compiler), has no cache,
and behaves differently than other bus clients, besides the fact that it needs a separate design. I don’t think the
special functions, aside from the fat pipe, are worth much. We could have had a multithreaded MIPS core with
prefetch and flush instructions, and done more with less.

4.11.3.1 Buffer addressing

We need indexed addressing into the packet and (especially) memory buffers, so that we don’t have to dispatch
to separate microinstructions to access the appropriate doubleword.

4.11.3.2 Buffer reset

It would be good to be able to clear the memory buffer in a single operation, to prevent leaks of information
between processes.

May 14, 2014 206 Rev 51328

SiCortex Confidential 4.12. MICROCODE

4.11.4 Copy port

It was a mistake to try to short-circuit the fabric for local transfers. The local ports should have been a copy
of the remote ports so that the hardware and microcode were exactly the same. Additional ports into this pile of
latches should not be a problem.

4.11.5 Receive ports

The payload length needs to be writable for cases like deferred commands, where we want to combine the
payload with a new header before writing to memory.

4.11.6 Cache

The DMA should have a cached, coherent interface to memory. The lack of coherent synchronization is (I
suspect) going to prove to be a stumbling block.

4.12 Microcode

May 14, 2014 207 Rev 51328

SiCortex Confidential CHAPTER 4. DMA ENGINE MICROCODE

May 14, 2014 208 Rev 51328

Chapter 5

DMA Engine

by Jud Leonard and Bryce Denney

[Last Modified $Id: DmaImpl.lyx 46805 2007-10-30 21:33:40Z denney $]

5.0.1 Package Attributes

Package

chip dma spec

Attributes

-dwaccessors

5.1 Introduction

The DMA Engine provides a high-bandwidth interface between the memory system and the fabric switch,
relieving software of the low-level work of repetitively creating packets of memory data and injecting them into the
fabric, or accepting packets from the fabric and distributing their payload to appropriate locations in memory.

This chapter describes the hardware of the DMA Engine. DMA Engine functions implemented by microcode,including
the application-level software interface, are defined in another chapter.

5.2 Implementation

The ICE9 DMA engine is implemented as a programmable microengine that manages a set of TX and RX
ports and an interface to the L2 cache. The microengine decides how to send outgoing packets and what to do
with incoming packets, but relies on the other blocks to do nearly all data copying. Each of the TX and RX ports
contain packet buffers, state machines, and address sequencers so that they can transfer to/from the fabric switch
without consuming microengine cycles. The microengine reads its microcode from an instruction memory, which
is initialized by system software at boot time. In each cycle it can perform an arithmetic operation on two 64-bit
operands (A and B), producing a 64-bit result and a set of condition codes which can compute a branch target.
Operands A and B generally read from the DMA’s dedicated data memory (DmaDmem) but can also address
registers in the TX and RX ports, and the cache interface.

Data moving through the DMA engine is stored in packet buffers while the DMA engine decides what to do
with the packet and moves the data to the appropriate place. Imagine a packet that enters the chip on receive port
1 destined for this node. The packet arrives on receive port 1 of the fabric link logic, passes through the switch to
the DMA, and is stored in the block labeled “RX Port 1” until the DMA engine processes the packet. Each RX
port can hold up to four such packets at a time (approx 80x64 bits) before it must use backpressure to prevent
the switch from sending any more data. As packets arrive from the switch, the RX port wakes up the appropriate
thread in the DMA microengine by asserting rxpX ue BufAvail so that the microengine can examine the packet
and take appropriate action. Usually the microengine will decide to copy the packet to main memory at a particular

209

SiCortex Confidential CHAPTER 5. DMA ENGINE

address, and start a block transfer. The cache interface and receive port implement the block transfer and free up
the packet buffer without any further interaction with the microengine.

Data moving in the other direction, from this node to the fabric, travel through the transmit ports in a similar
way. Packets are transferred from main memory to a particular transmit port, e.g. TX Port 2 if the packet is
destined for transmit port 2 onto the fabric. Each TX port can hold up to four such packets at a time (approx.
80x64 bits). When the transmit port raises txpX ue BufAvail, the microengine has a chance to decide how each
packet should be handled. When the microengine is done, the transmit port sends packets out to the switch and
recycles the packet buffer.

One other port, called the Copy Port, is used to send packets from one application to another within the chip.
The copy port is designed to act very much like a transmit or receive port, so that hardware structures can be
reused and library software can treat local (within the chip) and remote packet transfers in a similar way. The
copy port can be used to perform traditional DMA memory-to-memory copies.

The microengine threads need to read and write L2 memory to manipulate queues and other data structures in
memory. For this purpose, each microengine thread has a dedicated memory read buffer of 16 doublewords and a
memory write buffer of 16 doublewords. The thread can schedule memory transfers into these buffers, wait until
the transfer is complete, and manipulate the data. These buffers live in the Copy Port.

To service the ports, the microengine has about ten concurrent threads which contend for resources when they
have something to do. Most threads are associated with a switch port (or the copy “port”, or the queue manager).
In addition, there is what might be thought of as a runt thread which has no preserved state, but which executes
microinstructions to access datapath registers whenever an I/O reference to the DMA engine needs service.

5.2.1 Top Level Block Diagram

Here is block diagram of the DMA engine that shows the major blocks and data buses.

Cache Interface

Copy
Port

TX
Port 0

TX
Port 1

TX
Port 2

RX
Port 0

RX
Port 1

RX
Port 2

Scratchpad
DMem
1K x 72

ALU A In

ALU B In

ALU Result

Microengine
Control

ALU

from
Fabric
Switch

to
Fabric
Switch

Oddbound
L2 Data Bus

Evenbound
L2 Data Bus

RX Interface TX Interface

14
4

14
4

14
4

14
4

14
4

14
4

14
4

14
4

72 72 72 72 72 72

64

64

72

72

144

144

144

144

14
4

14
4

14
4

14
4

14
4

14
4

14
4

14
4

14
4

14
4

14
4

144

144

144

144

14
4

May 14, 2014 210 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

5.2.2 External Interfaces

5.2.2.1 Fabric Switch to DMA receive port X (X=0,1,2)

For each of the chip’s three RX links, the fabric switch forwards data to three corresponding RX ports in the
DMA engine. The interface for data traveling from fabric switch to DMA is described below. When no packets are
being received, the data wires can be used for the fabric switch to send status information.

From To Signal Description

dma fsw RdyX s1a DMA is ready to accept another packet (X=port 0,1,2).
When the FSW begins a packet that consumes the DMA’s
last buffer, DMA deasserts dma fsw RdyX s1a one cycle
after the SoP.

fsw dma OutDatX s2a<71:0> data+ECC from fabric switch to DMA
fsw dma DatValX s2a DatVal s2a contains valid data (X=port 0,1,2)
fsw dma SoPX s2a asserted when DatValX s2a contains the header FORD
fsw dma EoPX s2a asserted when DatValX s2a contains the trailer FORD

5.2.2.2 DMA transmit port X to Fabric Switch (X=0,1,2)

The DMA engine has three transmit ports corresponding to the chip’s three transmit links. Each transmit port
carries data to the fabric switch, which sends it to the appropriate link, using the interface described below. When
there are no packets to transmit, the DMA can update the fabric switch’s control registers.

From To Signal Description

fsw dma BufAvailX s3a FSW is ready to accept another packet (X=port 0,1,2).
The DMA samples fsw dma BufAvailX s3a each cycle in
order to decide whether it can begin a packet in the next
cycle.

dma fsw InDatX s0a<71:0> data+ECC from fabric switch to DMA
dma fsw DatValX s0a DatVal s2a contains valid data
dma fsw SoPX s0a asserted when DatValX s2a contains the header FORD
dma fsw EoPX s0a asserted when DatValX s2a contains the trailer FORD

5.2.2.3 DMA to L2 Cache Switch

See 7.2 in L2 Cache chapter.
The DMA can start one CmdAddr transaction per cycle and one Data transaction per cycle onto the L2 cache

switch buses. In each cycle it may request the even CmdAddr bus or the odd CmdAddr bus, but never both
directions at once. Also, it may request the even Data bus or the odd Data bus, but never both directions at once.
Meanwhile, the DMA can accept one incoming CmdAddr transaction and one Data transaction per cycle.

The DMA engine can have up to four outstanding block reads and four outstanding block writes to the L2
cache. In addition it responds to I/O reads and writes from the six processors.

5.2.3 Module Hierarchy

Before diving into the details of each component, here is a tree that shows how the DMA engine is organized
into modules and submodules.

• Dma: top level of DMA engine

– DmeUe: microengine control logic

∗ RAM containing microengine instructions

– DmaAlu: microengine ALU

– DmaDmem: microengine data memory

– DmaCif: L2 cache interface

∗ several queues to keep track of outstanding requests

– DmaRxp: contains the three RX ports that receive from fabric switch

May 14, 2014 211 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

∗ DmaRxpCtl0: RX port logic for port 0

∗ DmaRxpCtl1: RX port logic for port 1

∗ DmaRxpCtl2: RX port logic for port 2

∗ packet buffers

– DmaTxp: contains the three TX ports that transmit to fabric switch

∗ DmaTxpCtl0: TX port logic for port 0

∗ DmaTxpCtl1: TX port logic for port 1

∗ DmaTxpCtl2: TX port logic for port 2

∗ packet buffers

– DmaCopy: copy port, for memory-to-memory transfers

∗ packet buffers

∗ memory read buffers

∗ memory write buffers

5.2.4 DmaUe: Microengine Control Logic

The microengine is implemented with a four-stage pipeline, consisting of thread selection (C2), instruction
decode (C3), ALU (C4), and write result (C5).

C2: Thread Select C3: Instr Decode C4: ALU
C5:

Result

uInst
mem

1024x72

instr_c3 instr_c4 instr_c5

thread_c5thread_c4thread_c3

valid_c3 valid_c4 valid_c5

Dmem
even

512x64

Dmem
odd

512x64

aluResult_c5

Sleep

opA

opB

dest

Thread
select

Sleep
Cond

nextSleepCond_c3

PC
nextAddr_c4

Thread
State

specialRegs

nextSleepCond_c3

E
cc

 c
or

r

The following table describes the pipeline for the microengine in more detail.

May 14, 2014 212 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Stage Name Description

C2 Thread Sel Choose thread to run next using round
robin scheme. Once a thread runs, it
must wait a cycle before it can run again.
Find the program counter for the selected
thread. If the same thread is selected in
C4, the next uPC is bypassed from C4 in-
stead. The bypass allows us to avoid hav-
ing a branch delay slot.

C3 Instruction Decode Read microinstruction memory on rising
edge. Decode instruction. Prepare to
read operand memories/registers by driv-
ing OpaAddr and OpbAddr.

C4 ALU All operands are read from respective
memories on the rising edge of C4 and sent
to the ALU. The ALU result is computed
and registered at then end of C4. Com-
pute the NextAddr for the thread, and by-
pass it back to C2 in case the same thread
is selected again. Prepare to write results
to memory by driving the ResultAddr and
ResultData buses.

C5 Write Result Write ALU result to selected memory on
rising edge. Write changes to thread state
registers. If necessary, ask the cache inter-
face to start a memory transfer using the
TaskStart interface.

FIXME: Document how I/O reads and writes get into the microengine and how it deals with them.

5.2.5 DmaImem: Microengine Instruction Memory

The DmaImem contains microinstructions that the DMA engine will execute. The instruction memory is
initialized using WTIOs from a processor, while the DMA microengine is idle (all threads disabled). The data to
be written flows through the datapath and ends up on alu xxx ResultDat c5a<71:0>, which contains both data
and ECC. If ImemFlipMemBits are used, the data can be intentionally corrupted before being written.

Once the DMA threads are enabled, the microengine reads one instruction of DmaImem per cycle, does ECC
correction, decodes the instruction, and executes it. It is unsafe for a processor to write Imem while the DMA
threads are running.

RdAddrFinalPc_c2

DmaImem
1024x72

WrAddr

WrData

RdData

ResultAddr_c5

ResultData_c5

ImemInst_c3
64

10

72
xor

low 2bitsImemFlipMemBits
(from R_SDmaForceErr)

2

ECC
correct

10

Implementation note: For timing reasons, the Imem is implemented as four banks of 256x72, interleaved on bits
1 and 0 of the read address. In each read cycle, all four banks are read in late C2, and the correct result is selected
based on address bits 1:0, which arrive from the ALU in early C3.

May 14, 2014 213 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.2.6 DmaAlu: Microengine ALU

The microengine ALU is designed to calculate memory addresses and queue pointers. It also contains some
general arithmetic such as add and subtract, booleans, etc.

Logic

Add/Sub

03135-323663

ResultMux

Flop

cin

inj_b32inj_b36
16

Opb[63:0]

Opa[63:0]

OpbMux

Result
ResultMemAddr
ResultMemLen

Zero Detect

4:1NMUX

9:1ZMUX

N Z

ue_NexAddralu_NextAddr NextAddr Calcuation

5.2.7 DmaDmem: Microengine Data Memory

The Dmem is the microengine’s scratchpad memory. It can be read and written by every instruction, and is
also accessible to processors via I/O reads and writes. The Dmem is divided into four banks of 256 words by 64 bits
each, and operands A and B can address the banks independently. Operands A and B can read different addresses

May 14, 2014 214 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

from the four banks of DmaDmem. However, if the two operands try to access different addresses in the same bank
in the same instruction, operation is undefined. The hardware simulation models will provide asserts to detect this
condition.

Since a thread may execute every two cycles, a potential data hazard exists between results written in C5 and
operands read in C3 from the same address. The register file does not like to be written and read at the same
address. To avoid the hazard, a bypass register allows ResultDat c5 to be delayed until C6 and then driven onto
the operand A or B data bus when the read and write addresses match.

One bank of the DmaDmem is described in the diagram below. The Dmem is interleaved on bit numbers
(DMEM INTERLEAVE BIT and DMEM INTERLEAVE BIT+1), presently 4 and 5. To produce addresses for a
given Dmem bank, the interleave bits must be removed.

RdAddr
OpaAddr_c3

OpbAddr_c3

DmaDmem
Bank 0
512x72

WrAddr

WrData

RdData

ResultAddr_c5

ResultData_c5

Bypass Reg

OpaData_c4

OpbData_c4

64

6464

64

remove
interleave

bit

xor
low 2bitsDmemFlipMemBits

(from R_SDmaForceErr)

2

ECC
correct

Dmem Address Bits Assignment

Address<9:8> 00->Process Variables
Address<7:4> Variable selection
Address<3:0> Process Index (0-13)

Address<9:8> 01->Thread Variables
Address<7:4> Variable selection
Address<3:0> Thread number (0-9)

Address<9> 1->Context Variables
Address<8:6,4> Variable Selection
Address<5> 1->Transmit, 0-> Receive
Address<3:2> Port number
Address<1:0> Context index

We have allocated a 1K x 64 register file to hold control/status information (12 processes * 16 doublewords),
(10 threads * 16 doublewords), and contexts (2 directions * 4 ports * 4 contexts * 16 doublewords).

Each of the transmit and receive threads (including the “copy” instances of each) has four hardware contexts for
which it is responsible; each such context consists of 16 doublewords which can be used as needed by microcode.
The allocation is chosen to correspond closely with the structure of commands, so that a queue entry can be loaded
directly into the context memory.

The current assignment for transmit contexts is:

May 14, 2014 215 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Figure 5.1: DMem Process Variables (0-255)

proc 0 proc 1 proc 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc 9 proc 10 proc 11 proc 12 proc 13
Global
Vars

0

16

32

48

64

80

96

112

15

31

47

63

79

95

111

127

128

144

160

176

192

208

224

240

143

159

175

191

207

223

239

255

Process Variables

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Process ID

counters

eventQRegion

eventQRdPtr

eventQWrPtr

cmdQRegion

cmdQRdPtr

cmdQWrPtr

BDTRegion

RDTRegion

heapRegion

cmdQuota

deferredCnt

eventIntCause

processEn

procIdxBit

Figure 5.2: DMem Thread Variables (256-511)

Rx 0 Rx 1 Rx 2 Rx Cp Tx 0 Tx 1 Tx 2 Tx Cp Q Mgr I/O Acc

Tmp1

Tmp2

Tmp3

ctxtActive

256

272

288

304

320

336

352

368

271

287

303

319

335

351

367

383

384

400

416

432

448

464

480

496

399

415

431

447

463

479

495

511

Thread Variables Global
Vars

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loopID=0

Tmp4

CmdString

memEven

probeAddr

probeData

loopID=0 loopID=0 loopID=0 loopID=1 loopID=1 loopID=1 loopID=1 loopID=2 loopID=2

cmdAddr

memOdd

specialFlag

qtmp

ucode
Version

exec
Limit

qmgr
ErrorCnt

May 14, 2014 216 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Figure 5.3: DMem Tx Context Variables (512-767)

Tx 0 Tx 1 Tx 2 Tx Cp

512

528

544

560

576

592

608

624

527

543

559

575

591

607

623

639

640

656

672

688

704

720

736

752

655

671

687

703

719

735

751

767

src-ctl

bufferDesc

bdtPtr

targetProc

ctxtIdxBit

Tx 0 Tx 1 Tx 2 Tx Cp

Transmit Contexts
Global
Vars

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

route

procIdx

trailer

dst-ctl

control

portQRegion

portQRdPtr

portQWrPtr

ctxtIdxBit

control

portQRegion

portQRdPtr

portQWrPtr

bufferDesc

targetProc

route

trailer

Foreground Contexts Background Contexts

Figure 5.4: DMem Rdt/Bdt Cache (768-1023)

tag

data

tag

data

tag

data

tag

data

tag

data

tag

data

tag

data

tag

data

RDT/BDT Cache

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

768

800

816

832

848

864

880

896

912

928

944

960

976

992

784

1008

783

799

815

831

847

863

879

895

911

927

943

959

975

991

1007

1023

May 14, 2014 217 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Dword Bits Function Description

0 7:0 command DMA command to perform
0 63:8 header RDT data to be put in header ford
1 63:32 context info context id, remote context index, local process index
1 31:0 segment len remaining segment length
2 63:0 buffer descr BDT data combined with offset
3 31:0 buffer handle BDT index
4-7 Unused

For receive contexts, the assignment is:

Dword Bits Function Description

0 63:0 Unused
1 63:32 context info context id, local process index
1 31:0 segment len remaining segment length
2 63:0 buffer descr BDT data combined with offset
3 31:0 buffer handle BDT index
4 7:0 notifier cmd Command to queue upon completion
4 63:8 notifier head RDT data for notifier header
5 63:0 notifier ctl Control word of notifier, filled by microcode
6-7 63:0 notifier pay Software payload for notifier message

5.2.8 DmaRxp: Receive Ports

The DmaRxp module contains three instances of the receive port, connected to the three data ports coming
from the fabric switch.

A DMA receive port queues packets as they come from the fabric switch, one doubleword (64 bits) per cycle. The
header, control, and trailer FORDs are captured into one register file (Oprf), while other doublewords are stored
in a packet buffer (Pbuf) which can be quickly dumped to memory through the cache interface, eight doublewords
(512 bits) per cycle. The DMA microengine decides what should be done with the packet: either throw it away
or schedule it to be transferred to main memory. The Pbuf can store DMA PBUF N different packets (presently
4) before it must tell the switch to hold off until another buffer is available. Both Pbuf and Oprf are readable on
operand B at a rate of 64 bits per cycle.

CAUTION: The receive port control logic uses uncorrected data from the fabric switch in several cases. The
uncorrected HasCtrl bit in the header is used to determine whether the second Ford is to be treated as a control
Ford or payload. The uncorrected ProcessIndex in the EoP is sampled into registers, which are retimed into the
cclk domain and drive the rxpN ue ProcessIndex ports. In February 2006, we decided that using the uncorrected
data was acceptable because of the way the fabric switch drives data to DMA. The FswDmao block corrects and
generates new ECC just before driving 72 bits of data to the DMA engine, so the DMA will always see good ECC
coming from the FSW (barring logic or interconnect problems of course). Because the ECC is known to be correct,
we will continue to use uncorrected bits for the purposes of HasCtrl and ProcessIndex only. The HLM contains
assertions that complain if these bits are ever corrupted (by doing an ECC correction and checking which bit was
flipped) so that we will know if this condition ever occurs. See Bug1143 and Bug1160.

Dma Receive Port Block Diagram

May 14, 2014 218 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

from Fabric Switch

Address
Sequencer

Pbuf
Packet Buffer

Array of flops
8x72 x 8 banks

sclk domain

cclk domain

S
ync

Buffer State Machine (x4)

UeCifPending<3:0>

EoP WrAddr

WrData

RdData0

MemOutData
(to Cache Interface)

Operand B
Data Out

B
us

S
yn

c

Oprf
Operand Regfile

Regfile 1R,1W
44x72

WrData

RdData

72

64

144

RdData1

ECC
correct

The Pbuf is organized as DMA PBUF N different buffers of DMA PBUF WORDSwords. For DMA PBUF N=4,
the address into the register file looks like:

bits 6:2 bits 1:0

offset buffer number

The maximum offset is not a power of two, but it’s easy to make the maximum buffer number a power of two.
We chose DMA PBUF N = 4. By putting the buffer number in the low order bits, we can populate as many offsets
as we wish without wasting memory. If DMA PBUF N=4 and DMA PBUF WORDS=19, the memory size is 19*4
= 76 words. The Pbuf must be implemented in a way that supports 128-bit reads of offset N and offset (N+1) for
even N.

The Oprf is used for two purposes: several words are used to store the header ford, control word, trailer word,
etc. for each packet. In another part of the Oprf, we store status information from the fabric switch. The status
information can be read through the operand bus so that software running in the cores can access it. The physical
organization of Oprf is:

Oprf address Description

0x00 - 0x1F Switch status information
0x20 - 0x2F RX port control registers for each buffer

For addresses 0x20-0x2F, the Oprf address decodes as follows

bit 5 bit 4 bits 3:2 bits 1:0

1 0 register num buffer num

May 14, 2014 219 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Reg number definitions for Oprf bits 3:2 are:

0 unused
1 header ford
2 control ford
3 trailer ford

The receive port contains a buffer state machine for each of the DMA PBUF N packets in the buffer. Each
buffer state machine is independent of the others, except that only one buffer may be in state UE at a time. The
state diagram for each buffer is shown in Figure ??.

Dma Receive Port Buffer States

EoP and not
(ueAvailable

and uePktSel=me)

EoP and
(ueAvailable
and uePktSel=me)

ueAvailable
and uePktSel=me

BufTransfer

MemOutLast

BufSkip

ueAvailable is 1 when no buffer is in the UE state, or 0 otherwise.
uePktSel is the number of buffer which will enter the UE state next.

Notes:

WAITUE
waiting for

microengine

UE
microengine

operating

CA
waiting for
cache op

SWRX
buffer ready

to receive data

The DmaRxp module spans two clock domains, sclk (switch clock) and cclk (core clock). The data arrives in
sclk time, and is written into the Pbuf on sclk edges. When a packet is completely transferred, the microengine
and cache controller (running on cclk) read the data when it is known to be stable. A 4-state FSM per buffer keeps
track of which buffer is being used in which way. The register file is the primary means of synchronizing data across
domains, but several control signals need to pass across clock domains using synchronizers.

EoP (sclk to cclk) is produced by the switch when it sends the last doubleword in a packet. When EoP comes
from the switch, it is a one-cycle pulse in sclk. This passes through a pulse synchronizer1 and becomes a one-cycle
pulse in cclk. In the cclk domain, EoP tells the state machine that a buffer is completely transferred and ready to
be used by the microengine. EoP causes the state transition from ST SWRX to either ST WAITUE or ST UE.

UeCifPending<3:0> (cclk to sclk) is a bit vector produced in the cclk domain that tells the sclk logic whether
a buffer is in use (by microengine or cache interface) or ready to receive another packet. Individual bits of Ue-
CifPending are set by the arrival of EoP and cleared when the microengine and cache interface are done with the
packet. To address the dangers of sending a 4-bit bus through separate synchronizers, the bits are sent using a
module BusSyncOneWay which implements a handshake protocol and resamples into the destination clock domain
in a safe way.

5.2.9 DmaTxp: Transmit Ports

The transmit ports are similar to the receive ports except that the data flows from the L2 cache to the DMA
transmit port to the fabric switch. The microengine can either ask the cache interface to write a packet’s payload
into a packet buffer, or write it directly via the Result data bus. The microengine also writes the header, control,

1A one-cycle pulse in the source clock domain generates a toggle signal which is passed through a synchronizer. When any transition
is detected in the destination clock domain, it is turned into a one-cycle pulse in the destination clock domain.

May 14, 2014 220 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

trailer FORDs, and the payload length into registers in the Oprf. Then the address sequencer in the transmit port
takes over, and sends a packet to the fabric switch, 64 data + 8 ecc bits per cycle.

to Fabric Switch

Address
Sequencer

Pbuf
Packet Buffer

Array of flops
8x72 x 8 banks

sclk domain

cclk domain

S
ync

Buffer State Machine (x4)

UeCifPending<3:0>

TxDone RdAddr

RdData

WrData0

MemInData
(from Cache Interface)

Result Data

B
us

S
yn

c Oprf
Operand Regfile

Regfile 1R,1W
44x72

RdData

WrData

72

72144

WrData1

xor low
2 bits

of each
72-bit word

xor
low 2 bits

TxpFlipMemBits
2

Unlike the receive port, the transmit port may need to read packets from memory which are not aligned in a
convenient way. The packet payload may start on any 32-bit boundary (memory address is a multiple of 4). To
handle unaligned packets, the Pbuf is large enough to hold 3 cache blocks per packet, and a 32-bit alignment mux
is placed on the path to the fabric switch. If the packet payload is aligned, only two cache blocks are needed and
the data is driven to the fabric switch starting at address 0. But in unaligned cases, the DMA cache interface may
need to read three cache blocks into the Pbuf, knowing that some bits will not be used, and then read out just the
relevant data.

5.2.10 DmaCopy: Copy Port

The copy port is used when sending packets to destinations within the node. Packets are loaded into into a
packet buffer from the source address and then written back to memory at the destination address. The microengine
treats the copy port as a transmit port and a receive port, and in fact the transmit and receive functions of the
copy port are managed by separate threads.

Like the transmit port, the copy port needs to be able to read packet payloads at various alignments, down to
any 32-bit boundary. Data is written to the Pbuf aligned exactly as it is in main memory, then realigned properly
by the cache block realignment module as it is read out.

May 14, 2014 221 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

The copy port also contains a memory read/write buffer (RWMB), which give the microengine a way to read
and write cache lines to/from the memory system directly. The RWMB is 10 threads * 16 doublewords = 160
words by 64 bits, plus 6 extra words to assist I/O operations to/from the 6 processors.

Addr
Seq

Buffer State Machine (x4)

RdAddr

RdData

MemInData
(from Cache Interface)

Result Data

144

72

WrAddr

Pbuf
Packet Buffer

Array of flops
12x72x 8 banks

Addr
Seq

144

MemOutData
(to Cache Interface)

WrDataRdData

uEngine
Memory

Read/Write
Buffer

Array of flops
26x72 x 8 banks

WrDataRdData

Oprf
Operands

Flops
12x64

WrData

Operand B Data

64

Cache
Block

Realign

ECC
correct

xor
low 2 bits

CopyFlipMemBits<1:0>144
2

5.2.11 DmaCif: Cache Interface

The cache interface manages transfers between the L2 Cache Memory Bus and buffers inside the DMA block.
The DmaCif handles the details of the L2 memory bus protocol: requesting the CmdAddr bus and the Data buses
and handling I/O reads and writes from the processors. Each microengine thread can start memory transfers
or “tasks” via the TaskStart interface and optionally wait for its memory transfers to complete. The TaskStart
interface determines the memory address and length of transfer by copying the MemAddr and MemLen register
value for the requesting thread. (Exception: some transfers specify a fixed length so the MemLen value is not
always used). Tasks are placed in queues where they wait for their turn to use the CmdAddr or Data bus. Memory
transfers move data between main memory and the TX, RX, and Copy port buffers in the DMA engine by driving
the MemIn and MemOut interfaces. MemIn controls data moving from main memory into DMA buffers. MemOut
controls data moving from the DMA buffers out to main memory. As I/O reads and writes arrive from the CSW,
they are sent to the microengine via the StartIo interface.

The per-thread counters and per-port counters keep track of how many requests are waiting in queues or
outstanding read/write tables, so that the DmaCif can notify the interested parties when the requests that affect
them are finished. As a task is first processed in TaskStart, the per-thread and per-port counter is incremented. In

May 14, 2014 222 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

the queues, each task is tagged with the microengine thread number that initiated it, so that the correct counter
can be decremented when the task completes. The outputs of the thread and port counters are TaskPending
and RefCntZero. TaskPending<9:0> tells the microengine which threads have outstanding memory requests.
One RefCntZero signal goes from the cache interface to each port (rx, tx, copy) telling it whether there are any
outstanding memory requests.

A block diagram of the DmaCif is below.

TaskStart
Interface

Interpret
CmdAddr

Interpret
Data

Drive
L2 Data

Write DMA
buffers

StartIo
Interface

Drive
L2 CmdAddr

Outstanding
Read Table

(ORT)

Outstanding
Write Table

(OWT)

W
ri

te
Q

R
ea

d
Q

W
ri

te
E

xt
Q

R
ea

d
E

xt
Q

C
m

d
R

sp
Q

D
at

aR
sp

Q

R
d

io
Q

D
at

aW
ri

te
Q

T
as

kS
ta

rt
 r

eq
(f

ro
m

 u
E

ng
in

e)

C
m

dV
al

id
(f

ro
m

 C
S

W
)

fr
om

 O
.W

.T
.

D
at

aV
al

id
(f

ro
m

 c
sw

)

fr
om

 O
.R

.T
.

MemIn requests
(to DMA buffers)

StartIo (to uEngine)

RdyForStartIo
(from uEngine)

DataReq/Gnt

MemOut requests
(to DMA buffers)

CmdAddrReq/Gnt

CmdAddr (to CSW)

S
ta

rt
Io

Q

fr
om

 O
.R

.T
.

Update
WtioArrival

MemAddr,
MemLen reg
per thread

R
es

ul
t

(f
ro

m
 A

LU
)

per thread
counters

per port
counters

T
as

kP
en

di
ng

(t
o

uE
ng

in
e)

R
ef

C
nt

Z
er

o
(t

o
ea

ch
 p

or
t)

w
rit

e
M

em
A

dd
r

w
rit

e
M

em
Le

n

For each type of traffic that passes through the DmaCif, the next few paragraphs will describe what path the
requests follow. The traffic types are

Symbol Name

BRD block read
BWT block write
RDIO I/O read
WTIO I/O write
SPCL special
INTR interrupt

Block Read

The microengine drives the TaskStart interface, and the request is placed in ReadWriteQ. The request cannot
leave ReadWriteQ until an ORT entry is available; the number of the selected ORT entry (0-3) determines which of
the DMA’s transaction IDs will be used. When the request comes out of the queue, the DmaCif arbitrates for the
CmdAddr bus in the appropriate direction and drives a BRD command onto the bus. The ORT entry is written

May 14, 2014 223 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

with the details of this block read request, so that we know how to handle the data when it arrives. If more cache
blocks are required to finish the request, the next cache block request is written into ReadWriteExtQ. Wait for
data to be returned or for a PRBNOHIT.

If a PRBNOHIT is seen on the CmdAddr bus, the Interpret CmdAddr block looks up the entry in the ORT to
find the address, then places a BRDR request into the BrdrQ.

When data arrives from the CSW, it enters the Interpret Data block, which uses the TID to find the correspond-
ing ORT entry. From the ORT we know which of the DMA buffers will be written and the starting address. The
DmaCif drives the MemIn interface to tell the DMA buffer to write, and data from CSW flows into the buffer. The
Interpret Data block also places a PRBDONE request into the DataRspQ if needed (only if DataOrigin indicates
that the data did not come from a coherence controller.)

When a microengine thread starts a read operation, the cache interface to increment a per-thread counter by
one. When the transfer is finished (the data is ready to be used by microcode), the counter decrements by one.
If the thread decides to sleep until memory operations are done, this per-thread counter controls when the thread
wakes up.

Block Write

The microengine drives the TaskStart interface, and the request is placed in ReadWriteQ. The request cannot
leave ReadWriteQ until an OWT entry is available; the number of the selected OWT entry (0-3) determines which
of the DMA’s transaction IDs will be used. When the request comes out of the queue, the DmaCif arbitrates for
the CmdAddr bus in the appropriate direction and drives a BWT command onto the bus. The OWT entry is
written with the details of this block write request, so that we know what to do when the “go” command arrives. If
more cache blocks are required to finish the request, the next cache block request is written into WriteExtQ. Wait
for a BWTGO, BWTNOHIT, or PRBINV command.

When the BWTGO, BWTNOHIT, or PRBINV command arrives from the CSW, it enters the Interpret Com-
mand block, which uses the TID to find the corresponding OWT entry. From the OWT we know which of the
DMA buffers will be sent to memory and the starting address. The DmaCif drives the MemOut interface to tell
the DMA buffer to send, and data from the buffer flows into the CSW. For BWTNOHIT or PRBINV, the data is
sent to the even or odd coherence controller; for BWTGO the data is sent to the module that sent the BWTGO
based on CmdAddrOrigin.

When a microengine thread starts a write operation, the cache interface to increment a per-thread counter by
one. When the transfer is finished (the data has been sent to the CSW), the counter decrements by one. If the
thread decides to sleep until memory operations are done, this per-thread counter controls when the thread wakes
up.

I/O Read

A RDIO command arrives from the CSW and enters the Interpret CmdAddr block. The request is placed in the
StartIoQ where it waits to enter the StartIo interface. Eventually it reaches the head of queue and is driven to the
microengine. The microengine completes the I/O read operation and puts the result into a known location in the
Copy Port’s Write Memory Buffer. Then the microengine drives the TaskStart interface to ask DmaCif to respond
to the I/O read. The request is placed in the DataRdioQ, we arbitrate for the Data bus and drive MemOut to read
the data from the copy port. Finally the data moves from the copy port to the CSW to complete the I/O read
operation.

The per-thread counters are not affected by I/O reads.

NOTE: The DMA contains bug1991 in which RDIO can be corrupted by a WTIO following it from the same
core. See 8 for details.

I/O Write

A WTIO command arrives from the CSW and enters the Interpret CmdAddr block. Three things happen:
1) an RDIO request is placed in CmdRdioQ, 2) the details of the WTIO command are placed in StartIoQ, and
3) a bit is cleared in WtioDataReady<5:0> a bitmask that records whether the write data has arrived or not.
WtioDataReady is indexed by core number. The RDIO is not allowed to issue from the CmdRdioQ until the
WTIO has reached the head of the StartIoQ. When the WTIO reaches the head of the StartIoQ, the RDIO goes
out onto CmdAddr to the processor. Then we must wait for the core to send data.

When the data arrives, it enters the Interpret Data block, which uses the TID to know which core sent the
data. Knowing the core number, we know where the write data is supposed to go. The DmaCif sends a MemIn
request to the copy port to put the I/O write data into the Memory Read Buffer in the copy port. The Interpret
Data block also sets WtioDataReady<corenum> so that it is allowed to issue from the StartIoQ.

Finally, the WTIO request issues from the StartIoQ and is sent to the microengine. The microengine completes
the I/O write operation by reading from the copy port and writing the data into the memory selected by the address

May 14, 2014 224 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

from the CmdAddr cycle.

The per-thread counters are not affected by I/O writes.

NOTE: The DMA contains bug1991 in which RDIO can be corrupted by a WTIO following it from the same
core. See 8 for details.

SPCL (Special) Command

A SPCL command is treated like an I/O Read because it is triggered by just a CmdAddr cycle. The SPCL
arrives from the CSW and enters the Interpret CmdAddr block. The request is placed in the StartIoQ where it
waits to enter the StartIo interface. Eventually it reaches the head of queue and is driven to the microengine. The
microengine completes the SPCL operation, then drives the TaskStart interface to ask DmaCif to respond to the
SPCL. The request is placed in the SpclIntQ, we arbitrate for the CmdAddr bus and send the DONE command
back to the core.

The per-thread counters are not affected by I/O writes.

Interrupts

Microcode causes an interrupt by setting the memOp field to “sendIntr” and placing 16 bits of interrupt data
on the alu result. The alu result bits 15:12 are the bus stop number to deliver to, and alu result bits 11:0 are the
unique number that tells the processor which interrupt fired. The INTR command is placed in the SpclIntQ. When
it reaches the head of queue, we arbitrate for the CmdAddr bus and send the INTR command to the core. There
is no response.

The INTR operation increments the DmaCif’s thread counter by one. When the interrupt has been sent on the
CmdAddr bus, the thread counter decrements again.

5.2.11.1 Cache Interface Queues

For each of the queues in the block diagram, the table below tells the size, data representation, and what types
of commands would use the queue.

Here is the table for ICE9:

Queue Data type Length Commands Notes

ReadWriteQ DmaCifTask 20 BRD, BWT 10 threads * 2 reqs per thread
ReadWriteExtQ DmaCifTask 20 BRD, BWT 10 threads * 2 reqs per thread

CmdRdioQ DmaCifProtocolEntry 6 RDIO 6 cores
BrdrQ DmaCifProtocolEntry 4 BRDR 4 outstanding reads

SpclIntQ DmaCifProtocolEntry 16 SPCL DONE, INT 6 SPCL response + 10 INTRs
DataRspQ DmaCifProtocolEntry 4 PRBDONE 4 outstanding writes
DataRdioQ DmaCifProtocolEntry 6 RDIO for 6 cores
DataWriteQ DmaCifProtocolEntry 4 BWT 4 outstanding writes
StartIoQ DmaCifStartIoEntry 12 WTIO,RDIO 6 cores * (1 read or SPCL + 1 write)

Twice9 the number of outstanding reads and writes changed, and the number of cores changed.

Queue Data type Length Commands Notes

ReadWriteQ DmaCifTask 20 BRD, BWT 10 threads * 2 reqs per thread
ReadWriteExtQ DmaCifTask 20 BRD, BWT 10 threads * 2 reqs per thread

CmdRdioQ DmaCifProtocolEntry 10 RDIO 10 cores
BrdrQ DmaCifProtocolEntry 7 BRDR 7 outstanding reads

SpclIntQ DmaCifProtocolEntry 20 SPCL DONE, INT 10 SPCL response + 10 INTRs
DataRspQ DmaCifProtocolEntry 7 PRBDONE 7 outstanding writes
DataRdioQ DmaCifProtocolEntry 10 RDIO for 10 cores
DataWriteQ DmaCifProtocolEntry 7 BWT 7 outstanding writes
StartIoQ DmaCifStartIoEntry 20 WTIO,RDIO 10 cores * (1 read or SPCL + 1 write)

May 14, 2014 225 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.2.11.2 Interfaces in DmaCif

Interface Description

TaskStart The microengine asks cache interface to
start a data transfer using the TaskStart
interface.

StartIo The cache interface notifies the micro-
engine that an I/O read or write has oc-
curred. The microengine sends back a sta-
tus signal that tells when another request
can be sent.

MemOut The MemOut bus carries data from packet
buffers out of the DMA buffers to L2 mem-
ory. MemOut is connected to the three re-
ceive ports, the RX side of the copy port.

MemIn The MemIn bus carries data from memory
into the DMA packet buffers. MemIn is
connected to the three transmit ports and
the TX side of the copy port.

L2 Cache Interface The DMA can arbitrate and write com-
mands, then arbitrate and write data onto
the L2 Cache memory bus. The CSW can
carry data in either direction. When other
blocks write to the DMA via the memory
bus, the cache switch hands the DMA one
CmdAddr value and one Data value per
cycle.

5.2.11.3 TaskStart Interface (Microengine to DmaCif)

The microengine requests memory transfers using the TaskStart interface of the cache interface, described in
Table 5.1. The timing of the TaskStart interface signals is described in Figure 5.5.

The cache interface contains four queues which record memory transaction requests. When the microengine
requests a transfer (raises TaskStart), that thread’s current MemAddr is placed into one of the queues along with
all the parameters of the transfer. Read and write tasks are placed into separate queues, so that writes cannot
get stuck behind reads and vice versa. Some memory transfers are several cache lines long and must be done
in several steps. As a step is completed, if there is more to be transferred, a new task is placed at the tail of
another queue, called the “extended” queue. So, the cache interface contains a total of 4 queues: WriteQueue,
WriteExtendedQueue, ReadQueue, and ReadExtendedQueue. The cache interface will pick the operation at the
head of one of the queues and work on it until completion, then pick another in the next cycle.

5.2.11.4 StartIo Interface (DmaCif to microengine)

May 14, 2014 226 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Table 5.1: TaskStart Interface from Microengine to Cache Interface

Signal From To Cycle Description

TaskStart Ue Cif C5 When asserted, causes a memory transfer
to start

TaskThread<2:0> Ue Cif C5 Tells which microengine thread has started
a memory transfer. Each thread has its
own MemAddr value, so TaskThread tells
which value to use. Also, the cache inter-
face keeps record of how many transfers are
pending per thread and reports back to the
microengine.

TaskTarget<5:0> Ue Cif C5 Which of the DMA’s memories will be ac-
cessed

TaskType<1:0> Ue Cif C5 Is it a read or a write operation, and what
kind? The types are cacheline read, cache-
line write, I/O read response, and I/O
write response. See 5.5.31 for encoding.

TaskTid<5:0> Ue Cif C5 Transaction ID of the task. This is only
valid for I/O operations.

TaskOrigin<5:0> Ue Cif C5 CSW bus stop number of the core that
originated the I/O operation.

rxp0 cif UeBufNum Rxp0 Cif C5 Receive port 0 tells the cache interface
which packet buffer number the micro-
engine is working on.

rxp1 cif UeBufNum Rxp1 Cif C5 What buffer is UE working on, in Receive
port 1

rxp2 cif UeBufNum Rxp2 Cif C5 What buffer is UE working on, in Receive
port 2

copy cif UeBufNum Copy Cif C5 What buffer is UE working on, in the Copy
port

TaskPending<7:0> Cif Ue C6 Bitmask per microengine thread which
tells whether there is 1 or more memory
transfer in progress.

TaskFull<7:0> Cif Ue C6 Bitmask per microengine thread which
tells whether a thread has already
launched the maximum number of mem-
ory operations.

Table 5.2: StartIo Interface from Cache Interface to Microengine

May 14, 2014 227 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

5
.

D
M
A

E
N
G
IN

E

F
ig
u
re

5
.5
:
T
im

in
g
o
f
T
a
sk
S
ta
rt

In
terfa

ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 3 3 2 7

tx0 rx1 ctxt rx2 tx0

BLKRD BLKWR BLKRD BLKWR BLKRD

1 2

cclk

ue_cif_TaskStart

><2:0ue_cif_TaskThread

><2:0ue_cif_TaskTarget

><1:0ue_cif_TaskType

><1:0txp0_cif_UeBufNum

><2cif_ue_TaskPending

><3cif_ue_TaskPending

><7cif_ue_TaskPending

><2cif_ue_TaskFull

><3cif_ue_TaskFull

><7cif_ue_TaskFull

M
ay

1
4
,
2
0
1
4

2
2
8

R
ev

5
1
3
2
8

SiCortex Confidential 5.2. IMPLEMENTATION

Signal From To Cycle Description

StartIo cif ue C1 When 1, trigger an I/O read or write mi-
croinstruction based on the values on the
StartIo signals in the same cycle.

StartIoType cif ue C1 Type of I/O operation. 0=read, 1=write.
StartIoAddr<15:0> cif ue C1 Address of I/O operation. The format is

the same as DmaBusAddr, consisting of a
unit field and an offset field.

StartIoTid<4:0> cif ue C1 CSW transaction ID of the I/O operation
StartIoOrigin<3:0> cif ue C1 CSW bus stop number of the core that sent

this I/O operation
RdyForStartIo ue cif C3 Microengine asserts this whenever it is

ready to receive a StartIo operation. The
CIF should never raise StartIo unless Rdy-
ForStartIo is asserted.

5.2.11.5 Interface to L2 Cache

The cache interface performs four basic types of memory operations: read cache line from memory, write cache
line to memory, respond to I/O write from core, and respond to I/O read from core. When reading cache lines, the
DMA engine arbitrates for and writes the CmdAddr bus for one cycle to request data from memory. The response
may come back many cycles later, so the details of that request are stored in the OutstandingReadTable (ORT).
When the response arrives on the incoming Data bus, the OutstandingReadTable tells where the data should be
sent within the DMA engine, e.g. transmit port 2 packet buffer at address 0x18. When the data is safely in the
packet buffer, the ORT entry is freed so that it can be reused. We support up to 4 outstanding reads at a time.
When writing cache lines, the DMA engine arbitrates for and writes the CmdAddr for one cycle, then when a
BWTGO comes back, it reads data from the selected internal memory, then arbitrates for and writes the Data bus
for four cycles.

Unlike cache line transfers, I/O reads and writes from the cores may arrive at any time in any order. Each core
may have a maximum of one I/O request outstanding (as of 4/25/2005), so the cache interface needs a place to
store six I/O requests between arrival and completion. For I/O writes, the request arrives on the CmdAddr bus
and gets stored in the StartIoQ. The DMA sends a RDIO back to the core, and when the data to be written arrives
on the Data bus, it is written to a location in the copy port. The cache interface asks the microengine to execute
a special I/O write instruction which reads the data out of the copy port and writes it to the appropriate place
inside the DMA engine based on I/O address. I/O reads are implemented in a similar way. The request arrives on
the CmdAddr bus and gets stored in the StartIoQ. The cache interface asks the microengine to execute a special
I/O instruction which reads the appropriate register or memory and writes the result to the copy port. Then the
cache interface arbitrates for and writes the response data from the copy port to the Data bus. The core must not
perform more than one outstanding I/O request at a time, or the StartIoQ will overflow; assertions should check
that this never happens.

The following sections describe the cycle behavior of the cache interface as it performs several different tasks.

5.2.11.6 Cycle Behavior: TaskStart to CmdAddr Bus

This table describes how a memory transfer request enters the DmaCif through the TaskStart interface and
eventually gets driven onto the CSW CmdAddr bus. The cycle numbers start with C5 because that’s the stage in
the microengine pipeline that the Task is sent to the cache interface.

May 14, 2014 229 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Stage Name Description

C5 Read TaskStart TaskStart interface decodes the
ue cif TaskStart signals, decides which
queue the task will go into, and prepares
to write one of the queues. The inputs
to the queues and the write enables are
flopped into C6 registers.

C6 Drive CmdAddrReq Data and control signals for the queues
are C6 flops. Data goes into the selected
queue module. Each queue also generates
an output in C6 (performing bypass if nec-
essary) so that the queue select logic can
peek at the head of each queue and decide
whether it can issue or not. For example,
BRDs cannot issue unless an ORT slot is
available. One queue is selected (if any
is eligible), and CmdAddrReq is asserted.
The TID is provided by the ORT or OWT,
which announces the next available slot.

C7 CmdAddrGnt arrives When CmdAddrGnt arrives, ask the ORT
or OWT to fill a slot. The ORT/OWT slot
that is filled corresponds to the TID that
was driven onto dma csw CmdAddrTID in
C6.
FIXME: Secondary queues
FIXME: ort and owt write
FIXME: command completion, update
counters

C8 ORT/OWT changes Changes to ORT/OWT appear in C8.
BELOW IS THE ORIGINAL PIPELINE.
PULL ANY USEFUL STUFF OUT,
THEN REMOVE IT.

C5 Select Queue Examine output of each queue and the
empty flags. Decide which queue to ser-
vice next (WriteQ, WriteExtendQ, ReadQ,
ReadExtendQ). Only choose from a read
queue if there is an empty slot in the Out-
standingReadTable. Choose odd/even di-
rection and assert CmdAddrReq.

C1 Arbitrate CmdAddr Drive the rest of the CmdAddr wires. Cm-
dAddrGnt returns true or false. If true, as-
sert DataReq if needed (reads don’t need
it) and continue through the pipeline as
usual. If false, stall C0 and C1, and con-
tinue to assert CmdAddrReq and drive
CmdAddr until it is granted once.
Meanwhile, begin to read DW01 from
DMA internal memory, so that if all goes
well we can drive it in C2.
NOTE: Arbitration failure in C2 can cause
C1 to stall; in this case we must be sure not
to bid for CmdAddr after winning it once.
DW01 means doublewords zero and one.

C2 Arbitrate Data At start of C2, the DW01 read is com-
pleted, ECC bits is generated, and DW01
data is driven to the cache switch.
Later in C2, DataGnt returns true or false.
If true, continue through the pipeline as
usual and start the read of DW23 so that

May 14, 2014 230 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

5.2.11.7 Memory to DMA Pipeline

Stage Name Description

C0 Response Arrives Response arrives on incoming Data bus
C1 ECC, Dispatch Check ECC on incoming data and correct

single bit errors. Use transaction number
as index into OutstandingReadTable, fig-
ure out where this data should be written.
Prepare to write data to DMA memory.

C2 Write Write to DMA internal memory at the ap-
propriate location. Clear this slot in the
OutstandingReadTable.

5.2.11.8 I/O Access Pipeline (Read and Write)

Stage Name Description

C0 Request arrives I/O read arrives on incoming CmdAddr
bus

C1 Store Request There are 6 IoAccess slots for the 6 cores.
Store some of the CmdAddr parameters
into the IoAccess slot for the requesting
core. If the request is a read, continue
through this pipeline. If the request is
a write, disable the rest of this pipeline.
There is nothing more to do until the Data
arrives, one or more cycles later. See I/O
Write pipeline below.

C2 Start Uinst Drive the StartIo interface to the micro-
engine to trigger an IOREAD microin-
struction. The I/O read address is sent
on cif ue StartIoAddr.

C3-C7? microengine pipeline IOREAD instruction travels through mi-
croengine pipeline. The result is written to
registers (per core) in the copy port, then
the microengine requests a memory trans-
fer from the copy port address back to the
core. The transfer is recorded in WriteQ
and processed by the DMA to Memory
pipeline, above.

May 14, 2014 231 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.2.11.9 I/O Write Pipeline

Stage Name Description

C0 I/O write arrival I/O write data arrives on incoming Data
bus.

C1 Read IoAccess Use the target core number to index into
IoAccess and retrieve the CmdAddr por-
tion of the I/O write transaction. Now we
have enough information to begin. Prepare
to write the data to a register (per core) in
the copy port.

C2 Write Copy, Start Uinst On rising edge of C2, data appears in
copy port. Drive the StartIo instruc-
tion to trigger an IOWRITE microinstruc-
tion. The I/O read address is sent on
cif ue StartIoAddr.

C3-C7? microengine pipeline The IOWRITE instruction travels through
microengine pipeline. The instruction
reads from the register in the copy port,
and the result is written to the address
specified by the I/O write request. Then
the microengine requests a memory trans-
fer back to the core with a special flag to
mark it as an I/O write response. The
transfer is enqueued in WriteQ, then en-
ters the DMA to Memory pipeline, above.

5.2.11.10 Task interface pipeline

Stage Name Description

C0 TaskStart arrival TaskStart signal arrives from microengine.
Prepare to read MemAddr memory using
TaskThread as the address.

C1 Enqueue Prepare to write memory address and
length of transfer into either the Wrq or the
Rdq. Compute new values of NumPending
registers.

C2 Report Send Pending/Full status for each thread
back to microengine.

5.2.12 Microengine Programming

5.2.12.1 Instructions

The microengine instructions contain the following fields. The microinstruction memory contains DMA UIM WORDS
words (presently 1024 as of 10/27/05).

May 14, 2014 232 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Control Field Bits

Operand A addressing mode 3
Operand A offset 6
Operand B addressing mode 3
Operand B offset 6
Destination addresing mode 3
Destination offset 6
ALU operation 5
Memory transfer 8
Sleep mode 2
Sleep index 4
Branch 4
Next Addr 10
Stall 3

Total 63

The control store needs to be accessible via JTAG; any other path is simply convenience. The DMA engine
should be held in reset state (no requests allowed out from cache or switch interfaces) while the control store is
being written.

5.2.12.2 Operand selection

Microinstructions need the ability to access certain state variables by special addressing functions. Each of these
values must be set up in the thread state before the corresponding variables can be accessed.

The current packet buffer is identified by both the port being serviced and the specific packet to or from that
port, which is selected by hardware on a FIFO basis.

5.2.12.3 Destination Selection

TBD

5.2.12.4 ALU operations

In addition to the typical add, subtract, and boolean ALU operations, I imagine some unusual ops, combining
two or more “operations” in one opcode because the data required by those operations are all available concurrently.
These include calculating address and remaining length in a buffer, queue access, and heap access length checks:

Priority Encode Priority encode looks at operand A bits 31:0 to find the least significant bit that is 1. The
result equals the bit number of the least significant bit that is 1. If no bits are set in A<31:0>, the result is zero.

PID Match The ALU compares a 16-bit value taken from bits 31:16 of the packet trailer with a 16-bit field from
the Control/Status register file. [?? how to combine comparison test with type dispatch??]

Pointer Update The ALU A operand is a 64-bit value with a physical address in bits 35:0 and a (negative)
buffer length in bits 63:36. The B operand is a 28-bit payload length value. The ALU adds the payload length
to the address, and adds the payload length to the negative buffer length. The address portion of the A operand
(not the sum) is available to the memory address register; the ALU output is available to be written back to the
data memory. Branch functions will report whether the buffer length has become positive. This function is used
for DMA buffer pointers and queue access.

ALU<35:0> = A<35:0> + B<27:0>

ALU<63:36> = A<63:36> + B<27:0>

Address = A<35:0>

Pointer Distance The operands are pointers, with addresses in bits 35:0. The result has the low 28 bits of their
difference in bits 63:36, and the unmodified A operand address in 35:0.

May 14, 2014 233 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Pointer Extend The result is zero in 63:36, and the difference A<35:0> - B<63:36>, sign extended, in 35:0.
This is used for calculating the end of a buffer region.

Offset The A operand is a buffer pointer as in Pointer Update. The B operand is a 28-bit offset in bits 27:0. The
ALU adds the B operand to the buffer address, making the sum available to the memory address register. The B
operand is compared against the buffer length in bits 63:36 of the A operand. Branch functions will report if the
B operand is greater than the buffer length. This function is used for calculating a heap address and checking that
the offset is in range.

Swap Offset Like Offset, except that the B operand is in bits 59:32.

Swap Halves A operand bits 31:0 become result 63:32, and B operand bits 63:32 become result 31:0.

Munge The B operand is rotated and masked and or’d according to bits of the A operand. A<5:0> encode
a right rotation of the B operand. Bits A<39:8>, are ANDed with bits <31:0> of the rotated value, and bits
A<63:40>, are XORed with bits <23:0> of the rotated and anded result. The boolean masks are msb extended
with bits 39 and 63, respectively.

Merge0, Merge1, Merge2, Merge3

A merge operation combines operand A and operand B in a programmable way. When loading the microcode, the
R SDmaMergeOpHi/Lo registers are initialized with values that control the behavior of the MergeN instructions.
When microcode executes a MergeN instruction, bits from operand A and operand B are combined according to
the values in R SDmaMergeOpHi/Lo. A 1 in the register causes that the corresponding bit will be selected from
operand B, while a 0 selects from operand A.

The merge is implemented as follows:

For bit from 63 to 32,

Result[bit] = R_SDmaMergeOpHi[X][bit-32] ? opb[bit] : opa[bit]

For bit from 31 to 0,

Result[bit] = R_SDmaMergeOpLo[X][bit] ? opb[bit] : opa[bit]

5.2.12.5 Sleep Functions

These functions put a thread to sleep (getting no datapath cycles) until a specified event occurs:

Memory transfer completion Wait until a memory transfer has finished and any associated resources can be
reused. For writes, this means that the data has been written to the cache switch. For reads, it means that the
data is available for the next instruction to use.

Packet buffer available After this instruction, wait until there is a packet buffer available for this thread. This
is only defined for txN/rxN/copy port threads which are associated with a port. A receive thread would awaken
when a new packet is received from the fabric switch. A transmit thread would awaken when a packet buffer is
empty and ready to be build.

Command Arrival After this instruction, wait until a new command arrives from a processor. This would be
used in the queue manager, which should not waste cycles polling.

Sleep Forever This instruction causes a thread to sleep indefinitely.

May 14, 2014 234 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Take Mutex Mutexes are provided so that microengine threads can safely access shared resources such as queues
and contexts. A typical scenario is that several threads need to write to an event queue in memory. If all the threads
read the queue pointer, write to memory, and write the queue pointer in parallel, then events would get overwritten
or lost. Instead, each thread obtains a mutex for the queue, which guarantees exclusive access to the queue pointer
and the queue memory. Then the thread reads the queue pointer, writes to memory, updates the pointer, and
releases the mutex so that another thread can have its turn.

The Take Mutex function causes the thread to sleep until it owns the mutex identified in the Sleep Index field.
The following instruction is allowed to read/write the shared resource, with assurance that no other user of the
same mutex is in a critical section. If the mutex is already available, Take Mutex allows the thread to execute again
with only the usual delay.

Drop Mutex The “Drop Mutex” function releases a mutex to make it available for other threads. The hardware
guarantees that no more than one thread will have ownership of the mutex at any time. The instruction which
specifies Drop Mutex is allowed to read/write the shared resource, but any subsequent instructions in the thread
must not.

5.2.12.6 Stall

The 3-bit stall field encodes the number of cycles that the dma engine must wait before the current thread is
permitted to bid for next use of the datapath. Typically, this field defaults to 1, which ensures that alu results and
branch conditions from the current instruction are available for the next. It must be greater than 1 in instructions
which issue a memory request or release a packet buffer and wait for it (exact value TBD); it may be zero in
instructions whose successor does not depend on any result of the current instruction.

5.2.12.7 Memory Transfer

Microcode needs to be able to initiate and sometimes wait for completion of memory transactions, for packet
payloads, queue entries, and buffer and route descriptors. Microcode should be able to specify reads and writes of
up to 128 consecutive bytes; reads should be aligned to 8-byte boundaries, writes to 32-byte boundaries. I want to
be able to initiate transactions of up to 128 bytes all together, rather than waiting for completion of one 32-byte
cache block before starting the next; this may prove complex, and probably results in a different L2 interface for
the DMA engine than that used by the processors. Reads and writes of the packet buffers may start at the second
or third word of the packet, and are governed by the packet length register.

5.2.12.8 Branch Functions

Some of the branch functions can be arranged to evaluate a small number of bits at the operand register, others
must test the alu output. This is important because it determines the branch latency and thus the microinstruction
rate of each thread. If we assume that operand access takes one cycle and microinstruction access takes another,
that means we can execute instructions from a given thread every second or third cycle.

• Queue pointer test: is queue pointer + entry length > queue limit? (ALU N)

• Buffer descriptor test: is packet length > buffer remaining? (ALU N)

• Buffer valid test: is buffer descriptor valid? (combined with above; ALU Z?)

• Type dispatch: PID-Match, Trailer<11:8>

• Queue entry dispatch: decode queue entry

• Port select decode from RDT entry

• Segment length check: ALU<63:32> ≤0 (ALU N)

• Context match: Aop<31:16> = Bop<31:16> (ALU Z)

• Sequence number match: Aop<63:32> = Bop<63:32> (ALU Z)

• Queue empty? full (room for more)? (ALU N)

May 14, 2014 235 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

• Completion notification?

• Error detected?

I do not presently see a need for subroutines, especially if we have a general case dispatch for port select and queue
entry decode.

There’s a question how a thread sleeps when it’s waiting for memory or an available packet buffer or a mutex
with another thread.

5.2.12.9 Next Address

In the absence of a branch function, each microinstruction address is the contents of the NextAddr field of
the previous microinstruction of the same thread. Branch functions substitute conditional values for some of the
low-order NextAddr bits.

5.2.13 Unified Engine

There are several splits one could imagine in the DMA Engine; I have chosen a unified approach because I
wanted to build sufficient capacity to saturate the pin bandwidth at the memory and switch interfaces, and I
wanted that capacity to be available to any thread that needed it. I am hopeful that the transmit side and the
receive side can each be implemented as a pipelined microengine with four threads serviced on a demand round-
robin basis. Branching instructions (virtually all) would probably require a latency of two cycles: (cycle 1) Branch
address computation, microinstruction fetch; (cycle 2) read operands; (cycle 3) run alu, write result. Bypass is not
necessary, except perhaps for global variables, because branch prohibits executing the same thread next cycle.

5.2.14 Bandwidth

The available main memory bandwidth, assuming two ports of 400 MHz DDR2 memories 8 bytes wide, is 6.4
GB/sec, rising to 12.8 as DDR data rates rise to 800 MHz. The L2 cache can deliver 16 GB/sec on hits, but every
miss costs two L2 cycles. As a result, with full memory bandwidth demand there is only 3.2 GB/sec available for
hits, so the available bandwidth drops to 9.6 GB/sec when the memory is busy. [I’d really like to improve the
L2 bandwidth, if we can do that cheaply. Easiest change seems to be to bury writes under reads of the opposite
half-line.]

The possible demand from the switch consists of 6 ports at 2 GB/sec, derated by the 8/10 code, resulting in
10 GB/sec; but realistic load conditions further derate that demand by factors of 1/5.5 (to account for average
path length) and 88% (payload fraction of packet size), to about 1.6 GB/sec with uniformly distributed traffic. For
communication between two nodes on an otherwise idle fabric, we should be able to sustain 4.2 GB/sec of payload
delivery.

In the point-to-point DMA case, we will have three input or output ports running at full bandwidth, each
transfering a packet every 95 ns, more or less. This means that in a fully-unified DMA engine no stage in the
pipeline should dedicate more than 32 ns, or 8 cycles, to one packet; that means the payload cannot be copied – it
must be transferred directly between the switch buffer and the cache.

5.2.15 Matching

Content-addressable memory is expensive in power and area, so we’d prefer not to keep large numbers of receive
contexts ready to match each incoming packet. Still, we do need to be able to keep several contexts open at a
time; the compromise is to build the equivalent of a direct-mapped cache. A few bits of the context-id are used to
index the receive context space, and the remaining bits compared with the id stored at that location. If there is no
match, the packet is assumed to be a remnant of an aborted transfer and will be discarded; we’ll count such events.
Similarly, each received packet carries a 16-bit process id and a 4-bit process index in the trailer; the process index
is used to address the memory which holds control/status pages, and the selected page is checked to match the
process id, which must match to use the process variables. Process index 15 is reserved for non process-specific
packets, and indexes 12-14 are reserved for global variables.

May 14, 2014 236 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

5.2.16 Interface registers

The DMA Engine needs controls for both user and kernel threads, and we need to protect some of the controls
of the user space from access by user mode. Still, we can use a pair of pages for each processor, one user-writable
and the other only writable by the kernel to define the required variables for both threads.

It’s also important to think carefully about which information needs to be in interface registers, which are
presumably uncachable, and which should be in cacheable memory, where we can use more efficient cache-block
transfers. [We could implement the control/status registers in such a way that they were cacheable; we’d just have
to remember ownership, and invalidate the owner whenever one changed.]

5.2.17 Coherence

We clearly need a coherent model of the interface between software and the DMA Engine control interface.
We also need to ensure that accesses by concurrent segments see a coherent memory interface, whether tested by
streams from different remote nodes or by overlapping stride patterns.

I am hoping that we can achieve coherence with the processors by means of a simple interlock which a thread
grabs when it reads memory for modification, and releases upon write. The interlock should delay intervention
responses, and if we make its use exclusive among threads, it will ensure coherence among threads. I still need to
explain how a thread waits for the lock to become available; can we inhibit its bid for cycles?

5.2.18 Alignment

For efficient operation of the DMA engine, both transmit and receive buffers should be aligned on 8-byte
boundaries and transferred data sizes should be multiples of 8. There are at least three distinct performance levels:
highest performance is achieved using contiguous data in large buffers aligned to 64-byte boundaries; the DMA
engine can achieve intermediate performance with efficient transfers of data in multiples of 8 bytes, aligned to
8-byte boundaries. Transfers that do not meet these criteria must be handled by software, and suffer significantly
higher penalties.

5.2.19 Strides and Scatter/Gather

For aligned contiguous transfers, the DMA engine has a substantial performance advantage over the processor
cores, in that it can copy entire cache blocks at a rate of one per cycle (8 GB/sec). This advantage disappears
in strided or scatter/gather operations, where each packet may require multiple memory references and must be
assembled and disassembled piecemeal. With a reasonable datapath width (say, 8 bytes), the peak transfer rate falls
to 2 GB/sec, the same as the peak copy rate of a 5Kf core. The DMA engine still has the potential of substantially
reduced overhead, because of having been designed specifically for the purpose, but that shows up as overhead
hardware (parallel 32-bit adders, for example). A software implementation, conversely, would have the option of
defining special cases to eliminate some of the overhead.

If we get rid of sub-block access in the DMA engine, we’ll also force Enq * and Wr Heap to cache block sizes.

5.2.20 Output Thread

There is an output thread associated with each output port of the switch, and one with the copy function. Each
such thread has at least three output buffers, and the thread works on setting up one, while the cache is filling
the second, while the third is being emptied by the switch. When it finishes setting up the cache requests to fill a
buffer, the thread waits for availability of the next buffer. If there is a ready transmit context for this output port,
it builds a packet in the buffer, enables it for output, and returns to the top. See the pseudocode (??) for a more
detailed flow.

The first microinstruction of an output thread is executed with process variables and transmit context selected.
It copies the routing information from the transmit context to the packet header. The second writes the Packet
Type and Process ID to the trailer ford. It tests whether the context is for a DMA packet, and if not, whether the
payload comes from the queue entry or the heap.

If the payload is from the queue entry, the third microinstruction loops copying payload to the packet buffer
(or loads it from queue memory).

If the payload is from the heap, the third microinstruction checks the heap offset and length, and the fourth
reads from the heap to the packet buffer.

May 14, 2014 237 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

If the packet is DMA, the third microinstruction checks the BDT entry; the fourth initiates a memory read,
updates address and length, and checks the BDT again; the fifth initiates a second read and checks the segment
length. If the segment is done, the sixth microinstruction pops a new transmit context from the appropriate queue.

5.2.21 Input Thread

There is an input thread associated with each input port of the switch. Each such thread rotates among three
input buffers, making one available to the switch as it interprets the control information in the next, and the cache
stores the payload of the third. Upon completing a packet buffer, it waits for the next to be full, then finds the
receive context that matches this packet. Finding one, it sets up the cache requests to store the payload according
to the context, writes any event queue entry required, writes any response queue entry required, and returns to
the top. If there is no matching receive context, the input packet is discarded. See the pseudocode (??) for a more
detailed flow.

For each received packet, the first microinstruction executed is selected by the packet type field, and the hardware
uses the 4-bit process index to select one of the control/status pages to control heap and queue accesses. In all
cases, the first instruction checks that the PID matches that in the selected C/S page.

The first cycle of an Enq Tx, Rx, or Direct tests the queue pointers for the appropriate queue to make sure
there is room for the new packet. The next cycle either writes the packet to the queue (one or two writes required)
while updating the pointers; wraps the queue pointer if needed, then writes the packet; or sets an error indication
because the queue has overflowed.

The first cycle of a Wr Heap tests the offset and length against the heap size. The second cycle either writes
the payload or sets an error indication because the store is out of bounds.

The first cycle of a DMA selects the receive context and checks for a match; it checks for a packet sequence
number match, and it checks that the current BDT entry has room for the first cache line of the packet. The
second cycle writes the first cache block, increments the address, decrements the buffer length, and checks that the
BDT entry has room for the second cache block. The third cycle writes the second block, increments the address,
decrements the length, and checks whether the message segment is complete, and whether a notification is needed.
If it is, the fourth cycle pushes the Ack onto the transmit foreground queue. In either case, upon completion of a
segment, a new receive context is popped off the receive queue.

5.2.22 Thread performance

There are tight performance constraints on packet processing: in point-to-point communication, a full-sized
DMA packet may arrive every 95 ns on each input port (152 bytes * 10 bits/byte / 16 bits/ns). Assuming a 250
MHz (4ns) clock in the DMA engine, we have 24 cycles in which to service 3 packets, or 8 cycles per packet. To
achieve this goal, we’ll need to be very efficient in our use of cycles, especially in dispatching to the appropriate
routine for each case.

The first microinstruction can be selected by the hardware on the basis of packet type and validity. Subsequent
microinstructions can be pipelined to select register file operands, alu operations, and branch decision before fetching
the next microinstruction of the same thread.

Short-message latency imposes an additional constraint: of 500ns total, the fabric requires about 180, leaving
320ns for DMA Engine and library software. We want to make sure that when the Tx command queue is empty,
new entries are passed directly to the output thread without diverting through memory, and received packets are
available on the event queue with absolutely minimal overhead.

5.2.23 Queue manager

The queue manager state machine is activated whenever a new entry is stored in the command registers or an
input thread has something to enqueue for response. It checks the queue entry for validity (allowed buffer and
route descriptors) and copies it to appropriate memory for access by the input and output threads. A related state
machine writes event queue entries. Figure 5.6 is a schematic representation of the queue Manager process for
transmit and receive queues.

When a transmit context is completed, the queue manager pops the next item off the transmit queue associated
with the same output port. When a receive context is completed, the queue manager pops the next item off the
receive queue associated with the input port, and assigns a new context id. It inserts the new context id into a
Get request (the rest of which was in the receive queue entry), and passes the Get request to the bypass transmit
context of the output port selected by the route.

May 14, 2014 238 Rev 51328

SiCortex Confidential 5.2. IMPLEMENTATION

Figure 5.6: Queue manager

Background ContextProcess

C/S page

CmdQ

Process

C/S page

CmdQ

Process

C/S page

CmdQ

Process

C/S page

CmdQ

Process

C/S page

CmdQ

Process

C/S page

CmdQ

Kernel Process

User Process

Kernel Process

User Process

Kernel Process

User Process

Processor 0

Processor 2

Processor 1

Etc...

Foreground Context
Output Link 1

Foreground Context
Output Link 2

Input Link 0
Context Pool

Input Link 1
Context Pool

Input Link 2
Context Pool

Foreground Context
Output Link 0

Interface Scan

Response

Input 0

Response

Input 1

Response

Input 2

Background Context

Background Context

5.2.24 Port manager

Each input and output port has a state machine which manages three or more packet buffers, such that one
of them is assigned to the switch port and is used for injecting a packet into the fabric or receiving one from the
fabric; one of the packet buffers is assigned to the cache, and sequences the transfer of up to two aligned L2 cache
lines to or from the cache, using an address provided by the DMA engine; the third packet buffer is assigned to the
port’s input or output thread in the DMA engine, which can read or write it under microcode control. The roles
assigned to the three buffers rotate when all have completed their respective tasks, or have nothing to do. [It might
pay to have four packet buffers per port, so that variations in processing time can be absorbed without degrading
performance.]

5.2.25 Copy Thread

There is also a low-priority thread which performs memory-to-memory transfers; it appears that the simplest
implementation treats the copy thread as an additional input and output port which software can treat as if it
were simply another interface to the fabric with a loopback destination. I’d like to augment the copy function with
a useful crypto function (for encryption/decryption of TCP/IP traffic) and a zero-memory function (for use by
the page-creation software). And if the fabric processor is going to be responsible for strided and scatter/gather
operations, it would be helpful if the copy thread could be invoked to prefetch memory along strided or scattered
streams.

5.2.26 Timeouts

We need to be able to detect lost packets or broken links without incurring significant software overhead. One
way to do that would be to set a timer on each active receive context, and complain about any that exceeded a
software-defined maximum value, either since initialization, or since the last received packet. Transmit contexts
may not benefit, though it would be desirable to invoke software if unable to emit a packet over some defined time
period.

Timers on receive contexts won’t detect lost Acks or Rendezvous requests, nor anything which doesn’t have a
dedicated receive context.

5.2.27 Error Conditions

• Correctable ECC error on memory access: correct the error, capture address and syndrome in error registers.

• Uncorrectable error on memory access: disable the thread with the error, capture address, interrupt host.

• Receive packet with “poison” type: count and drop packet

• Receive packet with process id mismatch: enqueue for fabric processor?

May 14, 2014 239 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

• Receive DMA packet with context id mismatch: count and drop packet

• Event queue overflow: Interrupt

• Any command queue overflow: Interrupt

• Route or Buffer handle out of bounds: Interrupt

• Invalid Buffer Descriptor: Interrupt, push current context onto event queue, invalidate context.

5.3 Notes

5.3.1 Rendezvous

Rendezvous performance is pretty important, because any latency becomes message overhead, so we’d like it to
be handled in hardware if at all possible. The rendezvous response, when it returns, should start the dma transfer,
including setting up any shifting necessary to get the packets aligned to cache blocks at the destination, and setting
the segment packet count to stop at a page boundary.

The communicator data structure can include an array indexed by rank, where each item in the array is the
head of an ordered list of posted receives, and there can be a separate list of receives for rank-any. The structure
representing a posted receive could include an sequence number, so we could determine which is oldest. But are
we then going to hash on the tag?

Rendezvous is also responsible for calculating the alignment of segments to ensure that packet payloads are
aligned to cache blocks at the receiver. [The transmitter is in a much better position than the receiver to do the
alignment, because the packets may arrive at the receiver from multiple interleaved streams. The receiver would
also have to do read-modify-writes if it got partial lines.]

Therefore, the rendezvous request includes the low bits of the source buffer starting address and the buffer
length. The rendezvous response carries (in the datatype field) the number of bytes by which to shift source cache
blocks to align them with destination cache blocks, and the length of the segment. I intend the rendezvous response
to be coded as a Get: the relevant parameters are in the transmit context to initiate the transfer.

DMA transfers always reserve a receive context before queueing for use of a transmit context; this prevents a
potential deadlock which could occur if some transfers reserved transmit contexts first, then queued waiting for
receive contexts.

5.3.2 Ethernet simulation

We’d like to be able to pretend that the fabric is one large ethernet, so as to use TCP and UDP services with
a minimum of new development. For that purpose, there should be a driver with the same API as the ethernet
driver, but which converts MAC addresses to routes through the fabric or broadcast.

5.3.3 Barrier

When any communicator is created, the data structure in each node includes space reserved for barriers and
collective operations on that communicator. The nodes which participate in the communicator are partitioned into
a tree or multidimensional network which will be used for barriers and collectives. The data structure in each node
describes where this node is in that network. Specifically, how many inputs are required at this point in the network
to complete a barrier, and where to send notification of barrier stage completion.

If we have explosive broadcast, I expect that a collection tree followed by broadcast notification will be the most
efficient implementation of barriers. Without it, we may find that a single-pass multidimensional exchange works
better, in spite of needing more messages.

In the two-pass tree-structured implementation, most nodes are leaves, some are intermediate, and one (arbi-
trarily chosen, from the perspective of the MPI user) is the root. Leaf nodes, upon encountering a barrier, send a
packet containing the communicator id to their designated intermediaries, which mark receipt from each leaf and
the local process in the communicator data structure. Upon receipt of the last notice, an intermediate node sends
notice to its designated superior, in just the way that each leaf did to the intermediate node. The root, rather
than sending notice to a superior, responds with a broadcast which notifies all ranks of the communicator that the
barrier has been passed. Intermediate nodes must then reset the communicator data structure in preparation for
the next barrier. [This seems to imply a race. Maybe barriers and collectives should carry a generation number.]

May 14, 2014 240 Rev 51328

SiCortex Confidential 5.3. NOTES

If we use a single-pass implementation, there is no distinction between leaf, intermediate, and root nodes. The
communicator is factored by some small integer radix r, and each node exchanges messages with r−1 other nodes at
each stage of the barrier process. The barrier is complete after k stages, where rk ≥ N, the size of the communicator.

5.3.4 Cache interface

If we provided a single 8-byte wide interface to the L2 cache, operating at 250 MHz, the peak achievable
bandwidth would be 2 GB/sec, only half of the goal. I think the answer is that the buffers for each input or output
port should interface a 64-bit bus with its own path to or from the L2. Each buffer needs to be able to handle
out-of-order completion of reads, because some will be found in cache while others are in memory.

Writing toward memory is easier because the data transfer will occur at a fixed time with respect to successful
arbitration and address transfer, so the packet buffer can schedule each write as the last one is completing, and the
path from a packet buffer to the cache data bus simply carries one doubleword per cycle.

We will require receive packet payloads to be aligned with the memory at 32-byte boundaries, corresponding to
a half line in the L2 cache. This eliminates the need to read a block from memory before writing the payload over
it.

5.3.5 Performance Counters

It’s important to be able to measure and understand the performance of the communication fabric and to be
able to characterize the load presented by an application. Some such data can be gathered by library software,
noting initiation and completion times of messages, their lengths and other characteristics. But some information
is undoubtedly best obtained by instrumenting the hardware. So far, I don’t know what to measure in the DMA
engine.

• For measurement of traffic through the switch, I’d like to have a performance sampling bit in the packet
header, and accumulate a total of the time spent in the switch for all packets with the sampling bit set. An
implementation of that function would attach a packet arrival time to every packet, and calculate the running
sum of the difference between arrival and departure times for packets with the bit set.

• I’d also be interested in knowing the number of cycles in which each virtual channel is blocked (has no
apparently free buffers in the downstream node).

• Packets received/transmitted per DMA engine port (by type?)

• Memory ECC errors (count, or simply flag?)

May 14, 2014 241 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.4 Registers and Definitions

[$Id: DmaRegs.lyx 46805 2007-10-30 21:33:40Z denney $]

5.5 Microengine Instructions

5.5.1 Instruction Fields

Class

DmaUeInst

Attributes
Bit Mnemonic Type Reset Definition

d0[2:0] opaMode DmaUeInstOpa operand A addressing mode
d0[8:3] opaIdx operand A index
d0[11:9] opbMode DmaUeInstOpb operand B addressing mode
d0[17:12] opbIdx operand B index
d0[20:18] destMode DmaUeInstDest addressing mode for destination
d0[26:21] destIdx destination index
d0[31:27] alu DmaUeInstAlu ALU operation
d0[34:32] memOp DmaUeInstMemOp memory transfer operation
d0[35] memWrAddr write MemAddr register for current thread

d0[38:36] memLenSel DmaUeInstMemLenSel specifies where the memory transfer length comes from,
either a constant or from the payload length in a port.

d0[39] memLast For threads 0-7, memLast=1 means “This is the last in-
struction that refers to this packet.” If 1, the currently se-
lected port is notified that the microengine is finished with
the packet buffer. In the DMA THR IO ACCESS thread,
memLast=1 informs the StartIo interface that the micro-
engine is ready for another I/O operation. For I/O reads
this causes the cache interface to send the I/O data back
to the processor. In the I/O thread, when memLast=1,
the memOp must encode NONE, sleepMode must encode
hwFlag, and sleepIndex must encode NONE.

d0[41:40] sleepMode DmaUeInstSleep sleep request
d0[45:42] sleepIndex which condition or mutex is indicated in sleep field. The

encoding is DmaUeInstSleepCond or DmaUeInstSleep-
Mutex, depending on sleepMode

d0[49:46] branch DmaUeInstBranch branch type
d0[59:50] nextAddr next address
d0[62:60] stall 1 number of cycles to delay before this thread may execute

another instruction

d0[63:0] allBits for vspecs to read the first doubleword as a bit vector.
Overlaps allowed.

5.5.2 Operand A addressing modes

This section describes the values that can go into the opaMode field of the microengine instruction.

Enum

DmaUeInstOpa

Attributes

-allowlc

May 14, 2014 242 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition

3’d0 specialReg Special Operand A registers, see table below
3’d1 ptr0 Read from dmem. The 10-bit address is ptr0<9:0> xor

(opaIdx<5:0> shifted left by 4).
3’d2 ptr1 Read from dmem. Same as above, but with ptr1.
3’d3 ptr2 Read from dmem. Same as above, but with ptr2.
3’d4 ptr3 Read from dmem. The 10-bit address is ptr3<9:0> xor

(opaIdx<5:0> shifted left by 4) xor processIndex<3:0>.
For threads 0-3, the processIndex comes from bits 15:12
of the trailer FORD in the selected receive port. For the
I/O thread, the processIndex<3:0> comes from the I/O
address bits 19:16.

3’d5 ptr4 Read from dmem. The 10-bit address is ptr4<9:0> xor
(opaIdx<5:0> shifted left by 4).

3’d6 ptr5 Read from dmem. The 10-bit address is opaIdx<5:0>
concatenated with 1111.

3’d7 reserved

5.5.3 Operand B addressing modes

This section describes the values that can go into the opbMode field of the microengine instruction.

Restriction: The dmem is divided into four banks, and each bank can only read one address at a time. If
operand A and operand B select different addresses in the same dmem bank, operation is undefined.

Enum

DmaUeInstOpb

Attributes

-allowlc

Constant Mnemonic Definition

3’d0 specialReg Special Operand B registers, see table below
3’d1 ptr0 Same as ptr0 in operand A except opbIdx is used.
3’d2 ptr1 Same as ptr1 in operand A except opbIdx is used.
3’d3 ptr2 Same as ptr2 in operand A except opbIdx is used.
3’d4 ptr3 Same as ptr3 in operand A except opbIdx is used.
3’d5 ptr4 Same as ptr4 in operand A except opbIdx is used.
3’d6 ptr5 Same as ptr5 in operand A except opbIdx is used.
3’d7 memRead Thread-specific buffer for microcode to read cache blocks.

The buffer can be filled using the memory fields of the in-
struction. There are 16 doublewords of data in the buffer,
selected by opaIdx<3:0>.

5.5.4 Destination Addressing Modes

Enum

DmaUeInstDest

Attributes

-allowlc

May 14, 2014 243 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

3’d0 specialReg Special destination registers, see table below
3’d1 ptr0 Same as ptr0 in operand A except destIdx is used
3’d2 ptr1 Same as ptr1 in operand A except destIdx is used
3’d3 ptr2 Same as ptr2 in operand A except destIdx is used
3’d4 ptr3 Same as ptr3 in operand A except destIdx is used
3’d5 ptr4 Same as ptr4 in operand A except destIdx is used
3’d6 ptr5 Same as ptr5 in operand A except destIdx is used
3’d7 memWrite Thread-specific buffer for microcode to write cache blocks,

indexed by destIdx. The buffer can be sent to memory us-
ing the memory fields of the instruction. There are 16 dou-
blewords of data in the buffer, selected by destIdx<3:0>.

5.5.5 Special Registers addressed by Operand A

Enum

DmaUeInstSpecialOpa

Attributes

-allowlc
Constant Mnemonic Definition

6’h00 zero The value zero.
6’h10 thread0Ptr Read THREAD0 PTR register, pointer state for the Rx

port 0 thread. This is used to implement I/O reads of
thread state registers. Also, it allows a thread to read its
ptrN values.

6’h11 thread1Ptr Read pointer state for Rx port 1
6’h12 thread2Ptr Read pointer state for Rx port 2
6’h13 thread3Ptr Read pointer state for Rx copy port
6’h14 thread4Ptr Read pointer state for Tx port 0
6’h15 thread5Ptr Read pointer state for Tx port 1
6’h16 thread6Ptr Read pointer state for Tx port 2
6’h17 thread7Ptr Read pointer state for Tx copy port
6’h18 thread8Ptr Read pointer state for Queue Manager
6’h19 thread9Ptr Read pointer state for I/O service thread:

THREAD9 PTR register
6’h1E spclData Returns the 24-bit data from the most recent SPCL op-

eration that arrived on the CSW. This register is only
used in microcode that handles SPCLs. To compute
spclData, concatenate 40 zeroes, ioAddr<35:20>, and
ioAddr<15:8> to make a 64-bit value.

6’h1F ioAddr Returns the address of the current I/O read or write. This
is used in microcode that implements programmable I/O
reads or writes.

5.5.6 Special Registers addressed by Operand B

In this table, the constant represents the value to be used in opbIdx when the microinstruction reads special
registers. To read a special register, set opbMode to SPECIAL REG. The registers whose names start with “io”
are used to implement I/O reads and should not be used in normal microcode.

Enum

DmaUeInstSpecialOpb

Attributes

-allowlc

May 14, 2014 244 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition

6’h00 zero The value 0.
6’h1F ioData Returns the data of the current I/O write. This is used

in microcode that implements programmable I/O writes.
6’h20 pktHead Read the packet header FORD for the currently selected

receive port. The receive port number is based on the
thread number.

6’h24 pktCtl Read the packet control FORD for the selected receive
port. If there is no control FORD, according to the hasC-
trl bit in pktHead, the pktCtl register retains its value
from the last packet that did have a control FORD.

6’h28 pktTrail Read the packet trailer FORD
6’h2C pktLen Read the packet payload length for the selected receive

port, in units of bytes. The payload length may be be-
tween 8 and 128 bytes, but always a multiple of 8. The
header, control, or trailer FORDs are not counted as pay-
load.

6’h30 pktPayload0 Read the first doubleword of payload in the currently se-
lected receive port. Continues until...

6’h31 pktPayload1 Second dw of payload
6’h32 pktPayload2 Third dw of payload
6’h33 pktPayload3 Fourth dw of payload
6’h34 pktPayload4 Fifth dw of payload
6’h35 pktPayload5 Sixth dw of payload
6’h36 pktPayload6 Seventh dw of payload
6’h37 pktPayload7 Eighth dw of payload
6’h38 pktPayload8 Ninth dw of payload
6’h39 pktPayload9 Tenth dw of payload
6’h3A pktPayload10 Eleventh dw of payload
6’h3B pktPayload11 Twelfth dw of payload
6’h3C pktPayload12 Thirteenth dw of payload
6’h3D pktPayload13 Fourteenth dw of payload
6’h3E pktPayload14 Fifteenth dw of payload
6’h3F pktPayload15 Read the sixteenth doubleword of payload in the currently

selected receive port.

5.5.7 Special Registers addressed by Destination

In this table, the constant represents the value to be used in destIdx when the microinstruction writes special
registers. To write a special register, set destMode to SPECIAL REG. The registers whose names start with “io”
are used to implement I/O reads and should not be used in normal microcode.

Enum

DmaUeInstSpecialDest

Attributes

-allowlc

May 14, 2014 245 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

6’h00 trashcan Null destination; used when an instruction does not write
any result.

6’h08 ptr0 Write ptr0 register in thread state from bits 9:0 of the
ALU result. If the modified pointer is used in the next
instruction, the instruction that writes the pointer must
set Stall to at least 3 to avoid a pipeline hazard.

6’h09 ptr1 Write ptr1 register. See pipeline hazard warning above.
6’h0A ptr2 Write ptr2 register. See pipeline hazard warning above.
6’h0B ptr3 Write ptr3 register. See pipeline hazard warning above.
6’h0C ptr4 Write ptr4 register. See pipeline hazard warning above.
6’h0F ioData Write ALU result to the I/O read response buffer. This is

used in microcode that implements a programmable I/O
read.

6’h20 pktHead Write packet header FORD for the currently selected
transmit port. The transmit port number comes from the
portSel field in thread state. The NumFords field of the
header is calculated as the payload length in fords plus 2
(header and trailer) plus 1 if HasCtrl is set.
The payload length must be set before writing the header.

6’h24 pktCtl Write packet control FORD for the selected transmit port.
The control FORD is only written to the fabric switch if
the hasCtrl bit in pktHead is set.

6’h28 pktTrail128 Write packet trailer FORD, setting the packet payload
length to 128 bytes.

6’h2C pktTrailLen Write packet trailer and payload length for the currently
selected transmit port. The payload length is taken from
bits 7:0 of the alu, must be between 8 and 128, and always
a multiple of 8. If hasCtrl=0 in the header, payload length
must be between 16 and 128 bytes.
The header, control, or trailer FORDs are not counted as
payload.
The length must be set before writing the packet header.

6’h30 pktPayload0 Write the first doubleword of payload in the currently
selected transmit port.
NOTE: When writing any of the pktPayloadN regis-
ters, you must ensure that any outstanding memory
reads from the previous packet (before memLast)
have completed; otherwise the current AND previous
packet may be corrupted. See bug 2297 for further anal-
ysis.

6’h31 pktPayload1 Second dw of payload
6’h32 pktPayload2 Third dw of payload
6’h33 pktPayload3 Fourth dw of payload
6’h34 pktPayload4 Fifth dw of payload
6’h35 pktPayload5 Sixth dw of payload
6’h36 pktPayload6 Seventh dw of payload
6’h37 pktPayload7 Eighth dw of payload
6’h38 pktPayload8 Ninth dw of payload
6’h39 pktPayload9 Tenth dw of payload
6’h3A pktPayload10 Eleventh dw of payload
6’h3B pktPayload11 Twelfth dw of payload
6’h3C pktPayload12 Thirteenth dw of payload
6’h3D pktPayload13 Fourteenth dw of payload
6’h3E pktPayload14 Fifteenth dw of payload
6’h3F pktPayload15 Write the sixteenth doubleword of payload in the cur-

retnly selected transmit port.
May 14, 2014 246 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

5.5.8 ALU Operation Field

Enum

DmaUeInstAlu

Attributes

-allowlc

May 14, 2014 247 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition (N) (Z) Product

5’d0 selA select A operand (A+0) A<63> A<63:0>
5’d1 selB select B operand (0+B) B<63> B<63:0>
5’d2 add A + B sum<63> sum<63:0>
5’d3 sub A - B dif<63> dif<63:0>
5’d4 boolAnd boolean AND (A & B) AND<63> AND<63:0>
5’d5 boolOr boolean OR (A | B) OR<63> OR<63:0>
5’d6 boolXor boolean XOR (A ˆ B) XOR<63> XOR<63:0>
5’d7 boolAndN boolean ANDNot (A & ˜B) ANDN<63> ANDN<63:0>
5’d9 priorityEncode result<4:0> = priority encode of

A<31:0>. The result is the bit number
of the lowest bit of A that is set, or zero
. upper result bits are 0.

result<4> A<31:0>

5’d10 pidMatch compare 16-bit value from bits 31:16 0 XOR<31:16>
5’d12 ptrUpdate Pointer Update: memAddr = A<35:0>;

Alu<35:0> = A<35:0> + Zext
B<27:0>;
Alu<63:36> = A<63:36> + B<27:0>

alu<63> alu<63:36>

5’d13 ptrDist Pointer Distance: Alu<35:0> =
A<35:0>;
Alu<63:36> = A<27:0> - B<27:0>

alu<63> alu<63:36>

5’d14 ptrExtend Pointer Extend: Alu<35:0>=A<35:0>
- Sext B<63:36>

alu<63> alu<63:36>

5’d15 offset calculate heap address and check off-
set. Alu<63:36> = A<63:36> +
B<27:0>; Alu<35:0> = A<35:0> +
Zext B<27:0>

alu<63> alu<63:36>

5’d16 swapOffset calculate heap address and check off-
set. Alu<63:36> = A<63:36> +
B<59:32>; Alu<35:0> = A<35:0> +
Zext B<59:32>

alu<63> alu<63:36>

5’d18 subLow32 Subtract in low 32 bits only.
Result<31:0> = A<31:0> - B<31:0>
Result<63:32>=A<63:32>
N = Result<31>
Z based in Result<31:0> only

5’d20 cacheRead result = B<63:0> 0 MemAddr<35:0> xor
A<35:0>

5’d21 cacheWrite Write two dmem locations. B<63:0> is
the alu result, and is written to destina-
tion address, which must have bit 4 = 1.
MemAddr<35:0> is written to destina-
tion address minus one.

alu<63> result<63:0>

5’d23 munge Rotate/and/xor operations on Operand
B, controlled by bits of Operand A.
First rotate right by opa<5:0>. Any
bits that shift off the end wrap around.
Then AND with opa<39:8> (msb ex-
tended with opa<39>). Then XOR
with opa<63:40> (msb extended with
opa<63>).

B<63> result<63:0>

5’d24 merge0 Twice9 only: Merge A and B, based
on bits from R SDmaMergeOpHi[0] and
R SDmaMergeOpLo[0]. See 5.2.12.4 for
details.

alu<63> result<63:0> TWC9A

5’d25 merge1 Twice9 only: Merge A and B, based
on bits from R SDmaMergeOpHi[1] and
R SDmaMergeOpLo[1].

alu<63> result<63:0> TWC9A

5’d26 merge2 Twice9 only: Merge A and B, based
on bits from R SDmaMergeOpHi[2] and
R SDmaMergeOpLo[2].

alu<63> result<63:0> TWC9A
May 14, 2014 248 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

5.5.9 Memory Operation Field

Enum

DmaUeInstMemOp

Attributes

-allowlc
Constant Mnemonic Definition

3’b000 none Don’t start any memory operation
3’b001 memRead0 Start block read from memory to the thread’s Mem-

ory Read Buffer, doublewords 0-7. The memory address
comes from the MemAddr register for the thread.

3’b010 memRead1 Start block read from memory to the thread’s Memory
Read Buffer, doublewords 8-15. The memory address
comes from the MemAddr register for the thread.

3’b011 readPkt Start block read of currently selected packet buffer
3’b100 sendIntr Send an interrupt to a processor. The instruction that

sets sendIntr must produce an alu result in which re-
sult<15:12> is the bus stop number of the interrupt tar-
get and result<11:0> is the unique number that goes on
CmdAddr.

3’b101 memWrite0 Start block write from the thread’s Memory Write Buffer,
doublewords 0-7, to memory. The memory address comes
from the MemAddr register for the thread.

3’b110 memWrite1 Start block write from the thread’s Memory Write Buffer,
doublewords 8-15, to memory. The memory address
comes from the MemAddr register for the thread.

3’b111 writePkt Start block write from the currently selected packet buffer.

5.5.10 Memory Transfer Length Selection

Enum

DmaUeInstMemLenSel

Attributes

-allowlc
Constant Mnemonic Definition

3’b000 payloadLen Transfer length comes from the payload length of the port
associated with the current thread. Only threads 0-7 may
use this encoding.

3’b001 bytes8 Use transfer length of 8 bytes. The hardware will transfer
a whole cache block, but the thread may be able to awaken
sooner than if it asked for a 64 byte transfer.

3’b100 bytes32 Use transfer length of 32 bytes
3’b010 bytes64 Use transfer length of 64 bytes
3’b101 bytes96 Use transfer length of 96 bytes
3’b011 bytes128 Use transfer length of 128 bytes

5.5.11 Sleep Mode Field

Enum

DmaUeInstSleep

Attributes

-allowlc

May 14, 2014 249 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

2’b00 hwFlag After this instruction, sleep until a certain hardware flag is
detected, for example the completion of a memory trans-
fer. The condition is determined by the Sleep Index field.

2’b01 Reserved
2’b10 takeMutex After this instruction, sleep until this thread has exclu-

sive ownership of the mutex identified in the Sleep Index
field. The following instruction is allowed to read/write
the shared resource.

2’b11 dropMutex After this instruction is completed, release the shared re-
source identified in the Sleep Index field. The instruction
which specifies DropMutex is allowed to read/write the
resource, but the following instruction must not.

5.5.12 Sleep Index Field, when Sleep=HwFlag

If the Sleep field equals HwFlag, the Sleep Index field is encoded as follows:

Enum

DmaUeInstSleepFlag

Attributes

-allowlc

Constant Mnemonic Definition

4’b0000 none Don’t sleep. For most instructions, you don’t want a sleep
operation, so you should encode NONE.

4’b0001 halt Halt is a sleep flag that is always false. If a process sleeps
on this flag, it will never wake up. The only way a thread
can awaken from halt is external software modification of
the thread state.

4’b0010 buffer After this instruction, sleep until there is a full (Rx) or
empty (Tx) packet buffer from the selected port. The
port that is monitored for packets is determined by the
thread number. If SleepIndex=buffer is used in the same
instruction as memLast=1, the stall field must contain at
least 5 (?).

4’b0011 mem After this instruction, sleep until all memory transfers
started by previous microinstructions on this thread have
completed. If SleepIndex=mem is used in the same in-
struction as starting a memory operation, the Stall field
must contain at least 4.

4’h4-4’hF Reserved

5.5.13 Sleep Index Field, when Sleep=TakeMutex or DropMutex

If the Sleep field is TakeMutex or DropMutex, the Sleep Index field tells which Mutex the instruction tries to
acquire. The field is encoded as follows:

Enum

DmaUeInstSleepMutex

Attributes

-allowlc

May 14, 2014 250 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition

4’d0 ptr0 Use ptr0 bit 8 concatenated with bits 3:0 to select the
mutex.

4’d1 ptr1 Use ptr1 bit 8 concatenated with bits 3:0 to select the
mutex.

4’d2 ptr2 Use ptr2 bit 8 concatenated with bits 3:0 to select the
mutex.

4’d3 ptr3 Use ptr3 bit 8 concatenated with bits 3:0 of (ptr3 xor
processIndex<3:0>) to select the mutex. See Operand A
addressing modes table for details.

4’d4 ptr4 Use ptr4 bit 8 concatenated with bits 3:0 to select the
mutex.

4’d5 userdef0 First of 10 user defined mutexes, available for microcode
to use however it wants.

4’d6 userdef1 User defined mutex
4’d7 userdef2 User defined mutex
4’d8 userdef3 User defined mutex
4’d9 userdef4 User defined mutex
4’d10 userdef5 User defined mutex
4’d11 userdef6 User defined mutex
4’d12 userdef7 User defined mutex
4’d13 userdef8 User defined mutex
4’d14 userdef9 Last of 10 user defined mutexes
4’d15 reserved

5.5.14 Internal Encoding of Sleep Conditions

The sleep index field uses instruction bits plus parts of the thread state to select a particular hardware condition
or mutex. Inside the DMA microengine, conditions and mutexes are treated almost the same. Conditions and
mutexes resolve to a six-bit condition number that the thread selector can use to decide when to wake up a thread.
The following table lists all the conditions that can cause a thread to sleep, and how they are encoded. The
sleepCond register in the microengine (visible on R SDmaSleepCondL and R SDmaSleepCondH status registers)
is a bit field whose bit numbers are defined by the Constant in this table.

Enum

DmaUeSleepCond

May 14, 2014 251 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition (Controlled by)

6’h00 MUTEX0 First of 32 mutexes selected by ptr0-ptr4 value. A one
in this bit means that the mutex is available; zero means
that the mutex is unavailable.

uCode

6’h1F MUTEX31 Last of 32 mutexes selected by ptr0-ptr4 value. uCode
6’h20 MUTEX USERDEF0 First of 10 mutexes selected by userdef0-userdef9 uCode
6’h29 MUTEX USERDEF9 Last of 10 mutexes selected by userdef0-userdef9 uCode
6’h2A MEMDONE THR0 All memory transfers started by thread 0 have completed.

A zero in this bit means that thread 0 has started a trans-
fer in the DMA cache interface which hasn’t completed.
One means that all transfers started by this thread have
finished.

HW

6’h2B MEMDONE THR1 see above HW
6’h2C MEMDONE THR2 see above HW
6’h2D MEMDONE THR3 see above HW
6’h2E MEMDONE THR4 see above HW
6’h2F MEMDONE THR5 see above HW
6’h30 MEMDONE THR6 see above HW
6’h31 MEMDONE THR7 see above HW
6’h32 MEMDONE THR8 see above HW
6’h33 MEMDONE THR9 All memory transfers started by thread 9 have completed. HW
6’h34 RX0 AVAIL A new packet is available in receive port 0. If this bit is

one, a packet has arrived in the receive port and is ready
to be processed. If zero, the microengine must wait for a
packet to arrive.

HW

6’h35 RX1 AVAIL A new packet is available in receive port 1 HW
6’h36 RX2 AVAIL A new packet is available in receive port 2 HW
6’h37 RX COPY AVAIL A new packet is available in the receive side of the copy

port
HW

6’h38 TX0 AVAIL Empty packet buffer is available in transmit port 0. If this
bit is one, the transmit port is ready for the microengine
to send a packet; if zero, the microengine must wait before
sending a transmit packet.

HW

6’h39 TX1 AVAIL Empty packet buffer is available in transmit port 1 HW
6’h3A TX2 AVAIL Empty packet buffer is available in transmit port 2 HW
6’h3B TX COPY AVAIL Empty packet buffer is available in the transmit side of

the copy port
HW

6’h3C reserved
6’h3D IO THREAD AWAKE Used to awaken the I/O processing thread during I/O

operations. Default value is 0.
HW

6’h3E HALT HALT is a sleep condition that is always false. If a thread
sleeps on this condition, it will never wake up.

Constant

6’h3F NONE In an instruction, this value means “don’t sleep.” In the
sleepCond field of a thread’s state, it means“I’m not sleep-
ing.”

Constant

6’h00 FIRST MUTEX the first entries are hardware flags. Which is the first
entry that is a mutex? Update if encoding table changes.

6’h29 LAST MUTEX last entry that is a mutex

5.5.15 Branch Field

Enum

DmaUeInstBranch

Attributes

-allowlc

May 14, 2014 252 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition (NumWays)

3’b000 GOTO Unconditional branch (default) 1
3’b001 B<11:8> Command dispatch on B operand 16
3’b010 A<1:0> dispatch on port number in A operand 4
3’b011 NZ NextAddr<0> = ALU Z

NextAddr<1> = ALU N
4

3’b100 N ALU N 2
3’b101 Z ALU Z 2

3’b110-3’b111 Reserved

5.5.16 Dedicated Microinstruction Addresses

I/O space operations make address bits 19:16 available as the process index. (See ptr3 definition in Operand A
addressing.)

Address bits 6:3 are ANDed with a 4-bit kernel-programmable mask to produce microinstruction address bits
3:0. (See PROG IO register)

Microinstruction address bits 7:4 are 0 for I/O writes, 1 for I/O reads, and 2 for SPCL writes.

Defines

DMA UINST ADDR

Constant Mnemonic Definition

10’h00 PROG IO WRITE For programmable I/O writes, execute microcode at this
address plus the I/O write address bits 6:3

10’h10 PROG IO READ For programmable I/O reads, execute microcode at this
address plus the I/O write address bits 6:3

10’h20 PROG IO SPCL For programmable SPCLs, execute microcode at this ad-
dress plus the SPCL address bits 6:3

10’h30 DEFAULT ENTRY THR0 First instruction executed by thread 0
10’h31 DEFAULT ENTRY THR1 First instruction executed by thread 1
10’h39 DEFAULT ENTRY THR9 First instruction executed by thread 9

5.5.17 Miscellaenous Constant Definitions

Defines

DMA

May 14, 2014 253 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

32’d4 PBUF N Number of packet buffers in a receive or transmit port.
PBUF N = 1 << PBUF N LOG 2

32’d2 PBUF N LOG 2 How many bits are required to encode the packet buffer
number PBUF N?

32’d3 PBUF BUF MASK Bitmask used for selecting the buffer number in the low
bits of the PBUF address.
PBUF MASK = PBUF N - 1

32’d64 PBUF WORDS Number of words in a receive port packet buffer
32’d72 PBUF BITS Number of bits in packet buffer
32’d72 OPRF BITS Number of bits in receive port operand regfile.
32’d44 OPRF WORDS Number of words in a receive port operand regfile. 32

words of fabric switch control/staus registers + 3 regs * 4
packet buffers = 44. The three regs are pktHead, pktCtl,
and pktTrail.

32’d5 N OPERAND PTRS Number of pointers in operand A, B, and destination
32’d72 DMEM BITS Number of bits in microengine data memory
32’d1024 DMEM WORDS Number of words in microengine data memory. It’s split

into two halves, each DMEM WORDS/2.
32’d4 DMEM INTERLEAVE BIT Which bits of DMEM address determines interleaving

of data between the four banks halves. The banks
are interleaved on bits DMEM INTERLEAVE BIT and
DMEM INTERLEAVE BIT+1.

10’h100 DMEM PROCESS0 Address in DMEM of the first process descriptor
10’h020 DMEM PROCESS INCR Add this to the DMEM address to find the next pro-

cess. The address for process descriptor P would be
DMEM PROCESS0 + P * DMEM PROCESS INCR.

32’d64 UIM BITS Number of bits in microinstruction memory
32’d1024 UIM WORDS Number of words in microinstruction memory
32’d10 UIM ADDR BITS Number of bits needed to specify an address in the

microinstruction memory. 1<<UIM ADDR BITS =
UIM WORDS.

32’d10 N THREADS Number of threads in microengine
32’d2 MAX TASKS PER THREAD Number of cache interface operations per thread
32’d4 OUTSTANDING READS ICE9 only: Maximum number of outstanding reads from

DMA to L2 Memory Bus
32’d4 OUTSTANDING WRITES ICE9 only: Maximum number of outstanding writes from

DMA to L2 Memory Bus
32’d7 OUTSTANDING READS TWC TWC9 only: Maximum number of outstanding reads from

DMA to L2 Memory Bus
32’d7 OUTSTANDING WRITES TWC TWC9 only: Maximum number of outstanding writes

from DMA to L2 Memory Bus
32’d4 NUM MEMOUT SEQ Number of MemOut address sequencers. There are four

sequencers, one for each of: rxp0, rxp1, rxp2, and copy
ports.

32’d4 NUM MEMIN SEQ Number of MemOut address sequencers. There are four
sequencers, one for each of: txp0, txp1, txp2, and copy
ports.

8’hA0 RMB IO CORE0 address in memory read buffer (RMB) where I/O write
data from core 0 is stored

8’hA8 RMB IO CORE1 addr in RMB where data from core 1 is stored
8’h08 RMB IO ADDR INCR distance between I/O data addresses. Use

RMB IO CORE0 + N * RMB IO ADDR INCR
8’hA0 WMB IO CORE0 address in memory write buffer (WMB) where I/O read

data for core 0 is stored
8’hA8 WMB IO CORE1 addr in WMB where data for core 1 is stored
8’h08 WMB IO ADDR INCR distance between I/O data addresses. Use

WMB IO CORE0 + N * WMB IO ADDR INCRMay 14, 2014 254 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

5.5.18 DMA Thread Numbers

This table shows what tasks are assigned to the DMA microengine threads.
Defines
DMA THR
Constant Mnemonic Definition

32’d0 RX0 Thread that services receive port 0
32’d1 RX1 Thread that services receive port 1
32’d2 RX2 Thread that services receive port 2
32’d3 COPY RX Thread that services the receive side of the copy port
32’d4 TX0 Thread that services transmit port 0
32’d5 TX1 Thread that services transmit port 1
32’d6 TX2 Thread that services transmit port 2
32’d7 COPY TX Thread that services the transmit side of the copy port
32’d8 QUEUE MGR Queue manager thread
32’d9 IO ACCESS Thread that handles I/O accesses from cores
32’d10 N THREADS Number of threads in microengine

5.5.19 DMA Port numbers

Enum
DmaPort
Constant Mnemonic Definition

3’d0 RX0 Receive port 0
3’d1 RX1 Receive port 1 control registers (read only)
3’d2 RX2 Receive port 2 control registers (read only)
3’d3 RXCOPY Copy port memories, receive side
3’d4 TX0 Transmit port 0 control registers (write only)
3’d5 TX1 Transmit port 1 control registers (write only)
3’d6 TX2 Transmit port 2 control registers (write only)
3’d7 TXCOPY Copy port memories, transmit side

5.5.20 DMA Queue numbers

These constants are chosen to match the order in the Common Control/Status (Kernel R/W) table. If that
table is converted to a form that vspecs can read, then DmaQueue is redundant and should be removed.

Enum
DmaQueue
Constant Mnemonic Definition

4’d0 RX0 Receive port 0 queue
4’d1 RX1 Receive port 1 queue
4’d2 RX2 Receive port 2 queue
4’d3 RXCOPY Copy port queue, receive side
4’d4 TX0 Transmit port 0 foreground queue
4’d5 TX1 Transmit port 1 foreground queue
4’d6 TX2 Transmit port 2 foreground queue
4’d7 TX0BG Transmit port 0 background queue
4’d8 TX1BG Transmit port 1 background queue
4’d9 TX2BG Transmit port 2 background queue
4’d10 TXCOPY Copy port memories, transmit side

5.5.21 DMA Internal Memory Addresses

Class
DmaInternalAddr
Attributes

May 14, 2014 255 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Type Constant Definition

w0[5:0] mem DmaInternalMem The mem field tells which of the DMA’s memories is se-
lected

w0[15:6] index The index field tells the address in the selected memory.
10 bits wide.

w0[15:0] allBits for reading the whole structure as a single bit vector.
Overlaps allowed.

5.5.22 DMA Internal Memory Addresses (Mem Field)

This table creates an encoding for every memory in the DMA engine. The encodings are used for several
different purposes, including operand and destination selection and memory<=>cache transfers. These values are
useful to circuit implementors but not to programmers.

It is important that the memories addressed by the cache interface are grouped together so that some number
of low bits of the constant can distinguish them.

Enum

DmaInternalMem
Constant Mnemonic Definition

6’h0 NONE no memory selected
6’h2 IMEM Microengine instruction memory
6’h3 DMEM Microengine data memory
6’h5 UE REGS registers in microengine, e.g. THREAD SEL
6’h11 RX0 PKR RX port 0 packet header/trailer registers
6’h15 RX1 PKR RX port 1 packet header/trailer registers
6’h19 RX2 PKR RX port 2 packet header/trailer registers
6’h1C RXCOPY PKR RX copy port packet header/trailer registers
6’h21 TX0 PKR TX port 0 packet header/trailer registers
6’h25 TX1 PKR TX port 1 packet header/trailer registers
6’h29 TX2 PKR TX port 2 packet header/trailer registers
6’h2C TXCOPY PKR TX copy port packet header/trailer registers
6’h30 RX0 PBUF RX port 0 packet buffers.

NOTE: all packet buffers are 0x30 to 0x3F. Circuits that
only refer to packet buffers don’t need to store all 6 bits.
They can just use values like RX2 PBUF - RX0 PBUF
and store only 4 bits. Also, it’s important that the first
8 packet buffers starting with RX0 PBUF are in thread
order.

6’h31 RX1 PBUF RX port 1 packet buffers
6’h32 RX2 PBUF RX port 2 packet buffers
6’h33 RXCOPY PBUF copy port packet buffers (for reading)
6’h34 TX0 PBUF TX port 0 packet buffers
6’h35 TX1 PBUF TX port 1 packet buffers
6’h36 TX2 PBUF TX port 2 packet buffers
6’h37 TXCOPY PBUF copy port packet buffers (for writing)
6’h38 RMB0 Read memory buffer 0, in copy port. In fact RMB0 and

RMB1 are two adjacent regions in the same memory.
6’h39 RMB1 read memory buffer 1, in copy port
6’h3A WMB0 write memory buffer 0, in copy port
6’h3B WMB1 write memory buffer 1, in copy port

5.5.23 Receive Port Buffer State Machine

Enum

DmaRxpState

May 14, 2014 256 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition

2’b00 ST SWRX transfer from switch pending
2’b01 ST WAITUE tx from switch done. wait to enter ST UE.
2’b11 ST UE selected for microengine operations
2’b10 ST CA cache operation pending

5.5.24 Receive Port CMUX Select Values

Enum
DmaRxpCmuxSel
Constant Mnemonic Definition

4’b0000 NONE select nothing. cmux will output all zeroes.
4’b0100 RXP0 select data from receive port 0.
4’b0101 RXP1 select data from receive port 1.
4’b0110 RXP2 select data from receive port 2.
4’b0111 COPY select data from copy port.

4’b0111 UNIT SEL MASK bits 2,1,0 indicate which unit is selected.
4’b1000 ENABLE ODD WORD bit 3=1 enables the odd word. bit 3=0 clears the odd word.

5.5.25 Transmit Port Buffer State Machine

Enum
DmaTxpState
Constant Mnemonic Definition

2’b00 IDLE tx from switch done. wait to enter ST UE.
2’b01 UE selected for microengine operations
2’b11 CA cache operation pending
2’b10 SWTX transfer from switch pending

5.5.26 Transmit Port: Packet Builder State Machine

Enum
DmaTxpBldPktState
Constant Mnemonic Definition

3’b000 IDLE ready to accept data from switch
3’b001 SEND FORD1 sending header FORD
3’b101 SEND FORD2 sending control FORD
3’b010 SEND REGFILE sending data from packet buffer
3’b011 SEND TRAILER sending trailer FORD

5.5.27 Copy Port Buffer State Machine

Enum
DmaCopyState
Constant Mnemonic Definition

3’h0 IDLE waiting to enter UETX
3’h1 UETX selected for microengine operations in Copy TX thread
3’h3 RDMEM read operations pending in DmaCif
3’h7 RDY waiting to enter UERX
3’h6 UERX selected for microengine operations in Copy RX thread
3’h4 WRMEM write operations pending in DmaCif

5.5.28 Copy Port: Read/Write Memory Buffer Address

Class

May 14, 2014 257 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

DmaCopyMbAddr

Attributes

Bit Mnemonic Type Constant Definition

w0[7:4] thread Thread number, 0-9. Also, I/O reads and writes use these
buffers to store data being read or written, by setting
thread to (10+core number).

w0[3] block which of the thread’s two cache blocks are accessed, 0 or
1

w0[2:0] dwords the low 3 bits select which doubleword within a cache
block

w0[7:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

5.5.29 Dma Cache Interface Task

used in ReadWriteQ, ReadWriteExtQ, OutstandingWriteTable

Class

DmaCifTask

Attributes

Bit Mnemonic Type Constant Definition

w0[3:0] thread microengine thread number
w0[7:4] localTarget which internal DMA unit will be accessed. Encoding is

the low 4 bits of DmaInternalMem.
w0[12:8] dwordsLeft number of doublewords remaining to be transferred (0-19)
w0[20:13] localAddr address in local DMA memory, 8 bits
w0[53:21] memAddr address in main memory. There are 33 bits for Ad-

dress<35:3>.
w0[56:54] type what command to send to CSW? In block read and write

queues, only BRD or BWT will appear.
w0[57] firstBlock32Byte 1=This is the first cache block transfer in a transfer that

starts on a half-cache-block boundary. 0=any subsequent
blocks

w0[58] swapEvenOdd is the memory address aligned to a doubleword or not? if
0, it is aligned. if 1, enable 32-bit swap.

w0[59] valid is this a valid task or just a No-op? 1=valid task. 0=no
operation. ignore all the other bits in this task.

w0[63:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

5.5.30 Dma Cache Interface: Memory Operation Type

These encodings are used on the ue cif TaskType c5a bus.

Enum

DmaUeMemOpType

May 14, 2014 258 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

Constant Mnemonic Definition

4’d0 BWT Start write operation from an internal DMA memory to
the L2. The length of transfer comes from the payload
length register in the port associated with this thread.
(only threads 0-7)

4’d1 BRD Start read operation from the L2 to an internal DMA
memory. The length of transfer comes from the payload
length register in the port associated with this thread.
(only threads 0-7)

4’d2 BWT8 Same as BWT except the length is 8 bytes. The hardware
will transfer a whole cache block, but the thread may
be able to awaken sooner than if it asked for a 64 byte
transfer.

4’d3 BRD8 Same as BRD except the length is 8 bytes. The hardware
will transfer a whole cache block, but the thread may
be able to awaken sooner than if it asked for a 64 byte
transfer.

4’d4 BWT32 Same as BWT except the length is 32 bytes.
4’d5 BRD32 Same as BRD except the length is 32 bytes.
4’d6 BWT64 Same as BWT except the length is 64 bytes.
4’d7 BRD64 Same as BRD except the length is 64 bytes.
4’d8 BWT96 Same as BWT except the length is 96 bytes.
4’d9 BRD96 Same as BRD except the length is 96 bytes.
4’d10 BWT128 Same as BWT except the length is 128 bytes.
4’d11 BRD128 Same as BRD except the length is 128 bytes.
4’d12 Reserved
4’d13 IORD Response to I/O read from a core. Drive Data only. This

memory op does not increment the thread counter.
4’d14 SPCL Response to a SPCL from a core. Drive DONE command

onto CmdAddr bus. This memory op does not increment
the thread counter.

4’d15 INTR Send an interrupt. The bus stop number will be on
alu cif MemAddr<15:12> and the unique id will be on
alu cif MemAddr<11:0>. This memory op does not in-
crement the thread counter.

5.5.31 Dma Cache Interface: Type of Task

These encodings are used for the type field in the Task data structures.

Enum

DmaCifTaskType

May 14, 2014 259 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

3’b000 BWT Start block write to coherence controller. Drive BWT on
CmdAddr.

3’b001 BRD Start block read. Drive RDS (????) command on Cm-
dAddr, then wait for Data to arrive.

3’b010 PRBDONE End of block read protocol. After data arrives, only if
????, send a PRBDONE on CmdAddr to notify COH that
read is complete.

3’b011 IOWR When WRIO arrives from a core, send RDIO on Cm-
dAddr as a response.

3’b100 IORD Response to I/O read from a core. Drive Data only.
3’b101 INTR Send an interrupt to a processor. See “sendIntr” in the

DmaUeInstMemOp field for more details.
3’b110 BRDR Block read retry
3’b111 SPCL SPCL command, a CmdAddr-only command that trig-

gers a programmable I/O operation. When SPCL is in
the StartIoQ it causes the microengine to execute an I/O
operation. When SPCL is in the WriteQ it causes the
DmaCif to send a DONE command back to the proces-
sor.

5.5.32 Dma Cache Interface: Numbering of Queues

Enum

DmaCifQueueNum
Constant Mnemonic Definition

4’d0 CRWQ read/write queue
4’d2 CRWEXTQ read/write extended queue
4’d4 CSPCLINTQ queue fo SPCL responses and interrupts
4’d5 CRDIOQ RDIO command queue (responses to WTIOs)
4’d6 CBRDRQ block read retry queue
4’d7 DATARESPQ data response queue
4’d8 CSKIDQ 1-deep skid buffer, holds a dequeued task during stall cycles
4’d9 DRDIOQ RDIO data queue
4’d10 DWQ data write queue
4’d11 DSKIDQ 1-deep skid buffer, holds a dequeued data task during stall cycles
4’d12 IOQ StartIo queue for I/O reads
4’d15 NONE no queue selected

5.5.33 Dma Cache Interface: Depth of Queues for ICE9

Defines
DMA QUEUE SIZE
Constant Mnemonic Definition

8’d20 CRWQ read/write queue
8’d20 CRWEXTQ read/write extended queue
8’d16 CSPCLINTQ queue fo SPCL responses and interrupts
8’d6 CRDIOQ RDIO command queue (responses to WTIOs)
8’d4 CBRDRQ block read retry queue
8’d4 DATARESPQ data response queue
8’d1 CSKIDQ 1-deep skid buffer, holds a dequeued task during stall cycles
8’d6 DRDIOQ RDIO data queue
8’d4 DWQ data write queue
8’d1 DSKIDQ 1-deep skid buffer, holds a dequeued data task during stall cycles
8’d12 IOQ StartIo queue for I/O reads

May 14, 2014 260 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

5.5.34 Dma Cache Interface: Depth of Queues for TWC9

Defines

DMA QUEUE SIZE TWC

Constant Mnemonic Definition

8’d20 CRWQ read/write queue
8’d20 CRWEXTQ read/write extended queue
8’d20 CSPCLINTQ queue fo SPCL responses and interrupts
8’d10 CRDIOQ RDIO command queue (responses to WTIOs)
8’d7 CBRDRQ block read retry queue
8’d7 DATARESPQ data response queue
8’d1 CSKIDQ 1-deep skid buffer, holds a dequeued task during stall cycles
8’d10 DRDIOQ RDIO data queue
8’d7 DWQ data write queue
8’d1 DSKIDQ 1-deep skid buffer, holds a dequeued data task during stall cycles
8’d20 IOQ StartIo queue for I/O reads

5.5.35 Dma Cache Interface: Outstanding Read Table entry

Class

DmaCifOrtEntry

Attributes
Bit Mnemonic Type Constant Definition

w0[0] valid this table entry is valid
w0[1] swapEvenOdd 1=use 32-bit alignment
w0[4:2] align Alignment information for transmit buffer.

MemAddr<5:3> is stored here so that when we
send the packet to the FSW, the TX port knows how to
align the data.

w0[12:5] localAddr address in local DMA memory
w0[45:13] memAddr so that we know the address for BRDR and PRB-

DONE. We know there is duplication between align
and memAddr, but we’re leaving it because we thing
memAddr can be eliminated.

w0[49:46] localTarget Which internal DMA unit will be accessed? The encoding
is the low 4 bits of DmaInternalMem.

w0[53:50] thread thread number, needed for thread accounting

w0[63:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

5.5.36 Dma Cache Interface: Outstanding Write Table entry

The OWT data is encoded using the DmaCifTask data structure.

5.5.37 Dma Cache Interface: Block Read Retry Queue (BrdrQ) for ICE9

Class

DmaCifProtocolEntry

Bit Mnemonic Type Constant Definition

w0[4:0] tid Transaction id bits
w0[8:5] dest L2 bus stop number of the block that we will write to
w0[9] valid this table entry is valid

w0[63:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

May 14, 2014 261 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.5.38 Dma Cache Interface: Block Read Retry Queue (BrdrQ) for TWC9

Class

DmaTwcCifProtocolEntry

Bit Mnemonic Product Type Constant Definition

w0[5:0] tid TWC9A Transaction id bits
w0[9:6] dest TWC9A L2 bus stop number of the block that we will write to
w0[10] valid TWC9A this table entry is valid

w0[63:0] allBits TWC9A for reading the whole field as one bit vector. Overlaps
allowed.

5.5.39 Dma Cache Interface: Command RDIO Queue (CrdioQ)

This queue is encoded with DmaCifProtocolEntry.

5.5.40 Dma Cache Interface: SPCL/INT Queue (CSpclIntQ) for ICE9

Class

DmaCifSpclIntEntry

Bit Mnemonic Type Constant Definition

w0[4:0] tid Transaction id bits (for SPCL only)
w0[11:0] intReason Interrupt reason (for INT only). Overlaps tid.
w0[15:12] dest L2 bus stop number of the block that we will write to
w0[16] isSpcl which type of command is this? 1=SPCL, 0=INT

w0[20:17] thread Thread number (for INT only)
w0[21] valid this table entry is valid

w0[63:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

5.5.41 Dma Cache Interface: SPCL/INT Queue (CSpclIntQ) for TWC9

Class

DmaTwcCifSpclIntEntry

Bit Mnemonic Product Type Constant Definition

w0[5:0] tid TWC9A Transaction id bits (for SPCL only)
w0[11:0] intReason TWC9A Interrupt reason (for INT only). Overlaps tid.
w0[15:12] dest TWC9A L2 bus stop number of the block that we will write to
w0[16] isSpcl TWC9A which type of command is this? 1=SPCL, 0=INT

w0[20:17] thread TWC9A Thread number (for INT only)
w0[21] valid TWC9A this table entry is valid

5.5.42 Dma Cache Interface: Data Response Queue (DataRspQ)

This queue is encoded with DmaCifProtocolEntry.

5.5.43 Dma Cache Interface: Data Write Queue (DWQ)

This queue is encoded with DmaCifProtocolEntry.

5.5.44 Dma Cache Interface: I/O Read Queue (DRDIOQ)

This queue is encoded with DmaCifProtocolEntry.

May 14, 2014 262 Rev 51328

SiCortex Confidential 5.5. MICROENGINE INSTRUCTIONS

5.5.45 Dma Cache Interface: StartIoQ for ICE9

Class

DmaCifStartIoEntry

Attributes
Bit Mnemonic Type Constant Definition

d0[1:0] type DmaCifStartIoType RDIO or WTIO or SPCL
d0[34:2] ioAddr 33 bits corresponding to csw dma Addr<35:3>
d0[39:35] tid L2 transaction id for this I/O operation
d0[43:40] origin bus stop number of originator

d0[63:0] allBits for reading all bits at once. Overlaps allowed.

5.5.46 Dma Cache Interface: StartIoQ for TWC9

Class

DmaTwcCifStartIoEntry

Attributes
Bit Mnemonic Product Type Constant Definition

d0[1:0] type TWC9A DmaCifStartIoType RDIO or WTIO or SPCL
d0[34:2] ioAddr TWC9A 33 bits corresponding to csw dma Addr<35:3>
d0[40:35] tid TWC9A L2 transaction id for this I/O operation
d0[44:41] origin TWC9A bus stop number of originator

d0[63:0] allBits TWC9A for reading all bits at once. Overlaps allowed.

5.5.47 Dma Cache Interface: StartIoType

These encodings are used for the type field in the StartIo data structure.

Enum

DmaCifStartIoType

Constant Mnemonic Definition

2’b00 RDIO I/O operation is a read
2’b01 WTIO I/O operation is a write
2’b10 SPCL I/O operation is a special (one way message from core to

DMA)
2’b11 reserved

5.5.48 Dma Cache Interface: Address memory entry

Class

DmaCifAdmEntry

Attributes
Bit Mnemonic Type Constant Definition

d0[35:0] memAddr address in main memory
d0[40:36] len number of doublewords to transfer

d0[63:0] allBits for reading the whole field as one bit vector. Overlaps
allowed.

5.5.49 Dma Cache Interface: MemOut Address Sequencer States

Enum

DmaCifMoaState

May 14, 2014 263 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Constant Mnemonic Definition

3’b000 IDLE wait for start signal
3’b001 READ01 read doublewords 0 and 1
3’b010 READ23 read doublewords 2 and 3
3’b011 READ45 read doublewords 4 and 5
3’b100 READ67 read doublewords 6 and 7

5.5.50 Dma Cache Interface: MemIn Address Sequencer States

Enum

DmaCifMiaState
Constant Mnemonic Definition

3’b000 IDLE wait for start signal
3’b001 WRITE01 write doublewords 0 and 1
3’b010 WRITE23 write doublewords 2 and 3
3’b011 WRITE45 write doublewords 4 and 5
3’b100 WRITE67 write doublewords 6 and 7

5.5.51 Internal Encodings for Microengine Operands

These values are used within the microengine on signals ue xxx OpaAddr c3a, ue xxx OpbAddr c3a, and
ue xxx ResultAddr c5a. Because many of the things the microengine can address are accessible from I/O, we’re
using I/O addresses even for some of the things that are internal.

Defines

DMA OP ENC
Constant Mnemonic Definition

24’h321300 PTR0 ptr0 of the current thread
24’h321301 PTR1 ptr1 of the current thread
24’h321302 PTR2 ptr2 of the current thread
24’h321303 PTR3 ptr3 of the current thread
24’h321304 PTR4 ptr4 of the current thread
24’h321310 IO ADDR ioAddr register
24’h321311 IO DATA ioData register
24’h321312 SPCL DATA spclData register

5.5.52 I/O Region Type (DmaIoRegionType)

This data type describes regions of I/O addresses in the table above.

Enum

DmaIoRegionType

Constant Mnemonic Definition

3’b101 FIXED RW OPA Region is readable and writable by fixed I/O. Reads use
operand A.

3’b011 FIXED RW OPB Region is readable and writable by fixed I/O. Reads use
operand B.

3’b111 NONE not a valid region type

5.5.53 External I/O Addresses

Assume the DMA engine I/O space starts at DMA IO BASE. Everything else is specified as an offset relative
to DMA IO BASE.

Defines

DMA IO

May 14, 2014 264 Rev 51328

SiCortex Confidential 5.6. REGISTERS ACCESSIBLE BY RDIO/WTIO FROM PROCESSORS

Constant Mnemonic Definition

36’hE 8100 0000 BASE Start of DMA engine’s I/O space
36’hE 843F FFFF END End of DMA engine’s I/O space

24’h010000 PAGE SIZE These addresses are calculated based on a page size of
64kb = 0x10000 bytes. As of 5/16/2005 that was our
best guess.

24’h320000 reserved
24’h321000 FIRST UE REG Address of first DMA register whose value lives in the

microengine module DmaUe
24’h321300 Reserved for internal encodings. See the table

DMA OP ENC for details.

5.6 Registers Accessible by RDIO/WTIO from Processors

5.6.1 DMA Instruction Memory (IMEM)

Every location in the DMA instruction memory is I/O accessible. At node initialization time, every location
must be initialized to a known value, to ensure repeatable results and to avoid false detection of ECC errors. The
IMEM may only be accessed when every DMA thread is disabled (see R DmaThreadSel).

Register

R DmaImem[1023:0]

Address

0xE 8131 0000-0xE 8131 1FFF (Add 0x8 per entry)

Attributes

-kernel
Bit Mnemonic Access Reset Definition

63:0 Instr RW X Allows read/write access to one word of
IMEM.

5.6.2 DMA Data Memory (DMEM)

Every location in the DMA data memory is I/O accessible. At node initialization time, every location must be
initialized to a known value, to ensure repeatable results and to avoid false detection of ECC errors. Usually the
processors will not access Dmem while the microengine is running, but it is perfectly legal to do so.

Register

R DmaDmem[1023:0]

Address

0xE 8130 0000-0xE 8130 1FFF (Add 0x8 per entry)

Attributes

-kernel
Bit Mnemonic Access Reset Definition

63:0 Data RW X Allows read/write access to one word of
DMEM.

5.6.3 DMA Thread Select Register

Register

R DmaThreadSel

Attributes

-kernel

Address

0xE 8132 1100

May 14, 2014 265 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Access Reset Definition

9:0 threadEnable RWS 0 The thread enable bits allow external software
to control which threads execute and which do
not. When the bit corresponding to a thread
is 1, the thread is allowed to issue instructions,
subject to the countdown behavior. When 0,
the thread may not execute any instructions.
The threadEnable bit corresponding to the
I/O thread is ignored because the I/O thread
cannot be disabled.

31:16 countdown RW 0 This 16-bit counter allows software to ask
the DMA engine to execute N instructions
and then halt. When countdownHalt=1, the
counter decrements as each microinstruction
is issued, but when it reaches zero, all threads
(except for the I/O thread) stop issuing in-
structions until software intervenes.

32 countdownHalt RW 0 When 1, enable countdown-and-halt behavior
described above. When 0, disable countdown-
and-halt behavior.

Cautionary Note: ThreadEnable bits must be used with caution: any thread can take a mutex flag which may
be needed by the I/O thread in order to service a read, write, or spcl request (that is, requests to DmaAppIface0 or
DmaAppIface1). If a processor issues such a request while a stopped thread is holding such a mutex, the processor
will be hung and must be reset to recover.

In current microcode (as of March 2006), only writes of eventQRdSize depend on a mutex.

5.6.4 DMA Thread Pointer Registers

This table describes the thread pointer registers. There are 10 in all, one for each DMA microengine thread.

Register

R DmaThreadPtr[9:0]

Address

0xE 8132 1000-0xE 8132 104F (Add 0x8 per entry)

Attributes

-kernel
Bit Mnemonic Access Reset Definition

d0[9:0] ptr0 RW 0 Pointer into dmem
d0[19:10] ptr1 RW 0 Pointer into dmem
d0[29:20] ptr2 RW 0 Pointer into dmem
d0[39:30] ptr3 RW 0 Pointer into dmem
d0[49:40] ptr4 RW 0 Pointer into dmem

5.6.5 DMA Thread Program Counter Registers

This table describes the thread PC registers. There are 9 in all, one for each DMA microengine thread except
for the I/O thread #9. The I/O thread has internal registers for pc and sleepCond, but they are not visible to
software because the act of reading or writing an I/O register affects the I/O thread’s values.

Register

R DmaThreadPc[8:0]

Address

0xE 8132 1080-0xE 8132 10C7 (Add 0x8 per entry)

Attributes

-kernel

May 14, 2014 266 Rev 51328

SiCortex Confidential 5.6. REGISTERS ACCESSIBLE BY RDIO/WTIO FROM PROCESSORS

Bit Mnemonic Access Reset Type Definition

9:0 pc RW 0 Program counter for the thread. The pc tells
what address in instruction memory to read.

15:10 sleepCond RW NONE DmaUeSleepCond This field indicates whether the thread is wait-
ing for a condition to become true. If sleep-
Cond is set to DmaUeSleepCond NONE, the
thread is NOT waiting for any condition; oth-
erwise the field encodes which condition it is
waiting for.

5.6.6 DMA Programmable I/O Control Register

Register

R DmaProgIo

Attributes

-kernel

Address

0xE 8132 1108
Bit Mnemonic Access Type Reset Definition

3:0 ioAddrMask RW 0xf For programmable I/O operations, the ioAddrMask bits
are ANDed with the I/O address bits when generating the
microinstruction address to execute.

5.6.7 DMA Application Interface Region 0

This is an address range in which loads and stores causes the DMA to execute microcode.

Register

R DmaAppIface0[0x1FFFF:0]

Address

0xE 8110 0000-0xE 811F FFF8 (Add 0x8 per entry)

Attributes

-noregtest -kernel

Bit Mnemonic Access Type Reset Definition

63:0 Data RW X Programmable I/O region 0. A load or store to this ad-
dress range in a processor causes a RDIO and WTIO com-
mand on the CSW, which triggers a sequences of microcode
in the DMA engine. WTIO to address X causes the mi-
croengine to execute instructions starting at IMEM address
DMA UINST ADDR PROG IO WRITE + (X[6:3] & ioAddr-
Mask). RDIO from address X causes the I/O thread in the
microengine to execute instructions starting at IMEM address
DMA UINST ADDR PROG IO READ + (X[6:3] & ioAddr-
Mask).

5.6.8 DMA Application Interface Region 1

This is an address range in which stores cause the DMA to execute microcode.

Register

R DmaAppIface1[0x1FFFF:0]

Address

0xE BE20 0000-0xE BE2F FFF8 (Add 0x8 per entry)

Attributes

-noregtest -kernel

May 14, 2014 267 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Access Type Reset Definition

63:0 Data W X Programmable I/O region 1. A store to this address
range in a processor causes a SPCL commands on the
CSW, which triggers a sequences of microcode in the
DMA engine. SPCL to address X causes the micro-
engine to execute instructions starting at IMEM ad-
dress DMA UINST ADDR PROG IO SPCL+ (X[6:3] &
ioAddrMask).

5.7 Registers Accessible by Serial Configuration Bus

The DMA block has registers accessible by RDIO/WTIO and others accessible by the SCB. All SCB registers
have the prefix “R SDma” to indicate that they are on the SCB.

5.7.0.1 Block Reset Register

This register allows the RX/TX ports of the DMA to be reset individually. Each port has an active-high signal
which forces everything back to its reset state. After the DMA block is reset, the ports remain in reset until software
initializes the DMA and decides to allow packets to flow. This ensures that an unconfigured DMA cannot cause
the fabric to back up.

Register

R SDmaBlockReset

Attributes

-kernel

Address

0xE 0100 0000

Bit Mnemonic Access Reset Type Definition

31:6 Reserved
5:3 TxReset RW 7 One bit per transmit port. Bit 3+N affects TX port N.

When reset is high, all state in the transmit port is cleared.
The SoP, EoP, and DatVal signals to the fabric switch are
held low. TxpN ue BufAvail c1a is deasserted so that the
microengine believes that all packet buffers are full.

2:0 RxReset RW 7 One bit per receive port. Bits 2:0 affect RX2,1,0.
When reset is high, all state in receive port is
cleared. Dma fsw RdyN s1a is asserted so that any
incoming fabric packets are accepted and dropped.
RxpN ue BufAvail c1a is deasserted so that the micro-
engine believes that no packets have arrived.

5.7.0.2 ECC Mode Register

Register

R SDmaEccMode

Attributes

-kernel

Address

0xE 0100 0004

May 14, 2014 268 Rev 51328

SiCortex Confidential 5.7. REGISTERS ACCESSIBLE BY SERIAL CONFIGURATION BUS

Bit Mnemonic Access Reset Type Definition

31:7 Reserved
6 CifCorrEna RW 1 Enable ECC correction in CIF. This logic is only needed

when the microengine does a BRD from a memory address
with bit 2 set (32-bit realignment).
Bug2396: When CifCorrEna is off and the microengine
does a BRD from a memory address with bit 2 set, the
ECC written into the DMA’s internal memory (TX or
COPY port packet buffer) is incorrectly forced to zero.
Data with corrupted ECC may reach the FSW or main
memory when the packet is sent. The safest workaround
is to always leave CifCorrEna on.

5 ImemCorrEna RW 1 Enable ECC correction during Imem reads
4 DmemCorrEna RW 1 Enable ECC correction during Dmem reads
3 CopyCorrEna RW 1 Enable ECC correction when the Copy port reads a mem-

ory and places data onto the Operand B bus
2:0 RxpCorrEna RW 7 Enable ECC correction when the RX port reads memory

and places data onto the Operand B bus

5.7.0.3 ALU Merge Operation Control Registers (added in Twice9)

Register
R SDmaMergeOpHi[3:0]
Attributes
-kernel -noregtest
Address
0xE 0100 0020-0xE 0100 002C
Bit Mnemonic Access Reset Type Product Definition

31:0 Hi RW 0 TWC9A These four registers control the operation of the DMA
ALU operation Merge0, Merge1, Merge2, and Merge3.
R SDmaMergeOpHi[N] controls bits 63:32 of the MergeN
result, while R SDmaMergeOpLo[N] controls bits 31:0 of
the MergeN result. See 5.2.12.4 for details.

Register
R SDmaMergeOpLo[3:0]
Attributes
-kernel -noregtest
Address
0xE 0100 0030-0xE 0100 003C
Bit Mnemonic Access Reset Type Product Definition

31:0 Lo RW 0 TWC9A These four registers control the operation of the DMA
ALU operation Merge0, Merge1, Merge2, and Merge3.
R SDmaMergeOpHi[N] controls bits 63:32 of the MergeN
result, while R SDmaMergeOpLo[N] controls bits 31:0 of
the MergeN result. See 5.2.12.4 for details.

5.7.0.4 Force Error Register

This register causes the circuit to intentionally produce specific errors. This will help us to test error detection
logic and error handling software.

Register
R SDmaForceErr
Attributes
-kernel
Address
0xE 0100 0008

May 14, 2014 269 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7:6 DmemFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word of

data being written to the data memory. If a corrupted
data is read from Dmem, ECC correction logic in the
Dmem (if enabled) will detect the error and set a bit in
R SDmaIntCause.

5:4 ImemFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word
of data being written to the instruction memory. If a
corrupted data is read from Imem, ECC correction logic
in the Imem (if enabled) will detect the error and set a
bit in R SDmaIntCause.

3:2 CopyFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word
of data being written to the copy port packet buffer and
read/write memory buffer. Corrupted data in the packet
buffer will be sent out the CSW to another block. Cor-
rupted data in the read/write memory buffer will be cor-
rected if the microengine reads it, but if it written back
to CSW it will not be corrected by DMA at all.

1:0 TxFlipMemBits RW 0 These bits are XORed with bits 1 and 0 of every word of
data being written to the packet buffer of every transmit
port. This field allows software to intentionally corrupt
the data that is sent out the TX port to the fabric switch,
to test the ECC correction logic in the fabric switch.

5.7.0.5 Microengine Status Registers

Register
R SDmaUeStatus1
Address
0xE 0100 0108
Bit Mnemonic Access Reset Type Definition

31:4 Reserved
3:0 PrevThread R 0 Which thread ran last (0-9)

Register
R SDmaUeSleepCondsL
Address
0xE 0100 0100
Bit Mnemonic Access Reset Type Definition

31:0 SleepCondsL R X Lower 32 bits of the SleepCond vector in the microengine.
For each bit, 1 means that the condition is “available” or
“ready”. 0 means that any thread waiting for that con-
dition would continue to wait. The bit numbers of the
SleepCond vector are defined by the enum DmaUeSleep-
Cond.
Example: Does thread 3 have a memory operation out-
standing in the DMA cache interface? The DmaUeSleep-
Cond table has a row called MEMDONE THR3 whose
value is 0x2D. So you’d read SleepCondsH and Sleep-
CondL, concatenate them into a 64-bit vector, and look
at bit number 0x2D. If that bit is zero, thread 3 has a
memory operation outstanding.

Register
R SDmaUeSleepCondsH
Address
0xE 0100 0104

May 14, 2014 270 Rev 51328

SiCortex Confidential 5.7. REGISTERS ACCESSIBLE BY SERIAL CONFIGURATION BUS

Bit Mnemonic Access Reset Type Definition

31:0 SleepCondsH R X Upper 32 bits of the SleepCond vector in the microengine.
See SleepCondL for details.

5.7.0.6 Cache Interface Status Registers

Register

R SDmaCifStatus1

Address

0xE 0100 0110

Bit Mnemonic Access Reset Type Definition

31:24 Reserved
23:16 RefCntZero R 0xFF Reads the 8 RefCntZero signals that go from the cache

interface to the various ports. Use the DmaPort enum to
decide which bit represents which bit, e.g. bit 8+Dma-
Port::TX0 represents cif txp0 RefCntZero c5a.

15:12 WriteTidBusy R 0 A copy of the TidBusy wires for the 4 DMA write TIDs
11:8 ReadTidBusy R 0 A copy of the TidBusy wires for the 4 DMA read TIDs
7:4 OwtValid R 0 Valid bits of the outstanding write table. If bit 4+X is

set, the DMA has an outstanding write on DMA write tid
X.

3:0 OrtValid R 0 Valid bits of the outstanding read table. If bit X is set,
the DMA has an outstanding read on DMA read tid X.

Register

R SDmaCifStatus2

Address

0xE 0100 0114

Bit Mnemonic Access Reset Type Definition

31:16 OwtThread R X Four fields of four bits each. Bits (19+4*X to 16+4*X)
are the thread number of the Outstanding Write Table
entry X.

15:0 OrtThread R X Four fields of four bits each. Bits (3+4*X to 4*X) are the
thread number of the Outstanding Read Table entry X.

5.7.0.7 Rx/Tx Port Status Registers

There are three port status registers, on for each RX and TX port. R SDmaPortStatus[N] gives the status of
RX port N and TX port N.

Register

R SDmaPortStatus[2:0]

Address

0xE 0100 0120-0xE 0100 0128

May 14, 2014 271 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Access Reset Type Definition

31:26 Reserved
25:24 TxWhichBuf R 0 In the transmit port, which packet buffer is the micro-

engine working on?
23:16 TxBufState R X Read the packet buffer state. This field contains four bit

fields of 2 bits each. Bits (17+2*M to 16+2*M) gives
the state of packet buffer M. The 2-bit fields are of type
DmaTxpState.

15:10 Reserved
9:8 RxWhichBuf R 0 In the receive port, which packet buffer is the microengine

working on?
7:0 RxBufState R X Read the packet buffer state. This field contains four bit

fields of 2 bits each. Bits (1+2*M to 2*M) gives the state
of packet buffer M. The 2-bit fields are of type DmaRxp-
State.

5.7.0.8 Copy Port Status Register

Register

R SDmaCopyPortStatus

Address

0xE 0100 0130

Bit Mnemonic Access Reset Type Definition

31:16 Reserved
15:14 CopyTxWhichBuf R 0 In the copy port, which packet buffer is the

DMA THR COPY TX thread of the microengine work-
ing on?

13:12 CopyRxWhichBuf R 0 In the copy port, which packet buffer is the
DMA THR COPY RX thread of the microengine work-
ing on?

11:0 CopyBufState R X Read the packet buffer state. This field contains four bit
fields of 2 bits each. Bits 3*M gives the state of packet
buffer M. The 2-bit fields are of type DmaRxpState.

5.7.0.9 Interrupt Cause Register

The interrupt cause register contains flags which are set when an event occurs, and cleared by software by
writing a 1 to that bit.

Note on ECC correction and interrupt bits: Assuming correction is enabled, if a single bit error is detected, the
data is corrected and the Sbe interrupt cause bit is set. If a double bit error is detected, both the Dbe interrupt
cause bit and the Sbe interrupt cause bit are set, and the bad data will not be modified.

Register

R SDmaIntCause

Address

0xE 0100 0200

Attributes

-kernel

May 14, 2014 272 Rev 51328

SiCortex Confidential 5.7. REGISTERS ACCESSIBLE BY SERIAL CONFIGURATION BUS

Bit Mnemonic Access Reset Type Definition

31 Intr R 0 This bit is 1 when any bit in the
expression R SDmaIntCause[30:0] &
R SDmaIntMask[30:0] is set. It becomes
the primary output dma xxx Int ca.

30:15 Reserved.
14 CifDbe RW1C 0 Cache Interface Double Bit Error. A double

bit error has been detected in data read from
the CSW.
ECC correction/detection only occurs in the
CIF if a block read is performed with address
bit 2 equal to 1. If address bit 2 is 0, the CIF
does not check ECC at all, and the data goes
straight to the TX or copy port.

13 ImemDbe RW1C 0 Imem Double Bit Error. A double bit error
has been detected in data read from the In-
struction Memory.

12 DmemDbe RW1C 0 Dmem Double Bit Error. A double bit error
has been detected in data read from the Data
Memory.

11 CopyDbe RW1C 0 Copy Port Double Bit Error. A double bit
error has been detected in data read from the
packet buffer or read/write memory buffer in
the copy port.
ECC correction/detection occurs if the mi-
croengine reads a corrupted data ford in the
packet buffer or read/write memory buffer.
But if the corrupted ford is written straight
back to the CSW, no correction/detection oc-
curs in DMA.

10:8 RxpDbe RW1C 0 Receive Port Double Bit Error. Bit 8+N de-
scribes errors from RX port N. A double bit
error has been detected in data read from the
receive port packet buffer or the receive port
operand memory.
ECC correction/detection occurs if the micro-
engine reads a corrupted data ford that came
from the fabric switch. But if the packet is
written straight to memory with a BRD, no
correction/detection occurs in DMA.

7 Reserved
6 CifSbe RW1C 0 Cache Interface Single Bit Error. A single bit

error has been corrected in data coming from
the CSW. See note in CifDbe description for
when ECC correction occurs.

5 ImemSbe RW1C 0 Imem Single Bit Error. A single bit error has
been corrected in data read from the Instruc-
tion Memory.

4 DmemSbe RW1C 0 Dmem Single Bit Error. A single bit error
has been corrected in data read from the Data
Memory.

3 CopySbe RW1C 0 Copy Port Single Bit Error. A single bit er-
ror has been corrected in data read from the
copy port packet buffer or read/write memory
buffer. See note in CopyDbe description for
when ECC correction occurs.

2:0 RxpSbe RW1C 0 Receive Port Single Bit Error. A single bit er-
ror has been corrected in data read from the
receive port packet buffer or operand regfile.
Bit 0+N describes errors from RX port N. See
note in RxpDbe description for when ECC cor-

May 14, 2014 273 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

5.7.0.10 Interrupt Mask Register

An interrupt mask register allows software to control which kinds of interrupts will cause the DMA’s slow
interrupt line to be asserted. Let’s imagine that only double bit errors are of interest; software would write ones
in R SDmaIntMask for the bits corresponding to the double bit error interrupt causes in R SDmaIntCause. Then,
if any double bit error occurs, R SDmaIntCause bit 31 would go up and the slow interrupt line would be asserted.
If any other kind of error occurs, the R SDmaIntCause bit would still go up, but bit 31 and the slow interrupt line
would not be affected.

Register
R SDmaIntMask
Address
0xE 0100 0204
Attributes
-kernel
Bit Mnemonic Access Reset Type Definition

31 Reserved
30:0 IntMask RW 0 If the corresponding interrupt cause bit is ever set, assert

the interrupt.

5.8 SCB Performance Events

The following events are trackable by SCB statistical event counting.

Enum

DmaScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Count every cycle. Drive 1 always.
8’h01 ECMD ADDR REQ Request CSW command bus, evenbound
8’h02 OCMD ADDR REQ Request CSW command bus, oddbound
8’h03 CMD ADDR GNT Granted command bus, either direction
8’h04 CMD ADDR VALID CSW command arrived at DMA
8’h05 EDATA REQ Request CSW data bus, evenbound
8’h06 ODATA REQ Request CSW data bus, oddbound
8’h07 DATA GNT Granted data bus, either direction
8’h08 DATA VALID CSW data arrived at DMA
8’h09 READ MISS cif csr ReadMiss ca: Block reads that missed

in L2 cache
8’h0A READ HIT cif csr ReadHit ca: Block reads that hit in L2

cache
8’h0B WRITE MISS cif csr WriteMiss ca: Block writes that

missed in L2 cache
8’h0C WRITE HIT cif csr WriteHit ca: Block writes that hit in

L2 cache
8’h0D-8’h1F Reserved
8’h20 COPY MEMIN PBUF cif copy MemInPbufSel c4a: Cache blocks

copied from memory to copy port
8’h21 COPY MEMIN RWMB cif copy MemInRmbSel c4a: Cache blocks

copied from memory to r/w mem buffer
8’h22 COPY MEMOUT PBUF cif copy MemOutPbufSel c2a: Cache blocks

copied from copy port to memory

May 14, 2014 274 Rev 51328

SiCortex Confidential 5.9. INTERNAL DATA FORMATS AND STATES

8’h23 COPY MEMOUT RWMB cif copy MemOutWmbSel c2a: Cache blocks
copied from copy port to memory

8’h24 TXP0 MEMIN cif txp MemInTxp0Sel c4a: Cache blocks
copied from memory into TX port 0

8’h25 TXP1 MEMIN cif txp MemInTxp1Sel c4a: Cache blocks
copied from memory into TX port 1

8’h26 TXP2 MEMIN cif txp MemInTxp2Sel c4a: Cache blocks
copied from memory into TX port 2

8’h27 RXP0 MEMIN cif rxp MemOutRxp0Sel c2a: Cache blocks
copied from RX port 0 to memory

8’h28 RXP1 MEMIN cif rxp MemOutRxp1Sel c2a: Cache blocks
copied from RX port 1 to memory

8’h29 RXP2 MEMIN cif rxp MemOutRxp2Sel c2a: Cache blocks
copied from RX port 2 to memory

8’h2A-8’h3F Reserved
8’h40 UE INSTR VALID ue xxx DbgValid c2a: Instructions executed

in microengine
8’h41 START IO cif ue StartIo c1a: I/O reads, writes, and SP-

CLs received by DMA.
8’h42 TASK START ue cif TaskStart c5a: CSW operations

started by the microengine.
8’h43 COPY PORT PKTS ue copy TxThreadDone c5a: Packets trans-

ferred out of the copy port.
8’h44-FF Reserved.

5.9 Internal Data Formats and States

The data formats for some internal buses are documented here in the spec to help the SystemC and Verilog
models stay in sync with each other. The only people who would care about these formats are the SystemC and
Verilog authors. Everyone else can safely ignore this section.

5.9.1 Encoding of Buses between DmaCsr and DmaUe

5.9.1.1 CsrUeStat - For csr ue Stat ca bus

Class

CsrUeStat

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:3] U0 Unused. Drive 0.
d0[2] EnableEcc Enable ECC correction on Imem
d0[1:0] FlipMemBits XOR these bits with Imem data before writing.

5.9.1.2 UeCsrStat - For csr ue Stat ca bus

Class

UeCsrStat

May 14, 2014 275 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Type Definition

d1[63:32] SleepCondsH Connect to m SleepCond c2a[63:32]
d1[31:0] SleepCondsL Connect to m SleepCond c2a[31:0]
d0[63:6] U0 Unused. Drive 0.
d0[5:2] PrevThread Which thread ran last (0-9)
d0[1] DoubleBitErr ECC corrector detected a double bit ECC error while

reading instruction memory.
d0[0] SingleBitErr ECC corrector detected a single bit ECC error while read-

ing instruction memory.

5.9.2 Encoding of Buses between DmaCsr and DmaCif

5.9.2.1 CsrCifStat - For csr cif Stat ca bus

Class

CsrCifStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:3] U0 Unused. Drive 0.
d0[2] EnableEcc Enable ECC correction
d0[1:0] FlipMemBits XOR these bits with the output of the ECC generator for

cif xxx MemOutDw1 c4a during 32-bit realignment.

5.9.2.2 CifCsrStat - For csr cif Stat ca bus

Class

CifCsrStat
Bit Mnemonic Type Definition

d1[63:15] U1 Unused. Drive 0.
d1[14:12] DataArbCtr 3-bit arbitration counter for data queue selection
d1[11:10] U1b Unused. Drive 0.
d1[9:8] CmdArbCtr 2-bit arbitration counter for command queue selection
d1[7:4] DataSelQueue DmaCifQueueNum Which data queue was selected to go onto the dma csw

data bus?
d1[3:0] CmdSelQueue DmaCifQueueNum Which command queue was selected to go onto the

dma csw command bus?
d0[63:48] OwtThread Provide OwtThread in R SDmaCifStatus2
d0[47:32] OrtThread Provide OrtThread in R SDmaCifStatus2
d0[31:26] Reserved
d0[25] DoubleBitErr ECC corrector detected a double bit ECC error during

32-bit realignment of data from the CSW.
d0[24] SingleBitErr ECC corrector detected a single bit ECC error during 32-

bit realignment of data from the CSW.
d0[23:16] RefCntZero Provide RefCntZero in R SDmaCifStatus2
d0[15:12] WriteTidBusy Provide WriteTidBusy in R SDmaCifStatus1
d0[11:8] ReadTidBusy Provide ReadTidBusy in R SDmaCifStatus1
d0[7:4] OwtValid Connect to OWT valid bits
d0[3:0] OrtValid Connect to ORT valid bits

5.9.3 Encoding of Buses between DmaCsr and DmaDmem

5.9.3.1 CsrDmemStat - For csr dmem Stat ca bus

Class

CsrDmemStat

May 14, 2014 276 Rev 51328

SiCortex Confidential 5.9. INTERNAL DATA FORMATS AND STATES

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:3] U0 Unused. Drive 0.
d0[2] EnableEcc Enable ECC correction
d0[1:0] FlipMemBits XOR these bits with Dmem data before writing.

5.9.3.2 DmemCsrStat - For csr dmem Stat ca bus

Class

DmemCsrStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:2] U0 Unused. Drive 0.
d0[1] DoubleBitErr ECC corrector detected a double bit ECC error while

reading data memory.
d0[0] SingleBitErr ECC corrector detected a single bit ECC error while read-

ing data memory.

5.9.4 Encoding of Buses between DmaCsr and DmaTxp

5.9.4.1 CsrTxpStat - For csr txp Stat ca bus

Class

CsrTxpStat

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:2] U0 Unused. Drive 0.
d0[1:0] FlipMemBits XOR these bits with ALU result data before writing to

packet buffer or operand register file.

5.9.4.2 TxpCsrStat - For csr txp Stat ca bus

Class

TxpCsrStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:10] U0 Unused. Drive 0.
d0[9:8] TxWhichBuf Provide TxWhichBuf in R SDmaPortStatus[X]
d0[7:0] TxBufState Provide TxBufState in R SDmaPortStatus[X]

5.9.5 Encoding of Buses between DmaCsr and DmaRxp

5.9.5.1 CsrRxpStat - For csr rxp Stat ca bus

Class

CsrRxpStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:1] U0 Unused. Drive 0.
d0[0] EnableEcc Enable ECC correction

5.9.5.2 RxpCsrStat - For csr rxp Stat ca bus

Class

RxpCsrStat

May 14, 2014 277 Rev 51328

SiCortex Confidential CHAPTER 5. DMA ENGINE

Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:12] U0 Unused. Drive 0.
d0[11] DoubleBitErr ECC corrector detected a double bit ECC error while

reading the packet buffer or operand memory.
d0[10] SingleBitErr ECC corrector detected a single bit ECC error while read-

ing the packet buffer or operand memory.
d0[9:8] RxWhichBuf Provide RxWhichBuf in R SDmaPortStatus[X]
d0[7:0] RxBufState Provide RxBufState in R SDmaPortStatus[X]

5.9.6 Encoding of Buses between DmaCsr and DmaCopy

5.9.6.1 CsrCopyStat - For csr copy Stat ca bus

Class
CsrCopyStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:3] U0 Unused. Drive 0.
d0[2] EnableEcc Enable ECC correction
d0[1:0] FlipMemBits XOR these bits with ALU result data before writing to

packet buffer or read/write memory buffer.

5.9.6.2 CopyCsrStat - For csr copy Stat ca bus

Class
CopyCsrStat
Bit Mnemonic Type Definition

d1[63:0] U1 Unused. Drive 0.
d0[63:18] U0 Unused. Drive 0.
d0[17] DoubleBitErr ECC corrector detected a double bit ECC error while

reading the packet buffer or read/write memory buffer.
d0[16] SingleBitErr ECC corrector detected a single bit ECC error while read-

ing the packet buffer or read/write memory buffer.
d0[15:14] CopyTxWhichBuf provide CopyTxWhichBuf in R SDmaCopyPortStatus
d0[13:12] CopyRxWhichBuf provide CopyRxWhichBuf in R SDmaCopyPortStatus
d0[11:0] CopyBufState provide CopyBufState in R SDmaCopyPortStatus

May 14, 2014 278 Rev 51328

Chapter 6

Processor Segments

[$Id: processor.lyx 47578 2007-11-16 21:54:43Z wsnyder $]

6.1 Overview

The SCX1000 includes six identical processors implementing the MIPS64 Architecture including floating point.
Each CPU is a MIPS 5kf with custom extensions. (MIPS may rename our re-derived CPU, but for now, we’ll con-
tinue to call it 5kf.) The processor segment contains one CPU, its associated 256KB L2 cache segment, maintenance
and control registers, and the processor interrupt controller.

6.2 Specifications

Each processor has the following major features, with features we’ve changed or configured from the base MIPS
5kf indicated in bold:

• 64-bit Data and address path

• 42-bit Virtual and 36-bit physical address space

• MIPS64 Compatible Instruction Set

– Multiply-Accumulate and Multiply-Subtract (MADD, MADDU, MSUB, MSUBU)

– Zero/One Detect (CLZ, CLO, DLCO, DLCZ)

– Conditional Move Instructions (MOVZ, MOVN)

– Prefetch Instructions (PREF, PREFX), including L2 prefetches

• Dual issue super-scalar architecture, capable of simultaneously executing:

– 1 integer and 1 arithmetic floating point

– 1 floating point arithmetic and 1 floating point store

• Floating Point

– IEEE 754 compatible

– Single and double precision

– Multiply and add instruction

– Issue one multiply add double every clock

– Fast flush-to-zero mode to optimize performance

• Multiply/Divide Unit

– Issue one 32x16 multiply every clock

279

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

– Issue one 32x32 multiply every other clock

– Issue one 64x64 multiply every nine clocks

– 37 clock latency on 32/32 divide

– 69 clock latency on 64/64 divide

– Early-in feature returns division results sooner for smaller dividends

• Memory Management Unit

– 48 dual-entry JTLB

– 4-entry instruction micro TLB

– 4-entry data micro TLB

– 16 KB to 16 MB page sizes. (Note 4KB pages are not supported.)

– 8 bit ASID.

• Caches

– 32 KB 4-Way Data cache

– 32 KB 4-Way Instruction cache

– Write-back and write-allocate

– Non-blocking loads

– 32-byte cache line size

– Virtually indexed, physically tagged

– Support for locking cache lines

– Non-blocking prefetches

– ECC protected Data Cache, parity protected I Cache

• Bus Interface Unit

– Separate 32-bit address request bus and 64-bit data bus

– Four 64-bit IO write buffers

– One 32-byte eviction buffer

– Load Linked, Store Conditional multi-processor support

– SYNC instruction support

• Independent intervention (probe) bus

– Probing of D-Cache, Write Buffers

• Performance Monitoring logic

6.3 User Code Visiable Bugs and Enhancements

6.3.1 Product and Chip Pass Differences

1. ICE9B returns a different product (ICE9B) when reading R CpuPRId and R CpuTapIDCODE.

2. ICE9B fixes bug1965 whereby R CpuErrCtl reads swap bits 31 and 28. In ICE9A any read-modify-writes
need to swap these bits before writing them back.

3. ICE9B improves micro DTLB performance bug 2200 with a entry size of 64KB when the corresponding
TLB entry is 64KB or larger. If the TLB entry is 16KB, the old 4KB uTLB entry size is used.

4. ICE9B improves probe performance by using 64 byte probes, see bug2202.

May 14, 2014 280 Rev 51328

SiCortex Confidential 6.4. KERNEL AND PERFORMANCE BUGS AND ENHANCEMENTS

5. ICE9B removes an unnecessary syncronizer on the cac cpu int wires, this reduces interrupt latency by one
pclk.

6. ICE9B adds performance counter events for L2 misses and floating point operations, and allows all events
to be visible to both counter 0 and counter 1.

7. TWC9A returns a different product (TWC9A) when reading R CpuPRId and R CpuTapIDCODE.

8. TWC9A uses a new core, IceT. This is described in a different document.

6.3.2 Known Bugs and Possible Enhancements (M5KF only)

1. On D-Cache ECC errors, R CpuCacheErr EW may record the incorrect way number and index, see
bug1575. As a workaround, software should flush the entire cache on ECC errors.

2. On filling the TLB with a 4KB page, we should pull a machine check, as 4KB pages are not supported.

3. On writes to accelerated space, we should pull a machine check, as they are not supported.

4. We should add a 64-bit cycle counter which is NOT writable, as the current count register is occasionally
overwritten by the kernel, bug3342.

5. We should implement the RDHWR instruction so user space code can see the cycle counter and processor
number.

6. We should add more VA bits, to enable the VA to be unique across the entire system.

6.4 Kernel and Performance Bugs and Enhancements

6.4.1 Product and Chip Pass Differences

1. ICE9B returns a different product (ICE9B) when reading R CpuPRId and R CpuTapIDCODE.

2. ICE9B fixes bug1965 whereby R CpuErrCtl reads swap bits 31 and 28. In ICE9A any read-modify-writes
need to swap these bits before writing them back.

3. ICE9B improves micro DTLB performance bug 2200 with a entry size of 64KB when the corresponding
TLB entry is 64KB or larger. If the TLB entry is 16KB, the old 4KB uTLB entry size is used.

4. ICE9B improves probe performance by using 64 byte probes, see bug2202.

5. ICE9B removes an unnecessary syncronizer on the cac cpu int wires, this reduces interrupt latency by one
pclk.

6. ICE9B adds performance counter events for L2 misses and floating point operations, and allows all events
to be visible to both counter 0 and counter 1.

7. TWC9A returns a different product (TWC9A) when reading R CpuPRId and R CpuTapIDCODE.

8. TWC9A uses a new core, IceT. This is described in a different document.

6.4.2 Known Bugs and Possible Enhancements (M5KF only)

1. On D-Cache ECC errors, R CpuCacheErr EW may record the incorrect way number and index, see
bug1575. As a workaround, software should flush the entire cache on ECC errors.

2. On filling the TLB with a 4KB page, we should pull a machine check, as 4KB pages are not supported.

3. On writes to accelerated space, we should pull a machine check, as they are not supported.

4. We should add a 64-bit cycle counter which is NOT writable, as the current count register is occasionally
overwritten by the kernel, bug3342.

May 14, 2014 281 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

5. We should implement the RDHWR instruction so user space code can see the cycle counter and processor
number.

6. We should add more VA bits, to enable the VA to be unique across the entire system.

6.5 Complete Documentation

For complete information on the MIPS 5kf core, see the documentation provided by MIPS. The remainder of
this chapter will discuss only the bus interface and items being changed inside the CPU.

(Tech Pubs: Remove this and insert the relevant 5KF documentation.)

6.6 BIU Description

The CPU bus interface connects the CPU with the associated L2 cache. The BIU interface is based upon the
default 5kf interface, with some extensions as described below.

6.6.1 BIU Ports

Signals corresponding to original MIPS 5kf BIU signals are listed below. The capitalized middle part of the
signal always corresponds to the original MIPS signal name with EB prepended, for example cpu cac reqAValid pr
corresponds to EB AValid.

Name In/Out Product Description
cac cpu reqARdy pr In Cache ready for new address, CPU may send reqAValid in the next
cac cpu reqWDRdy pr In Cache ready for new write data, CPU may send write data in the next
cpu cac reqAValid pr Out Address bus and access type are valid this cycle.
cpu cac reqAddr pr[35:3] Out Read/write transaction address.
cpu cac reqBE pr[7:0] Out IO transaction byte enables.
cpu cac reqBurst pr Out Burst transaction; reqBFirst, reqBLast and reqBLen indicate the status
cpu cac reqBFirst pr Out First cycle of multiple-cycle burst. May not be needed, as can be determined
cpu cac reqBLast pr Out Last cycle of multiple-cycle burst. May not be needed, as can be determined
cpu cac reqBLen pr[1:0] Out Number of cycles in burst. Not valid for non-bursts.
cpu cac reqInstr pr Out Read is for an instruction fetch. Data will go to the I-Cache and so the
cpu cac reqWData pr[63:0] Out Write data.
cpu cac reqWrite pr Out Write, not a read.

cac cpu rtnRdVal pr In Read return data is valid this cycle.
cac cpu rtnRBErr pr In Read return is in error. (unused, tied false)
cac cpu rtnRData pr[63:0] In Read return data.

cpu cac wbWWBE pr Out CPU is waiting for write buffers to empty. This may be used to re-prioritize
cac cpu int p[3:0] In Six bit interrupt request mask. Top two bits are tied to 0.

The following signals have been added to the base design:

May 14, 2014 282 Rev 51328

SiCortex Confidential 6.6. BIU DESCRIPTION

Name In/Out Product Description
cpu cac reqCmd pr[2:0] Out TWC9A+ Requested command. Valid when

cpu cac reqVld pr is asserted. See 6.26.1 on
page 340.

cpu cac reqRId pr Out TWC9A+ Requested read identifier. For reads or prefetches,
this indicates which CPU read-id needs to be
indicated with the eventual return and retirement.

cac cpu rtnPMHit pr In Read return hit in L2 Cache. Valid when
cac cpu rtnRdVal pr asserted for cachable
addresses.

cac cpu rtnPMState pr[2:0] In Read return CacState. Valid when
cac cpu rtnRdVal pr asserted with
cac cpu rtnPMHit pr.

cac cpu rtnPMStop pr[3:0] In Read return bus stop number. CswStopNum for
memory (non IO) read data, valid when
cac cpu rtnRdVal pr asserted.

cac cpu rtnRId pr[2:0] In TWC9A+ Read return identifier. When cac cpu rtnRdVal pr
asserts indicates which read return the data is for.
This is the identifier requested with
cpu cac reqRId pr.

cac cpu rbDone pr[7:0] In TWC9A+ Read buffer completion. When a bit pulses for one
cycle, the corresponding cpu cac reqRId pr
number may now be retired and reused. If it’s
reused, this same number may appear on
cpu cac reqRId pr as soon as the cycle after next.
This handshake is independent of
cac cpu rtnRdVal pr, as it has the flexability to
hold a buffer until a TID is done, and alows
multiple TIDs to retire at once.

cac cpu syncBusy pr In Sync Holdoff. Asserted to indicate sync
instructions must be held off. Must first assert two
cycles after cpu cac reqAValid pr &
cac cpu reqARdy pr are asserted, and cleared
when sync instructions may complete.

cac cpu wbIoAck pr In Pulsed to indicate a IO write buffer has been
emptied on the L2 side, and a credit should be
added to the buffer count.

cac cpu prbReq pr In Probe address request this cycle.
cac cpu prbAddr pr[35:3] In Probe address. Note wrapping request on [4:3] is

only a hint, and cannot be guaranteed to be the
order returned by the CPU. In fact, it is always 0.
In pass2, probes are 64 bytes, and bit[5] is ignored.

cpu cac invAck pr Out Intervention acknowledge, invDirty indicates hit
state.

cpu cac invHit pr[1:0] Out Intervention hit on cache or write buffer. L2 must
not require this signal for correct protocol, it is for
statistical, verification, and debugging use. In
ICE9A, this is a single bit signal, in ICE9B+ it
indicates the status of each 32B half of the 64B
probe.

cpu cac invDirty pr[1:0] Out Intervention hit on dirty cache or write buffer. In
ICE9A, this is a single bit signal, in ICE9B+ it
indicates the status of each 32B half of the 64B
probe.

May 14, 2014 283 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

A0

Read

A0 A8 A16 A24

FF

D0 D8 D16 D24

a

a

D0 D8 D16 D24

D0 D8 D16 D24

L1 Miss Read Return
Read

pclk

cpu_cac_dcMiss_pr

cpu_cac_dcAddr_pr[35:3]

cpu_cac_reqAValid_pr

cpu_cac_reqWrite_pr

cpu_cac_reqAddr_pr[35:3]

cpu_cac_reqBE_pr[7:0]

cpu_cac_reqBFirst_pr

cpu_cac_reqBLast_pr

cac_cpu_rtnRdVal_pr

cac_cpu_rtnRData_pr[63:0]

cpu.deload_r

cpu.deload_e

cpu.deload_m

cpu.dcrbrd

cpu.dcrbaddr

cpu.dcrbmiss

cpu.rbbiaddr

cpu.rbbird

cpu.birddatardy

cpu.bidata

cpu.rddcdata

Figure 6.1: BIU Read Transaction Timing

6.6.2 D-Cache Reads

D-Cache transactions begin with a load instruction in the R stage of the pipe. The address is determined to
miss in the L1 D-Cache, and the speculative miss dcMiss and dcAddr signals are asserted. The transaction is sent
to the BIU. If there was dirty L1 data to be evicted, it is extracted and added to the write buffer, and becomes a
write transaction described below.

The BIU issues the read request to the L2 by asserting reqAValid pr with a burst length of 4 (there are four
64-bit chunks in the 32B cache line.) When the L2 completes the request, the L2 places the four data bursts on
rtnRData pr, and asserts rtnRdVal pr with the read identifier on rtnRId pr. The return order of data must match
that requested. When the TID is completed, the L2 asserts rbAck pr with the read identifier on rbRId pr.

If the processor attempts a DCache read to a block in the SHARED state, the L2 lookup will result in a MISS.
This will cause the SHARED block matching the target address to be “victimized” (that is, replaced in the L2) and
a RDEX to be issued to the CSW to fill the block from main memory.

6.6.3 I-Cache Reads

Instruction cache reads look the same to the L2 cache as data stream reads. The CPU indicates the read is for
I-Stream by asserting reqInstr pr along with the address. The L2 may use this to fill the L2 cache in shared state.
Since interventions do not probe the I-Cache, instruction lines may be in multiple CPU I-Caches simultaneously.

Istream accesses to L2 cache blocks in EXCL, DIRTY, or UPDATED states will result in an L2 cache hit.

May 14, 2014 284 Rev 51328

SiCortex Confidential 6.6. BIU DESCRIPTION

Write

A0 A8 A16 A24

D0 D8 D16 D24

FF

(if IO)

Buffer ReturnWrite

pclk

cpu_cac_reqAValid_pr

cpu_cac_reqWrite_pr

cpu_cac_reqAddr_pr[35:3]

cpu_cac_reqWData_pr[63:0]

cpu_cac_reqBE_pr[7:0]

cpu_cac_reqBFirst_pr

cpu_cac_reqBLast_pr

cac_cpu_wbIoAck_pr

cpu_cac_syncBusy_pr

Figure 6.2: BIU Write Transaction Timing

6.6.4 Istream Initial Reads

The L2 cache supports I-Stream accesses while the L1 cache was disabled. This allows booting of the processor,
and cache trap handlers which enter non-cachable mode.

6.6.5 Evictions

L1 evictions are handled by the standard MIPS interface. When a cache fill is required, the LRU line from
the cache is read out and stored into the BIU write buffer. After the BIU places the read request on the bus, the
eviction is requested, and the write data transferred. The L2 must assert syncBusy pr one cycle after the write is
received, and keep it asserted until the write is coherent, see 6.6.9.

To prevent deadlock, the L2 cache must accept any number of evictions while a probe is outstanding. Evictions
should thus always be able to be written back to the L2, and should never require Coh action (and thus potential
deadlock.)

6.6.6 IO Writes

IO Writes are handled by the standard MIPS interface. IO Writes are distinguished by address bit [35] being
set. The BIU places the write on the bus. The L2 must assert syncBusy pr one cycle after the write is received,
and keep it asserted until the write is coherent, see 6.6.9. The ICE9 chip does NOT support “accelerated uncached
write bursts” from the MIPS core. The L2/CSW supports only one active IO write at a time, so IO writes are
enqueued in the interface between the MIPS core and the CSW. (See Section 6.18.)

6.6.6.1 IO Write Buffer Counter

To prevent overrunning the write buffer in the L2 cache, the BIU keeps track of the number of L2 IO write
buffer entries that may be in use. The count starts at 5 entries, the size of the CPU and L2 write buffer. As IO
write buffer entries are allocated, the count is decremented, where a IO write is defined as a write with address bit
[35] set. When a IO write reaches the L2 coherency point, the L2 asserts wbAck pr, which increments the count.

May 14, 2014 285 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

If the write buffer count minus the number of load/stores in flight is less than 2, on the next load/store the
instruction pipeline stalls until a buffer is freed. (The extra buffer is due to pipeline delays in decrementing versus
checking the count, covering the case of when there are back-to-back stores.)

6.6.7 Cache Instructions

The CPU implements the MIPS CACHE Instruction. The L1-D “hit writeback” cache instruction has been
changed to instead perform “hit writeback and invalidate.” This prevents the L2 from seeing an eviction from the
cache instruction and believing it is the probe return. (Thus, we can enforce the rule that after eviction, a line is
always invalid.)

6.6.8 Prefetch Instruction

The CPU implements the MIPS PREF Instruction.

ICE9 used the original core, which implements load and store hints identically, and the writeback invalidate
hint. Prefetches issued when the cache pipeline was busy were silently dropped.

TWC9 prefetches are not dropped when the cache pipeline is busy, however they are still dropped on a TLB
miss; they never take exceptions. TWC9 also adds L2 prefetches, see 6.24.4 on page 319.

TWC9 retains the rule that there may be only one miss at once. However, there may be as many as 4 misses
and L2 prefetches outstanding. In addition, a second miss-under-miss will be automatically converted into an L2
prefetch. This allows software to get most of the latency benefit of two misses outstanding even if prefetches have
not been inserted into the code.

For L2 prefetches, TWC9 issues a PREF command on cpu cac reqCmd pr. Data is never returned. When
the prefetch completes, the L2 asserts cac cpu rbAck pr, with cac cpu rbRId pr indicating which prefetch has
completed.

Note prefetches are not supported to DMSEG when in Debug mode, the behavior is unpredictable. It’s assumed
there won’t be any prefetches in the debug handler.

6.6.9 Sync Instruction

The SYNC instruction requires all loads and stores that occurred before the SYNC to be completed before any
loads or stores following the SYNC. In our multiprocessor system, this requires all loads to be completed and have
results in the register file, that all cacheable stores have invalidated other CPUs caches, and that all non-cacheable
I/O stores have reached the point at which they are ordered with respect to all other CPUs.

Load/Sync ordering is be insured by stalling any SYNC until all loads have reached the register file. The original
CPU has code for this, but it should be verified.

Cached Store/Sync ordering is insured by the L2 Cache asserting cac cpu syncBusy pr until all stores have
completed, including invalidating the caches of other CPUs.

IO Store/Sync ordering is also be insured by stalling the SYNC until cac cpu syncBusy pr. syncBusy must
remain asserted until the IO store has reached the IO write coherence point.

6.6.10 Load Linked and Store Conditional

The Load Linked (LL, sometimes also called Load Locked) and Store Conditional (SC) instructions are used
to implement critical sections. A LL instruction loads a memory location, remembers the address loaded and sets
the lock bit. The following SC returns the lock bit to the register file, and if the lock bit was set, performs a store.
Any store or DMA write (not just a SC completing) to the same address causes the lock bit to clear.

To implement this scheme, we take a simple approach; we prevent any other processor from gaining access to
the locked line for a certain holdoff time.

• On executing a LL, we set the lock bit, and save the locked address. We start a timer, the Locked timer,
which counts up to 8 then resets. (Programmable from 8 to 1K in powers of two with R CpuConfig LLTime.)

• On executing a SC, we test the lock bit, and reset the locked timer.

• On executing a ERET, we clear the lock bit.

May 14, 2014 286 Rev 51328

SiCortex Confidential 6.7. INTERVENTIONS

Addr

Write

A0 A8 A16A24

D0 D8 D16D24

FF

Probe Probe Return Write

pclk

cac_cpu_prbReq_pr

cac_cpu_prbAddr_pr[35:3]

cpu_cac_invAck_pr

cpu_cac_invDirty_pr

cpu_cac_reqAValid_pr

cpu_cac_reqWrite_pr

cpu_cac_reqAddr_pr[35:3]

cpu_cac_reqWData_pr[63:0]

cpu_cac_reqBE_pr[7:0]

cpu_cac_reqBFirst_pr

cpu_cac_reqBLast_pr

Figure 6.3: BIU Probe Timing

• While the locked timer is counting, all probes will be held off, and the CPU is free to (hopefully) complete the
lock sequence. Note 8 cycles is enough to complete all Linux locks, and other locks we know about. Should
the lock complete, or the SC never execute, all is fine, otherwise:

• If a probe occurs outside the locked timer interval, and the probe address matches the lock address, the lock
bit is cleared.

• To prevent code that does LL inside a tight loop from livelocking out other CPU’s probes forever, after the
locked timer has been used for N cycles, the lock timer will not work for another N cycles. A SC is still likely
to be succeed during this time; however it is not guaranteed to succeed as it otherwise would.

Note at all times lock semantics are preserved; there is no case where write data could interfere with the critical
section.

Should software have large lock sequences over 8 instructions, there may be performance problems. To mitigate
this, we make the interval programmable, and have an SCB event to track clearing of the lock due to probes.

6.7 Interventions

The CPU has an intervention bus to maintain coherency between the cores. The bus runs at processor clock
frequency, and consists of an address, command, and acknowledgment back to the L2.

The intervention bus is presented with an address from the L2 cache. First, if any load/stores are in the pipeline,
the pipeline is stalled.

This intervention address is looked up in the L1 tag store array. A clean hit will invalidate the line in the L1
D-Cache. A dirty hit will stall the load/store pipeline, and grab the D-Cache for four cycles. The data is read from

May 14, 2014 287 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

the D-Cache in 0-3 order and placed into the CPU’s eviction buffer. This requires the evicion buffer be free; if not,
the extraction stalls until space becomes available.

The intervention address is also compared against the CPU load/store buffer, this insures data is returned for
hits on stores waiting for the L1 cache. A match will return dirty hit, and the L2 is responsible for retrieving the
data from the stream of write data.

The intervention address does not need to be compared against read requests. A match against an unissued
load can be ignored, as when it finally issues in the L2, the data will have been returned. A probe will not be issued
against a issued load, as this is guarded by the L2 line-collision CAM.

6.7.1 Intervention Deadlock Avoidance

The intervention scheme requires that the load/store and eviction buffers makes forward progress; however the
buffers may contain write transactions that have not yet reached the L2 cache and thus are before the coherency
point. To prevent this resource loop from resulting in a deadlock, the L2 must insure that CPU reads and writes
can always be drained. When the L2 is accepting transactions, (that is, when it is asserting ARdy) it will accept
and process L1 writebacks and all other writes in order and without queuing. If necessary in handling probes
the L2 interface will enqueue cache read operations for processing after the completion of writeback or probe
operations. The space required for the “pending read queue” is relatively small, as the processor is limited to just
two outstanding READ operations at a time. (See 6.15.3.)

6.7.2 Example Intervention Cases

Case Actions

1. Not in D-Cache
2. Intervention

The CPU acknowledges the intervention as a miss.

1. Clean in D-Cache
2. Intervention

The CPU acknowledges the intervention as clean and invalidates the
D-Cache.

1. Dirty in D-Cache
2. Intervention

The CPU acknowledges the intervention as dirty, reads the data
from the cache and places into the write buffer. The write is made
to the L2.

1. Miss in progress, not issued by
L2
2. Intervention

The CPU acknowledges the intervention as a miss. This is correct,
as the CPU miss is ordered after the intervention.

1. Miss in progress,
issued by L2, data not to CPU yet
2. Intervention

Illegal. As the L2 has not returned the data, the L2 is required to
stall issuing the intervention until it does so.

1. Miss in progress,
issued by L2, data sent to CPU
2. Intervention

The CPU stalls the intervention on read data buffer hit until the
miss updates the L2, and then the intervention becomes a L1 hit
case.

1. In write buffer
2. Intervention

The CPU acknowledges the intervention as a dirty hit. The write
will propagate to the L2 as writes normally do.

1. In D-Cache
2. Load or store in M or W-stage
3. Intervention

The CPU stalls the intervention until the load or store completes;
additional loads or stores will stall if to the same D-Cache index.
(The physical address is not known in time, and the index is
identical between the VA & PA.)

6.8 WAIT

The CPU includes the WAIT instruction which places the CPU into power down mode until an enabled interrupt
occurs (generally, this is a timer interrupt that was configured just before entering sleep.) During sleep, the BIU
will awaken to accept and return interventions, identical to normal awakened mode.

May 14, 2014 288 Rev 51328

SiCortex Confidential 6.9. INTERRUPTS

6.9 Interrupts

The CPU provides 6 level sensitive interrupts. (It also has a non-maskable interrupt or NMI that is unused.)
These first four of the six are activated by writes to the interrupt control register, the arrival of a slow interrupt,
or via a CSW INT transaction. (See Section 7.10.5 and Sections 7.18.6 through 7.18.9.) The top two levels are
reserved for causes internal to the processor.

Interrupt Pin Description

7 int[5] Cac ICR10/11 and CPU core performance counter interrupts.
6 int[4] Cac ICR7/8 and R CpuCompare timer interrupts.
5 int[3] Cac ICR6/7 and slow interrupts.
4 int[2] Cac ICR4/5, generally DMA.
3 int[1] Cac ICR2/3, generally PCI-E.
2 int[0] Cac ICR0/1, generally interprocessor interrupts.
1 N/A Software interrupt from same core.
0 N/A Software interrupt from same core.

6.10 EJTag

The MIPS EJTAG port is connected to the SysChain JTAG bus so that the cores may be debugged. In addition
a syschain register allows a debug trap on one CPU to cause debug traps to be taken on all CPUs.

6.11 D Cache ECC

The D-Cache has been changed to use byte ECC instead of byte parity. This was done without changing the
pipeline or any instruction timings.

6.12 Scheduling Hazards

The CPU has the same instruction hazards as documented in the M5KF Software Users Manual, Section 12.2,
with the following exception.

The original 5KF required a CACHE instruction not be followed by a memory operation for 2 instructions.
This restriction is removed, any instruction may follow a CACHE instruction, including a load/store to the same
cache line.

6.13 Dual Issue

The CPU has the same dual issue rules as the 5kf. As its documentation is a bit obtuse, here is a restating of
the rules.

Dual issue if all of the following are true:

• Not in delay slot.

• Single-issue bit is off.

• The instruction will not trap. (IE to dual issue a COP1 instruction, COP1 must be enabled.)

• One of the pair of instructions is: abs.*, add.*, c.*, ceil.*, cvt.*, div.*, floor.*, madd.*, mov.*, movcf,
msub.*, mul.*, neg.*, nmadd.*, nmsub.*, recip.*, round.*, rsqrt.*, sqrt.*, sub.*, trunc.*, MMDX with in-
str[5:0]!=6’b0110x1, or COP2 instruction with instr[25]=1’b1. (Note this excludes ldxc1, luxc1, lwxc1, movz,
movn, prefx, sdxc1, suxc1, swxc1.)

• The other of the pair of instructions is: add, addi, addiu, addu, and, andiori, break, cache, dadd, daddi,
daddiu, daddu, ddiv, ddivu, div, divu, dmfc1, dmtc1, dmult, dmultu, dsll, dsll32, dsllv, dsra, dsra32, dsrl,
dsrl32, dsrlv, dsub, dsubu, lb, lbyu, ld, ldc, ldc2, ldl, ldr, ldxc1, lh, lhu, ll, lld, ltl, lui, luxc1, lw, lwc1, lwc2,
lwl, lwr, lwu, lwxc1, mfc1, mfhi, mflo, movn, movz, mtc1, mthi, mtlo, mult, multu, or, pref, prefx, sb, sc, scd,
sd, sdc1, sdc2, sdl, sdr, sdrav, sdxc1, sh, sll(excluding nop), sllv, slt, sltiu, sltu, sra, srav, srl, srlv, stti, sub,

May 14, 2014 289 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

subu, suxc1, sw, swc1, swc2, swl, swr, swxc1, sync, syscall, teq, tge, tgeu, tltu, tne, xnor, xor, xori, or COP2
instruction with instr[25:22]==4’b00x0. (Note this excludes cfc1, ctc1, deret, eret, jr, jalr, mfc0, movci, mtc0,
ssnop.)

6.14 Floating Point Pipeline Enhancements

The floating point pipe was modified to increase the issue rate of double-precision multiply and fused-multiply-
add instructions. These include mul.d, madd.d, msub.d, nmadd.d, & nmsub.d. The effect is to change the m5kf
latency (5 cycles) and “issue rate” (2 cycles) for these instructions to 4 cycles & 1 cycle, matching the latency and
“issue rate” of the corresponding single-precision version of the same instructions. As a side effect of the change,
recip.d and rsqrt.d also come out with improved performance.

In the original m5kf, the resources devoted to the multiplier array were reduced (optimized) by implementing
half the hardware needed for a full double-precision multiplier and using the hardware on 2 consecutive cycles to
complete a double-precision multiply. (Single-precision multiply operations don’t need the additional cycle, so they
complete the multiply part of the operation in 1 cycle.) As a result, a multiply instr. following a d.p. multiply had
to wait a cycle before issuing, since the hardware would still be in use for the 2nd cycle of the preceeding multiply
instruction. By building the full hardware need for a d.p. multiplier, the issue rate was doubled and the latency
reduced, for something like a 10-15% improvement in delivered performance.

The aproach we’ve taken in implementing the ICE9 changes is to collapse 28 booth partial-products, plus 2
injected constants into the sum-and-carry redundant-form representation of the multiply result in a single cycle.
This requires 4 levels of CSA, one more than in 1 cycle of the m5kf multiplier. The additional CSA inserted into
the cycle adds to the critical path in the multiplier array, but there was sufficient margin to make the insertion
without impact to the chip clock frequency. The changes are illustrated in the following 2 figures. The first shows
the organization of the m5kf multipler array. The 2nd shows the organization of the ICE9 multiplier array.

Figure 6.4: M5kf Multiplier

May 14, 2014 290 Rev 51328

SiCortex Confidential 6.15. THE L2 CACHE SEGMENT AND PIPELINES

Figure 6.5: ICE9 Multiplier

6.14.1 Floating Point Repeat Rate and Latency

Bolded values indicate change from M5KF.
Opcode Latency (cycles) Repeat Rate (cycles)

ABS.*, NEG.*, ADD.*, SUB.*, MUL.*, MADD.*,
MSUB.*, NMADD.*, NMSUB.*

4 1

RECIP.S 15 10
RECIP.D 23 18
RSQRT.S 19 14
RSQRT.D 31 26
DIV.S, SQRT.S 17 14
DIV.D, SQRT.D 32 29
C.cons.* to MOVD.* andMOVT.*/ MOVT, MOVN, BC1 1/2 1
CVT.D.S, CVT.[S,D].[W,L] 4 1
CVT.S.D 6 1
CVT.[W,L].[S.D], CEIL.*, FLOOR.*, ROUND.*,
TRUNC.*

5 1

MOV.*, MOVD.*, MOVN.*, MOVT.*, MOVZ.* 4 1
LWC1, LDC1, LDXC1, LUXC1, LWXC1 3 1
MTC1, DMTC1, MFC1, DMFC1 2 1

6.15 The L2 Cache Segment and Pipelines

Each processor in the ICE9 chip is directly connected to a 256KB L2 cache segment. All six cache segments
are kept coherent via the Cache Switch interface (CSW) described in Chapter 7. Most of the L2 cache (CAC)
runs at the central CCLK rate, only the interface to the processor contains elements clocked on the processor clock
(PCLK).

The CAC talks to the processor through the SLC unit. The SLC is responsible for retiming processor requests
from PCLK to CCLK and retiming responses in the opposite direction. It processes all write requests as they are
issued by the processor, and may enqueue read requests if necessary. All read requests are processed in order: reads
don’t pass reads. Similarly, all writes are processed in order. However, to correctly handle the case of a Dstream
L1 miss that requires a victimization of an L1 or L2 block followed by an Istream L1 miss, we allow writes to pass
reads.

The CAC also connects to the CSW. Probes are handled in order of arrival, but may be enqueued for an
arbitrary number of cycles.

6.15.1 The Tag Lookup

The L2 segment is optimized to handle DCache misses in the absolute minimum number of cycles. Figure 6.6is a
sketch of the pipeline from tag lookup to CSW command generation. From the delivery of the dcache miss address

May 14, 2014 291 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

MIPS 5Kf
Core

L2 Tag
Array

L2 Controller
CSW Ifc

TAG RAM

PCLK

CCLK

DC Miss
Address

12 bit XOR
Index Hash

Tag Lookup

ECC
Correction

Logic Function
8 bits in
3 bits out

Command
and

Address
to CSW

20 bit =
Comparison

CSW

P to C
Flop

EN

CQ_PF

EN

BIU
Address

BIU Addr
=

Last DC
Miss Addr

EN BiuMatchMiss_p1r

Figure 6.6: L2 Tag Lookup Pipeline

at the edge of the MIPS core (a stage that we’ll label P0) to the command out to the CSW the path takes two
pipeline stages of 2nS each, plus a possible realignment penalty of 2nS (to align the PCLK request with the CCLK
domain) plus 4nS for the tag lookup, and a 4nS stage for driving the command to the CSW.

The last stage of logic in the lookup pipeline determines whether the PS needs to do a memory read, what kind
of read command the PS should issue, and where it should go. Algorithm 6.1 describes the policy for chosing which
command to issue and which way to victimize. Note that we don’t wait to find out if the victim block is really dirty
(requires a writeback), but instead assume that all blocks in the EXCLUSIVE, MODIFIED, or UPDATED state
require a writeback. While we’re launching the CSW request we’ll start an L1 cache probe operation to acquire
the dirty data (if any). If the displaced block is dirty, we’ll drive the data onto the CSW when it is ready. If we
find that the block was not dirty in the L1 cache AND it was clean in the L2, we’ll send a WBCANCEL command
to the appropriate coherence widget.

Figure 6.7 shows the pipeline and general organization of the L2 Tag and State arrays. All components in this
section run off the central clock. Note the four way mux at the top of the pipeline. Addresses enter from either the
processor BIU, or the CSW fill and probe path. The address path from the BIU is required to support flush and
writeback operations and for I-stream fetches.

The Tag arrays are ECC protected. Each array contains 2K words of 26 bits each. The actual tag is 18 bits
wide (address bits 34 through 17). The state information requires 3 bits. For the 20 data bits, we’ll require 6 bits
of SECDED ECC. The two banks are independently corrected to allow for independent updates. If the two tags
are merged, the total storage requirement would be 2K words by 47 bits. Corrected words are not written back to
the array. In the event of an ECC error, the L2 controller will signal an ECC error interrupt to the processor and
the processor will initiate a flush of the L2 cache. Double bit errors will signal a machine check.

A block in the L2 is in one of five states:

INVALID: No data is stored in the associated block. All tag comparisons against this block will fail to match.

EXCLUSIVE: This block was filled in response to a DCache miss. The data in the block is identical to the copy

May 14, 2014 292 Rev 51328

SiCortex Confidential 6.15. THE L2 CACHE SEGMENT AND PIPELINES

Algorithm 6.1 L2 Lookup Pipeline – CSW Command Generation

if (miss address is I/O space) {

issue RDIO or WTIO as appropriate, to the correct bus stop.

// see Section 6.18

} else if ((Way0Miss AND Way1Miss) OR

(DFETCH AND (Way0Hit AND (Way0State == SHARE)) OR

(Way1Hit AND (Way1State == SHARE))){

csw address = miss address

select victim as per table 6.1 OR by the DFETCH to SHARE rule below.

cmd way = victim way

if address<6> csw destination = COHO

else csw destination = COHE

if (access is IStream) {

if (victim state is SH or INV) csw command = RDSH // istream read with no write-

back

else csw_command = RDSV // read with a possible victim writeback

}

else {

if (victim state is SH or INV) csw command = RDEX // dstream read with no write-

back

else csw_command = RDV // dstream read with possible victim writeback

}

bid for the appropriate CSW chain.

}

DFETCH to SHARE victimization rule:

if (DFETCH AND (Way0Hit AND (Way0State == SHARE))) victim = Way0

else if (DFETCH AND (Way1Hit AND (Way1State == SHARE))) victim = Way1

else find victim in 6.1.

May 14, 2014 293 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

W0 Tag and
State
2K x 26

Addr WDat

RDat

W1 Tag and
State
2K x 26

Addr WDat

RDat

ECC ECC

LRU Hint
2K x 1
(no ECC)

Wt Addr WDat

RDat

EN
Probe and Fill Address
From CSW Interface

L1 Address from ProcessorL1 Miss from Processor

Address from BIU

From L2 Control

W1 Hit

W0 Hit

Victim Sel.

W1 State

W0 State

To L2
Control

XOR Hash

Rd Addr

Tag Update
from L2 Control

CacSlc

CacTag

Update Index
from L2 Control

Figure 6.7: L2 Tag and State Arrays – The Address Pipeline (All in CCLK domain)

May 14, 2014 294 Rev 51328

SiCortex Confidential 6.15. THE L2 CACHE SEGMENT AND PIPELINES

Way 1 State
W

a
y
 0

 S
ta

te SH

INV

EX

MOD

UPD

SHINV EX MOD UPD

W1

W0

LRU

W0

W1

W1

W1 LRU

W0 W0 W0

LRU LRU LRU

LRU

LRU

LRU LRU LRU

LRU LRU LRU

LRU LRU LRU

Table 6.1: Victimization Rules

of the data in main memory. The L1 cache may have a copy of the data that is newer still.

MODIFIED: This block was filled in response to a DCache miss. The data in the block is newer than the copy
in main memory. The L1 cache may have a copy of the data that is newer still.

UPDATED: This block was filled in response to a DCache miss. Since the block was filled, the L1 cache has
written data through to this block. The L1 cache may have a copy of the data that is newer still.

SHARED: This block was filled in response to an ICache miss. It is identical to the copy of data in main memory.

Note that the LRU array is a bit vector. Bit X in the vector is set if the last access to set X in the tag array hit on
way zero. The L2 control unit uses this hint to chose the victim block when replacement is required. Replacement
ordering rules chose the victim block on a priority basis as shown in Table 6.1. LRU is used for the replacement
choice for all cases where both blocks are in a state other than INValid.

6.15.2 The L2 Miss Data Pipeline

Figure 6.6 and what we’ve discussed so far gets us to the command port of the CSW. The memory request will
then wind its way to the memory controller and either cause a memory fetch or get forwarded to a processor that
owns a copy of the block. When the data returns it will pass through the L2 update and L1 fill pipeline shown in
Figure 6.8. There isn’t a whole lot to do in this path. We need to grab the data from the CSW, check and correct
for any single bit errors, and then forward the data into the BIU port on the processor.

The LfBuf in Figure 6.8 holds the fetched 64 byte block. The first 32 bytes are forwarded to the SLC unit and
retimed to be sent into the processor. All 64 bytes are held until they are written into the L2 data array.

Figure 6.8 ommits a whole lot of detail. The L2 data array does not show details of the mux control, the L1
to L2 update path, or the address multiplexing for the L2 data arrays. None of these is all that important to the
speed of L2 miss handling.

6.15.3 L1 Updates Writebacks and Misses

So far, we’ve described the path of L2 miss transactions. In all likelihood, at least two out of three accesses to
the L2 cache will hit. Further, the L1 will occasionally displace dirty blocks into the L2. (Note that the processor
will never write an L1 data block to the L2 unless it had first read the block into the L1. This means that L1 writes
to the L2 will always hit in the L2 (since the L1 is a subset of the L2).

On an L1 read miss, the L1 may need to displace a block from the 32KB 4-way L1 DCache. Further, the read
miss may require that we displace a block from the L2 as well. This means that the original L1 read miss (a single
32 byte read transaction) may cause a 32 byte writeback (the L1 victimization), two L2 to L1 probe operations (to
find out if either of the 32 byte halves of the displaced L2 block are cached in the L1) and between zero and two
32 byte writeback operations (L1 copies of the displaced L2 block.) Confusing? Let’s try a few scenarios.

May 14, 2014 295 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

CSW incoming
Data Flop

MIPS 5Kf
Core

Data 63:0
to BIU

ECC Check
and

Correction

W
t
D
a
t
a

R
d
D
a
t
a

L
f
B
u
f

6
4

B
y
t
e
s

PCLK

CCLK

L2 Data Path

L2 Data
Array(s)
256KB

A
d
d
r

Addr from L2
Controller

L1 Writeback
Data from BIU

W
r
i
t
e
B
a
c
k

B
u
f
f
e
r

6
4

B
y
t
e
s

WriteBack Data
to CSW

Figure 6.8: The L2 Update and L1 Fill Pipeline

May 14, 2014 296 Rev 51328

SiCortex Confidential 6.15. THE L2 CACHE SEGMENT AND PIPELINES

Time Operation

0 Processor issues Dstream Read of address X at BIU port
2 SLC retimes BIU request, sends address to TAG and DAT arrays
6 Tag array looks up address X. Data array begins data lookup
10 Tag is a HIT on way 0. Data array muxes set 0 data back to SLC
14 SLC retimes to PCLK domain, returns first 64 bit data word to BIU port
16 SLC returns second word to BIU port
18 Third word.
20 Fourth word.

Table 6.2: Simple L1 Read Miss – L2 Hit

Time Operation

0 Processor issues Dstream Read of address X at BIU port
2 SLC retimes BIU request, sends address to TAG and DAT arrays.

Sends data to DAT array.
6 Tag array looks up address X.
10 Tag is a HIT on way W.

Data array writes first and second data words into way W.
14 Data array writes third and fourth data words into way W.

Table 6.3: Simple L1 Writeback (All L1 writes hit in L2)

Table 6.2 shows the trajectory of an L1 Dstreammiss that hits in the L2. Istreammisses are processed identically.
Note that because of alignment issues between the PCLK and CCLK domain, the actual time line may be shifted
2 nS later (that is, SLC retiming may happen at time = 4nS) for half of all accesses.

Figure 6.6 shows the flow for an L1 read miss that requires eviction of an L1 cache block and an L2 cache block.
Note that in this case the L1 block could map to the L2 block. (This may be impossible, given that we’re using
a different hash function in the L1 and L2 caches, but I’m not ready to bet on that yet.) The DAT unit ensures
that any writes arriving from the processor will be checked against the L2 victim address. Writes to the L2 victim
block will be routed to the WriteBack buffer (and thence to the CSW when the victim data is finally evicted).

The time between issuing a probe request into the processor’s BIU and the arrival of the response can’t be
determined a priori, so the table shows the first of two probes completing at time P1. The writeback of the L1
victim block may occur at any time between the arrival of the read-miss request and the end of time, but the
overall operation will not be complete until both probe requests have completed AND any blocks that the L1 probe
identified as dirty have been loaded into the WriteBack buffer and sent out to the CSW.

6.15.4 CSW Probe Operations

From time to time the coherence engines on the CSW will forward probe requests to the PS. Each request is first
processed by the L2 controller to check for collisions against operations that are currently in flight. Commands are
processed in order, but not necessarily immidiately. The L2 controller queues up to 26 operations in the incoming
command queue. Probes are only processed when there are no L2 operations in flight – this is to prevent the huge
tree of possible interactions between probes and L1/L2 references.

The L2 controller then sends each probe request to the L2 tag array. In this case, the input to the tag array
address mux is preempted. (This is why we capture the last DC miss address – we’ll launch the DC tag query
when the probe is complete.) If the L2 tag compare indicates a MISS, the controller will send a PROBENOHIT
as appropriate. If the L2 tag compare hits, then we’ll send a L1 probe request to the core. On completion of the
core intervention, the controller will update the L2 data block with L1 writeback data and send the L2 data out to
the CSW as necessary. (This latter operation is identical to a victim eviction with an L1 merge and uses the same
buffers and machinery.)

Probe operations are described in detail in Section 6.22.

May 14, 2014 297 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Time Operation

0 Processor issues Dstream Read of address X at BIU port
2 SLC retimes BIU request, sends address to TAG and DAT arrays
6 Tag array looks up address X. Data array begins data lookup
10 Tag is a miss on both ways. Way W is selected as victim.

Data array muxes data from way W (all 8 words) into the Writeback Buffer.
14 Drive RDEX (Dstream) or RDS (Istream) onto CSW as appropriate.
T CSW returns first 16 bytes (DAT[0], DAT[1]) of data to Data array Fill Buffer

T+4 CSW returns DAT[2], DAT[3] to Fill Buffer.
SLC retimes DAT[0], DAT[1] to processor BIU.
DAT[0], DAT[1] written to data array. (This may be delayed if the L2 data array is busy.)
Update TAG array with current MOD STATE.

T+8 SLC retimes DAT[2], DAT[3] to processor BIU.
DAT[2], DAT[3] written to data array.

T+12 DAT[4], DAT[5] written to data array.
T+16 DAT[6], DAT[7] written to data array.

Table 6.4: L1 Read Miss, L2 Read Miss, Victim block is in INVALID or SHARE state

Time Operation

0 Processor issues Dstream Read of address X at BIU port
2 SLC retimes BIU request, sends address to TAG and DAT arrays
6 Tag array looks up address X. Data array begins data lookup
10 Tag is a miss on both ways. Way W is selected as victim. Victim block address is V.

Data array muxes data from way W (all 8 words) into the Writeback Buffer.
14 Drive RDV (Dstream) or RDSV (Istream) onto CSW as appropriate.

Send probe for block V to processor BIU
P1 Probe completes in processor – invalidate the block, returns DIRTY if block must be written

back.
Writeback operations from BIU to L2 data array begin after probe response.
SLC retimes writeback data, inserts data into WriteBack buffer. (Overwrites L2 data.)
Send probe for block V+32 to processor BIU

P2 Probe completes in processor.
If neither block is DIRTY, send WBCANCEL to CSW.

P2+4 Dump WriteBack buffer to CSW to complete RDV or RDSV writeback portion.
T CSW returns first 16 bytes (DAT[0], DAT[1]) of data to Data array Fill Buffer

T+4 CSW returns DAT[2], DAT[3] to Fill Buffer.
SLC retimes DAT[0], DAT[1] to processor BIU.
DAT[0], DAT[1] written to data array. (This may be delayed if the L2 data array is busy.)
Update TAG array with current MOD STATE.

T+8 SLC retimes DAT[2], DAT[3] to processor BIU.
DAT[2], DAT[3] written to data array.

T+12 DAT[4], DAT[5] written to data array.
T+16 DAT[6], DAT[7] written to data array.

Table 6.5: L1 Read Miss, L2 Read Miss, Victim block is EXCL, DIRTY, or UPDATED

May 14, 2014 298 Rev 51328

SiCortex Confidential 6.15. THE L2 CACHE SEGMENT AND PIPELINES

Time Operation

0 Processor issues Dstream Read of address X at BIU port.
L1 Victim address is L.

2 SLC retimes BIU request, sends address to TAG and DAT arrays
6 Tag array looks up address X. Data array begins data lookup.

SLC may send write operations for L at any time.
10 Tag is a miss on both ways. Way W is selected as victim. Victim block address is V.

Data array muxes data from way W (all 8 words) into the Writeback Buffer.
14 Drive RDV (Dstream) or RDSV (Istream) onto CSW as appropriate.

Send probe for block V to processor BIU.
Writes from SLC to address V are all routed to the WriteBack buffer.
Writes from SLC to address L are all routed to the L2 data array as a normal L1 write. (See
Table 6.3.)

P1 Probe completes in processor – invalidate the block, returns DIRTY if block must be written
back.
Writeback operations from BIU to L2 data array begin after probe response.
SLC retimes writeback data, inserts data into WriteBack buffer. (Overwrites L2 data.)
Send probe for block V+32 to processor BIU

P2 Probe completes in processor.
If neither block is DIRTY, send WBCANCEL to CSW.

P2+4 Dump WriteBack buffer to CSW to complete RDV or RDSV writeback portion.
T CSW returns first 16 bytes (DAT[0], DAT[1]) of data to Data array Fill Buffer

T+4 CSW returns DAT[2], DAT[3] to Fill Buffer.
SLC retimes DAT[0], DAT[1] to processor BIU.
DAT[0], DAT[1] written to data array. (This may be delayed if the L2 data array is busy.)
Update TAG array with current MOD STATE.

T+8 SLC retimes DAT[2], DAT[3] to processor BIU.
DAT[2], DAT[3] written to data array.

T+12 DAT[4], DAT[5] written to data array.
T+16 DAT[6], DAT[7] written to data array.

Table 6.6: L1 Read Miss, L2 Read Miss with L1 and L2 evictions

May 14, 2014 299 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.15.5 Putting It All Together

We’re pretty tight for space in the processor segment. In particular, we’re limited as to how much room we
have for queues and attendent state aside from the 256KB worth of data in the L2 arrays. Figure 6.9 shows the
major components of the L2 portion of the processor segment and the total bytes of RAM, buffer, and register
storage for each. Earlier sections have described the significant features of the tag and data arrays. The controller
is responsible for all command parsing from the CSW and the MIPS BIU, as well as mux control and data steering
in the tag and data arrays.

The controller segment also initiates and responds to I/O space accesses (Section 6.18) and interrupts (Section
6.9).

6.15.6 The SLC (slick) and Processor Access Stalls

The SLC is responsible for retiming requests and responses between the PCLK (processor clock) and CCLK
(central clock) domains. It also handles all processor stall operations.

While cache fills and victimizations are in progress, we occasionally need to prevent the processor from issuing
new requests to the L2 data or tag arrays. There are two levels of stall operation. The first prevents all processor
requests and is used in the early stage of a fill or probe operation to allow the CTL unencumbered access to the
tag and data arrays. The second level allows write operations to propagate through, but enqueues up to two read
operations in the SLC’s pending read queue. This is used in the later stage of fill and probe operations to allow
invalidate writebacks to wend their way into the DAT array’s writeback buffer.

The SLC ARdy state machine that implements “first level” stall and monitors stall requests from the DAT and
CTL units. Note that cac cpu ARdy pr and cac cpu WDRdy pr are wired together.

6.16 Initial Program Load and Processor Start-up

The processor segment implements the address request half of the initial program load process described in
Section 12.8.

6.17 Memory and IO Ordering Rules and Behavior

Here are the simple rules for ordering behavior from the point of view of the processor and the programmer:

1. To ensure that any memory reference A becomes apparent to other processors or an IO device before some
other memory reference B, the programmer must insert a SYNC instruction between A and B. The sequence
READ Mem[X]; WRITE Mem[Y] may be executed in inverse order if X and Y are not in the same 32
byte L1 block.

2. IO WRITE references will complete in order. The sequence READ IoSpace[X]; WRITE IoSpace[Y]
may reorder to WRITE IoSpace[Y]; READ IoSpace[X] but WRITE IoSpace[Y]; Read IoSpace[X]
will never reorder. That is, READ operations to IO space will be deferred until all IO and Memory space
writes have completed and become apparent to the rest of the ICE9.

3. IO WRITE and IO READ operations to CacLoc registers (the ICR registers, the CAC ECC Control registers,
the SPCL register window, and the Interrupt Delivery registers) may re-order with respect to each other
and with respect to IO WRITE operations to other parts of the address space. This means that SYNC
instructions should be used to guard ordering for all such operations to the local control registers. Memory
write operations, however ARE ordered with respect to IO WRITE operations to any of these registers.

4. The ICE9 MIPS processor implements “hits under misses.” This means that reads may re-order relative to
each other in the absense of a SYNC or other ordering event. In particular, no ordering of READs is implied
by the code in Figure 6.10 even if a[] and b[] are written by a process that inserts a SYNC between the update
of the two. Figure 6.11 shows that the read-order can be enforced by making the second read operation
depend on the result of the first. (A SYNC would work too.)

The CAC unit processes IO write operations in order. The CAC also ensures that IO writes won’t re-order
relative to IO reads. Some may interpret the MIPS ordering rules as requiring a sync between IO writes and
subsequent IO reads and vice versa. However, it is clear that many Linux IO drivers take liberties with the

May 14, 2014 300 Rev 51328

SiCortex Confidential 6.17. MEMORY AND IO ORDERING RULES AND BEHAVIOR

L2 Data Array
and Pipeline

256KB RAM (1RW)
1 64B Writeback Buffer (1R 2W)

1 64B Fill Buffer (2R 1W)

L2 Tag Array
and Pipeline

2 x 2Kx26bits RAM (1RW)
2Kx1bit RAM/Buffer (1R,1W)

MIPS 5Kf Core

L2
Controller

Data
to/from
CSW

Addr/Command
to/from
CSW

CAC

CPU

DAT
CTL

TAG

SLC
Retiming, Stall, and Read Queues

CMX

IO Write Queues
Command Multiplexer
Bid/Grant Logic

Figure 6.9: Processor Segment L2 Major Units

May 14, 2014 301 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

int a[1000], b[1000];

int j, k;

Process WRITER

b[1] = new_B_value;

SYNC();

a[1] = new_A_value;

Process READER

j = a[1];

k = b[1]; // j may see new_A_value while k sees old_B_value

Figure 6.10: Unordered Reads

int a[1000], b[1000];

int j, k;

Process WRITER

b[1] = new_B_value;

SYNC();

a[1] = new_A_value;

Process READER

j = a[1];

if(j > 3) k = b[1]; // if j sees new_A_value then k must see new_B_value

Figure 6.11: Read Order Enforced by Dependency (assumes no re-ordering of operations by the compiler.)

May 14, 2014 302 Rev 51328

SiCortex Confidential 6.18. I/O ACCESSES AND ADDRESS DECODING

ordering rule and work better if we can garuntee that IO reads and writes don’t pass each other. Therefore, the
CAC unit will enqueue all IO reads from the processor and will not pass them on to the CSW until all previously
issued IO writes have been completed. An IO write completes when the target device (the device owning the
register to which the write is directed) has issued the companion RDIO operation to get the WTIO data. (See
Section 6.21.6.)

The MIPS core may emit up to 5 IO writes at a time. The CAC handles only one IO write at a time, so there
is a queue in the CMX (command multiplexer) unit that ensures IO writes are completed in order. IO writes may
pass L1/L2 writeback operations, but this will not affect the “observed” order of memory updates vs. IO writes,
as the cache coherence mechanisms are such that the newly written memory data will be observed by any devices
that could observe the newly written IO data.

It should be noted that the CAC enforces IO write ordering and IO write-vs-read ordering as noted above.
However, IO writes to the SPCL delivery addresses or to the INT delivery register may pass other IO writes in
flight. To ensure that SPCL and INT IO operations do not pass earlier IO transactions, applications should use a
SYNC instruction as a barrier before the SPCL or INT op where necessary.

6.18 I/O Accesses and Address Decoding

The CAC unit processes IO read operations in order, and won’t reorder them relative to other read operations.
IO reads may be reordered relative to L1 to L2 writeback operations as they are processed by the CAC, but the
apparent order to all other devices will not violate ICE9 ordering rules. See Section 6.17.

6.18.1 CAC Local IO Registers

There are only a few registers local to the CAC. All are directly accessible only by the local processor. The
addresses and register layouts are described in 7.18 on page 444.

6.18.2 CAC Remotely Accessible IO Registers

Currently there are no remotely accessible IO registers other than those provided on the SCB.

6.19 Interrupts, Again

We’ve talked about interrupts in a number of places. This is the final resting place of all interrupt controversy.

6.19.1 CPU Interrupt lines

Each CPU has 8 interrupts visible to software in the R CpuCause IP register. They are defined as follows:
Interrupt Definition

IP[7] CPU internal performance counters.
IP[6] CPU timer interrupts. Internal to each CPU core
IP[5] Polled, errors and slow devices, or externally vectored by interrupt cause register. (see 7.18.6)
IP[4] Vectored by interrupt cause register. Kernel assigns for DMA engine.
IP[3] Vectored by interrupt cause register. Kernel assigns for PCI-Express.
IP[2] Vectored by interrupt cause register. Kernel assigns for inter-processor interrupts.
IP[1] Software interrupt. Internal to each CPU core. Asserted and cleared by writing R CpuCause IP[1].
IP[0] Software interrupt. Internal to each CPU core. Asserted and cleared by writing R CpuCause IP[0].

6.19.2 The Interrupt Cause Registers

Each PS has a bank of interrupt cause registers, R CacLocIntCr[7:0]. Each ICR is 64 bits wide and corresponds
to one of first four SI Int level sensitive interrupts: ICR0 and ICR1 to IRQ2, ICR2 and ICR3 to IRQ3, etc. The
low 8 bits of the ICR contain the “reason” reported for the corresponding interrupt. Bit 8 of the ICR indicates an
“overflow”condition (described below). Bit 9 indicates that the corresponding interrupt is asserted. The remaining
bits are read as 0.

May 14, 2014 303 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

When the interrupt handler wishes to dismiss an interrupt, it must write a 1 to bit 9 of the related ICR. This
will clear the interrupt cause register and deassert the related interrupt.

Finally, we have the problem of two interrupts arriving to write the same ICR before the first one has been
handled and dismissed. In this case, the second interrupt request will set the OVERFLOW bit in the target ICR.
No other bits in the ICR are affected by the second request. This means that software must poll all possible origins
of requests to a given ICR whenever the overflow bit is set.

The Interrupt Cause Registers are arranged as 64 bit I/O registers in each processor’s private address space.
(That is, no processor can directly access another processor’s ICRs. For an explanation of indirect access, see
Section 6.19.4.)

6.19.3 The CSW INT Transaction and Writing the Interrupt Cause Registers

The CSW INT command (see Section 7.10.5) appropriates the address field of the address/command “bus”
to carry the interrupt cause and a choice of which interrupt to assert and which ICR to write. Bits 10:8 of the
incoming “address” select the ICR from the set of 8 ICRs. Bits 10:9, by implication, select which interrupt will be
asserted. Bits 7:0 are written to the appropriate ICR. A processor may deliver an interrupt to itself.

6.19.4 Interprocessor Interrupts

Any processor can send an interrupt to any other processor via the interrupt delivery register. Writes to
R CacLocIdr will cause a CSW INT to the appropriate destination node. The IDR is described in Section 7.18.7.
To deliver an interrupt to processor X, a processor Y will write X’s bus stop number, the index into X’s set of
ICRs, and a reason code. The PS interface to the CSW will convert this I/O write to a CSW INT transaction. By
convention, interrupt input 0 (IRQ2) is used for inter-processor interrupts.

Note that this mechanism allows any processor to spoof interrupts from any device. That may come in handy
some day.

6.19.5 Machine Check Interrupts

This section is obsolete – we have no “machine check” interrupt.

6.19.6 “Slow” Interrupts

Some ICE9 on-chip components need to originate interrupts, but don’t have a direct or convenient path to the
CSW (where they could originate an INTR command). To accomodate this the OCLA Lac, PMI, SCB, FL, DMA,
FSW, UART and two COH units each have an interrupt wire they can tug on to indicate a need for service or the
occurence of an error condition.

These interrupt signals are routed through the CSW to each of the six L2 Cac interfaces. Each Cac may select
which of the interrupt sources may cause an interrupt to be signaled with the Slow Interrupt Select register. If an
interrupt is asserted and it is also selected (enabled) by the R CacLocSlIntSel register, processor interrupt input 3
(IRQ5) is asserted and remains asserted until the interrupt condition is cleared. (See Section 7.18.8.) The assertion
state of each of the incoming interrupts may also be read from the R CacLocSlIntSel register.

In addition to the slow interrupts from other devices in the ICE9, the R CacLocSlIntSel register contains two
bits indicating the detection of a correctable or uncorrectable ECC error. In the event of an uncorrectable error,
the CAC will assert the slow error interrupt to the processor. Correctable ECC errors will be signalled as INT[3].
Both error conditions may be cleared by writing a 1 to the appropriate bit in R CacLocSlIntSel.

6.19.7 Delivering Interrupts to Other Processors

Each ICE9 processor can deliver an interrupt to the ICR of any other processor via the outbound interrupt
delivery register R CacLocIntDel. See Section 7.18.7. Writes to this register become INT requests on the CSW.

6.20 Error Correction, Detection, Control, and Testing

All data passing over the CSW is protected by ECC, as is all data and tag information in the L2 caches.
Uncorrectable errors are signalled by asserting the processor’s non-maskable interrupt. Correctable errors are
signalled by a slow interrupt. (See 6.19.6, and 7.18.8.)

May 14, 2014 304 Rev 51328

SiCortex Confidential 6.21. PROCESSOR/L2 TRANSACTIONS – NITTYGRITTY DETAILS

Each CAC, in its own local IO CSR space, provides five registers for control and monitoring of ECC generation,
and detection. They follow the scheme described in 12.4.

6.21 Processor/L2 Transactions – NittyGritty Details

This section outlines the flow of data and sequence of control actions for all of the possible transactions that
could take place between the processor and the L2 or I/O system.

Most of the cases enumerated here require a lookup in the L2 tag array. In the case of D-stream accesses, we
accelerate the tag lookup by launching a speculative lookup using the address sent to the L1 D-cache. When the
BIU state machine sends the actual miss request to the cache segment, we check the BIU address against the last
speculative miss address. If they match, we make use of the earlier tag lookup result. Otherwise, we send the BIU
address through the tag lookup pipeline. In the descriptions that follow, we lump all this tag-lookup machinery
into the notion of “performing an L2 tag lookup” without rehashing the details each time.

All 32 byte fills from the L2 to the L1 are delivered in “best word first” order. Responses to probes are delivered
from the processor to the L2 in “word 0 first” order. In all cases, probe addresses sent from the L2 to the processor
will set address bits [4:3] equal to 0.

6.21.1 Processor L1 Cache Read Miss

6.21.1.1 I-Stream Read L1 Miss, L2 Hit

I-stream read L1 misses are recognized by the assertion of cpu cac reqAValid pr, cpu cac reqBurst pr,
and cpu cac reqInstr pr. (If burst is not asserted, then this I-stream access is bypassing the L1 cache. See
Section 6.21.3.)

The TAG unit will signal an L2 hit to the CTL after performing an L2 tag lookup on the BIU request. (The
SLC will multiplex the BIU address onto the TAG index and address comparison inputs.) The CTL then directs
the DAT unit to perform a 32 byte read of the appropriate block. The DAT sends the 32 byte block to the SLC.
The CTL tells the SLC to sequence a burst read back to the processor’s cpu cac rtnRData pr bus.

6.21.1.2 I-Stream Read L1 Miss, L2 Miss

I-stream read L1 misses are recognized by the assertion of cpu cac reqAValid pr, cpu cac reqBurst pr,
and cpu cac reqInstr pr. (If burst is not asserted, then this I-stream access is bypassing the L1 cache. See
Section 6.21.3.)

The TAG unit will signal an L2 miss to the CTL after performing an L2 tag lookup on the BIU request. (The
SLC will multiplex the BIU address onto the TAG index and address comparison inputs.) The TAG unit also
reports the choice of the victim block and its state to CTL.

If the state of the victim block is SHARED, or INVALID the CTL will send a RDS command to the CSW.
When the data returns, the CTL will route the data through the DAT unit to the SLC. The SLC will retime the
first 32 bytes of the return data onto the cac cpu rtnRData pr bus.

If the state of the victim block is EXCLUSIVE, MODIFIED, or UPDATED, The CTL will direct the TAG unit
to send a probe request to the processor via the cac cpu prb* inputs. (See Section 6.21.8.) At the same time, the
CTL will send an RDSV command (read shared with victim) to the CSW. When data returns, it will be routed to
the BIU in the same manner as for an RDS transaction.

6.21.1.3 D-Stream Read L1 Miss, L2 Hit

D-stream read L1 misses are recognized by the assertion of cpu cac reqAValid pr, and cpu cac reqBurst pr,
and the deassertion of cpu cac reqInstr pr. (If burst is not asserted, then this D-stream access is bypassing the
L1 cache. See Section 6.21.3.)

The TAG unit will signal an L2 hit to the CTL after performing an L2 tag lookup on the BIU request. (The
CTL may make use of the tag lookup performed using the “fast path” described above.) The CTL then directs the
DAT unit to perform a 32 byte read of the appropriate block. The DAT sends the 32 byte block to the SLC. The
CTL tells the SLC to sequence a burst read back to the processor’s cpu cac rtnRData pr bus.

May 14, 2014 305 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.21.1.4 D-Stream Read L1 Miss, L2 Miss

D-stream read L1 misses are recognized by the assertion of cpu cac reqAValid pr, and cpu cac reqBurst pr,
and the deassertion of cpu cac reqInstr pr. (If burst is not asserted, then this D-stream access is bypassing the
L1 cache. See Section 6.21.3.)

The TAG unit will signal an L2 miss to the CTL after performing an L2 tag lookup on the BIU request. (The
CTL may make use of the tag lookup performed using the “fast path” described above.) The TAG unit also reports
the choice of the victim block and its state to CTL.

If the state of the victim block is SHARED, or INVALID the CTL will send a RDEX command to the CSW.
When the data returns, the CTL will route the data through the DAT unit to the SLC. The SLC will retime the
first 32 bytes of the return data onto the cac cpu rtnRData pr bus.

If the state of the victim block is EXCLUSIVE, MODIFIED, or UPDATED, The CTL will direct the TAG unit
to send a probe request to the processor via the cac cpu prb* inputs. (See Section 6.21.8.) At the same time, the
CTL will send an RDV command (read shared with victim) to the CSW. When data returns, it will be routed to
the BIU in the same manner as for an RDEX transaction.

6.21.2 Processor L1 Cache Write Miss

All L1 misses caused by a store instruction are converted into L1 read miss requests by the BUI. See Section
6.21.1.

6.21.3 Processor L1 Cache Bypass Read to Cacheable Memory

Earlier versions of this specification indicated that the L2 segment would support 64 bit reads (that is, non-burst
reads) to memory. This is no longer supported. Such reads to memory produce an unpredictable result. (Such
reads can only be caused by certain accesses to non-cached memory space.)

6.21.4 Processor L1 Cache Bypass Write to Cacheable Memory

Earlier versions of this specification indicated that the L2 segment would support 64 bit writes to memory. This
is no longer supported. Uncached writes to memory space produce unpredictable results.

6.21.5 Processor I/O Read

Processor read operations to non-cacheable addresses (addresses with the MSB of the physical address set)
are passed on to the CSW or to the processor segment’s local registers. Such operations are recognized by the
assertion of cpu cac reqAValid pr, cpu cac reqAddr pr[35], and the deassertion of cpu cac reqWrite pr.
If cpu cac reqBurst pr is asserted, the operation will return 0 for all 32 bytes in the burst.

In the case of local register read operations (the address falls in the range of this PS segment’s I/O range, or
in the CPULOC I/O range – see Section 16.6.6) the CTL will select the appropriate register and steer its data to
the SLC. The SLC will sequence the data onto the BIU data pins. Note that the CTL is responsible for address
decoding and sequencing operations. The interrupt reason registers are in the CPULOC I/O range.

I/O accesses that are outside the CPULOC I/O range must be sent to the appropriate device. The CTL selects
the device and initiates the CSW RDIO transaction. When data returns, the DAT unit notifies the CTL and the
CTL steers the incoming data from the DAT unit to the SLC where it is sequenced onto the BIU. For operations
sent to the CSW, the byte enable vector cpu cac reqBE pr[7:0] is passed along to the CSW. In general, this is
irrelevant to I/O registers created by SiCortex, as we prohibit reads from causing side-effects. However, we don’t
own all the I/O devices on the chip, so we must provide machinery that honors the size of I/O read requests.

6.21.6 Processor I/O Write

Processor write operations to non-cacheable addresses (addresses with the MSB of the physical address set) are
passed on to the CSW or to the processor segment’s local registers. Such operations are recognized by the assertion
of cpu cac reqAValid pr, cpu cac reqAddr pr[35], and cpu cac reqWrite pr. If cpu cac reqBurst pr is
asserted, the operation will return 0 for all 32 bytes in the burst.

In the case of local register read operations (the address falls in the range of this PS segment’s I/O range, or
in the CPULOC I/O range – see Section 16.6.6) the CTL will select the appropriate register and steer its data to

May 14, 2014 306 Rev 51328

SiCortex Confidential 6.21. PROCESSOR/L2 TRANSACTIONS – NITTYGRITTY DETAILS

the SLC. The SLC will sequence the data onto the BIU data pins. Note that the CTL is responsible for address
decoding and sequencing operations. The interrupt reason registers are in the CPULOC I/O range.

I/O accesses that are outside the CPULOC I/O range must be sent to the appropriate device. The CTL selects
the device and initiates the CSW WTIO transaction, and loads the write data into the WtIoDat register in the
DAT unit. When the targetted unit responds with the completing RDIO transaction, the CTL unit will direct the
DAT unit to drive the contents of WtIoDat onto the CSW data bus. When the DAT unit recieves a data grant,
the CTL will complete the write operation. Since the processor may queue up to 5 I/O writes for processing, such
requests enter an I/O write queue in the SLC and are processed in order. For operations sent to the CSW, the
byte enable vector cpu cac reqBE pr[7:0] is passed along to the CSW.

Once the I/O write has completed, the CTL unit sends a write buffer acknowledgement back to the processor
through the SLC via the cac cpu wbAck pr signal.

6.21.7 Processor L1 Eviction

A processor may evict an L1 block at any time. It signals a block writeback with the assertion of cpu cac reqAValid pr,
cpu cac reqWrite pr, and cpu cac reqBurst pr. Block writes to I/O space are ignored.

When the L1 eviction address passes from the SLC to the CTL, the CTL will setup the DAT pipeline for an L1
writeback. When the pipeline is ready, the CTL will tell the SLC to assert cac cpu WDRdy pr. The processor
then sources data onto the cpu cac WData pr bus which is retimed by the SLC unit to 128 bits. The DAT
pipeline appends ECC bits and writes the 32 byte block into the L2 data array. The Tag unit changes the state of
the block to “UPDATED.”

6.21.8 L2 Probe to Processor

The L2 cache may initiate a probe request to the processor for two reasons. First, the L2 may need to displace
a block due to a L2 miss caused by a processor request. (See Section 6.21.1.) Second, the L2 may launch a probe
into the L1 to retrieve a potentially dirty block in response to a CSW PRBWIN command. In either case, the
actions by the L2 segment and the processor are identical. Note that in both cases, the CTL will send in TWO
probe requests, one for each of the two 32 byte blocks that map to the 64 byte block of interest. They will be sent in
order and the second will not be sent until after the first probe has been acknowledged via the cpu cac invAck pr
signal.

The probe is launched by the CTL. CTL sends a probe request to the SLC unit which drives the probe address
onto cac cpu prbAddr pr, and asserts cac cpu prbReq pr. At some later time, the processor will respond with
some combination of assertions of cpu cac invHit pr, cpu cac invDirty pr, and cpu cac invLock pr along
with the assertion of cpu cac invAck pr.

6.21.8.1 Probe Hits on Clean Block

When the probe hits on a clean block, the processor will assert cpu cac invAck pr while deasserting cpu cac invDirty pr.
In this case, the CTL will not anticipate a writeback for the block. The CTL will release the DAT data path to
send probe or victim data out to the coherence widget or probe requester. If both probes for a block return clean
and the block is clean in the L2, the CTL will initiate a WBCANCEL operation in the event of a writeback, or
complete the PRBINV operation.

6.21.8.2 Probe Hits on Dirty Block

When the probe hits on a dirty block, the processor will assert cpu cac invAck pr and cpu cac invDirty pr.
In this case, the CTL expects a writeback for the block. Before launching the probe, the CTL pre-arms the DAT
unit to prepare it to accept writeback data. With the arrival of invDirty, the SLC alerts the DAT unit that
writeback data is arriving. Once both probes have completed, the CTL unit will complete the writeback or probe
operation by signalling the DAT unit to forward the updated data to the CSW.

6.21.8.3 Probe Misses in L1

When the probe misses in the L1 D-cache, the processor will assert cpu cac invAck pr while deasserting
cpu cac invDirty pr. (This is indistinguishable from a hit on a clean block. The cpu cac invHit pr signal may
be used as a hint for performance counters, but is not to be used in making protocol decisions.) In this case, the
CTL will not anticipate a writeback for the block. The CTL will release the DAT data path to send probe or victim

May 14, 2014 307 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

data out to the coherence widget or probe requester. If both probes for a block return clean and the block is clean
in the L2, the CTL will initiate a WBCANCEL operation in the event of a writeback, or complete the PRBINV
operation.

6.22 L2 Responses to Probe Requests

In the responses described below, data is returned – if required – to the appropriate requester via the DAT unit.
The DAT unit is responsible for sequencing data responses to the CSW and waiting for data grant.

Note that the cache segment stalls all new read accesses from the processor while probe handling occurs. This
avoids ships-passing-in-the-night problems with, for instance, a PRBBWT arriving, finding a hit, and then finding
that the target block has been evicted when the BWT data arrives. Further, when the cache segment responds to
a PRBBWT with a BWTGO, it will wait until all outstanding L2 fills or IO reads have completed, since the CSW
port can handle just one block of data coming to a processor in any given cycle.

All probe handling begins with the dispatch of the operation at the top of the CTL probe state machine. When
an enqueued probe request is found, the CTL unit causes the SLC to “pause” the processor BIU. Each probe flow
will wait for the SLC to signal that the BIU is now in the paused state. (The BIU is paused when ARdy is deasserted
and there are L1 instigated operations currently in flight.) Figure 6.12 shows the probe operation dispatch.

6.22.1 PRBINV

The CTL unit will drive the incoming address to the Tag unit. At the same time, the CTL will direct the SLC
to hold off further processor BIU requests (via the cac cpu reqARdy pr signal) while the Tag array is occupied.
The Tag unit will use ctl xxx Addr c2a to generate a lookup and set the matching state (if any) to INVALID
unless the current state is EXCL/DIRTY/UPDATED.1 Incoming PRBINV commands that carry a TID that is
owned by the receiving unit do not update the cache, but send an INVDONE to the originating COH unit.

The CTL generates an INVDONE response to the CSW when a PRBINV has been handled (or when a PRBINV
for a TID owned by this unit arrives). The CTL state machine flow for PRBINV is shown in Figure 6.13.

6.22.2 PRBWIN

The CTL unit will drive the incoming address to the Tag unit. At the same time, the CTL will direct the SLC
to hold off further processor BIU requests (via the cac cpu reqARdy pr signal) while the Tag array is occupied.
The Tag unit will use ctl xxx Addr c2a to generate a lookup and set the matching state (if any) to INVALID.
The Tag unit will also report the result of the lookup to the CTL.

If the lookup missed in the Tag, the CTL unit will initiate a PRBNOHIT response to the original requester.

If the lookup hit in the Tag the CTL will initiate two probes into the L1 cache for the two L1 blocks contained
in the identified L2 block. After the L1 probes complete (see Section 6.21.8.) the CTL will direct the DAT unit to
send the L2 block to the requester.

(Note that if the L2 block was in the SHARED or INV state, we still do the probes. PRBWIN shouldn’t arrive
for blocks in the SHARED state, but as the L2 ignores the state in this case, we’ll complete the transition. However,
the hardware is broken at this point.)

The BRD, WIN, and SHR flows all share a commong writeback flow shown in Figure 6.16.

6.22.3 PRBBRD

The CTL will drive the incoming address to the Tag unit. At the same time, it will launch two probe requests
to the L1.

After the probe requests complete, and any data has been written to the L2, the CTL directs the L2 to respond
with data as for a PRBWIN request. In this case, however, the tag array state remains unchanged. The transaction
is handled by the CTL PRB state machine as shown in Figure 6.15

1In this case, the PRBINV is “stale” and arrived sometime in the past, was neglected until now, and is now applied to a block that
was recently acquired.

May 14, 2014 308 Rev 51328

SiCortex Confidential 6.22. L2 RESPONSES TO PROBE REQUESTS

Prb Queue
Empty?

POLL

Y

N

Prevent processor from making new
read/write requests

ctl_slc_Pause4Probe_c4a = true

Write or Fill
In flight?

Pop Probe Queue

PRBINV?

PRBBRD?

Y

N

Y

N

PRBSHR?
Y

N

PRBWIN?
Y

N

To INV_WT

To BRD_WT

To SHR_WT

To WIN_WT

PRBBWT?
Y

N

To BWT_WT

Ok, then what the hell is it?
We should never get here.

Y

N

Write or Fill
In flight?

Y

N

POLL2

Figure 6.12: Probe Operation DispatchMay 14, 2014 309 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

BIU
Paused?

INV_WT

slc_ctl_PrbPaused_c5b = true
ctl_slc_Pause4Probe_c4a = false

To POLL state

INV_LU

N

Y

INV_LU2

L1 Fill/Wback
in Progress?

Y

N

To POLL2 state

Ask tag array to invalidate
probed block

Send INVDONE to appropriate
COH

Figure 6.13: CTL State Machine Flow for PRBINV

May 14, 2014 310 Rev 51328

SiCortex Confidential 6.22. L2 RESPONSES TO PROBE REQUESTS

Biu Paused?
N

Y

WIN_WT
Wait for the processor
interface to signal that
the processor won’t generate
any more cache lookups.

Ask Tag Array to do a Tag Lookup
for a BRD operation

Probe L1 and ask for Writeback
of any dirty blocks

WIN_LU
Do the L2 tag lookup

dead cycle, while we wait
for L2 tag lookup result

WIN_LU2
Check result of tag lookup

Miss in L2 or
Hit against

Current Victim?

Y

N
ctl_slc_Pause4Probe_c4a = false

Ask CMX to send out a PRBNOHIT

To L1PRBDN_WT state
Ask the data array to do a
probe read from L2 and L1
ctl_dat_PrbRdReq_c5a = true

To WIN_L2WB

Write or Fill
in Flight?

N

Y
To POLL2 state

Figure 6.14: CTL State Machine Flow for PRBWIN

May 14, 2014 311 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Biu Paused?
N

Y

BRD_WT
Wait for the processor
interface to signal that
the processor won’t generate
any more cache lookups.

Ask Tag Array to do a Tag Lookup
for a BRD operation

Probe L1 and ask for Writeback
of any dirty blocks

BRD_LU
Do the L2 tag lookup

dead cycle, while we wait
for L2 tag lookup result

BRD_LU2
Check result of tag lookup

Miss in L2
or

Match Victim Wb
Address?

Y

N
ctl_slc_Pause4Probe_c4a = false

Ask CMX to send out a PRBNOHIT

To L1PRBDN_WT state
Unpause the processor so that

writebacks can complete
ctl_slc_Pause4Probe_c4a = false

Prevent the processor from issuing
new L2 read operations
ctl_slc_RdInh_c5a=true

Ask the data array to do a
probe read from L2 and L1
ctl_dat_PrbRdReq_c5a = true

To BRD_L2WB

L1 Fill/Wback
in Progress?

N

Y
To POLL2

Figure 6.15: CTL State Machine Flow for PRBBRD

May 14, 2014 312 Rev 51328

SiCortex Confidential 6.22. L2 RESPONSES TO PROBE REQUESTS

BRD_WBWT
Wait for
writeback to
complete

N

Y

ctl_slc_RdInh_c5a = false

Probe Writeback
Complete?

To POLL state

SHR_L2WB
BRD_L2WB
WIN_L2WB

N

Y

L2 dump into
 Writeback
Complete?

Allow L1 to L2 writes
ctl_slc_Pause4Probe_c4a = false
Prevent Reads from coming through

ctl_slc_RdInh_c5a = true

ctl_dat_PrbRdReq_c5a = false
ctl_slc_WinPrb_c6a = true

L1PRBDN_WT
Complete a
Probe Operation

N

Y

Probe
Writeback
Complete?

Tell L1 that the Probe is complete
Tell L1 to allow L1 to L2 Writes/Reads

ctl_slc_WinPrb_c6a = true

CHK_NHACK

N

Y

All CSW
Operations
Complete?

To POLL state

Figure 6.16: Common Writeback Flow

May 14, 2014 313 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.22.4 PRBBWT

The CTL will drive the incoming address to the Tag unit. At the same time, it will launch two probe requests
to the L1. The CTL will direct the SLC and DAT units to ignore the return data (if any) from the L1. (The object
here is to clear the valid bits for the relevant blocks in the L1 cache.

After the probe requests are launched (but we don’t wait for acknowledgement) the CTL originates a BWTGO
command on the CSW to prompt the requester to send the block of data.

When the data arrives, the DAT unit will write the data into the L2 data array. During this operation, the
CTL will direct the SLC to hold off all BIU write data with the cac cpu reqWDRdy pr signal.

After the DAT unit signals to the CTL that the transfer has completed, the CTL will send a BWTDONE signal
to the COH. (This allows the coherence engine to “complete” the write action and t rigger any operations that were
dependent on the block write.

Note that only the DMA engine and the PCI-e controller can initiate BWT operations, so the PS need only
provide enough book-keeping slots to keep track of 8 BWT operations at a time. They will always arrive with a
TID of DMAWTx or PCIWTx where x can range from 0 to 3 inclusive.

6.22.5 PRBSHR

A PRBSHR request will arrive when this processor has cached a a block in any state and another processor also
wishes to cache the block in SHARED state. Figure 6.18 shows the flow.

6.23 L2 Responses to Other CSW Commands

6.23.1 PRBNOHIT

PRBNOHIT arrives in response to a forwarded RDEX, RDV, RDS, or RDSV operation. In this case, the CSW
immediately drives the appropriate retry (RDEXR or RDSR) operation onto the CSW.

6.23.2 RDIO

The CTL unit will check the incoming csw address against the known address ranges fielded by this node. CTL
will drive the incoming address ctl xxx Addr c2a and assert ctl xxx IORd c2a.

If the address is out of bounds (i.e. does not match any range), the CTL will direct the DAT unit to initiate a
data response with a data field of all zeros.

If the address is in bounds, the CTL will drive a unit select signal to the PS unit that owns the registers. The
target unit will use the ctl xxx Addr c2a signal to select the appropriate register and drive return data to the
DAT unit. The DAT unit will pass the data on to the CSW.

6.23.3 WTIO

The CTL unit will check the incoming csw address against the known address ranges fielded by this node. CTL
will drive the incoming address ctl xxx Addr c2a and assert ctl xxx IOWt c2a.

As noted in the L2 Cache chapter, WTIO transactions are double-ended so as to allow the processor node to
prevent two data blocks from arriving at a CSW bus stop at the same time. On receipt of an WTIO, the CTL unit
will initiate an RDIO command to the requester using the same TID Ty as the incoming request. The address
attached to the RDIO is “WTIOADDR”. At some later time, the data will return from the original requester. The
TID will be matched up against Ty and the data routed to the appropriate destination.

If the address is out of bounds (i.e. does not match any range), the CTL will direct the DAT unit to drop the
data into the bit bucket.

If the address is in bounds, the CTL will drive a unit select signal to the PS unit that owns the registers. The
target unit will use the ctl xxx Addr c2a signal to select the appropriate register and write the incoming data
from the DAT unit (on dat xxx IOWtDat c4a) into the target register.

WTIO operations may not be initiated by either the PCIexpress controller or the DMA unit. All WTIO
operations are initiated by processors. This is important, as the CAC tracks just one WTIO transaction for each of
the processors. (No processor/L2 complex can have more than one write operation outstanding at a time. Other
I/O writes from the processor are enqueued in the SLC until resources are available in the CAC to handle them.)

May 14, 2014 314 Rev 51328

SiCortex Confidential 6.23. L2 RESPONSES TO OTHER CSW COMMANDS

Biu Paused?

Y

N

Hit in L2?
N

Y

Ask Tag Array to do a Tag Lookup
for a BWT operation

Probe L1 and discard
writeback data, if any

Dead cycle, while we wait
for L2 tag lookup result

BWT_LU
Do the L2 tag lookup.

BWT_WT
Wait for the processor
interface to signal that
the processor won’t generate
any more L2 cache lookups.

BWT_LU2
Check the result
of the tag lookup.

ctl_slc_Pause4Probe_c4a = false

Ask CMX to send out a BWTNOHIT

To L1PRBDN_WT state
Prepare the DAT array
to do a FILL from data
coming from the CSW

L1 Probe
Complete?

N

Y

Ask CMX to send out a BWTGO

L2 Fill
Complete?

N

Y

ctl_slc_Pause4Probe_c4a = false

Ask CMX to send out a BWTDONE

To POLL state

BWT_PWT
Wait for the L1 probe to
complete.

BWT_FWT
Wait for the L2 fill to
complete.

Write or
Fill in
Progress?

Y

N

To POLL2 state

Figure 6.17: CTL State Machine Flow for PRBBWT

May 14, 2014 315 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Biu Paused?
N

Y

SHR_WT
Wait for the processor
interface to signal that
the processor won’t generate
any more cache lookups.

Ask Tag Array to do a Tag Lookup
for a SHR (BRD) operation

SHR_LU
Do the L2 tag lookup

dead cycle, while we wait
for L2 tag lookup result

SHR_LU2
Check result of tag lookup

Miss in L2 or
Hit on Victim

Address?

Y

N
ctl_slc_Pause4Probe_c4a = false

Ask CMX to send out a PRBNOHIT

To CHK_NHACK state

Block in
SHARED
state?

Y

N
Ask the DAT array to read

from the L2 (without an L1 probe)
and send data to PRBSHR

requester.

To BRD flow
BRD_L2WB state

SHR_WRSTWT
Wait for WRSTRANS command
to be sent

Ask CMX to send
WRSTRANS

WRSTRANS
Sent?

N

Y

Ask L1 to Invalidate
Ask Dat array to read L2 into

Writeback Buffer

To BRD flow
BRD_L2WB state

Write
or Fill

in Flight?

N

Y
To POLL2 State

Figure 6.18: CTL State Machine Flow for PRBSHR

May 14, 2014 316 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

6.23.4 INT

See Section 6.19.
On receipt of an INT command, the CTL unit will send a DONE response via the CSW to the originating node.

6.23.5 Incoming Data Completing a Memory Read Operation

When data arrives from the CSW in response to a RDEX, RDV, RDS, or RDSV operation, the CTL unit will
check the DataOrigin. If DataOrigin is not a coherence widget, the CTL unit will send a PRBDONE request to
the appropriate coherence widget to complete the transaction.

6.24 Registers and Definitions

For details on most of these registers, consult the MIPS 5kf Processor Core Family Software User’s Manual.
For a whole host of reasons all registers in the L2 cache portion of the processor segment are defined in the

CSW and Coherence chapter. See Section 7.17.
The following CPU registers have been modified relative to the m5kf programmer’s manual. The changes are

bolded in the register descriptions referenced below.
Register/Field Name See

R CpuConfig LLTIME 6.24.8 on page 327
R CpuConfig2 6.24.10 on page 327
R CpuPRId 6.24.56 on page 337
R CpuErrCtl 6.24.22 on page 330
R CpuCacheErr 6.24.23 on page 331
R CpuPerfPEA 6.24.20 on page 330
R CpuPerfVPC 6.24.19 on page 330

6.24.1 Package Attributes

6.24.1.1 Package

chip cpu spec

Attributes

-public rdwr accessors

6.24.2 Definitions

Defines

CPU
Constant Mnemonic Definition

32’d5 C LINE LOG2 Caches line size in power-of-2 bytes. (32 bytes.)
32’d32 C LINE Caches line size.
32’d4 DC ASSOC DCache Associativity.
32’d15 DC SIZE LOG2 DCache Size in power-of-2 bytes. (32KB)
32’h8000 DC SIZE DCache Size
32’d4 IC ASSOC ICache Associativity.
32’d15 IC SIZE LOG2 ICache Size in power-of-2. (32KB).
32’h8000 IC SIZE ICache Size
4’d6 WB ENTRIES Write Buffer entries.
32’d7 TAGHASH0 LO Low bit of tag hash field
32’d10 TAGHASH WIDTH How many bits in the tag hash index field
32’d17 TAGHASH1 LO Low bits of the other tag hash field (HASH0 XOR HASH1 -> TagIn-

dex)
32’d19 TAG WIDTH How many bits in the tag itself?

May 14, 2014 317 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.24.3 Register List

The following enumeration summarizes the CPU registers. Note the constant used includes the register number
and select field, the CP0 REG macro may be used to split them up.

Enum

CpuCp0

Attributes

-allowlc

Constant Mnemonic Product Definition

8’o00 0 Index Index into the TLB entry
8’o01 0 Random Randomly generated index into the TLB array
8’o02 0 EntryLo0 Low-order portion of the TLB entry for even-numbered

virtual pages
8’o03 0 EntryLo1 Low-order portion of the TLB entry for odd-numbered

virtual pages
8’o04 0 Context Pointer to page table entry in memory
8’o05 0 PageMask Control for variable page size in TLB entries
8’o06 0 Wired Controls the number of xed (wired) TLB entries
8’o10 0 BadVAddr Reports the address for the most recent address-related

exception
8’o11 0 Count Processor cycle count
8’o12 0 EntryHi High-order portion of the TLB entry
8’o13 0 Compare Timer interrupt control
8’o14 0 Status Processor status and control
8’o15 0 Cause Cause of last general exception
8’o16 0 EPC Program counter at last exception
8’o17 0 PRId Processor identification and revision
8’o20 0 Config Configuration register
8’o20 1 Config1 Configuration register 1
8’o20 2 Config2 twc9a+ Configuration register 2
8’o21 0 Reserved
8’o22 0 WatchLo Low-order watchpoint address
8’o23 0 WatchHi High-order watchpoint address
8’o24 0 XContext Extended-addressing page table context
8’o25 0 Reserved
8’o26 0 PerfVPC Performance virtual program counter address
8’o26 1 PerfVPC1 Performance virtual program counter address
8’o26 2 PerfPEA Performance physical effective address
8’o26 3 PerfPEA1 Performance physical effective address
8’o27 0 Debug Debug register
8’o30 0 DEPC Program counter at exception entering Debug Mode
8’o31 0 PerfCnt Performance counter interface
8’o31 1 PerfCnt1 Performance counter interface
8’o31 2 PerfCnt2 Performance counter interface
8’o31 3 PerfCnt3 Performance counter interface
8’o32 0 ErrCtl Parity/ECC error control and status
8’o33 0 CacheErr Cache parity error control and status
8’o34 0 TagLo Low-order portion of cache tag interface
8’o34 1 DataLo Low-order portion of cache data interface
8’o35 0 TagHi High-order portion of cache tag interface
8’o35 1 DataHi High-order portion of cache data interface

May 14, 2014 318 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

8’o36 0 ErrorEPC Program counter at last error
8’o37 0 DSAVE Debug Exception Save Register
(else) Reserved.

6.24.4 Prefetch Hint Encodings

The following enumeration is used for the hint field of the pref instruction.

Enum

CpuPrefHint

Constant Mnemonic Product Definition

5’d0 LOAD TWC9A+ Load Prefetch. Data is expected to be read and not mod-
ified. If the address translates and misses in L1, read the
data exclusive into the L1.

5’d1 STORE TWC9A+ Store Prefetch. Data is expected to be written. Imple-
mented same as LOAD.

5’d4 LOADSTR TWC9A+ Load Streamed. Data is expected to be read once and does
not need to be cached. Implemented same as LOAD.

5’d5 STORESTR TWC9A+ Store Streamed. Data is expected to be written once and
does not need to be cached. Implemented same as LOAD.

5’d6 LOADRET TWC9A+ Load Retained. Data is expected to be read many times,
versus the LOADSTR stream. Implemented same as
LOAD.

5’d7 STORERET TWC9A+ Load Retained. Data is expected to be written many
times, versus the STORESTR stream. Implemented same
as LOAD.

5’d25 NUDGE TWC9A+ Writeback Invalidate. Data is not to be used, if dirty
writeback to L2; if clean, invalidate.

5’d26 LOADL2 TWC9A+ Load Prefetch to L2. Data is expected to be read, but pre-
pare only L2 cache. If the address translates and misses
in L1, read the data exclusive into the L2 cache, do not
change L1 cache.

5’d27 STOREL2 TWC9A+ Store Prefetch to L2. Data is expected to be written, but
prepare only L2 cache. Implemented same as LOADL2.

5’d30 PREPSTORE TWC9A+ Prepare for Store. Data will overwrite an entire cache
line, the data can be filled with zeros. Not implemented,
becomes NOP.

(else) TWC9A+ Reserved. Unimplemented in the core and will be NOPed;
note some unimplemented encodings are remain architec-
turally defined.

6.24.5 CPU Performance Counter Events

The following events are trackable by the CPU performance counters in CP0 register 25. These are different
event encodings from the SCB performance counters.

ICE9A uses the same encodings as the M5KF core, which unfortunately has different events for each counter.
CpuCntEvent0 are the encoding for ICE9A’s counter 0, CpuCntEvent1 is for ICE9A’s counter 1.

ICE9B uses a different enumeration from ICE9A, CpuCntEvents, but sanitized it by applying the same enu-
meration to both counters and added additional events.

Enum

CpuCntEvent0

May 14, 2014 319 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Attributes

-descfunc

Constant Mnemonic Product Definition (For more details, see descriptions in
CpuCntEvents.)

6’h00 CYCLES ICE9A Cycles.
6’h01 INSFETCH ICE9A Instructions fetched.
6’h02 LOAD ICE9A Load/pref/sync/cache ops.
6’h03 STORE ICE9A Stores.
6’h04 SC ICE9A Conditional stores.
6’h05 SCFAIL ICE9A Conditional stores that fail.
6’h06 BRANCH ICE9A Branches executed.
6’h07 ITLBMISS ICE9A ITLB misses.
6’h08 DTLBMISS ICE9A DTLB misses.
6’h09 ICMISS ICE9A I-Cache misses.
6’h0a INSSCHED ICE9A Instructions scheduled.
6’h0b-6’h0d ICE9A Reserved
6’h0e INSDUAL ICE9A Dual issued instructions.
6’h0f INSEXEC ICE9A Instructions executed bit 0.
6’h1f-6’h3f ICE9A Reserved.

Enum

CpuCntEvent1

Attributes

-descfunc

Constant Mnemonic Product Definition (For more details, see descriptions in
CpuCntEvents.)

6’h00 CYCLES ICE9A Cycles.
6’h01 INSEXEC ICE9A Instructions executed.
6’h02 LOAD ICE9A Load/pref/sync/cache ops.
6’h03 STORE ICE9A Stores.
6’h04 SC ICE9A Conditional stores.
6’h05 FLOAT ICE9A Floating point instructions executed. Includes all COP1

instructions, including loads and stores.
6’h06 DCEVICT ICE9A Data cache line evicted from L1.
6’h07 TLBTRAP ICE9A TLB miss exception traps.
6’h08 MISPRED ICE9A Branches mispredicted.
6’h09 DCMISS ICE9A Data cache misses.
6’h0a MSTALL ICE9A Scheduling conflict M-stage stalls.
6’h0b-6’h0e ICE9A Reserved
6’h0f COP2 ICE9A COP2 instructions executed.
6’h1f-6’h3f ICE9A Reserved.

Enum

CpuCntEvents

Attributes

-descfunc

Constant Mnemonic Product Definition

May 14, 2014 320 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

6’h00 CYCLES ICE9B+ Cycles. Incremented by one each processor clock cycle.
6’h01 INSFETCH ICE9B+ Instructions fetched. Incremented by the number of in-

structions (0,1,2) fetched by the instruction buffer.
6’h02 LOAD ICE9B+ Load/pref/sync/cache ops. Incremented by one each time

a load, pref, sync, or cache instrucion is executed.
6’h03 STORE ICE9B+ Stores. Incremented by one each time a store instruction

completes M stage, irregardless of if it has completed stor-
ing to memory. Note that a store conditional is considered
executed even if it fails to perform the store due to the
LL bit being clear.

6’h04 SC ICE9B+ Conditional stores. Incremented by one each time a store
conditional, passing or failing, completes M stage.

6’h05 SCFAIL ICE9B+ Conditional stores that fail. Incremented by one each time
a store conditional fails.

6’h06 BRANCH ICE9B+ Branches executed. Incremented by one each time a con-
ditional branch instruction is executed.

6’h07 ITLBMISS ICE9B+ ITLB misses. Incremented by each miss in the ITLB.
6’h08 DTLBMISS ICE9B+ DTLB misses. Incremented by each miss in the DTLB.
6’h09 ICMISS ICE9B+ I-Cache misses. Incremented by each miss in the I-Cache.
6’h0a INSSCHED ICE9B+ Instructions scheduled. Incremented by one each time an

instruction is scheduled.
6’h0b MISPRED ICE9B+ Branches mispredicted. Incremented by one each time a

conditional branch is mispredicted.
6’h0c FLOAT ICE9B+ Floating point instructions executed. Includes all COP1

and COP1X instructions, including floating point loads,
floating point stores, and floating point conditional
branches.

6’h0d COP2 ICE9B+ COP2 and COP2X instructions executed. Includes all
COP2 and COP2X instructions, including COP2 loads,
COP2 stores, and COP2 branches.

6’h0e INSDUAL ICE9B+ Dual issued instructions. Incremented by *two* each time
an instruction pair is dual issued.

6’h0f INSEXEC ICE9B+ Instructions executed. Incremented by the number of in-
structions (0,1,2) which have completed their execution
in the integer and floating point units. For this count, an
instruction is completed if it has passed its M stage with-
out being killed, or was a SYSCALL, BREAK, SDBBP,
or trap. A load instruction is considered as executed if it
compeleted the M stage, even though it may not have re-
turned data. MDU and floating point instructions are also
counted as completed when they finish M stage, though
they may require additional cycles.

6’h10 DCEVICT ICE9B+ Data cache line evicted. Incremented by one each time
a 32-byte line is evicted from the L1 data cache. This
includes evictions caused by probes.

6’h11 TLBTRAP ICE9B+ TLB miss exception traps. Incremented by one on each
TLB miss exception trap.

6’h12 DCMISS ICE9B+ Data cache misses. Incremented by one on each L1 Data
cache miss.

6’h13 MSTALL ICE9B+ Scheduling conflict M-stage stalls. Incremented each cycle
the M-stage pipeline is stalled due to scheduling conflicts.

6’h14 L2REQ ICE9B+ Cachable L2 Cache requests. The count increments when
the load completes, which may be many instructions after
the load if there are no load data-dependancies.

May 14, 2014 321 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6’h15 L2MISS ICE9B+ Cachable L2 Cache requests that miss in local L2. The
count increments when the load completes, which may
be many instructions after the load if there are no load
data-dependancies.

6’h16 L2MISSALL ICE9B+ Cachable L2 Cache requests that miss in all caches and
fill from memory. The count increments when the load
completes, which may be many instructions after the load
if there are no load data-dependancies.

6’h17 FPARITH ICE9B+ Floating point arithmetic instructions. Increments for
each MADD/ MNADD/ MSUB/ NMSUB/ ADD/ SUB/
MUL/ DIV/ SQRT/ RECIP/ RSQRT.

6’h18 FPMADD ICE9B+ Floating point multiply-add instructions. Increments for
each paired instruction; MADD/ MNADD/ MSUB/ NM-
SUB.

(else) ICE9B+ Reserved.

6.24.6 SCB Performance Core Events

The following CPU counter events are trackable by SCB statistical event counting. This table is inserted twice;
one for each counter, into CpuScbEvent under the mnemonics C0 and C1 . For more details on each event, see
the descriptions in CpuCntEvents.

Enum

CpuScbCoreEvent

Constant Mnemonic Product Definition (For more details, see descriptions in
CpuCntEvents.)

5’h00 CYCLES ICE9B+ Cycles.
5’h01 INSFETCH B0 ICE9B+ Instructions fetched bit 0.
5’h02 INSFETCH B1 ICE9B+ Instructions fetched bit 1. Multiply by 2 and add bit 0

counter for total number of instructions.
5’h03 INSSCHED ICE9B+ Instructions scheduled.
5’h04 INSDUAL B1 ICE9B+ Dual issued instructions bit 1. Multiply by 2 and add

bit 0 counter for total number of instructions. (Scaled in
driver software, so read P0 INSDUAL instead.)

5’h05 INSEXEC B0 ICE9B+ Instructions executed bit 0.
5’h06 INSEXEC B1 ICE9B+ Instructions executed bit 1. Multiply by 2 and add bit 0

counter for total number of instructions. (Scaled in driver
software, so read P0 INSEXEC instead.)

5’h07 LOAD ICE9B+ Load/pref/sync/cache ops.
5’h08 STORE ICE9B+ Stores.
5’h09 SC ICE9B+ Conditional stores.
5’h0a SCFAIL ICE9B+ Conditional stores that fail.
5’h0b BRANCH ICE9B+ Branches executed.
5’h0c ICMISS ICE9B+ I-Cache misses.
5’h0d ITLBMISS ICE9B+ ITLB misses.
5’h0e DTLBMISS ICE9B+ DTLB misses.
5’h0f MISPRED ICE9B+ Branches mispredicted.
5’h10 FLOAT B0 ICE9B+ Floating point instructions executed, bit 0. Note this in-

cludes all COP1 instructions, including load/stores.
5’h11 FLOAT B1 ICE9B+ Floating point instructions executed, bit 1. Multiply by

2 and add bit 0 counter for total number of instructions.
(Scaled in driver software, so read P1 FLOAT instead.)

5’h12 COP2 B0 ICE9B+ COP2 instructions executed, bit 0.

May 14, 2014 322 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

5’h13 COP2 B1 ICE9B+ COP2 instructions executed, bit 1.
5’h14 MSTALL ICE9B+ Scheduling conflict M-stage stalls.
5’h15 DCEVICT ICE9B+ D-Cache evicts.
5’h16 DCMISS ICE9B+ D-Cache misses.
5’h17 TLBTRAP ICE9B+ TLB traps.
5’h18 L2REQ ICE9B+ Cachable L2 Cache requests
5’h19 L2MISS ICE9B+ Cachable L2 Cache requests that miss in local L2
5’h1a L2MISSALL ICE9B+ Cachable L2 Cache requests that miss in all caches and

fill from memory
5’h1b FPARITH ICE9B+ Floating point arithmetic instructions.
5’h1c FPMADD ICE9B+ Floating point multiply-add instructions.
5’h1d-5’h1f ICE9B+ Reserved.

6.24.7 SCB Performance Events

The following events are trackable by SCB statistical event counting.

Enum

CpuScbEvent

Attributes

-descfunc

Constant Mnemonic Product Definition

8’h00 CYCLES Cpu cycles. Always counts.
8’h01 DCHIT L1 D-Cache hits.
8’h02 DCMISS L1 D-Cache misses.
8’h03 ICHIT L1 I-Cache hits.
8’h04 ICMISS L1 I-Cache misses.
8’h05 INSTNCOMPLETE Instruction completed.
8’h06 ITLBHIT Instruction TLB hits.
8’h07 ITLBMISS Instruction TLB misses.
8’h08 DTLBHIT Data TLB hits.
8’h09 DTLBMISS Data TLB misses.
8’h0a JTLBHIT Joint TLB hits.
8’h0b JTLBMISS Joint TLB misses.
8’h0c SLEEP Sleep cycles. Cycles between WAIT instruction and inter-

rupt or other wakeup.
8’h0d-8’h0f Reserved.

8’h10

8’h10 STALLR R-stage pipeline stall.
8’h11 STALLR DM R-stage pipeline stall due to dispatch manager.
8’h12 STALLR MD R-stage pipeline stall due to multiply/divide.
8’h13 STALLR CP R-stage pipeline stall due to COP condition code.
8’h14 STALLR DAT R-stage pipeline stall due to data dependency. Includes

data not ready, bypass not possible, and pending write-
back stalls.

8’h17 STALLE E-stage pipeline stall.
8’h18 STALLE DCPRB E-Stage DCache pipeline stall due to probe.
8’h19 STALLE DCNPRB E-Stage DCache pipeline stall due to non-probe. Sources

include waiting for another fill, eviction buffer empty,
read-after-write hazard prevention, etc.

May 14, 2014 323 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

8’h1a STALLE CP E-stage pipeline stall due to COP condition code.
8’h1b STALLE CZ E-stage pipeline stall due to coprocessor

8’h20 STALLM M-stage pipeline stall.
8’h21 STALLM CP M-stage pipeline stall due to COP condition code.
8’h22 STALLM DC M-stage DCache pipeline stall.
8’h23 STALLM LS M-stage pipeline stall due to load-store.
8’h24 STALLM MM M-stage pipeline stall due to MMU.
8’h25 STALLM CZ M-stage pipeline stall due to coprocessor
8’h26 STALLM DAT M-stage pipeline stall due to data. Includes coproces-

sor data delivery conflicts, load/store data not ready, and
WAW hazard delays.

8’h27-8’h2f Reserved

8’h31 PROBE Probes to L1.
8’h32 PROBE HIT Probes that hit L1.
8’h33 PROBE DIRTY Probes that hit dirty in L1.
8’h34 PROBE LOCK Probes that clear the lock bit.
8’h35 PROBE WAIT Cycles L2 is waiting for a probe to complete.
8’h38 LLHOLDOFF Cycles the LL Timer is non-zero.

8’h40 RTN Read return cycles.

8’h41 RTNL2 IO Read return for I/O space. (Physical addr [35] set.)
8’h42 RTNL2 HIT Read return came from local L2 cache.
8’h43 RTNL2 MISS Read return did not come from local L2 cache.
8’h44 RTNL2 EXCL Read return from local L2 exclusive.
8’h45 RTNL2 SHARED Read return from local L2 shared.
8’h46 RTNL2 DIRTY Read return from local L2 dirty.
8’h47 RTNL2 UPDATED Read return from local L2 updated.

8’h48 RTNFR COHO Read return from coherence odd.
8’h49 RTNFR COHE Read return from coherence even.
8’h50 RTNFR DMA Read return from DMA.
8’h51 RTNFR PCI Read return from PCI.
8’h52 RTNFR PS0 Read return from remote L2 0.
8’h53 RTNFR PS1 Read return from remote L2 1.
8’h54 RTNFR PS2 Read return from remote L2 2.
8’h55 RTNFR PS3 Read return from remote L2 3.
8’h56 RTNFR PS4 Read return from remote L2 4.
8’h57 RTNFR PS5 Read return from remote L2 5.
8’h58 RTNFR IO Read return for IO transaction.

8’h60 RDQ1 Read queue entry 1 occupied.
8’h61 RDQ1S Read queue shadow entry 1 occupied.
8’h62 RDQ2 Read queue entry 2 occupied.
8’h63 RDQ3 Read queue entry 3 occupied.
8’h64 WRQ2 Write queue entry 2 occupied.
8’h65 WRQ2S Write queue shadow entry 2 occupied.
8’h66 WRQ3 Write queue entry 3 occupied.
8’h67 WRQ4 Write queue entry 4 occupied.

8’h70 INT0 Interrupt 0 cycles. Cycles cpu interrupt #0 asserted (not
occurances), ignoring mask bit.

8’h71 INT1 Interrupt 1 cycles.
8’h72 INT2 Interrupt 2 cycles.
8’h73 INT3 Interrupt 3 cycles.
8’h74 INT4 Interrupt 4 cycles.
8’h75 INT5 Interrupt 5 cycles.

May 14, 2014 324 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

8’h76 INT6 Interrupt 6 cycles.
8’h77 INT7 Interrupt 7 cycles.
8’h78 INT Interrupt cycles. Cycles asserted (not occurrences) across

all types, ignoring mask bits.

8’hb0 IFETCHWT Cycles of I-Stream Fetch Wait. Indicates the pipeline was
empty, and data was not delivered by ICache. Generally
indicates ICache miss delays or ITLB miss delays.

8’hb1 IFETCHWT8 A IFETCHWT of >= 8 cycles.
8’hb2 IFETCHWT16 A IFETCHWT of >= 16 cycles.
8’hb3 IFETCHWT24 A IFETCHWT of >= 24 cycles.
8’hb4 IFETCHWT32 A IFETCHWT of >= 32 cycles.
8’hb5 IFETCHWT48 A IFETCHWT of >= 48 cycles.
8’hb6 IFETCHWT64 A IFETCHWT of >= 64 cycles.
8’hb7 IFETCHWT96 A IFETCHWT of >= 96 cycles.

8’hb8 DATAWT Cycles of Data Fetch Wait. Indicates a instruction was
stalled waiting for source registers. Generally indicates
DCache miss delays, DTLB miss delays, or other data
dependant delays.

8’hb9 DATAWT8 A DATAWT of >= 8 cycles.
8’hba DATAWT16 A DATAWT of >= 16 cycles.
8’hbb DATAWT24 A DATAWT of >= 24 cycles.
8’hbc DATAWT32 A DATAWT of >= 32 cycles.
8’hbd DATAWT48 A DATAWT of >= 48 cycles.
8’hbe DATAWT64 A DATAWT of >= 64 cycles.
8’hbf DATAWT96 A DATAWT of >= 96 cycles.

(Below events C0-DF correspond to the Cpu’s inter-
nal performance counter 0 events, though with dif-
ferent numbering. They only count in user, super-
visor, or kernel mode, as programmed based on the
R CpuPerfCount[0]/CP0 Reg25 register.
The CPU internal counters may increment by 2 or 3 for
some events. As the SCB can only increment by one,
these events are split into B0 and B1 events. Count both
then present to the user B1*2+ B0, the result should be
similar to the CPU internal count for the same event.
In ICE9A for these SCB events to increment one of the
Cpu’s internal performance counters must be enabled.
This restriction is removed in ICE9B.)

8’hc0(-8’hdf) C0 ICE9B+ Core Perf 0 ENUM:CpuScbCoreEvent. See above note.
See the CpuScbCoreEvent enumeration; it is inserted here
to avoid duplication in this table.

8’hc0 P0 CYCLES ICE9A Perf 0 Cycles.
8’hc1 P0 INSFETCH B0 ICE9A Perf 0 Instructions fetched bit 0.
8’hc2 P0 INSFETCH B1 ICE9A Perf 0 Instructions fetched bit 1. Multiply by 2 and add

bit 0 counter for total number of instructions.
8’hc3 P0 INSSCHED ICE9A Perf 0 Instructions scheduled.
8’hc4 P0 INSDUAL B1 ICE9A Perf 0 Dual issued instructions bit 1. Multiply by 2 and

add bit 0 counter for total number of instructions. (Scaled
in driver software, so read P0 INSDUAL instead.)

8’hc5 P0 INSEXEC B0 ICE9A Perf 0 Instructions executed bit 0.
8’hc6 P0 INSEXEC B1 ICE9A Perf 0 Instructions executed bit 1. Multiply by 2 and add

bit 0 counter for total number of instructions. (Scaled in
driver software, so read P0 INSEXEC instead.)

8’hc7 P0 LOAD ICE9A Perf 0 Load/pref/sync/cache ops.

May 14, 2014 325 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

8’hc8 P0 STORE ICE9A Perf 0 Stores.
8’hc9 P0 SC ICE9A Perf 0 Conditional stores.
8’hca P0 SCFAIL ICE9A Perf 0 Conditional stores that fail.
8’hcb P0 BRANCH ICE9A Perf 0 Branches executed.
8’hcc P0 ICMISS ICE9A Perf 0 I-Cache misses.
8’hcd P0 ITLBMISS ICE9A Perf 0 ITLB misses.
8’hce P0 DTLBMISS ICE9A Perf 0 DTLB misses.
8’hcf-8’hdf ICE9A Reserved

(Below events 30-3F correspond to the Cpu’s internal per-
formance counter 1 events, though with different number-
ing. They only count in user, supervisor, or kernel mode,
as programmed based on the R CpuPerfCount[1]/CP0
Reg25 register.)

8’he0(-8’hff) C1 ICE9B+ Core Perf 1 ENUM:CpuScbCoreEvent. See above note.
See the CpuScbCoreEvent enumeration; it is inserted here
to avoid duplication in this table.

8’he0 P1 CYCLES ICE9A Perf 1 Cycles.
8’he1 P1 INSEXEC B0 ICE9A Perf 1 Instructions executed, bit 0.
8’he2 P1 INSEXEC B1 ICE9A Perf 1 Instructions executed, bit 1. Multiply by 2 and add

bit 0 counter for total number of instructions. (Scaled in
driver software, so read P1 INSEXEC instead.)

8’he3 P1 LOAD ICE9A Perf 1 Load/pref/sync/cache ops.
8’he4 P1 STORE ICE9A Perf 1 Stores.
8’he5 P1 SC ICE9A Perf 1 Conditional stores.
8’he6 P1 FLOAT B0 ICE9A Perf 1 Floating point instructions executed, bit 0.
8’he7 P1 FLOAT B1 ICE9A Perf 1 Floating point instructions executed, bit 1. Mul-

tiply by 2 and add bit 0 counter for total number of in-
structions. (Scaled in driver software, so read P1 FLOAT
instead.)

8’he8 P1 COP2 B0 ICE9A Perf 1 COP2 instructions executed, bit 0.
8’he9 P1 COP2 B1 ICE9A Perf 1 COP2 instructions executed, bit 1.
8’hea P1 MSTALL ICE9A Perf 1 Scheduling conflict M-stage stalls.
8’heb P1 MISPRED ICE9A Perf 1 Branches mispredicted.
8’hec P1 DCMISS ICE9A Perf 1 Data cache misses.
8’hed P1 DCEVICT ICE9A Perf 1 Data cache line evicted.
8’hee P1 TLBTRAP ICE9A Perf 1 TLB miss exception traps.
8’hef-8’hff ICE9A Reserved.

6.24.8 CpuConfig Register

Class

R CpuConfig

May 14, 2014 326 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31 M R 1 Indicates that the Config1 register is implemented.
30:28 K23 RW X Kseg2 and kseg3 cache coherency algorithm.
27:25 KU RW X Useg/kuseg cache coherency algorithm.
24:22 LLTIME RW 0 Lock timer interval. 000=8 cycles, 001=16 cycles,

in powers of 2 up to 111=1024 cycles. (SiCortex
Change.)

21 SB R X SimpleBE bus mode is enabled.
20 ISD RW 0 Instruction Scheduling Disable.
19 WC RW 0 Unknown. Not documented, but implemented as RW bit

in 5kf core.
17 DID RW 0 Dual Issue Disable.
16 BM R X Burst Mode.
15 BE R X Big endian byte-ordering convention.
14:13 AT R 2 Architecture Type.
12:10 AR R 0 Architecture Revision.
9:7 MT R 1 MMU Type.
2:0 K0 RW 2 Specifies the kseg0 cache coherency algorithm.

6.24.9 CpuConfig1 Register

Class

R CpuConfig1

Bit Mnemonic Access Reset Type Definition

30:25 MMUSizeM1 R X Number of entries in the TLB minus one.
24:22 IS R X I-cache sets per way.
21:19 IL R X I-cache line size.
18:16 IA R X I-cache set associativity.
15:13 DS R X D-cache sets per way.
12:10 DL R X D-cache line size.
9:7 DA R X D-cache set associativity.
6 C2 R X Coprocessor 2 implemented.
5 MD R X MDMX ASE implemented.
4 PC R 1 Performance Counter.
3 WR R 1 Watch registers implemented.
2 CA R 0 Code compression.
1 EP R 1 EJTAG implemented.
0 FP R 1 FPU implemented.

6.24.10 CpuConfig2 Register

Class

R CpuConfig2

Bit Mnemonic Access Reset Product Definition

31 M R 1 twc9a+ Implemented.
30:28 TU R 0 twc9a+ Tertiary cache control.
27:24 TS R 0 twc9a+ Tertiary cache sets per way.
23:20 TL R 0 twc9a+ Tertiary cache line size.
19:16 TA R 0 twc9a+ Tertiary cache associativity.
15:12 SU R 0 twc9a+ Secondary cache control.
11:8 SS R 5 twc9a+ Secondary cache sets per way. Indicates 2K sets.
7:4 SL R 5 twc9a+ Secondary cache line size. Indicates 64 byte lines.
3:0 SA R 1 twc9a+ Secondary cache associativity. Indicates 2 associativities.

May 14, 2014 327 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.24.11 CpuFCCR Register

Class

R CpuFCCR

Bit Mnemonic Access Reset Type Definition

7:0 FCC RW X Floating-point condition code.

6.24.12 CpuWatchLo Register

Class

R CpuWatchLo

Bit Mnemonic Access Reset Type Definition

63:3 VAddr RW X uint64 t Virtual Address.
2 I RW 0 Watch exceptions are enabled for instruction fetches.
1 Rd RW 0 Watch exceptions are enabled for loads.
0 Wr RW 0 Watch exceptions are enabled for stores.

6.24.13 CpuWatchHi Register

Class

R CpuWatchHi

Bit Mnemonic Access Reset Type Definition

31 M R 0 Only one pair of WatchHi/WatchLo registers are imple-
mented.

30 G RW X Global match.
23:16 ASID RW X ASID.
11:3 Mask RW X Bit mask that qualifies the address in the WatchLo regis-

ter.

6.24.14 CpuFEXR Register

Class

R CpuFEXR

Bit Mnemonic Access Reset Type Definition

17:12 Cause RW X Cause bits.
6:2 Flags RW X Flag bits.

6.24.15 CpuXContext Register

Class

R CpuXContext

Bit Mnemonic Access Reset Type Definition

63:33 PTEBase RW X Page Table Entry Base.
32:31 R R X Region.
30:4 BadVPN2 R X BadVAddr register.

6.24.16 CpuDebug Register

Class

R CpuDebug

May 14, 2014 328 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31 DBD R X Debug Branch Delay.
30 DM R 0 Debug Mode.
29 NoDCR R 0 Dseg memory segment is present.
28 LSNM RW 0 Load Store Normal Memory.
27 Doze R X Processor was in low-power mode when a debug exception

occurred.
26 Halt R X Internal system bus clock was stopped when the debug

exception occurred.
25 CountDM R 1 Count Debug Mode.
23 MCheckP RW 0 Machine Check Exception Pending.
22 CacheEP RW 0 Cache Error Exception Pending.
21 DBusEP RW 0 Data Bus Error Exception Pending.
18 DDBLImpr R X Debug Data Break Imprecise.
17:15 EJTAGver R 2 Version 2.
14:10 DExcCode R X Debug Exception Code.
8 SSt RW 0 Debug Single Step.
5 DINT R X Debug Interrupt.
4 DIB R X Debug Instruction Break.
3 DDBS R X Debug Data Break Store.
2 DDBL R X Debug Data Break Load.
1 DBp R X Debug Breakpoint.
0 DSS R X Debug Single Step.

6.24.17 CpuDEPC Register

Class

R CpuDEPC
Bit Mnemonic Access Reset Type Definition

63:0 DEPC RW X uint64 t Debug Exception Program Counter.

6.24.18 CpuPerfCnt Register

Class

R CpuPerfCnt
Bit Mnemonic Access Reset Product Definition

31 M R 1 Another pair of Performance Control and Counter regis-
ters implemented.

30 Wide R 0 ICE9B+ Wide counters. Always 0 to indicate the counters are 32-
bits wide. This bit is part of MIPS Release 2 architecture.

29:11 Reserved by architecture
10:5 Event6 RW X ICE9B+ Counter event enabled for this counter. See 6.24.5. Over-

laps Event.
8:5 Event RW X ICE9A Counter event enabled for this counter. See 6.24.5. Over-

laps Event6.
4 IE RW 0 Counter interrupt enable. Because interrupts are level

sensitive, clearing the enable near the time when the count
will overflow may cause an interrupt that will disappear
before the software services the interrupt. Generally soft-
ware will ignore such interrupts.

3 U RW X Count in User Mode.
2 S RW X Count in Supervisor Mode.
1 K RW X Count in Kernel Mode.
0 EXL RW X Count when EXL.

May 14, 2014 329 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.24.19 CpuPerfVPC Register

Register 22, select 0 for event 0. Register 22, select 1 for event 1.

Class

R CpuPerfVPC
Bit Mnemonic Access Reset Type Definition

63:62 VPCH R X High bits of VPC.
39:2 VPCL R X Event 0/1 Virtual Program Counter. For the last

event 0/1 during SCB counting, the current vir-
tual PCs.

1:0 Reserved.

6.24.20 CpuPerfPEA Register

Register 22, select 2 for event 0. Register 22, select 3 for event 1.

Class

R CpuPerfPEA
Bit Mnemonic Access Reset Type Definition

63 L2HIT R X Last L2 hit. L2 cache indicated hit for the last
L1 miss, during SCB counting. Often wrong, see
bug2674.

62:60 L2STATE R X Last L2 cache state. L2 cache state the last L1 miss
came from, during SCB counting. Often wrong, see
bug2674.

59:56 L2STOP R X Last Bus stop. Bus stop number the last L1 miss
was serviced by, during SCB counting. See Csw-
StopNum. Often wrong, see bug2674.

55:48 ASID R X Event 0/1 ASID. For the last event 0 during SCB
counting, the ASID.

47:36 Reserved.
35:5 PEA R X Event 0/1 Physical Effective Address. For the last

event 0/1 during SCB counting, the current phys-
ical effective address of the last D-Cache hit or
miss. Note that this might not be the miss address, as
a DC hit-under-miss following the miss will report the
address of the DC hit.

4:0 Reserved.

6.24.21 CpuFENR Register

Class

R CpuFENR
Bit Mnemonic Access Reset Type Definition

11:7 Enables RW X Enable bits.
2 FS RW X Flush to Zero bit.
1:0 RM RW X Rounding mode.

6.24.22 CpuErrCtl Register

Class

R CpuErrCtl
Attributes

May 14, 2014 330 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

-kernel
Bit Mnemonic Access Reset Type Definition

31 CorEna RW 0 Parity/ECC correction enable. SiCortex: Set to
enable correction of ECC errors. Note ICE9A con-
tains bug1965: reads of this bit are seen in bit 28.

30 PO R 0 Parity Overwrite. SiCortex undefined behavior,
must be zero.

29 WST RW 0 Way Selection Test. SiCortex undefined behavior,
must be zero.

28 DetEna RW 0 Enable Parity/ECC reporting. (SiCortex addi-
tion) This bit is automatically cleared by HW be-
fore invoking the Cache error trap handler. The
OS Cache Error Trap Handler needs to reenable
reporting before returning. Note ICE9A contains
bug1965: reads of this bit are seen in bit 31.

27 DriveBadDat1 RW 0 Flip bit 1 in all ECC generation trees, for diagnos-
tic ECC error generation. (SiCortex addition)

26 DriveBadDat0 RW 0 Flip bit 0 in all ECC generation trees, for diagnos-
tic ECC error generation.(SiCortex addition)

25:8 Reserved.
7:0 P R 0 Parity bits read or written to a cache data RAM.

SiCortex undefined behavior, must be zero.

6.24.23 CpuCacheErr Register

Class

R CpuCacheErr
Bit Mnemonic Access Reset Type Definition

31 ER R X Error Reference.
29 ED R X Error Data. (Single or double)
28 ET R X Error Tag. (Single or double)
25 EB R X Additional data cache error.
24 EF R X Error Fatal. SiCortex: Only set for double bit er-

rors.
22 EW R X Error Way. SiCortex: Often incorrect for D-Cache,

bug1575.
21:20 Way R X Way.
15:0 Index R X Index. SiCortex: Often incorrect for D-Cache

probes, bug1575.

6.24.24 CpuTagLo Register

Class

R CpuTagLo
Bit Mnemonic Access Reset Type Definition

31:8 PTagLo RW X Specifies the upper address bits for the cache tag.
7:6 PState RW X Valid dirty line.
5 L RW X State of the lock bit for the cache line.
0 P RW X Parity bit for the cache tag.

6.24.25 CpuDataLo Register

Class

R CpuDataLo

May 14, 2014 331 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Bit Mnemonic Access Reset Type Definition

63:0 Data RW X uint64 t Data read from the data array of the cache.

6.24.26 CpuDataHi Register

Class

R CpuDataHi

Bit Mnemonic Access Reset Type Definition

31:0 Data RW X High-order data read from the cache data array.

6.24.27 CpuErrorEPC Register

Class

R CpuErrorEPC

Bit Mnemonic Access Reset Type Definition

63:0 ErrorEPC RW X uint64 t Error Exception Program Counter.

6.24.28 CpuDESAVE Register

Class

R CpuDESAVE

Bit Mnemonic Access Reset Type Definition

63:0 DESAVE RW X uint64 t Simple Read/Write register.

6.24.29 CpuDCR Register

Class

R CpuDCR

Bit Mnemonic Access Reset Type Definition

29 ENM R X Endianess in which the processor is running in Kernel and
Debug Modes.

17 DataBrk R X Data hardware breakpoint is implemented.
16 InstBrk R X Instruction hardware breakpoint is implemented.
4 IntE RW 1 Hardware and software interrupt enable for Non-Debug

Mode.
3 NMIE RW 1 Non-Maskable Interrupt (NMI) enabled for Non-Debug

Mode.
2 NMIpend R 0 Indicates pending NMI.
1 SRstE RW 1 Soft reset is fully enabled.
0 ProbEn R X Probe services accesses to dmseg Reads as zero.

6.24.30 CpuFCSR Register

Class

R CpuFCSR

May 14, 2014 332 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31:25,23 FCC RW X Floating-point condition codes.
24 FS RW X Flush to Zero.
22 FO RW X Flush Override.
21 FN RW X Flush to Nearest.
17:12 Cause RW X Cause bits.
11:7 Enables RW X Enable bits.
6:2 Flags RW X Flag bits.
1:0 RM RW X Rounding mode.

6.24.31 CpuIBS Register

Class

R CpuIBS
Bit Mnemonic Access Reset Type Definition

30 ASIDsup R 1 ASID compare is supported in instruction breakpoints.
27:24 BCN R 4 Number of instruction breakpoints implemented.
3:0 BS30 RW FW0 Break status.
3 BS3 RW FW0 Break status. Overlaps BS30.
2 BS2 RW FW0 Break status. Overlaps BS30.
1 BS1 RW FW0 Break status. Overlaps BS30.
0 BS0 RW FW0 Break status. Overlaps BS30.

6.24.32 CpuIBA Register

Class

R CpuIBA
Bit Mnemonic Access Reset Type Definition

63:0 IBA RW X uint64 t Instruction breakpoint address for condition.

6.24.33 CpuIBM Register

Class

R CpuIBM
Bit Mnemonic Access Reset Type Definition

63:0 IBM RW X uint64 t R/W Instruction breakpoint address mask for condition.

6.24.34 CpuIBASID Register

Class

R CpuIBASID
Bit Mnemonic Access Reset Type Definition

7:0 ASID RW X Instruction breakpoint ASID value for compare.

6.24.35 CpuIBC Register

Class

R CpuIBC
Bit Mnemonic Access Reset Type Definition

23 ASIDuse RW X Use ASID value in compare for instruction breakpoint.
2 TE RW 0 Use instruction breakpoint n as triggerpoint.
0 BE RW 0 Use instruction breakpoint n as breakpoint.

May 14, 2014 333 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.24.36 CpuDBS Register

Class

R CpuDBS
Bit Mnemonic Access Reset Type Definition

30 ASIDsup R 1 ASID compare is supported in data breakpoints.
29 NoSVmatch R 0 Value compare on a store is supported in data break-

points.
28 NoLVmatch R 0 Value compare on a load is supported in data breakpoints.
27:24 BCN R 2 Number of data breakpoints implemented.
1:0 BS10 RW X Number of BS bits implemented corresponds to the num-

ber of breakpoints indicated.

6.24.37 CpuDBA Register

Class

R CpuDBA
Bit Mnemonic Access Reset Type Definition

63:0 DBA RW X uint64 t Data breakpoint address for condition.

6.24.38 CpuDBM Register

Class

R CpuDBM
Bit Mnemonic Access Reset Type Definition

63:0 DBM RW X uint64 t Data breakpoint comparison mask.

6.24.39 CpuDBASEID Register

Class

R CpuDBASEID
Bit Mnemonic Access Reset Type Definition

7:0 ASID RW X Data breakpoint ASID value for compare.

6.24.40 CpuDBC Register

Class

R CpuDBC
Bit Mnemonic Access Reset Type Definition

23 ASIDuse RW X Use ASID value in compare.
21:14 BAI70 RW X Byte access ignore.
13 NoSB RW X Condition can be fulfilled on store access.
12 NoLB RW X Condition can be fulfilled on load access.
11:4 BLM70 RW X Compare corresponding byte lane.
2 TE RW 0 Use data breakpoint as triggerpoint.
0 BE RW 0 Use data breakpoint as breakpoint.

6.24.41 CpuDBV Register

Class

R CpuDBV
Bit Mnemonic Access Reset Type Definition

63:0 DBV RW X uint64 t Data breakpoint data value for condition.

May 14, 2014 334 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

6.24.42 CpuIndex Register

Class

R CpuIndex

Bit Mnemonic Access Reset Type Definition

31 P R X Probe Failure.
5:0 Index RW X Index to the TLN entry used by the TLB read.

6.24.43 CpuRandom Register

Class

R CpuRandom

Bit Mnemonic Access Reset Type Definition

5:0 Random R X TLB Random Index.

6.24.44 CpuEntryLo Register

Class

R CpuEntryLo

Bit Mnemonic Access Reset Type Definition

29:6 PFN RW X Page Frame Number.
5:3 C RW X Coherency attribute of the page.
2 D RW X Dirty bit.
1 V RW X Valid bit.
0 G RW X Global bit.

6.24.45 CpuContext Register

Class

R CpuContext

Bit Mnemonic Access Reset Type Definition

63:23 PTEBase RW X OS Use.
22:4 BadVPN2 RW X Virtual address updated on exceptions.

6.24.46 CpuPageMask Register

Class

R CpuPageMask

Bit Mnemonic Access Reset Type Definition

24:13 Mask RW X Mask indicating which bits of VA must match.

6.24.47 CpuWired Register

Class

R CpuWired

Bit Mnemonic Access Reset Type Definition

5:0 Wired RW 0 TLB wired boundary.

May 14, 2014 335 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.24.48 CpuBadVAddr Register

Class

R CpuBadVAddr

Bit Mnemonic Access Reset Type Definition

63:0 BadVAddr R X uint64 t Virtual address that caused an exception.

6.24.49 CpuFIR Register

Class

R CpuFIR

Bit Mnemonic Access Reset Type Definition

19 Cpu3D R 0 MIPS-3D ASE is implemented.
18 PS R 0 Paired-single floating-point implemented.
17 D R 1 Double-precision floating-point implemented.
16 S R 1 Single-precision floating-point implemented.
15:8 ProcessorID R 0x81 Floating-point processor type.
7:0 Revision R X Matches CP0 PRId register.

6.24.50 CpuCount Register

Class

R CpuCount

Bit Mnemonic Access Reset Type Definition

31:0 Count RW X Interval counter. Counts every other pclk. Zeroed, then
starts counting after reset. This allows all CPUs
to have the same zero start time for exact cycle
release-from-barrier.

6.24.51 CpuEntryHi Register

Class

R CpuEntryHi

Bit Mnemonic Access Reset Type Definition

63:62 R RW X Virtual memory region, corresponding to VA63:62.
61:40 Fill R 0 Fill bits.
39:13 VPN2 RW X VA39:13 of the virtual address.
7:0 ASID RW X Address Space Identifier.

6.24.52 CpuCompare Register

Class

R CpuCompare

Bit Mnemonic Access Reset Type Definition

31:0 Compare RW X Interval count compare value.

6.24.53 CpuStatus Register

Class

R CpuStatus

May 14, 2014 336 Rev 51328

SiCortex Confidential 6.24. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31 CU3 RW X Coprocessor Usable.
30 CU2 RW X Coprocessor Usable.
29 CU1 RW X Coprocessor Usable.
28 CU0 RW X Coprocessor Usable.
27 RP RW X Reduced power.
26 FR RW X Floating-point register mode.
25 RE RW X Reverse Endian.
24 MX RW X Enable access to MDMX resources on processors.
23 PX RW X Processor Extension.
22 BEV RW X Bootstrap Exception Vector.
21 TS RW X TLB Shutdown.
20 SR RW X Soft Reset.
19 NMI RW X Non-maskable Interrupt.
15:8 IM RW X Interrupt Mask.
7 KX RW X Kernel Extension.
6 SX RW X Supervisor Extension.
5 UX RW X User Extension.
4:3 KSU RW X Base mode.
2 ERL RW X Error Level.
1 EXL RW X Exception Level.
0 IE RW X Interrupt Enable.

6.24.54 CpuCause Register

Class

R CpuCause
Bit Mnemonic Access Reset Type Definition

31 BD R X Branch Delay.
29:28 CE R X Coprocessor Exception.
23 IV RW X Interrupt Vector.
22 WP RW X Watch Postponed.
15 IP7 R X Interrupt Pending.
14 IP6 R X Interrupt Pending.
13 IP5 R X Interrupt Pending.
12 IP4 R X Interrupt Pending.
11 IP3 R X Interrupt Pending.
10 IP2 R X Interrupt Pending.
9 IP1 RW X Interrupt Pending.
8 IP0 RW X Interrupt Pending.
6:2 ExcCode R X Exception Code.

6.24.55 CpuEPC Register

Class

R CpuEPC
Bit Mnemonic Access Reset Type Definition

63:0 EPC RW X uint64 t Exception Program Counter.

6.24.56 CpuPRId Register

Class

R CpuPRId

May 14, 2014 337 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

Attributes

-kernel
Bit Mnemonic Access Reset Type Definition

31:24 CompanyOptions R X Available to the CPU core user for company-dependent
options. Overlaps Allowed.

31 OneCpu R X Single core mode. Set in simulation model only.
28:24 CoreNum R X Core number (0-5) on the chip. (SiCortex en-

hancement.)
23:16 CompanyID R 14 Company that designed or manufactured proces-

sor. 1=MIPS, 14=SiCortex. (SiCortex change.)
15:8 ProcessorID R pins AddrProduct Type of processor. Returns ICE9, ICE9B, etc.

(SiCortex change.)
7:0 Revision R 1 Revisions of the same processor type.

Note: Revision not incremented between ICE9A and ICE9A1. To determine ICE9A vs ICE9A1 read Rev field
of SCB register R ScbChipRev.

6.24.57 Ecc Injection Magic Register

The cache ECC Magic registers are used to generate L1 ECC errors. This is implemented only in the verification
model, for testing purposes.

Register

R CpuxEccInjMagic

Attributes

-noregtest -noregdump

Address

0x00 0400 (plus base address)
Bit Mnemonic Access Reset Type Definition

31 Go W 0 When written one, toggle bit as specified.
30 Icache W 0 Write ICache, else if zero write DCache.
29 Tag W 0 Write Tag RAM, else if zero write data RAM.
28:26 Reserved
25:24 Way W 0 Cache way to write.
23:16 Bitnum W 0 Bit number in physical RAM to toggle. Includes both

data, ecc, and parity bits, where enumberation depends
on internal RAM organization.

15:14 Reserved
13:0 Index W 0 Cache index to write.

6.25 EJTAG Registers and Definitions

6.25.1 EJTAG TAP Instructions

Enum

CpuTapInstr

Constant Mnemonic Definition

5’h1 IDCODE Selects Device id
5’h3 IMPCODE Selects Implementation register
5’h8 ADDRESS Selects Address register

May 14, 2014 338 Rev 51328

SiCortex Confidential 6.25. EJTAG REGISTERS AND DEFINITIONS

5’h9 DATA Selects Data register
5’hA CONTROL Selects EJTAG Control register
5’hB ALL Selects Address, Data and EJTAG Control
5’hC EJTAGBOOT Enables debug exception after reset
5’hD NORMALBOOT Disables debug exception after reset
5’hE FASTDATA Selects the Data and Fastdata register
5’h1F BYPASS High-order portion of the TLB entry

6.25.2 CpuTapIDCODE Register

Class

R CpuTapIDCODE

Attributes

-tapSize=32
Bit Mnemonic Access Reset Type Definition

31:28 Version R X Identifies the version of a specific device. In ICE9A
turns one. In ICE9B and followons returns processor num-
ber.

27:12 Part R X AddrProduct Identifies the part number of a specific de-
vice. In ICE9A contains value of ICE9 CPU0
ICE9 CPU5 as appropriate. Later passes contain
ICE9* CPU.

11:1 ManufID R SICORTEX AddrTapMfgr Identifies the manufacturer identity code of a sp
cific device,.

6.25.3 CpuTapIMPCODE Register

Class

R CpuTapIMPCODE

Attributes

-tapSize=32
Bit Mnemonic Access Reset Type Definition

31:29 EJTAGver R X EJTAG version implemented.
24 DINTsup R X Support for the DINT signal from the probe.
22:21 ASIDsize R 2 Size of the ASID field.
16 MIPS16 R 0 MIPS16 ASE is supported.
14 NoDMA R 1 Indicates no EJTAG DMA support.
0 MIPS64 R 1 64-bit processor.

6.25.4 CpuTapDATA Register

Class

R CpuTapDATA

Attributes

-tapSize=64
Bit Mnemonic Access Reset Type Definition

63:0 Data RW X uint64 t Data used by processor access.

May 14, 2014 339 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

6.25.5 CpuTapADDRESS Register

Class

R CpuTapADDRESS

Attributes

-tapSize=36
Bit Mnemonic Access Reset Type Definition

35:0 Address RW X uint64 t Address used by processor access.

6.25.6 CpuTapECR Register

Class

R CpuTapECR

Attributes

-tapSize=32
Bit Mnemonic Access Reset Type Definition

31 Rocc RW 1 Soft reset has occurred since last bit cleared.
30:29 Psz RW X Size of pending access. 0=byte, 1=HW, 2=W, 3=DW
22 Doze R 0 Processor in low-power mode.
21 Halt R 1 Internal clock is running.
20 PerRst RW 0 Peripheral reset.
19 PRnW R X Read not write processor access.
18 PrAcc RW 0 Pending processor access.
16 PrRst RW 0 Apply processor reset.
15 ProbEna RW X Probes will be serviced by EJTAG.
14 ProbTrap RW X Relocates debug exception vector.
12 EjtagBrk RW X Requests debug exception.
3 DM R 0 In debug mode.

6.25.7 CpuTapFASTDATA Register

Class

R CpuTapFASTDATA

Attributes

-tapSize=1
Bit Mnemonic Access Reset Type Definition

0 SPrAcc RW X Zero if processor action completed. (See documentation.)

6.26 Cpu Implementation-Only Definitions

6.26.1 Request Commands

These encodings are used for cpu cac reqCmd pr.

Enum

CpuReqCmd

Constant Mnemonic Product Definition

3’b000 TWC9A+ Reserved. (If we remove Valid, this becomes the idle)

May 14, 2014 340 Rev 51328

SiCortex Confidential 6.27. CAC REGISTERS AND DEFINITIONS

3’b010 WR TWC9A+ Write.
3’b011 INV TWC9A+ Invalidated. (Reserved for later)
3’b100 READ TWC9A+ Read.
3’b101 PREF TWC9A+ Prefetch.
(else) TWC9A+ Reserved.

6.27 Cac Registers and Definitions

6.27.1 Probe Queue Handler States

This is the encoding for the probe queue handler state machine in the CAC portion of the processor segment.

Enum

CacPrbQState

Constant Mnemonic Definition

5’h0 POLL Look for next entry on the queue
5’h1a POLL2 Wait for the L1/L2 pipeline to drain
5’h1 INV WT We found a PRBINV, wait to do L2 lookup
5’h2 INV LU Perform lookup/inval in L2
5’h19 INV LU2 Check tag compare result from L2

5’h3 BRD WT We found a PRBBRD, wait to do L2 lookup
5’h4 BRD LU Perform lookup in L2
5’h14 BRD LU2 Check tag compare result from L2
5’h10 BRD L2WB Wait for L2 to dump into writeback buffer
5’h5 BRD WBWT Wait for writeback to complete

5’h6 BWT WT We found a PRBBWT, wait to do L2 lookup
5’h7 BWT LU Perform lookup in L2
5’h17 BWT LU2 Check tag compare result from L2
5’h18 BWT PWT Wait for L1 probe invalidate to complete
5’h8 BWT GO Tell originator to launch fill
5’h9 BWT FWT Wait for fill to complete

5’ha WIN WT We found a PRBWIN, wait to do L2 lookup
5’hb WIN LU Perform lookup in L2
5’h1b WIN LU2 Check tag compare result from L2
5’h12 WIN L2WB Wait for L2 to dump into writeback buffer
5’hc WIN WBWT Wait for writeback to complete

5’hd SHR WT We found a PRBSHR, wait to do L2 lookup
5’he SHR LU Perform lookup in L2
5’h1e SHR LU2 Check tag compare result from L2
5’h11 SHR L2WB Wait for L2 to dump into writeback buffer
5’hf SHR WRSTWT Wait for writeback to complete

5’h1c L1PRBDN WT Wait for L1 probes to complete.
5’h13 CHK NHACK Wait for NOHIT to complete in CMX

6.27.2 Processor Interface Ready State Machine

Enum

CacRdyState

Constant Mnemonic Definition

4’h0 IDLE Wait for the next request or a pause

May 14, 2014 341 Rev 51328

SiCortex Confidential CHAPTER 6. PROCESSOR SEGMENTS

4’h1 BP1 We’re handling a block transfer, first tic done
4’h2 BP2 We’re handling a block transfer, second tic done
4’h3 BP3 We’re handling a block transfer, third tic done
4’h4 SP1 One tic of pause after a block transfer
4’h5 EP End of Pause interval, look for next thing to do
4’h6 PAUSED Pausing to honor BIU pause request from CTL or DAT

unit
4’h7 PREPAUSE We’re about to pause, but we should check first to allow

one last read to sneak in, if necessary.
4’hE PREDOP1 We’d like to send out a pending op, but we need to wait

two tics.
4’hF PREDOP2 We’d like to send out a pending op, but we need to wait

one more tic.
4’h8 DOPEND1 Pausing to complete pending read operations
4’h9 DOPEND2 It takes two tics to send out a pending read operation
4’hA IP1 Pausing after an IO access
4’hB IP2 Still pausing after an IO access
4’hC IP3 Still pausing after an IO access or pending read op
4’hD IP4 Still pausing after an IO access or pending read op

6.27.3 L2 Cache Pause During Fill State Machine

Enum

CacDpseState

Constant Mnemonic Definition

2’h0 IDLE Wait for a new data block to arrive
2’h1 WT0 Wait for either BIUPaused or the last stage of FillIdx
2’h2 WT4PSED Wait for BIUPaused to be asserted
2’h3 WT4FIDX Wait for the last stage of FillIdx

May 14, 2014 342 Rev 51328

Chapter 7

L2 Cache Coherence and Switch

by Jud Leonard and Matt Reilly.

[$Id: L2Cache.lyx 49898 2008-01-22 14:26:37Z zeno $]

7.1 Summary

The ICE9 node chip implements a 1.5 MByte L2 mixed instruction and data cache that is accessible from all
six CPU cores, PCI-Express, and the DMA engine. The L2 cache is split into six segments, each closely connected
with a single processor. Each L2 cache segment is 2-way set associative with a 64 byte line size, with writeback
policy and allocation on read or write miss. It acts as a proper superset of the L1 data caches in the cores, and
maintains coherence among them by enforcing exclusive ownership of writable blocks. The L2 supports coherent
shared access among the cores without reference to main memory.

This section describes the Central Cache Switch (CSW) and the protocol that manages cache coherence and
data movement among the processors and I/O devices on the ICE9 node. The first sections of this chapter give a
general outline of the approach and present some notes on how we got here. The latter sections (beginning with
Section 7.10) present detailed descriptions of transaction flows and responses.

For a more detailed outline of the Processor to L2 organization, see Chapter 6. For an explanation of the DMA
interface to the L2 and CSW, see Chapter 5. For more information on the PCI Express controller and other I/O
devices, see Chapters 15,13, 14, and 10.

7.2 Differences, Bugs, and Enhancements

7.2.1 Product and Chip Pass Differences

1. TWC9A’s L2 cache is part of the new IceT core, and is described in a different document.

2. TWC9A adds the CswStopNumTwc and CswTidTwc enumeration to support more cores, and more TIDs
per core, bug3377.

3. NEED IMPL: TWC9A fixes the R CacxIntCr[#] Overflowbit being mis-cleared when clearing R CacxIntCr[#] Active,
bug3165.

4. NEED IMPL: The R CohxEccMode CorEna bit must be set whenever the ICE9 caches are active, bug1990.

5. NEED IMPL: TWC9A pushes IO writes instead of using a special command, bug4898.

6. NEED IMPL: TWC9A removes SPCL in favor of IO writes, bug4899.

7. NEED IMPL: TWC9A stalls issuing probes to avoid large per-cpu probe queues.

343

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.2.2 Known Bugs and Possible Enhancements

7.3 L2 Cache Features

The L2 cache stores 1.5 MB of data. It is structured as six 256 KB cache segments to provide sufficient
bandwidth for 6 cores, and to minimize the typical access latency. Each segment is 2-way set associative. The
cache is interfaced to two DDR2 SDRAM memory controllers, interleaved on the cache line size, 64 bytes.

• Line size = 64 Bytes (26) plus ECC on 8-byte doublewords

• Number of tags = 24K (3 ⋆ 213) total

• Associativity = 6 Segments, 2 way associative.

• Index size = 11 bits {(address <26:17> xor <16:7>), address <6>}

• Tag, state, and all data are ECC protected

• Replacement = LRU nearest requestor

• Physical Address = 36 bits

• Protocols = Snooping, Writeback, Subset

Every processor request is attempted first in the local L2 segment. If it misses, the request is directed to one of
the coherence controllers (at the memory interface), as selected by bit 6 of the address. The request must arbitrate
for use of the memory request/address bus toward the selected controller. The coherence controller looks for the
requested address in a duplicate tag store (the master); it may match in one or more of the tags corresponding to
other processors. In the event of a hit, the controller redirects the request to the hit segment, which will return the
block to the requestor and, in the case of a data-stream fetch, transfer ownership to the recipient.

7.3.1 Terminology

Block The unit of memory identified by one tag in the L1 cache, consisting of 4 doublewords (32 bytes) with byte
parity. Synonymous with half-line.

Clean The state of a memory block which is known to be unchanged with respect to the value in memory. A clean
block can safely be discarded.

Dirty The state of a memory block which has been modified since it was read from memory. It must be written
back to memory (victimized) before its space in the cache is reclaimed. Synonymous with Modified.

Doubleword 8 bytes (64 bits). The standard size of data values in the 5Kf microprocessor, and the width of most
data busses in the chip.

Exclusive The state of a cache block which ensures that it belongs to exactly one L2 segment and possibly the
associated L1. The processor is permitted to modify a block if and only if it is in the exclusive state. It is
allowed that a block be in only one segment without exclusive state, but not allowed to have exclusive state
when there is a copy in more than one segment.

Line The unit of memory identified by one tag in the L2 cache. It consists of 8 doublewords (64 bytes) with ECC
on each doubleword; equal to two blocks.

Segment One of the six 256 KB partitions of the L2 cache, consisting of a 2-way set associative cache with 64-byte
lines and 2K sets. Each segment stores lines that have been accessed by the processor with which it is paired;
data in any segment can be used to satisfy a cache miss, and writes are kept coherent among segments.

Shared The complement of exclusive state; a block in shared state is readable to any processor’s instruction cache,
but must be transitioned to exclusive state before it can be accessed by the data cache (and therefore written).
It is possible for a block to be in shared state while being in only one segment.

Tag The auxilliary information stored with each line of a cache, indicating where that line belongs in main memory
and its state with respect to memory.

May 14, 2014 344 Rev 51328

SiCortex Confidential 7.3. L2 CACHE FEATURES

Updated The state of a cache block after it has been written by the currently owning processor. That is, a block
enters into an L2 segment in the EXCLUSIVE or DIRTY state. If the block is then written by the associated
processor, it enters the DIRTY and UPDATED state. (Updated or Dirty blocks must be written to memory
when they are evicted.) The Updated state is left over from an earlier complex scheme for maintenance of
the LoadLinked/StoreConditional state. See Sections 7.8.1 and 6.6.10.

Figure 7.1: Address Partitions

{([26:17] xor [16:7]), [6]}

063

����������
����������
����������

����������
����������
����������

������
������
������

������
������
������

���������
���������
���������

���������
���������
���������

Physical Address
23 21 19 17 15 13 11 336

Ignored
Cache Coherency Attribute

61 58

Physical Page Number

Region

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

������
������
������
������

������
������
������
������

���������
���������
���������
���������

���������
���������
���������
���������

�
�
�

�
�
�

40 23 21 19 17 15 13 11 3

Virtual Page Number

Virtual Address
063

Page Size variable 4KB to 256 MB in 4x steps

61

Must be equal to bit 63

Region

063

��
��
��
��

��
��
��
��

�
�
�
�

���������� ��

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

DRAM Address

Row Select

Bank Select Interface Select

Ignored

(breakdown variable according to device)
13

Column
Select

1631 7 2356

��
��
��
��
��
��

��
��
��
��
��
��

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

Cache Address

L1 BlockIgnored

16 24 36 063 17

I/O

35 34
Address Tag

L2 Line

526

L2 Index

7

7.3.2 Unusual Features

For those familiar with other cache designs, this one holds few surprises. It can be understood as six processors
with separate snooping L2 caches. The major difference is that snooping uses a central “coherence controller”which
keeps the master tags and victim buffer. The coherence controller maintains an accurate representation of the
contents of all the cache segments, and need not take cycles from the segments unless a state change is required.

It is also unusual that this design does not support the “shared” state for data blocks (it does allow shared
instruction blocks). The drive behind this decision comes from the fact that the MIPS L1 design does not provide
a shared state separate from exclusive: the data cache will permit a write to any block it holds. We thought about
redesigning the dcache controller, but at this point it doesn’t appear that the performance impact of shuttling
blocks between segments is so severe as to justify the risk and design effort.

May 14, 2014 345 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.3.3 Error Control

The L2 cache data and tag arrays are protected by a single-error-correcting, double-error-detecting (SEC/DED)
Error Correcting Code which requires 8 ECC bits for each 64-bit doubleword of data. The normal read access path
allows time for detecting and correcting errors in the tag or data arrays.

The cores expect parity on data blocks. L2 reads will correct and report single-bit errors, and present the
corrected doubleword with valid parity. L2 writes will check parity as presented by the processor, and compute
ECC.

7.4 Processor to L2 Cache Interface

NOTE: This section is dated. See the processor chapter 6for the current interface description.

7.5 Major Blocks and the General Approach

The L2/CSW implements a split transaction MESI (Modified, Exclusive, Shared, Invalid) cache coherence
protocol. Each node on the daisy-chained pair of buses is connected at a “bus stop” and may initiate requests
via the chain to any other node. Memory acceses are all sequenced through one of two coherence controllers.
(Each controller is responsible for one of the two DIMM slots.) A fill request (caused by an L2 miss) is sent to
the appropriate coherence controller and checked against its shadow copy of each processor’s L2 tag array. If the
required block is not found in any other processor’s segment, the request is satisfied by the associated DRAM
controller.

If the coherence widget finds a tag match in some processor’s L2 segment, the request will be forwarded to the
appropriate processor and ownership will be transfered, if necessary.

In addition to normal cache transactions, the CSW and L2 protocols support block read and write operations
from I/O and fabric devices. That is, the DMA engine – for example – may write an entire 64 byte block to physical
memory. If the block is currently cached by a processor segment, the DMA engine will transfer its data directly to
the L2 cache.

The following sections introduce the basic components and operations in the L2 CSW and Coherence widgets.
More detailed information is presented in Section 7.10.

7.5.1 Supported Operations

Each processor may originate memory read and write transactions. Each memory transaction moves 64 bytes to
and from a DRAM unit or another processor. A processor may have no more than 1 such transaction outstanding.
L2 cache fills that may require victimization of a block will cause a processor segment to initiate a read-with-
victimization operation (RDV or RDSV). Such operations count as one transaction, though the processor segment
will write one block to memory and receive a second block for the fill.

The DMA engine and the PCI express controller may initiate block transfers of 32 or 64 bytes. Block read
operations transfer data from DRAM if it is not cached, or are forwarded to the appropriate L2 cache segment.
Block read transfers cause no change in ownership of the block – it stays in the owner’s cache. Block read operations
are always 64 bytes long. Block write transfers may either send data to the DRAM or – if the block is cached – will
overwrite the cached copy. Again, block write transfers cause no change in ownership of the block, and are atomic
as far as a processor may observe.

Any unit on the CSW may originate and may accept I/O read and write transactions. All I/O transfers are 8
bytes long.

Processor segments must accept interrupt delivery transactions from any other unit on the CSW.
Any unit may accept special accelerated I/O write transfers, via the SPCL transaction. However, only the DMA

engine supports SPCL, so SPCL to any other device is unsupported. (See Section 7.10.6.)

7.5.2 Per-Processor Segment

Figure 7.2 shows the structure of one segment of the L2 cache, standing between the Processor’s Bus Interface
Unit and the Central Switch which connects all segments to the Coherence Controllers, and through them, to the
memories.

May 14, 2014 346 Rev 51328

SiCortex Confidential 7.5. MAJOR BLOCKS AND THE GENERAL APPROACH

Figure 7.2: Segment Block Diagram (See Chapter 6.)

Req/Address

128

64

128

128

128

Victim Addr

Processor BIU

ECC Correct

L2 Data Array

Way Mux

Write DataVictim

Tag Array

Probe Queue

Central Switch (CSW) Interface

Match

7.5.3 Bidirectional spine structure

Each processor communicates with memory and I/O through its associated L2 segment. The L2 caches, the
DMA engine, and PCI-express interfaces share two busses, one to each of the coherence controllers. Processors
use a 64-bit interface at 500 MHz, which is converted at the interface to 128 bits at 250 MHz in the L2 segment
and on the Even and Odd-bound busses. (We don’t use the more obvious East and West directions for historical
reasons. The Even bound bus chain carries data from each bus stop (connection point) to the Even bank of memory
(address[6] = 0) on the east side of the die. The Odd bound bus carries data from each bus stop to the Odd bank
(address[6] = 1) on the west side of the die.)

Figure 7.3: Chip Floorplan

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

PCI Express
Controller/PHY

PCI Express
Interface

DMA Engine

Fabric Switch
and PHYs

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

5Kf Core

I-Cache D-Cache

L2 Cache
Segment

C
O
H
E

E
v
e
n

C
o
h
e
r
e
n
c
e

W
i
d
g
e
t

D
D
R
E

E
v
e
n

D
D
R

C
o
n
t
r
o
l
l
e
r

a
n
d

P
H
Y

C
O
H
O

O
d
d

C
o
h
e
r
e
n
c
e

W
i
d
g
e
t

D
D
R
O

O
d
d

D
D
R

C
o
n
t
r
o
l
l
e
r

a
n
d

P
H
Y

CSW Central Cache Switch

PS0 PS1 PS2

PS3 PS4 PS5

A very rough floorplan is shown in Figure 7.3. The arrangement and order of units along the CSW may change
as we refine the routing.

The floorplan arrangement is chosen to put the major pin fields along edges of the chip: DDR memory interfaces
(100+ pins each) on east and west sides, PCI-Express (˜32 pins) on the north, and DMA Engine/Switch (˜120
pins) on the south. The data arrays are arranged to group in each array bits which will be read and written
simultaneously, and to line up arrays so that common address and data wires are straight. CSW busses extend the
width of the chip, to reach all RAM arrays they must touch, and to be accessible to the processor input/output
ports arrayed horizontally across the die. The CSW buses provide the principle medium for memory sharing among

May 14, 2014 347 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

processors.

7.5.4 Tags

Each line in the L2 cache is associated with a tag, which includes the high-order physical address bits identifying
the cached memory block, plus dirty state and ECC bits. Each tag is stored twice: once (the “local” copy) in the
cache segment close to the processor it primarily serves, and once (the “master”) in one of the coherence controllers
associated with each memory interface (selected by address bit 6). The local segment also keeps track of the most
recently used way of each set, for use in replacement decisions.

The master tags are consulted when any reference misses in the local segment; if they show that the referenced
block exists in another cache, the block is obtained from there rather than memory. A block may be exclusive (and
therefore writable) in one segment, or shared (and therefore read-only) in several segments. To exclude the rare
possibility that a line is dirty in several segments, we will victimize any dirty block when it is read for the i-cache.

7.5.5 Hashed Index

The L2 cache and tag arrays are addressed by physical address bits 16:7 XOR 26:17 catenated with bit 6; the
tag arrays store bits 34:17. Victim addresses are reconstructed by using bits 34:17 from the tag, and XOR’ing
the array index with bits 26:17 of the tag. Bit 6 is excluded from the tag hash as we must ensure that any block
victimized from an L2 segment will be sent to the same coherence controller as the controller that will return the
new fill data. (If bit 6 was included in the hash, we could evict an odd block from the L2 segment and replace it
with an even block. The protocol described below just won’t work that way.)

7.5.6 Outstanding Read CAM (ORC) and Write Back CAM (WBC)

Every read operation in the coherence controller is checked against, and recorded in, the Outstanding Read
CAM (ORC). The ORC ensures that no new read presented to the coherence controller is allowed to proceed if
it conflicts with a read operation already in progress. Similarly, we record all write operations in progress in the
WriteBack CAM (WBC). Both ensure that reads and writes to the same block of memory complete in order.

7.5.7 Victim Buffer

We don’t implement victim buffers. Since all operations are sequenced through the coherence widgets and the
ORC/WBC units, we have no need of “temporary” data storage to cover the ships-passing-in-the-night problems.

7.6 I/O and DMA Transactions

I/O transactions are initiated by Load and Store instructions from the processors, where the physical address
refers to I/O space (see Table 7.1). The L2 segment misses (because I/O space addresses are not cached), and the
request is presented to the CSW with a target which selects the addressed device (processor, DMA engine, PCIe
adapter, Memory Controller, etc. Each L2 segment is permitted to have only one I/O request outstanding at a
time; Read requests are completed by the return of read data.

Write transactions are special. Imagine that a processor X initiates a read miss transaction to get a block of data
from physical memory. Now imagine that processor Y attempts to write data into a control register on processor
X. It is possible that the data for Y’s write could arrive at X’s bus stop at the same time as the read miss data.
We’d have to buffer one of the items. In fact, we could imagine having to buffer several items. That’s expensive for
an improbable circumstance caused by a low-frequency operation like an I/O write to a processor control register.
To simplify the hardware, we require that all data arriving at a bus stop be “pulled” by the recipient. So, when
processor Y wishes to write an I/O register in processor X, X will register the write request, and reflect a READ
IO request back to processor Y. Processor Y will answer with the data that it wishes to write. (See Table 7.53.)

DMA transactions are initiated by an I/O device connected through the DMA engine or PCIe adapter, and
typically reference main memory, but the coherence controller checks each such reference against the master tags.
In the event that a read matches, the request is completed by probing the owning cache segment without taking
exclusive ownership. When a write matches, the DMA data overwrites the old contents of the cache segment,
leaving it valid and modified.

May 14, 2014 348 Rev 51328

SiCortex Confidential 7.7. COHERENCE INTERACTIONS

7.7 Coherence Interactions

The data cache segments with each of the processor segments have five states for every block: invalid, shared,
exclusive clean, exclusive dirty, and exclusive updated. The cores can change a line from clean or dirty to updated
without informing other cache segments.

The cores make only two kinds of requests to the L2 cache: reads and writes. Requests may be qualified in
various ways; see Table 7.17.3.

7.7.1 Races

The master tags always change before the local tags, and tag changes are protected from conflict by the OTC.
The OTC ensures that any new incoming request is queued while an earlier request for the same block is in progress.
When a processor segment evicts a block B from its L2, it must set the block to INVALID in the L2 before issuing
any victim write command (or a read command with an implied victim writeback) to the cache switch.

Transfers must notify the coherence controller upon completion, so that any other requests queued for the same
block can be cleared. Completion is identified by the Transaction ID code generated by the originator of the request,
and is sent by the originator to the coherence controller, which knows the address and former owner of the block.

Because of the sequencing and the dependence chain maintained in the coherence controllers, processor segments
need not compare incoming addresses to the L2 writeback buffer. If a victim has been identified and a writeback
command has been sent to the coherence controller, the PSmust return a PROBENOHIT response to the requestor.
The requestor will then retry the read command. Again, the dependence chain maintained in the coherence
controllers (in the OTC and WBC) ensure that the retried read operation will succeed.

7.7.2 Probes

For most L2 cache accesses, we expect that the master tag will show that no cache had a copy of the requested
block, so the block must be obtained from memory. There are, of course, a few exceptions, and for those cases the
controller issues Probe requests to the cache segment whose tag matches. A probe request contains the physical
address of the block in question and indicates to whom the data should be sent. SHARED blocks filling I-stream
requests are left in the SHARED state in both requester and responder. Blocks filling I-stream requests will cause
ownership to transfer.

It is possible that a probe is on its way to a segment while the block it addresses is being victimized from the
segment. In such cases, the responding segment returns PROBENOHIT and the original requester retries the read.
The retry, through mechanisms in the coherence controller, is guaranteed to succeed.

A probe response that involves writeback may take many cycles to complete, because it may be necessary to
drain the write buffer in the 5kf processor. It is therefore possible to create a backlog of probe requests to a single
processor. These are serviced in order of arrival in the L2 segment’s command queue.

7.8 Multiprocessor Issues

7.8.1 LL/SC

LL/SC is handled entirely within the ICE9 modifications to the 5kf processor core. When an LL instruction
access to the L1 completes, the processor will delay processing of all probe requests from the L2 cache for a
programmable number of cycles. Any probes received for the LL target block after this delay will force the SC to
fail. For a more complete description of the LL/SC mechanism, see the Section 6.6.10 in the processor chapter.)

7.8.2 Lockstep cache thrashing

Typical applications of the SC 1000 will have many copies of the same program running simultaneously; in some
cases that will result in all the processors of a node accessing the same relative location on different pages nearly
simultaneously. This would be likely to result in thrashing of the L2 cache if we didn’t do something to prevent it,
so the cache index is hashed to distribute any page-relative location among many different index values. This does
not require a larger tag; the address of a victim can be recalculated by the inverse hash function.

May 14, 2014 349 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.8.3 Deadlock Freedom

It is necessary to show that the system is always able to make progress; that requires that there can be no
closed cycle of resource dependencies.

An L1 D-cache read can be stalled in the read queue waiting for the ORC, which may report a conflict for the
same cache line. The core cannot request another read while there is one outstanding.

The ORC frees dependent transactions when main memory requests complete and when ownership transfers
complete.

Memory requests complete with the passage of time. Fills have first priority for use of CSW and L2 cycles.
L2 cache writes (which do not assert transfer) depend only on availability of L2 segment cycles.
Memory writes complete with passage of time; they have no dependencies. I/O writes to PCI space may depend

on completion of memory reads or writes.
To ensure that we can drain the write buffer, the processor will be granted a small number of write credits (just

enough to keep the pipeline busy) until a probe matches something in the write buffer. At that time, the processor
will inhibit instruction issue (as if a SYNC instruction had been found) until the external write buffer is empty,
and the external write buffer will make available enough credits to drain the internal write buffer. The interface
will separate I/O writes and cached memory writes into separate queues, and update the L2 immediately as the
memory writes are issued. This will allow the probe to be satisfied despite delays in I/O service.

And Wilson is terribly afraid that I’m going to forget to keep transfer requests separate from non-transfer
requests; if a transfer request got stuck waiting for a non-transfer request, we could deadlock.

7.9 L2 Segment to Memory Interface

Each segment of the L2 cache includes a block of interface logic by which it communicates with the coherence
controllers, the memory and I/O systems, and other segments. Figure 7.4 sketches the interface. The interface
consists of two daisy-chain busses, called Evenbound and Oddbound. Each segment decides, whenever it has a
request to send, which direction to send it, and watches the Target signals to wait for a cycle in which the bus is
free. At the same time, it monitors its own target signal to determine when the bus contents are for it.

Each segment has only one read request outstanding at a time, so there is no danger of receiving data from both
memory controllers at once, but it is possible to receive probes simultaneously from both coherence controllers; they
must be captured and queued. I/O devices may have multiple outstanding reads, and therefore need the ability to
accept two or more responses simultaneously.

Figure 7.4: Memory Bus Interface

Data Busses

West
Read
Data

West
Write
Data

Read
Data

East

East
Write
Data

Address &
Data Busses

Westbound

Southside Segments

Northside Segments

Eastbound
Address &

7.9.1 Transaction ID

Every command on the Request/Address bus is accompanied by a transaction id, which identifies the origi-
nator of the request and uniquely identifies the transaction among the outstanding requests by that originator.
There are eight originators: the six processors, the DMA engine, and the PCI-express controller. The DMA and
PCI/PMI units may each have up to four reads and four writes outstanding. A processor segment may have an IO
read, an IO write, a cache owned-to-shared transfer (WRSTRANS) and a cache fill/replacement outstanding – all
simultaneously.

May 14, 2014 350 Rev 51328

SiCortex Confidential 7.9. L2 SEGMENT TO MEMORY INTERFACE

Table 7.1: Memory Bus Port Signals From and To Processor Segment X

Signal Name Description

psX csw CmdAddrTarget c0a[7:0] Command/Address Destination
psX csw {E/O}CmdAddrReq c0a Request for access to command/address bus
csw psX CmdAddrGnt c1a Grant from switch to PS allowing access

psX csw Command c0a[4:0] Operation to be performed
psX csw CmdAddrTID c0a[5:0] Transaction ID for this operation
psX csw Addr c0a[35:3] Address of cache miss, I/O ref, write, or probe
psX csw BMask c0a[7:0] Byte mask for I/O commands
psX csw Way c0a Way select
psX csw CmdOwnLock c0a See Section 7.8.1.
psX csw CmdClearMLAR c0a See Section 7.8.1.

psX csw DataTarget c2a[7:0] Data destination select
psX csw {E/O}DataReq c2a Request for access to data bus
csw psX {E/O}DataGnt c3a Grant from switch to PS allowing access

psX csw DataTID c2a[5:0] Match data to request
psX csw DatOwnLock c2a See Section 7.8.1.
psX csw DatReqLock c2a See Section 7.8.1.
psx csw DatClearMLAR c2a See Section 7.8.1.
psX csw ModState c2a[1:0] See Section 7.8.1.
psX csw HalfMask c2a[1:0] Writing 8 bytes, 64 bytes, first 32 bytes, last 32 bytes.
psX csw Data0 c2a[72:0] Doubleword 0,2,4,6 of block (multiplexed)
psX csw Data1 c2a[72:0] Doubleword 1,3,5,7 of block

csw psX CmdAddrTID c1a Transaction ID for incoming request
csw psX CmdAddrValid c1a There is an incoming request
csw psX Command c1a[4:0] Incoming command
csw psX Origin c1a[3:0] Originating node (for forwarded commands)
csw psX Addr c1a[35:3] Incoming address
csw psX CmdReqLock c1a See Section 7.8.1.
csw psX BMask c1a[7:0] Byte mask for I/O reads and writes

csw psX DataTID c3a[5:0] Transaction ID for incoming data
csw psX DataValid c3a If true, incoming data is worth looking at
csw psX DataLocked c3a Coherence engine found MLAR match for this block from psX.
csw psX DataReqLock c3a See Section 7.8.1.
csw psX DataOwnLock c3a See Section 7.8.1.
csw psX ModState c3a[1:0] See Section 7.8.1.
csw psX HalfMask c3a[1:0] Writing 8 bytes, 64 bytes, first 32 bytes, last 32 bytes.
csw psX Data0 c3a[72:0] Doubleword 0,2,4,6 of incoming block (muxed)
csw psX Data1 c3a[72:0] Doubleword 1,3,5,7 of incoming block

csw psX TIDBusy c5a[1:0] A Coherence Widget claims that TID 0 and/or 1 is busy.
(All six processor segments have identical signal ports. Replace “psX” in the above with ps0, ps1... Seg-
ments can send a command to either the Even side controller or the Odd side controller as designated by the
{E/O} prefix. So, in fact, segment 0 has two address/command request signals: ps0 csw ECmdAddrReq c0a and
ps0 csw OCmdAddrReq c0a.) The PCI interface is identical to the PS interface: replace psX in all signal names
with pci for this interface.

May 14, 2014 351 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Table 7.2: Memory Bus Port Signals From and To DMA or PCI Segment

Signal Name Description

dma csw CmdAddrTarget c0a[7:0] Command/Address Destination
dma csw {E/O}CmdAddrReq c0a Request for access to command/address bus
csw dma CmdAddrGnt c1a Grant from switch to PS allowing access

dma csw Command c0a[4:0] Operation to be performed
dma csw CmdAddrTID c0a[5:0] Transaction ID for this operation
dma csw Addr c0a[35:3] Address of cache miss, I/O ref, write, or probe
dma csw BMask c0a[7:0] Byte mask for I/O commands
dma csw Way c0a Way select
dma csw CmdOwnLock c0a See Section 7.8.1.
dma csw CmdClearMLAR c0a See Section 7.8.1.

dma csw DataTarget c1a[7:0] Data destination select
dma csw {E/O}DataReq c1a Request for access to data bus
csw dma {E/O}DataGnt c2a Grant from switch to PS allowing access

dma csw DataTID c2a[5:0] Match data to request
dma csw DatOwnLock c2a See Section 7.8.1.
dma csw DatReqLock c2a See Section 7.8.1.
dma csw DatClearMLAR c2a See Section 7.8.1.
dma csw ModState c2a[1:0] See Section 7.8.1.
dma csw HalfMask c2a[1:0] Writing 8 bytes, 64 bytes, first 32 bytes, last 32 bytes.
dma csw Data0 c2a[72:0] Doubleword 0 of block (with ECC)
dma csw Data1 c2a[72:0] Doubleword 1 of block
dma csw Data2 c2a[72:0] Doubleword 2
dma csw Data3 c2a[72:0] Doubleword 3
dma csw Data4 c2a[72:0] Doubleword 4
dma csw Data5 c2a[72:0] Doubleword 5
dma csw Data6 c2a[72:0] Doubleword 6
dma csw Data7 c2a[72:0] Doubleword 7

csw dma CmdAddrTID c2a Transaction ID for incoming request
csw dma CmdAddrValid c2a There is an incoming request
csw dma Command c2a[4:0] Incoming command
csw dma Origin c2a[3:0] Originating node (for forwarded commands)
csw dma Addr c2a[35:3] Incoming address
csw dma BMask c2a[7:0] Byte mask for I/O reads and writes

csw dma DataTID c3a[5:0] Transaction ID for incoming data
csw dma DataValid c3a If true, incoming data is worth looking at
csw dma Data0 c3a[72:0] Doubleword 0 of incoming block (muxed)
csw dma Data1 c3a[72:0] Doubleword 1 of incoming block
csw dma Data2 c3a[72:0] Doubleword 2
csw dma Data3 c3a[72:0] Doubleword 3
csw dma Data4 c3a[72:0] Doubleword 4

csw dma RdTIDBusy c5a[3:0] A Coherence Engine claims that TID[x] is currently in flight
csw dma WtTIDBusy c5a[3:0] A Coherence Engine claims that TID[x] is currently in flight

May 14, 2014 352 Rev 51328

SiCortex Confidential 7.9. L2 SEGMENT TO MEMORY INTERFACE

7.9.2 Target

Every transfer on the Request/Address bus or the Data bus is directed to a specific destination, which may be
one of the originating interfaces or one of the two coherence controllers and their associated memory interfaces.
When driving the bus, each interface selects either Evenbound or Oddbound direction, depending on the relative
positions of source and destination. When responding to a request, the target is decoded from the originator
portion of the transaction id. Original requests are always sent to the coherence controller indicated by address bit
6 (should be programmable).

In addition to the Target bits, the coherence controllers can assert Cmd Bcast in conjunction with all the Target
bits to cause all receivers to accept an invalidate command.

Target vectors are calculated to have a number of 1 bits set equal to the

distance between the sending and the recieving node. The leading 1 is

eliminated for the target calculation in all nodes other than the COH.

targetVectorType bsn2target(fromBSN, toBSN) {

if(fromBSN is COHO or COHE) {

return shiftLeft(1, abs(fromBSN - toBSN)) - 1;

}

else {

return shiftLeft(1, abs(fromBSN - toBSN) - 1) - 1;

}

}

Table 7.3: Target Addressing

As shown in Table 7.3, each interface to the Mem Bus generates an 8-bit target mask. The mask determines
how many downstream interfaces are expected to forward the data. The interface calculates the differernce between
its bus stop number and the destination’s bus stop number. It then sets that number of bits (less 1) at the lsb
end of the target vector. When the switch grants a bus cycle to an interface, it augments the provided 8 bit target
with the request line from the interface. This additional bit is driven downstream as the lsb of the complete (9 bit)
target. This allows the downstream node to determine if there is live data on the bus.

7.9.3 Completion

When requestors receive fill data from other caches (that is, from any element other than the memory controller),
they notify the coherence controller by sending the transaction id (and possibly other bits). This allows the
coherence controller to know when it can release any other request for the same address. Fills from memory can
notify the coherence controller directly. Such notice should be timed to allow a cache hit and transfer, rather than
initiating another memory request.

7.9.4 CSW Bus Arbitration

The memory bus consists of two sets of separately arbitrated wires (see Table 7.1):

1. Evenbound request/address/data

2. Oddbound request/address/data

Each such set has its own arbitration at each L2 segment; the segment can send if and only if (a) it wants to and
(b) there is nothing on the wires from upstream. Arbitration controls use of the entire set of even- or odd-bound
wires. Note that read commands optionally transfer a victim, but do not explicitly send the victim address. The
coherence controller can determine the victim address from the master tags and way select.

The coherence controller may prevent any bus stop from winning arbitration in order to prevent overflow of the
DDR controller request buffers. This merely imposes a delay in time, but may not create deadlock opportunities.

May 14, 2014 353 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.9.4.1 Fairness

How do we prevent a segment being locked out of bus access by traffic from upstream? First, we should note
that we can do all kinds of calculations that show that we’ll never really tax the capacity of the CSW or DDR
controllers. And then we’d find a chip that hung because we taxed the capacity of the CSW or DDR controllers.
So, the arbitration protocol prevents complete lockout by rationing access to the CSW when there is contention.

If a bus stop (say the DMA engine) initiates a request in cycle 0, it will find out in cycle 1 if it won the bidding.
Assume that it wins. It may have triumphed over some other downstream bus stop X. (Note that in the even-bound
direction, almost everybody is downstream of the DMA engine.) In this case, the DMA engine will not win further
arbitration for the bus until EVERY downstream bus stop that lost to the DMA bid is eventually granted access
to the CSW chain. This is implemented completely within the CSW arbitration logic.

7.9.4.2 Worst Case Traffic Analysis

Every request to the memory arrays requires one 4ns cycle of the Memory Bus, and eight edges of the memory’s
DQ bus. We’re designing for DQ bus clock rates up to 400 MHz, so 8 edges take 10ns; thus the memory bus cannot
be more than 40% saturated by main memory traffic. In addition, inter-cache transfers can occur concurrently with
main memory access. Each such access encounters a minimum latency of 12 4ns cycles, so the maximum possible
bus loading is 6 requestors/12 cycle latency = 50%. The worst loading at any point on the bus is less than this
because the requests have to be distributed among many L2 segments to be requested and serviced that quickly,
with the result that the bus isn’t occupied for its full length, and the interface in question will be able to share at
least some of the used cycles.

We also have to account for the DMA engine and PCI-express controller, each of which can have four requests
outstanding at any time, but only two of them can be to the same memory controller, and very few of which result
in inter-cache transfers.

7.9.5 CSW Queuing of Commands and Data

At each CSW bus stop, one module can inject commands or data onto the Even or Odd memory bus, and the
CSW can deliver commands or data to the module. Incoming commands may arrive two per cycle (one from each
direction), but the bus stop interface can only transmit one of those commands into the module per cycle. The
CSW contains queues in each bus stop to handle cases where commands arrive too fast. Data can also arrive from
both directions at once, if a module ever requests multiple data transfers at a time. The processor segments limit
themselves to one data request at a time, so no queuing is required in their bus stops, but the DMA and PCI can
make multiple outstanding data requests, so their bus stops require data queues. The depth requirements for each
queue are analyzed below, for each type of bus stop.

To know how deep the command and data queues should be, we must identify a worst case number of commands
that could arrive at this bus stop, and consider how quickly the module can consume the transactions as they are
coming in. A bus stop could receive one command per TID in the system: 12 processor TIDs, 8 DMA TIDs, and 8
PCI TIDs. [NOTE: this analysis assumes that INTs consume a TID, and a block will not send another INT until
a DONE response comes back.] In the worst case, these 28 commands could arrive in 14 consecutive cycles, half
coming from the even side and half coming from the odd side. Half of them can be consumed by the module, while
the other half must be queued. So the command queue for each bus stop must be 14 commands deep. For the data
queues, the answer depends on the number of outstanding data transactions that the module can produce. The
processor segment is careful to only allow one data transaction at a time, while DMA and PCI can have 4 reads
outstanding plus some number of WTIOs.

Table 7.4 summarizes these results.
The different requirements for bus stops leads to the need for several bus stop variants. The command side of all

bus stops are all copies of the same module (CswPca), whose queue structure is described in Figure 7.5. Commands
from even and odd sides are queued if necessary, and the bus stop delivers one command at a time to the target
module. The processor needs no data queue. The PCI bus stop queues data from even and odd sides, and delivers
it to the PCI at a rate of two doublewords per cycle (Figure 7.6). The DMA bus stop queues data from even and
odd sides, and delivers it to the DMA at a rate of eight doublewords per cycle (Figure 7.7).

7.9.6 Transfer order

Data transfers on the CSW are ordered to ensure a fixed pipeline timing for each section of the bus, while
delivering cache miss data to processors starting with the requested word first, and keeping aligned 16-byte units

May 14, 2014 354 Rev 51328

SiCortex Confidential 7.9. L2 SEGMENT TO MEMORY INTERFACE

Bus Stop Cmd/Data Max Arriving, Worst Case Number Consumed Queue Depth Needed

All Cmd 12 processor TIDs (probes)
+ 8 DMA TIDs
+ 8 PCI TIDs
Total: 28 commands in 14 cycles

14 in 14 cycles 14

Processor Data 1 read response
....or....
1 WTIO data word,
but never both at once

1 every 4 cycles none

PCI Data 4 read responses
+ 2 WTIO data words
Total: 6 transfers in 3 cycles
(The PCI bus stop supports
two modules which can each do
WTIOs.)

1 every 4 cycles 5

DMA Data 4 read responses
+ 1 WTIO data word
Total: 5 transfers in 3 cycles

3 in 3 cycles 2

Table 7.4: Queue Depth Requirements for CSW Bus Stops

Command
Addr

CmdAddrTID
CmdOrigin

etc.

56 56

f
r
o
m

O
d
d

d
i
r
e
c
t
i
o
n

arb

CmdAddrValid

Command
Addr
CmdAddrTID
CmdOrigin
etc.

56

Command
Addr
CmdAddrTID
CmdOrigin
etc.

f
r
o
m

E
v
e
n

d
i
r
e
c
t
i
o
n

to PS, PCI, or DMA

Figure 7.5: CSW Queues for CmdAddr Requests

May 14, 2014 355 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Data0,1

144

Data2,3

144

Data4,5

144

Data6,7

144

Data0,1

144

Data2,3

144

Data4,5

144

Data6,7

144

arb

Data0<71:0>
Data1<71:0>DataValid

f
r
o
m

O
d
d

d
i
r
e
c
t
i
o
n

f
r
o
m

E
v
e
n

d
i
r
e
c
t
i
o
n

to PCIto PCI

Figure 7.6: CSW Data Queues for PCI Bus Stop

Data0,1

144

Data0,1

144

f
r
o
m

O
d
d

d
i
r
e
c
t
i
o
n

f
r
o
m

E
v
e
n

d
i
r
e
c
t
i
o
n

Data2,3

144

Data2,3

144

Data4,5

144

Data4,5

144

Data6,7

144

Data6,7

144

Data0<71:0>
Data1<71:0>

arb

Data2<71:0>
Data3<71:0>

Data4<71:0>
Data5<71:0>

Data6<71:0>
Data7<71:0>

DataValid

to DMA

Figure 7.7: CSW Data Queues for DMA Bus Stop

May 14, 2014 356 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

together. Note that address bit 3 is ignored, and setting bits 4 and/or 5 result in exchanging the order of halves of
the block.

Table 7.5: Transfer sequence as a function of address

Address Data0, Data1 Data2, Data3 Data4, Data5 Data6, Data7

x..x00 07:00, 0F:08 17:10, 1F:18 27:20, 2F:28 37:30, 3F:38
x..x08 07:00, 0F:08 17:10, 1F:18 27:20, 2F:28 37:30, 3F:38
x..x10 17:10, 1F:18 07:00, 0F:08 37:30, 3F:38 27:20, 2F:28
x..x18 17:10, 1F:18 07:00, 0F:08 37:30, 3F:38 27:20, 2F:28
x..x20 27:20, 2F:28 37:30, 3F:38 07:00, 0F:08 17:10, 1F:18
x..x28 27:20, 2F:28 37:30, 3F:38 07:00, 0F:08 17:10, 1F:18
x..x30 37:30, 3F:38 27:20, 2F:28 17:10, 1F:18 07:00, 0F:08
x..x38 37:30, 3F:38 27:20, 2F:28 17:10, 1F:18 07:00, 0F:08

7.10 Detailed Interface and Block Descriptions

7.10.1 The Normal Flow Of Events, Hazards, and General Ordering Cases

Almost all the mischief that can happen in a cache/memory system surrounds the handling and ordering of
reads. Writes almost take care of themselves. So, I’ll attempt to explain the operation of the coherence widget by
looking at the way read operations interact with other read operations and write operations and the distributed L2
cache.

Note that we’re talking about a system with a split bus – that is, a read transaction is split into a read
request for address A from processor X (which we note as Read(X,A)), and a data response which we’ll write as
ReadData(X,A,D) if we ever need to. Similarly, we break write operations into Write(X,A) and WriteData(X,A,D)
since the data may be delivered many cycles after the corresponding address.

The tables below, one for each kind of transaction, describe the sequence of events to carry out the transaction.
When a unit transmits a command into the cache switch, we denote the operation as CMD(C,U,T,A,W,L,O) where

C is the command being transmitted.

U is the target unit to which this command is being sent. It is one of P0, P1, P2, P3, P4, P5, PCI, DMA, COHE,
or COHO.

T is the transaction ID. Tx designates a transaction ID that contains the unit for unit X in its upper bits.

A is the relevant address, or the value to be driven onto the address bus.

W is the L2 cache way that will hold the returned data. W is not always relevant to a command, in those cases,
it ommitted.

L indicates that the block in question had an outstanding load/link operation registered on it by the sending
processor. L is not always relevant to a command, in which case it will be omitted.

O indicates an “originator” field. This is almost always optional. When used it will be represented as ORI-
GIN=value.

The data portion of the transaction will be represented as DATA(U,T,D,s) where U and T are as described above,
and

D is the data to be transfered, either 8 bytes, 32 bytes, or 64 bytes.

s is the size and placement of the transfer. It indicates that the block is either 8 bytes long, 32 bytes long, starting
with doublewords 0 and 1, 32 bytes long starting with doublewords 4 and 5, or 64 bytes long.

The text below refers to the “command bus” or the “data bus.” We don’t really have “buses” in the chip, instead
we have pipelined-multitap-multiplexed-daisychains, but “bus” is a little easier on the eyes. For purposes of under-
standing the flow of the transactions, “bus” is a reasonable approximation of what we’re implementing. For more
detail, see 7.15.2.

May 14, 2014 357 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.2 Transaction Steps and the CSW Buses

The two bus events described above CMD() and DATA() require signals to be sequenced over several cycles
or pipeline stages on the CSW ports. For example, CMD(RDEX,COHE,0x6,0x2badbeef0, 1), meaning “Read
and acquire Exclusive Ownership from the Even Coherence widget, block 0x2badbeef0. Register the new owner
(processor 3) as caching this block in way 1” appears on the processor port to the bus as shown in Figure 7.8. The
sequencing for the event DATA(D[7:0], Px, TID, 64) is shown in Figure 7.9. Half block transfers may be to either
the first 32 bytes of a 64 byte block, or the second. These two transfers are shown (from the processor’s view) in
Figures 7.10 and 7.11. Finally, 8 byte transfers (used for I/O operations) are described in Figure 7.12.

The DMA engine interface to the CSW is different from the other interfaces because it has eight 72-bit buses
in each direction instead of two. Figure 7.13 shows how the data is staged onto Data0-1 in one cycle, then Data2-3
in the next, and so on. The DMA can send and receive back-to-back transactions on the CSW.

Target Vector

6

RDEX

0x2badbeef0

0ns 10ns 20ns

cclk

psX_csw_ECmdAddrReq_c0a

><8:0psX_csw_ECmdAddrTarget_c0a

csw_psX_ECmdAddrGnt_c1a

><5:0psX_csw_CmdAddrTID_c0a

><1:0psX_csw_Command_c0a

><35:3psX_csw_Addr_c0a

><7:0psX_csw_BMask_c0a

Figure 7.8: Signalling Sequence for CMD(RDEX, COHE, 0x6, 0x2badbeef0, 1)

May 14, 2014 358 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Target Vector

Transaction ID

64BYTES

X

DAT[0] DAT[2] DAT[4] DAT[6]

DAT[1] DAT[3] DAT[5] DAT[7]

DAT[0]

DAT[1]

DAT[2]

DAT[3]

DAT[4]

DAT[5]

DAT[6]

DAT[7]

0ns 10ns 20ns

cclk

psX_csw_EDataReq_c2a

><8:0psX_csw_DataTarget_c2a

csw_psX_EDataGnt_c3a

><5:0psX_csw_DataTID_c2a

><1:0psX_csw_HalfMask_c2a

><2:0psX_csw_DataOrig_c2a

><71:0psX_csw_Data0_c2a

><71:0psX_csw_Data1_c2a

><71:0csw_cohx_Data0_c3a

><71:0csw_cohx_Data1_c3a

><71:0csw_cohx_Data2_c4a

><71:0csw_cohx_Data3_c4a

><71:0csw_cohx_Data4_c5a

><71:0csw_cohx_Data5_c5a

><71:0csw_cohx_Data6_c6a

><71:0csw_cohx_Data7_c6a

Figure 7.9: Signalling Sequence for DATA(DAT[7:0], Px, TID, 64)

May 14, 2014 359 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Target Vector

Transaction ID

01

X

DAT[0] DAT[2]

DAT[1] DAT[3]

0ns 10ns 20ns

cclk

psX_csw_EDataReq_c2a

><8:0psX_csw_DataTarget_c2a

csw_psX_EDataGnt_c3a

><5:0psX_csw_DataTID_c2a

><1:0psX_csw_HalfMask_c2a

><2:0psX_csw_DataOrig_c2a

><71:0psX_csw_Data0_c2a

><71:0psX_csw_Data1_c2a

Figure 7.10: Signalling Sequence for DATA(DAT[3:0], Px, TID, 32F)

Target Vector

Transaction ID

10

X

DAT[0] DAT[2]

DAT[1] DAT[3]

0ns 10ns 20ns

cclk

psX_csw_EDataReq_c2a

><8:0psX_csw_DataTarget_c2a

csw_psX_EDataGnt_c2a

><5:0psX_csw_DataTID_c2a

><1:0psX_csw_HalfMask_c2a

><2:0psX_csw_DataOrig_c2a

><71:0psX_csw_Data0_c2a

><71:0psX_csw_Data1_c2a

Figure 7.11: Signalling Sequence for DATA(DAT[3:0], Px, TID, 32S)

May 14, 2014 360 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Target Vector

Transaction ID

00

X

DAT[0]

0ns 10ns 20ns

cclk

psX_csw_EDataReq_c2a

><8:0psX_csw_DataTarget_c2a

csw_psX_EDataGnt_c3a

><5:0psX_csw_DataTID_c2a

><1:0psX_csw_HalfMask_c2a

><2:0psX_csw_DataOrig_c2a

><71:0psX_csw_Data0_c2a

><71:0psX_csw_Data1_c2a

Figure 7.12: Signalling Sequence for DATA(D, Px, TID, 8)

May 14, 2014 361 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

1
2

3
4

5
6

7
8

9
10

11

R
eq

A
R

eq
B

R
eq

C
, R

eq
D

C
O

R
E

0
C

O
R

E
2

C
O

R
E

1
C

O
R

E
3

G
nt

A
G

nt
B

G
nt

C
, G

nt
D

W
64

W
64

W
64

W
64

A
0

B
0

C
0

D
0

A
1

B
1

C
1

D
1

A
2

B
2

C
2

D
2

A
3

B
3

C
3

D
3

A
4

B
4

C
4

D
4

A
5

B
5

C
5

D
5

A
6

B
6

C
6

D
6

A
7

B
7

C
7

D
7

T
G

nt
R

eq
T

G
nt

R
eq

0n
s

10
ns

20
ns

30
ns

40
ns

cc
lk

dm
a_

cs
w

_E
D

at
aR

eq
_c

2a >
<

8:
0

dm
a_

cs
w

_E
D

at
aT

ar
ge

t_
c2

a

cs
w

_d
m

a_
E

D
at

aG
nt

_c
3a >

<
1:

0
dm

a_
cs

w
_H

al
fM

as
k_

c2
a

>
<

71
:0

dm
a_

cs
w

_D
at

a0
_c

2a

>
<

71
:0

dm
a_

cs
w

_D
at

a1
_c

2a

>
<

71
:0

dm
a_

cs
w

_D
at

a2
_c

3a

>
<

71
:0

dm
a_

cs
w

_D
at

a3
_c

3a

>
<

71
:0

dm
a_

cs
w

_D
at

a4
_c

4a

>
<

71
:0

dm
a_

cs
w

_D
at

a5
_c

4a

>
<

71
:0

dm
a_

cs
w

_D
at

a6
_c

5a

>
<

71
:0

dm
a_

cs
w

_D
at

a7
_c

5a

Figure 7.13: Signalling Sequence for DATA(DAT[7:0], DMA, TID, 64) from the DMA Engine
Transaction A is granted in the following cycle (the fastest possible grant). Transaction B is granted after one
stall cycle. Transactions C and D are requested and granted back-to-back. Note that the CSW samples all values
relative to the request cycle, not the grant, and the CSW stores the content of the request until the request is
granted. The DMA is not required to hold the data during stalls. (Other CSW bus stops have other rules.)

May 14, 2014 362 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.3 The Outstanding Read CAM and the Write Back CAM

The ICE9 L2 cache system supports six processors, and DMA engine and a PCI express widget and can field
up to 28 transactions at any one time. Each of the six processors can have one read and one write transaction
outstanding at a time. The DMA engine and PCI widget can have four reads and four writes each at a time.

We want to maintain memory ordering to at least an intuitive degree. That is, processors never see “time going
backwards.” I could go on for a bunch of pages about strong consistency vs. weak consistency. Suffice it to say,
we want memory ordering semantics that are the same as we implemented with MIPS multiprocessors. Whatever
that is.

We make sure that the L2 system doesn’t re-order reads and writes to the same “block” (32 bytes) relative to
each other by chaining operations to the same block together in the outstanding read CAM and the write back
CAM. We cover this in a fair amount of detail in the sections on read and write ordering hazards, below. In the
transaction flows below we identify several operations on the ORC and WBC.

ORC Reg(X,A,T) store A – the block address, and T – the transaction ID as the keys in the ORC. Store X in
the requester field. ORC Reg also remembers whether the address for this entry had matched against any
other ORC when it was first looked up. (This is used in the EXCLUSIVE to SHARED transition.) Such
entries have their “HEAD OF LIST” bit set. All others have this bit cleared.

ORC Check(A) Lookup A in the ORC. Match only against ORC entries who’s Xd, Ad, Td, Op fields are empty.
(i.e. those that have no dependents)

ORC CheckS(Tx) Lookup transaction ID Tx in the ORC. This is used by the WRSTRANS operation.

ORC Dep(Ty,Xd,Ad,Td,Op) find the entry matching transaction ID Ty and store a dependent operation from
node Xd, using block address offset Ad, transaction ID Td, and Op.

ORC Rel(T) find the entry matching TID T, If the Xd field is not null, then there was a dependent read or block
write operation queued up behind this read. Launch the dependent operation. Clear the valid bits for the
matching CAM entry. (Release the entry.)

WBC Reg(X,A,T) store A – the block address, and T – the transaction ID as the keys in the WBC. Store X in
the requester field.

WBC Check(A) Lookup A in the ORC. Match only against ORC entries who’s Xd, Ad, Td, Op fields are empty.
(i.e. those that have no dependents)

WBC GetAddr(T) Lookup T in the ORC. Return the value for A at the matching location. (This is how we
retrieve the write address that goes along with a block of data. Note that data is sent several cycles after the
write address arrives.)

WBC Dep(Ty,Xd,Ad,Td,Op) find the entry matching transaction ID Ty and store a dependent operation from
node Xd, using block address offset Ad, transaction ID Td, and Op.

WBC Rel(T) find the entry matching TID T, If the Xd field is not null, then there was a dependent read or
block write operation queued up behind this read. Launch the dependent operation. Clear the valid bits for
the matching CAM entry. (Release the entry.) Note that WBC Rel is triggered on completion of a write with
respect to the DDR controller or – in the case of forwarded writes – completion signalled by a BWTDONE.
See Section

We also perform a few operations on the L2 master tags.

TAG Check(A) Lookup A in the L2 master tag arrays (one for each of the 6 processor/cache segments). Return
the state and a list of matching entries.

TAG Update(P,A,W,S) Create an L2 master tag entry in the tag array for processor P, in way W, with address
A. Set the state to S. State is one of EX (exclusive), SH (shared), or IN (invalid).

TAG Victim(A,W) Return the address of the victim block for the L2 tag array at the index derived from A for
way W. (For operations that include an implicit victim write, we need the address of the victim block.)

May 14, 2014 363 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.3.1 The ORC

The ORC is indexed as a CAM with the Address of interest as a key. It can also be directly indexed by TID.
Each entry in the table contains eleven fields

Valid True if this entry represents a currently outstanding memory read transaction

AddrTag The block address of the corresponding transaction

Last True if this is the last memory read or write operation posted for AddrTag

Excl True if the block was in the EXCLUSIVE state when the operation was first registered in the ORC

Shr True if the block was in the SHARED state when the operation was first registered in the ORC

Own The is the processor identifier of the current owner of the block if the block was SHARED and some processor
segment claims that it is willing to source the data. (The owner, if it exists, is the last to acquire the block.
It is possible, however, that the last acquirer has evicted the block. In this case, the OWN field points to a
non-existedn processor segment (0xf).

DepTID The TID of an operation that was registered as a dependent on this entry. Valid only if Last is false.

DepCmd The command for the dependent operation. Valid only if Last is false.

DepAddr The low bits of the address of the dependent operation.

DepOrg The originator of the dependent operation.

SrcCmd The command that created this entry in the ORC.

7.10.3.2 The WBC

The WBC is indexed as a CAM with the Address of interest as a key. It can also be directly indexed by TID.

Valid True if this entry represents a currently outstanding memory read transaction

AddrTag The block address of the corresponding transaction

Last True if this is the last memory read or write operation posted for AddrTag

Winv True if this entry corresponds to a writeback (WINV) or victimization (RDV, RDSV)

Shr True if this entry was in the SHARED state when it was created.

LowBits The low bits of the address for the dependent operation. Valid only if Last is false.

DepTID The TID of an operation that was registered as a dependent on this entry. Valid only if Last is false.

DepCmd The command for the dependent operation. Valid only if Last is false.

DepOrg The originator of the dependent operation.

DepOwn The owner of the block when the dependent command was registered on this entry.

7.10.4 Transaction Flows

7.10.4.1 D-Stream Read to a Non Resident Block

This is the simplest case, so we start with that. Assume that processor X launches a load operation that misses
on block A. The operation may displace a victim block. If it does not, the operation proceeds as a simple read,
shown in Table 7.6. If a victim write back is required, the operation is described in Table 7.7.

Note that during the command processing phase of the transaction (cycles 2 and 3) the address is first looked
up in the master tags, the writeback CAM (WBC) and the outstanding read CAM (ORC). In the second of the
two cycles, we update the tags, the WBC, and the ORC. In the latter case, the update to the CAM array occurs
at the start of the cycle, so comparisons to the new CAM entries can occur immediately. The tag arrays, however,

May 14, 2014 364 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Cycle PX Action COH Action Comment

1 CMD(RDEX,COHn,Tx,A,W)
2 TAG Check(A) - no

hit found.
WBC Check(A) - no
hit found.
ORC Check(A) - no
hit found.
Send A to DDR Con-
troller and queue for
DDR Read opera-
tion.

3 ORC Reg(PX, A,
Tx)
TAG Update(PX, A,
W, EX)

N DATA(X,Tx,D) – re-
turn Data to Px.
ORC Rel(Tx)

Data is returned in
“best word first” or-
der.
Px can now launch
a new read operation
as soon as the first
data word arrives.

N+1 Store D in L2/L1.

Table 7.6: D-Stream Read to a Non Resident Block: No Victim Writeback

are implemented as RAMs and so we must implement a comparison bypass to allow two back to back operations
on the same block address to work properly.

Note that the difference between an RDEX and RDV is entirely found in the writeback operation starting with
the WBC Reg in cycle 3, and including the data write cycles beginning in cycle M. Writebacks never stall. That
is, the result of tag lookups in the L2 tags, WBC, or ORC has no effect on the writeback or its time of arrival. For
this reason, we will show only a few examples of the writeback version of the transaction flows. (For a discussion of
the only really interesting thing that can happen to a writeback, see the description of victim writeback collisions
against BWT operations in Section 7.10.4.19.)

May 14, 2014 365 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action Comment

1 CMD(RDV,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR Controller and
queue for DDR Read operation.
Av = TAG Victim(A,W)

If a WBC hit is found here, it
must be against a BWT.

3 ORC Reg(PX, A, Tx)
WBC Reg(PX, Av, Tx)
TAG Update(PX, A, W, EX)

We remember that there is a
write outstanding since the data
may not arrive for some time.
The WBC allows us to buffer the
write address to send along with
the data, and to protect against
“ships passing in the night.” See
Section 7.10.4.17.
If Av matches an outstanding
BWT, then we write Av = NULL
in the WBC.

M DATA(COH,Tx,Dw) or
CMD(WBCANCEL,Tx)

Cycle M may be coincident with
cycle 3.

M+1 Data or WBCAN arrives at COH.
Aw = WBC GetAddr(Tx)
Send Aw along with the data Dw
to the DDR controller.
WBC Rel(Tx)

If Aw is NULL, then this write-
back was killed by an intervening
BWT request.

N DATA(X,Tx,Dr)
ORC Rel(Tx)

Data is returned in “best word
first” order.
Px can now launch a new read op-
eration as soon as the first data
word arrives.

N+1 Store Dr in L2/L1.

T
a
b
le

7
.7
:
D
-S
trea

m
R
ea
d
to

a
N
o
n
R
esid

en
t
B
lo
ck

–
W

ith
V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
6
6

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action DEV Action Comment

1 CMD(RDEX,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

WBC Check(A) - no hit found.
Tv = ORC Check(A) - HIT!
Send A to DDR Controller and
queue for DDR Read operation.

If the TAGS are all clear, then the
read that we’re depending on is
a BRD to an uncached location
from the DMA engine or PCI.

3 Shootdown A in DDR controller.
ORC Reg(PX, A, Tx)
TAG Update(PX, A, W, EX)
ORC Dep(Tv, PX, A, Tx)

Register our dependence on the
earlier read operation.

M DATA(DEV,Tv,Dr) Data is returned by the DDR con-
troller. It is not possible for this
sequence to end with a forwarded
read acknowledged by DMA/PCI
(PRBDONE).

M+1 PX, Tx, A = ORC Rel(Tv) Dev gets data
M+2 Send address A to DDR con-

troller.
M+3 Continue at step N in Table 7.6

T
a
b
le

7
.8
:
D
-S
trea

m
R
ea
d
to

a
N
o
n
R
esid

en
t
B
lo
ck

–
H
it

o
n
O
u
sta

n
d
in
g
R
ea
d
C
A
M
.

M
ay

1
4
,
2
0
1
4

3
6
7

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action DEV/PY Action Comment

1 CMD(RDEX,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

Tv = WBC Check(A) - HIT!
ORC Check(A) - no hit.
Send A to DDR Controller and
queue for DDR Read operation.

If the TAGS are all clear, then the
write that we’re depending on ei-
ther a victim writeback or a BWT
to an uncached location.

3 Shootdown A in DDR controller.
ORC Reg(PX, A, Tx)
TAG Update(PX, A, W, EX)
WBC Dep(Tv, PX, A, Tx)

Register our dependence on the
earlier write operation.

M DATA(X,Tv,Dr) Data is returned to the DDR con-
troller.

M+1 PX, Tx, A = WBC Rel(Tv)
M+2 Send address A to DDR con-

troller.
M+3 Continue at step N in Table 7.6

T
a
b
le

7
.9
:
D
-S
trea

m
R
ea
d
to

a
N
o
n
R
esid

en
t
B
lo
ck

–
H
it
o
n
W
rite

B
a
ck

C
A
M
.

M
ay

1
4
,
2
0
1
4

3
6
8

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.2 D-stream Read to a Cached Block

This is where things get interesting. Consider again the case of a processor X reading block A. In this case,
we assume that block A is already resident in some other cache – processor Y for example. Our cache coherence
scheme allows a block to be in one of three states: INVALID, EXCLUSIVE, or SHARED. (The SHARED state is
implemented for i-stream cache blocks only. This section will describe accesses to a block that is in the EXCLUSIVE
state or the INVALID state. For D-stream accesses to blocks in the SHARED state, see Section 7.10.4.5.) In the
first case, described in Table 7.10, processor X does not require a victim write back (block A is replacing an
INVALID, SHARED, or EXCLUSIVE-CLEAN block). In the second case, described in Table 7.11, processor X
must write back a victim block.

May 14, 2014 369 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action PY Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 TAG Check(A) - return PY, EX

WBC Check(A) - no hit found.
ORC Check(A) - no hit found
Send A to DDR controller and
queue for DDR read operation.

3 CMD(PRBWIN,PY,Tx,A)
TAG Update(PX, A, W, EX)
TAG Update(PY, A, W, IN)
ORC Reg(PX, A, Tx)
Send “shootdown” signal to DDR
to cancel DDR read of A.

L Look up A in L2 tags. Find a hit.
Send A to L1 for
probe/writeback.

L+1 Copy data from dirty 32 byte
blocks from L1 into 64 byte L2
block (update if the L1 entry was
dirty)

M DATA(PX,Tx,D,d) – return data
to PX. d is true if block A was
EXCLUSIVE-DIRTY.

M+1 Receive data from bus, write to
L2/L1. Set to EXCLUSIVE-
DIRTY if d was true. Set to
EXCLUSIVE-CLEAN otherwise.
New read operation can be
launched as soon as the first 128
bits of data arrives.

M+2 CMD(PRBDONE, COH, Tx,
addr=0)

M+3 ORC Rel(Tx)

T
a
b
le

7
.1
0
:
D
-S
trea

m
R
ea
d
o
f
C
a
ch
ed

D
a
ta

–
N
o
V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
7
0

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY Action Comment

1 CMD(RDV,COHn, Tx,A,W) W is the way that we’ll displace
and the target way for A.

2 TAG Check(A) - return PY, EX
WBC Check(A) - no hit found.
ORC Check(A) - no hit found
Av = TAG Victim(A, W)
Send A to DDR controller and
queue for DDR read operation.

3 CMD(PRBWIN,PY,Tx,A)
TAG Update(PX, A, W, EX)
TAG Update(PY, A, W, IN)
ORC Reg(PX, A, Tx)
WBC Reg(PX, Av, Tx)
Send “shootdown” signal to DDR
to cancel DDR read of A.

L Look up A in L2 tags. Find a hit.
Send A to L1 for
probe/writeback.

L may be as early as cycle 3, but
there may be queueing delay at
PY’s command input.

L+1 Copy data from dirty 32 byte
blocks from L1 into 64 byte L2
block (update if the L1 entry was
dirty)

M DATA(COHn,Tx,Dw) – write-
back victim block
or
CMD(WBCANCEL,Tx)

Cycle M may occur as early as cy-
cle 3. This activity may run in
parallel with other parts of this
transaction.

M+1 Aw = WBC GetAddr(Tx)
Send Aw along with the data Dw
to the DDR controller.
WBC Rel(Tx)

N DATA(PX,Tx,D,d) – return data
to PX. d is true if block A was
EXCLUSIVE-DIRTY.

N+1 Receive data from bus, write to
L2/L1. Set to EXCLUSIVE-
DIRTY if d was true. Set to
EXCLUSIVE-CLEAN otherwise.
New read operation can be
launched as soon as the first 128
bits of data arrives.

N+2 CMD(PRBDONE,COH,Tx,addr=0)
N+3 ORC Rel(Tx)

T
a
b
le

7
.1
1
:
D
-S
trea

m
R
ea
d
o
f
C
a
ch
ed

D
a
ta

–
W

ith
V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
7
1

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

At times, the PWIN arriving at PY will result in PY finding that the data is no longer in its cache. (PY
can autonomously evict an EXCLUSIVE block that is clean, without informing the COH. (This can also happen
because of a race between a victimization by PY and a read by PX. See Section 7.10.4.17.) In this case, PY,
upon receiving the PWIN command will send a PRBNOHIT command to PX with the original TID. PX will then
requeue the Read operation as a REREAD(X,A) and the transaction will proceed as shown in Table 7.12. The
table picks up the transaction at cycle L.

Cycle PX Action COH Action PY Action Comment

L Look up A in L2 tags.
It misses.

L+1 CMD(PRBNOHIT,
PX, Tx, addr=0)

K CMD(RDEXR,
COHn, Tx, A)

This is a ReadExclu-
sive Retry command.
K could be as early as
L+2.

K+1 Send A to DDR con-
troller.

R Receive read data from
DDR
OTC Rel(Tx)

R may be many cycles
after L+3.

R+1 DATA(PX, Tx, Dr)
R+2 Receive data from

bus, write to L2/L1.
Set to EXCLUSIVE-
CLEAN.

Table 7.12: Forwarded D-Stream Read Misses in Probed Cache

May 14, 2014 372 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY/DEV Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 TAG Check(A) - return PY, EX

WBC Check(A) - no hit found.
Tv = ORC Check(A) - HIT!
Send A to DDR controller and
queue for DDR read operation.

ORC hit is either on PY doing the
initial read that fills this block in
PY or on a BRD to PY. (Oth-
erwise, the state wouldn’t be PY
EXCLUSIVE.)

3 TAG Update(PX, A, W, EX)
TAG Update(PY, A, W, IN)
ORC Reg(PX, A, Tx)
ORC Dep(Tv, Px, A, Tx)
Send “shootdown” signal to DDR
to cancel DDR read of A.

Register this transaction as de-
pendent on an earlier read trans-
action with TID = Tv.

K DATA(DEV, Tv, D) CMD(PRBDONE, COHn, Tv,
addr=0)

Either read data is supplied by
DDR to PY or PY completed via
an inter-cache transfer.

K+1 Px, Tx, A, Py= ORC Rel(Tv)
K+2 CMD(PRBWIN, PY, Tx, A)
K+3 Continue with step L in Table 7.10

T
a
b
le

7
.1
3
:
D
-S
trea

m
R
ea
d
o
f
E
X
C
L
U
S
IV

E
B
lo
ck

–
O
R
C

H
it

M
ay

1
4
,
2
0
1
4

3
7
3

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action DEV Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 TAG Check(A) - return PY, EX

ORC Check(A) - no hit found.
Tv = WBC Check(A) - HIT!
Send A to DDR controller and
queue for DDR read operation.

WBC hit against a block write
operation to processor PY.

3 TAG Update(PX, A, W, EX)
TAG Update(PY, A, W, IN)
ORC Reg(PX, A, Tx)
ORC Dep(Tv, Px, A, Tx)
Send “shootdown” signal to DDR
to cancel DDR read of A.

Register this transaction as de-
pendent on an earlier read trans-
action with TID = Tv.

K CMD(BWTDONE, COHn, Tv,
addr=0)

K+1 Px, Tx, A, Py= WBC Rel(Tv)
K+2 CMD(PRBWIN, PY, Tx, A)
K+3 Continue with step L in Table 7.10

T
a
b
le

7
.1
4
:
D
-S
trea

m
R
ea
d
o
f
E
X
C
L
U
S
IV

E
B
lo
ck

–
W

B
C

H
it

M
ay

1
4
,
2
0
1
4

3
7
4

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.3 I-stream Read to a Non Resident Block

ICE9 supports cache coherency via an exclusive writer model. That is, the cache does not support a “shared-
update” operation where one processor is able to write a few bytes through and update cache blocks in other
processors. It isn’t that we don’t like shared-update protocols, it’s just that such protocols are really hard to verify
and hard to retrofit to a processor pipeline that was built for a simpler model.

But we do want to share I-stream data among the caches. So, we implement a SHARED state in the cache.
Blocks in the SHARED state can’t be written. They only get into the shared state as the result of an I-stream L1
cache miss.

Cycle PX Action COH Action Comment

1 CMD(RDS,COHn,Tx,A,W) Istream read, into wayW for
L2

2 TAG Check(A) - Find no
matches.
WBC Check(A) - no hit
found.
ORC Check(A) - no hit
found.
Send A to DDR controller

3 ORC Reg(PX, A, Tx).
TAG Update(PX, A, W,
SH)

N DATA(PX,Tx,Di)
ORC Rel(Tx)

DDR returns data.

N+1 Receive data from bus, write
into L2 and L1 ICache. Set
state to SHARED.

Table 7.15: I-Stream Read to a Non Resident Block

May 14, 2014 375 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action Comment

1 CMD(RDSV,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller
Av = TAG Victim(A, W)

3 ORC Reg(PX, A, Tx)
WBC Reg(PX, Av, Tx)
TAG Update(PX, A, W, SH)

M DATA(COHn,Tx,Dw) or
CMD(WBCANCEL,Tx)

This is the victim writeback.
M may occur as early as cycle 3.

M+1 Aw = WBC GetAddr(Tx)
Send Aw along with the data Dw
to the DDR controller.
WBC Rel(Tx)

N DATA(PX,Tx,Di)
ORC Rel(Tx)

DDR returns data.

N+1 Receive data from bus, write into
L2 and L1 ICache. Set state to
SHARED.

T
a
b
le

7
.1
6
:
I-S

trea
m

R
ea
d
to

a
n
N
o
n
R
esid

en
t
B
lo
ck
:
W

ith
V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
7
6

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action DMA/PCI Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

WBC Check(A) - no hit found.
Ty = ORC Check(A) - HIT!
Send A to DDR controller
Av = TAG Victim(A, W)

This can only happen if a block
is uncached and then fetched by
the DMA/PCI widget via a BRD
operation.

3 Shoot down address A in DDR.
ORC Reg(PX, A, Tx)
ORC Dep(Ty, PX, A, Tx)
TAG Update(PX, A, W, SH)

Reads are serviced“in order”even
when it “doesn’t matter.”

L DATA(PY, Ty, D) – OR CMD(PRBDONE, COHn, Ty,
addr=0)

Data is returned by DDR or
DMA/PCI completes a probe to
get the data. Either way, COH
finds out about it.

L+1 PX, tx, A = ORC Rel(Ty)
L+2 Send A to DDR controller Note contention between this

source of addresses and the in-
coming cmd/addr stream.

N DATA(PX,Tx,D)
ORC Rel(Tx)

DDR returns data.

N+1 Receive data from bus, write into
L2 and L1 ICache. Set state to
SHARED.

T
a
b
le

7
.1
7
:
I-S

trea
m

R
ea
d
to

a
N
o
n
R
esid

en
t
B
lo
ck

–
H
it
o
n
O
u
sta

n
d
in
g
R
ea
d
C
A
M
.

M
ay

1
4
,
2
0
1
4

3
7
7

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action DMA/PCI Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - no hit found.

Ty = WBC Check(A) - HIT!
Ty = ORC Check(A) - no hit.
Send A to DDR controller
Av = TAG Victim(A, W)

We’re queued up behind a BWT
or a victim writeback.

3 Shoot down address A in DDR.
ORC Reg(PX, A, Tx)
WBC Dep(Ty, PX, A, Tx)
TAG Update(PX, A, W, SH)

L DATA(PY, Ty, Dw) Data is returned by DDR or
DMA/PCI completes a probe to
get the data. Either way, COH
finds out about it.

L+1 PX,Tx, A = WBC Rel(Ty)
L+2 Send A to DDR controller Note contention between this

source of addresses and the in-
coming cmd/addr stream.

N DATA(PX,Tx,D)
ORC Rel(Tx)

DDR returns data.

N+1 Receive data from bus, write into
L2 and L1 ICache. Set state to
SHARED.

T
a
b
le

7
.1
8
:
I-S

trea
m

R
ea
d
to

a
N
o
n
R
esid

en
t
B
lo
ck

–
H
it

o
n
W
rite

B
a
ck

C
A
M
.

M
ay

1
4
,
2
0
1
4

3
7
8

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.4 I-stream Read to a Cached Block

If an I-stream miss finds the object L2 block in the EXCLUSIVE state, we face something of a problem. If the
block is DIRTY, then we need to write the bits in the block back to memory before changing the state of the block
to SHARED. (If we don’t write the bits to DRAM, and the only copies of this dirty data are in the SHARED state,
then the bits may be lost. SHARED blocks can be evicted without being written back.) So, we need to ensure
two things. First, that the current owner flushes any dirty data in the block out to main memory. Second, that A
eventually arrives at the requesting processor. We do this with a special writeback operation. When PY flushes its
data to the coherence widget, the COH will look up the write address, as it always does, in the ORC and WBC. It
will find a hit in the ORC. Normally writes don’t hit in the ORC, as there are ownership issues at stake here. This
write, however, looks like a block write to a cache block that is owned exclusively (except that the current “owner”
hasn’t seen the data yet.) So we’ll leverage the machinery we have sitting around for block writes from cacheless
widgets, as described in Sections 7.10.4.8 and 7.10.4.9.

May 14, 2014 379 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action PY Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - Find at least

one match, pick PY.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller
Av = TAG Victim(A, W)

If there is more than one hit in the
L2 master tags, then all blocks
should be in the SHARED state.

3 CMD(PRBSHR, PY, Tx, A,
ORIGIN=Px)
Shoot down read of A in DDR
controller.
ORC Reg(PX,A,Tx)
TAG Update(PX, A, W, SH)

Send a probe/intervention to PY,
asking for block A to be stored in
the SHARED state.

L TAG Check(A) - If no hit, see Ta-
ble 7.25.

If A does hit in PY’s L2, the state
should be SHARED. If not, see
Table 7.22.

L+1 DATA(PX,Tx,D) Send data to processor X
L+2 Receive data from the bus, write

to L2 and L1 ICache. Set state to
SHARED.

L+3 CMD(PRBDONE,COHn,Tx,
addr=0)

L+4 ORC Rel(Tx)

T
a
b
le

7
.1
9
:
I-S

trea
m

R
ea
d
to

a
C
a
ch
ed

B
lo
ck

in
S
H
A
R
E
D

S
ta
te

M
ay

1
4
,
2
0
1
4

3
8
0

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY Action Comment

1 CMD(RDSV,COHn,Tx,A,W)
2 TAG Check(A) - Find at least

one match, pick PY.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller
Av = TAG Victim(A, W)

If there is more than one hit in the
L2 master tags, then all blocks
should be in the SHARED state.

3 CMD(PRBSHR, PY, Tx, A,
ORIGIN=Px)
Shoot down read of A in DDR
controller.
ORC Reg(PX, A, Tx)
WBC Reg(PX, Av, Tx)
TAG Update(PX, A, W, SH)

Send a probe/intervention to PY,
asking for block A to be stored in
the SHARED state.

M DATA(COHn,Tx,Dw) or
CMD(WBCANCEL,Tx)

This is the victim writeback.
M may occur as early as cycle 3.

M+1 Aw = WBC GetAddr(Tx) send
Aw along with the data Dw to the
DDR controller.
WBC Rel(PX,Av,Tx)

L Lookup A in L2 tags. If no hit,
see Table 7.25.

If A does hit in PY’s L2, the state
should be SHARED. If not, we’ve
got a problem.

L+1 DATA(PX,Tx,D) Send data to processor X
L+2 Receive data from the bus, write

to L2 and L1 ICache. Set state to
SHARED.

L+3 CMD(PRBDONE,COHn,Tx,addr=0)
L+4 ORC Rel(PX,A,Tx) from ORC.

T
a
b
le

7
.2
0
:
I-S

trea
m

R
ea
d
to

a
C
a
ch
ed

B
lo
ck
:
W

ith
V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
8
1

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action PZ and PY Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - Find at least

one match, pick PY.
WBC Check(A) - no hit found.
Tz = ORC Check(A) - HIT!
Send A to DDR controller

If there is more than one hit in the
L2 master tags, then all blocks
should be in the SHARED state.

3 Shoot down read of A in DDR
controller.
ORC Reg(PX, A, Tx)
ORC Dep(Tz, Px, A, Tx)
TAG Update(PX, A, W, SH)

Register dependency of Tx on Tz.

L DATA(Pz, Tz, D) or PZ: CMD(PRBDONE, COHn,
Tz, addr=0)

One way or the other, Tz com-
pletes – either by getting data
directly from the DDR or for-
warded from somebody.

L+1 Px, Tx, A = ORC Rel(Tz)
L+2 CMD(PRBSHR, PY, Tx, A,

ORIGIN=Px)
Send probe command to PY.

M PY: DATA(Px, Tx, D) PY Returns data to PX.
M+1 Receive data from the bus, write

to L2 and L1 ICache. Set state to
SHARED.

M+2 CMD(PRBDONE,COHn,Tx,addr=0)
M+3 ORC Rel(PX,A,Tx) All done.

T
a
b
le

7
.2
1
:
I-S

trea
m

R
ea
d
to

a
S
H
A
R
E
D

B
lo
ck

–
O
R
C

H
it

M
ay

1
4
,
2
0
1
4

3
8
2

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - Find exactly

one match for PY in EXCLU-
SIVE state. Save matching way
in Wy.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller.

This can happen after a I-stream
page has been written by the OS
or a virus. It would be humiliat-
ing to get the wrong answer while
executing a virus.

3 CMD(PRBSHR, PY, Tx, A,
ORIGIN=Px)
Shoot down read of A in DDR
controller.
ORC Reg(PX, A, Tx)
TAG Update(PX, A, W, SH)
TAG Update(PY, A, Wy, SH)

Send a probe/intervention to PY,
asking it to invalidate the block.
PY will see that the block is
EXCL, flush its writes, and will
send the data to the COH even if
it is clean. Both PY and PX will
keep the block in SHARED state.

L Lookup A in L2 tags. If no hit,
see Table 7.25. Probe the L1
blocks and commit L1 updates to
the L2 copy.

If A does hit in PY’s L2, the state
should be EXCLUSIVE. If not,
we’ve got a problem.

L+1 CMD(WRSTRANS, COHn, Ty,
Ay, Origin=Tx)
Set the state of the L2 copy to
SHARED.

Send a writeback and transfer
command to COH. Note that
we write the data to memory
whether it is clean or dirty. It
just isn’t worth optimizing for
this case.

L+2 Px, Tx, A= ORC CheckS(Tx) Find the “first” outstanding
ORC entry – that’s the one
that we need to chain on this
WRSTRANS

L+3 WBC Reg(Py, Ay, Ty)
WBC Dep(Ty, Px, A, Tx, RDS)

W DATA(COH,Ty,Dw) Send data to the coherence wid-
get. Could occur in the same cy-
cle as L+3.

W+1 Data arrives at COH. Send Dw
with Ay to DDR controller.
WBC Rel(Ty)

(This is what we’d do for a RAW
hazard. See Section 7.10.4.17.)

M DATA(Px,Tx,Dw)
ORC Rel(PX, A, Tx)

Coherence controller forwards
read data from DDR.

M+1 Receive data from the bus, write
to L2 and L1 ICache. Set state to
SHARED.

T
a
b
le

7
.2
2
:
I-S

trea
m

R
ea
d
to

a
C
a
ch
ed

B
lo
ck

In
E
X
C
L
U
S
IV

E
S
ta
te

M
ay

1
4
,
2
0
1
4

3
8
3

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action PY Action Comment

1 CMD(RDSV,COHn,Tx,A,W)
2 TAG Check(A) - Find exactly one match

for PY in EXCLUSIVE state, way Wy.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller
Send Av (address of victimized block) to
WBC.

This can happen after a I-stream
page has been written by the OS
or a virus. It would be humiliat-
ing to get the wrong answer while
executing a virus.

3 CMD(PRBSHR, PY, Tx, A, ORI-
GIN=Px)
Shoot down read of A in DDR controller.
ORC Reg(PX, A, Tx)
WBC Reg(PX, Av, Tx)
TAG Update(PX, A, W, SH)
TAG Update(PY, A, Wy, SH)

Send a probe/intervention to PY,
asking for block A to be stored in
the SHARED state and for PY to
EVICT the block.

N DATA(COHn,Tx,Dv) or
CMD(WBCANCEL,Tx)

Cycle M may occur as early as
cycle 3. This activity may run
in parallel with other parts of the
transaction

N+1 Av = WBC GetAddr(Tx). Send Av
along to the DDR controller (along with
the data)
WBC Rel(PX, Av, Tx)

T
a
b
le

7
.2
3
:
I-S

trea
m

R
ea
d
to

a
C
a
ch
ed

B
lo
ck

In
E
X
C
L
U
S
IV

E
S
ta
te:

W
ith

V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
8
4

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY Action Comment

L Lookup A in L2 tags. If no hit,
see Table 7.25. Probe the L1
blocks and commit L1 updates to
the L2 copy.

If A does hit in PY’s L2, the state
should be EXCLUSIVE. If not,
we’ve got a problem.

L+1 CMD(WRSTRANS, COHn, Ty,
Ay, Origin=Tx)
Set the state of the L2 copy to
SHARED.

Send a writeback and transfer
command to COH. Note that
we write the data to memory
whether it is clean or dirty. It
just isn’t worth optimizing for
this case.

L+2 ORC CheckS(Tx) to find Ax, Tx. For-
ward this indication to WBC.

In this case OTC CheckS(A) will
match against the first OTC en-
try that was independent of any
other OTC or WBC entry.

L+3 WBC Reg(PY, Ay, Ty)
WBC Dep(Ty, PX, Ax, Tx, RD)

W DATA(COH,Ty,Dw) Send data to the coherence wid-
get. This could be as early as
L+2.

W+1 Data arrives at COH. Send Dw with Ay
to DDR controller.
WBC Rel(Ty)

Enqueue Read operation for
A,Tx to DDR controller. (This is
what we’d do for a RAW hazard.
See Section 7.10.4.17.)

M DATA(Px,Tx,Dw)
ORC Rel(PX, A, Tx)

Coherence controller forwards
read data from DDR.

M+1 Receive data from the bus,
write to L2 and L1 ICache.
Set state to SHARED.

T
a
b
le

7
.2
4
:
I-S

trea
m

R
ea
d
to

a
C
a
ch
ed

B
lo
ck

In
E
X
C
L
U
S
IV

E
S
ta
te:

W
ith

V
ictim

W
riteb

a
ck

(C
o
n
tin

u
ed

fro
m

T
a
b
le

7
.2
3
.)

M
ay

1
4
,
2
0
1
4

3
8
5

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action PY Action Comment

L Lookup A in L2 tags and find
NOHIT.

This is the continuation of the op-
erations in Tables 7.22 and 7.23.

L+1 CMD(PRBNOHIT,PX,Tx,
addr=0)

Send a nohit notification back to
processor X. Address and Way
are irrelevant.

L+2 Process PRBNOHIT, lookup Tx
and find target address and way.
Retry the read operation.

L+3 CMD(RDSR,COHn,Tx,A,W)
L+4 This is a retry, don’t do any tag

matching or ORC/WBC lookups,
as we don’t really care. (And
we’ve already got an ORC regis-
tered for this read.)
Send A on to DDR controller.

W Read data arrives at COH from
DDR.
ORC Rel(PX,A,Tx)
DATA(Px,Tx,D)

W+1 Receive data from the bus, write
to L2 and L1 ICache. Set state to
SHARED.

T
a
b
le

7
.2
5
:
F
o
rw

a
rd
ed

I-S
trea

m
R
ea
d
to

a
C
a
ch
ed

B
lo
ck

M
isses

in
P
ro
b
ed

C
a
ch
e

M
ay

1
4
,
2
0
1
4

3
8
6

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action PY Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - Find exactly

one match for PY in EXCLU-
SIVE state. Save matching way
in Wy.
WBC Check(A) - no hit found.
Py, Ty = ORC Check(A) HIT.
Send A to DDR controller.

This can happen after a I-stream
page has been written by the OS
or a virus. It would be humiliat-
ing to get the wrong answer while
executing a virus.
We got an ORC hit because the
EXCLUSIVE owner hasn’t yet
received the block. We need to
delay sending the PRB until the
block arrives.

3 Shoot down read of A in DDR
controller.
ORC Reg(PX, A, Tx)
ORC Dep(Ty, Px, A, Tx, RDS)
TAG Update(PX, A, W, SH)
TAG Update(PY, A, Wy, SH)

Update the blocks to SHARED,
that’s what they’ll be once we’re
done.

N CMD(PRBDONE, COHn, Py,
Ty, addr=0)

PY finally gets the block it re-
quested.

N+1 Px, A, Tx = ORC Rel(Ty) Find the dependent read opera-
tion.

N+2 CMD(PRBSHR, PY, A, Tx,
ORIGIN=Px)

Ask PY to send data to PX and
transition to SHARED.

L Continue at step L in Table 7.22

T
a
b
le

7
.2
6
:
I-S

trea
m

R
ea
d
to

a
E
X
C
L
U
S
IV

E
B
lo
ck

–
O
R
C

H
it

M
ay

1
4
,
2
0
1
4

3
8
7

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action DEV Action Comment

1 CMD(RDS,COHn,Tx,A,W)
2 TAG Check(A) - Find exactly

one match for PY in EXCLU-
SIVE state. Save matching way
in Wy.
ORC Check(A) - no hit found.
DEV, Tv = WBC Check(A)
HIT.
Send A to DDR controller.

This can happen after a I-stream
page has been written by the OS
or a virus. It would be humiliat-
ing to get the wrong answer while
executing a virus.
We got a WBC hit because the
EXCLUSIVE block is being up-
dated by a BWT instruction from
a DMA/PCI widget.

3 Shoot down read of A in DDR
controller.
ORC Reg(PX, A, Tx)
WBC Dep(Tv, Px, A, Tx, RDS)
TAG Update(PX, A, W, SH)
TAG Update(PY, A, Wy, SH)

N CMD(BWTDONE, COHn, Ty,
addr=0, ORIGIN=Py)

PY finally gets the block it re-
quested.

N+1 Px, A, Tx, Py = WBC Rel(Tv) Find the dependent read opera-
tion.

N+2 CMD(PRBSHR, PY, Tx, A,
ORIGIN=Px)

Ask PY to send data to PX and
transition to SHARED.

L Continue at step L in Table 7.22

T
a
b
le

7
.2
7
:
I-S

trea
m

R
ea
d
to

a
E
X
C
L
U
S
IV

E
B
lo
ck

–
W

B
C

H
it

M
ay

1
4
,
2
0
1
4

3
8
8

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.5 D-stream Read to a Cached Block in SHARED State

A D-stream read to a block in the SHARED state is a surprise. That is, this is a hint that some process has
decided to treat someone’s I-stream as data. We need to get this right, but we don’t need to make this fast. In any
case, this isn’t rocket science. The trick here is that we need to make the coherence engine send out invalidates to
each of the processors that might have or be acquiring copies of the istream data. Note that victimizing a SHARED
block in an L2 does not invalidate the L1 I-cache copy. It is the responsibility of the operating system to see that
L1 I-caches remain coherent to the extent it is required. In practical terms, this means that the OS must flush the
I-cache when it modifies the I-stream of a process.

Our general approach here is that the COH will send out a broadcast PRBINV command to all caches, directing
them to INVALIDATE the target block in their L2 caches. If any processor (other than the requestor) finds the
L2 block in the EXCLUSIVE state, we’re in trouble and we should signal a machine check.

May 14, 2014 389 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action Other PY Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 Tag Check(A) (All matches are

in the SHARED state.)
WBC Check(A) – Always misses.
ORC Check(A) – if a hit is found,
see Table 7.29.
Send address A to DDR con-
troller and queue for DDR read
operation.

If one or more of the matching
blocks is not in the SHARED
state, then we should signal a ma-
chine check.
Since the block is SHARED,
there can be no write transactions
outstanding.

3 ORC Reg(PX, A, Tx)
TAG Update(Px, A, W, EX)
For all matching PY:
TAG Update(PY, A, Wy, INV)
CMD(PRBINV, BROADCAST,
Tx, A)

All PYs are told to invalidate this
block in their caches if necessary.

4 Lookup A in L2. Set any
matching blocks to“INVALID”. If
any matching blocks are EXCLU-
SIVE, signal a machine check.
All processors send
CMD(INVDONE, COHx, Tx,
A).

INVDONE must be received at
the COH from each processor in
order to free up the TID Tx.

M Data Dr returns from DDR.
ORC Rel(Tx)

M+1 DATA(X, Tx, Dr)
M+2 Receive data from the bus.

Store it in L2 and set state to
EXCLUSIVE-CLEAN.

T
a
b
le

7
.2
8
:
D
-S
trea

m
R
ea
d
to

a
C
a
ch
ed

B
lo
ck

in
S
H
A
R
E
D

S
ta
te

M
ay

1
4
,
2
0
1
4

3
9
0

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle PX Action COH Action Other PY Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 Tag Check(A) (All matches are

in the SHARED state.)
WBC Check(A) – No hit possi-
ble.
Py,Ty = ORC Check(A)
Send address A to DDR con-
troller and queue for DDR read
operation.

If one or more of the matching
blocks is not in the SHARED
state, then we should signal a ma-
chine check.
Note that now there may be two
addresses in flight

3 Shootdown address in DDR.
ORC Reg(PX, A, Tx)
ORC Dep(Ty, Px, A, Tx,
RDEX)
TAG Update(Px, A, W, EX)
For all matching PY:
TAG Update(PY, A, Wy, INV)

All PYs are told to invalidate this
block in their caches if necessary.

N Data returns from DDR OR PRBDONE arrives from PY Py’s transaction completes
N+1 Px,A,Tx,Opx, Opy =

ORC Rel(Ty)
N+2 CMD(PRBINV, BROADCAST,

Tx, A)
Launch address A to DDR

M Data returns from DDR
ORC Rel(Tx)
DATA(X, Tx, Dr)

Yes, we did two fetches. That’s
how this works. Otherwise the
ORC entries retire out of order.

M+1 Receive data from the bus.
Store it in L2 and set state to
EXCLUSIVE-CLEAN.

All processors send
CMD(INVDONE, COHx, Tx,
A).

T
a
b
le

7
.2
9
:
D
-S
trea

m
R
ea
d
to

a
C
a
ch
ed

B
lo
ck

in
S
H
A
R
E
D

S
ta
te

O
R
C

H
it

M
ay

1
4
,
2
0
1
4

3
9
1

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action Other PY Action Comment

1 CMD(RDEX, COHn, Tx, A, W)
2 TAG Check(A) (All matches are

in the SHARED state.)
WBC Check(A) – nohit.
ORC Check(A) – no hit.
Send address A to DDR con-
troller and queue for DDR read
operation.
Av = TAG Victim(A, W)

If one or more of the matching
blocks is not in the SHARED
state, then we should signal a ma-
chine check.

3 ORC Reg(Px, A, Tx)
WBC Reg(PX, Av, Tx)
TAG Update(PX, A, W, EX)
For all matching PY:
TAG Update(PY, A, Wy, INV)
CMD(PRBINV, BROADCAST,
Tx, A)

All PYs are told to invalidate this
block in their caches if necessary.
BROADCAST is a special Target
vector that ensures this command
arrives at every port’s command
queue. (Note that we don’t limit
the broadcast to processors that
have the data.)

4 Lookup A in L2. Set any
matching blocks to“INVALID”. If
any matching blocks are EXCLU-
SIVE, signal a machine check.

W DATA(COHn, Tx, Dw) or
CMD(WBCANCEL,Tx)

All processors send
CMD(INVDONE, COHx, Tx,
A).

W may occur as early as cycle 3.

W+1 Av = WBC GetAddr(Tx)
Send Av along with data Dw to
the DDR controller write queue.
WBC Rel(PX, Av, Tx)

M Data Dr returns from DDR.
ORC Rel(Tx)

M+1 DATA(X, Tx, Dr)
M+2 Receive data from the bus.

Store it in L2 and set state to
EXCLUSIVE-CLEAN.

T
a
b
le

7
.3
0
:
D
-S
trea

m
R
ea
d
to

a
C
a
ch
ed

B
lo
ck

in
S
H
A
R
E
D

S
ta
te:

W
ith

V
ictim

W
riteb

a
ck

M
ay

1
4
,
2
0
1
4

3
9
2

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.6 D-Stream Write Miss

D-Stream writes from a processor that miss in its L2 cache require that the L2 segment acquire ownership of
the relevant block before the write can complete. Thus, there really isn’t a notion of a “D-Stream Write Miss” as
L2 write misses become D-Stream Read Miss events described in Sections7.10.4.1, 7.10.4.2, and 7.10.4.5.

7.10.4.7 D-Stream Write to Invalidate

A processor may flush a block from its L2 segment without asking for a refill. In this case, the processor will
issue a WINV command as shown in Table 7.31.

If the block to be flushed is clean, then there is no need to send data. In this case, the processor will issue a
FLUSH command as shown in Table 7.32. Note that the FLUSH operation is not implemented in the
ICE9 chip. None of the nodes in the chip uses the FLUSH operation.

May 14, 2014 393 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle PX Action COH Action Comment

1 CMD(WINV,COHn, Tx,A,W) W is the way that we’ll invalidate.
This must match the comparison
that will happen for A in the mas-
ter tags.

2 TAG Check(A) - Hits on PX. If there is no tag hit then we’ve
passed a read operation on this
block. PX will return a PRBNO-
HIT to the other ship. So PX
needs to write the data back to
DDR.

3 TAG Update(PX, A, W, IN)
WBC Reg(PX, A, Tx)

M DATA(COHn,Tx,Dw) – write-
back victim block

Cycle M may occur as early as cy-
cle 3. This activity may run in
parallel with other parts of this
transaction.

M+1 Aw = WBC GetAddr(Tx)
Send Aw along with the data Dw
to the DDR controller.
WBC Rel(Tx)

T
a
b
le

7
.3
1
:
D
-S
trea

m
W
rite

to
In
va
lid

a
te

a
n
E
X
C
L
U
S
IV

E
D
irty

B
lo
ck
.

M
ay

1
4
,
2
0
1
4

3
9
4

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

O
B
S
O
L
E
T
E

—
—

—
–

T
H
IS

O
P
E
R
A
T
IO

N
IS

N
O
T

IM
P
L
E
M

E
N
T
E
D

IN
T
H
E

IC
E
9

V
1
.0

C
H
IP

—
—

—
—

–

OBSOLETE ——— THIS OPERATION IS NOT IMPLEMENTED IN THE ICE9 V1.0 CHIP ———-
Cycle PX Action COH Action Comment

1 CMD(FLUSH,COHn, Tx,A,W) W is the way that we’ll invalidate.
But we already know that from
the comparison that will happen
for A in the master tags.

2 TAG Check(A) - Hits on PX. If there is no tag hit then we’ve
passed a read operation on this
block. PX will return a PRBNO-
HIT to the other ship.

3 TAG Update(PX, A, W, IN) Don’t tell anybody else.

T
a
b
le

7
.3
2
:
D
-S
trea

m
F
lu
sh

to
In
va
lid

a
te

a
n
d
E
X
C
L
U
S
IV

E
C
lea

n
B
lo
ck
.

M
ay

1
4
,
2
0
1
4

3
9
5

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.8 Block Write to a Non Resident Block

As opposed to D-stream Write misses from a processor, I/O and the DMA engine (which we’ll also call an I/O
device, even though it isn’t) may write entire blocks of memory. In this case, we know that all 64 bytes are being
written, so there is no need to perform a read of the block and merge in just the changed bytes before the writeback.

On the other hand, we really really want to optimize the path that carries data from a packet buffer in the
DMA engine to a processor that will consume it. For that reason, we distinguish block writes that are performed
by cacheless device like the DMA engine from those performed by a processor. The “trick” that we’re about to
employ here would not be appropriate for processors, as the three-stage writeback (a relatively frequent operation)
would be a bottleneck for the processors, as they’re only allowed one read and one write transaction outstanding
at any given time.

So, Tables 7.33 and 7.34 show how a cacheless node on the CSW performs block writes to non resident data.

Cycle Device Action COH Action Comment

1 CMD(BWT,COHn,Tv,A) Block write from device
“DEV”

2 TAG Check(A) – no hit
found.
WBC Check(A) – If there is
a hit here, see Table 7.34.
ORC Check(A) – If there is
a hit, see Table 7.35.

A hit in the WBC is likely
the result of a victimization
write from some processor,
or – less likely – a colliding
write from the DMA engine
or the PCI widget.
A hit in the ORC is the re-
sult of an outstanding BRD.

3 WBC Reg(DEV, A, Tv)
CMD(BWTGO, DEV, Tv,
A)

Tell the device to complete
its write operation

W Device receives BWTGO
command, matches Tv
against outstanding data
block to be written.

W+1 DATA(COHn,Tv,Dw) –
send write data block to the
coherence widget

W+2 Receive incoming write
data.
A = WBC GetAddr(Tv)
Send matching A address to
DDR controller along with
the data.
WBC Rel(DEV, A, Tv)

Table 7.33: Block Write to a Non Resident Block

May 14, 2014 396 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Cycle Device Action COH Action Other Device Action Comment

1 CMD(BWT, COHn,
Tv, A)

2 TAG Check(A) – no hit
found.
Ty, Py = WBC Check(A) –
We find a HIT
ORC Check(A) – There can
be no ORC hit.

PY has evicted the block, or
another device has launched
a write to this block.

3 WBC Reg(DEV, A, Tv)
WBC Dep(Ty, DEV, A, Tv,
BWT)

We’ll write the data di-
rectly to the DDRAM after
the victimization write com-
pletes.

K DATA(COH,Ty,Dy) Other device writes its data
to the DDR.

K+1 WBC Rel(Ty)
This causes the dependent
write from DEV to be acti-
vated.
Remove the entry for Ty
from the WBC.

K+2 CMD(BWTGO,Dev,Tv,A) Contine as at cycle W in Ta-
ble 7.33.

Table 7.34: Block Write to a Non Resident Block with a Writeback in Flight from Processor Y

Cycle Device Action COH Action Other Device Action Comment

1 CMD(BWT, COHn,
Tv, A)

2 TAG Check(A) – no hit
found.
WBC Check(A) – no hit.
Ty, Py = ORC Check(A)

BRD outstanding from the
other device.

3 WBC Reg(DEV, A, Tv)
ORC Dep(Ty, DEV, A, Tv,
BWT)

We’ll write the data di-
rectly to the DDRAM after
the victimization write com-
pletes.

K data returns from DDR OR CMD(PRBDONE,
COHn, Ty, addr=0)

Other device reads its data
from the DDR.

K+1 ORC Rel(Ty)
This causes the dependent
write from DEV to be acti-
vated.
Remove the entry for Ty
from the ORC.

K+2 CMD(BWTGO,PX,Tv,A) Contine as at cycle K in
Table 7.36. (If the other
device is a processor PY,
then we would have seen
a TAG Check hit on PY.
We didn’t, so we send a
BWTGO to PX since the
data is not currently cached
by anybody.)

Table 7.35: Block Write to a Non Resident Block with a Read in Flight from Processor Y

May 14, 2014 397 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.9 Block Write to a Cached Block

We decided that close integration between the fabric hardware and the processors is really important. We can
gain a whole lot of performance over I/O based strategies if we provide a quick path for the DMA engine to return
data back to a processor without requiring extra external memory traffic.

For example, consider the “traditional way” that we might implement part of a packet receive operation. You
might imagine that the DMA engine would pull the packet off the fabric and write it to DDR memory. Since
we have an exclusive/noshare cache coherence protocol, when the DMA engine wrote the data to memory it also
invalidated any cached copy of the data. So if processor 0 (P0) does a lot of MPI RECV operations to the same
destination buffer, P0 will have to fetch the received data from memory every time. That could add up to 80nS of
overhead for every MPI RECV operation. But that is the way an I/O based strategy would do this.

On the other hand, the DMA engine is pretty close to the L2 cache segments. So we’re not going to invalidate
the cached copy of the data unless we have to. In Section 7.33 we described how the DMA engine could do a block
write to a non resident block. Table 7.36 shows how this same transaction works when the data is already resident
in processor PY’s cache. The transaction here assumes that the block is found in the EXCLUSIVE state, and not
in the SHARED state. Section 7.10.4.10 describes the transaction flow for the latter operation. Note there are
several “bad things” that can happen on the way to completing this operation. In most other transaction tables
(above) I’ve left out the unpleasant paths, deferring discusion until later sections on hazards. I don’t do that here,
because these hazards are central to the way the transaction works. In particular note, that we never trust to
chance in the success of a retry. If a transaction encounters some condition that causes it to restart, we ensure that
no other transaction could intervene so as to prevent successful completion. (That’s one of the powerful benefits of
the chained dependence lists that are maintained in the ORC and WBC structures: once a transaction is registered
in the ORC or WBC, it will complete before later dependent operations in the ORC or WBC complete or even
attempt to use more L2 switch resources.)

Nonetheless, it is possible that a block write could encounter an ORC hit or WBC hit that causes it to retry,
only to find out that the processor holding the block has since evicted it. In this case, the retried operation is
garunteed to complete successfully.

All block write transactions carry a “HalfMask” field in the data half of the transaction. This allows the DMA
engine to write 32 byte naturally aligned half-blocks to a cached block. HalfMask for a BWT transaction may send
64 bytes, or the first 32 bytes in a block or the last 32 bytes. (See Figures 7.9, 7.10 and 7.11.)

May 14, 2014 398 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Cycle Device Action COH Action PY Action Comment

1 CMD(BWT,COHn,
Tv,A)

2 TAG Check(A) – Find a
match against PY, way W.
WBC Check(A) – If there is
a hit here, see Table 7.39 and
7.38.
ORC Check(A) – If there is
a hit here, see Table 7.40.

A WBC hit implies that
there is a colliding vic-
tim write or block write
in progress. We need to
make sure the writes are se-
quenced in order.
An ORC hit implies a read-
in-progress and that PY
hasn’t yet acquired the data,
though it has been assigned
ownership for block A.

3 CMD(PRBBWT,PY,Tv,A)
WBC Reg(DEV, A, Tv)

K PY receives for-
warded Block Write
command. If A
does not hit in the
L2, see Table 7.41.
Otherwise, invali-
date appropriate L1
blocks. Record BWT
in progress.

PY could evict a block with-
out informing the COH, or
this could be a case of “ships
passing in the night.”

K+1 CMD(BWTGO,Dev,Tv,A)
Transaction is continued in Table 7.37.

Table 7.36: Block Write to EXCLUSIVE Cached Data

Cycle Device Action COH Action PY Action Comment
M Recieve BWTGO,

match Tv against
outstanding write.

M+1 DATA(PY,Tv,Dw) –
send write data to
processor Y.

M+2 PY receives data,
writes it to L2, re-
moves Tv from list
of BWTs in progress

N CMD(BWTDONE,
COHn, Tv, addr=0)

Note that BWTDONE is
sent to coherence engine, not
to originating device.

N+1 WBC Rel(DEV,A,Tv) There may be depen-
dent writes – see Section
7.10.4.19.

Table 7.37: Block Write to EXCLUSIVE Cached Data (continued from Table 7.36.)

May 14, 2014 399 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle Device Action COH Action PY Action Comment

1 CMD(BWT,COHn, Tv,A)
2 Py, W = TAG Check(A) – Find

a match.
Ty, Py = WBC Check(A) – We
find a HIT.
ORC Check(A) – There can be
no ORC hit.

A WBC hit implies that there
is a colliding victim write or
block write in progress. We need
to make sure the writes are se-
quenced in order.
The WBC hit could be against a
processor’s outstanding write, or
the PCI widget, or another trans-
action from this device! In this
case, we’ll consider writes from
PY. For collisions with the PCI
or DMA engine, see Table 7.39.

3 WBC Dep(Ty, DEV, A, Tv,
BWT)
WBC Reg(DEV, A, Tv)

PY is recorded as the target, as it
matched in the L2 cache lookup.

K DATA(COH,Ty,Dy) PY writes its data to the DDR.
This is probably a hint that we’re
going to find that the block has
been evicted from the L2 in PY,
but we don’t know that yet.

K+1 Ay = WBC GetAddr(Ty) send
Ay to DDR
WBC Rel(Ty) – this will wake up
Tv.

K+2 CMD(PRBBWT,PY,Tv,A) Continue as at cycle K in Table
7.36.

T
a
b
le

7
.3
8
:
B
lo
ck

W
rite

to
C
a
ch
ed

D
a
ta

–
C
o
llisio

n
W

ith
O
u
tsta

n
d
in
g
W
rite

fro
m

a
P
ro
cesso

r

M
ay

1
4
,
2
0
1
4

4
0
0

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle Device Action COH Action Other Device Action PY Action Comment

1 CMD(BWT, COHn, Tv,
A)

2 Py, W = TAG Check(A) –
Find a match.
Pw, Tw =
WBC Check(A) – Find a
hit.
ORC Check(A) – There
can be no ORC hit.

case L2 NORD WT: A WBC hit implies that
there is a colliding vic-
tim write or block write
in progress. We need to
make sure the writes are
sequenced in order.
The WBC hit could be
against a processor’s out-
standing write, or the PCI
widget, or another trans-
action from this device! In
this case, we’ll consider
writes from the PCI wid-
get or the DMA as the
“other device”. For a col-
lision with a write from a
processor, see Table 7.38.

3 WBC Dep(Tw, DEV, A,
Tv, BWT)
WBC Reg(DEV, A, Tv)

PY’s write will wake this
write up when it com-
pletes.

K DATA(PY,Tw,Dw) The writer registered in
the WBC completes its
write.

K+1 Process incoming data as
in Table 7.36.

M CMD(BWTDONE,
COHn,
Tw, addr=0, ORI-
GIN=OTHER)

This completes the write
from the “other” device.

M+1 WBC Rel(Aw) – We find
that Tv is a dependent op-
eration.

M+2 CMD(PRBBWT,PY,Tv,A) Contine as at cycle K in
Table 7.36.

T
a
b
le

7
.3
9
:
B
lo
ck

W
rite

to
C
a
ch
ed

D
a
ta

–
C
o
llisio

n
W

ith
O
u
tsta

n
d
in
g
W
rite

F
ro
m

a
C
a
ch
eless

W
id
g
et

M
ay

1
4
,
2
0
1
4

4
0
1

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle Device Action COH Action PY Action Comment

1 CMD(BWT,COHn,Tv,A)
2 TAG Check(A) – ignore

match/nomatch.
WBC Check(A) – no hit.
Py, Ty = ORC Check(A) – hit
on access from Py, DMA, or PCI
(we’ll call it PY for example.)

An ORC hit implies a read-in-
progress and that PY hasn’t yet
acquired the data, though it has
been assigned ownership for block
A. Since we got a tag match,
we should queue up behind the
RD transaction, since that’s the
owner. Otherwise, we should just
launch the write, since the read is
by a cacheless widget.

3 WBC Reg(DEV, A, Tv)
ORC Dep(Ty, DEV, A, Tv,
BWT)

K DDR returns DATA for Ty OR CMD(PRBDONE, COHn, Ty,
addr=0)

PY completes its operation and
causes the ORC entry to free up.

K+1 ORC Rel(PY, A, Ty)
which causes the COH to:
CMD(BWTGO,Dev,Tv,A)

M Recieve BWTGO, match Tv
against outstanding write.

M+1 DATA(PY,Tv,Dw) – send write
data to processor Y.

M+2 WBC Rel(DEV,A,Tv)

T
a
b
le

7
.4
0
:
B
lo
ck

W
rite

to
C
a
ch
ed

D
a
ta

–
C
o
llisio

n
W

ith
O
u
tsta

n
d
in
g
R
ea
d

M
ay

1
4
,
2
0
1
4

4
0
2

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle Device Action COH Action PY Action Comment

1 CMD(BWT,COHn, Tv,A)
2 Py, W = TAG Check(A) – Find

a match.
WBC Check(A) – If there is a hit
here, see Table 7.39
ORC Check(A) – If there is a hit
here, see Table 7.40.

A WBC hit implies that there
is a colliding victim write or
block write in progress. We need
to make sure the writes are se-
quenced in order.
An ORC hit implies a read-in-
progress and that PY hasn’t yet
acquired the data, though it has
been assigned ownership for block
A.

3 CMD(PRBBWT,PY,Tv,A)
WBC Reg(DEV, A, Tv)

K PY receives forwarded Block
Write command. A does NOT hit
in the L2 cache.

PY could evict a block without
informing the COH, or this could
be a case of “ships passing in the
night.”

K+1 CMD(BWTNOHIT,Dev,Tv,addr=0)Tell the device to continue the
write to the coherence engine.

M Recieve BWTNOHIT, match Tv
against outstanding write.

M+1 DATA(COH,Tv,Dw) – send write
data to coherence widget, since
PY doesn’t care.

M+2 A = WBC GetAddr(Tv)
Send Dw and A to DDR con-
troller for write to DDRAM.
WBC Rel(DEV,A,Tv)

T
a
b
le

7
.4
1
:
B
lo
ck

W
rite

to
C
a
ch
ed

D
a
ta

–
E
n
co
u
n
terin

g
a
n
E
v
icted

B
lo
ck

M
ay

1
4
,
2
0
1
4

4
0
3

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

7
.1
0
.4
.1
0

B
lo
ck

W
rite

to
S
H
A
R
E
D

L
o
c
a
tio

n

In
th
is

ca
se,

th
e
b
lo
ck

w
rite

w
ill

in
va
lid

a
te

a
ll
sh
a
red

lo
ca
tio

n
s
a
n
d
sen

d
its

d
a
ta

to
th
e
D
D
R

co
n
tro

ller.
T
h
e

tra
n
sa
ctio

n
is
sh
ow

n
in

T
a
b
le

Cycle Device Action COH Action Comment

1 CMD(BWT,COHn, Tv,A) Transaction is sent from device
“DEV”

2 TAG Check(A) – Find a match
against one or more blocks in the
SHARED state.
WBC Check(A) – There can’t be
a hit in the WBC.
WBC Check(A) – If there is a hit
here, see Table 7.43.

A WBC hit implies that there is
a colliding victim write or block
write in progress. That is incon-
sistent with the state of the mas-
ter tags.
An ORC hit implies a read-in-
progress and that PY hasn’t yet
acquired the data, though it has
been assigned ownership for block
A.

3 CMD(PRBINV,BROADCAST,Tv,A)
Foreach PY matching in
TAG Check
TAG Update(Py, A, W, INV)
WBC Reg(DEV, A, Tv)

Invalidate all blocks in the
SHARED state.

4 Recieve PRBINV, match Tv
against outstanding write.

Yup, this is an odd use of
PRBINV. But note that any
PRBINV that matches the TID
for the device’s BWT, must be
the result of the BWT.

M DATA(COH,Tv,Dw) – send write
data to coherence widget.

All processors send
CMD(INVDONE, COHx, Tx,
A).

M+1 A = WBC GetAddr(Tv)
Send Dw and A to DDR con-
troller for write to DDRAM.
WBC Rel(DEV,A,Tv)

T
a
b
le

7
.4
2
:
B
lo
ck

W
rite

to
S
H
A
R
E
D

D
a
ta

M
ay

1
4
,
2
0
1
4

4
0
4

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle Device Action COH Action PY Action Comment

1 CMD(BWT,COHn, Tv,A) Transaction is sent from device
“DEV”

2 TAG Check(A) – Find a match
against one or more blocks in the
SHARED state.
WBC Check(A) – No hit.
Py, Ty = ORC Check(A) – Find
a hit.

An ORC hit implies a read-in-
progress and that PY hasn’t yet
acquired the data, though it has
been assigned ownership for block
A.

3 ORC Dep(Ty, DEV, A, Tv,
BWT)
Foreach PY matching in
TAG Check
TAG Update(Py, A, W, INV)
WBC Reg(DEV, A, Tv)

We’ll activate this BWT when
PY completes its read operation.
We invalidate the block for the
“read in flight” since all future
reads will queue up behind our
entry in the WBC.

K DDR returns data for transaction
Ty

OR-> CMD(PRBDONE, COHn, Ty,
addr=0)

Either COH sees the DDR return
data for TID = Ty or PY sends a
PRBDONE to the coherence wid-
get.

K+1 ORC Rel(Ty) See that (DEV, A,
Tv) is a dependent operation.

K+2 CMD(PRBINV, BROADCAST,
Tv, A)

K+3 Recieve PRBINV, match Tv
against outstanding write.

M DATA(COH,Tv,Dw) – send write
data to coherence widget.

All processors send
CMD(INVDONE, COHx, Tx,
A).

M+1 A = WBC GetAddr(Tv)
Send Dw and A to DDR con-
troller for write to DDRAM.
WBC Rel(DEV,A,Tv)

T
a
b
le

7
.4
3
:
B
lo
ck

W
rite

to
a
C
a
ch
ed

B
lo
ck

in
S
H
A
R
E
D

S
ta
te

w
ith

a
R
ea
d
in

F
lig

h
t
fro

m
P
ro
cesso

r
Y

M
ay

1
4
,
2
0
1
4

4
0
5

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.11 Block Write and Other Probe Collisions with Victimization

It is possible that a block write is forwarded to an L2 segment, acknowledged by the segment with a BWTGO
command, and then arrives only to find that the target block has been displaced. We could prevent this by locking
any block that is the target of a BWTPRB until the data side of the transaction completes. Unfortunately, that
smells like a good way to create a deadlock. In fact, this is a problem for probes in general.

The Coherence engine will, of course, detect this when the victimization writeback address matches against the
BWT operation in the WBC. But that doesn’t help, as the COH has no control over the L2 segment’s completion
of the victim writeback. The L2 is hell bent for leather on its way to writing the data to DRAM and there’s nothing
that’s going to stop it. (Note that the victimization writeback arrived AFTER the BWT operation was forwarded
from the COH, otherwise we’d have held off the continuation of the BWT operation.)

There are lots of ways of handling this, most of them pretty complicated. Since BWT operations are relatively
infrequent, and complete quickly, this is what we’ll do: (Note that this approach applies to all PROBE operations
directed at a processor segment.)

The L2 segment will hold off all L1 to L2 read transactions from the processor once it starts processing any
kind of probe operation from the CSW. Since only a read operation can cause a victimization, and processors don’t
execute WINVs, this ensures that a WINV or RDV/RDSV (writeback or victimization of a block) that is initiated
before the segment begins processing a PRBBWT (or PRBBRD, PRBSHR, PRBWIN, or PRBINV) has completed
before the decision is made to send BWTGO or BWTNOHIT. Further, no new L1 to L2 read transactions are
permitted until either a BWTNOHIT, PRBNOHIT, BWTDONE, or PRBDONE has been sent. Fore more detail,
see the state machine descriptions of probe handling in the processor segment Section 6.22.

THIS TABLE HAS BEEN REMOVED.

Table 7.44: Block Write Collides with Victimization of Target Block

May 14, 2014 406 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

7
.1
0
.4
.1
2

B
lo
ck

R
e
a
d

to
a
N
o
n

R
e
sid

e
n
t
B
lo
ck

T
h
e
D
M
A

en
g
in
e
o
r
P
C
I
w
id
g
et

w
ill

rea
d
b
lo
ck
s
fro

m
m
em

o
ry.

T
h
is

lo
o
k
s
m
u
ch

lik
e
a
n
R
D
E
X

o
p
era

tio
n
in

th
e
ca
se

o
f
a
n
L
2
m
iss.

S
ee

T
a
b
le

7
.4
5
.

Cycle DMA Action COH Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - no hit. (or

shared)
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller

If there is a WBC hit, see Table
7.47.
If there is an ORC hit, see Table
7.46.

3 ORC Reg(DEV, Tx, A)
L DATA(DMA,Tx,D) Return data from DDR to re-

quester.
L+1 ORC Rel(Tx) Note that the ORC wakeup will

forward any request to PY rather
than the DMA widget, since the
DMA has no cache.

T
a
b
le

7
.4
5
:
B
lo
ck

R
ea
d
to

N
o
n
R
esid

en
t
o
r
S
H
A
R
E
D

B
lo
ck

M
ay

1
4
,
2
0
1
4

4
0
7

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle DMA Action COH Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - no hit. (or

shared)
WBC Check(A) - no hit found.
Tv = ORC Check(A) - HIT.
Send A to DDR controller

This is sequencing against an
RDS or another BRD from device
Pv – otherwise we’d be cached
EXCLUSIVE.

3 Shootdown A in DDR controller.
ORC Reg(DEV, Tx, A)
ORC Dep(Tv, DEV, Tx, A)

N DATA(Pv,Tv,D) Return data from DDR to origi-
nal BRD requester.

N+1 DEV, Tx, A = ORC Rel(Tv) DEV is DMA
N+2 Send A to DDR Continue at step L in Table 7.45.

T
a
b
le

7
.4
6
:
B
lo
ck

R
ea
d
to

N
o
n
R
esid

en
t
o
r
S
H
A
R
E
D

B
lo
ck

–
O
R
C

H
it

M
ay

1
4
,
2
0
1
4

4
0
8

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle DMA Action COH Action Pv Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - no hit.

Tv = WBC Check(A) - HIT.
ORC Check(A) - no hit.
Send A to DDR controller

This is sequencing against a vic-
tim writeback or a BWT from de-
vice Pv.

3 Shootdown A in DDR controller.
ORC Reg(DEV, Tx, A)
WBC Dep(Tv, DEV, Tx, A)

N DATA(COHn, Tv, D) Data from writer to DRAM.
N+1 DEV, Tx, A = WBC Rel(Tv)
N+2 Send A to DDR Continue at step L in Table 7.45.

T
a
b
le

7
.4
7
:
B
lo
ck

R
ea
d
to

N
o
n
R
esid

en
t
o
r
S
H
A
R
E
D

B
lo
ck

–
W

B
C

H
it

M
ay

1
4
,
2
0
1
4

4
0
9

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.13 Block Read to a Cached Block

If the DMA or PCI widget reads a block that is currently in an L2 cache entry, we’ll leave it in the L2 cache. The
processor segment that currently owns the block will flush its L1 updates (if necessary) to the L2 block and send a
copy of the block to the DMA/PCI widget. The state of the cache block will not change. Table 7.48 describes the
operation when the read completes after being forwarded to the owner. Table 7.51 shows the sequence when the
block is no longer valid by the time the forwarded request arrives.

May 14, 2014 410 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle DMA Action COH Action PY Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - Hit on PY in

EXCLUSIVE state.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller

If the block is SHARED, see Ta-
ble 7.45.
If there is a WBC hit, see Table
7.49.
If there is an ORC hit, see Table
7.50.

3 CMD(PRBBRD,PY,Tx,A)
Shoot down read of A in DDR
controller.
ORC Reg(DMA, A, Tx)

Send a probe/intervention to PY,
asking for block A to be for-
warded to DMA.

L TAG Check(A) - If no hit, see Ta-
ble 7.51.
Flush L1 dirty to L2 block.

If A does hit in PY’s L2, the state
should be EXCLUSIVE. If not,
we’ve got a problem.

L+1 DATA(PX,Tx,D) Send data to processor X
L+2 Accept data.
L+3 CMD(PRBDONE,COHn,Tx,addr=0)
L+4 ORC Rel(Tx) Note that the ORC wakeup will

forward any request to PY rather
than the DMA widget, since the
DMA has no cache.

T
a
b
le

7
.4
8
:
B
lo
ck

R
ea
d
to

C
a
ch
ed

E
X
C
L
U
S
IV

E
B
lo
ck

M
ay

1
4
,
2
0
1
4

4
1
1

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle DMA Action COH Action PY Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - Hit on PY in

EXCLUSIVE state.
Tv = WBC Check(A) - HIT!
ORC Check(A) - no hit found.
Send A to DDR controller

If the block is SHARED, see Ta-
ble 7.45.

3 Shoot down read of A in DDR
controller.
ORC Reg(DMA, A, Tx)
WBC Dep(Tv, DEV, Tx, A)

Wait on completion of write from
Pv.

L DATA(Pv, Tv, D)
OR
CMD(BWTDONE, COHn,
DEV, Tv, addr=0)

Either way, the write completes.

L+1 DMA, Tx, A, Py =
WBC Rel(Tv)

L+2 CMD(PRBBRD, PY, Tx, A) Continue with step L in Table
7.48.

T
a
b
le

7
.4
9
:
B
lo
ck

R
ea
d
to

C
a
ch
ed

E
X
C
L
U
S
IV

E
B
lo
ck

–
W

B
C

H
it

M
ay

1
4
,
2
0
1
4

4
1
2

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
0
.

D
E
T
A
IL
E
D

IN
T
E
R
F
A
C
E

A
N
D

B
L
O
C
K

D
E
S
C
R
IP

T
IO

N
S

Cycle DMA Action COH Action PY Action Comment

1 CMD(BRD,COHn,Tx,A,W)
2 TAG Check(A) - Hit on PY in

EXCLUSIVE state.
WBC Check(A) - no hit.
Tv = ORC Check(A) - HIT!
Send A to DDR controller

If the block is SHARED, see Ta-
ble 7.45.

3 Shoot down read of A in DDR
controller.
ORC Reg(DMA, A, Tx)
ORC Dep(Tv, DEV, Tx, A)

Wait on completion of write from
Pv.

L DATA(Pv, Tv, D) OR CMD(PRBDONE, COHn, DEV,
Tv, addr=0)

Either way, the write completes.

L+1 DMA, Tx, A, Py =
ORC Rel(Tv)

L+2 CMD(PRBBRD, PY, Tx, A) Continue with step L in Table
7.48.

T
a
b
le

7
.5
0
:
B
lo
ck

R
ea
d
to

C
a
ch
ed

E
X
C
L
U
S
IV

E
B
lo
ck

–
O
R
C

H
it

M
ay

1
4
,
2
0
1
4

4
1
3

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Cycle DMA Action COH Action PY Action Comment

1 CMD(BRD,COHn,Tx,A)
2 TAG Check(A) - Hit on PY in

EXCLUSIVE state.
WBC Check(A) - no hit found.
ORC Check(A) - no hit found.
Send A to DDR controller
Av = TAG Victim(A, W)

If the block is SHARED, see Ta-
ble 7.45.

3 CMD(PRBBRD,PY,Tx,A)
Shoot down read of A in DDR
controller.
ORC Reg(DMA, A, Tx)

Send a probe/intervention to PY,
asking for block A to be for-
warded to DMA.

L TAG Check(A) – no hit.
L+1 CMD(PRBNOHIT, DEV, Tx,

addr=0)
Send a NOHIT to the DMA/PCI.

M CMD(BRDR, COHn, Tx, A)
M+1 Ignore tag comparisons and all

CAM ops.
Send A to DDR controller.

N Data arrives from DDR.
ORC Rel(Tx)
DATA(DMA, Tx, D)

N+1 Receive data from the bus and eat
it.

T
a
b
le

7
.5
1
:
B
lo
ck

R
ea
d
to

F
o
rm

erly
C
a
ch
ed

B
lo
ck

M
ay

1
4
,
2
0
1
4

4
1
4

R
ev

5
1
3
2
8

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.14 Read from an I/O Location

This is pretty much what you think it might be.1Assume for instance that processor X wants to read register
R on processor segment Y. Table 7.52 shows the transactino flow.

Cycle Requester Action Target Device Action Comment

1 CMD(RDIO,DEV,Tx,A) Processor (or PCI/DMA)
sends an IO read request to
DEV.

2 Match A against registers
for this node. Fetch register
data.

N DATA(X, Tx, D) Send data back to requestor.
Note that this is just one 64
bit word. All the other 7
doublewords in this transfer
are set to zero.

N+1 Capture incoming data.

Table 7.52: I/O Register Read

1Surprise!

May 14, 2014 415 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.15 Write to an I/O Location

It turns out that this is more interesting than you might imagine. For a variety of reasons, we’ve decided that
data will never arrive at a processor port unless it has been requested by the processor. 2So, a write of an I/O
register in a processor segment requires that we ask the processor segment to READ some data and load it into
the target register!

For example, let’s say that processor X wants to write data value D to register R in processor Y. Table 7.53
shows how this will happen.

Cycle Requester Action Target Device Action Comment

1 CMD(WTIO, DEV, Tx, A)
Write DATA and
BYTEMASK to
WTIOREG.

Processor (or PCI/DMA)
sends an IO write request to
the target device, DEV.

2 Enqueue a RDIO request for
the WTIOREG for node X.

N CMD(RDIO, X, Tx,
WTIOREG)
Store A in the WTIOADDR
register for this node.

Note that a node can have
just one oustanding RDIO
or WTIO transaction at a
time, so we don’t need a
stack here.

N+1 DATA(DEV, Tx, DATA,
BYTEMASK)

N+2 Receive DATA and
BYTEMASK. Apply both
to write the target stored in
WTIOADDR register.

Table 7.53: I/O Register Write

2(This avoids a whole lot of queueing and buffering and flow-control/backpressure machinery that we could probably get right, but
only with more effort than it would be worth.)

May 14, 2014 416 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.16 Read after Read Hazard

Imagine the sequence Read(X,A) followed by Read(Y,A). In this case processor Y’s request should be forwarded
to X so that we “do the right thing” relative to block ownership and the state of the block.

That’s why we have the “Outstanding Read CAM” or ORC. The ORC is indexed by an address or a TID. Each
entry contains the TID of a subordinate read and the low bits of the subordinate read address. It is important to
note that a transaction will not hit on ORC entry if some previous transaction has already hit on that entry. (This
allows us to build a “linked list” of subordinate operations on the ORC. The WBC works in the same way.)

When Read(X,A) arrives it is sent directly to the DDR controller. If A matches a tag in the master tags we
shoot the transaction down in the DDR controller. (See section 7.10.4.2.) If A matches a tag in the ORC, we shoot
it down in the DDR controller.

In each case, we allocate an entry K in the ORC (it is large enough to accomodate all 14 possible outstanding
read operations) for Read(X,A) and record the address and TID.

When Read(Y,A) arrives, we find that it hits in the ORC against entry K. Again we allocate an entry for
Read(Y,A) (call it J) and write the TID for Read(Y,A) and low bits of the address into entry K. We also shoot
down the Read(Y,A) operation in the DDR controller.

When the DDR controller returns the data for Read(X,A) it also returns the TID for that operation. This TID
will hit on entry K. We then read the TID for Read(Y,A) and the low bits of the address from entry K. This is
packaged up into an appropriate PROBE request which the coherence controller sends to processor X. When X
send the response data to Y, Y will send a PROBE DONE command back to the coherence controller. This will
hit against entry J which will then cause a further probe to be sent out if some other processor Z has subsequently
hit on entry J with a dependent read.

In any case, the arrival of a ProbeDone or returned read data from the DDR will cause the appropriate entry
in the ORC to be marked invalid.

Isn’t that among the slicker things that you’ve seen? Tables 7.54, 7.55, 7.56, and 7.57 show what happens when
the ORC entry is released for a cached read operation that has completed.

Unfortunately, read-after-read hazards where the DMA engine or the PCI widget originates the first of the two
reads (the read that is depended upon) is a little bit stickier. The BRD operation implies that the data is headed
for a non-cached user. So we can’t send the PRBWIN or the PRBSHR to the DMA/PCI widget the way we did
with reads that depended on other processor reads. There are a whole bunch of cases to consider.

Cycle COH Action Comment

1 Px, A, Op = ORC Rel(Ty) COH completes operation
for PY and finds dependent
operation (RDEX,RDV) for
device PX.

2 CMD(PRBWIN, PY, Tx,
A)

Tell PY to give up the block.
Continue at Table 7.10 or
Table 7.12 at step L

Table 7.54: Read After Read Hazard ORC Release for RDEX, or RDV following RDEX, or RDV

Cycle COH Action Comment

1 Px, A, Op = ORC Rel(Ty) COH completes operation
for PY and finds dependent
operation (RDEX,RDV) for
device PX.

2 CMD(PRBINV, BROAD-
CAST, Tx, A)
Send A to DDR Controller.

Tell PY to give up the block.
Continue at Table 7.28 at
step M.

Table 7.55: Read After Read Hazard ORC Release for RDEX, or RDV following RDS, or RDSV

May 14, 2014 417 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Cycle COH Action Comment

1 Px, A, Op = ORC Rel(Ty) COH completes operation
for PY and finds dependent
operation (RDS,RDSV) for
device PX.

2 CMD(PRBSHR, PY, Tx, A,
ORIGIN=Px)

Tell PY to give up the block.
Continue at Table 7.22 at
step L

Table 7.56: Read After Read Hazard ORC Release for RDS, or RDSV following RDEX, RDV, RDS, or RDSV

Cycle COH Action Comment

1 DEV, A, Op =
ORC Rel(Ty)

COH completes operation
for PY and finds dependent
operation BRD for device
DEV.

2 CMD(PRBBRD, PY, Tx,
A)

Tell PY to supply the block.
Continue at Table 7.48 at
step L

Table 7.57: Read After Read Hazard ORC Release for BRD following RDEX, RDV, RDS, or RDSV

Cycle COH Action Comment

1 Px, A, Tx, Op, Owner, State
= ORC Rel(Ty)

COH completes opera-
tion for DMA/PCI and
finds dependent operation
(RDS,RDSV) for device
PX. ORC lookup returns
current block owner and
current state.
In this case, there is no
owner.

2 Send A, Tx, Px to DDR con-
troller.

Queue up a DDR transac-
tion on behalf of Px.
Continue at step N in the
normal flow for the depen-
dent operation on a non-
cached block.

Table 7.58: Read After Read Hazard ORC Release for RDEX, RDV, RDS, or RDSV following BRD to an UN-
CACHED Block

Cycle COH Action Comment

1 Px, A, Tx, Op, Owner, State
= ORC Rel(Ty)

COH completes opera-
tion for DMA/PCI and
finds dependent operation
(RDEX,RDV) for device
PX. ORC lookup returns
current block owner and
current state.
The current state is EX, the
owner is Py.

2 CMD(PRBWIN, Owner,
Tx, A)

Continue operation as at
step L in Table 7.10.

Table 7.59: Read After Read Hazard ORC Release for RDEX, or RDV following BRD to an EXCLUSIVE Block

May 14, 2014 418 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Cycle COH Action Comment

1 Px, A, Op, Owner, State =
ORC Rel(Ty)

COH completes opera-
tion for DMA/PCI and
finds dependent operation
(RDS,RDSV) for device
PX. ORC lookup returns
current block owner and
current state.
In this case, there is no
owner.
The current state is EX, the
owner is Py.

2 CMD(PRBSHR, Owner,
Tx, A, ORIGIN=Px)

Continue operation as at
step L in Table 7.22.

Table 7.60: Read After Read Hazard ORC Release for RDS, or RDSV following BRD to an EXCLUSIVE Block

Cycle COH Action Comment

1 Px, A, Tx, Op, Owner, State
= ORC Rel(Ty)

COH completes opera-
tion for DMA/PCI and
finds dependent operation
(RDS,RDSV) for device
PX. ORC lookup returns
current block owner and
current state.
The current state is EX, Py
is chosen to respond.

2 CMD(PRBINV, BROAD-
CAST, Tx, A)
Send Px, A, Tx to DDR con-
troller.

Continue operation as at
step M in Table 7.28.

Table 7.61: Read After Read Hazard ORC Release for RDEX, or RDV following BRD to an SHARED Block

Cycle COH Action Comment

1 Px, A, Op, Owner, State =
ORC Rel(Ty)

COH completes opera-
tion for DMA/PCI and
finds dependent operation
(RDS,RDSV) for device
PX. ORC lookup returns
current block owner and
current state.
In this case, there is no
owner.
The current state is SH, Py
is chosen to respond.

2 CMD(PRBSHR, Owner,
Tx, A, ORIGIN=Px)

Continue operation as at
step L in Table 7.22.

Table 7.62: Read After Read Hazard ORC Release for RDS, or RDSV following BRD to an SHARED Block

May 14, 2014 419 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.4.17 Read after Write Hazard

It is possible that processor X will attempt to read block A just as it is in the process of being evicted from
processor Y. There are three possible alignment cases.

First, Read(X,A) arrives at the coherence controller BEFORE Write(Y,A) has arrived. In this case the READ
will find that the block is OWNED by Y and the coherence widget will send a PROBE request to Y. Y will complete
the write operation with WriteData(Y,A,D). Y will then respond to the probe request that was forwarded on behalf
of X with a PRBNOHIT to X. X will re-issue the Read(X,A) command which will arrive at the coherence controller
as a read against a block that is non resident. 3

In the second case, Write(Y,A) arrives, followed by Read(X,A), followed by WriteData(Y,A,D). This is what
the WBC (WriteBackCAM) is for. When the COH receives Write(Y,A) it registers the write in the WBC and sets
the L2 tag for processor Y to INVALID. WBC is indexed by the address, A and a TID field. Each entry in the
WBC contains the address of the write command, the TID for the write command (which is the alternate key),
a valid bit, a dependent read TID, and the low bits of a dependent read address. (We need to account for the
fact that the address A in Read(X,A) may not be the same as A in Write(A), but refers to the same cache block.)
When Read(X,A) arrives, the A matches the address tag in the WBC entry. The TID for Read(X,A) and the low
bits of A are recorded in the entry. At the same time, the coherence controller has already sent A on to the DDR
controller. The match against an outstanding write causes the COH to send a Read-after-write shootdown signal
to the DDR controller to clobber the read in progress. Later on, when WriteData(Y,A,D) arrives, the TID from
this transaction will be matched against the secondary key in the WBC. The WBC will send the ADDRESS for the
write operation on to the DDR controller (so it will know where to write this incoming data) and sends the read
address for Read(X,A) and the TID to the RaW queue in the address path. This read operation is later sent on to
the DDR controller when time permits. The key here is that the read operation will arrive at the DDR controller
AFTER the write data.

In the last case, Write(Y,A) and WriteData(Y,A,D) both arrive before Read(X,A). In this case, the Read will
be processed as a normal read against non resident data. When WriteData(Y,A,D) arrives, the valid bit for the
matching entry in the WBC is cleared.

Finally, note that if a Read(X,A) matches an address in the WBC, but the entry already has a recorded
dependent read operation, then we consider that the access has MISSED in the WBC. In fact, the operation should
have HIT in the ORC since the presence of a read operation in the dependent read field of a WBC entry implies
that the read operation has not yet completed.

Cycle COH Action Comment

1 Px, A, Op = WBC Rel(Ty) COH Completes writeback
operation for Py and finds
dependent RDEX, RDV,
RDS, or RDSV operation for
Px.

2 Send A, Tx, Px to DDR con-
troller

Queue up a DDR transac-
tion for Px. Continue at
step N in the normal flow for
the dependent operation.

Table 7.63: Read After Write Hazard WBC Release for BRD, RDEX, RDV, RDS, or RDSV following BWT, WINV,
RDV, or RDSV

3Note that we don’t forward data from processor Y to X in this case, as the logic and sequencing to avoid the many race opportunities
isn’t really worth the bother, given this particular sequence should not occur often. Otherwise we need to add extra address comparator
machinery in the writeback buffer and all kinds of other junk. The heck with it.

May 14, 2014 420 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

7.10.4.18 Write After Read Hazards

Imagine the sequence Read(X,A), Write(Y,A)... Which version of the data should X receive? The answer is,
that it doesn’t matter. The only case that matters is Read(X,A), Write(Y,A), Read(Z,A). In this case Z can see
the same data as X (both see old data, both see new data) or Z can see newer data than X. But time must not
apparently flow backward. We easily handle this as all DDR read transactions to the same bank are processed in
order. Further, we know that the WBC will ensure that Read(Z,A) happens AFTER WriteData(Y,A). We also
know that Read(X,A) arrived before Read(Z,A) and that Read(X,A) will be processed before Read(Z,A) because
of the ordering rules in the address datapath. (Incoming commands on the address path allways take priority over
entries in the RaW queue.)

Because of our EXCLUSIVE ownership protocol, there really are only a few opportunities for a WAR hazard.
First, Read(X,A) arrives at the COH just before a victimization writeback command from another processor Y.

In this case, X’s read will be forwarded to Y and will encounter a NOHIT condition, since reads never hit against
victimized blocks. (Note that this simplifies things a bit in the L2 segment design.) When X’s read encounters the
NOHIT, it will be resent to the coherence controller where it will be turned into a DDRAM read. This will either
hit in the WBC, in which case the read will be sent to the DDR after the write has completed, or it will miss in
the WBC and be sent to the DDR controller and serviced after the write has completed.

In the second case, Read(X,A) arrives at the COH after the victimization writeback (or block write) command
from another processor Y but before the data has arrived. That’s what the WBC is for. Read(X,A) will hit against
processor Y’s write back CAM entry and be enqueued. When Y delivers the writeback data, the WBC entry for
Y’s transaction will be checked and the subordinate read for processor X will be launched.

In the third case, Read(X,A) arrives at the COH just before a block write command. In this case, the COH will
not forward the block write command, as it will HIT against X’s ORC entry. This case is covered in Table 7.40.

7.10.4.19 Write After Write Hazards

Because of the EXCLUSIVE ownership scheme that we’ve adopted, write-after-write hazards can only be caused
by a block-write followed by another block-write or a processor’s eviction of a block.

In the case of a block-write BW2 following a block-write BW1, the COH will register BW2 as dependent on
the BW1 (by updating BW1’s entry in the WBC) and refrain from sending out the PRBBWT for BW2 until the
COH receives a BWTDONE for BW1.

In the case of a block-write BW1 followed by an eviction writeback VIC, the eviction writeback data must be
ignored by the COH unless we can be sure that the evicting processor had a chance to “see” the block write data
before it evicted the cache block. We know, that because of the list of outstanding BWT operations in each L2 (See
Section 7.10.4.11), incoming BWT data will be reflected by a L2 that has evicted the target block and sent back to
the appropriate COH. A victimization that occurs before the BWTGO command is sent out will result in a NOHIT
condition in the L2 and is described in Table 7.41. A victimization that occurs after the BWTDONE command
is sent out will be processed correctly, as there will be no hit in the WBC at the coherence widget. The “ships
passing in the night case” where the BWTPROBE arrives after the RDV/RDSV command has been sent from the
processor is covered by the CohWbc module that kills the eviction write if it hits against a BWT in progress.

May 14, 2014 421 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.5 Interrupt Delivery

The ICE9 Chip doesn’t have a central interrupt controller. Instead, we deliver interrupt requests via central
switch COMMAND cycles. Each interrupting device is responsible for figuring out which processor should field
an interrupt request. When a device needs to signal an interrupt to processor X, for example, it will send a INT
command with a reason code to X. The reason code is an eight bit number and an index into the processor’s
interrupt cause register set.

Interrupts from units that cannot issue CSW commands are delivered by the Slow Interrupts mechanism. See
the Slow Interrupts registers in this chapter (section 7.18.8), and see the“Interrupts, Again” section of the Processor
Segments chapter, (section 6.19.6).

Cycle Device Action PX Action Comment

1 CMD(INT, PX,
CswTid::INT, Reason)

Reason<11:0> is driven on
the low bits of the Address
bus. All other bits are 0.
All interrupts use a constant
for the TID, “INT” from the
CswTid table.

2 PX writes Reason<7:0> to
ICR[Reason<11:8>] and
asserts interrupt chosen
by Reason<11:9>. Both
are cleared under processor
(software) control. (See
Section 6.19.)

Table 7.64: Interrupt Delivery

7.10.6 Special Communication Commands

Similar to interrupt delivery, we wanted a special way of moving just a few bits from a processor to the DMA
engine. The SPCL command handles this case. SPCL commands are single ended writes that carry all information
(both the data and where it is supposed to go) in the Address field of the operation. It is up to the receiving node
to “do the right thing” with the incoming operand.

SPCL is triggered by a write to an address in the Spcl address range R Spcl. (See Section7.18.17.) The physical
address and the data are combined to produce a single value that is placed on the CSW address bus. Figure 7.14
shows the layout of the SPCL address and the meaning of the individual fields in the physical address. The only
supported destination bus stop is the DMA engine.

Physical Address of Store

SPCL Encoding on CSW

Store Data

0381216202435

SPCL Region Code
(constant 0xEBE)

Dest.
Bus
Stop

Addr1 Addr2

23 19 15 7 2

024

Data<23:0>

63 23

0162035

Data<23:8> Addr1 Addr2Data<7:0>

19 15 38 7 2

Figure 7.14: SPCL Physical Address Field

May 14, 2014 422 Rev 51328

SiCortex Confidential 7.10. DETAILED INTERFACE AND BLOCK DESCRIPTIONS

Cycle DMA or Py Action PX or DMA Action Comment

1 CMD(SPCL, Px, Td, Cm-
dOp)

CmdOp<35:3> is driven on
the Address bus.

2 Px does the right thing with
the incoming CmdOp, ac-
cording to the target mod-
ule’s spec.

3 CMD(DONE, dev, Td, 0)
– tell the sender that the
SPCL is done.

Table 7.65: Special Commands

May 14, 2014 423 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.10.7 WINV, Victim Writebacks and the WriteBack CAM

Verification of the protocol encountered this rather gnarly sequence:

1. PS0 does a RDEX for 0x200

2. Sometime later DMA does a BWT to 0x200

3. Before the BWT is complete, PS0 does a WINV where 0x200 is the victim writeback address

4. PS2 does a RDEX for 0x200

So what should happen? Clearly we want the BWT write data to end up in PS2’s cache. Were it not for the
intervening victim write in step 3 the WBC ordering machinery would just make this happen.

But there are two problems. First, the way the protocol is written the WINV will be entered into the WBC after
the BWT operation. In fact, it will be registered as a dependent of the BWT. But we know that such writebacks
never stall – they’re on the way to the DDR and there’s nothing that we want to do to stop that. (PS0 will send a
BWTNOHIT to the DMA engine after the writeback is complete.) So two bad things will happen: First the WINV
will complete and trigger PS2’s RDEX. But that will happen before the DMA engines BWT is completed. Second,
when the BWT does complete, it will finds its dependent is a WINV or writeback. How do you restart a WINV?

A similar problem happens with RDV and RDSV operations, but in this case the BWT has no dependent
registered to it. That is a further problem, since now we’ll have TWO entries in the WBC that match the same
address and who both think they’re the “last” such entry.

We solve this problem with a couple of rules governing WBC lookup, WBC dep, and WBC reg.
(We’ll use the phrase “victim writeback” to mean a WINV or the writeback portion of a RDV or RDSV.)
WBC reg registers a writer. All WINVs, RDVs, and RDSVs, register their write addresses in the WBC. This

is as it always has been.
WBC dep never records WINVs, or the victim writeback portion of RDVs and RDSVs as dependent on a

previous entry in the WBC. (There is nothing to wake up.) RDVs and RDSVs may be registered as dependent
operations based on the READ addresses.

WBC lookup may encounter a case where an incoming request matches TWO entries that claim to be “last” in
the WBC. In this case, if one of the two entries is a victim writeback, then we pick the other entry as the “parent” in
the dependence chain. If neither of the two entries is a victim writeback, then we’ve got a machine check condition.

Finally (for now) consider the following sequence:

1. PS0 does a RDEX for 0x200 and the read completes

2. PS1 does a RDEX for 0x200

3. PS0 does a WINV (or RDV/RDSV with 0x200 as the victim) before PS1’s probe arrives

4. PS2 does a RDEX for 0x200

In this case, the PS2 access will hit in the ORC entry for PS1’s RDEX and it will hit on the WBC entry for PS0’s
victim writeback.

We know that the PS1’s RDEX should complete before continuing PS2’s RDEX. This is achieved by chaining
PS2’s access to PS1’s access. But what of the victim writeback from PS0?

The answer is that, even though WBC lookup and ORC lookup both returned hits for PS2’s RDEX, that
operation should only be registered as a dependent on the ORC entry, not the WBC entry. In handling all cases
where ORC Hit and WBC Hit are both true, we behave as if WBC Hit was false. This works because PS1’s RDEX
will arrive at PS0 and get a PRBNOHIT after PS0 has completed the victim writeback. (Note that this is a
requirement on PS0’s behavior.)

If not for the intervening read from PS1, PS2’s transaction would have missed in the ORC and hit in the WBC.
In this case, it would be chained on PS0’s WINV completion.

7.11 WRSTRANS and When Bad Things Happen to Good Blocks

WRSTRANS is used to force a transition from some D-stream readable state (EXCL, DIRTY, UPDATED)
to SHARED. It comes into play when one processor segment X issues an RDS to address A when A is owned
and in one of the D-stream readable states in some other processor segment Y. X will send the RDS to COHx

May 14, 2014 424 Rev 51328

SiCortex Confidential 7.12. ONE THOUSAND SHIPS, ONE THOUSAND NIGHTS

(either COHE or COHO) which will detect the hit on Y’s cache and forward a PRBSHR to Y. Y will then send a
WRSTRANS to COHx along with the data from block A. (This is because we’re going to give A to X which will
never write the block back to the DDR, so we have to do the writeback now in case the data is dirty.)

For a whole lot of reasons, we don’t have Y send data to X directly. Instead, there is machinery in the COH
that

1. Remembers the last target address for any RDS or RDSV in an array that is indexed by transaction ID.

2. Matches the address of an incoming WRSTRANS (which needs to use a TID from segment Y rather than the
original TID from X’s RDS request. Otherwise the writeback caused by the WRSTRANS could be confused
with a writeback from X caused by an RDSV.) When an incoming WRSTRANS address matches an entry
in the array, COHx will re-issue the read from X to the DDR so as to complete the transaction.

3. The DDR read won’t be restarted until we’re sure the data has been written to the DDR.

7.12 One Thousand Ships, One Thousand Nights

There are a bazillion possible interactions between probes from other processors/devices and outbound requests
from a processor segment. Most have tickled one bug or another in the L2 controller or the Coherence widget. Here
are a few of them:

7.12.1 Read Retry vs. Victim Writebacks

Imagine that CORE1 sends a PRBWIN A (via the COH) to CORE0 sometime after CORE0 has victimized
block A. There are two things to note here: first, CORE0 may respond with a NOHIT before its write data has
arrived at the DDR controller; second, the DDR controller does not preserve ordering of read and write commands
that arrive from the COH. It is the responsibility of the COH to ensure that no read is issued to the DDR until
after any previous writes to that location have made it to the DRAMs.

The ordering is maintained by a mechanism in the COH. When a retry read (RDEXR or RDSR) arrives at the
COH, the coh builds a list of all currently outstanding L2 writeback transactions. (That is, all transactions caused
by RDSV, RDV, WINV, but not BWT.) If the list is empty, the read retry is sent all the way to the DDR controller
without delay. If the list is not empty, the read retry request is queued until each of the transactions in the list
have been retired by the DDR controller. (The DDR controller indicates that a write has completed by asserting
the ddr coh WtTIDVal c5a signal.) Once the list is empty, the retry reads are resubmitted to the DDR controller
and will complete.

7.12.2 PRBWIN A followed by RDEX A

This problem was uncovered by the following trace:

((TIME 2144) (FROM CORE2) (TO CORE0) (TID PS2T0) (CMD PRB-

WIN) (ADR #x000000038E8D4FC0) (BMASK #x00) (WAY 0))

((TIME 2152) (FROM CORE0) (TO COHO) (TID PS0T0) (CMD RDEX) (ADR #x000000038E8D4FC0) (BMASK #xFF) (WAY

((TIME 2172) (FROM PCI) (TO CORE0) (TID PS0T0) (CMD PRBNO-

HIT) (ADR #x000000038E8D4FC0) (BMASK #xFF) (WAY 0))

((TIME 2184) (FROM CORE0) (TO CORE2) (TID PS2T0) (CMD PRBNO-

HIT) (ADR #x0000000000000000) (BMASK #x00) (WAY 0))

((TIME 2188) (FROM CORE0) (TO COHO) (TID PS0T0) (CMD RDEXR) (ADR #x000000038E8D4FC0) (BMASK #xFF) (WAY

(((TIME 2200) (FROM COHO) (TO CORE0) (TID PS0T0) (MOD_STATE CLEAN) (HM W64)

(DW0 #x2DB5EB453184B323) (DW1 #x237A9EF2B4695462) (DW2 #xB81F62A3E366D5D1) (DW3 #x7E3C120113FC9101)

(TIME 2208) (FROM COHO) (TO CORE0) (TID PS0T0) (COMPLETE T))

note that this trace is broken in a couple of ways

The first part of this sequence could arise if CORE0 displaces adderss A (000000038E8D4FC0) between the time
CORE2’s RDEX/V arrived at the COH and the time the PRBWIN arrived at CORE0. When CORE0’s RDEX
arrives at the COH, we know that it will queue up in the ORC against CORE2’s forwarded RDEX. Therefore, the
entry at time 2172 in this trace is erroneous, as the COH will not forward the RDEX for PS0T0 until PS2T0 has
completed.

May 14, 2014 425 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

On the other hand, PS2T0 must complete so CORE0 must send a PRBNOHIT to CORE2. We solve this
problem by noting that the tag array is not updated in the L2 until the fill data has been returned, so any probe
lookup against A will miss in CORE0’s L2. In this case, for example, CORE0 must send a NOHIT before it gets
its read data. That’s what the CacCtl probe control state machine does.

Note there are problems with the stream that I used for illustration: the PCI should never have sent the
PRBNOHIT to CORE0 as the arrival of a PRBWIN for the same address from CORE2 indicates that CORE0’s
RDEX will wait in the ORC until CORE2’s read is complete. Also, PRBNOHIT should be sent with and address
of 0.

7.12.3 PRBXXX A While A Is Being Evicted

Imagine that CORE0 owns block A and that CORE1 wants it. CORE1 (via the COH) sends a PRBWIN A to
CORE0 just after CORE0 has sent an RDSV B where A is the victim block.

By our normal rule, CORE0 will perform a tag lookup on A and find a HIT. (Note again that L2 tags aren’t
updated until fill data returns, so the L2 still shows A as valid until B is returned.) But that, of course, is the
wrong thing to do. In this case, the CAC must notice that the probe address has hit against a victim writeback
and “do the right thing.” The actual sequence depends on the type of probe.

7.12.3.1 PRBWIN Against an Evicted Block

Imagine that CORE1 has sent a PRBWIN for A. When we send the PRBNOHIT to CORE1, CORE1 will
respond with RDEXR to the COH. The COH read retry handler will “hold”the RDEXR request until all writebacks
currently in flight have completed. (See Section 7.12.1.) The only requirement here is that the victim writeback must
have been registered in the COH before the RDEXR arrives. This is satisfied if we delay sending the PRBNOHIT
until after the data for the victim has been driven onto the CSW. PRBNOHIT responses are delayed in the CMX
until any outstanding writeback transactions have completed.

7.12.3.2 PRBSHR Against an Evicted Block

In this case, CORE1 has sent a PRBSHR A to CORE0 which is victimizing A. (Well, at least this isn’t going to
be as ugly as a WRSTRANS sequence.) CORE0 must hold off sending the PRBNOHIT signal until the outstanding
victim write data has been sent. PRBNOHIT responses are delayed in the CMX until any outstanding writeback
transactions have completed.

7.12.3.3 PRBBWT Against an Evicted Block

This one appears in BugZilla 860. Imagine the following sequence:

• DMA DMAWT0 BWT A

• CORE0 PS0T1 RDV B, victimize A

• PCI PCIWT0 BWT A

The important thing to ensure is that the writes to memory occur in the following order: CORE0 data, DMA data,
PCI data. (Why? Because not all BWT’s write all 64 bytes.) How do we do this? Note that the WBC queuing rule
will ensure that PCIWT0 is registered as a dependent on DMAWT0. (Not on PS0T1, since a transaction arriving
at the WBC will either register as a dependent on a WINV/writeback only if there are no other “last” writers to
the target address in the WBC.) So, we need to make sure that DMAWT0 doesn’t write its data to the DRAM
until after PS0T1’s data arrives at the DRAM.

The good news here is that the DDR controller preserves write ordering of blocks with the same address. So,
all we have to do is to ensure that CORE0 sends the PRBNOHIT to DMA after CORE0 has sent its data to COH.
(COH forwards all writeback data along with the writeback address to the DDR when data arrives.) We ensure
nohit ordering for PRBBWT responses by requiring that the writebuffer in an L2 segment is empty (or that there
are no victim writebacks in progress) before sending a PRBNOHIT. PRBNOHIT responses are delayed in the CMX
until any outstanding writeback transactions have completed.

May 14, 2014 426 Rev 51328

SiCortex Confidential 7.12. ONE THOUSAND SHIPS, ONE THOUSAND NIGHTS

7.12.3.4 PRBBRD Against an Evicted Block

Consider this sequence:

• DMA->COHx DMARD0 BRD A

• CORE0->COHx PS0T1 RDV B, victimize A

• COHx->CORE0 DMARD0 PRBBRD A

In fact, the PRBBRD could come before or just after the RDV. In this case, the appropriate response is NOHIT,
but the CORE0 should not send the NOHIT response until it has sent its data back to the COH/DDR. Once the
data has been driven onto the CSW, the COH will ensure that the block read retry (BRDR) from DMA will arrive
at the COH and queue up until the victim write has made it all the way to the DDR.

7.12.3.5 PRBINV Against an Evicted Block

PRBINV commands require a response. Each processor must return INVDONE to the originating Coherence
widget once an PRBINV has been processed. Note that PRBINV commands should only arrive for blocks that are
in the SHARED state. The processor never writes back blocks in the shared state, so PRBINV A will never arrive
during an eviction of A, though it may arrive while A is being “replaced.”

We ran into a nasty protocol issue pretty late in the game. Imagine that thread X is executing Emacs and
loads up processor 0’s L2 cache with code from Emacs. One of the blocks of Emacs code resides at address A. Now
imagine that thread X exits and processor 0 is then used to run a new thread Y. The OS will perform an L1 ICache
flush of A, but because we don’t communicate cache flush operations to the L2, A still resides in the SHARED
state in processor 0’s L2. And it contains Emacs code. Imagine that Y is running Quake XVII. Thread Y sends a
request to the PCI to page in the code for Quake XVII at location A. The PCI sends a BWT request to the COH
which forwards a PRBINV to processor 0. But in this case, processor 0’s bus stop is really busy and the PRBINV
gets stuck in processor 0’s probe queue or even in the incoming command queue in the CSW. Meanwhile the PCI
finishes the BWT and sends an interrupt to processor 0. Alas, the interrupt doesn’t pass through the probe queue
and goes directly to the interrupt register to tell thread Y to go ahead and use the code at block A, as the PCI
thinks it is now visible. Thread Y wakes up and executes the OLD instructions in block A (from Emacs) instead
of the NEW instructions from Quake XVII. Hilarity ensues.

If we had to do it all over again, we’d probably use some kind of software mechanism, but at this point software
invalidates of a page of L2 cache would be very expensive. Instead, we get some help from the protocol.

If a COH sends a PRBINV out in the course of completing a read or write request for TID M from the PCI or
DMA, it will set a PRBINV CTR[M] to 6 and assert TID BUSY[M] until PRBINV CTR[M] is zero. (It will also
hold TID BUSY[M] true until the read/write is otherwise complete.) When an INVDONE command arrives with
TID = M, PRBINV CTR[M] will be decremented. Thus, the PCI widget performing a BWT to our address A will
not complete the BWT operation until all processors respond with an acknowledgement. (PRBINVs sent out for
a TID R belonging to processors (as opposed to the PCI or DMA engine) cause PRBINV CTR[R] = 5.)

This requires one more adjustment on the part of the PCI (and the DMA engine if it ever overwrites a code
page). Interrupts to a processor to signal the completion of a page transfer must not be sent until the last WRITE
for that transfer has completed. Further, we may consider whether we want to hold off all PCI writes until the
completion (that is, release of the TID) of a BWT that received a PRBINV reply. This ensures that all updates to
memory appear in order.

7.12.4 PRBXXX A Just Prior to Evict Attempt on A

The arrival of a probe request at a processor segment may not be processed by the CacCtl unit for several cycles.
Thus a probe arriving before an eviction attempt may not be processed until well after the eviction attempt. In
that case, we follow the paths described above. If the probe is processed before the eviction attempt, the receiving
segment will send a BWTGO or PRBWIN response before allowing the processor to initiate the L2 access that
would have caused the victimization.

In the case of a PRBBWT arriving just prior to what would have been an eviction attempt, the CAC will hold
off all processor accesses to the L2 until the BWT operation has completed.

In the case of a PRBWIN arriving just prior, the CAC will hold off all processor access to the L2 until after the
tag array has been updated and the block made invalid.

In the case of a PRBSHR or PRBBRD, the CAC will hold off processor access to the L2 until after data has
been read from the L2 and sent to the requesting device.

May 14, 2014 427 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.12.5 Implications for Stimulus Generators and Checkers

The sections above describe what the Cac and Coh will do in response to a number of “ships passing in the
night” sequences. The responses and rules have some implications for stimulus generators and BFMs.

7.12.5.1 NOHIT sequencing against writeback data

A processor segment (PS) will never emit the following sequence:

• RDV A (victim B)

• PRBNOHIT (for address B)

• WRITE DATA (for address B)

This is impossible since the eviction of B will cause the processor to defer responding with a PRBNOHIT until
after the victim data has been sent out onto the CSW.

7.13 Command Fields

Certain of the CSW commands require an address or bytemask or some other value to be meaningful. Other
commands stand on their own. Table 7.66 shows the required fields for each of the CSW command types. Where
a field is not required by a command, it should be driven as 0 and ignored at the receiver.

Command Address Way TID BMask

IDLE
RDS, RDSV, RDEX, RDV, RDEXR, RDSR Y Y Y

WINV Y Y
WBCANCEL Y

RDIO Y Y Y
WTIO Y Y Y

BWT, BRD, BRDR Y Y
PRBINV, PRBWIN, PRBSHR, PRBBRD, PRBBWT Y Y

PRBNOHIT, BWTNOHIT Y
WRSTRANS Y Y Y

PRBDONE, BWTDONE Y
SPCL Y Y
INT Y Y

BWTGO Y Y

Table 7.66: CSW Commands, Required Fields

7.14 Transaction IDs (TIDs) and TID Busy Signals

Among the CSW signals described in Tables 7.1 and 7.2 are the TIDBusy signals. These are used to indicate
to a CSW client that the corresponding TIDs are in flight within either the even or odd coherence controller.

A TID is “in flight” in a coherence widget if

1. The TID corresponds to a valid entry in the ORC, or

2. the TID corresponds to a valid entry in the WBC, or

3. the TID was attached to a read operation sent to the DDR that has not yet either returned data or been shot
down, or

4. the TID was attached to a write operation sent to the DDR that has not yet “completed” in the eyes of the
DDR controller.

May 14, 2014 428 Rev 51328

SiCortex Confidential 7.14. TRANSACTION IDS (TIDS) AND TID BUSY SIGNALS

Each coherence widget originates its own version of the TID busy wires. At each bus stop, the TIDBusy output is
the result of ORing the TID busy bits from the EVEN COH and from the ODD COH. The COHE TID busy wires
are cohe csw TIDBusy c4a[27:0] and the corresponding COHO wires are coho csw TIDBusy c4a[27:0].

The TIDBusy bits from each of the coherence widgets are ORed together and distributed by the CSW after
being flopped. For a processor/L2 segment PS0, the CSW output is

csw_ps0_TIDBusy_c5a[0] = coho_csw_TIDBusy_c4a[PS0T0] || cohe_csw_TIDBusy_c4a[PS0T0];

csw_ps0_TIDBusy_c5a[1] = coho_csw_TIDBusy_c4a[PS0T1] || cohe_csw_TIDBusy_c4a[PS0T1];

For the DMA and PCI widgets, the CSW outputs are

csw_dma_RdTIDBusy_c5a[3:0] = coho_csw_TIDBusy_c4a[DMARD3:DMARD0] | cohe_csw_TIDBusy_c4a[DMARD3:DMARD0];

csw_dma_WtTIDBusy_c5a[3:0] = coho_csw_TIDBusy_c4a[DMAWT3:DMAWT0] | cohe_csw_TIDBusy_c4a[DMAWT3:DMAWT0];

Internal to the COH widgets, TIDs are tracked for both WRITE and READ operations. That is, a TID that
involves both a read and a write is the logical OR of the RD TID Busy state machine output, the ORC valid bit
for this TID, and the WBC valid bit for this TID. The Read TID Busy state machine is described in Figure 7.15.

RDEX,RDS,RDV,RDSV,BRD

Shootdown command sent
to DDR controller

Shootdown
complete from
DDR controller

Read data
returned
from DDR

FREE

BUSY1

Figure 7.15: Read TID Busy State Machine

The tracking mechanism depends on several signals from the DDR controller

ddr coh DataTID c2a<4:0> The TID for a read data operation that is about to complete

ddr coh DataValid c2a If true, the corresponding TID has sucessfully completed a read of DDR memory. Per-
form an ORC Release on the outstanding transaction and cycle the RDTID Busy state machine back to the
free state.

ddr coh RdShotDown c2a If true, the corresponding TID’s read operation was shot down. Cycle the RDTID
busy state machine back to the free state.

ddr coh WtTID c5a<4:0> The TID of a write operation that has passed the ordering point in the DDR
controller, that is, we now know that the write for this TID has been sent to the DDR DIMMS when the
WtTIDVal bit is set

ddr coh WtTIDVal c5a When true, the corresponding TID should case a WBC REL operation.

7.14.1 TID Allocation – the IO and MEM TID Spaces

To avoid a nasty and obscure deadlock situation, the processor segment must allow a cache read/replacement
operation to proceed in parallel with an IO write or, potentially, an IO read operation. This could require that
TID1 for a processor segment (normally used for RDV, RDSV, and IOWT operations) be used by both an IO

May 14, 2014 429 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

write and an RDV/RDSV at the same time. We allow this by treating TIDs belonging to processors as existing
in two different spaces. PSnT0 and PSnT1 (where n is in the range 0 to 5) can represent transactions in IO space
or memory space. If the accompanying command is an IOWT, IORD, SPCL, INT, or DONE, the TID should be
treated as an IO space TID. Otherwise it is for a memory space transaction. If the accompanying data is a double
word, then the TID should be treated as an IO space TID. TID busy only reports the condition of TIDS in memory
space. IO operations may be emitted from a processor segment if the required TID is not otherwise occupied in IO
space.

7.15 The Parts

7.15.1 The Coherence Controller (COH)

7.15.1.1 Block Diagram

The Coherence Controllers (Instance names are COHE for “Even” side coherence widget, and COHO for “Odd”
side coherence widget.) field data transfer requests from the six processors, the PCI controller, and the DMA
engine. In addition, each coherence controller services I/O requests for the configuration registers in its associated
DDR controller.

Each coherence controller contains

• Six 2K by 44 bit TAG arrays (parity protected)

• One 14 entry Outstanding Read CAM that can be indexed by virtual address bits 35:7, or by a six bit
transaction ID. Its payload is the Transaction ID and low address bits of the dependent operation, and a
Valid bit.

• One 14 entry WriteBack CAM that can be indexed by VA<35:7> or by the TID. Its payload is the TID and
low address bits of the dependent operation, and a valid bit.

The CAMs, being implemented in flip-flops, rather than RAM cells, need not be ECC protected. The SER (soft
error rate) for the Tag RAMs is such that we’d see a TAG error about once every 30 years. On the other hand, a
bit error in the Tags could cause us to generate a “wrong” result or launch the missile, so we’ll parity protect the
RAMs and force a system recovery if an error is detected.

ORC

WBC

TAG
TAG
TAG
TAG
TAG
TAG
TAG

ADR

CMD

CTL

Address/Cmd to DDR

Shootdown Last Read to DDR

Read TID from DDR

Write TID
from CSW

Command/Addr/TID
to CSW

Command/Addr/TID
from CSW

FwdCmd

OrcCmd

WbcCmd

PbQ

RcQ

WaQ

Figure 7.16: Coherence Controller Block Diagram

May 14, 2014 430 Rev 51328

SiCortex Confidential 7.15. THE PARTS

7.15.1.2 Processing Pipeline(s)

Commands are processed in a two or four stage pipeline that begins in C3 (to align with the pipelines from the
processor segments, the PCI and the DMA engine.)

C3: In C3 we look the address up in each of the Master Tags arrays, the ORC, and the WriteBack CAM.

C4: In C4 we update the Tag arrays, the ORC, and the WriteBack CAM. We also send out any transaction
operations on the outbound command ports.

Data returns from the DDR controller in C10. (This is an arbitrary choice, but it seems to fit well with the rest
of the pipeline definitions in the DMA engine, etc. Data is written into the DDR controller in C3 and following
cycles. Figure 7.17 shows the four major processing pipelines in the coherence engine.

C
2

C
3

C
4

T
a
g

L
o
o
k
u
p

O
R
C

L
o
o
k
u
p

W
B
C

L
o
o
k
u
p

T
a
g

U
p
d
a
t
e

O
R
C

U
p
d
a
t
e

W
B
C

U
p
d
a
t
e

A
d
d
r
/
T
I
D
_
c
2
a

t
o

D
D
R

S
h
o
o
t
D
o
w
n
_
c
4
a

c
s
w
_
c
o
h
_
I
n
A
d
d
r
/
C
m
d
/
T
I
D
_
c
2
a

C
o
m
m
a
n
d

P
r
o
c
e
s
s
i
n
g

P
i
p
e
l
i
n
e

C
2

C
3

C
4

O
R
C

L
o
o
k
u
p

W
B
C

L
o
o
k
u
p

O
R
C

R
e
l
e
a
s
e

c
s
w
_
c
o
h
_
I
n
A
d
d
r
/
C
m
d
/
T
I
D
_
c
2
a

P
R
B
D
O
N
E
/
B
W
T
D
O
N
E

P
r
o
c
e
s
s
i
n
g

P
i
p
e
l
i
n
e

P
r
o
b
e
R
e
q
Q
u
e
u
e

C
1
0

C
1
1

C
1
2

O
R
C

L
o
o
k
u
p

O
R
C

R
e
l
e
a
s
e

D
D
R

R
e
a
d

C
o
m
p
l
e
t
e

P
i
p
e
l
i
n
e

R
e
a
d
C
m
p
Q
u
e
u
e

T
I
D

o
f

c
o
m
p
l
e
t
e
d

R
E
A
D

o
p
e
r
a
t
i
o
n

(
f
r
o
m

D
D
R

c
o
n
t
r
o
l
l
e
r
)

C
3

C
4

C
5

W
B
C

L
o
o
k
u
p

W
B
C

R
e
l
e
a
s
e

D
D
R

W
r
i
t
e

D
a
t
a

A
r
r
i
v
a
l

P
i
p
e
l
i
n
e

W
r
i
t
e
R
e
q
Q
u
e
u
e

T
I
D

o
f

i
n
c
o
m
i
n
g

W
r
i
t
e

D
a
t
a

(
f
r
o
m

C
S
W
)

T
o

O
u
t
b
o
u
n
d

C
o
m
m
a
n
d

M
u
x

T
o

O
u
t
b
o
u
n
d

C
o
m
m
a
n
d

M
u
x

T
o

O
u
t
b
o
u
n
d

C
o
m
m
a
n
d

M
u
x

T
o

O
u
t
b
o
u
n
d

C
o
m
m
a
n
d

M
u
x

Figure 7.17: Coherence Engine Processing Pipelines

May 14, 2014 431 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Tables 7.67, 7.68, and 7.69 all assume an incoming command from processor or unit Px. If the target block is
owned, Py is the owner.

Normally, an operation can’t hit in both the WBC and the ORC in the same cycle. PRBDONE andWRSTRANS
are the only exceptions. Ignore the WBC hit in these cases.

Note that WRSTRANS hitting on an EXCLUSIVE block means that we saw a sequence like (RDS,Px,A)
(RD,Pz,A) (WRSTRANS,Py,A) where processor Z flipped the L2 cache states from SH to INV in Px before the
transaction completed. This is OK. Everything will eventually complete in order and Px will have seen the block
for a short time in the SH state before answering a PRBINV broadcast. (This is the reason we write EXCLUSIVE
blocks back to DDR rather than sending the data directly from Py to Px.)

7.15.1.3 Recovering from Tag ECC Errors

As it turns out, the master tag arrays contain about 500K bits of storage. We’re likely to see a soft error rate
on the SRAM cells of about 3000 failures per billion hours per Mbit. So, assuming 1000 chips in a system:

MT T F =
109 hours∗ 1Mbit

1000nodes∗ 3000 f ailures∗0.5Mbit
= 666hours = 28days

That means that we’d see a tag parity failure about once per month. We can’t really recover from that kind
of error so we’d have to crash the node and probably the rest of the cluster. That’s one of the problems with
welding the fabric so close to the processors – if a processor sneezes, the fabric catches pneumonia. So, we need to
innoculate the processors by building ECC into the tag RAMs. (Note that we don’t need to do this for the CAMs
since they’re implemented in much more robust flip-flops.)

The tag rams cycle at 4nS, so we have more than enough time to do ECC scrubbing and correction. Tag entries
are written in the second stage of the command processing pipeline, so we have enough time to calculate the ECC
before the tag update cycle.

7.15.2 The L2 Switch (CSW)

7.15.2.1 Bus Stops, Node Numbers, and Transaction Targets

7.16 Arbitration at the PS to CSW Port

Commands issued by the CAC (RDS, RDSV, RDEX, RDV), the processor (IOWT, IORD, SPCL, INT), or in
response to probe operations (WRSTRANS, BWTGO, PRBNOHIT) all must contend at the output of the CAC/PS
for the outbound command request wires. Arbitration between these request streams is more complicated than
one would hope, but simulation and detailed analysis suggest that the scheme is not prone to deadlock. (Neither
simulation nor logical argument can ever garuntee freedome from deadlock, but we do the best we can.) This
section describes the arbitration rules and makes the argument that no combination or sequence of requests can
cause any one request to remain starved for access to the CSW.

The arbitration is a hybrid priority based and round robin scheme. First, any requests that must be retried
from a previous cycle are garunteed access to the outbound command wires. Second, if an L2 cache miss access
(RDS, RDSV, RDEX, RDV) was not driven on to the command bus in the previous tic, the waiting request wins.
Third, if a NOHIT response causes the CAC to issue a RDSR or RDEXR (read retry), the retry request is driven
onto the bus. Fourth if there are no waiting requests, but the L2 tag lookup in the previous cycle has resulted in an
L2 miss, the requested command (RDSV, RDV, RDS, RDEX) is driven onto the command wires. If none of these
conditions obtains, then we move on to the group of requests that arbitrate in “round robin” fashion. (Note that the
priority based portion of the arbitration is deadlock free as the CAC only supports one outstanding memory read
access at a time. Thus an RDSR will never contend with an outgoing RDEX, and an L2 miss will never contend
with a previously queued memory request.)

Ten different sources of outbound command requests contend in the second stage of arbitration:

LOCINVDONE: Sends out an INVDONE in response to a PRBINV that arrives at this CAC due to a read
operation that was initiated by this CAC.

WRSTRANS: Sends out a Write Shared Transition command in response to a PRBSHR on a block held in the
exclusive state.

May 14, 2014 432 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
6
.

A
R
B
IT

R
A
T
IO

N
A
T

T
H
E

P
S
T
O

C
S
W

P
O
R
T

Incoming Command ORC Miss, WBC Miss ORC Hit, WBC Miss WBC Hit, ORC Miss

RDEX Launch read to DDR.
Update L2 Tags for PX.
Add PX request to ORC.

Kill read to DDR.
Update L2 Tags for PX.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Update L2 Tags for PX.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

RDV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDEX
RDS Launch read to DDR.

Update L2 Tags for PX.
Add PX request to ORC.
(RDSV: Add victim address to WT
Q.)

Kill read to DDR.
Update L2 Tags for PX.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Update L2 Tags for PX.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

RDSV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDS
BRD Launch read to DDR.

Add PX request to ORC.
Kill read to DDR.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

BWT Send BWTGO to requester.
Add PX request to WBC.

Queue transaction dependence on
PY in ORC.
Add PX request to WBC.

Queue transaction dependence on
PY in WBC.
Add PX request to WBC.

RDSR Retry event reacting to “NOPROBE” response: Launch read to DDR.
RDEXR Retry event reacting to “NOPROBE” response: Launch read to DDR.
WINV Error! Writeback from non-owning

processor! Complete write, update
L2 Tags, Declare Machine Check
Exception.

WINV from PX passed an inflight
PRBWIN for this block.
Add Addr to WT Queue and WBC.

WINV from PX passed an inflight
BWT for this block.
Kill transaction in Write Queue, as
the BWT takes precendence.

FLUSH (UNUSED) Error! Flush from non-owning processor! Update L2 Tags (invalidate). Declare Machine Check Exception.
RDIO RDIO Transactions Never Arrive at COH
WTIO WTIO Transactions Never Arrive at COH

PRBDONE Error! Should hit on ORC entry. Activate matching ORC Entry. Ignore.
WRSTRANS Error! WRSTRANS should hit on the L2 Tag for the original requesting processor.
BWTDONE Error! Should hit on WBC entry. Ignore Activate matching WBC entry.

IDLE Cancelled operation – do nothing.

T
a
b
le

7
.6
7
:
C
o
h
eren

ce
C
o
n
tro

ller
C
o
m
m
a
n
d
P
ip
e
A
ctio

n
s
v
s.

T
a
g
a
n
d
C
A
M

L
o
o
k
u
p
s
(F
o
r
tra

n
sa
ctio

n
s
th
a
t
m
iss

in
L
2
M
a
ster

T
a
g
s)

M
ay

1
4
,
2
0
1
4

4
3
3

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

7
.

L
2
C
A
C
H
E

C
O
H
E
R
E
N
C
E
A
N
D

S
W

IT
C
H

Incoming Command ORC Miss, WBC Miss ORC Hit, WBC Miss WBC Hit, ORC Miss

RDEX Send read to DDR.
Update L2 Tags for PX to EX.
Invalidate L2 Tags for ALL other match-
ers.
Add PX request to ORC.
Broadcast PRBINV to all nodes.

Kill read to DDR.
Update L2 Tags for PX to EX.
Invalidate L2 Tags for all other matchers.
Add PX request to ORC.
Add PX dependence on PY transaction in
ORC.

Not Possible.
(If a write is outstanding against the block,
why is in SHARED state?)

RDV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDEX
RDS Kill read to DDR.

Update L2 Tags for PX to SH.
Add PX request to ORC.
Send PRBSHR command to “first
matcher” PY.

Kill read to DDR.
Update L2 Tags for PX to SH.
Add PX request to ORC.
Add PX dependence on PY transaction in
ORC.

Not Possible.

RDSV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDS
BRD Kill Read to DDR.

Send PRBBRD to PY.
Add PX request to ORC.

Kill read to DDR.
Add PX request to ORC.
Add PX dependence on PY transaction in
ORC.

Not Possible.

BWT Send BWTGO to Px.
(Note the COH will send PRBINV after
BWTDONE arrives.)
Add PX address to write queue.
Add PX request to WBC Note need for
PRBINV.

Queue transaction dependence on PY in
ORC.
Add PX request to WBC.

Not Possible.

RDSR Retry event reacting to “NOPROBE” response: Launch read to DDR. Queue dependency on PY in WBC. (We
passed an invalidate transaction.)

RDEXR Retry event reacting to “NOPROBE” response: Launch read to DDR. Queue dependency on PY in WBC. (We
passed an invalidate transaction.)

WINV Error! WINV should only arrive for ex-
clusively owned blocks unless we have a
ships-passing-in-the-night problem (ORC
or WBC hit).

Add victim to WT queue and WBC. We’ll
wait for the RDSR/RDEXR.

Collision with a BWT. Kill this write when
it arrives. Create no WT queue or WBC
entry.

FLUSH (UNUSED) Invalidate L2 Tags for PX.
RDIO RDIO Transactions Never Arrive at COH
WTIO WTIO Transactions Never Arrive at COH

PRBDONE Error! Should hit on ORC entry. Activate matching ORC Entry. Ignore.
WRSTRANS Error! WRSTRANS should hit on the

ORC entry for the transaction that caused
it.

Find FIRST ORC entry for this address
(ORC CheckS).
Add Addr to WT Queue and WBC.
See Table 7.22 steps L+2 and following.
(Note there may be a spurious WBC hit
for this operation. Ignore it.)

Ignore.

BWTDONE Error! Should hit on WBC entry. Ignore Activate matching WBC entry.
Broadcast PRBINV to all.

IDLE Cancelled operation – do nothing.

T
a
b
le

7
.6
8
:
C
o
h
eren

ce
C
o
n
tro

ller
C
o
m
m
a
n
d
P
ip
e
A
ctio

n
s
v
s.

T
a
g
a
n
d
C
A
M

L
o
o
k
u
p
s
(F
o
r
tra

n
sa
ctio

n
s
th
a
t
h
it

in
L
2
M
a
ster

T
a
g
s
in

S
H
A
R
E
D

S
ta
te.)

M
ay

1
4
,
2
0
1
4

4
3
4

R
ev

5
1
3
2
8

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
7
.1
6
.

A
R
B
IT

R
A
T
IO

N
A
T

T
H
E

P
S
T
O

C
S
W

P
O
R
T

Incoming Command ORC Miss, WBC Miss ORC Hit, WBC Miss WBC Hit, ORC Miss

RDEX Kill read to DDR.
Update L2 Tags for PX.
Invalidate L2 Tags for PY.
Add PX request to ORC.
Send PRBWIN command to PY.

Kill read to DDR.
Update L2 Tags for PX.
Invalidate L2 Tags for PY.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Update L2 Tags for PX.
Invalidate L2 Tags for PY.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

RDV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDEX
RDS Kill read to DDR.

Update L2 Tags for PX.
Update L2 Tags for PY to SH.
Add PX request to ORC.
Send PRBSHR command to PY.

Kill read to DDR.
Update L2 Tags for PX.
Update L2 Tags for PY to SH.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Update L2 Tags for PX.
Update L2 Tags for PY to SH.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

RDSV Add Victim Address to WT Queue and WBC. Otherwise, identical to RDS
BRD Kill read to DDR.

Send PRBBRD to PY.
Add PX request to ORC.

Kill read to DDR.
Add PX request to ORC.
Add PX dependence on PY trans-
action in ORC.

Kill read to DDR.
Add PX request to ORC.
Add PX dependence on PY trans-
action in WBC.

BWT Send PRBBWT to PY.
Add PX request to WBC.

Queue transaction dependence on
PY in ORC.
Add PX request to WBC.

Queue transaction dependence on
PY in WBC.
Add PX request to WBC.

RDSR Retry event reacting to “NOPROBE” response: Launch read to DDR.
RDEXR Retry event reacting to “NOPROBE” response: Launch read to DDR.
WINV Add Addr to WT Queue and WBC.

Invalidate L2 Tags for PX.
WINV from PX passed an inflight
PRBWIN for this block.
Invalidate L2 Tags for PX.
Add Addr to WT Queue and WBC.

WINV from PX passed an inflight
BWT for this block.
Invalidate L2 Tags for PX.
Kill transaction in Write Queue, as
the BWT takes precendence.

FLUSH (UNUSED) Invalidate L2 Tags for PX.
RDIO RDIO Transactions Never Arrive at COH
WTIO WTIO Transactions Never Arrive at COH

PRBDONE Error! Should hit on ORC entry. Activate matching ORC Entry. Ignore.
WRSTRANS Error! WRSTRANS should hit on

the ORC entry for the transaction
that caused it.

Find FIRST ORC entry for this ad-
dress (ORC CheckS).
Add Addr to WT Queue and WBC.
See Table 7.22 steps L+2 and fol-
lowing.
(Note there may be a spurious
WBC hit for this operation. Ignore
it.)

Ignore.

BWTDONE Error! Should hit on WBC entry. Ignore Activate matching WBC entry.
IDLE Cancelled operation – do nothing.

T
a
b
le

7
.6
9
:
C
o
h
eren

ce
C
o
n
tro

ller
C
o
m
m
a
n
d
P
ip
e
A
ctio

n
s
v
s.

T
a
g
a
n
d
C
A
M

L
o
o
k
u
p
s
(F
o
r
tra

n
sa
ctio

n
s
th
a
t
h
it

in
L
2
M
a
ster

T
a
g
s
in

E
X
C
L
U
S
IV

E
S
ta
te.)

M
ay

1
4
,
2
0
1
4

4
3
5

R
ev

5
1
3
2
8

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

p
s
0
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
0
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
0
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

d
m
a
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

d
m
a
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
d
m
a
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
s
3
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
3
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
3
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
m
i
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
m
i
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
m
i
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
s
1
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
1
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
1
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
s
2
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
2
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
2
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
s
4
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
4
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
4
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

p
s
5
_
c
s
w
_
C
m
d
A
d
d
r
T
a
r
g
e
t
_
c
0
a

p
s
5
_
c
s
w
_
E
C
m
d
A
d
d
r
R
e
q
_
c
0
a

c
s
w
_
p
s
5
_
E
C
m
d
A
d
d
r
G
n
t
_
c
1
a

Upstream Direction

Downstream Direction

coho_csw_ECmdAddrTarget_c0a

Figure 7.18: Even Bound Command/Address Arbitration Chain

STAGE5: These commands (PRBNOHIT, BWTNOHIT, BWTGO, INVDONE) are in response to probe com-
mands arriving from other nodes.

DONE: These commands (BWTDONE, PRBDONE) are issued in response to completion of a BWT or probe
transaction.

INTW: This stream sends out an INT command to deliver an interrupt to another processor segment.

SPCL: This stream sends out a SPCL command to the DMA.

IDONE: This stream sends out a DONE command to signal completion of an INT delivery.

VICCAN: This stream sends out a WBCANCEL command to rescind a writeback request for a block that is now
known to be clean.

IORD: This stream sends out RDIO commands.

IOWT: Surprise! This stream sends out WTIO commands.

The arbitration passes through two stages. In stage 1, the ten sources each determine their eligibility to bid. For
instance, the IOWT source may not bid for access to the command bus if a previous IO write is in flight, or if the
IORD stream has an earlier IORD waiting, or if the most recent IO write sent out its data in the last 8 tics or
so. In stage 2, all the eligible bidders compete. The highest priority bidder rotates round-robin. The round-robin
pointer is bumped each time some stream wins the arbitration. (It is not bumped if there were no requesters, and
it is not bumped if a memory read command is being driven because of the priority based arbitration described
above.)

So how could we create a starvation case? Assume some request stream A needs resource X to be eligible. Now
assume a second stream B also needs X. If A and B both arb at the same time and B wins, A will lose. Now A
can’t bid again until B releases its resource. If B releases its resource and then needs to rearb again, it may beat B
again. In fact, if B releases its resource and any other stream requires resource X, A could lose again. Round-robin

May 14, 2014 436 Rev 51328

SiCortex Confidential 7.17. DEFINITIONS AND ENUMERATIONS

arbitration will not prevent this kind of starvation. So, we need to make sure that if A loses a round of arbitration,
it will eventually become the only eligible requester that requires its resource. How do we do that?

First, we can dismiss all commands streams that require no resource at all to become eligible. This eliminates
the LOCINVDONE, DONE, STAGE5, IDONE and VICCAN streams.4These require no resources, so even
in the worst case they only wait for the round-robin pointer to make them the highest priority choice.

Second we should note that the remaining memory related stream WRSTRANS only requires a free TID. In
this case, the requirement is that either TID0 or TID1 be available for a memory transaction. (If the TID is being
used by a RDIO, WTIO, INT, or SPCL, it is still available for use by a memory operation.) Since only one memory
transaction can be in flight at a time, and we never need to do two WRSTRANS operations at a time, there is no
“B” request stream that could starve out the WRSTRANS stream if it was “A” in the above example. Note that
nothing that happens with IO related operations ever contends with memory operations. So now, having dismissed
arbitration conflicts among memory operations, we only need consider starvation among the IO operations.

First, because of the strict ordering of IORD and IOWT operations from the core, we never allow an IOWT
to pass an IORD or vice-versa. This means that IORD operations never contend with IOWT. So they can’t
starve each other out.

Alas, there has to be a fly in the ointment somewhere. The IOWT stream requires the IOWriteTID to be
available. So does the INTW and SPCL stream. This is the lone known opportunity for starvation in the CMX.
A pathological program could issue an IOWT request and follow it with a sequence of writes to the interrupt delivery
or SPCL delivery register so as to prevent the IOWT from ever completing. However, we require a SYNC either
before or after any SPCL or INTW write in order to ensure proper delivery of the SPCL operation. This would
prevent the IOWT from starving. In any case, the IOWT was likely not performed from user mode, as we aren’t
likely to allow user mode programs to fiddle with IO space, even if we do allow (and encourage) usermode access to
the SPCL registers. Programs that send out back-to-back SPCLs without SYNCs get what they deserve. (A SYNC
instruction would stall the processor and prevent further SPCL writes until the stalled IOWT had completed.)

7.17 Definitions and Enumerations

7.17.1 Package Attributes

Package

chip cac spec

7.17.2 Definitions

Defines

CAC
Constant Mnemonic Definition

32’h18 0000 SIZE L2 Cache Size. Total size in bytes including all banks.
32’hC ASSOC L2 Cache Associativity.
8’d15 CMD ADDR FIFO DEPTH Depth of Command/Addr FIFOs for all bus stops
8’d1 DATA PS FIFO DEPTH The PS only needs one slot on each side
8’d5 DATA PCI FIFO DEPTH Depth of Data FIFOs for PCI bus stop
8’d3 DATA DMA FIFO DEPTH Depth of Data FIFOs for DMA bus stop

The

PCI DATA fifo depth must be 5 to cover the fact that the PCI widget could have three BRDs, one RDEX, and two
WTIO operations completing at one time and it takes 4 cycles to consume a FIFO entry. The DMA widget only
needs 3 as it can remove an entire entry on every tic, and need only support four BRDs and one WTIO completion.
If all five transactions arrived sequentially at a DMA port from the same direction, we’d peel them off in order and
only need one slot in the queue to accomodate them. The worst case for DMA is three from the Even side and two
from Odd.

4A reader of the CacCmxBeh sources will note that STAGE5 requests all require that there be no queued victim writebacks. This
condition is redundant, as we already ensure that no writebacks are in progress before issuing the requests from the probe control
state machine. A similar condition on VICCAN requests is only a delaying mechanism, as we only allow one read miss in flight at a
time. It looks redundant now, but we aren’t going to remove this logic, as all reasoning is subject to verification, and we’ve got lots of
verification cycles on this logic.

May 14, 2014 437 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

7.17.3 Processor to L2 Cache Commands

This section has been removed.

7.17.4 L2 Cache to Processor Commands

This section has been removed.

7.17.5 L2 Cache to/from Coherence Controller Commands

Enum

CohCmd
Constant Mnemonic Definition (I/O Device Use)

5’b00111 IDLE Idle -
5’b00000 RDS Read shared (instruction) -
5’b00001 RDSV Read shared, write victim -
5’b00100 RDSR Read shared, retry -
5’b00010 RDEX Read data exclusive Output
5’b00011 RDV Read data exclusive, write victim -
5’b00110 RDEXR Read data exclusive, retry
5’b00101 RDIO Read from I/O space Input

5’b01000 WRSTRANS Write retaining shared copy -
5’b01001 WTIO Write to I/O space Input
5’b01011 WINV Writeback and Invalidate
5’b01010 FLUSH FLUSH block from L2 cache – no writeback NOT IMPLEMENTED
5’b01110 DONE WINV, INT, or SPCL is complete
5’b01111 WBCANCEL Cancel writeback request from RDSV and RDV

5’b10001 BWT Block Write Input
5’b10000 BRD Block Read
5’b10010 BWTNOHIT Block Write encountered evicted block
5’b10100 BWTGO Continue Block Write
5’b10101 BWTDONE Block Write Complete
5’b10110 BRDR Block Read Retry

5’b11000 PRBINV Probe to invalidate -
5’b11001 PRBWIN Probe to writeback/transfer -
5’b11010 PRBSHR Probe to share block
5’b11011 PRBBRD Probe to forward Block Read
5’b11110 PRBBWT Probe to forward Block Write
5’b11100 PRBDONE Probe transfer completion Output
5’b11101 PRBNOHIT Probe finds no block resident -?
5’b11111 INVDONE PRBINV acknowledge

5’b01100 INT Interrupt request
5’b01101 SPCL Special Command

7.17.6 L2 Cache Coherence Widget States

Enum

CohState
Constant Mnemonic Definition

2’b00 INV Invalid
2’b01 EXCL Exclusive
2’b10 SHARE Shared
2’b11 UNUSED Unused encoding

May 14, 2014 438 Rev 51328

SiCortex Confidential 7.17. DEFINITIONS AND ENUMERATIONS

7.17.7 L2 Segment Cache States

Enum
CacState
Constant Mnemonic Definition

3’b000 INV Invalid
3’b001 EXCL Exclusive
3’b010 SHARE Shared
3’b110 DIRTY Different from Memory Copy
3’b111 UPDATED Different from Memory and Updated since last fill.

7.17.8 L2 Cache Modified States

Enum
CohModState
Constant Mnemonic Definition

2’b00 INV block is invalid
2’b10 DIRTY block was modified at some point wrt DRAM copy
2’b11 UPDATED block was written by the current owner since last ownership transfer
2’b01 CLEAN block is unmodified wrt DRAM copy

7.17.9 L2 Half Block Update Tags

Enum
CohHalfMask
Constant Mnemonic Definition

2’b00 W64 Whole block of 64 bytes
2’b01 L32 Half block of 32 bytes on Dat0..Dat3
2’b10 H32 Half block of 32 bytes on Dat4..Dat7
2’b11 I8 I/O Transaction of just 8 Bytes on Dat0

7.17.10 L2 Cache Interface Numbers (Bus Stop Numbers)

This enumeration contains the physical bus stop number, used to route on the cache switch. For software
interrupts, and addressing, the similar AddrStopNum 16.6.5 is used instead. (Thus, this table may change without
affecting any software.)

Enum
CswStopNum
Constant Mnemonic Definition

4’b0000 COHO coherence controller on odd side
4’b0110 PCI PCI controller
4’b0010 CORE0 L2 segment for core 0
4’b0001 CORE1 L2 segment for core 1
4’b0100 CORE2 L2 segment for core 2
4’b0101 CORE3 L2 segment for core 3
4’b1000 CORE4 L2 segment for core 4
4’b0111 CORE5 L2 segment for core 5
4’b0011 DMA dma controller
4’b1001 COHE coherence controller on even side
4’b1111 BROADCAST Broadcast to all nodes (legal from COHE or COHO only

7.17.11 L2 Cache Interface Numbers (Bus Stop Numbers) for TWICE9

This enumeration contains the physical bus stop numbers (for TWICE9), used to route on the cache switch.
This new set enumerations has been created because using the old emnumeration would mean that the constant
for COHE could not be changed (as this would break for ICE9A) but it also can’t be redefined (since enumerations

May 14, 2014 439 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

don’t support this). If TWICE9 required keeping the old value for COHE, this would require significant coding
changes to verilog and system C code in Cac, Dma, Coh, and PMI).

Enum

CswStopNumTwc

Constant Mnemonic (Product) Definition

4’d0 COHO TWC9A+ coherence controller on odd side
4’d1 CORE1 TWC9A+ L2 segment for core 1
4’d2 CORE0 TWC9A+ L2 segment for core 0
4’d3 DMA TWC9A+ dma controller
4’d4 CORE2 TWC9A+ L2 segment for core 2
4’d5 CORE3 TWC9A+ L2 segment for core 3
4’d6 PCI TWC9A+ PCI controller
4’d7 CORE5 TWC9A+ L2 segment for core 5
4’d8 CORE4 TWC9A+ L2 segment for core 4
4’d9 CORE7 TWC9A+ L2 segment for core 7
4’d10 CORE6 TWC9A+ L2 segment for core 6
4’d11 CORE9 TWC9A+ L2 segment for core 9
4’d12 CORE8 TWC9A+ L2 segment for core 8
4’d13 COHE TWC9A+ coherence controller on even side
4’d14 TWC9A+ Reserved
4’d15 BROADCAST TWC9A+ Broadcast to all nodes (legal from COHE or COHO only

7.17.12 Transaction IDs

Enum

CswTid

May 14, 2014 440 Rev 51328

SiCortex Confidential 7.17. DEFINITIONS AND ENUMERATIONS

Constant Mnemonic Definition

5’d0 PS0T0 Any op for PS0
5’d1 PS0T1 Any op for PS0
5’d2 PS1T0 Any op for PS1
5’d3 PS1T1 Any op for PS1
5’d4 PS2T0 Any op for PS2
5’d5 PS2T1 Any op for PS2
5’d6 PS3T0 Any op for PS3
5’d7 PS3T1 Any op for PS3
5’d8 PS4T0 Any op for PS4
5’d9 PS4T1 Any op for PS4
5’d10 PS5T0 RDE/RDS/FLUSH/RDIO for PS5
5’d11 PS5T1 Any op for PS5
5’d12 DMARD0 BRD 0 for DMA
5’d13 DMAWT0 BWT 0 for DMA
5’d14 DMARD1 BRD 1 for DMA
5’d15 DMAWT1 BWT 1 for DMA
5’d16 DMARD2 BRD 2 for DMA
5’d17 DMAWT2 BWT 2 for DMA
5’d18 DMARD3 BRD 3 for DMA
5’d19 DMAWT3 BWT 3 for DMA
5’d20 PCIRD0 BRD 0 for PCI
5’d21 PCIWT0 BWT 0 for PCI
5’d22 PCIRD1 BRD 1 for PCI
5’d23 PCIWT1 BWT 1 for PCI
5’d24 PCIRD2 BRD 2 for PCI
5’d25 PCIWT2 BWT 2 for PCI
5’d26 PCIRD3 BRD 3 for PCI
5’d27 PCIWT3 BWT 3 for PCI
5’d31 INT used for all INT commands from all blocks

7.17.13 Transaction IDs for TWICE9

Enum
CswTidTwc

Constant Mnemonic (Product) Definition

6’d0 PS0T0 TWC9A+ Any op for PS0
6’d1 PS0T1 TWC9A+ Any op for PS0
6’d2 PS0T2 TWC9A+ Any op for PS0
6’d3 PS0T3 TWC9A+ Any op for PS0
6’d4 PS1T0 TWC9A+ Any op for PS1
6’d5 PS1T1 TWC9A+ Any op for PS1
6’d6 PS1T2 TWC9A+ Any op for PS1
6’d7 PS1T3 TWC9A+ Any op for PS1
6’d8 PS2T0 TWC9A+ Any op for PS2
6’d9 PS2T1 TWC9A+ Any op for PS2
6’d10 PS2T2 TWC9A+ Any op for PS2
6’d11 PS2T3 TWC9A+ Any op for PS2
6’d12 PS3T0 TWC9A+ Any op for PS3
6’d13 PS3T1 TWC9A+ Any op for PS3
6’d14 PS3T2 TWC9A+ Any op for PS3
6’d15 PS3T3 TWC9A+ Any op for PS3
6’d16 PS4T0 TWC9A+ Any op for PS4
6’d17 PS4T1 TWC9A+ Any op for PS4

May 14, 2014 441 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

6’d18 PS4T2 TWC9A+ Any op for PS4
6’d19 PS4T3 TWC9A+ Any op for PS4
6’d20 PS5T0 TWC9A+ Any op for PS5
6’d21 PS5T1 TWC9A+ Any op for PS5
6’d22 PS5T2 TWC9A+ Any op for PS5
6’d23 PS5T3 TWC9A+ Any op for PS5
6’d24 PS6T0 TWC9A+ Any op for PS6
6’d25 PS6T1 TWC9A+ Any op for PS6
6’d26 PS6T2 TWC9A+ Any op for PS6
6’d27 PS6T3 TWC9A+ Any op for PS6
6’d28 PS7T0 TWC9A+ Any op for PS7
6’d29 PS7T1 TWC9A+ Any op for PS7
6’d30 PS7T2 TWC9A+ Any op for PS7
6’d31 PS7T3 TWC9A+ Any op for PS7
6’d32 PS8T0 TWC9A+ Any op for PS8
6’d33 PS8T1 TWC9A+ Any op for PS8
6’d34 PS8T2 TWC9A+ Any op for PS8
6’d35 PS8T3 TWC9A+ Any op for PS8
6’d36 PS9T0 TWC9A+ Any op for PS9
6’d37 PS9T1 TWC9A+ Any op for PS9
6’d38 PS9T2 TWC9A+ Any op for PS9
6’d39 PS9T3 TWC9A+ Any op for PS9
6’d40 DMARD0 TWC9A+ BRD 0 for DMA
6’d41 DMAWT0 TWC9A+ BWT 0 for DMA
6’d42 DMARD1 TWC9A+ BRD 1 for DMA
6’d43 DMAWT1 TWC9A+ BWT 1 for DMA
6’d44 DMARD2 TWC9A+ BRD 2 for DMA
6’d45 DMAWT2 TWC9A+ BWT 2 for DMA
6’d46 DMARD3 TWC9A+ BRD 3 for DMA
6’d47 DMAWT3 TWC9A+ BWT 3 for DMA
6’d48 DMARD4 TWC9A+ BRD 4 for DMA
6’d49 DMAWT4 TWC9A+ BWT 4 for DMA
6’d50 DMARD5 TWC9A+ BRD 5 for DMA
6’d51 DMAWT5 TWC9A+ BWT 5 for DMA
6’d52 DMARD6 TWC9A+ BRD 6 for DMA
6’d53 DMAWT6 TWC9A+ BWT 6 for DMA
6’d54 PCIRD0 TWC9A+ BRD 0 for PCI
6’d55 PCIWT0 TWC9A+ BWT 0 for PCI
6’d56 PCIRD1 TWC9A+ BRD 1 for PCI
6’d57 PCIWT1 TWC9A+ BWT 1 for PCI
6’d58 PCIRD2 TWC9A+ BRD 2 for PCI
6’d59 PCIWT2 TWC9A+ BWT 2 for PCI
6’d60 PCIRD3 TWC9A+ BRD 3 for PCI
6’d61 PCIWT3 TWC9A+ BWT 3 for PCI
6’d62 TWC9A+ Reserved
6’d63 INT TWC9A+ used for all INT commands from all blocks

7.17.14 Address Tag and Index Fields for L2 and Coh Tag and Data arrays

Defines

CADDR FLD

May 14, 2014 442 Rev 51328

SiCortex Confidential 7.17. DEFINITIONS AND ENUMERATIONS

Constant Mnemonic Definition

64’h040 BANK SEL MSK Which bit selects the “bank” (i.e. EVEN or ODD side COH)
16’d10 HASH WIDTH How wide is hashed portion of the tag index?
16’d7 HASHLO START Where does the low half of the tag hash field start?
16’d17 HASHHI START Where does the hi half of the tag hash field start?
16’d18 TAG WIDTH How wide is the stored address tag?

7.17.15 L2 Cache Useful Dimensions

Defines
CAC DIM
Constant Mnemonic Definition

16’d2048 L2TAGARR SIZE Number of entries in L2 Tag Array
16’d8192 L2DATWARR SIZE Number of Quadwords (16 bytes) in each WAY of the L2 Data Array

7.17.16 Coherence Engine Useful Dimensions

Defines
COH DIM
Constant Mnemonic Definition

4’d14 DCQ ENTRIES Number of entries in Data Completion Queue
4’d14 CCQ ENTRIES Number of entries in Command Completion Queue
4’d14 PBAQ ENTRIES Number of entries in probe completion ORC release address queue
4’d14 RCAQ ENTRIES entries in read complete ORC release address queue
4’d14 WCAQ ENTRIES entries in write complete WBC release address queue
4’d14 WDAQ ENTRIES entries in the write address queue o
4’d14 RCQ ENTRIES entries in the ORC dependent command queue
4’d14 WCQ ENTRIES entries in the WBC dependent command queue

16’d1024 MTAG ENTRIES number of tags per way per L2 Master Tag Array
8’d28 ORC ENTRIES number of slots in the oustanding read CAM
8’d28 WBC ENTRIES number of slots in the writeback CAM
8’d27 MAX TID maximum transaction ID value

7.17.17 Coherence Engine Useful Dimensions for Twice9A

Defines
COH DIM TWC

Constant Mnemonic (Product) Definition

6’d52 DCQ ENTRIES TWC9A+ Number of entries in Data Completion Queue
6’d52 CCQ ENTRIES TWC9A+ Number of entries in Command Completion Queue
6’d52 PBAQ ENTRIES TWC9A+ Number of entries in probe completion ORC release address queue
6’d52 RCAQ ENTRIES TWC9A+ entries in read complete ORC release address queue
6’d48 WCAQ ENTRIES TWC9A+ entries in write complete WBC release address queue
6’d48 WDAQ ENTRIES TWC9A+ entries in the write address queue o
6’d52 RCQ ENTRIES TWC9A+ entries in the ORC dependent command queue
6’d48 WCQ ENTRIES TWC9A+ entries in the WBC dependent command queue

16’d1024 MTAG ENTRIES TWC9A+ number of tags per way per L2 Master Tag Array
8’d64 ORC ENTRIES TWC9A+ number of slots in the oustanding read CAM
8’d64 WBC ENTRIES TWC9A+ number of slots in the writeback CAM
8’d63 MAX TID TWC9A+ maximum transaction ID value

7.17.18 Coherence Engine L2 Tag Array Fields

Defines
COH MTAG

May 14, 2014 443 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Constant Mnemonic Definition

8’d0 TW0 LOW Low bit of Way 0 Tag
8’d19 TW1 LOW Low bit of Way 1 Tag
8’d19 TAG WIDTH Width of a Tag field
8’d38 SW0 LOW Low bit of Way 0 State
8’d40 SW1 LOW Low bit of Way 1 State
8’d2 STATE WIDTH How wide is the state
8’d42 SW0 OWN POS Does the assoc proc OWN this block?
8’d43 SW1 OWN POS Does the assoc proc OWN this block?
8’d44 ECC LOW ECC bits

7.17.19 SPCL Address Request Fields

Defines

SPCL ADDR
Constant Mnemonic Definition

8’d3 ADDR2 LOW Low bit of ADDR2 field
8’d5 ADDR2 WIDTH ADDR2 Field Width
8’d16 ADDR1 LOW Low bit of ADDR1 field
8’d4 ADDR1 WIDTH ADDR1 Field Width
8’d20 BSN LOW Destination Bus Stop Number low bit
8’d4 BSN WIDTH Destination BSN Field Width

7.17.20 SPCL CSW Command Fields

Defines

SPCL CMD
Constant Mnemonic Definition

8’d3 ADDR2 LOW Low bit of ADDR2 field
8’d5 ADDR2 WIDTH ADDR2 Field Width
8’d16 ADDR1 LOW Low bit of ADDR1 field
8’d4 ADDR1 WIDTH ADDR1 Field Width
8’d8 DAT0 LOW Low byte of Data low bit
8’d8 DAT0 WIDTH Low data width
8’d20 DAT1 LOW Rest of DAT field
8’d16 DAT1 WIDTH Width of upper data field

7.18 Registers

7.18.1 Cache Probe Control Register

The cache probe registers are used to generate a L2 intervention into the L1, by request of the local code. This
is implemented only in the verification model, for testing purposes.

Register

R CacxProbeCtlMagic

Attributes

-noregtest -noregdump

May 14, 2014 444 Rev 51328

SiCortex Confidential 7.18. REGISTERS

Address

0x00 0400 (plus base address)

Bit Mnemonic Access Reset Type Definition

31 Done R 0 Intervention valid. Cleared on writing the Prb bit, set
when the intervention has completed.

30 Hit R 0 Intervention resulted in hit.
29 Dirty R 0 Intervention resulted in dirty.
28 Lock R 0 Intervention resulted in locked return.

Reserved
27 IOHoldoff RW 0 Inhibit IO write acks until this prbe has been acknowl-

edged.
26:1 Delay RW 0 Probe delay. Wait this number of cycles after Prb bit is

set before creating the probe.
0 Prb RW 0 When written one, create a probe as specified.

7.18.2 Cache Probe Address Register

The cache probe registers are used to generate a L2 intervention into the L1, by request of the local code. This
is implemented only in the verification model, for testing purposes.

Register

R CacxProbeAddrMagic

Attributes

-noregtest -noregdump

Address

0x00 0404 (plus base address)

Bit Mnemonic Access Reset Type Definition

31:3 AddrL RW 0 Address Low. Address[31:3] to generate probe to. Verifi-
cation implementaion only.

2:0 AddrH RW 0 Address High. Address[34:33] to generate probe to. Veri-
fication implementaion only. [35] is always zero.

7.18.3 Cache Probe Random Address Registers

The cache probe registers are used to generate a L2 intervention into the L1, by request of the local code. This
is implemented only in the verification model, for testing purposes.

Register

R CacxProbeRandAddrMagic[7:0]

Attributes

-noregtest -noregdump

Address

0x00 0500-0x00 053F (plus base address) (Add 0x8 per entry)

May 14, 2014 445 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Bit Mnemonic Access Reset Type Definition

36 Enable RW 0 Send probes to the address contained in Addr
35:5 Addr RW 0 Address. Address[35:0] to generate probe to. Verifica-

tion implementation only. In ICE9A, bits [4:0] is ignored
and treated as 0, since all probes are aligned to L1 cache
blocks. Starting in ICE9B, bits [5:0] is ignored and treated
as 0, since all probes are aligned to L2 cache blocks.

7.18.4 Cache ECC Injection Register

Controls BFM backdoor ECC injection to L1 I and D cache RAMs. This is implemented only in the verification
model, for testing purposes.

Register

R CacxInjEccMagic

Attributes

-noregtest -noregdump

Address

0x00 0408 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 FlipAllLinesSoon RW 0 Flip one randomly selected bit in every cache block
0 StartRandomFlips RW 0 Start continuous random L1 parity / ecc single-bit flipping

7.18.5 I/O Addresses in L2 Segment

Defines

CAC IO
Constant Mnemonic Definition

36’hE 9000 0000 WTIOADDR I/O writes are implemented as WTIO command, RDIO command,
then data. When the RDIO is sent back to the initiator, the Addr
must be set to CAC IO WTIOADDR.

7.18.6 Interrupt Cause Register

Register

R CacxIntCr[7:0]

Attributes

-kernel

Address

0x00 0000-0x00 003F (plus base address) (Add 0x8 per entry)
Bit Mnemonic Access Reset Type Definition

63:10 R 0 Reserved. Read as zero
9 ACTIVE RW1C 0 If read as 1, correspoinding interrupt is asserted. Write 1

to clear. Note when clearing Active, the Overflow bit is
also cleared, see bug3343.

8 OVERFLOW RW1C 0 Interrupt Cause Register Overflow.
7:0 CAUSE R 0 Interrupt Cause

May 14, 2014 446 Rev 51328

SiCortex Confidential 7.18. REGISTERS

When the Interrupt Cause register is over-written (that is, on the arrival of an ICR write or INT command
from the CSW for an ICR whose ACTIVE bit is set) the OVERFLOW bit will be set, and all other bits will be
left unchanged.

Writing 1 to ACTIVE will clear ACTIVE. Writing 1 to OVERFLOW will clear OVERFLOW. A write to either
bit will leave CAUSE as it was.

7.18.7 Interrupt Delivery Register

Register

R CacxIntDel

Attributes

-kernel

Address

0x00 1000

Bit Mnemonic Access Reset Type Definition

63:16 R 0 Reserved.
15:12 DEST W 0 Bus stop number of target segment.
11:8 ICRIDX W 0 Index into target segments ICR set.
7:0 CAUSE W 0 Interrupt Cause

7.18.8 Slow Interrupt Selection Register

Register

R CacxSlIntSel

Attributes

-kernel

Address

0x00 00C8 (plus base address)

May 14, 2014 447 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Bit Mnemonic Access Reset Type Definition

12 CswUnCorEccIntEn RW 0 Uncorrectable CSW ECC Interrupt is passed on to pro-
cessor INT[3] IRQ5

11 CswCorEccIntEn RW 0 Correctable CSW ECC Interrupt is passed on to processor
INT[3] IRQ5

10 L2UnCorEccIntEn RW 0 Uncorrectable L2 ECC Interrupt is passed on to processor
INT[3] IRQ5

9 L2CorEccIntEn RW 0 Correctable L2 ECC Interrupt is passed on to processor
INT[3] IRQ5

8 LACSlIntEn RW 0 Assertion of LAC (OCLA) Slow Interrupt is passed on to
processor INT[3] IRQ5

7 PMISlIntEn RW 0 Assertion of PMI Slow Interrupt is passed on to processor
INT[3] IRQ5

6 SCBSlIntEn RW 0 Assertion of SCB Slow Interrupt is passed on to processor
INT[3] IRQ5

5 FLSlIntEn RW 0 Assertion of Fabric Link Transciever Interrupt is passed
on to processor INT[3] IRQ5

4 DMASlIntEn RW 0 Assertion of DMA Slow Interrupt is passed on to processor
INT[3] IRQ5

3 FSWSlIntEn RW 0 Assertion of FSW Interrupt is passed on to processor
INT[3] IRQ5

2 UARTSlIntEn RW 0 Assertion of UART Interrupt is passed on to processor
INT[3] IRQ5

1 COHESlIntEn RW 0 Assertion of COHE Interrupt is passed on to processor
INT[3] IRQ5. COHE asserts this interrupt on occurrence
of an ECC error or DDR Calibration Timeout.

0 COHOSlIntEn RW 0 Assertion of COHO Interrupt is passed on to processor
INT[3] IRQ5. COHO asserts this interrupt on occurrence
of an ECC error or DDR Calibration Timeout.

7.18.9 Slow Interrupt Status Register

For more details, see the “Interrupts, Again” section of the Processor Segments chapter, (section 6.19.6).

Register

R CacxSlIntStat

Attributes

-kernel

Address

0x00 00D0 (plus base address)

May 14, 2014 448 Rev 51328

SiCortex Confidential 7.18. REGISTERS

Bit Mnemonic Access Reset Type Definition

12 CswUnCorEcc RW1C 0 Uncorrectable ECC detected on transfer from CSW
11 CswCorEcc RW1C 0 Correctable ECC detected on transfer from CSW
10 L2UnCorEcc RW1C 0 Uncorrectable ECC detected on transfer from L2 Cache
9 L2CorEcc RW1C 0 Correctable ECC detected on transfer from L2 Cache
8 LACSlInt R 0 LAC (OCLA) Slow Interrupt asserted
7 PMISlInt R 0 PCI/PMI Slow Interrupt asserted
6 SCBSlInt R 0 SCB Slow Interrupt asserted
5 FLSlInt R 0 Fabric Link Transciever Interrupt asserted
4 DMASlInt R 0 DMA Slow Interrupt asserted
3 FSWSlInt R 0 FSW Interrupt is asserted
2 UARTSlInt R 0 UART Interrupt is asserted
1 COHESlInt R 0 COHE Interrupt is asserted
0 COHOSlInt R 0 COHO Interrupt is asserted

7.18.10 L2 Cache ECC Mode Register

Register

R CacxEccMode

Attributes

-kernel

Address

0x00 0100 (plus base address)

Bit Mnemonic Access Reset Type Definition

5 L2TagDetEna RW 0 Enable ECC Error Detection on L2 tag accesses
4 L2TagCorEna RW 0 Enable ECC Error Correction on L2 tag accesses
3 CswDetEna RW 0 Enable ECC Error Detection on CSW transfers
2 CswCorEna RW 0 Enable ECC Error Correction on CSW transfers
1 L2DetEna RW 0 Enable ECC Error Detection on L2 transfers
0 L2CorEna RW 0 Enable ECC Error Correction on L2 transfers

7.18.11 L2 Cache ECC Test Register

Register

R CacxEccTestDat

Attributes

-noregtestcpu wr -kernel

Address

0x00 0108 (plus base address)

May 14, 2014 449 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Bit Mnemonic Access Reset Type Definition

5 L2DrvBadTag1 RW 0 Flip bit 1 of all future addresses written to the L2 Tag
array

4 L2DrvBadTag0 RW 0 Flip bit 0 of all future addresses written to the L2 Tag
array

3 CswDrvBadDat1 RW 0 Flip bit 1 of all words written to the CSW via IO write
or cache block displacement.

2 CswDrvBadDat0 RW 0 Flip bit 0 of all words written to the CSW
1 L2DrvBadDat1 RW 0 Flip bit 1 of all even words for all future 32 byte blocks

written into the L2 data array from L1 writebacks.
0 L2DrvBadDat0 RW 0 Flip bit 0 of all even words for all future 32 byte blocks

written into the L2 data array from L1 writebacks.

7.18.12 L2 Cache Status Register

Register

R CacxEccStat

Attributes

-kernel

Address

0x00 0110 (plus base address)

Bit Mnemonic Access Reset Type Definition

8 L2TagMultErr RW1C 0 Multiple ECC errors have occurred on an L2 tag lookup.
Write 1 to clear.

7 L2TagCorErr RW1C 0 Correctable error detected on an L2 tag lookup. Write 1
to clear.

6 L2TagUncorErr RW1C 0 Uncorrectable error detected on an L2 tag lookup. Write
1 to clear.

5 CswMultErr RW1C 0 Multiple ECC errors have occurred on a CSW transfer.
Write 1 to clear.

4 CswCorErr RW1C 0 Correctable error detected on a CSW transfer. Write 1 to
clear.

3 CswUncorErr RW1C 0 Uncorrectable error detected on a CSW transfer. Write 1
to clear.

2 L2MultErr RW1C 0 Multiple ECC errors have occurred on an L2 transfer.
Write 1 to clear.

1 L2CorErr RW1C 0 Correctable error detected on an L2 transfer. Write 1 to
clear.

0 L2UncorErr RW1C 0 Uncorrectable error detected on an L2 transfer. Write 1
to clear.

7.18.13 L2 Cache Data ECC Error Address Register

This register gets loaded on the first ECC error signaled by either the DATA array ECC checkers.

Register

R CacxL2EccAddr

Attributes

-kernel

May 14, 2014 450 Rev 51328

SiCortex Confidential 7.18. REGISTERS

Address

0x00 0118 (plus base address)

Bit Mnemonic Access Reset Type Definition

35:3 ErrAddr R 0 Address of word for first detected ECC error in L2 Cache
2:0 R 0 Reserved.

7.18.14 CSW ECC Error Address Register

This register gets loaded on the first ECC error signaled by the CSW ECC checker. It is cleared when the
corresponding correctable or uncorrectable error bit is cleared.

Register

R CacxCswEccAddr

Attributes

-kernel

Address

0x00 0120 (plus base address)

Bit Mnemonic Access Reset Type Definition

35:3 ErrAddr R 0 Address of word for first detected ECC from CSW transfer
2:0 R 0 Reserved.

7.18.15 L2 Cache Tag ECC Error Address Register

This register gets loaded on the first ECC error signaled by the Tag ECC checker. It is cleared when the
corresponding correctable or uncorrectable error bit is cleared.

Register

R CacxTagEccAddr

Attributes

-kernel

Address

0x00 0128 (plus base address)
Bit Mnemonic Access Reset Type Definition

35:3 ErrAddr R 0 Address of word for first detected ECC from a Tag lookup
2:0 R 0 Reserved.

7.18.16 L2 Cache ECC Error Syndrome Register

Each syndrome field is only meaningful if the corresponding correctable/uncorrectable error bit is set.

Register

R CacxEccSynd

Attributes

-kernel

May 14, 2014 451 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Address

0x00 0130 (plus base address)
Bit Mnemonic Access Reset Type Definition

15:8 CswSyndHi R 0 Syndrome from the high word of a CSW transfer.
7:0 CswSyndLo R 0 Syndrome from the low word of a CSW transfer.

The syndrome is only captured for ECC errors from CSW transfers. (This gives us insight into which bits are
failing on DIMMs. This is more valuable than knowing which bits are failing in on-chip RAMs. The register is
loaded on the FIRST detected CSW ECC error after the CorErr and UnCorErr bits have been cleared.

7.18.17 L2 Cache Send SPCL Request Address Range

The SPCL addresses must span a range of 16 maximum size physical pages (64kB), so that each page can be
mapped by the kernel into a separate user process. To send a SPCL, the program does a store instruction to an
address in the SPCL request address range. The address of the store, and the data that is stored, are combined to
produce the value that is driven onto the CSW Address bus along with the SPCL command. The CSW address
encoding is described in detail in section 7.10.6.

Note that these addresses must be on separate physical pages from all other local CAC control registers as these
will be accessible from user mode programs.

Register

R Spcl[0x3F FFFF:0]

Attributes

-noregtest -kernel

Address

0xE BE00 0000-0xE BEFF FFFC
Bit Mnemonic Access Reset Type Definition

23:0 SpclData W 0 Data to be delivered to DMA engine via SPCL command.

7.18.18 Coherence Engine ECC Mode Register

Register

R CohxEccMode

Attributes

-kernel

Address

0x00 0000 (plus base address)
Bit Mnemonic Access Reset Type Definition

2 DetDblEna RW 0 Enable ECC Error Detection on tag lookups. When as-
serted, any detected double bit error will trigger a slow
interrupt from this coherence widget. (See 7.18.8.)

1 DetSnglEna RW 0 Enable ECC Error Detection on tag lookups. When as-
serted, any detected single bit error will trigger a slow
interrupt from this coherence widget. (See 7.18.8.)

0 CorEna RW 0 Enable ECC Error Correction on tag lookups
Programmer’s note: Bugzilla 1990 finds that the behavior of the COH when CorEna is clear

could be unpredictable when an ECC error is detected in a master tag array. For this reason, the
CorEna bit should always be set to 1 when the COH is in use.

May 14, 2014 452 Rev 51328

SiCortex Confidential 7.18. REGISTERS

7.18.19 Coherence Engine ECC Test Register

Register

R CohxEccTestDat

Attributes

-kernel

Address

0x00 0018 (plus base address)

Bit Mnemonic Access Reset Type Definition

1 DrvBadDat1 RW 0 Flip bit 1 of word 0 in any tag written into any tag array
0 DrvBadDat0 RW 0 Flip bit 0 of word 0 in any tag written into any tag array

7.18.20 Coherence Engine ECC Status Register

Register

R CohxEccStat

Attributes

-kernel

Address

0x00 0020 (plus base address)

Bit Mnemonic Access Reset Type Definition

2 MultErr RW1C 0 While either CorErr or UnCorErr was set, a subsequent
ECC (single or double) error was detected. Write 1 to
clear.

1 CorErr RW1C 0 Correctable error detected on a tag lookup. Write 1 to
clear. If this bit and the DetEna bit in the CohxEccMode
register are both set, the Coh will send a slow interrupt
to each processor segment. One or more tag arrays may
have reported a single bit error in a given cycle.

0 UncorErr RW1C 0 Uncorrectable error detected on a tag lookup. Write 1 to
clear.

Note that MultErr is NOT asserted if two or more TAG arrays report an ECC error in the same cycle. MultErr
is only asserted if a new ECC error occurs while CorErr or UncorErr is alread asserted.

7.18.21 Coherence Engine ECC Error Address Register

This register gets loaded on the first ECC error signaled by the CSW ECC checker. It is updated only if CorErr
and UncorErr are both clear.

Register

R CohxEccAddr

Attributes

-kernel

May 14, 2014 453 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

Address

0x00 0028 (plus base address)

Bit Mnemonic Access Reset Type Definition

30:3 ErrAddr R 0 Address <34:7> of Block for first detected ECC tag
lookup

2:0 Array R 0 Which tag array had the problem? If multiple arrays re-
ported an error, the lowest numbered array is reported
here.

7.18.22 Twice9+ Coherence Engine ECC Error Address Register

For Twice9+ this new 64 bit SCB register gets loaded on the first ECC error signaled by the CSW ECC checker.
It is updated only if CorErr and UncorErr are both clear.

Register

R CohxEccAddrTwcPlus

Attributes

-kernel -Product=TWC9A+

Address

0x00 0050 (plus base address)

Bit Mnemonic Access Reset Type Product Definition

47:7 ErrAddr R 0 TWC9A+ Address <47:7> of block for first detected tag lookup
ECC error.
Some number of MSB bits are padded with zeros depend-
ing on the design revision.

6:0 Array R 0 TWC9A+ Identifies which tag array had the problem. If multiple
arrays reported an error, the lowest numbered array is
reported here. MSBs are padded with zeros depending on
the number of tag arrays in the specific design revision.

7.18.23 Coherence Engine ECC Error Syndrome Register

Register

R CohxEccSynd

Attributes

-kernel

Address

0x00 0040 (plus base address)

Bit Mnemonic Access Reset Type Definition

7:0 ErrSyndrom R 0 Syndrome of first detected ECC error from Master Tag
Lookup

7.18.24 Coherence Engine Active Processor Segment Register

Register

R CohxNumSegs

May 14, 2014 454 Rev 51328

SiCortex Confidential 7.19. REGISTER ALLOCATION

Address

0x00 0048 (plus base address)
Bit Mnemonic Access Reset Type Product Definition

6:3 ActiveSegCountTwc RW 10 TWC9A+ Number of L2 Segments currently enabled for operation.
Must be either 1 or 10.

2:0 ActiveSegCount RW 6 Number of L2 Segments currently enabled for operation.
Must be either 1 or 6.

The NumSegs register allows the chip to be configured as a uniprocessor, if necessary. The value in this register
must be set prior to initial program load. The value from this register is loaded into the appropriate INVDONE
counter whenever the COH sends out a PRBINV request on behalf of a processor or PMI device. (A transaction
that causes a PRBINV is not complete until all active L2 segments have sent an INVDONE signal to the appropriate
COH. See section 7.12.3.5.)

7.19 Register Allocation

This chapter instantiates the six copies, plus the local copy of CAC registers. It also instantiates the two sets
of COH control registers.

7.19.1 CacLoc

Register

R CacLoc* : R Cacx*

Address

0xE 9E00 0000-0xE 9EFF FFFF

7.19.2 Coho

Register

R Coho* : R Cohx*

Address

0xE 0000 0000-0xE 00FF FFFF

7.19.3 Cohe

Register

R Cohe* : R Cohx*

Address

0xE 0900 0000-0xE 09FF FFFF

May 14, 2014 455 Rev 51328

SiCortex Confidential CHAPTER 7. L2 CACHE COHERENCE AND SWITCH

May 14, 2014 456 Rev 51328

Chapter 8

Memory Controller

[Last modified $Id: memctl.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

8.1 Overview

The ICE9 chip has two built-in memory controllers, each of which interfaces to one 1-GB, 2-GB, 4-GB, or 8-GB
72-bit DDR2 SDRAM DIMM. The chip accomodates memory clock rates of 267, 333, and 400 MHz, corresponding
to data rates of 533, 667, and 800 MHz, respectively.

The memory controller functionality is partitioned accross two functional units, DDR and DDP. The DDP unit
contains the DDR2-PHY, which is implemented as a hard IP macro (purchased from Esilicon). The DDR Unit is
composed of the following subsections:

1. DDI - Interface block between the DDR2 Controller (DDC) and the Coherence Controller (COH). Designed
by SiCortex.

2. DDC - DDR2 SDRAM controller IP logic block. Purchased source code from Northwest Logic and synthesized.

3. DDD - Read datapath interface to DDR2 PHY

The two instances of the DDR unit are referred to as the “even”and ’odd”DDR units. The “even”DDR instance is
ddre (sometimes called ddr0), while the “odd” instance is ddro (sometimes referred to as ddr1). The even instance
is on the east side of the die. The instances are distinguished by the static input pin tie ddrx id (for ddre/ddr0 it is
tied to 1’b0(GND), while for ddro/ddr1 it is tied to 1’b1 (VDD)). The two instance of the DDP unit are similarly
named, however their is no need for a static signal to distinguish them since a given instance of DDP does not need
to know whether it is the “even” or “odd” instantiation.

8.2 Differences, Bugs, and Enhancements

8.2.1 Product and Chip Pass Differences

1. ICE9B fixes the DDR unit to support IO driver calibration before the DRAM initialization sequence, bug2276.
In ICE9A the Ddr/Ddp units currently only support updating values into the IMP P HV[3:0] and IMP N HV[3:0]
inputs of the DDR2 IO cells during one of the mission mode time CalModes. When SoftReset is asserted the
PHY puts in default strong values (low impedence biased) into these.

2. ICE9B fixes some of the ODT on/off range values, bug2401. The NWL controller was supposed to support
the following range of ODT turn on/off times for Ice9a’s DDR-Phy: ON time range: controlled by Ddrx-
PhyCfg2 AsicDqsOdtOn and DdrxPhyCfg2 AsicDqOdtOn -2.5 clocks <-> 0 clocks (in half cycle increments)
relative to the start of the read preamble OFF time range: controlled by DdrxPhyCfg2 AsicDqsOdtOff and
DdrxPhyCfg2 AsicDqOdtOff -1.5 clocks <-> 2 clocks (in half cycle increments) relative to the start of the
read preamble. However, the bug causes the -2.5 and -2 clocks turn on times to NOT work with turn off
times of 1.5 and 2 clocks.

3. TWC9A fixes access to any SCB bus slave hanging while the DDR controller is in reset, bug2928.

457

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

4. NEED IMPL: TWC9A drops support for unbuffered DIMMs.

8.2.2 Known Bugs and Possible Enhancements

1. Calibration Mode 2 can cause Ddi to hang waiting for Powerdown, see bug2013. When setting AutoCalUpdate
in cal mode 2 (update during prechargePowerdown), the Ddi can hang. This is caused when a request is at the
head of the queue requesting to be sent to the controller at the time we start the calibration update process.
The calibration logic spins in place waiting for powerdown entry. However, this pending request causes the
powerdown counter to be cleared on every cycle, which blocks the Ddr from ever entering powerdown mode.
To workaround, do not use calibration mode 2.

2. The DDR bank address could be changed to better optimize page hits, bug2068.

8.3 General Description

8.3.1 Clocks

The memory interface has two clock domains: CCLK and DCLK. CCLK is the same clock used on the core
side of DDR (COH and CSW units) and logic which runs on the DCLK which is same clock used by DDC, the
DDR2-PHY and the DDR2 SDRAM DIMMs (Note that some of the logic really runs off of DM90CLK which is a
minus 90 degree shifted version of DCLK).

The required relationship between the clock is:
CCLK <= DCLK < (2 * CCLK)/1.05
Note that since DCLK (or DM90CLK) is also used for driving clocks to the DIMM and the PHY’s DLLs it has

the addition restriction that 125MHz <= DCLK <= 465MHz (125MHz correlates to the maximum tCK cycle time
supported by target DIMMs and 465MHz is the maximum frequency supported by the True Circuits analog DLLs
used in the PHY).

Table 8.1: Recommended DCLK to CCLK relationships

DCLK CCLK

267 MHz 140 MHz - 267 MHz
333 MHz 175 MHz - 333 MHz
400 MHz 210 MHz - 400 MHz

Note that the Analog Bits PLL used on the ASIC drive out a two clocks at DCLK frequency: PLLOUT 1 and
PLLOUT 2 which is shifted positive 90 degress relative to PLLOUT 1. Thus DCLK must be tied to PLLOUT 2
and DM90CLK tied to PLLOUT 1 in order to achieve the desired minus 90 degree shift.

8.3.2 Reset and Initialization

Startup sequence for the DDR interface to come up correctly.which will cause R DdrxDdcDdpSoftReset to
assert)

1. At startup, power will be brought up for the ICE9 and for the DIMMs (in accordance with JEDEC standard
JESD79-2B 2.3.1a (page 9)).

2.Global reset will be asserted from before the start of power-up and kept asserted during power-up. (This is
to address the JEDEC mandate of attempting to maintain CKE below 0.2*VDDQ and ODT at a low state during
power-up (they are asynchronously pulled low when reset is asserted).

3. The dclk resets (reset e1der l and reset e1dor l) must remain asserted for at least 1us after the power ramp
has been completed. (This is a requirement of the analog DLLs used in the DDR2-PHY).

4. After all clocks are appropriately configured and stable (at least those relevent to memory operation: cclk,
d0clk, d1clk, d0m90clk, d1m90clk) deasset the cclk and dclk resets.

HERE NEED TO ADD CONFIGURING OF CK IO DRIVE STRENGTH THEN RELEASE THE RESET
FOR THE CLOCK FLOPS

5. The deassertion of the dclk resets will cause clocks to be driven to the DIMMs (JEDEC requires a min of
200us of stable clock, some or all of which can be satisfied in the shadow of steps 6 -> 11, which would reduce the
delay value required by R DdrxDdcMemCfg3 Delay).

May 14, 2014 458 Rev 51328

SiCortex Confidential 8.3. GENERAL DESCRIPTION

Note 5-1: The inital value of R DdrxDdcDdpSoftReset will keep the memory controller and DDR2-PHY IP
blocks (DDC/DDP) in reset.

Note 5-2: The initial value of R DdrxDdiMemLoopBack we be such that any memory references received by
the DDR units will be looped back such that they receive completion notification.

6. Write a 0 to R DdrxDdpDLLReset to deassert reset to the PHY DLLs.

Note 6-1: The minimum total assertion time of R DdrxDdpDLLReset is 1us after the power ramp completes
(clocks need to be stable for at least a few cycles before this reset is deasserted).

Note 6-2: After R DdrxDdpDLLReset is deasserted no reads can go out to memory for 500 cycles while the
DLLs are possibly unlocked.

7. Based on data obtained from the DIMMs Serial Presence Detect through the on die I2C Master Controller
and from data on the DIMM configuration provided via the Module Service Processor (MSP), the boot pro-
cessor will then write the CSR registers R DdrxDdcMemCfg1-5, R DdrxDdcDIMMODT, R DdrxDdpODT, and
R DdrxDIMMSize via the SCB bus. The boot processor may also write the registers R DdrxDdiMifCfg1-2 and
R DdrxDddRdDelay, otherwise the defaults will be used (R DdrxDdiMifCfg1-2 can be modified via the SCB at
runtime also).

8. Write appropriate values to R DdrxPhyCfg1-3 and R DdrxDddRdDelay if the defaults prove inadequate.

9. The values of R DdrxDdpDLLLane0-8 will need to be set. This step can be satisfied with known good values
or some values which be adjusted as decribed in the section below “PHY Read Path DLL Calibration”.

10. The boot processor will them write a 0 to R DdrxDdcDdpSoftReset to deassert the soft reset to DDC and
DDP.

11. After the boot processor has insured that there are no outstanding read or write requests (i.e. no
TIDs are in flight (this may involve some sequence of memory ordering directives)), it will then write a 0 to
R DdrxDdiMemLoopBack.

12. Once the DDC / DDP soft reset is deasserted, DDC will begin issuing an initialization sequence compliant
with the JEDEC standard, and DDI will begin queuing up read and write requests.

13. Issue a memory test sequence (note that failure of the memory test must not be considered a fatal startup
error such that it blocks testing to calibrate the PHY DLLs.

14. Clear memory (write 0s to all locations).

8.3.3 Serial Presence Detect

DDR2 SDRAM memory DIMMs interfacing to ICE9 must implement Serial Presence Detect in accordance with
JEDEC Standard No. 21-C. Details discussed herein (in particular the SPD byte #s address mapping), reference
the preliminary publication of “Appendix X: Serial Presence Detects for DDR2-SDRAM (Revision 1.2).

On the board, the even side DIMM (on the east side of the chip and interfacing to ddre / ddr0) will be hard
coded with its SDA[2:0] inputs tied to 000, resulting in an I2C address of 0x50, while the odd side DIMM will have
its SDA[2:0] inputs tied to 001, resulting in an I2C address of 0x51.

8.3.4 PHY Read Path DLL Calibration

For detailed structural information on the DLL used in the PHY, see the corresponding subsection of the “DDP
Unit - DDR2 SDRAM PHY IP Block” section of this specification. This section describes the process for software
to figure out optimal DLL settings for each of the 9 byte lanes of each DDR interface. The process is for software
to sweep through DLL settings, doing a read with each value, to figure out an eye window. The center of the eyes
will point to the best DLL settings. There are a number of issues which need to be addressed with software and
hardware support:

1. The processor running the software doesn’t see the ECC. To address this, the hardware includes CSRs which
capture the ECC value of data transfered in association with read requests to memory.

2. An incorrect DLL settings can result in the PHY not returning any read data. To deal with this the hardware
has a mode (controlled with R DdrxDdiRdTimeOutAutoComplete) to prevent hanging. Some clean up of internal
state is required before the next read access attempt (controlled with R DdrxDdiRdPathRst).

3. An incorrect DLL setting can result in the PHY returning incomplete read data. R DdrxDdiRdPathRst is
used in between read attempts to insure the read datapath is returned to a known good state before attempting
the next read.

May 14, 2014 459 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

8.3.4.1 Overview of DLL calibration process

Since each byte lane has two DLLs, the basic idea is to fix the DLL setting for one of the DLLs (referred to
as the reference DLL). Do a number of reads as the other DLL is sweeped across a range which is expected to
include its eye. Then change the reference DLL and again do reads while sweeping the other DLL. Since each DLL
has 160 steps, it would take alot of reads to sweep the entire space. We can reduce the search window because we
know that Slave1 will need to be close to 1/4 of the reference cycle. Based on the analysis provided in the DLL
subsection of the DDP Unit section of this specification, it is recommended that Slave1 be used as the reference
DLL, and it should sweep from 0 to 38. The Slave 0 DLL needs to sweep a range which covers the min to max
trace length delay for byte lanes. The Slave 0 sweep range is recommended to be 1-134.

8.3.4.2 DLL Calibration flow

Suggested DLL calibration flow (Note that these steps need to be executed for both of DDR interfaces. Total
calibration time can be reduced by doing them in parallel, but care should be taken to insure they don’t alias to
the same address in any of the cache levels).

1. Go though reset and initalization sequence as discussed above.

2. Set R DdrxDdiECCCaptureEnable EnableRdECCCapture

3. Set R DdrxDdiRdTimeOutAutoComplete Enable CSR to enable auto completion of reads that hang.

4. Issue a write of a signature pattern such that the write is pushed all the way to DRAM.

Note 4-1 The signature should be chosen carefully so that the each of the 9 byte lanes recieves unique data over
the 8 bursts of the read returned from the DIMM. Especially note we want the 8 burst of the ECC to be unique
also, so that pattern accross each 8B chunk should factor that in.

5. Wait for the write to complete (TID is released).

6. Issue a read to the same address as the previous write, such that the read is issued all the way to DRAM.

7. A few cycles after the read data is driven onto the CSW bus, copies of the ECC bits are written into the
CSRs R DdrxDdiRdECCCapture0-1.

8. Wait for read data to return to the processor.

9. Compare the read data with the expected value. Use the SCB bus to access R DdrxDdiRdECCCapture0-1.
A byte lane must compare correctly for all of its 8 transfer bursts.

10. Check R DdrxDdiRdTimeOutAutoComplete RdHang, if it is set then interpret this to mean that all the
byte lanes failed for the given set of DLL settings.

11. Based on the results of steps 9 and 10 log the sucess/failure result for each of the 9 byte lanes.

12. Write new values to R DdrxDdpDLLLane0-8 Slave0Adj and possibly R DdrxDdpDLLLane0-8 Slave1Adj.
(according to the DLL spec it takes “a couple of cycles” for the DLL to operate glitch free at the new settings, the
time to execute steps 13-15 should more than account for this).

13. Write a 1 to R DdrxDdiRdPathRst.

14. Write a 0 to R DdrxDdiRdPathRst.

15. Clear R DdrxDdiRdTimeOutAutoComplete RdHang (it is W1C).

16. Loop back to step 6.

8.3.5 DIMM Requirements

1. 240 Pin DDR2 SDRAM Unbuffered or Registered DIMM.

2. x72 DIMM (72 total data pins, 64 data plus 8 check bits (referred to as ECC DIMMs).

3. DRAM chips on the DIMM are x8 chips (9 on single rank DIMMs, 18 on dual rank DIMMs), and are one of
the following sizes: 512 Mb, 1 Gb, 2 Gb, or 4 Gb. Note that this implies the chips have 4 or 8 banks (2 or 3 bank
address bits) and 10 column address bits.

4. Transfer rate requirement: 266, 333, or 400 MHz tCK. Note 266 MHz may not be supported in systems
where CCLK is faster than 266 MHz.

May 14, 2014 460 Rev 51328

SiCortex Confidential 8.3. GENERAL DESCRIPTION

Table 8.2: Supported memory configurations per DDR interface (half of the total main memory connected to each
ICE9 chip).

Note that 4 rank configurations are not targeted because the DDR2-PHY is not designed to operate at full speed
with the loading of a 4 rank configuration.
DIMM Configuration DRAM chips Target Configuration

1GB (2 rank) * 18-512Mb (64Mx8) chips YES
1GB (1 rank) 9-1Gb (128Mx8) chips YES
2GB (1 rank) 9-2Gb (256Mx8) chips YES
2GB (2 rank) 18-1Gb (128Mx8) chips YES
4GB (1 rank) 9-4Gb (512Mx8) chips NO
4GB (2 rank) 18-2Gb (256Mx8) chips YES
4GB (4 rank) 36-1Gb (128Mx8) chips YES
8GB (2 rank) 18-4Gb (512Mx8) chips NO
8GB (4 rank) 36-2Gb (256Mx8) chips NO
16GB (4 rank) 36-4Gb (512Mx8) chips NO

* Note that this configuration requires setting R DdrxDdcMemCfg3 Bankbits = 0

8.3.6 Addressing

The ICE9 chip has a 64GB address space, 32GBs of which is for main memory (cacheable). Each instance of
the DDR unit can interface with up to 16GB of memory (the 16GB is logically possible based on the functionality
of the design, however the target maximum is 8GB because of physical design issues and the expectation that the
largest DIMMs available in 2 or less rank configurations will be 8GB DIMMs in the foreseeable future). Because
of the 64GB address space the address bus has 36 bits (35:0), however the DDR units drops bits for the following
reasons:

1. Bit 35 is dropped because it is always 0 for main memory references.

2. Bit 6 is dropped because it is used to decide which DDR interface a request goes to

(i.e. it is always fixed for a given interface).

3. Bits 2:0 are not used because byte addressable requests are not supported by DDR2.

So for example the incoming address coh ddr RdAddr c2a[35:0] becomes addr[34:7,5:3] => addr[33:3]. Addr[33:3]
is the format used within the DDR unit.

The DDR section handles 64B memory references (including ECC they are 72B requests). Reads presented to
the DDR unit are required to be full 64B reads. It returns the requested quadword (QW) (128 bits + 16 bits ECC)
first for read requests according to Table 6.1. The read address presented to memory is QW aligned (i.e. address[3]
is always driven LOW on the address send to DDC). The only supported write transaction sizes are 64B and 32B.
Write requests for 64B blocks must be aligned such that the starting address is 000 (the starting address is specified
by bits [5:3] of the incomming address). 32B writes are converted into 64B memory writes with the byte mask bits
driven “low” to prevent updating memory for the invalid part of the transfer. Write requests for 32B blocks must
be aligned such that the starting address[5:3] is 000 or 100.

Table 8.3: Data Transfer Order

Address[7:0] Address[5:4] Order of doublewords
(DWs) out of DIMM

Data on CSW
{Data0, Data1, Data2, Data3, Data4, Data5, Data6,
Data7}

0x00 or 0x08 00 0,1,2,3,4,5,6,7 {0, 1, 2, 3, 4, 5, 6, 7}
0x10 or 0x18 01 2,3,0,1,6,7,4,5 {2, 3, 0, 1, 6, 7, 4, 5}
0x20 or 0x28 10 4,5,6,7,0,1,2,3 {4, 5, 6, 7, 0, 1, 2, 3}
0x30 or 0x38 11 6,7,4,5,2,3,0,1 {6, 7, 4, 5, 2, 3, 0, 1}

May 14, 2014 461 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Table 8.5: Types of Memory writes:

Given that the order of write data arriving at DDR from CSW is:
{Data0, Data1, Data2, Data3, Data4, Data5, Data6, Data7}.
“None” => write mask bits are deasserted so that data in not overwritten in main memory.

coh ddr WrHalfMask c4a coh ddr WrAddr c4a[5] Order of data sent out to memory

‘E CohHalfMask W64 0 {Data0, Data1, Data2, Data3, Data4, Data5, Data6, Data7}
‘E CohHalfMask W64 1 {Data4, Data5, Data6, Data7, Data0, Data1, Data2, Data3}
‘E CohHalfMask L32 0 {Data0, Data1, Data2, Data3, None, None, None, None}
‘E CohHalfMask L32 1 {None, None, None, None, Data0, Data1, Data2, Data3}
‘E CohHalfMask H32 0 {Data4, Data5, Data6, Data7, None, None, None, None}
‘E CohHalfMask H32 1 {None, None, None, None, Data4, Data5, Data6, Data7}

May 14, 2014 462 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

8.3.7 Interface Between DDR and the Coherence Controller (COH)

Table 8.7: COH/DDR Interface

Signal name Description

coh ddr RdValid c2a Asserted to signify a read request is being sent from COH to DDR
coh ddr RdAddr c2a[35:3] Address of a read request. Qualified by coh ddr RdValid c2a
coh ddr RdTID c2a[4:0] TID of a read request. Qualified by coh ddr RdValid c2a
coh ddr RaWShootDown c3a Asserted to shoot down the read which was issued one cycle earlier
coh ddr RdShootDown c4a Asserted to shoot down the read which was issued two cycles earlier.
coh ddr WrValid c4a Asserted to signify a write request is being sent from COH to DDR
coh ddr WrHalfMask c4a[1:0] See “Table 2: Types of Memory Writes” for a description of how

the half mask is used. Qualified by coh ddr WrValid c4a.
coh ddr WrAddr c4a[35:3] Address of write request. Qualififed by coh ddr WrValid c4a
coh ddr WrTID c4a[4:0] TID of write request. Qualified by coh ddr WrValid c4a
coh ddr Data0 c4a[71:0] Write DW0
coh ddr Data1 c4a[71:0] Write DW1
coh ddr Data2 c5a[71:0] Write DW2
coh ddr Data3 c5a[71:0] Write DW3
coh ddr Data4 c6a[71:0] Write DW4
coh ddr Data5 c6a[71:0] Write DW5
coh ddr Data6 c7a[71:0] Write DW6
coh ddr Data7 c7a[71:0] Write DW7
ddr coh WrTIDVal c5a Asserted when a write has been completed (safe to resue the TID)
ddr coh WrTID c5a TID of a completed write request, Qualified by

ddr coh WrTIDVal c5a
ddr coh BackPressure c5a Asserted if DDR can’t accept anymore requests
ddr coh DataValid c2a Asserted when a read is returning data.
ddr coh DataTarget c2a[8:0] CSW target vector corresponding to read data return. Qualified

by ddr coh DataValid c2a
ddr coh RdShotDown c2a Asserted when a read shoot down has been completed.
ddr coh DataTID c2a[4:0] Contains the TID for either:

1. Read data returning, Qualified by ddr coh DataValid c2a
2. Read which was shotdown, Qualified by
ddr coh RdShotDown c2a

ddr coh Data0 c2a[71:0] Read DW0
ddr coh Data1 c2a[71:0] Read DW1
ddr coh Data2 c3a[71:0] Read DW2
ddr coh Data3 c3a[71:0] Read DW3
ddr coh Data4 c4a[71:0] Read DW4
ddr coh Data5 c4a[71:0] Read DW5
ddr coh Data6 c5a[71:0] Read DW6
ddr coh Data7 c5a[71:0] Read DW7

8.4 DDI Section

8.4.1 Overview

The DDI block is the interface between the Coherence Controller (COH) and DDR2 Controller (DDC). The
DDI accepts requests (read and write commands) from the COH and issues them to the DDC. DDI has two clock
domains, the CCLK which interfaces with the COH, and the DCLK domain which interfaces with the DDC. All
clock domain crossings are done using standard dual rank pulse synchronizers.

May 14, 2014 463 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

May 14, 2014 464 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

May 14, 2014 465 Rev 51328

S
iC
o
rtex

C
o
n
fi
d
en
tia

l
C
H
A
P
T
E
R

8
.

M
E
M
O
R
Y

C
O
N
T
R
O
L
L
E
R

RdValid/Addr/TID

COH INTERFACE

WrValid/Addr/TID/HalfMask

RaW/RdShootdown

Addr//r_req/w_req

busy

ddc_ddi_d_req_d11a

Read Input Fifo
CCLK to DCLK synchronizing fifo
(DdrDdiReqSycCD)
18 entries by 36bits

Write Input Fifo
CCLK to DCLK synchronizing fifo
(DdrDdiReqSycCD)
18 entries by 38bits

Bank fifo
2 entries by 36bits

Bank fifo
2 entries by 36bits

8 total Rd Bank
Fifo instances

Bank fifo
2 entries by 36bits

Bank fifo
2 entries by 36bits

8 total Wr Bank
Fifo instances

1st level Arbiter
(Round robin)

1st level Arbiter
(Round robin)

2nd level Arbiter

csr_ArbPrefWheel[7:0]

OutFlop

State Machine

(Determines when to send request to DDC)

state vecotor:
{bypass_val, outflop_val, (busy | power_down)}

states:
STATE_0_IDLE
STATE_1_IDLE
STATE_2_ACCEPT_NORMAL1
STATE_3_REFUSE_NORMAL
STATE_4_ACCEPT_BYPASS
STATE_5_REFUSE_BYPASS
STATE_6_ACCEPT_NORMAL2
STATE_7_ILLEGAL

Read Return Pending Fifo
DCLK to CCLK synchronizing fifo
(DdrDdiReqSycDC)
8 entries by 5bits

allocate,
RdTID

ShdFwdPathTransfer Fifo
DCLK to CCLK synchronizing fifo
(DdrDdiReqSycDC)
8 entries by 5bits

m_RdShdVec_c4a[19:0] CLK to DCLK synchronizer
(DdrDdiReqSycNonFifoCD)

m_RdShdVec_copy_d5a[19:0]

idex

alloc

ddd_ddi_DataValid_c1a

de-alloc

Data / RdShotdown TID

ddr_coh_RdShotDown_c2a

ddr_coh_DataValid_c2a

idex

em
pt

y

de
-a

llo
c

Function tid2Targetddr_coh_DataTarget_c2a

Wr Complete Transfer Fifo
DCLK to CCLK synchronizing fifo
(DdrDdiReqSycDC)
4 entries by 5bits

Wr Data Pending Fifo
4 entries by 9bits

C
C

L
K

 D
O

M
A

IN

D
C

L
K

 D
O

M
A

IN

allocate,
WrTID,
WrAddr[5],
WrHalfMask

WrTIDddr_coh_WtTID_c5a

ddr_coh_WtTIDVal_c5a

ddi_ddc_datain[143:0]

Wr Data RF (written on CCLK read on DCLK)
20 entries by 144 bits
DdrDdiDatWrf
ar01

Logic and state machine to generate
RF read enables and the data mask
(DM) for writes

WrTID,
WrAddr[5],
WrHalfMask

Wr Data RF (written on CCLK read on DCLK)
20 entries by 144 bits
DdrDdiDatWrf
ar23

Wr Data RF (written on CCLK read on DCLK)
20 entries by 144 bits
DdrDdiDatWrf
ar45

Wr Data RF (written on CCLK read on DCLK)
20 entries by 144 bits
DdrDdiDatWrf
ar67

C
C

L
K

 D
O

M
A

IN

D
C

L
K

 D
O

M
A

IN

{coh_ddr_Data1_c4a, coh_ddr_Data0_c4a}

{coh_ddr_Data3_c4a, coh_ddr_Data2_c4a}

{coh_ddr_Data5_c4a, coh_ddr_Data4_c4a}

{coh_ddr_Data7_c4a, coh_ddr_Data6_c4a}

de-allocalloc

DDI Logic Block Diagram

MEB

MEB

MEB

MEB

ADRB

ADRB

ADRB

ADRB

ddi_ddc_dm_d12a

M
ay

1
4
,
2
0
1
4

4
6
6

R
ev

5
1
3
2
8

SiCortex Confidential 8.4. DDI SECTION

8.4.2 Request Path

DDI can accept one read and one write command every cycle, and is structured to handle up to a total of 20
write requests and 20 read requests. Each request comes with an associated address, TID, and a valid signal. Write
requests arrive coincident with the first cycle of the write data transfer. The request path for reads and writes
are separate for most of DDI, allowing read and writes to pass each other (the COH prevents hazards). Incoming
requests are flopped into a flop-based synchronizing fifo (one for reads and another for writes). Requests are read
out of the input fifo on the DCLK and transfered to a bank fifo (based on the bank bits of the address). Since DDC
is designed to manage 8 banks of memory, DDI has 8 read bank fifos and 8 write bank fifos. The head entry of the
bankfifos arbitrate for access to DDC. Each cycle, a two-level arbiter selects a request to send to the DDC (if there
is a valid one). The first level has parallel arbiters (one for reads, and one for writes), each of which round-robins
between the valid head entries of the 8 bank FIFOs. The second level chooses which wins. The grant algorithm
gives preference to reads for a fixed number of consecutive grants, then to writes for a fixed number of consecutive
grants (the ratio of reads to write grant preference is set through a configuration register). In any cycle where no
reads or writes are bidding from any of the bank FIFOs, the arbiter will select the head entry of the read input
FIFO if it is valid. The request which wins arbitration is flopped and goes through logic to be issued to the DDC.

Refer to the DDC section for documentation and waveforms decribing the interface between DDI and DDC for
issuing requests to DDC.

When the DDC accepts a write request, the write request is pushed onto the Write Data Pending Fifo where
it will remain until the DDC asks for the associated write data (There is no fixed timing between when the DDC
accepts a write request when it will be ready to accept the write data). When DDC asks for the write data (which
is supplied by the data path logic) the entry is deallocated from the Write Data Pending Fifo so the TID of this
completed write can be sent to the COH. This is the point where the COH can safely release the write from the
Write Back Cam. The TID needs to be synchronized back over to the CCLK domain before sending it to the COH.
This is done through the Write Complete Transfer Fifo.

When the DDC accpets a read request, the read request is pushed onto the Read Return Pending Fifo which
synchronize from the DCLK to CCLK domain. The head entry is deallocated (providing the TID) when the DDD
section signifies the return of read data. The Read TID is used to construct the CSW target vector.

8.4.3 Read Shoot Down

The request path incorporates logic to allow reads to be shot down. This allows the COH to issue reads
speculatively to improve performance and also to kill reads which would cause a RAW hazard due to a write in
DDI which has not as yet completed. By the time the shoot down signal is received in DDI, the read may be in
the forward path (not yet issued to DDC) or the return path (in the Read Return Pending Fifo). Shoot down
commands are logged into a vector (m RdShdVec c4a[19:0]), where each entry corresponds to one of the 20 possible
TIDs available for read usage. When a read request is issued from COH it clears the corresponding entry in the
shoot down vector, and when a shootdown is received from the COH it sets the corresponding entry. Because the
TID is used to execute the shootdown, DDI cannot accept another request with the same TID until the shootdown
completion has been confirmed via the ddr coh RdShotDown c2a / ddr coh DataTID c2a signal set.

In the forward path, reads that win arbitration for access to DDC are checked against a DCLK domain copy
of the shoot down vector (m RdShdVec copy d5a[19:0]) and not issued to DDC if the corresponding entry is set.
Instead of entering the Read Return Pending Fifo, the TID of the “dropped read” is allocated into the Shootdown
Forward Path Transfer Fifo which synchronizes over to the CCLK domain. The head entry will deallocate, cause
the assertion of ddr coh RdShotDown c2a, and drive the shotdown TID onto ddr coh DataTID c2a (this is done
during a cycle where ddr coh DataValid c2a will not assert (DDI knows a cycle adhead of time before data will
return)).

In the return path, when read data returns the head entry of the Read Return Pending Fifo provides the TID
to index into m RdShdVec c4a[19:0]. If the corresponding bit set, then ddr coh RdShotDown c2a will assert while
ddr coh DataValid c2a is forced low and the shotdown TID is driven onto ddr coh DataTID c2a.

8.4.4 Data Path

Write Data arrives at DDI piped into 4 consecutive144-bit chunks (128b data + 16 ECC bits). The first
144-bits arrives coincident with the write valid signal, TID, HalfMask, and destination address. When the write
request arrives the address is checked to make sure it is not outside the range of the memory defined by the DDR
configuration registers. The write data is stored in a register file, indexed by the WrTID. The register file is written

May 14, 2014 467 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

in the CCLK domain when the request is issed from COH, and is read out on the DCLK domain when the DDC
requests the data for a write request which was previously accepted. The delay between with the register file is
written and the earliest DDC can request the write data is guaranteed to be long enough to avoid a synchronization
violation on the register file. When data is read out of the register file it is sent to DDC in 4 consecutive 144-bit
chunks.

The details of the read datapath are discussed below in the DDD section and DDP unit descriptions.

8.4.5 Requests to non-existent memory

Request to non-existent memory are accesses which have upper address bits set which are outside of the range
for the selected DRAM configuration. The CSR DdrxDdiMifCfg1 MemAddrSize[2:0] is used to determine if a
request is to non-existent memory. Based on this CSR, the upper bits or the address presented to DDC are forced
low (forces address aliasing). The memory requests will complete as normal using the aliased address (i.e. writes
to non-existent memory are software errors which will result in data corruption).

It is required that DdrxDdiMifCfg1 MemAddrSize[2:0] be set correctly, otherwise a read to non-existent memory
could case fatal errors in the read return logic by resulting in a read which does not get a response from memory
(i.e. it maps to a chip select for a non-existent rank). This would throw off the fifo pointers in the read return logic
causing reads to return data that was meant to correspond to subsequent reads.

8.4.6 Powerdown

The memory interface includes logic to issue power-down commands to memory if the interface is idle for a
user controller number of cycles. Using power-down reduces the power dissipation in the memory DIMMs. It is
expected that enabling power-down will have a minimal impact on performance, since wake up from powerdown
is on the order of a few cycles. Any impact can be mitigated by increasing the number of idles required before
power-down is entered. It may be possible for power-down to impact performance for some code patterns.

8.4.7 Read Time-Out

The DDR unit includes read time-out detection logic which is intended as a debug tool for improperly configured
systems (for example if the settings of the DLL in the PHY are incorrectly programmed potentially causing the
return of read data to be dropped). The read time-out logic can be used to indicate such a problem. It is not
intended for use during normal system operation. It will not precisely indicated which particular read has hung,
and it may fire after allowing numerous returns of bad read data in a poorly configured system. The reason for this
is that reads return in order. Thus if a particular read is dropped, any subsequent read returning will be applied
to the wrong requester. Thus it is only after reads have stoppped returning, that we can be sure that there is a
problem when DDR still has one or more reads waiting for data.

In general, we can bound the amount of time that a read should be outstanding once it has been issued to DDC
(the Northwest logic memory controller). Since the read-time out logic is never expect to be needed during normal
operation the count was chosen to much larger than necessary to be conservative. The count used is 4096 clock
cycles (which is probably 8 times the real worst case).

Each of the 28 TIDs have an associated counter which can count to 4096 dclk cycles. When DdrxDdiRdTime-
Out Enable is set, these counters are enabled to start counting when a read of the corresponding TID is issued
from DDI to DDC. DdrxDdiRdTimeOut Enable will be set to a 1 if a read hang is dectected for any read TID (this
is sticky and will remain set until it is cleared via the SCB bus (note it is W1C ’write one to clear’, so software
must write a 1 to the corresponding bit place in order to clear it out)).

If DdrxDdiRdTimeOut AutoCompletion is set, then if a read is determined to have hung, the DDR unit will
return a fake completion message (assertion of ddr coh DatValid c2a or ddr coh RdShotDown c2a). The DDR
unit will return whatever data values are in its read data path flops. Note that if the read data was corrupted it
may result in an uncorrectable ECC error pattern on the returning data. Read Time-Out AutoCompletion is a
feature which is intended to be used primarily for the calibration of the read path DLLs and for debugging, however
it can be enabled during normal operation if software finds it useful.

8.4.8 Registers and Definitions

This subsection defines the CSR registers, while the next subsection creates the two instances. The CSRs live
in the DdrDdiCsr sub-module of DDI, which runs on the DCLK. The CSRs are written and read via the ICE9

May 14, 2014 468 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Serial Configuration Bus.

The values of the registers R DdrxDdcMemCfg1-5, R DdrxDdcDIMMODT, R DdrxDdpODT, and R DdrxDIMMSize
may only change prior to the de-assertion of R DdrxDdcDdpSoftReset. More specific, information is located in the
“Reset and Initialization” section of this chapter.

The values of the registers R DdrxDdiMifCfg1-2 can be changed at any time.

The “SPD Byte #” column in the tables below is provided as a hint as to what information may need to be read
from the DIMMs’ SPD in order to figure out what value to set for the corresponding CSR field. Note that many
of the parameters accessed from SPD are in time units while the many of the corresponding CSRs are in units of
DCLK cycles.

8.4.8.1 R DdrxDdcDdpSoftReset - Soft Reset for DDC and DDP

Register

R DdrxDdcDdpSoftReset

Address

0x0 0000 0000 (plus base address)

Bit Mnemonic Access Reset Type (Product) Definition

31:3 Reserved
2 InitDimm RW 0 ICE9B+ 1 -> 0 transisiton tells controller to re-issue the initial-

ization sequence to the DIMM. The controller will al-
ways issue the initialization sequence after SoftResetDDC
is deasserted (goes low) regardless of the state of this
InitDimm. InitDimm can be left low if run-time re-
initialization is not required.

1 SoftResetDDP RW 1 ICE9B+ Used as the reset signal for DDP.
Separating this from the reset to DDC allows DDP to
wake up first and calibrate it’s IO driver output impe-
dence, before we wake up DDC and have it start the
JEDEC DRAM init sequence

0 SoftResetDDC RW 1 ICE9B+ Used as the reset signal for DDC.
Can only be deasserted after setting the correct CSR val-
ues to R DdrxDdcMemCfg1-5, R DdrxDdcDIMMODT,
R DdrxDdpODT, and R DdrxDIMMSize. The de-
assertion (transition from HIGH to LOW) causes the
DDR2-SDRAM controller to issue the JEDEC standard
initialization sequence to the SDRAM devices. (Note the
Type“L” is an indication that this is intended to normally
be the last CSR written). Overlaps SoftReset.

0 SoftReset RW 1 ICE9A Used as the reset signal for DDC and DDP.
Can only be deasserted after setting the correct CSR val-
ues to R DdrxDdcMemCfg1-5, R DdrxDdcDIMMODT,
R DdrxDdpODT, and R DdrxDIMMSize. The de-
assertion (transition from HIGH to LOW) causes the
DDR2-SDRAM controller to issue the JEDEC standard
initialization sequence to the SDRAM devices. (Note the
Type“L” is an indication that this is intended to normally
be the last CSR written.

8.4.8.2 R DdrxDdcMemCfg1 - Memory Controller Configuration Register 1

Register

R DdrxDdcMemCfg1

May 14, 2014 469 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Address

0x0 0000 0004 (plus base address)

Bit Mnemonic Access Reset (Valid Values) (SPD Byte #) Definition

31 PchPowerDown RW 1 0-1 *** This feature in NOT supported. It
is a requirement that software write a“0”
to PchPowerDown before bringing the
DDR interface out of reset. ***

30:26 RAS RW 0 4-18 30 Active to precharge (tRAS),
specified in DCLK cycles

25:23 RCD RW 0 2-6 29 Active to read or write delay (tRCD),
specified in DCLK cycles

22:20 RRD RW 0 2-4 28 Active bank a to active bank b (tRRD),
specified in DCLK cycles

19:17 RP RW 0 1-6 27 Precharge command period (tRP),
specified in DCLK cycles

16:12 RC RW 0 5-24 41, 40 Active to active/auto-refresh period
(tRC),
specified in DCLK cycles

11:4 RFC RW 0 6-255 42, 40 Auto-refresh to active/auto-refresh pe-
riod
(tRFC), specified in DCLK cycles

3:2 RTP RW 0 2-3 38 Read to precharge delay (tRTP) speci-
fied
in DCLK cycles

1:0 Reserved

8.4.8.3 R DdrxDdcMemCfg2 - Memory Controller Configuration Register 2

Register

R DdrxDdcMemCfg2

Address

0x0 0000 0008 (plus base address)

May 14, 2014 470 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset (Valid Values) (SPD Byte #) Definition

31:29 MRD RW 2 1-7 load mode register cmd to active or refresh,
specified
in DCLK cycles.
2 is valid minimum value for tMRD for a
wide range of DDR2 parts.

28:21 Reserved
20:18 CL RW 0 4-6 18, (9, 23,25)

or sys config file
CAS latency, specified in DCLK cycles
(Note: CAS latency of 3 is NOT supported)

17:15 WR RW 0 2-6 36 Write recovery time (tWR), specified in
DCLK cycles

14:12 WTR RW 0 2-4 37 Write to read cmd delay (tWTR), specified
in DCLK cycles

11:9 AL RW 0 0-5 Additive latency, specified in DCLK cycles
Note that non-zero AL values may improve
DDR2 bus utilization and hence perfor-
mance, especially for random access pat-
terns and/or if reads and writes are issued
with auto-precharege.

8:4 FAW RW 14 7-20 Four bank activate period (tFAW), specified
in DCLK cycles
This defaults to an acceptable value. Other
choices are provided below.
From JEDEC Spec 79-2B
DDR2 400/800 - 35ns => 14 cycles
DDR2 333/667 - 37.5ns => 13 cycles
DDR2 266/533 - 50ns => 14 cycles

3:0 Reserved

8.4.8.4 R DdrxDdcMemCfg3 - Memory Controller Configuration Register 3

Register

R DdrxDdcMemCfg3

Address

0x0 0000 000c (plus base address)

Bit Mnemonic Access Reset (Valid Values) (SPD Byte #) Definition

31:29 Reserved
28 Bankbits RW 1 0-1 17 Number of bits in the bank address (en-

coded). Values are mapped as follows:
0 - 2 bank bits (i.e. 4 bank chips)
1 - 3 bank bits (i.e. 8 bank chips)

27:25 Rowbits RW 0 3-5 3 Number of bits in the row address (en-
coded)
3 - 14 row bits
4 - 15 row bits
5 - 16 row bits

24:8 Delay RW 0 10-131071 reset to SDRAM init delay specified in
DCLK cycles.
Valid values: 10 - 131071
At 400Mhz DDR Delay = 80000 * 2.5ns =
200us
(JEDEC requires minimum of 200us)

7:0 Reserved

May 14, 2014 471 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

8.4.8.5 R DdrxDdcMemCfg4 - Memory Controller Configuration Register 4

Register

R DdrxDdcMemCfg4

Address

0x0 0000 0010 (plus base address)

Bit Mnemonic Access Reset (Valid Values) (SPD Byte #) Definition

31:16 REFI RW 0 10-65535 12 Period between auto-refresh commands issued
by the controller, specified in DCLK cycles.
ref = auto refresh interval/tCK
tREFI should be set to 7.8us.
400MHz => 3125
333MHz => 2604
267MHz => 2083
Note: JEDEC 79-2B requires setting tREFI
to 3.9us if 85 degrees C < tCASE <= 95 de-
grees C. Preliminary studies show that tCASE
is expected to be below 70 degrees in our sys-
tem.

15 Regdimm RW 0 0-1 Set when using registered / buffered DIMM.
14 DS RW 0 0-1 22 DDR2 drive strength setting programmed into

Extended Mode Register Bit 1. Values
mapped to
EMR as follows (refer to DDR2 SDRAM de-
vice
data-sheet for description of drive strength
settings):
0 - EMR[1] = 0
1- EMR[1] = 1 (SPD Byte #22 reports
whether this
is supported)

13:12 Rtt RW 2 0-3 22 ODT effective resistance Rtt. DDR2 On-Die
Termination effective resistance setting
programmed into Extended Mode Register
bits 2 and 6. Values mapped to EMR as fol-
lows:
0 - EMR[6] = 0, EMR[2] = 0 (Rtt disabled)
1 - EMR[6] = 0, EMR[2] = 1 (75 ohms)
2 - EMR[6] = 1, EMR[2] = 0 (150 ohms)
3 - EMR[6] = 1, EMR[2] = 1 (50 ohms (not
supported on slower memory))
SPD Byte #22 reports whether 50 ohms is
supported 150 ohm setting may be appropriate
for interfacing to 1 and 2 rank DDR2 DIMMs
running at 333/667 or 400/800.

11 Qoff RW 0 0-1 SDRAM output enable function. This signal
is
passed to bit E12 of the Extended Mode
Register during initialization. Typically set
to ’0’ to enable data and strobe outputs from
the
SDRAM devices. Can be set to ’1’ for IDD
characterization of read current.

10:0 Reserved

May 14, 2014 472 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

8.4.8.6 R DdrxDdcMemCfg5 - Memory Controller Configuration Register 5

Register

R DdrxDdcMemCfg5

Address

0x0 0000 0014 (plus base address)
Bit Mnemonic Access Reset Definition

31:16 emr2 RW 0 Value programmed into DIMM’s Extended Mode Regis-
ter 2 during initialization. Most DDR2 SDRAM devices
specify all of these bits as reserved (must be set to 0).

15:0 emr3 RW 0 Value programmed into DIMM’s Extended Mode Register
3 during initialization.
Most DDR2 SDRAM devices specify all of these bits as
reserved (must be set to 0).

8.4.8.7 R DdrxDdcMemCfg6 - Memory Controller Configuration Register 6

Register

R DdrxDdcMemCfg6

Address

0x0 0000 0018 (plus base address)

Bit Mnemonic Access Reset (Valid Values) Definition

31:18 Reserved
17 IdleBusDrive RW 1 0-1 Causes DQ and DQS to be driven during idle peri-

ods (when no read nor writes are occuring). If this
bit is set, the bus will be driven during idle periods
as follows:
- After a write, bus will remain driven. DQ lines
will be driven with value of last data phase.
- After a read, bus will be driven # clocks after the
end of the read postamble where # is selected using
ReadToIdleDriveDelay. The bus will be driven to a
value of 72’haa aaaa aaaa aaaa aaaa.

16:15 ReadToIdleDriveDelay RW 3 0-3 Delay to DQSP, DQSN, and DQ output enable
switch-on after a read command relative to end of
read postamble.
0x0 : -1.0 clocks
0x1 : 0 clocks
0x2 : 1.0 clocks
0x3 : 2.5 clocks

14 LookaheadPch RW 1 0-1 Look ahead precharge enable. When enabled the
controller will look ahead into the command
queue and analyze the queued requests and
perform precharge operations as soon as possible
in order to maximize bandwidth efficiency.
0 - disable
1 - enable

May 14, 2014 473 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

13 LookaheadAct RW 1 0-1 Look ahcad activate enable. When enabled, the
controller will look ahead into the command
queue and analyze the queued requests and
perform activate operations as soon as possible
in order to maximize bandwidth efficiency.
0 - disable
1 - enable

12 LookaheadApch RW 0 0-1 Look ahead auto-precharge enable. When enabled
the
controller will look ahead into the command
queue and analyze the queued requests and
perform an auto-precharge operation to the current
read or write operation in order to maximize
bandwidth efficiency.
0 - disable
1 - enable

11 OdtAdvTurnOn RW 0 0-1 Advances ODT turn-on by one clock
(only supported for cas latencies: CL5, CL6)

10 OdtDelayTurnOff RW 0 0-1 Delay ODT turn-off by on clock
9 TwoTMode RW 0 0-1 Two cycle timing (2T) enable. When enabled, the

controller extends the timing of the SDRAM control
signals (ras, cas, and we) to be two clocks in dura-
tion.
1 - enable
0 - disable

8 TwoTModeSelCycle RW 1 0-1 Two cylce timing cycle select. Controls which phase
of
the two clock cycle command period the cs n is as-
serted.
0 - cs n asserted during the first cycle
1 - cs n asserted during the second cycle.

7:6 ReadToWrite RW 1 1, 2, 3 Read to write delay (valid values: 1,2,3)
5:3 WriteToWrite RW 1 0-7 Minimum delay from write to write (different

ranks).
NOTE: that zero is a legal choice ONLY if
R DdrxDdcDIMMODT OdtWrMapCs* = 0000.
(Setting this to zero, can cause ODT problems, as
the ODT spec requires turn on 3 cycles before the
data and turn off 2 cycles before the data, thus if
the data to different ranks was back to back, then
switching to the ODT for the second write causes
the first to switch prematurely)

2:0 ReadToRead RW 1 0-7 Minimum delay from read to read (different ranks).
NOTE: that zero is a legal choice ONLY if
R DdrxDdcDIMMODT OdtRdMapCs* = 0000.
(Setting this to zero, can cause ODT problems, as
the ODT spec requires turn on 3 cycles before the
data and turn off 2 cycles before the data, thus if
the data from different ranks was back to back, then
switching to the ODT for the second read causes the
first to switch prematurely).
NOTE: also that a value of zero may have the poten-
tial of resulting in output drive contention between
ranks.

May 14, 2014 474 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

8.4.8.8 R DdrxDdcMemCfg7 - Memory Controller Configuration Register 7

Register

R DdrxDdcMemCfg7

Address

0x0 0000 001c (plus base address)
Bit Mnemonic Access Reset (Valid Values) Definition

31:23 Reserved
22 InitAutoInitDisable RW 0 0-1 Disables automatic initialization handled by

controller
21:18 InitMr RW 0 Mode Register to write to
17:2 InitMrData RW 0 Contents to write to mode register

1 InitPrechargeAll RW 0 0-1 Issue precharge-all command
0 InitRefresh RW 0 0-1 Issue refresh command

8.4.8.9 R DdrxDdcDIMMODT - Memory Controller ODT Selection Matrix Configuration

The defaults for R DdrxDdcDIMMODT are expected to be appropriate for the target single and dual rank
configurations of one DIMM slot based on reviewing preliminary termination matrix recommendations presented
by Samsung for 667 data rate operation and Micron for 667 and 800 data rates. We plan to follow the industry
recommendations for single-DIMM-slot designs, which call for ODT on the active DIMM rank only, during writes,
and ODT on the controller only, during reads.

Register

R DdrxDdcDIMMODT

Address

0x0 0000 0020 (plus base address)
Bit Mnemonic Access Reset Definition

31:28 OdtRdMapCs0 RW 0 Selects which DRAM ODT outputs are enabled when reading
from chip select 0.
ex: odt rd map cs0=4’b1110 will enable odt[1], odt[1], and
odt[2] during a read from memory devices on chip select 0.

27:24 OdtRdMapCs1 RW 0 Selects which DRAM ODT outputs are enabled when reading
from chip select 1.

23:20 OdtRdMapCs2 RW 0 Selects which DRAM ODT outputs are enabled when reading
from chip select 2.

19:16 OdtRdMapCs3 RW 0 Selects which DRAM ODT outputs are enabled when reading
from chip select 3.

15:12 OdtWrMapCs0 RW 1 Selects which DRAM ODT outputs are enabled when writing
to chip select 0

11:8 OdtWrMapCs1 RW 2 Selects which DRAM ODT outputs are enabled when writing
to chip select 1

7:4 OdtWrMapCs2 RW 0 Selects which DRAM ODT outputs are enabled when writing
to chip select 2

3:0 OdtWrMapCs3 RW 0 Selects which DRAM ODT outputs are enabled when writing
to chip select 3

8.4.8.10 R DdrxDdpODT - On-Die-Termination resistance value on ICE9 DDR2-I/O PADs during
reads

Register

R DdrxDdpODT

May 14, 2014 475 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Address

0x0 0000 0024 (plus base address)

Bit Mnemonic Access Reset Definition

31:30 OdtValue RW 0 On-Die-Termination value used in the DDR PHY IO
cells. Maps to the values driven into the {TERM150,
TERM300} pins of the ARM IO cell.
00 - Rx Mode, ODT disabled
01 - Rx Mode, 150 ohm calibrated ODT
10 - UNDEFINED IN ARM SPEC
11 - Rx Mode, 75 ohm calibrated ODT
The 150 Ohm setting is expected to be sufficient. How-
ever, it may
necessary to use the 75 Ohm setting for 400/800 systems.

29:0 Reserved

8.4.8.11 R DdrxDIMMSize - Size of the DIMM this DDR unit instance is interfacing with.

Register

R DdrxDIMMSize

Attributes

-kernel

Address

0x0 0000 0028 (plus base address)

Bit Mnemonic Access Reset (SPD Byte #) Definition

31:3 Reserved
2:0 DIMMSize RW 0 5, 31 Total memory connect to this DDR interface (half of the

total main memory space per ICE9). DIMM Rank Den-
sity * Number of Ranks
Used to filter out requests to non-existent memory.
Valid values 0 - 4
0 - 1GB
1 - 2GB
2 - 4GB
3 - 8GB
4 - 16GB

8.4.8.12 R DdrxDdiMifCfg1 - Memory Interface Configuration Register 1

Register

R DdrxDdiMifCfg1

Address

0x0 0000 002c (plus base address)

May 14, 2014 476 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset Definition

31:9 Reserved
8:1 ArbPrefWheel RW 0x0F Each bit set represents an additional 1 out of 10 cycles

where reads have arbitration preference over writes. This
allows for performance tuning by allowing more/less reads
to pass independent write requests in DDI.
Note:
1. ArbPrefWheel should always be programmed with con-
tiguous bits set (to minimize DDR bus turn around time
penalty of switching from reads to writes or vice-versa.
More specifically, ArbPrefWheel should be programmed
to one of the following values:
00000000
00000001
00000011
00000111
00001111
00011111
00111111
01111111
11111111
2. the arbitration preference for 2 out of 10 cycles is not
user controllable, but dedicated 1 for read and 1 for writes
to prevent starvation if a user sets (or clears) all the bits
of ArbPrefWheel.

0 AutoPch RW 1 The auto-precharge option is useful where the access pat-
terns tend to be random (as seen at the DDR2 interface).
With random sequences, banks are rarely left open with
the exact row required by a subsequent request. If auto-
precharge was not used for the previous access to a bank,
subsequent accesses to that bank first require the bank to
be closed (prechareged), causing a delay.
0 - Requests issued as read / write without auto-precharge
1 - Requests issued as read / write with auto-precharge

8.4.8.13 R DdrxDdiMifCfg2 - Memory Interface Configuration Register 2

Register

R DdrxDdiMifCfg2

Address

0x0 0000 0030 (plus base address)

May 14, 2014 477 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Bit Mnemonic Access Reset Definition

31:19 Reserved
18 PwrDnEnable RW 1 0 - DDR2 is never issued the power-down command

1 - DDR2 is issued the power-down command if the no
read or write requests are sent to the memory interface for
a period of time determined by the PwrDnCount setting.

17:0 PwrDnCount RW 128 Number of ICE9 core clock (cclk) idle cycles before a
power-down command is issued to memory. This is re-
quired to be set to a value larger than (Twait = 2 *
R DdrxDdcMemCfg1 RFC) in dclks.
Examples for DIMMs configured with 1Gb devices:
cclk/dclk Twait
250/400 - Twait = 102 dclks, PwrDnCount >= 64 cclks
250/333 - Twait = 86 dclks, PwrDnCount >= 54 cclks
250/267 - Twait = 68 dclks, PwrDnCount >= 43 cclks
Note the R DdrxDdcMemCfg1 RFC value used in these
calcualtions are
from“Table 39 - Refresh parameters by device density” of
JESD79-2B (JEDEC Standard - DDR2 SDRAM Specifi-
cation).

8.4.8.14 R DdrxPhyCfg1 - PHY Interface Configuration Register 1

Register

R DdrxPhyCfg1

Address

0x0 0000 0034 (plus base address)

May 14, 2014 478 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access (Valid Values) Reset Definition

31:12 Reserved
11:9 DqsOeOn RW 0 - 5 2 DQS output enable switch-on time relative to

start of write preamble.
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks

8:6 DqsOeOff RW 0 - 7 3 DQS output enable switch-off time relative to
end of write postamble.
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks
0x4: 0.5 clocks
0x5: 1 clocks
0x6: 1.5 clocks
0x7: 2.0 clocks

5:3 DqOeOn RW 0 - 5 2 DQ output enable switch-on time relative to
start of wirte preamble.
0x0: -1.25 clocks
0x1: -0.75 clocks
0x2: -0.25 clocks
0x3: 0.25 clocks

2:0 DqOeOff RW 0 - 7 2 DQ output enable switch-off time relative to
end of write postamble.
0x0: -1.25 clocks
0x1: -0.75 clocks
0x2: -0.25 clocks
0x3: 0.25 clocks
0x4: 0.75 clocks
0x5: 1.25 clocks
0x6: 1.75 clocks
0x7: 2.25 clocks

8.4.8.15 R DdrxPhyCfg2 - PHY Interface Configuration Register 2

Register

R DdrxPhyCfg2

Address

0x0 0000 0038 (plus base address)

Bit Mnemonic Access (Valid Values) Reset Definition

31:12 Reserved

May 14, 2014 479 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

11:9 AsicDqsOdtOn RW 0 - 5 2 Note there are two changes going from ICE9A
to ICE9B:
First - Bugzilla 2401 was fixed.
Secondly - the range of adjustability was
changed based on feedback from debug lab
bringup studies on ice9a parts.
DQS resistor output enable (ASIC side ODT)
and pad input enable (IE-to-Y) switch-on time
relative to start of read preamble.
ICE9A RANGE:
0x0: -2.5 clocks (Not supported if AsicDq-
sOdtOff is set to 0x6 or 0x7 (Bugzilla 2401))
0x1: -2.0 clocks (Not supported if AsicDq-
sOdtOff is set to 0x6 or 0x7 (Bugzilla 2401))
0x2: -1.5 clocks
0x3: -1.0 clocks
0x4: -0.5 clocks
0x5: 0 clocks
ICE9B+ RANGE:
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks
0x4: 0.5 clocks
0x5: 1.0 clocks
0x6: 1.5 clocks
0x7: 2.0 clocks
Note: The ARM SSTL18 output buffer con-
tains an AND gate which will disable the out-
put enable when the resistor output enable is
switched on.

May 14, 2014 480 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

8:6 AsicDqsOdtOff RW 0 - 7 3 Note there are two changes going from ICE9A
to ICE9B:
First - Bugzilla 2401 was fixed.
Secondly - the range of adjustability was
changed based on feedback from debug lab
bringup studies on ice9a parts.
DQS resistor output enable (ASIC side ODT)
and pad input enable (IE-to-Y) switch off time
relative to the end of read postamble.
ICE9A RANGE:
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks
0x4: 0.5 clocks
0x5: 1.0 clocks
0x6: 1.5 clocks (Not supported if AsicDqsOd-
tOn is set to 0x0 or 0x1 (Bugzilla 2401))
0x7: 2.0 clocks (Not supported if AsicDqsOd-
tOn is set to 0x0 or 0x1 (Bugzilla 2401))
ICE9B+ RANGE:
0x0: -0.5 clocks
0x1: 0 clocks
0x2: 0.5 clocks
0x3: 1.0 clocks
0x4: 1.5 clocks
0x5: 2.0 clocks
0x6: 2.5 clocks
0x7: 3.0 clocks
Note: The output enable of the ARM SSTL18
I/O buffer will be disabled as long as the
resistor output enable (ROE) pin is as-
serted. Care must be taken to ensure that
longer ROE switch off times do not inter-
fere with subsequent writes. The timing
of subsequent writes can be contolled using
R DdrxDdcMemCfg6 ReadToWrite

May 14, 2014 481 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

5:3 AsicDqOdtOn RW 0 - 5 1 Note there are two changes going from ICE9A
to ICE9B:
First - Bugzilla 2401 was fixed.
Secondly - the range of adjustability was
changed based on feedback from debug lab
bringup studies on ice9a parts.
DQ resistor output enable (ASIC side ODT)
and pad input enable (IE-to-Y) switch-on time
relative to start of read preamble.
ICE9A RANGE:
0x0: -2.5 clocks (Not supported if AsicDq-
sOdtOff is set to 0x6 or 0x7 (Bugzilla 2401))
0x1: -2.0 clocks (Not supported if AsicDq-
sOdtOff is set to 0x6 or 0x7 (Bugzilla 2401))
0x2: -1.5 clocks
0x3: -1.0 clocks
0x4: -0.5 clocks
0x5: 0 clocks
ICE9B+ RANGE:
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks
0x4: 0.5 clocks
0x5: 1.0 clocks
0x6: 1.5 clocks
0x7: 2.0 clocks
Note: The ARM SSTL18 output buffer con-
tains an AND gate which will disable the out-
put enable when the resistor output enable is
switched on.

May 14, 2014 482 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

2:0 AsicDqOdtOff RW 0 - 7 3 Note there are two changes going from ICE9A
to ICE9B:
First - Bugzilla 2401 was fixed.
Secondly - the range of adjustability was
changed based on feedback from debug lab
bringup studies on ice9a parts.
DQ resistor output enable (ASIC side ODT)
and pad input enable (IE-to-Y) switch off time
relative to the end of read postamble.
ICE9A RANGE:
0x0: -1.5 clocks
0x1: -1.0 clocks
0x2: -0.5 clocks
0x3: 0 clocks
0x4: 0.5 clocks
0x5: 1.0 clocks
0x6: 1.5 clocks (Not supported if AsicDqsOd-
tOn is set to 0x0 or 0x1 (Bugzilla 2401))
0x7: 2.0 clocks (Not supported if AsicDqsOd-
tOn is set to 0x0 or 0x1 (Bugzilla 2401))
ICE9B+ RANGE:
0x0: -0.5 clocks
0x1: 0 clocks
0x2: 0.5 clocks
0x3: 1.0 clocks
0x4: 1.5 clocks
0x5: 2.0 clocks
0x6: 2.5 clocks
0x7: 3.0 clocks
Note: The output enable of the ARM SSTL18
I/O buffer will be disabled as long as the
resistor output enable (ROE) pin is as-
serted. Care must be taken to ensure that
longer ROE switch off times do not inter-
fere with subsequent writes. The timing
of subsequent writes can be contolled using
R DdrxDdcMemCfg6 ReadToWrite

8.4.8.16 R DdrxPhyCfg3 - PHY Interface Configuration Register 3

Register

R DdrxPhyCfg3

Address

0x0 0000 003c (plus base address)

May 14, 2014 483 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Bit Mnemonic Access (Valid Values) Reset Definition

31:14 Reserved
13:11 DqsPreambleEnnOn RW 0 - 5 2 Read preamble enable switch-on time relative

to start of read preamble.
0x0: -0.5 clocks
0x1: 0 clocks
0x2: 0.5 clocks
0x3: 1.0 clocks
0x4: 1.5 clocks
0x5: 2.0 clocks

10:8 DqsPreambleEnnOff RW 0 - 7 2 Read preamble enable switch-off time relative
to the third edge of the read DQS.
0x0: -1.0 clocks
0x1: -0.5 clocks
0x2: 0 clocks
0x3: 0.5 clocks
0x4: 1.0 clocks
0x5: 1.5 clocks
0x6: 2.0 clocks
0x7: 2.5 clocks

7:0 Reserved

8.4.8.17 R DdrxDdpDLLLane0 - PHY Read Lane 0 DLL Configuration Register

Register

R DdrxDdpDLLLane0

Address

0x0 0000 0040 (plus base address)

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.18 R DdrxDdpDLLLane1 - PHY Read Lane 1 DLL Configuration Register

Register

R DdrxDdpDLLLane1

Address

0x0 0000 0044 (plus base address)

May 14, 2014 484 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.19 R DdrxDdpDLLLane2 - PHY Read Lane 2 DLL Configuration Register

Register

R DdrxDdpDLLLane2

Address

0x0 0000 0048 (plus base address)

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.20 R DdrxDdpDLLLane3 - PHY Read Lane 3 DLL Configuration Register

Register

R DdrxDdpDLLLane3

Address

0x0 0000 004c (plus base address)

May 14, 2014 485 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.21 R DdrxDdpDLLLane4 - PHY Read Lane 4 DLL Configuration Register

Register

R DdrxDdpDLLLane4

Address

0x0 0000 0050 (plus base address)

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.22 R DdrxDdpDLLLane5 - PHY Read Lane 5 DLL Configuration Register

Register

R DdrxDdpDLLLane5

Address

0x0 0000 0054 (plus base address)

May 14, 2014 486 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.23 R DdrxDdpDLLLane6 - PHY Read Lane 6 DLL Configuration Register

Register

R DdrxDdpDLLLane6

Address

0x0 0000 0058 (plus base address)

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.24 R DdrxDdpDLLLane7 - PHY Read Lane 7 DLL Configuration Register

Register

R DdrxDdpDLLLane7

Address

0x0 0000 005c (plus base address)

May 14, 2014 487 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.25 R DdrxDdpDLLLane8 - PHY Read Lane 8 DLL Configuration Register

Register

R DdrxDdpDLLLane8

Address

0x0 0000 0060 (plus base address)
Bit Mnemonic Access Reset Definition

31:24 Reserved
23:16 MasterAdj RW 186 Master Delay Adjustment - specifies the num-

ber of slave adjustment steps. (See DLL
description of DDP Unit for details settings
based on clock frequency).

15:8 Slave0Adj RW 1 Slave DLL to delay dummy DQS to match the
DQS board trace delay to and from DIMM.
(See DLL description of DDP Unit for details
on settings).

7:0 Slave1Adj RW 12 Slave DLL to delay DQS nomially by 1/4
DCLK. (See DLL description of DDP Unit for
details settings based on clock frequency).

8.4.8.26 R DdrxDdpDLLReset - PHY DLL Reset

Register

R DdrxDdpDLLReset

Address

0x0 0000 0064 (plus base address)
Bit Mnemonic Access Reset Definition

31:1 Reserved
0 Reset RW 1 Active high reset routed to each of the DLLs

in the PHY. Direct access is provided for the
DLL reset since the TrueCircuits documen-
tation says that DLL fault testing should be
done with the DLL reset asserted.

8.4.8.27 R DdrxDdpCKReset - Reset for CK clock outputs to DIMM

Register

R DdrxDdpCKReset

May 14, 2014 488 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Address

0x0 0000 0164 (plus base address)

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 Reset RW 1 Deasserting this CSR bit causes the PHY to

start driving clocks to the DIMMs. Before
deasserting this bit, software must make sure
dclk and dmclk90 are stable and that ClkDriv-
Imped of R DdrxDdpCmdDrv is set to an ap-
propriate value.

8.4.8.28 R DdrxDddRdDelay

Register

R DdrxDddRdDelay

Address

0x0 0000 0068 (plus base address)

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 DelayFifoReadOut RW 0 Setting this to a 1’b1 adds an extra cclk cycle

of latency to the read return path as a debug
mechanism to prove bugs are not due to read
return fifo underflow.

8.4.8.29 R DdrxDdiMemLoopBack

Register

R DdrxDdiMemLoopBack

Address

0x0 0000 006c (plus base address)

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 MemLoopBack RW 1 When this set to “1” read and write requests

received by DDR will receive a fake completion
response (i.e. will not really issue to mem-
ory and will return meaningless data. This
is only expected to be used during the initial
boot sequence where it is possible for the reads
and writes will show up at the DDR unit, that
don’t need complete correctly. This is because
of the boot sequence involves the boot proces-
sor doing writes to the cache which will result
in the caches doing reads for allocation before
allowing the write (which it thinks is neces-
sary for coherance). This CSR bit needs to
be cleared before R DdrxDdcDdpSoftReset is
de-asserted and MemLoopBack must never be
asserted when R DdrxDdcDdpSoftReset is de-
asserted.

May 14, 2014 489 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

8.4.8.30 R DdrxDdiRdPathRst

Register

R DdrxDdiRdPathRst

Address

0x0 0000 0070 (plus base address)

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 RdPathRst RW 0 This is NOT intended for general use. It is a

hook for debugging potential issues with the
PHY DLL settings. When asserted state ele-
ments in the read return datapath are forced
to their reset values. A read can not be out-
standing when this is asserted, this must be
deasserted before any read is issued to the
DDR unit. When this CSR changes value, it
is NOT allowed to change value again from at
least 10 dclk cycles (Note: that this require
should be meet by default since it takes at
least 30 clock cycles to affect the same CSR
with back to back SCB writes to it).

8.4.8.31 R DdrxDdiRdTimeOut

Register

R DdrxDdiRdTimeOut

Attributes

-writeonemixed

Address

0x0 0000 0074 (plus base address)

Bit Mnemonic Access Reset Definition

31:3 Reserved
2 Enable RW 0 Enable the counters which are used to deter-

mine if a read hangs.
1 AutoComplete RW 0 Causes the DDR unit to issue a false read com-

pletion for reads the hang. See description of
Read Time-Out AutoCompletion in the DDI
subsection of this spec.

0 RdHang RW1C 0 Set if a read has timed out. The value is sticky
until software writes a 1 to clear it.

8.4.8.32 R DdrxDdpCalReset

Register

R DdrxDdpCalReset

Address

0x0 0000 0078 (plus base address)

May 14, 2014 490 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 CalReset RW 1 When asserted, the calibratin logic in the DDR2-

PHY will be held in reset. After deasserting
the “dclk and cclk resets” which go to DDI,
R DdrxDdpImpedCal CalClk should be set, then
CalReset can be deasserted.

8.4.8.33 R DdrxDdpCalError

Register

R DdrxDdpCalError

Attributes

-writeonemixed

Address

0x0 0000 007c (plus base address)
Bit Mnemonic Access Reset Definition

31:20 Reserved
19 CalUpdate RW1C 0 Set when the calibration logic updates ImpP

and ImpN
18 CalErrDerate RW 1 If the auto-cal logic very rarely asserts

cal fault occur or cal timout occur, there may
not be a problem. CalErrDerate allows users
to cause the decrementing of CalErrCount ev-
ery time the auto-cal logic runs for 524,288
cycles without a cal fault or a cal timeout.

17 CalErrInterrupt RW1C 0 Asserted when CalErrCount has reached the
IntReportThreshold. This bit is sticky until
software does a write one to clear it.

16:9 CalErrCount R 0 8 bit saturating counter. Increments
when ever the auto-calibration logic in
the DDR-PHY asserts cal fault occur or
cal timout occur. NOTE that CalErrCount
automatically cleared whenever CalErrInter-
rupt is cleared.

8:1 IntReportThreshold RW 5 Asserts an interrupt if CalErrCount goes
above this specified value. (Valid values 1-
255).

0 CalErrIntEnable RW 1 Settng this bit enables interrupts to be re-
ported for auto-calibration errors based on the
settings of the other fields of this CSR. Set-
ting this to zero forces both CalErrCount and
CalErrCount to be zero.

8.4.8.34 R DdrxDdpCalEnable

Register

R DdrxDdpCalEnable

Address

0x0 0000 0080 (plus base address)

May 14, 2014 491 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Bit Mnemonic Access Reset Definition

31:1 Reserved
0 CalEnable RW 0 If CalEnable is low when DdcDdpSoftReset is de-

asserted, the the intial calibration settings up-
dated into the IOs will be the worst case SS cor-
ner setting (relatively strong calibration settings)
(impP=12, impN=9). If CalEnable is never as-
serted, these values will be permanently used. Once
CalEnable has been asserted, calibration values
will be updated into the IOs according the set-
tings of the other Cal related CSRs. If CalEn-
able is deassertd at some point, the values of
R DdrxDdpImpedCal LastUpdatedImpP/N. It is
recommended that users not toggle CalEnable, but
choose whether to leave it asserted or deasserted,
and uses the finer grain controls of the DdrxD-
dpImpedCal register to control update frequency
and temporary disabling.

8.4.8.35 R DdrxDdpCalCounter

Register

R DdrxDdpCalCounter

Address

0x0 0000 0084 (plus base address)
Bit Mnemonic Access Reset Definition

31:16 Reserved
15:0 CalCounter RW 0 Determines the period between IO calibration

updates if AutoCalUpdate is enabled. Cal-
Counter is the upper 16 bits of a 32 bit count
down counter, thus it decrements once every
65536 dclk cycles, thus a value of 1 means do
an IO cal update once every 65536 dclk cycles.
Setting this to zero means to do a cal update
on the first opportunity after the calibrator
has come up with a new value. When counter
reaches zero it means to update the IO cali-
bration on the next opportunity according to
CalMode and OverrideAutoCalibrtion.

8.4.8.36 R DdrxDdpImpedCal

Register

R DdrxDdpImpedCal

Address

0x0 0000 0088 (plus base address)

Bit Mnemonic Access Reset Definition

31 Reserved

May 14, 2014 492 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

30 ManualCalUpdate0to1 RW 0 0->1 transition tells DDI to update the IOs
with calibration values based on CalMode and
OverrideAutoCalibration at the next opportu-
nity. This bit should not be used when Auto-
CalUpdate is set. They are mutually exclusive
ways of controlling calibration value updates.

29 AutoCalUpdate RW 0 1 - DDI will update the IOs with calibration
values based on CalMode and OverrideAuto-
Calibration at the next opportunity after Cal-
Counter counts down to zero.
0 - Software must specifically initiate cal-
ibration value updates with ManualCalUp-
date0to1

28:27 CalClk RW 0 0 - CalClk = dclk/2
1 - CalClk = dclk/4
2 - CalClk = dclk/8
3 - CalClk = dclk/16
(Note:
1. R DdrxDdpCalReset must be asserted
when changing
the value of CalClk.
2. CalClk is required to be less than 300MHz)

26:25 CalMode RW 0 See decision of IO calibration from more infor-
mation on the CalModes:
0 - update IO calibration during DIMM auto
refresh operation.
1 - update IO calibration during DIMM refresh
operation, while zeroing the dram clk for one
cycle
2 - update IO calibration during precharge
powerdown, while zeroing the dram clk for
one cycle. Note that Cal Mode 2 requires
R DdrxDdiMifCfg2 PwrDnEnable to be set
to 1 (otherwise the logic may hang wait-
ing for a powerdown event which will never
happen, and thus block forward progress for
memory requests). This mode also requires
R DdrxDdcMemCfg1 PchPowerDown to be
set to 1.
3 - update IO calibration during dram self-
refresh.
CalModes 2 and 3 may have a noticable im-
pact on performance if the CalCounter is set
to zero or a small value.

24 OverrideAutoCalibration RW 0 Override the auto calibration values computed
and
instead update the I/O pads with the values
of
OverrideImpP and OverrideImpN provided
by this CSR.

23:20 OverrideImpP RW 0 User supplied value for pull-up impedence cal-
ibration.

19:16 OverrideImpN RW 0 User supplied value for pull-down impedence
calibration.

May 14, 2014 493 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

15:12 LastUpdatedImpP R 0 The current calibration value loaded into the
register which drives ImpP to the level shifter
in the IO ring.

11:8 LastUpdatedImpN R 0 The current calibration value loaded into the
register which drives ImpN to the level shifter
in the IO ring.

7:4 ImpP R 0 Value determined by auto calibration logic
which currently needs to be feed into the IO
pads to
adjust the pull-up impedence for outputs and
input termination.

3:0 ImpN R 0 Value determined by auto calibration logic
which currently needs to be feed into the IO
pads to adjust the pull-down impedence for
outputs and
input termination.

Note that CalMode 2 is currently unsupported in general use. See bugzilla 2013, quoted here:

When setting AutoCalUpdate in cal mode 2 (update during prechargePowerdown) the Ddi can hang.
This is caused when a request is at the head of the queue requesting to be sent to the controller at the
time we start the calibration update process. The calibration logic spins in place waiting for powerdown
entry. However, this pending request causes the powerdown counter to be cleared on every cycle, which
blocks the Ddr from ever entering powerdown mode.

If CalMode 2 is used, provision must be made to either ensure that no memory references are outstanding at the
time that a calibration cycle is initiated, or that some processor is capable of unjamming the autocal sequencer. If
you don’t understand this, then note that CalMode 2 is currently unsupported.

8.4.8.37 R DdrxDdpDataDrv

Register

R DdrxDdpDataDrv

Address

0x0 0000 008c (plus base address)
Bit Mnemonic Access Reset Definition

31:27 Reserved
26:24 DqBl8DrivImped RW 5 Byte Lane 8 Output Driver Strength

111 - UNDEFINED
110 - UNDEFINED
101 - Tx Mode 60 Ohm (4.7mA)
100 - Tx Mode 40 Ohm (7.0mA)
011 - Tx Mode 24 Ohm (11.7mA)
010 - Tx Mode 20 Ohm (14.0mA)
001 - UNDEFINED
000 - Tx Mode 17 Ohm (16.5mA)

23:21 DqBl7DrivImped RW 5 Byte Lane 7 Output Driver Strength
20:18 DqBl6DrivImped RW 5 Byte Lane 6 Output Driver Strength
17:15 DqBl5DrivImped RW 5 Byte Lane 5 Output Driver Strength
14:12 DqBl4DrivImped RW 5 Byte Lane 4 Output Driver Strength
11:9 DqBl3DrivImped RW 5 Byte Lane 3 Output Driver Strength
8:6 DqBl2DrivImped RW 5 Byte Lane 2 Output Driver Strength
5:3 DqBl1DrivImped RW 5 Byte Lane 1 Output Driver Strength
2:0 DqBl0DrivImped RW 5 Byte Lane 0 Output Driver Strength

May 14, 2014 494 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

8.4.8.38 R DdrxDdpDQSDrv

Register

R DdrxDdpDQSDrv

Address

0x0 0000 0090 (plus base address)

Bit Mnemonic Access Reset Definition

31:27 Reserved
26:24 Dqs8DrivImped RW 5 DQS8 Output Driver Strength

111 - UNDEFINED
110 - UNDEFINED
101 - Tx Mode 60 Ohm (4.7mA)
100 - Tx Mode 40 Ohm (7.0mA)
011 - Tx Mode 24 Ohm (11.7mA)
010 - Tx Mode 20 Ohm (14.0mA)
001 - UNDEFINED
000 - Tx Mode 17 Ohm (16.5mA)

23:21 Dqs7DrivImped RW 5 DQS7 Output Driver Strength
20:18 Dqs6DrivImped RW 5 DQS6 Output Driver Strength
17:15 Dqs5DrivImped RW 5 DQS5 Output Driver Strength
14:12 Dqs4DrivImped RW 5 DQS4 Output Driver Strength
11:9 Dqs3DrivImped RW 5 DQS3 Output Driver Strength
8:6 Dqs2DrivImped RW 5 DQS2 Output Driver Strength
5:3 Dqs1DrivImped RW 5 DQS1 Output Driver Strength
2:0 Dqs0DrivImped RW 5 DQS0 Output Driver Strength

8.4.8.39 R DdrxDdpCmdDrv

Register

R DdrxDdpCmdDrv

Address

0x0 0000 0094 (plus base address)

Bit Mnemonic Access Reset Definition

31:9 Reserved
8:6 AddrDrivImped RW 5 Output Driver Strength for address/command

(A[15:0], BA[2:0], RAS, CAS, WE)
111 - UNDEFINED
110 - UNDEFINED
101 - Tx Mode 60 Ohm (4.7mA)
100 - Tx Mode 40 Ohm (7.0mA)
011 - Tx Mode 24 Ohm (11.7mA)
010 - Tx Mode 20 Ohm (14.0mA)
001 - UNDEFINED
000 - Tx Mode 17 Ohm (16.5mA)

5:3 CntrDrivImped RW 5 Output Driver Strength for ODT, CKE, CS
2:0 ClkDrivImped RW 5 Output Driver Strength for CK

May 14, 2014 495 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

8.4.8.40 R DdrxDdiPHYWrptrCopy - This read only CSR is intended to be used for debugging
only. The values only become valid after the last outstanding read has completed. The
pointer is gray coded. When all outstanding reads have completed, the value of the
R DdrxDdiPHYWrptrCopy is expected to be 0001, 0111, 1101, or 1011.

Register

R DdrxDdiPHYWrptrCopy

Address

0x0 0000 0098 (plus base address)

Bit Mnemonic Access Reset Definition

31:4 Reserved
3:0 PHYWrptrCopy R 1 Copy of the PHY’s fifo wr pointer. Value only valid

when NO reads are outstanding.

8.4.8.41 R DdrxDdpHoldFix - This register has be included as a preventive measure. If it turns
out that there are hold time problems with the sending of cmd/addr signals to the DIMM.
Setting bits in this register muxes in delay elements to add additional hold time margin.

Register

R DdrxDdpHoldFix

Address

0x0 0000 009c (plus base address)

Bit Mnemonic Access Reset Definition

31:4 Reserved
3 DelayCsn RW 0 Adds delay to chip selects
2 DelayOdt RW 0 Adds delay to odt signals
1 DelayCke RW 0 Adds delay to CKE
0 DelayAddr RW 0 Adds delay to address signals

8.4.8.42 R DdrxDdpHighSpeedTest - This CSR is only intended for use during chip testing, where
a tester is acting as a DIMM.

Register

R DdrxDdpHighSpeedTest

Address

0x0 0000 00a0 (plus base address)

May 14, 2014 496 Rev 51328

SiCortex Confidential 8.4. DDI SECTION

Bit Mnemonic Access Reset Definition

31:2 Reserved
1 WrTestFakeWrites RW 0 Causes DDI to:

1. Hold the wr req line high so that it is constantly
issuing write request to the the NWL memory con-
troller (DDC). Each write request uses a randomly
generated address. Note the address spans the full
16GB logical address space.
2. Whenever the NWL logic controller gives a write
data grant, DDI will send in data a data pattern
to the NWL logic controller such that the even DQ
bits will toggle for the first for four DQS clock edges,
and then the odd DQ bits will toggle for the last four
DQS edges of the transfer to the DIMM. The DM
bits will toggle every other DQS clock edge.

0 RdTestDQSDLLBypass RW 0 Setting this HIGH forces a HIGH onto the
dll bypass slave inputs to the DDR-PHY byte lanes.
This is needed during high speed read testing of the
DDR PHY so that the tester can drive a pre-shifted
DQS (relative to the DQ) and directly write data
into the DDR-PHY’s read fifo.
NOTE: This toggles logic which crosses between two
clock domains, thus all logic should be quieted for
a few cycles before and after this signal is written.
To meet this requirement the following is required:
Tests that change the valure of the CSR are required
to first issue a read to this CSR, folllowed by the
write to this CSR and then followed by another read
to this CSR. No other action is allowed until the
second read of the written data comes back.

8.4.8.43 R DdrxDdiECCCaptureEnable

Register

R DdrxDdiECCCaptureEnable

Address

0x0 0000 00a4 (plus base address)

Bit Mnemonic Access Reset Definition

31:2 Reserved
1 EnableRdECCCapture RW 0 When asserted the CSRs

R DdrxDdiRdECCCapture0-1 will store the
value of the ECC field of the last read sent out
on the CSW bus. This should only be enable
during DDR DLL calibration, and not during
normal operation where more than one read can be
outstanding at a time.

0 ClearRdECC RW 0 When asserted causes R DdrxDdiRdECCCapture0-
1 to clear

8.4.8.44 R DdrxDdiRdECCCapture0

Register

R DdrxDdiRdECCCapture0

May 14, 2014 497 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Address

0x0 0000 00a8 (plus base address)
Bit Mnemonic Access Reset Definition

31:24 Data3ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data3 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

23:16 Data2ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data2 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

15:8 Data1ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data1 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

7:0 Data0ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data0 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

8.4.8.45 R DdrxDdiRdECCCapture1

Register

R DdrxDdiRdECCCapture1

Address

0x0 0000 00ac (plus base address)
Bit Mnemonic Access Reset Definition

31:24 Data7ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data7 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

23:16 Data6ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data6 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

15:8 Data5ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data5 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

7:0 Data4ECC R 0 Stores the ECC value of the last read data
driven out on ddr coh Data4 c2a[71:64] (Cleared by
R DdrxDdiECCCaptureEnable ClearRdECC)

8.4.9 Register Allocation

This section instantiates two copies of the configuration registers for the two instances of DDR (DDR0 and
DDR1)

8.4.9.1 Ddr0

Register

R Ddr0* : R Ddrx*

Address

0xE 4800 0000-0xE 48FF FFFF

8.4.9.2 Ddr1

Register

R Ddr1* : R Ddrx*

May 14, 2014 498 Rev 51328

SiCortex Confidential 8.5. DDC SECTION - DDR2 SDRAM CONTROLLER IP BLOCK

Address

0xE 5800 0000-0xE 58FF FFFF

8.4.10 Vregs End Of Decl

8.4.11 DDR Performace Events

The following events are trackable by DDR statisticall event counting

Enum

DdrxEvent

Attribute

-descfunc
Constant Mnemonic Definition

8’h00 CYCLES Dclk cycles. Always counts.
8’h01 CAS Number of Read and Write commands issued to DDR2-

SDRAM. For analysis studies on the use of auto-precharge
tests can be run with R DdrxDdiMifCfg1 AutoPch =
0. The difference (CAS - RAS) gives the total number
DRAM accesses that hit on an open page within a bank.
((CAS - RAS) / CAS) gives the ratio of total page hits
over total DRAM accesses.

8’h02 RAS Number of Bank Activate commands issued to DDR2-
SDRAM.

8’h03 MEMRD Number of reads issued to the DIMM.
8’h04 MEMWR Number of writes issued to the DIMM
8’h05 MULTRDBIDS Cycles with more than one read request bidding for DDC.
8’h06 MULTWRBIDS Cycles with more than one write request bidding for DDC.
8’h07 RDANDWRBIDS Cycles with at least one read and one write request bid-

ding for DDC.
8’h08 POWERDOWN Number of cycles in powerdown.
8’h09 NEXM Number of attempted accesses to non-existent memory.

(These are software errors which could cause data corrup-
tion).

6’0a-8’hff Reserved

8.5 DDC Section - DDR2 SDRAM Controller IP Block

The DDC section contains a version of NorthWest Logic’s DDR2 memory controller customized for low latency.
The read return data path has been removed. In our system, the core will pull read data directly out of the
DDR2-PHY. The delay in the addres/CMD path has been reduced.

Specifications can be found in the project tree at:
.../hw/ip/northwestlogic/release ###/documentation/
DDR2 SDRAM Controller Core Datasheet##.pdf
SiCortex DDR2 Custom Interface Addendum##.pdf
- denotes version numbers, which may be different between the files and parent directory.

8.6 DDD Section - Datapath interface to PHY

DDD interfaces to the DDR2-PHY for extracting read data out of the PHY’s read data fifo. DDD also replicates
control signals from DDC into copies which are pitch matched to the individual PHY datapath slices.

Whenever DDP writes the first subcell of an entry of its read data fifo it toggles a signal which is sent to DDD.
DDD synchronoizes this signal and begins pulling data out of the PHY’s read data fifo and drives it out onto the

May 14, 2014 499 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

CSW bus (setting R DdrxDddRdDelay DelayFifoReadOut = 1, will an extra cclk cycle of latency before the data
is read out of the fifo (this is not needed, but provided as a debug hook)). DDD runs on the CCLK, but can keep up
with the rate that data is written into the read data fifo since it can pull out of the fifo to utilize CSW bandwidth
through pipelining onto the 72 B CSW bus while the fifo input rate is at the DCLK but the width is only 16B wide
(8B each on rising and falling of DCLK). When DDD causes the assertion of ddr coh DataValid c2a it grabs the
CSW bus (i.e. - DDR does not need to abitrate for CSW access).

8.7 DDP Unit - DDR2 SDRAM PHY IP Block

8.7.1 Overview

The DDP unit contains the DDR2-SDRAM PHY, which is a hard macro provided by designed by Esilicon. Some
block diagrams and timing diagrams are located in the project tree under .../hw/ip/esilicon/doc/ddr2 phy diagram v#.pdf
where # is the latest released version number.

8.7.2 Clocks

DDP receives two clocks DCLK and DM90CLK which is shifted minus 90 degrees relative to DCLK (i.e.
DM90CLK is 1/4 cycle earlier). Both of these clocks originate from the one of the main PLL instances. Note that
the PLL provides a pll clock and pll clock90 output which is shifted by positive 90 degrees, so DCLK will be driven
by pll clock90 for all of DDR/DDP and DM90CLK will be driven by pll clock.

The clock which DDP drive to the DIMM is based on DM90CLK. The phase shift between the two clocks is
used by the PHY in the write path logic to DDR2 spec requirement of DQS being shifted relative to DQ during
writes.

8.7.3 Address and Command Path

DDP flops all address and command path inputs synchronously on the DCLK. These signals are then driven
out the output pad to the DIMM. The command and address signals are:

A[15:0] - Address
BA[2:0] - Bank address
RAS L - RAS command line
CAS L - CAS command line
WE L - WE command line (write enable)
CS L[3:0] - CS command line (chip select (really rank select in our case))
ODT[3:0] - On-Die Termination
CKE[1:0] - Clock enable

8.7.4 Write Path

DDP flops all of its write path inputs synchronously on the DCLK. Some the of the write path signals are then
flopped with DM90CLK. Please see ddr2 phy diagram v#.pdf for logic diagrams. During writes DQS is driven out
90 degress later than DQ.

8.7.5 Read Path

DDP’s read return path is customized to reduce read return latency. Read data returning from the DDR2
DIMMs (DQ[71:0]) have an associated strobe clock DQS[8:0]. There are a number issues which need to be handled
before the DQS can be used to capture the associated data. Firstly, because DQS is a bidirectional bus (driven by
us during writes and driven by the DIMM for reads) it needs to be filtered so that it is doesn’t cause false data
capture due to it toggling during writes or toggle due to noise when it is undriven. Secondly, DQS needs to be
shifted so that it lines up with the data eye so that data can be correctly captured. The read datapath is repeated
9 times corresponding to the 9 bytes of read data per read data received in parallel.

In order to filter DQS, the DDR2-PHY needs to identify preamble and postamble of the read data transfer.
The start of the read preamble is defined as 1 clock prior to the first rising edge of DQS furing a read burst, with
no external delays (DQS aligned to CLK M90). The read postamble ends 1/2 clock after the last falling edge of
DQS during a read burst, assuming no external delays (DQS aligned to CLK M90). The NWL controller (DDC)

May 14, 2014 500 Rev 51328

SiCortex Confidential 8.7. DDP UNIT - DDR2 SDRAM PHY IP BLOCK

sends signals to DDP to identify the timing of the preamble (see logic diagram and associated timing waveforms
for CTI DQSA PREAMB ENABN and CTI DQSB PREAMB ENABN on ddr2 phy diagram v#.pdf (location of
this file is provided above in the overview subsection), also see the description of phy dqs preamble en n a and
phy dqs preamble en b in NWL’s DDR2 SDRAM Controller Core SiCortex Custom Interface Addendum). These
signals are combined to create DDO DQS PREAMB ENABN, which is then sent through a dummy instance of the
differential I/O cell used for DQS to match delay variation due to PVT changes seen by DQS. The preamble enable
then goes through a slave DLL which compensates for the board trace length round trip delay between the ASIC and
DIMM (the delay setting for this DLL is controlled per byte lane by the CSRs R DdrxDdpDLLLane# Slave0Adj).
The output of the DLL enables the PHY to receive the DQS strobe and starts a 4 cycle counter which keeps the
enabling the PHY to recieve DQS (the counter works becuase all reads are full 72 B (4 cycle) reads).

Ideally, after DQS is filtered, its timing will match that of the DQ input after it has gone though similarly
matched logic. It is then necessary to delay the DQS by approximately a quarter cycle so that it can be used as a
capture clock for DQ. This delay is obtained from a second slave DLL (the delay setting for this DLL is controlled
per byte lane by the CSRs R DdrxDdpDLLLane# Slave1Adj).

The captured read data is place into a fifo which lives in the DDR2-PHY. The fifo is 4 entries deep, where each
entry is 72 B wide. Each fifo entry has 8 sub-cells corresponding to each of the 8 data sub-transfers associated with
a full 72-B read. Whenever DDP writes the first sub-cell of a fifo entry it tells sends a signal to DdrDdd to signify
that it is safe to start pull data out of the next fifo entry. After proper sychronization, DdrDdd starts pulling data
out of the PHY.

8.7.6 DLLs

Each of the 9 bytes lane of the a PHY instance includes an embedded analog DLL module from True Circuits
based on their Part: TCI-TN90G-DDRLDLL. Each module contains one master DLL and two slave DLLs. Detailed
information is located in the project tree at .../hw/ip/esilicon/release 11 19 05/dll 090g, in particular the document
TCITSMC009DDRDDLLA1 guide.txt is very informative.

Each DLL module contains 1 master DLL and two slave DLLs. The master DLLs
Reference input frequency range: 93MHz - 465MHz
Slave delay adjustment range: 0% - 100% of reference clock
Number of slave adjustment steps (MADJ) - 160 (See below, DLL Master Adjustment section as Sam Stewart

at Esilicon provided different info)
Slave delay equation - Tf + [(ADJ + ADJ offset)/MADJ] * Tref
Fixed delay offset (Tf) (nom) - 90ps (this delay is cancelled by the match cell used for the DQS shift path.)
Fixed code offset (ADJ off) - 34 steps

8.7.6.1 DLL Master Adjustment

According to information provided by Sam Stewart at Esilicon, the MADJ setting is frequency dependent.
Verilog simulations of the PHY seem to corroborate this.

MADJ MAX = (160 * 465Mhz) * Tref
This implies the following settings should be used for R DdrxDdpDLLLane# MasterAdj:
DCLK = 400 MHz (2.5ns) => MADJ = 184
DCLK = 333 MHz (3ns) => MADJ = 224
DCLK = 267 MHz (3.75ns) => MADJ = 252 (The formula says 279, but the MADJ is 8 bits wide (caps at

255))

8.7.6.2 DLL range calculations for Slave0 (DQS preamble enable DLL to match board trace length
to memory)

DLL slave 0 adjustment range: 1-134.

8.7.6.3 DLL range calculations for Slave1 (DQS 1/4 cycle delay DLL)

DLL slave 1 adjustment recommended settings:
DCLK = 400 MHz (2.5ns) => ADJ1 = 12
DCLK = 333 MHz (3ns) => ADJ1 = 22
DCLK = 267 MHz (3.75ns) => ADJ1 = 29

May 14, 2014 501 Rev 51328

SiCortex Confidential CHAPTER 8. MEMORY CONTROLLER

Slave 1 setting = ((MADJ) / 4) - ADJ offset, where ADJ offset is the ADJ fixed code offset of 34 steps. Tf
has been compensated for in the design.

8.7.7 I/O pads

The I/O cells used DDR2 are from ARM’s 90nm 1.2Gbps DDR1/DDR2 Combo Library for TSMC G. These
ahve 1.8V drive, 1.0V Core interface for DDR2.

8.7.7.1 Impedence Calibration

The I/O cells include pull-up and pull-down impedence for driver strength setting and On-Die-Termination.

May 14, 2014 502 Rev 51328

Chapter 9

Counters, Performance Counters, &
OCLA Overview

[Last modified: $Id: counters.lyx 31059 2007-01-30 21:16:09Z pholmes $]

9.1 What’s Available

The Ice9 chip provides various ways to gain information on internal events and status. The SCB Bus provides
access to internal status and counters to MSP (and SSP) from outside an Ice9, as well as to the 6 processors within
Ice9. Processor code can read CPU Counters. And internal signals can be driven to an Ice9 external pin.

This status information is provided by SCB Registers, the SCB Performance Counters mechanism, and OCLA
(On Chip Logic Analyzer). Performance Counters and OCLA can be used in various ways.

Simpler methods of gaining visibility take less configuration effort than the more complicated methods. In order
by increasing complexity, these methods of gaining visibility into Ice9 are:

• SCB register “good” and “bad” status bits within various sub-blocks of Ice9, many of which can cause inter-
rupts.

• SCB register counters within various sub-blocks of Ice9.

• CPU Performance Counters, 2 in each MIPS core.

• SCB Performance Counters used to get up to 2 configurable 32-bit counters.

• SCB Performance Counters used to get up to 256 statistical-percentage counters.

• OCLA driving internal signals out an Ice9 external pin.

• OCLA used to get a highly-configurable 12-bit counter.

• OCLA used to record a timeline of the times when an event occured.

• OCLA used to capture trace and values informations like a logic analyzer.

And of course you can use more than one of these at the same time. You could have the SCB register counters
counting, at the same time that SCB Performance Counters is doing something, at the same time that OCLA is
doing something. Let’s look at each of these in more detail...

9.2 Status Bits

Various Ice9 sub-blocks have “good” and “bad” status bits that can be read from SCB registers.
For an overview on error conditions, and info on ECC errors, see the “Reliability, Availability, Serviceability,

and Error Handling” chapter of the system hardware spec. This chapter can also be found under rev-control in
<project>/specs/system/Reliability/Reliability.lyx.

The PCI-Express unit has a “Link Up” bit, the 6 Fabric Link units have “MissionMode” bits.

503

SiCortex Confidential CHAPTER 9. COUNTERS, PERFORMANCE COUNTERS, & OCLA OVERVIEW

Most sub-blocks have “bad” status bits of various kinds. Most of these can be enabled to drive interrupts to the
processors. Even when a particular interrupt is not enabled, the status bit for that condition is usually readable
over the SCB Bus.

9.3 Counters

Some Ice9 sub-blocks have counters locally-implemented (within the sub-block) that can be read from SCB,
counting normal and error type events. Some sub-blocks rely entirely on the SCB Performance Counters for any
counting you may wish to do, and some have both their own counters as well as SCB Performance Counters hookup.

Locally-implemented counters are simpler to get information from than OCLA or SCB Performance Counters,
requiring no configuration ahead of time, except in some cases they should be cleared at the appropriate step in
boot process. Furthermore, they’re always “on”, giving a true count of their particular event.

In the DMA sub-unit, a philosophy was taken that if counting was needed, DMA microcode could do the
counting and store the values in memory.

Fabric Switch counters are 32-bit, but counters in the Fabric Link are much smaller.
These counters may not have been verified as well as the main functionality of the chip, depending on the

sub-block. For some counters the count may not be exactly what would be literally correct during complex error
conditions. But in general, during error-free conditions the error counters will remain zero and the good event
counters will count correctly. And in general, during simple error conditions the error counters will count their
respective errors correctly.

As of September 2006, Link-unit counters have been verified for small counts, but not for large counts or
rollovers. Nuances about their counts are documented in the Link Spec <project>/specs/ice9/link/link.lyx.

As of September 2006, Fabric Switch counters have been tested as correct during good traffic and simple errors,
although during complex errors or periods of time not processing traffic the counts may be off. Fabric Switch
counters are documented in <project>/specs/ice9/fabric/fabric.lyx.

9.4 CPU Performance Counters

Each of our 6 embedded MIPS cores has 2 configurable Performance Counters within it.
See the MIPS Spec <project>/hw/cpu/opal 2 3/docs/MD00012-2B-5K-SUM-02.08.pdf section 6.22

“Performance Counter Register”. Read this for the mechanism of how to use these counters, but read the “Processor
Segments” chapter of our Chip Spec for the list of events.

In the “Processor Segments” chapter <project>/specs/ice9/processor/processor.lyx see section “CPU
Performance Counter Events”. Note differences between ICE9A and ICE9B.

9.5 SCB Performance Counters

836 different events or conditions are wired to the SCB Performance Counters mechanism, coming from many
sub-blocks in Ice9, with strong emphasis on the processors themselves. There’s a good list of within-processor
events to count, separately selectable for CPU0 through CPU5. In addition to these events wired directly to the
SCB system, much of the OCLA triggering system is also available as events for SCB Performance Counters.

SCB Performance Counters require configuration in order to be used, but it’s much simpler to use than OCLA.
SCB Performance Counters are 32-bits, many more bits than the counters in OCLA.
Not only can you choose from that long list of events, but you can condition any event by another event,

counting only “if AND” the other event, or “if AND NOT” the other event.
You can choose between “how many clocks was it high for” and “how many times did it go high for awhile”, or

even “how many times was it high for more than N clocks”. Collecting that last version for more than one value of
N, you can gather histogram information.

Tests causing each event (that’s wired to the SCB Performance Counters) have NOT been written as of October
2006, so some events may not work correctly. More to the point, although I expect most events to work correctly
and count what you’d think they count, in a few cases the name of the event may not mean what you first think
it does. When in doubt, ask the sub-unit designer what’s being counted (or asserted) by that event signal.

There are cross-connections in both directions between SCB Performance Counters and OCLA, but those
connections are not required for use of either. To keep SCB Performance Counters configuration simple, first see
if the events you need are directly available in the AllEvents list. If not, then look at what events OCLA could

May 14, 2014 504 Rev 51328

SiCortex Confidential 9.5. SCB PERFORMANCE COUNTERS

provide. Accessing OCLA events for counting is much simpler than the full use of OCLA, no OCLA LAC program
is needed.

See the “Serial Configuration Bus” chapter of the chip or hardware-system spec. This chapter can also be found
under rev-control in <project>/specs/ice9/chipSCB/chipSCB.lyx. There’s a lot in that chapter, so look for
the “Performance Counting” sub-section, and then the later “Performance Counting Registers” sub-section.

In our Chip Spec there is no one list of all the events which can be counted by SCB Performance Counters. The
best place to look for a nearly-complete list is in the software defines extracted file. As of January 2007 software
defines for these are <project>/sw/include/sicortex/ice9/ice9 all spec sw.h as enum Ice9 EnumAllEvent.

The majority of SCB Performance Counters events are from inside the 6 processors. The list of“from the proces-
sors”SCB Performance Counters events is found in the“Processor Segments”chapter<project>/specs/ice9/processor/processor.lyx
sections “SCB Performance Events” and “SCB Performance Core Events”. Note Ice9A vs Ice9B differences. This
list is duplicated 6 times, once for each MIPS processor.

OCLA events are not listed in the extraction. Although the hardware exists to count OCLA trigger-block events
in SCB Performance Counters, it is not actively-supported or documented at this time.

The SCB Performance Counters mechanism can be used in 2 quite-different ways, for “ordinary counters”, or
for “statistical percentage counters”, as described below.

9.5.1 Ordinary Counting with SCB Performance Counters

If you want “a count of how many times something happened” for one or two of the many events wired to the
SCB Performance Counters, you can configure this mechanism to dwell on those events continuously, giving you a
“full count” of how many times those events occurred.

There’s a limit of 2 events at a time.

If you want an event conditioned by another, then those 2 events have already used-up your limit of watching
only 2 events at a time.

You may wish to be careful to remain off-of the SCB Bus during the time-period you’re interested in. Any SCB
writes or reads create short “black-out times” when your events may occur but not be counted.

Prior to the time-period of interest, use SCB-writes to configure SCB Performance Counters for the events you
want, and for a large dwell-time, and no incrementing of the bucket-number. Then, after the time-period of interest,
use SCB-reads to get your counts.

Events coming from clock-domains other than cclk (like FSW) will be counted correctly.

9.5.2 Statistical Counting with SCB Performance Counters

Your choice of up to 256 of the available events (AllEvent and OCLA events) can be scanned with a given
configuration of SCB Performance Counters.

In this style-of-use the goal is to get an estimate of “activity density” or “statistical percentage-of-time” of the
events. For each selected event-signal you will be able to get a rough estimate of what percentage of time that
signal was true.

With this information you could compare different events to see which was occuring more often or more of the
time. When tuning or diagnosing performance, you can see percent utilization of an Ice9 sub-block, or an interface
from one sub-block to another.

The SCB Performance Counters mechanism scans across the configured events, dwelling the same amount of
time on each. After a period of scanning, you read the counts for each event. You can compare them, or divide
these counts by the number of cclks spent watching for each, to get a percentage-of-time asserted.

This style of use does not get you a “full count” of events, because the mechanism was scanning across events.
For any one event, most of the time that event wasn’t being watched.

This style of use is protected against black-out times when SCB writes or reads are taking place. The dwell
time of watching for an event doesn’t count time periods when SCB writes or reads are happening.

To get good statistics, the activity of interest should be more-or-less in a “steady state”, and then SCB Per-
formance Counters should be configured to dwell long enough on each event to get a representative sample, as
described in the “Serial Configuration Bus” chapter.

May 14, 2014 505 Rev 51328

SiCortex Confidential CHAPTER 9. COUNTERS, PERFORMANCE COUNTERS, & OCLA OVERVIEW

9.6 OCLA

OCLA (On Chip Logic Analyzer) was designed to capture values of many signals in response to a simple or
complex trigger event, but it can also be used in simpler ways. OCLA is provided with a large number of signals
and busses from many Ice9 sub-blocks. With these you can form simple or complex triggers, and select which
groups of signals you wish to capture in Collector Blocks for later viewing.

OCLA can also trigger on up-to 2 of the many events provided to SCB Performance Counters, and can combine
those events with OCLA’s own events in an AND-OR-delay manner to form triggers. But it’s simpler and usually
adequate to use OCLA’s own large selection of trigger signals. If you configure OCLA to use SCB Performance
Counters events, this “ties up” the SCB Performance Counters mechanism, in that any counting done by SCB
Performance Counters must be on those same events. Furthermore, you must manage your SCB writes and reads
to avoid missing events you wished to trigger on. No such management of SCB accesses is needed if you use OCLA’s
own trigger signals.

The OCLA Spec is the “On Chip Logic Analyzer” chapter of the chip or hardware-system spec. This chapter
can also be found under rev-control in <project>/specs/ice9/chipocla/chipocla.lyx

OCLA is fairly difficult to program. Expect a learning-curve. Your first OLCA program will likely not work
at all. Example programs have been written and made to work in simulation for each of the Ice9 sub-blocks
containing OCLA, for many trigger signals, and for various styles-of-use of OCLA. When writing a new OCLA
program it’s recommended that you get it going in simulation first, then transfer it to the lab. Even experienced
OCLA-programmers often resort to simulation-waves to debug a non-working OCLA program. The lab, of course,
doesn’t have such visibility.

The OCLA wiki page http://apollo.sicortex.com/swiki/OclaVerification lists working example programs
and where to find the code for them. You can use the Makefile there to create a Diagnostics “dash”perl script with
the configuration of any of these programs. This perl script gives you the same OCLA configuration in the lab as
was in the simulation test. These perl scripts are fairly readable and can be edited if you know OCLA well enough.

9.6.1 OCLA Driving an External Pin

OCLA can be configured to drive any 1 of 100’s of internal signals to Ice9 external pin “sys ocla trig”.

The signals to choose from are those leading into the OCLA Trigger Blocks, as described in the OCLA Spec.

The occurance of SCB Performance Counters events may also be driven out this pin.
Logical combinations if signals and pattern-matching on busses can be combined to determine when to drive

this pin.

This can be useful to: (a) gain visibility inside the ASIC as to whether or how-often an internal event is
happening, (b) trigger lab logic-analyzer equipment at the correct time to capture external busses data.

To do this a small OCLA LAC program is required, as well as configuring one or more Trigger Blocks.

There will be a fixed multi-clock delay, of some 20 to 40 nSec depending on the signal, between activity on your
selected signal, and that same activity on “sys ocla trig”.

Signals from the FSW unit, and events from SCB Performance Counters, will be distorted due to clock-domain
crossings, and the need to stretch short pulses so they don’t dissapear as they enter the cclk domain and pass
through OCLA. Isolated high pulses will not be lost, but sometimes 2 closely-spaced pulses from FSW or SCB
Performance Counters will merge into one pulse.

The fastest oscillation of this output is at 1/2 cclk frequency. Quality of viewed waveform will depend on how
well the signal is kept close to a ground signal as it passes from ASIC, through board, into scope probe, into scope.
With a couple inches of distance along the way not twisted with ground you can still tell the difference between
actual pulses driven high and ringing/reflections.

9.6.2 OCLA as a Counter

One simple use of OLCA is as a counter.

Only a very simple LAC program is needed, but even so, it’s usually less configuration to feed the signals or
triggers to SCB Performance Counters, and do the counting there. OCLA is more flexible, but SCB Performance
Counters is pretty powerful. If you wish to count one trigger qualified by another, SCB Performance Counters
can do that. If you wish to count one trigger qualified by a delayed or advanced version of another trigger, SCB
Performance Counters can do that, with the delays being applied in OCLA LAC before the triggers are sent to
SCB Performance Counters.

May 14, 2014 506 Rev 51328

SiCortex Confidential 9.6. OCLA

SCB Performance Counters are 32 bits whereas OCLA counters are only 12 bits. Fortunately OCLA counters
have a sticky overflow-bits indicating when over 4095 counts occured.

You can have a 24-bit counter by nesting OCLA’s two counters in OCLA LAC program loops, but you get a
slightly imprecise count, because it’s not watching for the event every time you “carry” from the lower-bits counter
to the upper-bits counter.

One motivation to count in OCLA rather than SCB Performance Counters is that SCB Performance Counters
has black-out periods (missing counts) whenever an SCB write or read is in progress.

Another motivation to create a counter in OCLA is if SCB Performance Counters is already in use, or if you
wanted more than 2 continuously-counting counters. 2 continuous full-count counters in SCB Performance Counters
plus one in OCLA gives you 3 at once.

2 in SCB Performance Counters plus 2 in OCLA gives you 4 at once, but OCLA cannot increment both of
OCLA’s counters in the same clock, so you’d have to decide which count gets incremented and which doesn’t if
both events happen at the same time. If the 2 events are known to not happen on the same clock, there’s no
problem. If the events are sparse and unrelated you could just accept one of the counts being inaccurate. If the
events would predictably occur on the same clock, you could delay one of them with LAC delay regs.

The real power of counting with OCLA trigger blocks is configurability. You can “design your own counter”!
OCLA can be configured to count an AND-OR combination of many signals, even delayed signals! OCLA can also
be configured to only count when an address, state-encoding, or packet header information on a bus matches one or
more values or address-ranges. Much of this can be fed through to SCB Performance Counters, with the counting
done there, but the full AND-OR combination flexibility is only available by counting in OCLA.

9.6.3 OCLA as a Times-of-Occurance Recorder

Using OCLA’s free-running-counter to collect time-stamps in a collector block, you can get an “event timeline”
of any OLCA-trigger event. As stated before, this event can be an AND-OR combination of signals or delayed
signals, including pattern-matching on addresses, state-encodings, or packet headers.

Up to 1024 event-timestamps can be collected. You lose any events after that.
The free-running counter is 32-bits, so timestamps for up-to 2**32 cclks (16 seconds) are non-ambiguous. An

unambiguous time-record for more than 16 seconds (with no upper limit in time), for 1024 or less occurances of the
event, can be had by writing some watching software for one of the processors that periodically reads some OCLA
registers.

You usually get no useful logic-analyzer type collection of values occurs when using OCLA in this manner, all
you get is a series of timestamps.

9.6.4 OCLA as a Logic Analyzer

The full use of OCLA’s capabilities is to collect values of many signals and busses in response to a simple or
complex trigger event. The OCLA Spec is where this is described in detail, but here are a few highlights:

Up to 1024 cclks of activity may be collected.
This collection can be done for one period of time of 1024 cclks, or multiple smaller time periods can be collected.
A “qualification” feature allows some data (but not all) to be collected “only when valid”, which is very efficient.

This allows many short events, or single-clock events over a long stretch of time to fit in a 1024 entry collector
block.

A period of collection can programmed to be mostly prior to the trigger, centered around the trigger, or after
the trigger.

Activity can be collected in more than one sub-block of Ice9 at the same time.
Although there are many choices of sets of data to collect, they represent only a small fraction of the signals

and busses in the sub-blocks of Ice9. We did the best we could to choose “likely to be useful” data to wire-up to
OCLA, but by hindsight we already see we could have made some better choices. Hopefully what you need will be
there.

May 14, 2014 507 Rev 51328

SiCortex Confidential CHAPTER 9. COUNTERS, PERFORMANCE COUNTERS, & OCLA OVERVIEW

May 14, 2014 508 Rev 51328

Chapter 10

Serial Configuration Bus

[$Id: chipSCB.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

10.1 Overview

The Serial Configuration Bus (SCB) is a small serial bus used to interconnect software programmable registers
(aka CSRs or slow I/O registers) throughout the chip.

The SCB is controlled by the SCB Master block. The SCB Master (SCBM) interprets CPU reads and writes,
and converts them to a serial bus. The serial bus is driven to the first in a ring of SCB Slaves (SCBS). It eventually
reaches the desired slave, which performs the read or write and drives the data further along the ring and finally
back to the SCB Master.

The SCB also implements performance counters, which statistically sample monitoring points across the design.

10.2 Specifications

• Up to 128 slaves.

• 32-bit data.

• Up to 24 bits of configuration register address space per slave.

• Low-cost 3-signal interconnect.

• SysChain interface for module processor access to all slave registers.

• Synchronous clocking in each required clock domain.

• Standardized Slave interface, for easy instantiation.

• Low cost reset of all I/O register state.

• Performance sampling interface, with up to 256 different events per slave.

• All of OCLA events, plus enum AllEvent available for performance counting.

• Any of the performance events visible at OCLA, for logic analyzer triggering.

• System Manager interface registers for LEDs, Attention, chip number, etc.

10.3 Differences, Bugs, and Enhancements

10.3.1 Product and Chip Pass Differences

1. ICE9B returns a different product (ICE9B) and/or revision (ICE9A1 vs ICE9A0) when reading R ScbChipRev.

2. ICE9B has reduced latency accessing the SCB’s own registers.

509

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

3. ICE9B adds a interrupt/attention for when the Chip<->Msp channel is ready for transmit.

4. ICE9B adds R ScbDInt to replace the SysChain R SysTapDint register, see bug2223.

5. TWC9A returns a different product (TWC9A) and/or revision when reading R ScbChipRev.

6. NEED IMPL: TWC9A supports 64 bit SCB slaves and 64 bit registers, see bug4619.

7. TWC9A adds R ScbDInt SendDInt6, R ScbDInt Cpu6DM, R ScbAtnInt Cpu6DMMask, and R ScbAtnInt Cpu6DM
to support CPUs 6-9.

8. TWC9A fixes reads to fast DDR clock registers returning the wrong results after a CCLK register read,
bug4331. Earlier chips required a dummy read between such read sequences.

9. TWC9A will skip sampling bucket pairs where R ScbPerfBuckets Event == AllEvent INVALID. This is
backward compatible with other products, which should use that encoding for invalid buckets. bug4265.

10.3.2 Known Bugs and Possible Enhancements

1. In ICE9A and ICE9B, all SCB accesses must be done with 32-bit accesses. Using a 64-bit read/write to
access them will put return/write data in the wrong half of the quadword, not simply return or write half of
the data.

2. Decouple the SCB CPU# P[01] events from the CPU performance counter domain (U/S/K), perhaps with
new domain bits.

3. SCB performance counts from Ocla TrbC blocks depend on the TrbC configuration, this could be simplified.
bug1717.

4. R ScbPerfEna should have a way to stop immediately, without corrupting, for interrupt handlers. Perhaps
add a Pause bit that stops on current bucket and partial interval. We’ll also need to make the partial interval
programmable so context switches can reprogram it.

5. R ScbPerf* registers should be writable without needing to stop sampling.

6. R ScbInt should indicate what bucket(s) have caused the overflow, to save software from having to read the
entire count ram on each overflow, bug2164.

7. R SysTapMsp transactions should be double buffered, as the Msp decision loop is quite slow.

8. R ScbInt like most of the other blocks in the chip contains the interrupt state before masking. This requires
the interrupt handler to read (or cache) R ScbIntMask before dispatching interrupts.

10.4 Block Diagram

10.5 SCB Master Ports

Signal Name In/Out From/To Description
pmi scb req cr In Pmi Pmi Scb request pulse. Pulsed to request a Scb transac-

tion, wr, addr, and wdata are valid until acknowledged.
pmi scb addr cr In Pmi Pmi Scb request read/write address.
pmi scb wr cr In Pmi Pmi Scb request write, not read.
pmi scb wdata cr In Pmi Pmi Scb request write data.
scb pmi ack cr Out Pmi Pmi Scb return acknowledge. Pulsed to indicate comple-

tion of transaction, and rdata is valid.
scb pmi rdata cr Out Pmi Pmi Scb return read data.
scb csw ScbInt ca Out Pmi Pmi Scb interrupt. Asserted while interrupt requested.

scb chaino dat *r Out first SCB Slave Serial SCB chain output (one per clock domain)
chaini scb dat *r In last SCB Slave Serial SCB chain input (one per clock domain)

May 14, 2014 510 Rev 51328

SiCortex Confidential 10.6. SCB SLAVE PORTS

Figure 10.1: Scb Overview

10.6 SCB Slave Ports

The SCB Slave is a standard Verilog/SystemC module that is instantiated by blocks to decode the serial bus
into connections for the local block’s register logic.

May 14, 2014 511 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

Signal Name In/Out From/To Description

chaini scbs dat r[2:0] In previous SCB Slave Serial SCB chain input.
scbs chaino dat r[2:0] Out next SCB Slave Serial SCB chain output.

scbs x active r Out slave user Transaction active. May be used as a
clock gate for slave logic that only needs
to be active during SCB activity. As-
serted starting with the initial req r as-
sertion through acknowledgement, and
during event counting.

scbs x req r Out slave user Read/write request pulse. Indicates ad-
dress and write data is stable.

scbs x addr r[23:0] Out slave user Decoded address, for register accesses
and selection of sample point.

scbs x wr r Out slave user Write/ not read. Asserted for writes, de-
asserted for reads.

scbs x wdata r[31:0] Out slave user Write Data. 32-bit data bus for writing.
x scbs ack r In slave user Read/write acknowledge pulse. Pulsed

to acknowledge write, or read data is
ready.

x scbs rdata r[31:0] In slave user Read Data.
x scbs id[6:0] In slave user Identity. Specifies constant 7 upper ad-

dress bits that must match address to
accept SCB transaction. See 16.6.6.

scbs x counting r[1:0] Out user events Asserted when the events are being
counted by the SCBM. May be used to
gate latching of last-event addresses, etc.

scbs x eventId0 r[7:0] Out user events Event number to route to
x scbs event[0].

scbs x eventId1 r[7:0] Out user events Event number to route to
x scbs event[1].

x scbs event[0] In user events Count bit A. Level asserted to count
event on eventa r for this cycle.

x scbs event[1] In user events Count bit B. Level asserted to count
event on eventb r for this cycle.

10.7 Custom/Large Structures

Name Size Description

ScbCntRam 256x50 1rw Counting RAM, size based on number of sampling points, so easily
negotiable.

10.8 I/O Operations

The SCB master connects to the system via the PCI Host interface, which receives I/O read and write trans-
actions from the CPUs. When the SCB master detects an I/O write to its 32-bit address space, it initiates a SCB
I/O write operation on all of the SCB busses.

The address and data are shifted onto the SCB buses. One of the 128 SCB slaves decodes the address, and
asserts a request to the SCB slave user’s logic. The user logic writes the register and asserts a strobe back to the
SCB slave. The slave returns the acknowledge back over the SCB bus to the SCB master.

On a read, the address is shifted onto the SCB bus, and is decoded by one of the SCB slaves, which asserts a read
request to the SCB user logic. The user logic reads the registers and returns the read data and acknowledgement
to the SCB slave. The SCB slave shifts out the acknowledgment and data back to the SCB master, who returns it
to the system bus.

May 14, 2014 512 Rev 51328

SiCortex Confidential 10.9. SYSCHAIN INTERFACE

10.8.1 No responder

When a SCB slave sees a transaction to its address space, it asserts Cmd[0] back to the SCB master. Should no
slaves respond in this way across all of the domains, the SCB master will acknowledge the transaction itself (since
no slave will ever respond.) On writes, this means the write will be silently dropped. On reads, the return data
will be zero.

10.8.2 Approximate Latency

The approximate read latency of SCB operations is calculated below. Currently the sclk is the both the slowest
chain and the chain with the most loads (8). This yields a minimal latency estimate of 210 ns.

Who How Much Description

Cpu 2 pclk Read issue latency
Fsw ˜2-5 cclks Latancy across Fsw And Cac
Pmi ˜2 cclks Pmi Latency
Scbm ˜8 cclks Scbm Overhead
Scb 20 Xclks + #slaves Time to clock command. This is the maximum across all

clock domains.
Device 3++ Yclks Time for slave to respond to request for data.
Fsw ˜2-5 cclks Latency across Fsw and Cac. (Due to bus-stop organiza-

tion, this is likely to be smaller if the above Fsw latency
is large, and vice-versa.

Cpu 1 pclk Read return latancy

10.8.3 Software Notes

The SCB registers must be accessed with 32-bit load/store operations. Other size operations are not supported.

10.9 SysChain Interface

The registers on the SCB bus may be accessed over the SysChain interface. This may be done at any time; it
is round-robin arbitrated with the normal Pmi path.

10.9.1 SysChain Access Requirements

To access SCB registers via the SysChain bus:

1. SCBM/BBS reset must be deasserted. SCB slaves may still be in reset.

2. All clocks with SCB chains must be running, not just the cclk and destination slave clock.

3. Software must ensure that one SysChain write/read completes with “done” before the next is launched, or
must request a reset between transactions.

4. An old transaction may be shifted out simultaneously with a new command shifting in.

10.9.2 SysChain SCB Write

To write a register on the SCB chain, the address and data is prepared in the R SysTapScb structure. The
write and go bits are set, and the structure is shifted into the SCB SysChain interface. The SCB will decode the
command and see the go bit set. It then performs the IO write as described above. On completion, the command
register may be shifted out; the go bit will now be clear, and the done bit will indicate if the write was completed.

May 14, 2014 513 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

Figure 10.2: Scb Performance Counting

10.9.3 SysChain SCB Read

To read a register on the SCB chain, the address is prepared in the R SysTapScb structure. The write bit is
cleared, the go bit is set, and the structure is shifted into the SCB SysChain interface. The SCB will decode the
command and see the go bit set. It then performs the IO read as described above. On completion, the command
register may be shifted out; the go bit will now be clear, and the done bit will indicate if the read was completed;
if so the data field contains the read data.

10.10 Performance Counting

When not being used for an I/O operation, the SCB bus may be used for counting events and performance
monitoring.

10.10.1 True Counting

SCB Performance Counting can provide you a full count of how many times up to two events happened. You
configure buckets 0 and 1 only, and don’t enable incrementing to the next pair of buckets. Even if the SCB slaves
selected are in a different clock domain from the SCB master, an accurate count of events at the SCB slave will be
tallied. The only events you miss are those that occur during an SCB bus I/O operation, so you should be careful
to manage SCB bus use during accurate counting.

10.10.2 Statistical Counting

Up to 256 events can be counted in a statistical manner, watching for each for an equal amount of time.
When enabled by R ScbPerfCtl Run, the SCB starts with bucket 0. The R ScbPerfBuckets[0] register is loaded,

which directs the SCB to select a given event number to sample into that bucket, see 10.17.9. In Twc9a+, if the
event number is INVALID, the SCB skips the rest of this description and moves onto the next bucket.

The event number is shifted to all of the SCB slaves. The slave corresponding to that event then routes that
event’s state to the data wires, which propagates back to the SCB master. The SCB master increments a counter
each cycle the data wire is true, thus calculating the number of cycles the event was true.

May 14, 2014 514 Rev 51328

SiCortex Confidential 10.10. PERFORMANCE COUNTING

To allow for better debugging and tracking of cross products, the SCB can determine how long a signal was
asserted on two such events at once, one on each of the two serial data wires. While R ScbPerfBucket[n] is being
counted, the event in R ScbPerfBucket[n+1] is simultaniously being counted.

After a programmed delay in R ScbPerfCtl Interval, the SCB adds the event counter to the total in the
R ScbPerfBucket Count[0] (and [1]) register, see 10.17.10. It then increments the bucket number by two and
begins the process again with the event in R ScbPerfBucket Count[2] (and [3]).

In this way, over time, the SCB has a statistical average of how often each event occurs. To reduce sampling
errors on events which are asserted for long times, 1K cycles seems a reasonable minimum sample interval per
bucket. At this interval we can go through all buckets at 250Mhz * 2 events at once / 256 buckets / 1K cyc/event
= 488 samples per second. (This ignores the minor overhead in switching between events, so the real figure is ˜4%
smaller.)

Once you have a count of events at an SCB slave in a different clock domain from the SCB master, if you want
to calculate the percentage of slave clocks when the event was true, you must factor-in the ratio of clock speeds
between SCB master and slave.

10.10.3 Counts Causing Interrupts

The software can configure interrupts when the event counters set a certain count bit number. For example, if
R ScbPerfCtl IntBit==31, a interrupt will be raised exactly when an event causes its counter to count above 2ˆ31.
(Not while it is above 2ˆ31, but when the event itself occurs.) Software then clears the interrupt.

Note the interrupt for event x overflowing may be signaled before R ScbPerfCounts[x] is written with the
overflowing value. Software should poll R ScbPerfBuckNum in the interrupt handler to see it increment once if it
relies on R ScbPerfCounts[x] to indicate what bucket(s) overflowed.

10.10.4 OCLA Triggering

From SCB Performance Counters to OCLA:
Both of the final count wires, as seen by the SCB master, are routed to the OCLA. These two signals add to

the large collection of things OCLA already has to trigger on. These provide OCLA the ability to trigger on any
of the events SCB Performance Counters can count. But, in order to do so, SCB Performance Counters must be
configured to dwell continuously on the one or two events that OCLA wants to see.

10.10.5 Events from OCLA

From OCLA to SCB Performance Counters:
All of OCLA’s TRBC or TRBV triggers, and the raw signals from TRBVs, are available to SCB Performance

Counters as events to be triggered on. These events are in addition to those listed in enum Ice9 AllEvent.

10.10.6 Arbitration

SCB I/O operations and event counting require the same SCB slave data wires.
To avoid conflict, when a SCB I/O operation occurs, the current event count will be suspended, the SCB I/O

operation performed, and the same event count restarted from where the count ended. In the end, the event will
have been sampled for the same number of cycles as if it had never been interrupted. The interruption may cause
minor inaccuracies in the counting, but should be negligible given how infrequently SCB accesses will occur.

10.10.7 Software Notes

Each event is loaded into a 32 bit count register. To prevent overflow, these counters must be sampled at least
every 4G/500 MHz = 4 seconds. (It is more typically 10,000 seconds, as in normal operation each event is only
sampled for 1/2048th of the time, but the SCB may be programmed to count only a single event forever.) Software
should sample significantly faster then this (once per second), and derive the rollover bits to present a 64-bit counter
to the upper level application.

The best presentation to the user is probably as string-indexed values. The strings will be automatically
extracted from the enum declarations in the specifications by the vregs package.

All performace registers are in a unique 64KB page to allow software to map only the performance counter
physical page into user visible virtual address space.

May 14, 2014 515 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

10.10.8 Writing while Counting

Generally software should stop the counters before writing them. If, however, the counters are running, the
table below describes the potential hazards. Note writing the same value never has an effect; the table only applies
when the value to that field will change.

Register Effect

R ScbIntMask * Takes effect immediately. No hazards.
R ScbIntReq * Takes effect immediately. No hazards.
R ScbPerfCtl NoInc Takes effect at the end of the current interval.
R ScbPerfCtl IntBit Takes effect at the beginning of the next interval.
R ScbPerfCtl Interval When a count is in progress, changing the interval may

make the counter overflow. Not recommended.
R ScbPerfHist HistGte Takes effect immediately. If the bucket being sampled is

using histogram, the count currently being calculated may
spuriously count or lose a few events. Not recommended.

R ScbPerfBuckNum Bucket If R ScbPerfCtl noInc is set, the written value will be used
when the next interval begins. If R ScbPerfCtl noInc is
clear, the written value, or 2 plus the written value may
be used when the next interval begins.

R ScbPerfEna Ena Writing a one has no effect, as counting is already running.
Writing a zero requests disabling counting when the next
complete round of sampling completes.

R ScbPerfStat Run Read-only. No hazards.
R ScbPerfBuckets Event Takes effect the next time the specific bucket starts or

resumes counting.
R ScbPerfBuckets IfOther Takes effect immediately. If this bucket is the one being

counted, the count currently being calculated may spuri-
ously count or lose a few events. Not recommended.

R ScbPerfBuckets Hist Takes effect immediately. If this bucket is the one being
counted, the count currently being calculated may spuri-
ously count or lose a few events. Not recommended.

R ScbPerfCounts Count If this bucket is not the one being counted, the value will
remain. If this bucket is the one being counted, the new
count may be used, or the value may be overwritten with
the pre-written value plus the count from the current in-
terval.

10.11 Connecting to SCBS

10.11.1 List of Slaves

The ICE9 has slaves across most of the chip. A complete list of slaves is listed in the AddrSubId enumeration
in 16.6.6. Any row with a clock specified in the Clk column includes a Scb slave.

10.11.2 Slave I/O Transactions

Slaves connect their I/O registers to the SCBS using a simple request/acknowledge interface, with only one
transaction ever outstanding. On a single cycle pulse of the scbs x req r line, user logic decodes the address, write-
not-read signal, and write address if applicable. When the user logic has completed the operation, it drives read
data if applicable and pulses the x scbs ack r line. The scb ack r must be pulsed after every scb req r, even if the
address does not correspond to any valid register address. Additionally, invalid read addresses should return 0.

10.11.3 Slave Performance Counting Interface

Each slave uses the scbs x eventId# xr signals to select which event is to be counted. The event is returned to
the Scb slave counter as a single bit. The lowest cost way for user logic to implement this is probably a combination

May 14, 2014 516 Rev 51328

SiCortex Confidential 10.12. SCB INTERNALS

Wr Address Rd Addr

WriteData

RdData

Write Write Ack Read AckRead

cclk

scbs_x_active_r

scbs_x_req_r

scbs_x_wr_r

scbs_x_addr_r

scbs_x_wdata_r

x_scbs_ack_r

x_scbs_rdata_r

Figure 10.3: SCB Slave Timing

of muxes and AND gates which return a 0 whenever the address doesn’t match the desired event. A tree of these
in each sub-block then feed a reduction OR tree, or see 10.1. Up to 8 flops may be introduced by the user logic at
any point in this computation, as the SCB will discard the earliest sampling cycles.

If any slave has additional registers related to performance counting, those registers should be in a unique 64KB
page to allow software to map it into user virtual address space.

Algorithm 10.1 SCB User Event Counting Example

always @ (posedge clk) begin

if (scbs_cpu_active_pr) begin // Clock gate

m_scbs_event_p <= {eventMux(scbs_cpu_eventId1_pr),

eventMux(scbs_cpu_eventId0_pr)};

end

end

function eventMux;

input [7:0] select;

case (select)

‘E_XxxScbEvent_CYCLES: eventMux = 1’b1;

‘E_XxxScbEvent_DCHIT: eventMux = (signal_high_on_DC_hit);

default: eventMux = 1’b0;

endcase

endfunction

10.12 SCB Internals

This section describes the SCB internals.

10.12.1 PMI Interface

The connection between the PMI and the SCB master is a simple pulsed request/ acknowledge handshake. The
request and acknowledge handshake is nearly identical to the slave interface, with the addition of the upper address
bits. See Figure 10.3.

10.12.2 SCB Bus Protocol

All slaves on a particular SCB bus all operate on the same clock domain; additional chains are used for each
unique clock domain. Thus there are multiple SCB chains on the chip; presently for the pclk, cclk, d0clk, d1clk,

May 14, 2014 517 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

and sclk. (We can never have a iclk chain, as the iclk is not running in non-PCI connected chips.) The master
contains the synchronizer flops between the cclk (Scb master’s domain) and the slave bus’s domain. This places all
of the synchronizers in one place, and is more logic efficient then requiring each slave to have a synchronizer.

Each SCB bus consists of 3 wires connected in a chain, plus the clock. The 3 bits of the data bus consist of two
logically seperate signals, the command and data bits, that are bussed simply so the top level interconnect need
only concern itself with a single bus.

In/Out Signal Name Definition

in scb chaini dat[1:0] Data input.
in scb chaini dat[2] Command input.
out scb chaino dat[1:0] Data output.
out scb chaino dat[2] Command output.

10.12.3 ICE9 Bit Sequence

Every clock cycle, data is present on the dat wires. A shift sequence begins with with a start bit on dat[2],
and proceeds from MSB to LSB. The dat[2] input feeds a 17 bit command shift register. Likewise, dat[0] feeds
the even bits of a 32 bit data register, and dat[1] feeds the odd bits of the 34 bit data register. The bits of the
command and data registers are allocated as follows:

Register Valid during what
commands?

Definition

Cmd[16] All Start bit.
Cmd[15:12] All Command (see ScbCmd encoding.)
Cmd[11:2] Read,Write Address [11:2].
Cmd[1] - Reserved.
Cmd[0] All Match bit. Set by slave when command de-

tected with an address matching a slave’s ad-
dress.

Data[33:32] All Indicates what acknowledgements are present
on the data bus. See ScbDataAck encodings.

Data[31:0] Read, Write Data
Data[30:2] AddrH Address [30:2].
Data[30:24] Count Slave number for Event ID 1.
Data[23:16] Count Event ID 1.
Data[14:8] Count Slave number for Event ID 0.
Data[7:0] Count Event ID 0.

10.12.4 TWC9+ Bit Sequence

TWC9A changes the protocol slightly to allow 64 bit slaves. It also still supports 32 bit slaves without forcing
them to implement a fill 64 bit shifter, by insuring the first 32 shifts (with bits 64:33) can simply be dropped by
32 bit slaves and still have everything work out.

Every clock cycle, data is present on the dat wires. A shift sequence begins with with a start bit on dat[2],
and proceeds from MSB to LSB. The dat[2] input feeds a 33 bit command shift register. Likewise, dat[0] feeds
the even bits of a 66 bit data register, and dat[1] feeds the odd bits of the 66 bit data register. The bits of the
command and data registers are allocated as follows:

May 14, 2014 518 Rev 51328

SiCortex Confidential 10.12. SCB INTERNALS

Register What commands? Definition

Cmd[32] All Start bit.
Cmd[31:17] All Reserved. Note 32 bit slaves shift past these

bits and so cannot decode them.
Cmd[16] All Finished shift bit. 32-bit slaves complete com-

mand shifting with this bit in what would nor-
mally be the start bit. Therefore, the master
sets this bit so the code may assert the shift-
ing was properly completed. This bit may be
stolen for other purposes if the assertions are
removed.

Cmd[15:12] All Command (see ScbCmd encoding.)
Cmd[11:2] Read,Write Address [11:2].
Cmd[1] Read, Write Double-word access. If a 32 bit slave sees this

set, it’s an error.
Cmd[0] All Match bit. Set by a slave when command de-

tected with an address matching the slave’s
address.

Data[65:64] All Indicates what acknowledgements are present
on the data bus. Slaves do not decode these
bits. See ScbDataAck encodings.

Data[63:0] Read, Write Data. 32-bit accesses have the data replicated
on both the upper and lower words.

Data[63:32] AddrH Reserved. Note 32 bit slaves shift past these
bits and so cannot decode them.

Data[30:2] AddrH Address [30:2].
Data[1:0] AddrH Reserved.

Data[63:32] Count Reserved. Note 32 bit slaves shift past these
bits and so cannot decode them.

Data[30:24] Count Slave number for Event ID 1.
Data[23:16] Count Event ID 1.
Data[14:8] Count Slave number for Event ID 0.
Data[7:0] Count Event ID 0.

10.12.5 Commands

The 4 bit command, enumerated in 10.14.3 decodes to the following operations:

10.12.5.1 Idle

The Idle operation is used during bus idle, and is ignored by all slaves.

10.12.5.2 Reset

The Reset op causes SCB slaves to clear the slave’s internal internal state, and is reached by continuously
sending all ones on the dat[0] input. Reset persists until a pure Idle (all zeros) is received. This allows slaves to
be reset on a hang without losing register state.

10.12.5.3 AddrH

The AddrH op causes the last 32 bits of data shifted over dat[1:0] to be loaded into the high bits of the address
register.

10.12.5.4 Write

The Write op loads the low I/O address from the low 4 bits of the command shifter, and asserts a write request
to the SCB user logic. When the SCB user logic accepts the write with ack r, the slave passes the acknowledgement

May 14, 2014 519 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

to the SCB master by shifting a single pulse onto the dat[1] output.

10.12.5.5 Read

The Read op loads the low I/O address from the low 4 bits of the command shifter, and asserts a read request
to the SCB user logic. When the SCB user logic has the read data ready, it returns it to the SCB slave with
an acknowledge. The slave acknowledges the Read to the SCB Master with a start pulse on the dat output of
dat[2:0]=3’b011, followed by 16 double-bits of read data.

10.12.5.6 Count

The Count op causes the high bits of the address to be compared to the slave’s write data register, and if
matching, event data to be muxed onto the dat[1:0] outputs. The two events being counted may come from different
slaves, so two slave numbers are sent along with the Count op; either one matching will drive the appropriate dat
lines. Counting is “sticky” in that after the state machine returns to idle, it continues counting until the next dat[2]
start bit.

10.13 Chip Reset

On chip reset, all SCB master registers (except RAM) are cleared and counting is disabled. Software needs to
clear the RAM by writing zeros to it during boot.

During a SCB user driving the reset line into the SCB slave, that slave will ignore all SCB transactions, and
that slave places its SCB bus is in bypass mode. This allows each slave to have a different reset, and all other slaves
not in reset to still be programmable via the SCB. However, any slave’s reset must be deasserted only while the
SCB bus is idle, to avoid decoding the first command incorrectly.

Also during SCB user reset, a SCB slave will drive zeros on the write data wires. This allows SCB slaves to OR
their CSR write enables with reset, so they will load the data bus and thus the zeros on reset. (Registers which
affect the pins still need async reset, however.) This is more space and power efficient then using (a)synchronous
resets on every data bit of every control register.

10.14 Registers and Definitions

10.14.1 Package Attributes

Package

chip scb spec

Attributes

-public rdwr accessors

10.14.2 Definitions

Defines

SCB
Constant Mnemonic Definition

32’d32 DATAWIDTH Data Bus Width. Default width of data bus in bits.
32’d7 SLAVEBITS Bits of address for unit number. Number of upper address bits that

correspond to choosing which SCB Slave will be addressed.
32’d8 COUNTBITS Bits of counter events. Number of lower address bits used per-slave

for counting events.

32’d60 DELAY NS BC Speed register delay, best conditions. Nanoseconds.
32’d95 DELAY NS TYP Speed register delay, typical conditions. Nanoseconds.
32’d190 DELAY NS WC Speed register delay, worst conditions. Nanoseconds.

May 14, 2014 520 Rev 51328

SiCortex Confidential 10.14. REGISTERS AND DEFINITIONS

10.14.3 Command Enumerations

ScbCmd specifies the bit encodings for the commands encoded in the first bits sent over the serial bus.

Enum

ScbCmd
Constant Mnemonic Definition

4’b0000 IDLE Idle.
4’b0001 ADDRH Latch High Address.
4’b001x Reserved
4’b01xx Reserved
4’b1000 Reserved
4’b1001 WRITE IO Write.
4’b1010 READ IO Read.
4’b1011 COUNT Event Count.
4’b110x Reserved
4’b1110 Reserved
4’b1111 RESET Reset SCB slave state.

10.14.4 Data Ack Enumerations

ScbDataAck specifies the bit encodings for the high two data bits. In addition for slave transactions, the MSB
is the start bit, so must be set.

Enum

ScbDataAck
Constant Mnemonic Definition (if from Slave) (Definition if from Master)

2’b00 NONE NA - No start bit AddrH - No acks needed
2’b01 NEED Read data 64 bit ack Need later acknowledgement from slave.
2’b10 WRITE Write accepted First bit of write passed around loop, or last bit of count

passed through loop
2’b11 READ Read data 32 bit ack NA

10.14.5 SCB Performance Events

The following SCB internal events are trackable by SCB statistical event counting.

Enum

ScbScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Core clock cycles. Always counts.
8’h01 CYCLES D2 Internal verification only. Repeats high for 2 cycles, then

low for 2.
8’h02 MAGIC0 Internal verification only. Counts cycles where

R ScbPerfCtl MagicEvent[0] is true.
8’h03 MAGIC1 Internal verification only. Counts cycles where

R ScbPerfCtl MagicEvent[1] is true.
8’h04-8’hff Reserved. Returns zero.

May 14, 2014 521 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

10.14.6 Chip Revision Register

Register

R ScbChipRev

Attributes

-kernel

Address

0xE 0800 0000
Bit Mnemonic Access Reset Type Definition

31:16 Features R pins Feature bit. Bits in this region will be allocated to indi-
cate optional features or enhancements, as they are spec-
ified. Overlaps allowed. Bit 16 is 1 in ICE9A1 so we can
determine proper mask selection.

15:8 Product R pins AddrProduct Chip Product/Revision. Revision number of the chip
product, returns ICE9, ICE9B, etc; incremented for each
new major product. Use AddrProduct enumeration for
exact values, see 16.6.4 on page 846.

7:0 Rev R pins Minor Chip Revision. Revision number of the chip,
bumped for different silicon passes or minor releases. This
is metal-mask programmable.

10.14.7 Chip Number Register

Register

R ScbChipNum

Attributes

-kernel

Address

0xE 0800 0008
Bit Mnemonic Access Reset Type Definition

31:16 Reserved
15:11 System RW 0 System number. Reserved for future use; written by mod-

ule service processor, and read by software.
10:5 Board RW 0 (MspSlotId) Slot ID number. Intended to be written over SysChain by

module service processor, and read by software. Identical
to MSP GPIO slot ID enumeration.

4:0 Node R pins Chip number on board (0-26). Hardcoded value from
sys node[4:0] input pins.

10.14.8 Chip Null Subcomponent Register

This register is used for simulation purposes only. In real hardware it always returns 0.

Register

R ScbChipMissing

Attributes

-kernel

May 14, 2014 522 Rev 51328

SiCortex Confidential 10.14. REGISTERS AND DEFINITIONS

Address

0xE 0800 0010
Bit Mnemonic Access Reset Type Definition

31 Cached R 0 Value Cached. Used in C code to indicate register value
has been cached.

30:12 Reserved
11 Uart R pins Model has no Uart function. Verification use only, 0 on

HW.
10 Scb R pins Model has no Scb Master function. Verification use only,

0 on HW.
9 Prc R pins Model has no Prc function. Verification use only, 0 on

HW.
8 Ocla R pins Model has no Ocla function. Verification use only, 0 on

HW.
7 I2c R pins Model has no I2c function. Verification use only, 0 on

HW.
6 Fsw R pins Model has no Fsw function. Verification use only, 0 on

HW.
5 Fl R pins Model has no Fl function. Verification use only, 0 on HW.
4 Dma R pins Model has no Dma function. Verification use only, 0 on

HW.
3 Ddr R pins Model has no Ddre/Ddro functions. Verification use only,

0 on HW.
2 Coh R pins Model has no Cac or Coh functions. Verification use only,

0 on HW.
1 Cpu15 R pins Model has no Cpu1-CpuN functions. Verification use only,

0 on HW.
0 Cpu0 R pins Model has no Cpu0 function. Verification use only, 0 on

HW.

10.14.9 Chip Speed Register

R ScbSpeed is used to determine the latency through a delay line to provide a very rough approximation of the
speed of the part. Software hits the GO bit, then waits for the GO bit to clear. It then reads the Count value.
This experiment must always be done in pairs: The first will measure one edge transition (say rising-to-falling),
the second will measure the opposite transition. The numbers will differ by 15% or so. Both numbers should be
reported.

Register

R ScbSpeed

Address

0xE 0800 0020
Bit Mnemonic Access Reset Type Definition

31 Go RW1CS 0 Go. When written with one, set GO bit and start count-
ing. After the delay is calculated, the go bit will clear and
the new count will be visible.

30:10 Reserved.
9:0 Count R 0 Delay line time. After Go completes, number of

pclk cycles plus 2 taken to count a delay line of
SCB DELAY NS TYP ns. See the note about double
measurements in the beginning of this section.

May 14, 2014 523 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

10.14.10 General Purpose IO Register

Register

R ScbGpio

Address

0xE 0800 0040

Bit Mnemonic Access Reset Type Definition

31:20 Reserved.
19:16 inp R pins GPIO input data. This may not match the output data

when oe is asserted if a stronger driver is present on the
input pin. Bit 0 reads value on sys gpio (spare) input pin.
Bits 3:1 reserved for future use.

11:8 oe RW 0 GPIO output enable. If bit 0 set, drive sys gpio (spare)
pin with data value. If clear, tristate. Bits 3:1 reserved
for future use.

3:0 data RW 0 GPIO output data. Bit 0 value is driven to sys gpio
(spare) pin if oe is set. Bits 3:1 reserved for future use.

10.14.11 LED Register

Register

R ScbLed

Address

0xE 0800 0048

Bit Mnemonic Access Reset Type Definition

31:1 Reserved.
0 led RW 0 LED status. If set, assert sys led l pin by enabling

its open drain driver, pulling sys led l low. If not set,
sys led l is hi-impedance.

10.14.12 Attention Chip Register

With the associated R ScbAtnMsp register, the attention chip register provides a signaling interface between
the Chip and MSP.

R ScbAtnChip forms a MSP to/from Chip communication channel in conjunction with the R SysTapAtnMsp
register in 12.6.15.

To send data to the MSP, the chip implements the code in 10.2.

May 14, 2014 524 Rev 51328

SiCortex Confidential 10.14. REGISTERS AND DEFINITIONS

Algorithm 10.2 R ScbAtnChip algorithm

send_something() {

do { rdata = read_of(R_ScbAtnChip);

} while (rdata & bit(SendVld)));

write_of(R_ScbAtnChip,

bit(SendVld) | send_data);

}

receive_something() {

rdata = read_of(R_ScbAtnChip);

if (rdata & bit(RecvVld)) {

write_of(R_ScbAtnChip, bit(RecvTaken));

// process data in rdata

}

// Else nothing to receive

}

// Better code could both send and receive data simultaniously.

Register

R ScbAtnChip

Attributes

-kernel -writeonemixed

Address

0xE 0800 0060
Bit Mnemonic Access Reset Type Product Definition

31 Reserved.
30 ICE9A Reserved.
30 TxIntMask RW 0 ICE9B+ Transmitter Empty Interrupt Enable. Indicates chip in-

terrupt should be asserted if SendVld is clear and more
data may be sent. If clear, no interrupt. Note transmit-
ter empty is the idle-state condition, so this bit should
never be left on once all data is sent. First implemented
in ICE9B.

29 RecvInt RW 0 Receiver Ready Interrupt Enable. Indicates chip interrupt
should be asserted if RecvVld is also asserted. If clear,
no interrupt.

28 RecvTaken W1C 0 Receive Data Taken. Write one to send to module pro-
cessor indication that RecvData was accepted, and clear
RcvVld.

27 RecvVld R 0 Receive Data Valid. Valid flag from module processor,
identical to R ScbAtnMsp SendVld. Indicates module
processor data is valid to be read from RecvData. When
data is accepted, chip writes SendTaken.

26 SendVld RW1CS 0 Send Data Valid. Write one to set and indicate new send
data for MSP. Cleared when MSP takes the data.

25:0 RecvData R 0 Receive Data. Overlaps SendData.
If RecvVld is set, returns the next data to be received from
the MSP. Note this is different data then that written.

25:0 SendData W 0 Send Data. Overlaps RecvData.
If SendVld is simultaniously being written with a one,
enqueues new send data for the MSP, and sets SendVld.

May 14, 2014 525 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

10.15 Debug Attention Interrupt Register

The ScbAtnInt register is used by the MSP to select what should assert the attention signal.

This register should only be written by the MSP. (It would be a SysChain register, but leaving it in SCB space
saves a significant number of syncronizer flops, as it must reside on a clock which is always running.)

Register

R ScbAtnInt

Attributes

-Product=ICE9B+

Address

0xE 0800 0070
Bit Mnemonic Access Reset Type Product Definition

31 Atn R X ICE9B+ Attention Asserted. True if the sys atn pin is asserted, IE
if any request bit is asserted and the corresponding mask
is asserted.

30 NonComAtn R X ICE9B+ Non-Communication Attention Asserted. True if any-
thing other then RxAtn or TxAtn is asserting attention.
This bit is duplicated in R SysTapAtnMsp NonComAtn
to reduce polling in the MSP fast path.

29 ICE9B+ Reserved.
28:25 Cpu6DMMask RW 0 TWC9A+ CPU9:6 Debug Mode Mask. See CpuDMMask.
24 TxAtnMask R 0 ICE9B+ Transmit Empty Mask. This is a read only copy of

R SysTapAtnMsp TxAtnMask; use that register to en-
able/disable transmit interrupts.

23 RxAtnMask RW 0 ICE9B+ Receive Ready Mask. Enables AtnRx asserting atten-
tion.

22 OclaDMMask RW 0 ICE9B+ OCLA Debug Mode Mask. Enables OclaDM asserting
attention.

21:16 CpuDMMask RW 0 ICE9B+ CPU5:0 Debug Mode Mask. Enables corresponding
CpuDM asserting attention. Note bits for CPU6-9 are
not contiguous, see the Cpu6DMMask field.

15:13 ICE9B+ Reserved.
12:9 Cpu6DM R X TWC9A+ CPU9:6 in Debug Mode. See CpuDM.
8 TxAtn R 1 ICE9B+ Transmit Empty. R SysTapAtnMsp SendVld is clear, in-

dicating more data may be transmitted.
7 RxAtn R 0 ICE9B+ Receiver Ready. R SysTapAtnMsp RecvVld is set, indi-

cating data is ready to be received.
6 OclaDM R 0 ICE9B+ OCLA Requesting Debug Mode. Asserted when the

OCLA is requesting a Debug Interrupt; identical to
R ScbDInt OclaDM.

5:0 CpuDM R X ICE9B+ CPU5:0 in Debug Mode. Asserted when the cor-
responding CPU is in Debug Mode; identical to
R ScbDInt CpuDM. Note bits for CPU6-9 are not con-
tiguous, see the Cpu6DM field.

10.16 Debug Interrupt Register

Register

R ScbDInt

May 14, 2014 526 Rev 51328

SiCortex Confidential 10.17. PERFORMANCE COUNTING REGISTERS

Attributes

-Product=ICE9B+ -noregtestcpu

Address

0xE 0800 0078

Bit Mnemonic Access Reset Type Product Definition

31:28 ICE9B+ Reserved.
27:24 Cpu6DM R X TWC9A+ CPU9:6 in Debug Mode. See CpuDM.
23:20 ICE9B+ Reserved.
19:16 SendDInt6 RW 0 TWC9A+ Send CPU9:6 a Debug Interrupt. See SendDInt.
15 OclaToAll RW 0 ICE9B+ OCLA causes CPU Debug Interrupt. If set, when

OclaDM asserts, assert DINT to all CPUs.
14 CpuToAll RW 0 ICE9B+ CPU Debug Mode causes CPU Debug Interrupt. If set,

when any CPU enters debug mode and CpuDM asserts,
assert DINT to all CPUs. Thus when one CPU takes a
debug execption, they all will.

13:8 SendDInt RW 0 ICE9B+ Send CPU5:0 a Debug Interrupt. Set high to assert DINT
to the specified CPU. (Note DINT is edge sensitive at
the CPU.) After setting, poll on this register until the
corresponding CpuDM bit asserts, then clear this bit.
Note CPUs 6-9 are not contiguous.

7 ICE9B+ Reserved.
6 OclaDM R 0 ICE9B+ OCLA Requesting Debug Mode. Asserted when the

OCLA is requesting a Debug Interrupt.
5:0 CpuDM R X ICE9B+ CPU5:0 in Debug Mode. Asserted when the correspond-

ing CPU is in Debug Mode. Note CPUs 6-9 are not con-
tiguous.

10.17 Performance Counting Registers

10.17.1 Interrupt Register

Register

R ScbInt

Attributes

-kernel

Address

0xE 0800 0080

May 14, 2014 527 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

Bit Mnemonic Access Reset Type Product Definition

31 Irq RO 0 Interrupt asserted. Asserted to represent the interrupt
output, namely whenever the given interrupt bit is on in
this register, and the interrupt mask is enabled for that
bit.

30:3 Reserved.
2 ICE9A Reserved.
2 AtnTxInt R 1 ICE9B+ Attention Transmit Empty Interrupt. More data may be

sent to R ScbAtnChip. Send data to clear the interrupt.
Note this bit resets to 1, as after reset the send buffer is
empty and ready to transmit.

1 AtnInt R 0 Attention Interrupt. Data is ready in R ScbAtnChip. Ac-
cept the data to clear the interrupt.

0 PerfInt RW1C 0 Performance Interrupt. A counter has over-
flowed R ScbPerfCtl IntBit. Write 1 to clear.
R ScbIntReq PerfInt can be written to assert this
interrupt.

10.17.2 Interrupt Mask Register

Register

R ScbIntMask

Attributes

-kernel

Address

0xE 0800 0088
Bit Mnemonic Access Reset Type Definition

31:3 Reserved.
2 Reserved. (Attention transmit empty interrupts are

maskable via the R ScbAtnChip TxInt register.)
1 Reserved. (Attention Interrups are maskable via the

R ScbAtnChip Int register.)
0 PerfInt RW 0 Performance interrupt mask. Enables R ScbInt PerfInt

asserting an interrupt.

10.17.3 Interrupt Request Register

Register

R ScbIntReq

Attributes

-kernel

Address

0xE 0800 0090

May 14, 2014 528 Rev 51328

SiCortex Confidential 10.17. PERFORMANCE COUNTING REGISTERS

Bit Mnemonic Access Reset Type Definition

31:3 Reserved.
2 Reserved. (Attention transmit empty interrupt can be

created with the R ScbAtnChip register.)
1 Reserved. (Attention Interrups can only be requested by

the MSP.)
0 PerfInt W1CS 0 Performance interrupt request. Asserts R ScbInt PerfInt.

10.17.4 Performance Control Register

Register

R ScbPerfCtl

Attributes

-kernel

Address

0xE 0801 0000
Bit Mnemonic Access Reset Type Definition

31:13 Reserved.
12:11 MagicEvent RW 0 Model Magic events. For verification, allow creating

of raw events trackable with ScbScbEvent MAGIC0 and
MAGIC1.

10 AddrAssert RW 1 Model Magic address assertion. Fire an assertion on a
read or write to a bad address. No function in silicon;
reads to bad addresses always return 0xFFFFFFFF re-
gardless of this bit.

9 NoInc RW 0 Disable automatically incrementing the bucket. When
clear, after each Interval, increment R ScbPerlBuckNum
register. When set, always use the specified static
R ScbPerlBuckNum.

8:4 IntBit RW 31 Interrupt bit select. Bit number, that when gets set as-
serts an interrupt. Thus the default of 31 will interrupt
before a counter may overflow, and a value of 0 will in-
terrupt when any event occurs (bit 0 asserts). Interrupts
occur when the the count bit overflows, and don’t wait
until the interval completes. Interrupts do not stop the
counting.

3:0 Interval RW 3 Sampling interval. Log2 number of cycles to spend on
sampling each bucket. 0=32 cycles, 1=64 cycles, ...,
15=1M cycles. Note setting a 1M cycle interval will re-
quire nearly a second before the entire RAM is sampled,
which will delay R ScbPerfStat Run clearing by up to a
second.

10.17.5 Performance Histogram Register

Register

R ScbPerfHist

Attributes

-kernel

May 14, 2014 529 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

Address

0xE 0801 0008
Bit Mnemonic Access Reset Type Definition

31:20 Reserved.
19:0 HistGte RW 1 Histogram greater-than-equal value. Running experi-

ments counting a “waiting-for” type of event, and varying
HistGte, will give enough data to generate a histogram of
latency versus probability.
For each bucket, if R ScbPerfBuckets Hist is cleared, this
register is ignored and that bucket counts cycles.
If R ScbPerfBuckets Hist is set, and HistGte == 0 gives
unspecified results. (As it is meaningless to look for the
times just a 0 to 0 transition occurs.)
If R ScbPerfBuckets Hist is set, and HistGte == 1, the
bucket counts the number of occurances of the serial reg-
ular expression 0+1+, which is simply the number of pos-
itive edges.
If R ScbPerfBuckets Hist is set, and HistGte >= 2,
count one for ever time the event is high for >=
R ScbPerfHist’s number of cycles. I.E. With HistGte=2,
count 0+11+. With HistGte=3, count 0+111+, etc.
If R ScbPerfBuckets Hist is set, and HistGte == all ones
gives unspecified results.

10.17.6 Performance Bucket Number Register

Register

R ScbPerfBuckNum

Attributes

-kernel

Address

0xE 0801 0010
Bit Mnemonic Access Reset Type Definition

31:27 Reserved.
15:8 Reserved. (for increasing number of buckets.)
7:0 Bucket RW 0 Bucket number. The current bucket being sampled. This

will automatically increment by 2 if counting is in progress
and R ScbPerfCtl NoInc is clear. Bit 0 is ignored, as
counting is always done in bucket pairs.

10.17.7 Performance Enable Register

Register

R ScbPerfEna

Attributes

-kernel

May 14, 2014 530 Rev 51328

SiCortex Confidential 10.17. PERFORMANCE COUNTING REGISTERS

Address

0xE 0801 0020
Bit Mnemonic Access Reset Type Definition

31:1 Reserved.
0 ena RWSL 0 Enable sampling. Write one to start sampling/counting.

Counting will continue as long as this remains set. Clear
to end counting at next opportunity: when interval com-
pletes on the last bucket or R ScbPerfCtl NoInc and any
bucket. R ScbPerfStat Run will clear when the final sam-
ple is completed.

10.17.8 Performance Status Register

Register

R ScbPerfStat

Attributes

-kernel

Address

0xE 0801 0028
Bit Mnemonic Access Reset Type Definition

31:1 Reserved.
0 run R 0 Sampling is running. True when counting is

active. The count ram will not have the most
recent counts until this deasserts.

10.17.9 Performance Bucket Configuration

The R ScbPerfBuckets registers contains the event number and controls for when the associated bucket is
counted.

Register

R ScbPerfBuckets[255:0]

Attributes

-noregtestcpu reset -kernel

Address

0xE 0801 4000-0xE 0801 43FC

Bit Mnemonic Access Reset Type Definition

31:18 Reserved.

May 14, 2014 531 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

17:16 ifOther RW FW0 Count if AND other event. 00 or 11, normal
operation. When 01, only increment the count
in those cycles where this event and the op-
posite bucket’s (odd bucket’s event for even
buckets, even bucket’s event for odd buck-
ets) raw event before applying ifOther or his-
togramming is asserted. When 10, only count
when the event AND NOT the opposite event.
Note this only works when comparing against
other events in the same clock domain. (See
16.6.6 for the clock domain list, and note
IfOther counting for two events in the same
subchip ID is always ok.)

15 hist RW FW0 Histogram or count edges on the specified
event. Otherwise if clear, count cycles where
the event is asserted.
See R ScbPerfHist. This detection occurs af-
ter the ifOther equation.

14:0 event RW FW0 Event ID to count. Consists of the SCB slave
number (see 16.6.6), concatenated with the
8-bit event number inside that slave. Also
see the AllEvent enumeration (in source only,
not a spec). Events not specified return zero
counts.
-
In Twc9a and followons, if both pairs of events
contain the special value AllEvent INVALID
(with encoding 0), this pair will not be sam-
pled, and sampling will quickly continue to the
next bucket.
-
For a list of AllEvent (or Ice9 AllEvent)
enumerations with descriptions, see
“<project>/sw/include/sicortex/ice9/ice9 all spec sw.h”.
These enumerations provide you all 15 bits
for the “event” field of R ScbPerfBuckets.
Note that these enumerations don’t list the
OCLA events that are available to count.
See the On Chip Logic Analyzer chapter. In
OCLA LAC, all the trigger-block triggers
are available, after delays have are applied.
In OCLA TRBCs, the outgoing triggers are
available (like getting them from LAC but
without delays). In OCLA TRBVs, the 32
incoming data signals are available.

10.17.10 Performance Count Ram

The ScbPerfCounts registers contain the counts for each bucket, indexed by bucket number.

Register

R ScbPerfCounts[255:0]

May 14, 2014 532 Rev 51328

SiCortex Confidential 10.17. PERFORMANCE COUNTING REGISTERS

Attributes

-noregtestcpu reset -kernel

Address

0xE 0801 8000-0xE 0801 83FC
Bit Mnemonic Access Reset Type Definition

31:0 count RW FW0 Performance counts. Number of cycles for
which the given bucket’s event was asserted.
For the read to include the most recent inter-
val’s results, R ScbPerfStat run must be clear.

May 14, 2014 533 Rev 51328

SiCortex Confidential CHAPTER 10. SERIAL CONFIGURATION BUS

May 14, 2014 534 Rev 51328

Chapter 11

On Chip Logic Analyzer

[$Id: chipocla.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

11.1 Overview

The On-Chip Logic Analyzer (OCLA) provides debug capabilities for the processor segments and their associated
L2 caches (PSX), the fabric switch (FSW), the DMA engine, the two coherence units (COHE and COHO) and
the PMI unit. The OCLA is distributed around the chip and includes Capture Trace Blocks (CTBs), Trigger
Blocks (TRBs), and a central controller (LAC). The trigger blocks come in two varieties; Codeword Trigger Blocks
(TRBCs) and Vector Trigger Blocks (TRBVs). Some CTBs and TRBs have muxed inputs to allow larger numbers
of signals to be sampled or triggered upon on a mutually exclusive basis. The CTBs, TRBs, and LAC are accessed
via the Serial Configuration Bus (SCB). The module service processor may access the OCLA via the SCB hook on
the SysChain.

11.2 Differences, Bugs, and Enhancements

11.2.1 Product and Chip Pass Differences

1. ICE9B fixes GO->0 should shut OFF collection, bug2246. CollectTrace can be left ON by stopping an OCLA
program that had not yet seen it’s trigger. CollectTrace can only be controlled by a running OCLA program,
so you can’t shut it off by SCB writes. While CollectTrace is ON, you cannot dump any CTBs. Workarounds:
(a) A Diagnostics Dash script has been written that loads and runs a minimal OCLA program to shut off
CollectTrace. (b) The OCLA dump program has been written to detect CollectTrace=ON, and exit with
meaningful error message. (c) OCLA Dash scripts and all example OCLA programs have been written with
a âgraceful exitâ option, where a specific register-write tells it to shut CollectTrace OFF and stop watching
for the trigger it didn’t get yet.

2. ICE9B adds new INCRBTH Opcode, bug2179. In ICE9A, although OCLA has 2 counters, you cannot count
2 events concurrently, because if both happen on same clock there’s no way to increment both counters.

3. ICE9B enlarges counters from 12 to 16 bits, bug2244.

4. ICE9B fixes PMI CTB ExtMuxSel wired to TRBC, bug1959. The ExtMuxSel wires of OCLA PMI CTB were
wired to the SCB register that’s supposed to control OCLA PMII TRBC. To workaround, write desired PMI
CTB ExtMuxSel value to ExtMuxSel field in control register for PMII TRBC. Fortunately, PMII TRBC has
no ExtMux, so this field is otherwise unused. Simplest solution without determining whether you have Ice9A
or ICE9B is write desired PMI CTB ExtMuxSel value to both ExtMuxSel fields.

5. ICE9B fixes CAC trigger PrbState obscured by WtPrb2L2, bug1995. OCLA CAC TRBC mux=2 signals
PrbState[2:0] had WtPrb2L2 OR-ed into PrbState[2]. To workaround, don’t use PrbState as a trigger, or
only trigger on PrbState groups of state that you can identify with bits [1:0].

6. ICE9B fixes CAC trigger W0Hit/W1Hit instead of W0Miss/W1Miss, bug2243. In ICE9A, both CAC
Trigger Block and Collector Block hookups: (a) Change W0Miss/W1Miss to something better, perhaps

535

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

W0Hit/W1Hit. Miss is including Idle and I/O. (b) Adjust flops so W0Hit/W1Hit in same clock with related
signals. To workaround, (a) qualify with not-Idle and not-IO. (b) Separately feed Hit and the other signals
to LAC in separate triggers, then align them with Dly regs in LAC.

7. MIGHTFIX: TWC9A might fix OCLA to SCB uses LAC triggers, bug1717. Passing OCLA events from
trigger blocks to SCB Counters ties up LAC trigger configuration, usually preventing simultaneous OCLA
use for other purposes. To workaround, accept that you are tying up OCLA with this. The cross connections
between OCLA and SCB counting may not be used that much. You might prefer to count SCB events in
SCB counters, and count OCLA events in OCLA counters.

8. MIGHTFIX: TWC9A might allow trigger delays for blocks located in other than the CCLK domain, bug1854.

9. MIGHTFIX: TWC9A might add capture mux settings for the CPU program counter and L2<->L1 signals.

10. NEED IMPL: TWC9A might add capture mux settings for the FSW links 1 and 2, bug2232.

11. MIGHTFIX: TWC9A might fix DMA CTB qualifier in wrong clock, bug2193. In DMA’s hookups to OCLA,
the ue xxx DbgValid c2a signal is sent into the trigger block and CTB, when really it should be delayed by
two more cycles. In the CTB as a qualifier we pretty much cannot use it, because you want to use it in
combination with other signals like DbgThread c4a and DbgPc c4a. To workaround, only do un-qualified
collection in DMA CTB. In DMA trigger block, send it and other signals separately on the 2 triggers to LAC,
where the Dly regs can align them.

12. MIGHTFIX: TWC9A might add a WtAddr sticky overflow bit, bug2207.

13. MIGHTFIX: TWC9A

11.2.2 Known Bugs

1. Overflow bits still set as OCLA starts, bug1825. OCLA’s automatic clearing of counter overflow bits when
you start LAC program is delayed a clock or two. Early instructions in LAC program can falsely trigger on
overflow depending on the previous use of OCLA. To workaround, never branch on Counter Overflows in first
2 instructions of any LAC program.

2. C CTB WtAddrClr triggered by any address in CTB, bug2026. Writing 0x10 to any SCB register address in
a particular Ocla CTB can trigger WtAddrClr (clear write address reg). This even includes unused addresses
within the SCB address space of a CTB. To workaround, never write any of the read-only registers.

11.2.3 Possible Enhancements

1. Make both LAC counters 32-bit (currently 16-bits plus sticky overflow bit). There’s only one instance of the
LAC, so this is very affordable. We’ve wanted bigger counters when writing LAC programs, and unanticipated
but valuable use of OCLA as a highly-configurable counter would benefit from full 32-bit counters.

2. Separate“GO”Register. When you write OCLA management software for one of Ice9’s embedded processors,
or for the external SSP, you tend to write one function that configures OCLA ahead of time, and another
function to tell OCLA to “GO” at roughly the right moment. Currently the GO bit shares register R LacCtl
with some configuration fields that need to be written correctly for what you want OCLA to do. This
contributes to messy software design in that you must have handy the values to write to those fields when you
write a 1 to GO to start the LAC program. It would be nice if all OCLA configuration could be encapsulated
in, and completed by an OCLA configuration function.

3. If SCB reg addresses are cheap, consider breaking R LacCtl into 3 or 4 registers by type of access, making
software easier to write.

4. Collect ON/OFF by Register Write. Provide a super-simple alternative to writing a LAC program, for when
exact timing of collection is not critical. Provide one or two registers that allow you, by SCB register write
alone, to turn on and off CollectTrace to the CTBs. This allows someone with minimal knowledge of OLCA
to quickly collect some trace information and read it out, just by doing easy-to-understand SCB writes and
reads. Some semi-steady-state activities can be viewed at an arbitrary time, or you could try more than
once till you see it. Or, for more accuracy, you could have Ice9 embedded processor code trigger collection at

May 14, 2014 536 Rev 51328

SiCortex Confidential 11.2. DIFFERENCES, BUGS, AND ENHANCEMENTS

roughly the right time, and rely on the 1024-entry size of the CTBs to give you a pretty big window to land
in. These reg writes would the same logic as the SETCOLL and CLRCOLL opcodes from LAC.

5. Trigger by Register Write. There are ways to do this now, but they’re a little obscure. I’m suggesting a
very-simple up-front way to trigger your LAC program by writing an SCB register in LAC who’s sole purpose
is to do this. Aggregate Mask and Match bits 0 and 1 are available, so why not have them driven directly
from such a register.

6. Clarify When CTB Has New Contents. Currently it’s a little hassle to do sanity checks that your CTB really
got new contents from running your LAC program. Especially when you are wondering if you configured
everything correctly. You can “trust that a good-status completed LAC program means you have new CTB
contents”. You can alternate the CTB’s external mux between what you want to collect and something else,
then read-out the CTB and see that contents changed.

7. CTB Zeroing. An SCB-register “ClearCtb” action-bit in each CTB, that would zero-out the CTB (taking
1024 clocks). This bit could be readable and self-clears after the 1024 clocks have passed, so it’s safe to start
a new collection.

8. StopOnFull Final Address. Currently, in StopOnFull mode, when the CTB gets full and stops collecting, the
final address is 0x000, which is the same address it would have if it never started! Either change this to stop
at 0x3FF, or have a sticky overflow bit which clears when you write WtAddrClr in R CtbxColCtl.

9. StoppedOnFull Status Bit. If in StopOnFull mode, have a read-only bit StoppedOnFull in R CtbxColCtl.
This signal already exists in the CTB Verilog code.

10. Fix the“Collecting”Status Bit. Bit“Collecting”of R CtbxColCtl is directly flopped off of lac ctb CollectTrace c0a,
which means it doesn’t take into consideration a CTB in StopOnFull mode that has become full. Reading of
the CTB works in that case. Change Collecting to be false if StopOnFull and full. A signal with this info
is available in the CTB verilog code. You might also consider having “Collecting” read back as 0 when En-
ableCollect==0. To be able to see the level of signal lac ctb CollectTrace c0a clearly in one central place, add
read-only bit “CollectTrace” to R LacCtl (or if R LacCtl gets broken-up into several registers as suggested,
put this bit in whatever register contains the other read-only fields).

11. Have 0xFFFFFFFF Indicate Bad Read. If you try to read the contents of your CTB when you cannot,
you currently get all-zeros. All-zeros can mean you never collected anything, and also for some units it’s
a likely read-result if you collected during an idle time. A tiny change in the verilog could make it return
0xFFFFFFFF’s for reads when you can’t read the CTB. This would be clearly different than a failure to
trigger collection, and is an almost-impossible long series of values for any CTB to collect.

12. Stopping LAC Stops Collection. Have a transition of the GO bit 1 -> 0 cause the CLRCOLL action. This
eliminates the hazard of someone stopping the LAC program manually by clearing the GO bit, but then being
unable to read any CTB contents because CollectTrace is still ON. Have this be by 1 -> 0 transition, not by
GO==0, so we can have the previously-mentioned registers that turn on and off collection. The way OLCA
is now it can be very irritating if you happened to shut off LAC by writing 0 to the GO bit when collection
was ON. There’s no straightforward way to shut off collection of all enabled CTBs by register-write, you can
only shut them off by opcode CLRCOLL in a running LAC program. This is no problem when the next
LAC program you wish to run is of the CTB StopOnFull=0 unqualified style, but if you are doing qualified
collection with StopOnFull=1 and you want to start at CTB address=0 it can be a problem. You might think
you could just begin every LAC program with a CLRCOLL and your problems would be solved, but there’s
no way inside a LAC program to clear a CTB’s WtAddr.

13. Move Delay Registers into the Trigger Blocks. Having the Delay Registers centralized in LAC means they’re
all flopped in cclk domain. FSW triggers and trigger blocks are in sclk domain. To be able to line-up FSW
signals into a complex trigger is hard, although this was partly solved by providing some FSW trigger signals
to it’s trigger blocks more than once, with different sclk delays. The best solution to this is to have the delay
registers in the Trigger Blocks, not centralized in the LAC.

14. More External-Mux Values, or Extra Mux in FSW. Boost the number of bits to control external muxes from
3 to 4 or 5. Do this for all types of trigger and collector blocks. Almost no extra logic is created by this except
in those blocks where the extra external-mux-value options are used. The motivation for this is with regard

May 14, 2014 537 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

to the Link side of FSW. Currently OCLA in FSW only looks at FLR-0 and FLT-0 signals, due to mux-value
limitations. For better board and system debug, to use OCLA freely to see damaged traffic arriving any one
particular link, we really want all 6 links covered by OCLA. (b) Another way to get all 6 Link interfaces in
FSW into OCLA, without changing OCLA Trigger or Collector blocks, is to just put a new register into FSW.
This register in FSW’s register address space would take values of 0, 1, or 2, and would drive a first level
of muxing, selecting which link-number provides FLR and FLT signals to the current OCLA-register-driven
external muxes.

15. More Collection Qualifiers. CTBs currently allow up-to 2 Qualifier signals. In some uses of CTBs there were
more signals that would be handy to have available as qualifiers. The external mux selecting data for a CTB
often selects between a good number of unrelated interfaces. In a number of cases you just accept that you
have to do un-qualified collection, because the 2 qualifiers provided are not relevant to the interface or signals
you are looking at.

16. More CTB Qualifier Inputs. Perhaps 4.

17. Use External Mux on Qualifiers. When instantiating CTBs, follow the example of how FSW Vector Trigger
Blocks are instantiated, where the external mux selectors vary both the data and the qualifier to be used.

18. Eliminate Qualifiers in Codeword Trigger Blocks. The way Codeword Trigger Blocks work, all the trigger
inputs are effectively qualifiers on each other. There’s no reason to handle some inputs differently and call
them “qualifiers”.

19. Widen Vector Trigger Blocks to 64-Bits. FSW is really the only place where Vector Trigger Blocks are used,
because the way they’re used in DMA is more naturally served by Codeword Trigger Blocks. In FSW the
natural width of the busses looked-at is 64 bits. It would be a usage simplification if the Trigger Block just
looked at the 64 bits.

11.3 Description

In the ICE9 implementation, the OCLA units spread over the chip are:

• 1 LAC central controller.

• 6 CTBs – One for each of the six processor/L2 cache segments (PSXs).

• 2 CTBs – One for each of the two coherence engines (COHE and COHO).

• 2 CTBs – In the FSW unit.

• 1 CTB – In the PMI.

• 1 CTB – In the DMA Engine.

• 12 TRBCs – One for each of the six PSX segments, plus two for the PMI, plus one each for the COHE,
COHO, DMA, and FSW.

• 3 TRBVs – Two in the FSW, and one in the DMA.

All CTBs are 1024 entries deep by 33 bits wide.
The number of different sets of signals you can choose to collect is quite large, selected by External Mux settings

in each CTB:

• PSx CTBs: 3 mux settings * 6 PS’s = 18 sets of signals.

• COHx CTBs: 4 mux settings * 2 COH’s = 8 sets of signals (plus free-running counter).

• FSW Input CTB: 5 sets of signals.

• FSW Output CTB: 5 sets of signals.

• DMA CTB: 4 sets of signals.

May 14, 2014 538 Rev 51328

SiCortex Confidential 11.4. PACKAGE ATTRIBUTES

CollectTrace

Addr<11:0>

State<4:0>

Delay[31:0]TMatch<31:0>

Aggregate Match[4:0]

Counter0

Counter1

OverFlow0

OverFlow1

Data<9:0>

FSM RAM

Opcode
Decoder

CSRs and SCBS

sys_ocla_trig_p

dbg_int
ocla_slow_int

Opcode<4:0>

Load
Start
Stop
Incr

Figure 11.1: The On Chip Logic Analyzer Control Unit (LAC)

• PMI CTB: 7 sets of signals.

For a total of 47 sets of signals.

More than one CTB can be enabled for collection at once, although this only makes sense if you can arrange to
have a window of time during which both CTBs are collecting meaningful events.

11.4 Package Attributes

Package

chip ocla spec

May 14, 2014 539 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.5 LAC Signals and Innards

11.5.1 What LAC Does

The main purpose of LAC (and your LAC program, and the values you write into LAC registers) is to control
the CollectTrace signal (lac ctb CollectTrace c2a) leading to all the Collector Blocks. When CollectTrace is ON, all
CTBs (collector blocks) will collect values in the manner in which each has been configured. When CollectTrace is
OFF, all CTBs are not collecting.

Secondary purposes of LAC are to set the Debug Interrupt, set the Slow Interrupt, set the 2 readable Flags,
and to provide final status information to the user by ending at different addresses which can be read from the
R LacCtl register.

11.5.2 LAC Innards

The LAC provides the coordination and recognition of the actual trigger event. In most cases, logic analyzer
triggers are more complicated than “fire when you see address X on bus Y.” Instead, they frequently take the
form of “fire on event A followed by event B followed by event C, but reset the recognizer on event D.” This event
recognizer is a state machine. I have no idea what sequences will be useful at this time, and I doubt any apriori
guess is worthwhile. That being the case, the LAC is implemented as a field programmable state machine. (Don’t
worry, this isn’t as complicated as it sounds.) The state machine may have up to 32 states.

The LAC has 32 trigger event inputs. Each input is synchronized and passes through a programmable delay
chain that imposes between 2 and 7 cclk cycles of delay. The 32 bit vector that pops out of the array of delay
chains is compared (using value/mask pairs similar to those in a vector comparison TRB – see section 11.8) in five
aggregate event comparators. This a five bit wide “trigger event vector.”

The LAC also contains two 16 bit counters (12 bits in Ice9A). Each counter is loaded with an initial value that
is scanned in when the LAC is started. The initial value is written to counter X when the state machine selects the
LOADx opcode or whenever the ’Go’ bit in the LAC Control Register is set to one. When the counter overflows,
it sets the CTRxOFLO bit. This bit is sticky; it stays set until either the recognizer asserts STARTx or LOADx
again or the ’Go’ bit in the LAC Control Register is set to one which forces a LOAD to both counters. Figure
11.1 shows the outline of the control unit. The FSM RAM holds 4K ten bit instructions. An instruction consists
of both an opcode and a next state. The LAC is configurable to implement any state machine possible with seven
inputs, five outputs and thirty two states.

Aggregate Match inputs are use to consolidate multiple trigger inputs to the LAC into a single pattern to be
matched. See 11.5.3.3 on page 542. AMatch[x] is true if TMatch[31:0] & AMask[31:0] == AMatch[31:0].

11.5.2.1 LAC to SCB-Performance-Counters

All triggers coming into LAC from Trigger Blocks are also provided to the SCB Performance Counters mechanism
as events to be counted.

To select a trigger from LAC to count in SCB Performance Counter, program the event field in R ScbPerfBuckets,
as described in the Serial Configuration Bus chapter. In “event” put the SubChipId for LAC (from the Addressing
chapter) and 8 bits saying which one of the 32 triggers you want (bits 7,6,5 are zero).

These triggers are provided to SCB Performance Counters after being delayed by LAC’s delay registers, but
before being combined into t0 - t4. These delays allow SCB Performance Counters to condition one event on another
event with a corrective skew between the two, in case the signals are related but occur one or more clocks apart.
The conditioning is done by logic within the SCB Performance Counters mechanism. See the Serial Configuration
Bus chapter for how to do this.

To provide these events, LAC hardware uses the performance counter feature of it’s embedded SCB slave. The
slave provides two input signals (x scbs event x[1:0]), and a mux select for each (scbs x eventId{0|1} xr). The
LAC uses each mux select to choose one from among the 32 synchronized and delayed trigger inputs as specified
above.

How much does this limit simultaneous normal use of OCLA? A little bit. One or two trigger blocks (and their
delays) would be configured in the manner needed for SCB Performance Counters. An OCLA program could ignore
them, using triggers from other blocks, but if it wants trigger from those blocks, they must use them with the same
configuration and delays needed by SCB Performance Counters. Each Trigger Block has 2 trigger outputs, so if
SCB Performance Counters only needs one of them, the other could be configured as needed for OCLA, although
the external mux setting would have to be the same for both uses.

May 14, 2014 540 Rev 51328

SiCortex Confidential 11.5. LAC SIGNALS AND INNARDS

When counting events from trigger blocks in a different clock domain than LAC, like from FSW, it’s better,
when possible, to get the events directly from those trigger blocks. SCB Performance Counters has a way of getting
correct counts from SCB slaves in different clock domains, whereas the clock-domain crossing from trigger blocks
to LAC is not so nice. The PulseStretch mechanism for making sure LAC sees a trigger from a faster-clock trigger
block is fine for triggers, but poor for counting. If you must get your counts from LAC, consider using OCLA
PulseStretch along with the “transitions counting” option in SCB Performance Counters.

11.5.2.2 SCB-Performance-Counters to LAC

The 2 events configured to be counted by the SCB Performance Counters mechanism are also provided to OCLA
for triggering. See the ScbTrig0En and ScbTrig1En fields in R LacCtl. These are OR-ed into triggers t0 - t4, after
trigger-block triggers are masked and matched, but before possible inversion by R LacCtl field InvAgMat.

If you do this you’ll have to manage your SCB Bus use. As explained in the Serial Configuration Bus chapter,
anytime you are doing SCB writes or reads the detections of Performance Counter events are temporarily shut off.
Even something as innocent as polling R LacCtl.Flag to see whether OCLA got the trigger and collected will create
blackout periods that could hide the very trigger you are waiting for!

How much does this limit simultaneous normal use of SCB Performance Counters? A lot. If you configure for 2
events, SCB Performance Counters would be limited to counting these events only. If you configure for one event
from SCB Performance Counters to affect LAC programs, you still have some flexibility for unrelated use of SCB
Performance Counters.

11.5.2.3 LAC Operation Codes

Enum

LacOp

Constant Mnemonic Definition Product

5’h0 NOOP Do Nothing in Particular

5’h4 SETEXTP Set External OCLA trigger output pin

5’h5 CLREXTP Clear External OCLA trigger output pin

5’h6 SETCOLL Set CollectTrace output

5’h7 CLRCOLL Clear CollectTrace output

5’h8 SETFL0 Set Flag 0 in CSR

5’h9 CLRFL0 Clear Flag 0 in CSR

5’ha SETFL1 Set Flag 1 in CSR

5’hb CLRFL1 Clear Flag 1 in CSR

5’hc SETDBI Set Debug Interrupt output

5’he SETSLI Set Slow Interrupt output

5’h10 START0 Start Counter 0

5’h11 STOP0 Stop Counter 0

5’h12 LOAD0 Load Counter 0

5’h13 INCR0 Increment Counter 0

5’h14 START1 Start Counter 1

5’h15 STOP1 Stop Counter 1

5’h16 LOAD1 Load Counter 1

5’h17 INCR1 Increment Counter 1

5’h18 INCRBTH Increment Both Counters ICE9B+

11.5.2.4 Be Sure To Shut Off CollectTrace

If your LAC program will be or might be used on Ice9A chips, it needs to shut off CollectTrace before the
program finishes or is stopped by register-write. Otherwise it may (a) cause you to get all-zeros when you read the
contents of a collector block, of collector-block contents, or (b) cause premature data collection during the next use
of OCLA. This is fixed in Ice9B and later, but in Ice9A, stopping the LAC program does not shut off CollectTrace.
In Ice9A it can only be shut off by a LAC program instruction. See the “CTB Innards” section below for more
details.

May 14, 2014 541 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.5.3 LAC Registers

11.5.3.1 The Control Register

Register

R LacCtl

Attributes

-writeonemixed

Address

0xE 6800 0000
Bit Mnemonic Access Reset Type Definition

31:27 ScbTrig1En RW 0 OR scb ocla event cr[1] into AgMatch[x]

26:22 ScbTrig0En RW 0 OR scb ocla event cr[0] into AgMatch[x]

21:17 InvAgMat RW 0 Invert sense of AgMatch.

When [x] is True, AgMatch[x] = ((TrigIn[31:0] & AMask[31:0])

!= AMatch[31:0])

16 DbgInt RW1C 0 Debug Interrupt to MIPS Cores

15 SlowInt RW1C 0 Slow Interrupt output

14:3 FSMAddr R 0 Current state of Address input to FSM RAM

2:1 Flag R 0 Readable flags from the FSM Outputs

0 Go RW 0 When TRUE, FSM is sequencing.
When Go is 0, the STATE is set to 0 and the opcode is 0
(NOOP).

When Go transitions to 1, the initial STATE is 0.

Be careful, when writing GO=1 to start the LAC program: That same register-write must contain your desired
configuration values for ScbTrig1En, ScbTrig0En, and InvAgMat.

11.5.3.2 The Delay Registers

Each input trigger passes through two levels of CCLK flops (as a synchronizer). Each trigger then can be
delayed by from 0 to 5 additional CCLK cycles before passing on to the AggregateMatch comparators. See “Uses
for the Delay Registers” subsection of “Hints for Using Trigger Blocks” section later in this chapter. If you put a 6
or 7 in, you get a delay of only 5.

Register

R LacTrgDly[31:0]

Address

0xE 6800 0100-0xE 6800 017f
Bit Mnemonic Access Reset Type Definition

2:0 Dly RW 0 Select Delay for trigger input [x]

11.5.3.3 The Aggregate Mask Registers

Register

R LacAggMsk[4:0]

May 14, 2014 542 Rev 51328

SiCortex Confidential 11.5. LAC SIGNALS AND INNARDS

Address

0xE 6800 0600-0xE 6800 0613
Bit Mnemonic Access Reset Type Definition

31:0 Mask RW 0 Full mask register (Overlaps allowed)

31:30 TrbcPs5 RW 0 Processor Segment 5 Codeword Triggers (Overlaps allowed)

29:28 TrbcPs4 RW 0 Processor Segment 4 Codeword Triggers (Overlaps allowed)

27:26 TrbcPs3 RW 0 Processor Segment 3 Codeword Triggers (Overlaps allowed)

25:24 TrbcPs2 RW 0 Processor Segment 2 Codeword Triggers (Overlaps allowed)

23:22 TrbcPs1 RW 0 Processor Segment 1 Codeword Triggers (Overlaps allowed)

21:20 TrbcPs0 RW 0 Processor Segment 0 Codeword Triggers (Overlaps allowed)

19:18 TrbcCohe RW 0 Even Coherence Unit Codeword Triggers (Overlaps allowed)

17:16 TrbcCoho RW 0 Odd Coherence Unit Codeword Triggers (Overlaps allowed)

15:14 TrbvFswo RW 0 Fabric Switch Output Vector Triggers (Overlaps allowed)

13:12 TrbvFswi RW 0 Fabric Switch Input Vector Triggers (Overlaps allowed)

11:10 TrbcFsw RW 0 Fabric Switch Control/Status Codeword Triggers (Overlaps al-

lowed)

9:8 TrbvDma RW 0 DMA MicroEngine Vector Triggers (Overlaps allowed)

7:6 TrbcDma RW 0 DMA CSW Bus Stop Codeword Triggers (Overlaps allowed)

5:4 TrbcPmii RW 0 PMI Internal Signal Codeword Triggers (Overlaps allowed)

3:2 TrbcPmi RW 0 PMI CSW Bus Stop Codeword Triggers (Overlaps allowed)

1:0 RW 0 Reserved (Overlaps allowed)

11.5.3.4 The Aggregate Match Registers

Description

Match against incoming masked delayed triggers. Aggregate match X occurs with (DelayedTrigger[31:0] &
Mask[X]) == Match[X]. Defaults to nonzero value so that the match always fails until configured.

Register

R LacAggMat[4:0]

Address

0xE 6800 0640-0xE 6800 0653
Bit Mnemonic Access Reset Type Definition

31:0 Match RW 0xffffffff Full match register (Overlaps allowed)

31:30 TrbcPs5 RW 0x3 Processor Segment 5 Codeword Triggers (Overlaps allowed)

29:28 TrbcPs4 RW 0x3 Processor Segment 4 Codeword Triggers (Overlaps allowed)

27:26 TrbcPs3 RW 0x3 Processor Segment 3 Codeword Triggers (Overlaps allowed)

25:24 TrbcPs2 RW 0x3 Processor Segment 2 Codeword Triggers (Overlaps allowed)

23:22 TrbcPs1 RW 0x3 Processor Segment 1 Codeword Triggers (Overlaps allowed)

21:20 TrbcPs0 RW 0x3 Processor Segment 0 Codeword Triggers (Overlaps allowed)

19:18 TrbcCohe RW 0x3 Even Coherence Unit Codeword Triggers (Overlaps allowed)

17:16 TrbcCoho RW 0x3 Odd Coherence Unit Codeword Triggers (Overlaps allowed)

15:14 TrbvFswo RW 0x3 Fabric Switch Output Vector Triggers (Overlaps allowed)

13:12 TrbvFswi RW 0x3 Fabric Switch Input Vector Triggers (Overlaps allowed)

11:10 TrbcFsw RW 0x3 Fabric Switch Control/Status Codeword Triggers (Overlaps al-

lowed)

9:8 TrbvDma RW 0x3 DMA MicroEngine Vector Triggers (Overlaps allowed)

7:6 TrbcDma RW 0x3 DMA CSW Bus Stop Codeword Triggers (Overlaps allowed)

5:4 TrbcPmii RW 0x3 PMI Internal Signal Codeword Triggers (Overlaps allowed)

3:2 TrbcPmi RW 0x3 PMI CSW Bus Stop Codeword Triggers (Overlaps allowed)

1:0 RW 0x3 Reserved (Overlaps allowed)

May 14, 2014 543 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.5.3.5 The Initial Counter Value Registers

Register

R LacIniCtr[1:0]

Address

0xE 6800 0700-0xE 6800 0707
Bit Mnemonic Access Reset Product Definition

15:0 InitValB RW 0 ICE9B+ Value to be loaded into counter [x] when Reload[X] is true in
ICE9B or later.

(Overlaps allowed)

11:0 InitVal RW 0 ICE9A Value to be loaded into counter [x] when Reload[X] is true in
ICE9A or ICE9A1.

(Overlaps allowed)

Note: In ICE9A and ICE9A1, bits 15:12 don’t exist, will ignore writes, and read-back 0.

11.5.3.6 The Current Counter Value Registers

Register

R LacCtr[1:0]

Address

0xE 6800 0710-0xE 6800 0717
Bit Mnemonic Access Reset Product Definition

31 OverflowB R 0 ICE9B+ The “current” state of the counter’s overflow bit in ICE9B
or later.

Sets when bits 15:0 roll over. Won’t clear if they roll over

again.

30:16 Reserved
15:0 CountB R 0 ICE9B+ The “current” state of the counter in ICE9B or later.

(Overlaps allowed)

12 Overflow R 0 ICE9A The “current” state of the counter’s overflow bit in ICE9A
or ICE9A1.

Sets when bits 11:0 roll over. Won’t clear if they roll over

again. (Overlaps allowed)

11:0 Count R 0 ICE9A The “current” state of the counter in ICE9A or ICE9A1.

(Overlaps allowed)

Note: The actual sizes of the counters match the above fields for the stated versions of ICE9.

11.5.3.7 The FSM RAM

Class

LacRamAddr
Bit Mnemonic Definition

11 OverFlow1 Counter 1 Overflow

10 OverFlow0 Counter 0 Overflow

9:5 FsmState FSM Next State

4:0 AgMatch Aggregate Match

Register

R LacRam[4095:0]

May 14, 2014 544 Rev 51328

SiCortex Confidential 11.6. COLLECTOR BLOCKS (CTBS) IN GENERAL

Address

0xE 6800 4000-0xE 6800 7fff
Bit Mnemonic Access Reset Type Definition

9:5 State W 0 Next state for the FSM.

4:0 Opcode W 0 LAC Opcode

11.5.4 LAC Signals

The LAC contains its own SCB slave unit. It runs in the CCLK domain. Table 11.2 shows the various LAC
input and output signals.

Signal Clock I/O Description

reset e1cr l cclk In Active-low reset, which deasserts synchronous with cclk.

(16x) trbN lac Trig x2a[1:0] various In Trigger block asserts this signal when the trigger condition is

met. This must be synchronized to CCLK domain by the LAC.

The synchronized and delayed version of these signals are also

connected to the event wires of the local SCB slave

lac xxx SlowInt c2a cclk Out Connected to the slow interrupt

lac xxx DbgInt c2a cclk Out Connected to the MIPS debug interrupt

lac xxx ExtTrig c2a cclk Out External trigger pin (sys ocla trig)

lac ctb CollectTrace c2a cclk Out The LAC produces a single active-high signal telling all capture

blocks to record data to their ring buffers.

scb ocla event cr[1:0] cclk In Events from SCB master

xxx lac scbs id[6:0] cclk In SCB ID (tied to AddrSubId::OCLA in BBS)

chaini ctb dat r[2:0] cclk In Serial chain SCB input

ctb chaino dat r[2:0] cclk Out Serial chain SCB output

Table 11.2: LAC Signals

11.6 Collector Blocks (CTBs) in general

This section describes what’s common to all Collector Blocks. The signals collected by each individual Collector
Block are described in later sections.

Each CTB is a trace buffer that is as large 32 bits wide and 1K entries deep. The actual size is configured
based on the space available near the block. (Only the array size changes, all control registers are wide enough to
accomodate a 32x1K trace memory.) The trace buffer data inputs are connected to the data stream that we want
to observe. The trace buffer write port runs off the same clock that sources the observed data stream. Figure 11.2
shows the outline of a CTB. Its primary inputs are the SampleDataIn[31:0] signal and the CollectTrace input that
indicates the trace buffer should collect data. When the central controller (LAC) detects that the trigger event has
been satisfied, it will assert or deassert CollectTrace at the appropriate time to all the CTBs on the chip. At the
deassertion edge of CollectTrace, the WT Addr in each CTB will be frozen. The CollectTrace signal from the LAC
is timed to the L2 cache clock – cclk. CTBs connected to other clock domains are responsible for synchronizing
this input to their own domain.

Capture blocks (CTB) are instantiated in or near the unit whose data they will sample, and they are clocked
by the same clock as the data to be sampled. In the description below, I will use “xclk” to represent the local clock
domain.

11.6.1 CTB Innards

Each CTB contains its own SCB slave, since this keeps things reasonably simple, and the size of the SCB slave
is small compared to even the minimal CTB configuration.

May 14, 2014 545 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

DataIn<31:0>

Data Out<32:0>

A
d
d
r
<
9
:
0
>

WT Addr

SampleDataIn<31:0>

CollectTrace

WTEN

Control

Data,Addr,Ctrl
from SCB

Data
to SCB

QualTrigger<1:0>

DeadCycle
Counter

DataIn<32>

Figure 11.2: On Chip Logic Analyzer Capture Block (CTB)

May 14, 2014 546 Rev 51328

SiCortex Confidential 11.6. COLLECTOR BLOCKS (CTBS) IN GENERAL

11.6.1.1 The Control Unit and Muxes

The Control Unit contains the trace collection control register and is responsible for sequencing writes and reads
from the trace RAM. It also recognizes dead collection cycles and manages the dead cycle counter.

The Output Mux selects between the low 32 bits of the trace RAM, the top bit plus the low 31 bits of the trace
RAM, the WT Address register, or the contents of the collection control register. The choice is determined by the
SCB register address.

11.6.1.2 The WT Addr Register

The WT Addr register can be cleared by the Control unit (see 11.6.2.1) and increments each time we write a
sample or dead cycle count to the trace RAM.

11.6.1.3 The Dead Cycle Counter

Not all samples are worth collecting. All collector blocks except the one in PMI have a “qualified collection
mode” (see 11.6.2.1).

When qualified collection is enabled, the trace will include counts of cycles in various locations instead of
collector signals data. Trace entries that are cycle counts are marked by setting bit 32 in the trace RAM to 1.
We can read bit 32 by reading the “topbits” register range. When the qualifying condition is not met, we are not
collecting trace samples, instead we increment the DeadCycle counter on each such cycle and store it in the collector
block memory without advancing the write address. Once a “qualified” clock occurs, write address is advanced and
the normal collection data is stored. The dead cycle counter is cleared each time a new qualified sample is recorded
into the trace RAM. This compacts or collapses what’s stored in a collector block, allowing events over much more
than the usual 1024 clocks to be observed.

The dead cycle counter is only 16 bits. Whenever it rolls-over, a 0xFFFF is stored, and the write address is
advanced.

11.6.1.4 A Dead Cycle Counter Bug

(a) Dead Cycle counts are 1 too high. The smallest Dead Cycle count you’ll see stored in a CTB is 2, which
means 1 non-qualified clock. The largest you’ll see is 0xFFFF, which means 0xFFFE non-qualified clocks.

(b) After rollover, after storing the 0xFFFF, the Dead Cycle counts stored are 1 too low. The smallest Dead
Cycle count you’ll see stored in a CTB is 0, which means 1 non-qualified clock. The largest you’ll see is 0xFFFF,
which means 0x10000 non-qualified clocks.

These corrections to what you read from a CTB apply to the usual LAC programs you are likely to write,
where the LAC program has left collection turned on for a medium or long period of time, and the storing of dead
cycle counts in the CTB is being controlled by the selected qualifier signal turning on and off. If you write a LAC
program that turns on collection for a short period of time, and qualification is not met during that entire time,
the stored dead cycle count will be correct. For example if you enabled collection for 5 clocks, and qualification
was never met, you’d get a “5” stored.

11.6.1.5 The Trace RAM

The Trace RAM is configurable, and is at most 33 bits by 1K entries. In all cases, the width of the RAM is 1
bit wider than the input sample, to allow recording of “dead cycle” markers.

11.6.1.6 When Can You Read CTB Contents?

One of 3 conditions must be be true for you to read-out the CTB contents with SCB reads:
(1) Your LAC program has shut OFF CollectTrace. In Ice9A this can only be done by a LAC program

instruction, no register write can do it, and stopping the LAC program does not do it. In Ice9B and later, stopping
the LAC program will also shut OFF CollectTrace.

(2) The CTB in question is in StopOnFull mode, and has become full.
(3) You clear EnableCollect in the CTB’s R CtbxColCtl.
If none of these conditions have been met when you read-out the contents of a CTB, you will get all-zeros!

This may give you the wrong idea that nothing was collected, or the wrong idea that you triggered and collected
at a time when no activity was occuring on the signals being collected. To find out if CollectTrace is ON, read
R CtbxColCtl in any CTB, and look at bit “Collecting”.

May 14, 2014 547 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.6.1.7 Do You Need To Shut-Off CollectTrace?

If you will-be or might-be running on Ice9A chips, and if your next use of OCLA has CTBs in StopOnFull mode,
you probably want to shut-off CollectTrace (if it’s on) before configuring and initializing for that OCLA run. If
your next use of OCLA has CTBs is rollover mode (StopOnFull==0) then CollectTrace being ON doesn’t matter.

Methods of shutting-OFF CollectTrace are described later in the OCLA Programming Suggestions section.
Why would CollectTrace be ON? In an Ice9A chip, the previously-run LAC program left it on, either due to a

LAC program error, a trigger never occuring, or the LAC program was halted in the middle by a write of GO=0.

11.6.2 Registers

For “x” in the register names below, substitute desired collector name, from these:
Ps0, Ps1, Ps2, Ps3, Ps4, Ps5, Cohe, Coho, Fswi, Fswo, Dma, Pmi.

11.6.2.1 The Collection Control Register

Register

R CtbxColCtl

Attributes

-writeonemixed

Address

0x00 0000 (plus base address)
Bit Mnemonic Access Reset Type Definition

11:9 ExtMuxSel RW 7 External Mux Select for logic outside the CTB to select alter-

nate capture input sources. Many units use “7” to disable flops

or data to their CTB. (see Note 2, Note 3, Note 4)

8 EnableCollect RW 0 Collect Data when CollectTrace is asserted

7 Collecting R 0 Will read as 1 when CollectTrace from LAC is asserted. Does

not go to zero as you might expect when StopOnFull==1 and

the CTB has become full. Also, it is unaffected by EnableCol-

lect.

6 StopOnFull RW 0 Stops collection when WtAddr overflows

5 DCtrClr W1C 0 Clear Dead Cycle Counter – OBSOLETE, has no effect. (This

definition kept for backward compatibility.)

4 WtAddrClr W1C 0 Clear Write Address register. (see Note 5). Twc9 note: This

bit should be moved to a different register, and -writeonemixed

removed, as W1C mixed with normal write is annoying to SW.

3:2 QTrigState RW 0 The values that QualTrigger1 and QualTrigger0 must be for

collection, if qualification is enabled. You must leave these bits

0 if not enabling qualification.

1:0 QualTrig RW 0 “Qualification Enable”, with enables for QualTrigger1 and

QualTrigger0

Note 1: In a given collector block, collection of values on signals from the unit occurs when 4 things are
true: (a) R CtbxColCtl.EnableCollect==1, (b) lac ctb CollectTrace c0a==1 (the “Collect” signal from LAC), (c)
R CtbxColCtl.StopOnFull==0 or the collector block is not full yet, (d) “qualification” is currently satisfied. “Quali-
fication”= ((QualTrigger-input-0 & QualTrig[0]) == QTrigState[0]) && ((QualTrigger-input-1 & QualTrig[1]) ==
QTrigState[1]).

Note 2: Actually, only COHe and COHo CTBs use the default value of 7 to disable activity (and see Note
3). Most other units just feed zeros in on the collection data inputs of their CTBs. Unusual cases: In PMI, all 8
ExtMuxSel settings, 0 - 7, are used for different sets of data to collect, except 5 which feeds zeros. In PSx, the
lower-2 bits of ExtMuxSel choose between the 3 sets of data that can be collected, so ExtMuxSel settings 4 - 7
repeat the same choices of data as settings 0 - 3, with 3 and 7 collecting 0’s for data. In Fswi and Fswo CTBs,
mux settings 0 - 4 select different sets of signals, and mux settings 5, 6, 7 select the same data as muxSel=4.

May 14, 2014 548 Rev 51328

SiCortex Confidential 11.6. COLLECTOR BLOCKS (CTBS) IN GENERAL

Note 3: Due to a minor bug, in COHe or COHo, both the trigger block and collector block must have their
muxes set to other than 7 to enable the external flops on signals coming into to either the trigger block or collector
block.

Note 4: Due to Bug 1959, affecting PMI only in Ice9A, the ExtMuxSel field of R TrbcPmiiTrigCtl must be
used to select input signals for PMI’s CTB, while the ExtMuxSel field in this register for PMI does nothing. This
is fixed in Ice9B.

Note 5:
(a) Some usages of a CTB seem to get the CTB “stuck” when followed by other later uses of that CTB,

which then fail to collect. This behavior is not fully characterized. We find that doing 2 writes to this register is
best. Both writes have your new desired ExtMuxSel, QTrigState, QualTrig. The first write has WtAddrClr=1,
EnableCollect=0. The 2nd write has EnableCollect=1 and your desired StopOnFull setting.

(b) You probably won’t run into this, but: As described in BUG 2026, which is “Won’t Fix” as of June 2006, any
write to the SCB address-range of a specfic CTB, with bit-4 set in the write-data, will trigger R CtbxColCtl.WtAddrClr,
clearing that CTB’s R CtbxWtAddr. Although, since there are no other writable registers in a CTB, software should
not be doing writes to any SCB address other than R CtbxColCtl, within a CTB.

11.6.2.2 The RAM Lowbits

Register

R CtbxRamLo[1023:0]

Address

0x00 1000-0x00 1fff (plus base address)

Bit Mnemonic Access Reset Type Definition

31:0 LoData R 0 Low 32 Bits of Trace RAM (RAMData[31:0])

11.6.2.3 The RAM Highbits

Register

R CtbxRamHi[1023:0]

Address

0x00 2000-0x00 2fff (plus base address)

Bit Mnemonic Access Reset Type Definition

31:0 HiData R 0 Bits of Trace RAM including the dead-cycle-count marker
(RAMData[32,30:0]).

You don’t get to see collected bit-31, but you do get to see the

“dead cycle marker”.

11.6.2.4 The Write Address

Register

R CtbxWtAddr

Address

0x00 0010 (plus base address)

Bit Mnemonic Access Reset Type Definition

9:0 WtAddr R 0 Current (Next) Write Address. To clear this, write 1 to WtAd-

drClr bit in R CtbxColCtl. For a CTB in StopOnFull mode,

this will read back as 0 after the CTB has become full.

This is an index into the 1024-entry Collector Ram. After collecting for awhile and then stopping collecting,
the last entry collected will be at WtAddr-1, or at index 0x3FF if WtAddr=0.

May 14, 2014 549 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Can you tell from the value in this register whether collection occured? If the value is not zero, then some
collection did occur since the last time that bit WtAddrClr in R CtbxColCtl was written to 1. But if the value
is zero, you can’t tell. If StopOnFull=1 and enough is collected to fill the Collector Ram, then WtAddr will be
back to zero again. If StopOnFull=0 and collection occurs for quite awhile then stops, you’ll usually see a non-zero
WtAddr, but there’s 1 chance in 1024 that it will be zero.

11.6.3 CTB Signals

CTBs (“Collector Blocks”or“Capture Blocks”) provide samples of the important signals within functional blocks
of the ICE9 that would be difficult to observe in a running system. The CTBs reside logically within the functional
blocks of the units they are sampling and are instantiated in or near the unit whose data they will sample, and they
are clocked by the same clock as the data to be sampled. In the signal names below, I will use “xclk” to represent
the local clock domain. Each of the CTBs is connected to its own SCB slave unit.

Signal Clock I/O Description

reset e1xr l xclk In Active-low reset, which deasserts synchronous with xclk.

xxx ctb SampleDataIn x0a[31:0] xclk In Data to be sampled

xxx ctb QualTrigger x0a[1:0] xclk In When the CTB is placed in Qualified Collection mode, these

inputs control whether each sample is recorded or not. They

should be tied high if this feature is not used.

lac ctb CollectTrace c0a cclk In The LAC produces a single active-high signal telling all capture

blocks to record data to their ring buffers. The CTB must

synchronize the signal to xclk before using it. All CTBs route

CollectTrace through a dual-rank synchronizer.

ctb xxx SMuxSel x1a[2:0] xclk Out Selects from among alternate SampleData inputs. By conven-

tion, a mux select value of 7 indicates that the CTB is not in

use, and that external flops related to the sample signals may

have their clocks gated

xxx ctb scbs id[6:0] xclk In SCB Slave ID

chaini ctb dat r[2:0] xclk In Serial chain SCB input

ctb chaino dat r[2:0] xclk Out Serial chain SCB output

11.7 Hints for Using Collector Blocks

11.7.1 Collecting the Event You Triggered On

What you trigger-on is often what you want to collect and view. If you write your LAC program to branch on
the trigger, then as fast as possible start collecting, you’ll miss the event you want to see by many clocks! This
is because the trigger signal takes several clocks to get through the trigger block, the LAC and your LAC program
take several clocks to respond to a trigger and drive the collect signal, and then the collector block takes a couple
clocks to start collecting.

The way to do this is:

1. Turn-on continuous collecting in the collector block, and enable collector-block address wrap-around.

2. Use the trigger in your LAC program to stop collecting, rather than to start collecting. If what you want
to see is very short, just stop collecting when the trigger occurs.

3. If what you want to collect is longer than the delays involved with OCLA components, then either: [a] For
a little extra time, put some extra steps in your LAC program between trigger and stopping collecting, or
[b] For more extra time, when the trigger occurs start one of the timers, and when the timer overflows stop
collection.

4. Find out where in the collector block the collection stopped by reading R CtbxWtAddr (where “x” is your
Ctb name). Then read a desired number of collector block entries leading up to (but not including) that
collector block index, wrapping around from top to bottom of collector block, if needed.

May 14, 2014 550 Rev 51328

SiCortex Confidential 11.8. VECTOR TRIGGER BLOCKS (TRBVS) IN GENERAL

Ctrl Reg
Qualifier

Match0

CodeValid

Data and Control to/from SCB

&

==

Mask0

Match0

Match1

&

==

Mask1

Match1

SampleDataIn<31:0>

Figure 11.3: Vector Comparison Trigger Block

11.8 Vector Trigger Blocks (TRBVs) in general

This section describes what’s common to all Vector Trigger Blocks. The signals available to trigger-on in each
individual Vector Trigger Block are described in later sections.

Each TRBV provides a mechanism for trigger comparison between a 32 bit input vector and up to 32 bits of
value and mask state to produce a TMatch signal. The TMatch output of the trigger block is synchronous with the
clock domain of the input data. It is the responsibility of the LAC to resynchronize this signal into the cclk domain.
The TMatch output is true when (INDat AND Mask) == Value. Since the TMatch output is synchronized to the
source data clock, it may persist for too short a time to be sampled by the cclk in the LAC. In these cases, the TRB
is responsible for ensuring that the TMatch/SMatch pulse width is sufficiently wide to be sampled by a cclk. For
trigger blocks in clock domains that are faster than CCLK, the “PulseStretch” bit in the TrigCtl register should be
set to guarantee that any trigger match pulse is at least two clock cycles long. PulseStretch can also make it easyer
to get events from two different trigger blocks to coincide. Each TRBV has two match outputs. (See Figure 11.3.)

May 14, 2014 551 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.8.1 SCB Performance Counter Connections

In addition to providing triggers to the central OCLA LAC, each TRBV provides each of the 32 bits of Sam-
pleDataIn[31:0] to SCB Performance Counters as events to count. The SCB Performance Counters mechanism can
focus on just 2 signals from SampleDataIn[31:0], or it can sweep across several selections of those 32 signals.

As described in the Serial Configuration Bus chapter, program the SubChipID (from the Addressing chapter)
for the desired TRBV into bits 14:8 of a R ScbPerfBuckets[255:0] “event” field, bits 7:5 must be zero, and bits 4:0
are bit-number in SampleDataIn[31:0].

What if you want to count how often some or all of SampleDataIn[31:0] matches a pattern? This can be done
for OCLA triggering purposes by the TRBV, but the SCB Performance Counters hookup to a TRBV is limited
to just 2 bits of SampleDataIn. You can count pattern matches by getting your events to count from LAC rather
than directly from TRBV. LAC gives SCB Performance Counters the trigger outputs from all Trigger Blocks.

How much does this limit simultaneous use of a TRBV for OCLA? Very little. A separate pair of muxes is
provided for this purpose, so all of the internals of the TRBV in question can be configured as needed for OCLA.
Only the external mux must be the same for both purposes.

TRBV events sent to SCB Performance Counters are not stretched by R TrbvxTrigCtl.PulseStretch. SCB
Performance Counters has it’s own way to get the correct number of counts even if it’s in a different clock domain
from the TRBV.

The hardware wiring of these signals to SCB Performance Counters is accomplished by feeding them into the
SCB slave embedded in the TRBV.

11.8.2 Registers

For “x” in the register names below, substitute desired vector trigger block name, from these:

Fswi, Fswo, Dma.

11.8.2.1 The Trigger Control Register

Register

R TrbvxTrigCtl

Address

0x00 0000 (plus base address)

Bit Mnemonic Access Reset Type Definition

5 PulseStretch RW 0 If set, all matches will be “repeated” in the xclk tic after the

match was detected.

4:2 ExtMuxSel RW 7 External Mux Select for logic outside the TRBV to select al-

ternate trigger input sources. (see Note 1)

1 QTrigState RW 0 If QualTrig, then this is the value that W1[0] must match

0 QualTrig RW 0 Enable qualification of trigger by W1[0] for both trigger0 and

trigger1

Note 1: Power conservation: The default mux select value of 7 indicates that the trigger block is not in use,
and that external flops related to the sample signals may have their clocks gated. Of course, you’ll be writing a
value other than 7 in this field when you use any TRBV, because all instances of TRBVs have external muxes, and
in no case does the value 7 select any input trigger sources.

11.8.2.2 The Trigger Mask Registers

Register

R TrbvxTrigMask[1:0]

R TrbvxTrigMask[0] controls Match0, R TrbvxTrigMask[1] controls Match1.

May 14, 2014 552 Rev 51328

SiCortex Confidential 11.9. CODEWORD TRIGGER BLOCKS (TRBCS) IN GENERAL

Address

0x00 0010-0x00 0017 (plus base address)

Bit Mnemonic Access Reset Type Definition

31:0 Mask RW 0 Selects which bits from SampleDataIn must match.

11.8.2.3 The Trigger Match Registers

Register

R TrbvxTrigMatch[1:0]

R TrbvxTrigMatch[0] controls Match0, R TrbvxTrigMatch[1] controls Match1.

Address

0x00 0020-0x0027 (plus base address)

Bit Mnemonic Access Reset Type Definition

31:0 Match RW 0xffffffff The value that SampleDataIn must be, after masking by the
above register, to cause the trigger.

Defaults to nonzero value so that with a mask of zero, the

match always fails until configured.

11.8.3 TRBV Signals

Trigger blocks (TRB) are instantiated in or near the unit whose data they will sample, and they are clocked by
the same clock as the data to be sampled. In the signal names below, I will use “xclk” to represent the local clock
domain. Each of the TRBs is connected to its own SCB slave unit.

Signal Clock I/O Description

reset e1xr l xclk In Active-low reset, which deasserts synchronous with xclk.

xxx trbv SampleDataIn x0a[31:0] xclk In Data to be sampled. These signals are also connected to the

event wires of the local SCB slave, “W0[31:0]” for your selected

Trigger Mux value, in the later sections on each vector trigger

block.

xxx trb CodeValid x0a xclk In “Code valid flag” used as input to the Qualifier

trbv lac Match x2a[1:0] xclk Out The trigger block asserts each of these signals when the vector

comparison against their respective mask/match registers is

true and the Qualifier is satisfied. Asserted for two successive

xclk tics if PulseStretch is set

trbv xxx SMuxSel x1a[2:0] xclk Out Selects from among alternate SampleData inputs. By conven-

tion, a mux select value of 7 indicates that the TRB is not in

use, and that external flops related to the sample signals may

have their clocks gated

xxx trbv scbs id[6:0] xclk In SCB Slave ID

chaini scbs dat r[2:0] xclk In Serial chain SCB input

scbs chaino dat r[2:0] xclk Out Serial chain SCB output

11.9 Codeword Trigger Blocks (TRBCs) in general

This section describes what’s common to all Codeword Trigger Blocks. The signals available to trigger-on in
each individual Codeword Trigger Block are described in later sections.

Each Codeword TRB provides a mechanism for trigger comparison between up to four five bit codewords and up
to three lists of“interesting”codes. For instance, the TRBC (shown in Figure 11.4) can be used to detect any READ
operation directed at the COHE from a non-processor source by connecting CodeSample0 input to the COHE’s
command input, and a CodeSample1 input to the TID input. (These connections are statically established.) We’d
then load a 32 bit vector into Table0 with a 1 in each position corresponding to the code for a CSW Read operation.
We’d load a Table1 with a vector selecting all TID codes that come from the DMA or PCI/BBS widgets. Assuming

May 14, 2014 553 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

32:1

32 bit TTable0

CodeMatch0

32:1

32 bit TTable1

CodeMatch1

32:1

32 bit TTable2

CodeMatch2

Ctrl Regs

CodeSamp0<4:0>

CodeSamp1<4:0>

CodeSamp3<4:0>

CodeValid0
CodeValid1

Data and Control to/from SCB

M
u
x
0

M
u
x
1

M
u
x
2

CodeSamp2<4:0>

32:1

32 bit TTable3

CodeMatch3

M
u
x
3

CodeMatch<3:0>

16 bit QTable0

16:1

& CodeMatch<0>

16 bit QTable1

16:1

& CodeMatch<1>

Qual<0>

Qual<1>

Figure 11.4: Codeword Trigger Block

the Qualifier condition is satisfied (see below) the CodeMatch output would be equal to 3 each time a read from a
non-processor widget arrived at COHE.

CodeMatch may be qualified by looking at one or both of the “CodeValid” inputs. The control register selects
which (or both) of the code Valid inputs are examined and what state they must be in to allow a match.

Note that any of the three tables can be “examined” by any of three of the four code inputs. This allows
triggering on events such that the Code match word could be set up (for example) to produce 1 for READs, 2 for
WRITEs, and 3 for RETRIEs.

The CodeMatch output of the trigger block is synchronous with the clock domain of the input data. It is the
responsibility of the LAC to resynchronize this signal into the cclk domain. The TMatch output is true when
(INDat AND Mask) == Value. Since the TMatch output is synchronized to the source data clock, it may persist
for too short a time to be sampled by the cclk in the LAC. In these cases, the TRB is responsible for ensuring that
the TMatch/SMatch pulse width is sufficiently wide to be sampled by a cclk. For trigger blocks in clock domains
that are faster than CCLK, the “PulseStretch”bit in the TrigCtl register should be set to guarantee that any trigger
match pulse is at least two clock cycles long. PulseStretch can also make it easyer to get events from two different
trigger blocks to coincide.

Both bits of the CodeMatch output from the TRB are connected to the central LAC and to the x scbs event[1:0]

May 14, 2014 554 Rev 51328

SiCortex Confidential 11.9. CODEWORD TRIGGER BLOCKS (TRBCS) IN GENERAL

inputs of the associated SCB slave unit.

11.9.1 SCB Performance Counter Connections

Each TRBC provides its output triggers CodeMatch0 and CodeMatch1 to SCB Performance Counters as events
that can be counted.

As described in the Serial Configuration Bus chapter, program the SubChipID for the desired TRBC (from the
Addressing chapter) into bits 14:8 of a R ScbPerfBuckets “event” field. Bits 7:0 of “event” are don’t-cares.

TRBCs in a faster clock domain may need to use R TrbcxTrigCtl.PulseStretch when sending triggers to LAC,
but there’s no need to PulseStretch when providing events to SCB Performance Counters. SCB Performance
Counters will get the correct number of counts even if it’s in a different clock domain from the TRBC. If you DO
set PulseStretch, which you might want to if LAC needs the signals too, then SCB Performance Counters will get
a much higher incorrect count. Note that there’s only one PulseStretch bit, controlling both outputs.

How much does this limit simultaneous use of a TRBC for OCLA? If both CodeMatch0 and CodeMatch1 in
a particular TRBC are used by SCB Performance Counters, then OCLA can only use that TRBC if it can use it
with the exact same configurations. If only one CodeMatch is used by Performance Counters, then the other one
can be configured as needed for OCLA, although the external mux and some of the internal muxes will have to be
the same for both Performance Counters and OCLA. You can freely apply delays to these triggers within LAC,
with no effect on them going to Performance Counters.

The hardware wiring of CodeMatch0 and CodeMatch1 to SCB Performance Counters is accomplished by wiring
them to the embedded SCB slave within the TRBC. This is independent from the pathway by which LAC provides
all of its trigger-block triggers to SCB Performance Counters.

11.9.2 Registers

For “x” in the register names below, substitute desired codword trigger block name, from these:
Ps0, Ps1, Ps2, Ps3, Ps4, Ps5, Cohe, Coho, Fsw, Dma, Pmi, Pmii.

11.9.2.1 The Trigger Control Register

Register

R TrbcxTrigCtl

Address

0x00 0000 (plus base address)

Bit Mnemonic Access Reset Type Definition

19 PulseStretch RW 0 If set, all matches will be “repeated” in the xclk tic after the

match was detected.

18:16 ExtMuxSel RW 7 External Mux Select allows choice between multiple sets of

trigger inputs feeding the same TRBC. (see Note 1) (see Note

2) (see Note 3)

15:14 Mux3Sel RW 0 Mux 3 Input Select

13:12 Mux2Sel RW 0 Mux 2 Input Select

11:10 Mux1Sel RW 0 Mux 1 Input Select

9:8 Mux0Sel RW 0 Mux 0 Input Select

7:6 QTMatch1 RW 0 Qual[1] = (CodeValid[1:0] & QT1Mask[1:0]) == QT-

Match1[1:0]

5:4 QTMask1 RW 0 Enable Qualified Trigger mode for CodeValid 0 or 1 or both

3:2 QTMatch0 RW 0 Qual[0] = (CodeValid[1:0] & QT0Mask[1:0]) == QT-

Match0[1:0]

1:0 QTMask0 RW 0 Enable Qualified Trigger mode for CodeValid 0 or 1 or both

Note: QTMatch1 and QTMask1 affect CodeMatch1, QTMatch0 and QTMask0 affect CodeMatch0.
Note 1: Power-saving: In most TRBC instantiations, where more than one set of trigger inputs is selected by

ExtMuxSel, the default value of 7 indicates that the trigger block is not in use, and that external flops related to

May 14, 2014 555 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

the sample signals may have their clocks gated. Exceptions to this are the TRBCs in DMA and PMI which have
only one set of input triggers, where the default value of 7 has no special meaning.

Note 2: Due to a minor bug, in COHe or COHo, both the trigger block and collector block must have their
muxes set to other than 7 to enable the external flops on signals coming into to either the trigger block or collector
block.

Note 3: Due to Bug 1959, affecting PMI only in Ice9A, the ExtMuxSel field of R TrbcPmiiTrigCtl must be
used to select input signals for PMI’s CTB, while the ExtMuxSel field in R CtbPmiColCtl does nothing. This is
fixed in Ice9B.

11.9.2.2 The Trigger Table Registers

Register

R TrbcxTrigTab[3:0]

Address

0x00 0010-0x001F (plus base address)
Bit Mnemonic Access Reset Type Definition

31:0 TTable RW 0 Trigger Pattern for this Table

11.9.2.3 The Qualifier Table Registers

Register

R TrbcxQualTab[1:0]

Address

0x00 0020-0x0027 (plus base address)
Bit Mnemonic Access Reset Type Definition

15:0 QTable RW 0 Trigger Pattern for this Table

11.9.3 TRBC Signals

Trigger blocks (TRB) are instantiated in or near the unit whose data they will sample, and they are clocked by
the same clock as the data to be sampled. In the signal names below, “xclk” to represents the local clock domain.
Each of the TRBs is connected to its own SCB slave unit.

Signal Clock I/O Description

reset e1xr l xclk In Active-low reset, which deasserts synchronous with xclk.

xxx trbc CodeSamp3 x0a[4:0] xclk In Codeword3 to be tested. These signals are also connected to

the event wires of the local SCB slave

xxx trbc CodeSamp2 x0a[4:0] xclk In Codeword2 to be tested. These signals are also connected to

the event wires of the local SCB slave

xxx trbc CodeSamp1 x0a[4:0] xclk In Codeword1 to be tested. These signals are also connected to

the event wires of the local SCB slave

xxx trbc CodeSamp0 x0a[4:0] xclk In Codeword0 to be tested. These signals are also connected to

the event wires of the local SCB slave

xxx trbc CodeValid1 x0a xclk In One of two “code valid flags” used as input to the Qualifier

xxx trbc CodeValid0 x0a xclk In One of two “code valid flags” used as input to the Qualifier

trbc lac CodeMatch x2a[1:0] xclk Out Each of these two bits is the selected bit from the correspond-

ing QTable ANDed with the respective Qualifier bits. Asserted

for two successive xclk tics if PulseStretch is set

trbc xxx SMuxSel x1a[2:0] xclk Out Selects from among alternate SampleData inputs. By conven-

tion, a mux select value of 7 indicates that the TRB is not in

use, and that external flops related to the sample signals may

have their clocks gated

May 14, 2014 556 Rev 51328

SiCortex Confidential 11.10. HINTS FOR USING TRIGGER BLOCKS

Signal Clock I/O Description

xxx trbc scbs id[6:0] xclk In SCB Slave ID

chaini scbs dat r[2:0] xclk In Serial chain SCB input

scbs chaino dat r[2:0] xclk Out Serial chain SCB output

11.10 Hints for Using Trigger Blocks

11.10.1 Using CodeValid Signals

The “CodeValid” or “Qualifier” signals hooked-up as inputs to most Vector and Codeword Trigger Blocks were
conceived-of as a final “yes/no”on whatever other signals you’ve configured (by SCB) your Trigger Block to respond
to. Unlike the other signals available for triggering, these are configured using bits in the main control register for
your Trigger Block (the 2 Trig bits in R TrbvxTrigCtl, or the 8 QT bits in R TrbcxTrigCtl). But in use they’re not
really all that different from the other trigger inputs. Any Trigger Block input signal can effectively say “yes/no”
on the overall trigger output from that Block. In a Collector Block, qualifiers play a very special role, but in a
Trigger Block they’re just one more signal which you can AND-into to the expression for one or both of the trigger
outputs. They’re just programmed differently.

11.10.2 Trigger Clock Domains

Almost all of OCLA operates in cclk, including LAC and most Trigger and Collector Blocks. Only the exception
is that FSW Trigger and Collector Blocks are in sclk domain. sclk will always be slower-than or same frequency as
cclk. No phase relationship is gauranteed between sclk and cclk, even when at the same frequency. Furthermore,
when at the same frequency, there’s a very small probability that on a signal going from sclk to cclk, a one-
sclk-long pulse may not be seen at all in the cclk domain, due to over-time variations of on-which-cclk-edge the
clock-syncronization logic decides to present a newly-changing sclk-domain signal. If Ice9 is operating with cclk
faster than sclk this never happens, but you see occasional stretching of 1-sclk pulses from sclk domain becoming
2-cclks long in cclk domain.

Since triggers from Trigger Blocks are often 1 clock long, the loss of such a trigger pulse going from an FSW
Trigger Block to the LAC would be a problem. The PulseStretch feature of Trigger Blocks provides a solution,
making the trigger pulse 2 sclks long, which is sure to become at least one cclk long at the LAC.

FSW Trigger Blocks being in a different clock domain from LAC causes another problem. The delay regs in
LAC cannot be used for FSW triggers as easilly or reliably as they can for the other Trigger Blocks.

11.10.3 Uses for the Delay Registers

The LAC has separate delay registers for each trigger signal coming from each Trigger Block. Here are some
uses for them:

11.10.3.1 Aligning Mis-Aligned Signals From Same Trigger Block

Often you want to trigger on a combination of signals from a trigger block, that while related to the same one
event, happen on different clocks, like when one of the signals asserts 1 or 2 clocks later than the others. Use the
2 trigger lines from that trigger block, one for each signal, then delay one of them in LAC. Either or both trigger
lines could be from and-ed groups of signals.

11.10.3.2 Aligning CodeValid or Qualifier with Other Triggers in a Trigger Block

Line-up a signal or group of signals from a trigger block with the qualifier of that trigger block, if they differ
by 1 or more clocks. Use one trigger line for the group of signals, unqualified. Use the other trigger line for the
qualifier, qualifying “true” (mask=0, match=0).

11.10.3.3 Aligning Triggers from Different Trigger Blocks

This can compensate for one Trigger Block having more flops than the other between trigger signal source and
LAC. This can adjust for an event in one Trigger Block occuring earlier than the related event in the other Trigger
Block.

May 14, 2014 557 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

If the difference in time between these two triggers is too large for LAC’s Delay Registers, you might be able to
your LAC program to wait for the first event, then wait for the 2nd, with a timeout at which point it goes back to
waiting for the first event. Of course this only works if “first events” are separated by enough clocks.

11.10.3.4 Provide Bigger Window for Coinciding Events

Combined with PulseStretch, provide a wider window of “coinciding” between single-clock events from different
trigger blocks, up to 7 cclks wide! To do this use enable PulseStretch on both trigger blocks, and then send the
same trigger out both trigger ports of each trigger block. In the delay registers, skew the 2 triggers from a given
trigger block by 2 cclks relative to each other, providing a “trigger == true” time of 4 cclks from each trigger block.
Use 4 Aggregate Matches to “and” each trigger from one trigger block with each trigger from the other trigger
block. Then, in your LAC program, loop waiting to branch on any of these 4 Aggregate Matches to the same one
“got the event” LAC state.

11.11 OCLA in use – PSx (Processor Segments)

The 6 Processor Segments have 1 Trigger Block each, and 1 Collector Block each. For “x” in “PSx” substitute
each of 0,1,2,3,4,5.

11.11.0.5 Location of OCLA-PSx Blocks and Signals

PSx signals for OCLA triggering and collection are in the CAC part of each PSx.
From a usage point of view you don’t need to know where the Trigger and Collector Blocks of OCLA-PSx are

located, but if you are looking at the Verilog code, you might get confused, so here’s the info: The Trigger Block
for each PSx is located in it’s CAC, but the Collector Block is located in one of the COH units. COHe contains
3 of the PSx Collector Blocks, and COHo contains the other 3. These 3 are not to be confused with COH’s own
Collector Blocks, which are connected to COH signals. Each of COHe and COHo contains one COH collector block
and 3 PSx collector blocks.

11.11.1 PSx Triggers

Each of the Processor Segments will have a codeword trigger capable of detecting events coming from the CSW,
and internal L2 controller state. We want to watch lots more signals than we have inputs for a TRBC, so we
provide an external mux to select from between trigger sources that are hopefully not both interesting at the same
time. The following tables define the codeword triggers for the most interesting signals and signal combinations in
the ICE9 Cache. For the cache unit there are four mux selectable groupings of codeword triggers. Each class below
represents one of the four mux selectable groupings. Note that all signals listed are flopped once before entering
trigger blocks.

11.11.1.1 Processor Segment Trigger Mux 0

Class

TrbcPsxMux0

Attributes

-ocla -trbc -trbcpsx

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:0] LatCmd xxx trbc CodeSamp0Mux0[4:0] cac.lat xxx Command c2a[4:0] Command code for incoming request from CSW

W1[4:0] LatCmdAddrTid xxx trbc CodeSamp1Mux0[4:0] cac.lat xxx CmdAddrTID c2a[4:0] Transaction ID for incoming request from CSW

W2[4:0] LatDataTid xxx trbc CodeSamp2Mux0[4:0] cac.lat xxx DataTID c4a[4:0] The TID for the accompanying data from CSW

W3[4] PsxToCswECmdAddrReq xxx trbc CodeSamp3Mux0[4] cac.psx csw ECmdAddrReq c0a Bid for evenbound bus to CSW

W3[3] PsxToCswOCmdAddrReq xxx trbc CodeSamp3Mux0[3] cac.psx csw OCmdAddrReq c0a Bid for oddbound bus to CSW

May 14, 2014 558 Rev 51328

SiCortex Confidential 11.11. OCLA IN USE – PSX (PROCESSOR SEGMENTS)

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W3[2] CswToPsxCmdAddrGnt xxx trbc CodeSamp3Mux0[2] cac.csw psx CmdAddrGnt c1a We got the last command cycle.

cclk after psx csw ECmdAddrReq

psx csw OCmdAddrReq c0a

W3[1:0] xxx trbc CodeSamp3Mux0[1:0] Reserved always zero

W4[0] Cv0LatCmdAddrValid xxx trbc CodeValid0Mux0 x0a cac.lat xxx CmdAddrValid c2a CSW is sending a command to PSX.

same cclk as lat xxx Command c2a

lat xxx CmdAddrTID c2a

W5[0] Cv1LatDataValid xxx trbc CodeValid1Mux0 x0a cac.lat xxx DataValid c4a Incoming Data-Valid from CSW

11.11.1.2 Processor Segment Trigger Mux 1

Class

TrbcPsxMux1

Attributes

-ocla -trbc -trbcpsx

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4] SlcToTagBiuWrite xxx trbc CodeSamp0Mux1[4] cac.slc tag BiuWrite cya CPU to CAC request of a write, mem or IO

W0[3] SlcToTagBiuRead xxx trbc CodeSamp0Mux1[3] cac.slc tag BiuRead cya CPU to CAC request of a read, mem or IO

W0[2] SlcToTagIFetch xxx trbc CodeSamp0Mux1[2] cac.slc tag IFetch cya Instruction stream Fetch

W0[1] CtlToSlcWinPrb xxx trbc CodeSamp0Mux1[1] cac.ctl slc WinPrb c6a This is a probe to L1 in response to a PRB-

WIN from CSW or a victim displacement

W0[0] CtlToSlcInvPrb xxx trbc CodeSamp0Mux1[0] cac.ctl slc InvPrb c6a This is a probe to L1 in response to a

PRBINV from CSW. Ignore returned data.

W1[4:0] LatCmdAddrTid xxx trbc CodeSamp1Mux1[4:0] cac.lat xxx CmdAddrTID c2a[4:0] Transaction ID for incoming request from

CSW

W2[4:0] CtlToLamPrbQState xxx trbc CodeSamp2Mux1[4:0] cac.ctl lam PrbQState c4a[4:0] Probe-queue handler state

W3[4:3] SlcPrbDirty xxx trbc CodeSamp3Mux1[4:3] cac.slc xxx PrbDirty cya[1:0] Which of two 32 byte blocks in a probe were

newly updated

W3[2:1] SlcPrbDone xxx trbc CodeSamp3Mux1[2:1] cac.slc xxx PrbDone cya[1:0] Probe for both blocks has completed

W3[0] SlcToCtlWbInProg xxx trbc CodeSamp3Mux1[0] cac.slc ctl WbInProg czb Writeback in progress

W4[0] Cv0LatCmdAddrValid xxx trbc CodeValid0Mux1 x0a cac.lat xxx CmdAddrValid c2a CSW is sending a command to PSX

W5[0] Cv1SlcToTagBiuMemAcc xxx trbc CodeValid1Mux1 x0a cac.slc tag BiuMemAcc cya CPU to CAC request address is a memory

access

11.11.1.3 Processor Segment Trigger Mux 2

Class

TrbcPsxMux2

Attributes

-ocla -trbc -trbcpsx

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:0] LatCmd xxx trbc CodeSamp0Mux2[4:0] cac.lat xxx Command c2a[4:0] Command code for incoming request from

CSW

W1[4:0] LatCmdAddrTid xxx trbc CodeSamp1Mux2[4:0] cac.lat xxx CmdAddrTID c2a[4:0] Transaction ID for incoming request from

CSW

W2[4] SlcToTagBiuWrite xxx trbc CodeSamp2Mux2[4] cac.slc tag BiuWrite cya CPU to CAC request of a write, mem or IO

W2[3] SlcToDatPrbWbVal xxx trbc CodeSamp2Mux2[3] cac.slc dat PrbWbVal cya Data in cz is a writeback from a probe

May 14, 2014 559 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W2[2] SlcBiuPaused xxx trbc CodeSamp2Mux2[2] cac.slc xxx BiuPaused c2b Says SLC won’t send new requests until

pause deasserts

W2[1:0] SlcPrbDone xxx trbc CodeSamp2Mux2[1:0] cac.slc xxx PrbDone cya[1:0] Probe for both blocks has completed

W3[4] PrbRdReq xxx trbc CodeSamp3Mux2[4] cac.ctl dat PrbRdReq c5a Read a block out of the L2 and write it to

the CSW

W3[3] WtPrb2L2PrbState2 xxx trbc CodeSamp3Mux2[3] [See Note 1] ctl dat WtPrb2L2 c5a ORed w

ctl dat PrbState c5a[2]

W3[2:1] PrbState10 xxx trbc CodeSamp3Mux2[2:1] cac.ctl dat PrbState c5a[1:0] Low 2 bits of PrbState (See Note 2)

W3[0] LatDataValid xxx trbc CodeSamp3Mux2[0] cac.lat xxx DataValid c4a Incoming Data-Valid from CSW

W4[0] Cv0LatCmdAddrValid xxx trbc CodeValid0Mux2 x0a cac.lat xxx CmdAddrValid c2a CSW is sending a command to PSX

W5[0] Cv1SlcToTagBiuMemAcc xxx trbc CodeValid1Mux2 x0a cac.slc tag BiuMemAcc cya CPU to CAC request address is a memory

access

Notes:

1. cac.ctl dat WtPrb2L2 c5a || cac.ctl dat PrbState c5a[2] in Ice9A. This was a mistake, bug 1995, which makes it hard
to trigger on all 3 bits of ctl dat PrbState c5a[2:0]. With only the lower 2 bits we can distinguish between four Cac
State possibilities: 0=INV, 1=EXCL, 2=SHARE-or-DIRTY, 3=UPDATED. Signal ctl dat WtPrb2L2 c5a means for
BRD writebacks to CSW, also write data to L2. Fixed in Ice9B to be just be cac.ctl dat PrbState c5a[2], allowing
triggering on all Cac States.

2. When the probe data is sent along, ctl dat PrbState c5a is the state that should be propagated (all 3 bits, that is).
PrbState is of type CacState, not CacPrbQState.

11.11.1.4 Processor Segment Trigger Mux 3

Class

TrbcPsxMux3

Attributes

-ocla -trbc -trbcpsx

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:0] PsxToCswCmd xxx trbc CodeSamp0Mux3[4:0] cac.psx csw Command c0a[4:0] Processor Segment to CSW Command

W1[4] CtlToTagInvReq xxx trbc CodeSamp1Mux3[4] cac.ctl tag InvReq c5a Invalidate Request, reqAddr block should

be invalidated

W1[3] CtlToTagWinReq xxx trbc CodeSamp1Mux3[3] cac.ctl tag WinReq c5a In Biu pause, doing writeback & invalidate

for PRBWIN from CSW

W1[2] CtlToTagBrdReq xxx trbc CodeSamp1Mux3[2] cac.ctl tag BrdReq c5a In Biu pause, doing block-read for PRB-

BRD from CSW

W1[1] CtlToTagBwtReq xxx trbc CodeSamp1Mux3[1] cac.ctl tag BwtReq c5a In Biu pause, doing block-write for

PRBBWT from CSW

W1[0] CtlToTagShrReq xxx trbc CodeSamp1Mux3[0] cac.ctl tag ShrReq c5a In Biu pause, going to shared state for

PRBSHR from CSW

W2[4] SlcToTagBiuWrite xxx trbc CodeSamp2Mux3[4] cac.slc tag BiuWrite cya CPU to CAC request of a write, mem or IO

W2[3] SlcToTagBiuRead xxx trbc CodeSamp2Mux3[3] cac.slc tag BiuRead cya CPU to CAC request of a read, mem or IO

W2[2] SlcToDatPrbWbVal xxx trbc CodeSamp2Mux3[2] cac.slc dat PrbWbVal cya Data in cz is a writeback from a probe

W2[1] SlcToTagBiuMemAcc xxx trbc CodeSamp2Mux3[1] cac.slc tag BiuMemAcc cya CPU to CAC request address is a memory

access

W2[0] SlcToTagIFetch xxx trbc CodeSamp2Mux3[0] cac.slc tag IFetch cya Instruction stream Fetch

W3[4] TagToCtlW0Miss xxx trbc CodeSamp3Mux3[4] cac.tag ctl W0Miss cza (Tag-Miss on Way-0, or Idle) and not IO-

access [See Note 2]

W3[3] TagToCtlW1Miss xxx trbc CodeSamp3Mux3[3] cac.tag ctl W1Miss cza (Tag-Miss on Way-1, or Idle) and not IO-

access [See Note 2]

W3[2] TagToCtlPrbHit xxx trbc CodeSamp3Mux3[2] cac.tag ctl PrbHit c6a The incoming probe op hit on the L2

May 14, 2014 560 Rev 51328

SiCortex Confidential 11.11. OCLA IN USE – PSX (PROCESSOR SEGMENTS)

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W3[1:0] TagToCtlBlkState xxx trbc CodeSamp3Mux3[1:0] cac.tag ctl BlkState cza[1:0] State of block we got a hit on

W4[0] Cv0SlcToTagBiuMemAcc xxx trbc CodeValid0Mux3 x0a cac.slc tag BiuMemAcc cya CPU to CAC request address is a memory

access

W5[0] Cv1PsxToCswXCmdAddrReq xxx trbc CodeValid1Mux3 x0a [See Note 1] PSX to CSW Even or Odd Cmd Address

Request

Notes:

1. cac.psx csw ECmdAddrReq c0a || cac.psx csw OCmdAddrReq c0a; // Request by Cac for either the even-
bound or oddbound CSW Cmd Address Bus.

2. Bug2243: In Ice9A each of these “W0Miss, W1Miss”signals will be asserted when their “way”(W0 or W1) has
a tag-miss on a Biu Memory Access, or anytime accessing tags is idle. This means they’re similar to “˜Hit”
signals, except that for processor IO accesses, both of these will be 0 (which does not mean “Hit”). This is
because tags are bypassed during IO accesses. To eliminate both Idles and IO-accesses, configure OCLA so
that slc tag BiuMemAcc cya must be true when looking for W0Miss or W1Miss to be either true or false.
These trigger bits are improved in Ice9B to be tag ctl W0Hit and tag ctl W1Hit.

3. Bug2243: In Ice9A signals tag ctl W0Miss cza and tag ctl W1Miss cza are 1 cclock later than the other
related signals provided, for a given access event. This means that to condition W0Miss or W1Miss with
another signal you’ll have to use both codeword trigger outputs, and then in LAC delay one relative to the
other. This is fixed in Ice9B.

11.11.2 PSx Collectors

Each of the six PS CTBs contain the following mux inputs and signals.

11.11.2.1 PSx Input Collectors Qualifying Triggers

Class

CtbPsxQtrig

Attributes

-ocla -ctb -ctbpsx

Bit Mnemonic (CTB Input) (Signal) Definition

1 LatCmdAddrValid xxx ctb QualTrig1 x0a cac.lat xxx CmdAddrValid c2a CSW is sending a command to PSX

0 SlcToTagOp xxx ctb QualTrig0 x0a [See Note 1] CPU to CAC request of a read or write,

mem or IO

Notes:

1. cac.slc tag BiuRead cya || cac.slc tag BiuWrite cya;

11.11.2.2 PSx Input Collector Mux 0

Class

CtbPsxMux0

Attributes

-ocla -ctb -ctbcac

Bit Mnemonic (CTB Input) (Signal) Definition

31 TagToCtlW1Miss xxx ctb SampleDataIn0 x0a[31] cac.tag ctl W1Miss cza (Tag-Miss on Way-1, or Idle) and not IO-

access

May 14, 2014 561 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (CTB Input) (Signal) Definition

30 TagToCtlW0Miss xxx ctb SampleDataIn0 x0a[30] cac.tag ctl W0Miss cza (Tag-Miss on Way-0, or Idle) and not IO-

access

29:25 CtlToLamPrbQState xxx ctb SampleDataIn0 x0a[29:25] cac.ctl lam PrbQState c4a[4:0] Probe-queue handler state

24:21 SlcToLamRdyState1 xxx ctb SampleDataIn0 x0a[24:21] cac.slc lam RdyState1 c2a[3:0] Ready state from the SLC, pclk number 1

[See Note 1]

20 CswToPsxDataGnt xxx ctb SampleDataIn0 x0a[20] cac.csw psx DataGnt c3a Cache switch to processor segment data

grant

19 PsxToCswODataReq xxx ctb SampleDataIn0 x0a[19] cac.psx csw ODataReq c2a Processor segment to cache switch odd data

request

18 PsxToCswEDataReq xxx ctb SampleDataIn0 x0a[18] cac.psx csw EDataReq c2a Processor segment to cache switch even

data request

17 CswToPsxCmdAddrGnt xxx ctb SampleDataIn0 x0a[17] cac.csw psx CmdAddrGnt c1a Cache switch to processor segment com-

mand grant

16 PsxToCswOCmdAddrReq xxx ctb SampleDataIn0 x0a[16] cac.psx csw OCmdAddrReq c0a Processor segment to cache switch odd

command request

15 PsxToCswECmdAddrReq xxx ctb SampleDataIn0 x0a[15] cac.psx csw ECmdAddrReq c0a Processor segment to cache switch even

command request

14 Always0 xxx ctb SampleDataIn0 x0a[14] [Always Zero] Reserved

13:10 SlcToLamRdyState0 xxx ctb SampleDataIn0 x0a[13:10] cac.slc lam RdyState0 c2a[3:0] Ready state from the SLC, pclk number 0

[See Note 1]

9:5 LatCmdAddrTid xxx ctb SampleDataIn0 x0a[9:5] cac.lat xxx CmdAddrTID c2a[4:0] Command TID

4:0 LatCmd xxx ctb SampleDataIn0 x0a[4:0] cac.lat xxx Command c2a[4:0] Command

Notes:

1. The CPU runs on pclk, twice as fast as cclk, so for OCLA (in cclk) to see the sequence of ready states in the
CPU, 2 successive pclk states are passed into Cac and into this collector block on each cclk. See RdyState1 in
collector bits 24:21, and RdyState0 in collector bits 13:10. RdyState0 occurred in the CPU before RdyState1.

11.11.2.3 PSx Input Collector Mux 1

Class

CtbPsxMux1

Attributes

-ocla -ctb -ctbpsx

Bit Mnemonic (CTB Input) (Signal) Definition

31:22 LatAddrHi xxx ctb SampleDataIn1 x0a[31:22] cac.lat xxx Addr c2a[35:26] 10 upper Address bits [35:26]

21:10 LatAddrLo xxx ctb SampleDataIn1 x0a[21:10] cac.lat xxx Addr c2a[14:3] 12 lower Address bits [14:3]

9:5 LatCmdAddrTid xxx ctb SampleDataIn1 x0a[9:5] cac.lat xxx CmdAddrTID c2a[4:0] Command TID

4:0 LatCmd xxx ctb SampleDataIn1 x0a[4:0] cac.lat xxx Command c2a[4:0] Command

11.11.2.4 PSx Input Collector Mux 2

Class

CtbPsxMux2

Attributes

-ocla -ctb -ctbpsx

Bit Mnemonic (CTB Input) (Signal) Definition

May 14, 2014 562 Rev 51328

SiCortex Confidential 11.11. OCLA IN USE – PSX (PROCESSOR SEGMENTS)

Bit Mnemonic (CTB Input) (Signal) Definition

31:27 PsxToCswCmd xxx ctb SampleDataIn2 x0a[31:27] cac.psx csw Command c0a[4:0] Processor segment to cache switch com-

mand

26 CtlToSlcInvPrb xxx ctb SampleDataIn2 x0a[26] cac.ctl slc InvPrb c6a tbs

25 CtlToSlcWinPrb xxx ctb SampleDataIn2 x0a[25] cac.ctl slc WinPrb c6a tbs

24 SlcToLamRdyState1bit3 xxx ctb SampleDataIn2 x0a[24] cac.slc lam RdyState1 c2a[3] Bit3 of RdyState1, a mistake, but can be

used

23:21 ReqEnc xxx ctb SampleDataIn2 x0a[23:21] [See Note 1] Encoding of which tag flag set, 0 if multiple

20 TagToCtlPrbWay xxx ctb SampleDataIn2 x0a[20] cac.tag ctl PrbWay c6a tbs

19 TagToCtlPrbHit xxx ctb SampleDataIn2 x0a[19] cac.tag ctl PrbHit c6a tbs

18:17 TagToCtlBlkState xxx ctb SampleDataIn2 x0a[18:17] cac.tag ctl BlkState cza[1:0] tbs

16 TagToCtlW1Miss xxx ctb SampleDataIn2 x0a[16] cac.tag ctl W1Miss cza See Note 2:
Ice9A - Tag Miss or Idle on Way-1 (same as
˜Hit)

Ice9B - Tag Hit on Way-1

15 TagToCtlW0Miss xxx ctb SampleDataIn2 x0a[15] cac.tag ctl W0Miss cza See Note 2:
Tag Miss or Idle on Way-0 (same as ˜Hit)

Ice9B - Tag Hit on Way-0

14:13 SlcPrbDirty xxx ctb SampleDataIn2 x0a[14:13] cac.slc xxx PrbDirty cya[1:0] SLC Dirty Probe

12:11 SlcPrbDone xxx ctb SampleDataIn2 x0a[12:11] cac.slc xxx PrbDone cya[1:0] SLC Probe Done

10 CtlToDatWtPrb2L2 xxx ctb SampleDataIn2 x0a[10] cac.ctl dat WtPrb2L2 c5a tbs

9 CtlToDatPrbRdReq xxx ctb SampleDataIn2 x0a[9] cac.ctl dat PrbRdReq c5a tbs

8 SlcBiuPaused xxx ctb SampleDataIn2 x0a[8] cac.slc xxx BiuPaused c2b tbs

7 SlcToDatPrbWbVal xxx ctb SampleDataIn2 x0a[7] cac.slc dat PrbWbVal cya tbs

6:3 SlcToLamRdyState0 xxx ctb SampleDataIn2 x0a[6:3] cac.slc lam RdyState0 c2a[3:0] tbs

2 SlcToTagBiuRead xxx ctb SampleDataIn2 x0a[2] cac.slc tag BiuRead cya tbs

1 SlcToTagBiuWrite xxx ctb SampleDataIn2 x0a[1] cac.slc tag BiuWrite cya tbs

0 SlcToTagBiuMemAcc xxx ctb SampleDataIn2 x0a[0] cac.slc tag BiuMemAcc cya tbs

Note 1:

case ({cac.ctl tag InvReq c5a, cac.ctl tag WinReq c5a, cac.ctl tag BrdReq c5a, cac.ctl tag BwtReq c5a,

cac.ctl tag ShrReq c5a})

5’b00001 : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d1; // ShrReq

5’b00010 : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d2; // BwtReq

5’b00100 : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d3; // BrdReq

5’b01000 : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d4; // WinReq

5’b10000 : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d5; // InvReq

default : xxx ctb SampleDataIn2 x0a[23:21] <= 3’d0; // none of the above, or more-than-one of the above

endcase

Note 2:

In Ice9A bits 15 and 16 are cac.tag ctl W0Miss cza and cac.tag ctl W1Miss cza.

In Ice9B and later bits 15 and 16 are cac.tag ctl W0Hit cza and cac.tag ctl W1Hit cza.

11.11.2.5 PSx Input Collector Mux 3

Class

CtbPsxMux3

Attributes

-ocla -ctb -ctbpsx

May 14, 2014 563 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (CTB Input) (Signal) Definition

31:0 xxx ctb SampleDataIn3 x0a[31:0] [always zero] Reserved

11.11.2.6 PSx Input Collector Mux 4, 5, 6, 7

The data mux leading into PSx CTBs has only the lower 2 bits of ExtMuxSel wired-up, selecting between the
4 options described above. This means ExtMuxSel values 4,5,6,7 give you the same data choices as 0,1,2,3.

11.12 OCLA in use – COHx

“COHx”means either of COHe or COHo.

11.12.0.7 COHx Trigger and Collector Enabling

Due to a minor bug affecting COHx only, both Trigger and Collector Blocks must be enabled to use either. By
“enabled” I mean setting their external muxes to other than 7. COHe and COHo are separately enabled. They all
default to 7, which disables OCLA activities, saving power.

For example: If all I wanted to use was the COHo Collector Block (triggering was done elsewhere, not in COH),
I would need to set COHo Collector Block External Mux to the setting for what I wanted to collect, and I would
need to set COHo Codeword Trigger Block External Mux to any value other than 7. COHe external muxes could
be left at their default values.

11.12.1 COHx Triggers

The following tables define the codeword triggers for both the Even and Odd coherence controllers. For the
ICE9, the coherence units provide up to four mux selectable groupings of codeword triggers. Each class below
represents one of the four mux selectable groupings.

11.12.1.1 COHx Codeword Trigger Mux 0: Trigger on incoming command/source/data-op + tag-
results + orc/wbc hit

Class

TrbcCohxMux0

Attributes

-ocla -trbc -trbccohx

Bit Mnemonic (Codeword Sample Input) (COH Signals) Definition

W0[4] TagShr xxx trbc CodeSamp0Mux0 x0a[4] ml TagShr c4a Shared tag flag

W0[3] TagHit xxx trbc CodeSamp0Mux0 x0a[3] ml TagHit c4a Tag hit flag

W0[2:0] Owner xxx trbc CodeSamp0Mux0 x0a[2:0] ml Owner c4a[2:0] Tag owner mask

W1[4] Always0 xxx trbc CodeSamp1Mux0 x0a[3] unused Hardwired to logic ’0’

W1[3] CohToDdrRdShootDwn xxx trbc CodeSamp1Mux0 x0a[3] m coh ddr RdShootDown c5a

|| m RaWShootDown c4a

tbs

W1[2] WbcToCtlAddrHit xxx trbc CodeSamp1Mux0 x0a[2] m wbc ctl AddrHit c4a tbs

W1[1] OrcToCtlAddrHit xxx trbc CodeSamp1Mux0 x0a[1] m orc ctl AddrHit c4a tbs

W1[0] VicVal xxx trbc CodeSamp1Mux0 x0a[0] ml VicVal c4a tbs

W2[4:0] CmdAddrTid xxx trbc CodeSamp2Mux0 x0a[4:0] m InCmdAddrTID c3a[4:0] Inbound Command TID

W3[4:0] Cmd xxx trbc CodeSamp3Mux0 x0a[4:0] m InCommand c3a[4:0] Inbound Command

W4[0] Cv0Always1 xxx trbc CodeValid0 x0a Hardwired to logic ’1’ Hardwired to ’1’

W5[0] Cv1InCmdAddrVal xxx trbc CodeValid1 x0a m cmd xxx InCmdAddrValid c3a tbs

Note that W0 signals are delayed by 1 cclk compared with InCmdAddrValid and other signals, and W1 signals
are delayed by 2 cclks compared with InCmdAddrValid and other signals.

May 14, 2014 564 Rev 51328

SiCortex Confidential 11.12. OCLA IN USE – COHX

11.12.1.2 COHx Codeword Trigger Mux 1: Trigger on ORC/WBC behavior + incoming command

Class

TrbcCohxMux1

Attributes

-ocla -trbc -trbccohx

Bit Mnemonic (Codeword Sample Input) (COH Signals) Definition

W0[4] WbcToCtlWrsHit xxx trbc CodeSamp0Mux1 x0a[4] m wbc ctl WrsHit c7a Dependent share in the WBC

W0[3] WbcToCtlDepShr xxx trbc CodeSamp0Mux1 x0a[3] m wbc ctl DepShr c5a Dependent share in the WBC

W0[2] WbcToCtlDepVal xxx trbc CodeSamp0Mux1 x0a[2] m wbc ctl DepVal c5a Dependent value in the WBC

W0[1] OrcToCtlPrbHit xxx trbc CodeSamp0Mux1 x0a[1] m orc ctl PrbHit c4a Probe hit flag in the ORC

W0[0] OrcToCltDdrHit xxx trbc CodeSamp0Mux1 x0a[0] m orc ctl DDRHit c12a DDR RAM hit flag in the ORC

W1[4:0] OrcToCtlTid xxx trbc CodeSamp1Mux1 x0a[4:0] [See Note 1] TID based on hit or dep value

W2[4:0] CmdAddrTid xxx trbc CodeSamp2Mux1 x0a[4:0] m InCmdAddrTID c3a Inbound command TID

W3[4:0] Cmd xxx trbc CodeSamp3Mux1 x0a[4:0] m InCommand c3a Inbound command

W4[0] Cv0Always1 xxx trbc CodeValid0 x0a Hardwired to logic ’1’ Hardwired to ’1’

W5[0] Cv1InCmdAddrValid xxx trbc CodeValid1 x0a m cmd xxx InCmdAddrValid c3a Inbound command address-valid

Notes:

1. (orc ctl DDRHit c12a ? orc ctl DDRDepTIDc12a : 0) | (orc ctl PrbHit c4a ? orc ctlPrbDepTID c4a : 0) | (orc ctl DepVal c5a
? wbc ctl DepTID c5a : 0) | (wbc ctl WrsHit c7a ? wbc ctl WrsTID c7a : 0) | (wbc ctl BwtCanHit c4a ? wbc ctl BwtCanDepTID c4a
: 0)

11.12.1.3 COHx Codeword Trigger Mux 2: Trigger on the DDR Interface

Class

TrbcCohxMux2

Attributes

-ocla -trbc -trbccohx

Bit Mnemonic (Codeword Sample Input) (COH Signals) Definition

W0[4] Always0 xxx trbc CodeSamp0Mux2 x0a[4] unused Hardwired to logic ’0’

W0[3] CohToDdrRdShootDwn xxx trbc CodeSamp0Mux2 x0a[3] [See Note 1] tbs

W0[2] DdrToCohWtTidVal xxx trbc CodeSamp0Mux2 x0a[2] m ddr coh WtTIDVal c6a tbs

W0[1] DdrToCohRdShotDown xxx trbc CodeSamp0Mux2 x0a[1] m ddr coh RdShotDown c3a tbs

W0[0] DdrToCohDataValid xxx trbc CodeSamp0Mux2 x0a[0] m ddr coh DataValid c3a tbs

W1[4:0] DdrToCohTid xxx trbc CodeSamp1Mux2 x0a[4:0] [See Note 2] tbs

W2[4:0] CohToDdrWrTid xxx trbc CodeSamp2Mux2 x0a[4:0] [See Note 3] tbs

W3[4:0] CohRdTid xxx trbc CodeSamp3Mux2 x0a[4:0] [See Note 4] tbs

W4[0] Cv0Always1 xxx trbc CodeValid0 x0a Hardwired to logic ’1’ tbs

W5[0] Cv1InCmdAddrValid xxx trbc CodeValid1 x0a m cmd xxx InCmdAddrValid c3a tbs

Notes:

1. m coh ddr RdShootDown c5a || m coh ddr RaWShootDown c4a

2. ((m ddr coh DataValid c3a ||m ddr coh RdShotDown c3a) ? m ddr coh DataTID c3a : 0x00) | (m ddr coh WtTIDVal c6a
? m ddr coh WtTID c6a : 0x00)

3. m coh ddr WrValid c6a ? m coh ddr WrTID c6a : 0x1f

4. m cohddr RdValid c3a ? m cohddr RdTID c3a : 0x1f

May 14, 2014 565 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.12.1.4 COHx Codeword Trigger Mux 3: Trigger on an Incoming Address

Class

TrbcCohxMux3

Attributes

-ocla -trbc -trbccohx

Bit Mnemonic (Codeword Sample Input) (COH Signals) Definition

W0[4:0] InAddr xxx trbc CodeSamp0Mux3[4:0] m cmd xxx InAddr c3a[8:7],

m cmd xxx InAddr c3a[5:3]

Incoming ? Address

W1[4:0] InPageAddr xxx trbc CodeSamp1Mux3[4:0] m cmd xxx InAddr c3a[20:16] Incoming Page Address

W2[4:0] OutRdAddr1 xxx trbc CodeSamp2Mux3[4:0] m cohddr RdAddr c3a[8:7],

m cohddr RdAddr c3a[5:3]

Outgoing ? Address

W3[4:0] OutRdAddr2 xxx trbc CodeSamp3Mux3[4:0] m cohddr RdAddr c3a[8:7],

m cohddr RdAddr c3a[5:3]

(Same as mux selection 2)

W4[0] Cv0Always1 xxx trbc CodeValid0 x0a Hardwired to logic ’1’ tbs

W5[0] Cv1InCmdAddrValid xxx trbc CodeValid1 x0a m cmd xxx InCmdAddrValid c3a tbs

11.12.2 COHx Collectors

Each of the COHx units, Cohe (even) and Coho (odd), will have a collector to record commands, TIDs, and
tag indices arriving at that COH.

Note: If you are looking at the COH source code, you’ll see 4 OCLA collectors instantiated in Cohe and 4 in
Coho! These are 1 for the COHx unit, and 3 for PSx units. When using OCLA, you don’t have to pay attention
to where the collectors are actaully instantiated, all you care about is what signals they’re hooked to. So, for
functional purposes, each COHx has only 1 OCLA Collector.

11.12.2.1 Cohx Input Collectors Qualifying Triggers

Class

CtbCohxQtrig

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

1 InCmdAddrValid xxx ctb QualTrigger1 x0a m cmd xxx InCmdAddrValid c3a tbs

0 OutTarget xxx ctb QualTrigger0 x0a [See Note 1] tbs

Notes:

1. m coh csw OutDataTarget c3a[0] || m coh csw OutCmdAddrTarget c1a[0]

11.12.2.2 Cohx Input Collector Mux 0

Class

CtbCohxMux0

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

31:16 InAddrHi xxx ctb SampleDataIn0 x0a[31:16] m InAddr c3a[31:16] Page Address [31:16]

May 14, 2014 566 Rev 51328

SiCortex Confidential 11.12. OCLA IN USE – COHX

Bit Mnemonic (CTB Input) (Signal) Definition

15:13 InAddrLo xxx ctb SampleDataIn0 x0a[15:13] m InAddr c3a[5:3] Page Address [5:3]

12:8 InCmd xxx ctb SampleDataIn0 x0a[12:8] m InCommand c3a[4:0] Incomming command

7:3 InCmdAddrTid xxx ctb SampleDataIn0 x0a[7:3] m InCmdAddrTID c3a[4:0] Incomming TID

2:0 Owner xxx ctb SampleDataIn0 x0a[2:0] ml Owner c4a[2:0] Block Owner

11.12.2.3 Cohx Input Collector Mux 1

Class

CtbCohxMux1

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

31 OrcToCtlAddrHit xxx ctb SampleDataIn1 x0a[31] m orc ctl AddrHit c4a ORC Cache Address Hit

30 WbcToCtlAddrHit xxx ctb SampleDataIn1 x0a[30] m wbc ctl AddrHit c4a Write Back Cache Address Hit

29 OrcToCtlDdrHit xxx ctb SampleDataIn1 x0a[29] m orc ctl DDRHit c12a DDR Hit

28 OrcToCtlPrbHit xxx ctb SampleDataIn1 x0a[28] m orc ctl PrbHit c4a Cache Probe Hit

27 WbcToCtlDepVal xxx ctb SampleDataIn1 x0a[27] m wbc ctl DepVal c5a tbs

26 WbcToCtlDepShr xxx ctb SampleDataIn1 x0a[26] m wbc ctl DepShr c5a tbs

25 WbcToCtlWrsHit xxx ctb SampleDataIn1 x0a[25] m wbc ctl WrsHit c7a tbs

24 WbcToCtlBwtCanHit xxx ctb SampleDataIn1 x0a[24] m wbc ctl BwtCanHit c4a tbs

23:19 DepTid xxx ctb SampleDataIn1 x0a[23:19] ml DepTID ca[See Note 1] tbs

18 DdrToCohDvOrRdShtDwn xxx ctb SampleDataIn1 x0a[18] [See Note 2] tbs

17 CohToDdrRdShootDwn xxx ctb SampleDataIn1 x0a[17] [See Note 3] tbs

16:13 DdrToCohDataTid xxx ctb SampleDataIn1 x0a[16:13] m ddr coh DataTID c3a[4:1] tbs

12:8 InCmd xxx ctb SampleDataIn1 x0a[12:8] m cmd xxx InCommand c3a[4:0] Incoming command

7:3 InCmdAddrTid xxx ctb SampleDataIn1 x0a[7:3] m cmd xxx InCmdAddrTID c3a[4:0] Incoming command TID

2:0 Owner xxx ctb SampleDataIn1 x0a[2:0] ml Owner c4a[2:0] tbs

Notes:

1. ml DepTID ca =

(a) (m orc ctl DDRHit c12a ? m orc ctl DDRDepTID c12a : 0x00)

(b) | (m orc ctl PrbHit c4a ? m orc ctl PrbDepTID c4a : 0x00)

(c) | (m wbc ctl DepVal c5a ? m wbc ctl DepTID c5a : 0x00)

(d) | (m wbc ctl WrsHit c7a ? m wbc ctl WrsTID c7a : 0x00)

(e) | (m wbc ctl BwtCanHit c4a ? m wbc ctl BwtCanDepTID c4a : 0x00);

2. (m ddr coh DataValid c3a || m ddr coh RdShotDown c3a)

3. (m coh ddr RdShootDown c5a || m coh ddr RaWShootDown c4a)

11.12.2.4 Cohx Input Collector Mux 2

Class

CtbCohxMux2

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

May 14, 2014 567 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (CTB Input) (Signal) Definition

31:27 CohToCswOutCmdAddrTid xxx ctb SampleDataIn2 x0a[31:27] m coh csw OutCmdAddrTID c1a[4:0] tbs

26:22 CohToCswOutCmd xxx ctb SampleDataIn2 x0a[26:22] [See Note 1] tbs

21:18 CohToCswOutCmdOrigin xxx ctb SampleDataIn2 x0a[21:18] m coh csw OutCmdOrigin c1a[3:0] tbs

17:13 CohToCswOutDataTid xxx ctb SampleDataIn2 x0a[17:13] [See Note 2] tbs

12:8 InCmd xxx ctb SampleDataIn2 x0a[12:8] m cmd xxx InCommand c3a[4:0] tbs

7:3 InCmdAddrTid xxx ctb SampleDataIn2 x0a[7:3] m cmd xxx InCmdAddrTID c3a[4:0] tbs

2:0 Owner xxx ctb SampleDataIn2 x0a[2:0] ml Owner c4a[2:0] tbs

Notes:

1. ((m coh csw OutCmdAddrTarget c1a != 0x000) ? m coh csw OutCommand c1a : E CohCmd IDLE) where E CohCmd IDLE
= 0x07

2. (m coh csw OutDataTarget c3a != 0x000) ? m coh csw OutDataTID c3a : 0x1f

11.12.2.5 Cohx Input Collector Mux 3

Class

CtbCohxMux3

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

31:0 InAddrDW xxx ctb SampleDataIn3 x0a[31:0] m cmd xxx InAddr c3a[35:4] Full physical address [35:4]

11.12.2.6 Cohx Input Collector Mux 4

Class

CtbCohxMux4

Attributes

-ocla -ctb -ctbcohx

Bit Mnemonic (CTB Input) (Signal) Definition

31:0 CycCtr xxx ctb SampleDataIn4 x0a[31:0] m FreeRunCtr x0a[31:0] A free running 32 bit counter that increments ev-

ery CCLK cycle. Counting is not affected by

mux selections or enabling of OCLA. Not settable.

Cleared during reset. Rolls over.

This allows you to time-stamp collections within the rollover time of 2**32 cclks. This can be used in parallel
with any other collector block. Since this uses either the COHe or COHo collector block, you cannot collect signals
in both COHe and COHo and get these timestamps all at once.

In the COHe or COHo used, make sure to set both Collector and Trigger external muxes to non-7 values, even
if no COH triggers are needed, otherwise this collector remains disabled.

Since 2**32 cclks has probably occured many times since un-reset, the usefulness of this is limited to relative
times between two or more periods of collection driven from a LAC program. If your LAC program collects, then
stops collecting, then starts collecting, then stops collecting, the values stored from this counter can tell you how
long that middle time-period of not-collecting was. This can show you the time between two events, if you are
confident that less time than 2**32 cclks has passed. One way to be sure only a short time passed is to program
LAC with one of it’s counters as a time-out on the middle-non-collecting time period. Another way to be sure less
than 2**32 cclks have passed is for whatever processor code starts the LAC program and then checks for “done”
flags, to read it’s own CPU internal cycle counter while polling for “done”, or just have a software timeout on polling
for “done”.

May 14, 2014 568 Rev 51328

SiCortex Confidential 11.13. OCLA IN USE – FSW

11.12.2.7 Cohx Input Collector Mux 5, or 6

Collect all zeros.

11.12.2.8 Cohx Input Collector Mux 7

Disable CTB.

11.13 OCLA in use – FSW

11.13.1 FSW Triggers

We’d like to be able to trigger on different events occuring at the FSW input and output ports. However, the
FSW has three in/out ports from the DMA engine and three more in/out ports to the fabric link logic. That’s way
too much stuff to be recording and hooking on to. So we instrument DMA to FSW port-0, FSW to DMA port-0,
FLR to FSW port-0, and FSW to FLT port-0.

There are three trigger units. These trigger units give us the ability to detecting start of packet/end of packet
events, transitions to and from mission mode, poisoned packets and interesting routes. Trigger inputs from the
control signals are routed to a Codeword TRB (TRBC) as shown in section 11.13.1.1. Four groups of 32 bits from
the input data paths are routed to one Vector TRB, while four groups of 32 bits from the output data paths are
routed to a second Vector TRB. Control paths to and from the links are also routed to these Vector TRBs. The
Vector TRB connections are described in sections 11.13.1.2 to 11.13.1.11.

11.13.1.1 FSW Codeword Trigger Block Inputs

The Fabric Switch codeword trigger blocks define sets of events that can be enabled separately or grouped
together to provide interesting triggers for events within the Fabric Switch (FSW).

Class

TrbcFsw

Attributes

-ocla -trbc -trbcfsw

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4] FlrToFswDatVal xxx trbc CodeSamp0[4] flr0 fsw DatVal s0a Data Packets Data-Valid from FLR-0

W0[3] FlrToFswSop xxx trbc CodeSamp0[3] flr0 fsw SoP s0a Start of Data Packet from FLR-0

W0[2] FlrToFswSopD1 xxx trbc CodeSamp0[2] ocla flr fsw sop d1 Start of Data Packet from FLR-0, delayed

1 sclk

W0[1] FlrToFswEop xxx trbc CodeSamp0[1] flr0 fsw EoP s0a End of Data Packet from FLR-0

W0[0] FswToFlrNewCtlPktD1 xxx trbc CodeSamp0[0] ocla fsw flr newctlpkt d1 Start of Control Packet to FLR-0, delayed

1 sclk

W1[4] FltToFswDatVal xxx trbc CodeSamp1[4] flt0 fsw DatVal s0a Control Packets Data-Valid from FLT-0

W1[3] FswToFltSop xxx trbc CodeSamp1[3] fsw flt0 SoP s2a Start of Data Packet to FLT-0

W1[2] FswToFltSopD1 xxx trbc CodeSamp1[2] ocla fsw flt sop d1 Start of Data Packet to FLT-0, delayed 1

sclk

W1[1] FswToFltEop xxx trbc CodeSamp1[1] fsw flt0 EoP s2a End of Data Packet to FLT-0

W1[0] FltToFswNewCtlPktD1 xxx trbc CodeSamp1[0] ocla flt fsw newctlpkt d1 Start of Control Packet from FLT-0, de-

layed 1 sclk

W2[4] DmaToFswSop xxx trbc CodeSamp2[4] dma fsw SoP0 s0a Start of Packet from DMA port TX0

W2[3] DmaToFswSopD1 xxx trbc CodeSamp2[3] ocla dma fsw sop d1 Start of Packet from DMA port TX0, de-

layed 1 sclk

W2[2] DmaToFswSopD2 xxx trbc CodeSamp2[2] ocla dma fsw sop d2 Start of packet from DMA port TX0, de-

layed 2 sclks

W2[1] DmaToFswEop xxx trbc CodeSamp2[1] dma fsw EoP0 s0a End of packet from DMA port TX0

May 14, 2014 569 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W2[0] FswToDmaBufAvail xxx trbc CodeSamp2[0] fsw dma BufAvail0 s3a FSW Buffer Available signal to DMA port

TX0

W3[4] FswToDmaSop xxx trbc CodeSamp3[4] fsw dma SoP0 s2a Start of Packet to DMA port RX0

W3[3] FswToDmaSopD1 xxx trbc CodeSamp3[3] ocla fsw dma sop d1 Start of Packet to DMA port RX0, delayed

1 sclk

W3[2] FswToDmaSopD2 xxx trbc CodeSamp3[2] ocla fsw dma sop d2 Start of Packet to DMA port RX0, delayed

2 sclks

W3[1] FswToDmaEop xxx trbc CodeSamp3[1] fsw dma EoP0 s2a End of Packet to DMA port RX0

W3[0] DmaToFswRdy xxx trbc CodeSamp3[0] dma fsw Rdy0 s1a DMA ready for new packet from FSW on

port RX0

W4[0] Cv0FlrToFswMsnMode xxx trbc CodeValid0 flr0 fsw MissionMode MissionMode from FLR-0

W5[0] Cv1FltToFswMsnMode xxx trbc CodeValid1 flt0 fsw MissionMode MissionMode from FLT-0

11.13.1.2 FSW Input Vector Trigger (Mux 0)

These are the fields selected from data coming into the FSW when MuxSel=0.

Class

TrbvFswiMux0

Attributes

-ocla -trbv -trbvfswi

Bit Mnemonic (Signal) Definition

W0[31:0] FlrToFswInDat flr0 fsw InDat s0a[63:60],

flr0 fsw InDat s0a[35:8]

Fields selected for data coming into the

FSW.

W1[0] FlrToFswIdle flr0 fsw Idle s0a Data from link is IDLE packet or Data

packet

11.13.1.3 FSW Input Vector Trigger (Mux 1)

These are the fields selected from data coming into the FSW when MuxSel=1.

Class

TrbvFswiMux1

Attributes

-ocla -trbv -trbvfswi

Bit Mnemonic (Signal) Definition

W0[31:0] FlrToFswInDat flr0 fsw InDat s0a[59:36],

flr0 fsw InDat s0a[7:0]

Fields selected for data coming into the

FSW.

W1[0] FlrToFswIdle flr0 fsw Idle s0a Data from link is IDLE packet or DATA

packet

11.13.1.4 FSW Input Vector Trigger Mux 2

These are the fields selected from data coming into the FSW when MuxSel=2.

Class

TrbvFswiMux2

May 14, 2014 570 Rev 51328

SiCortex Confidential 11.13. OCLA IN USE – FSW

Attributes

-ocla -trbv -trbvfswi

Bit Mnemonic (Signal) Definition

W0[31:0] FswToFlrCtlDat flr0 fsw InDat s0a[59:36],

fsw flr0 CtlDat s3a[7:0]

Fields selected for data coming into the

FSW.

W1[0] FlrToFswIdle flr0 fsw Idle s0a Data from link is IDLE packet or DATA

packet

Although fsw flr0 CtlDat s3a[7:0] is an output of FSW, it’s considered part of the “FLR0 input interface” to
FSW, so we provide it as an option in the FSW Input trigger block.

11.13.1.5 FSW Input Vector Trigger Mux 3

These are the fields selected from data coming into the FSW when MuxSel=3.

Class

TrbvFswiMux3

Attributes

-ocla -trbv -trbvfswi

Bit Mnemonic (Signal) Definition

W0[31:0] DmaToFswInDat dma fsw InDat0 s0a[63:60],

dma fsw InDat0 s0a[35:8]

Fields selected for data coming into the

FSW.

W1[0] DmaToFswDatVal dma fsw DatVal0 s0a Data from DMA engine is worth looking at

11.13.1.6 FSW Input Vector Trigger Mux 4

These are the fields selected from data coming into the FSW when MuxSel=4.

Class

TrbvFswiMux4

Attributes

-ocla -trbv -trbvfswi

Bit Mnemonic (Signal) Definition

W0[31:0] DmaToFswInDat dma fsw InDat0 s0a[59:36],

dma fsw InDat0 s0a[7:0]

Fields selected for data coming into the

FSW.

W1[0] DmaToFswDatVal dma fsw DatVal0 s0a Data from DMA engine is worth looking at

11.13.1.7 FSW Output Vector Trigger Mux 0

These are the fields selected from data being driven from the FSW when MuxSel=0.

Class

TrbvFswoMux0

Attributes

-ocla -trbv -trbvfswo

May 14, 2014 571 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (Signal) Definition

W0[31:0] FswToFltOutDat fsw flt0 OutDat s2a[63:60],

fsw flt0 OutDat s2a[35:8]

tbs

W1[0] FswToFltIdle fsw flt0 Idle s2a Data from link is IDLE packet or DATA

packet

11.13.1.8 FSW Output Vector Trigger Mux 1

These are the fields selected from data being driven from the FSW when MuxSel=1.

Class

TrbvFswoMux1

Attributes

-ocla -trbv -trbvfswo

Bit Mnemonic (Signal) Definition

W0[31:0] FswToFltOutDat fsw flt0 OutDat s2a[59:36],

fsw flt0 OutDat s2a[7:0]

tbs

W1[0] FswToFltIdle fsw flt0 Idle s2a Data from link is IDLE packet or DATA

packet

11.13.1.9 FSW Output Vector Trigger Mux 2

These are the fields selected from data being driven from the FSW when MuxSel=2.

Class

TrbvFswoMux2

Attributes

-ocla -trbv -trbvfswo

Bit Mnemonic (Signal) Definition

W0[31:0] FltToFswCtlDat fsw flt0 OutDat s2a[59:36],

flt0 fsw CtlDat s0a[7:0]

tbs

W1[0] FswToFltIdle fsw flt0 Idle s2a Data from link is IDLE packet or DATA

packet

Although flt0 fsw fsw CtlDat s0a[7:0] is an input of FSW, it’s considered part of the “FLT0 output interface”
to FSW, so we provide it as an option in the FSW Output trigger block.

11.13.1.10 FSW Output Vector Trigger Mux 3

These are the fields selected from data being driven from the FSW when MuxSel=3.

Class

TrbvFswoMux3

Attributes

-ocla -trbv -trbvfswo

Bit Mnemonic (Signal) Definition

May 14, 2014 572 Rev 51328

SiCortex Confidential 11.13. OCLA IN USE – FSW

Bit Mnemonic (Signal) Definition

W0[31:0] FswToDmaOutDat fsw dma OutDat0 s2a[63:60],

fsw dma OutDat0 s2a[35:8]

tbs

W1[0] FswToDmaDatVal fsw dma DatVal0 s2a Data from DMA engine is worth looking at

11.13.1.11 FSW Output Vector Trigger Mux 4

These are the fields selected from data being driven from the FSW when MuxSel=4.

Class

TrbvFswoMux4

Attributes

-ocla -trbv -trbvfswo

Bit Mnemonic (Signal) Definition

W0[31:0] FswToDmaOutDat fsw dma OutDat0 s2a[59:36],

fsw dma OutDat0 s2a[7:0]

tbs

W1[0] FswToDmaDatVal fsw dma DatVal0 s2a Data from DMA engine is worth looking at

11.13.2 FSW Collectors

The FSW contains two CTBs, one for incoming data and one for outgoing data. The CTB for incoming data
is connected to the same signals as the FSW Input Vector Trigger Block. The CTB for outgoing data is connected
to the same signals as the FSW Output Vector Trigger Block.

11.13.2.1 FSW Input Collectors Qualifying Triggers

Class

CtbFswiQtrig

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

1 DmaToFswDatVal fsw.dma fsw DatVal0 s0a Qualify collection on Dma to Fsw data

valid.

0 FlrToFswIdle fsw.flr0 fsw Idle s0a Qualify collection on Flr0 to Fsw Idle.

11.13.2.2 FSW Input Collector Mux 0

Class

CtbFswiMux0

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

31:28 FlrToFswDat6360 fsw.flr0 fsw InDat s0a[63:60] Data from FLR0 to FSW bits 63-

60.

27:0 FlrToFswDat358 fsw.flr0 fsw InDat s0a[35:8] Data from FLR0 to FSW bits 35-

8.

May 14, 2014 573 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.13.2.3 FSW Input Collector Mux 1

Class

CtbFswiMux1

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

31:8 FlrToFswDat5936 fsw.flr0 fsw InDat s0a[59:36] Data from FLR0 to FSW bits 59-

36.

7:0 FlrToFswDat70 fsw.flr0 fsw InDat s0a[7:0] Data from FLR0 to FSW bits 7-0.

11.13.2.4 FSW Input Collector Mux 2

Class

CtbFswiMux2

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

31:8 FlrToFswDat5936 fsw.flr0 fsw InDat s0a[59:36] Data from FLR0 to FSW bits 59-

36.

7:0 FswToFlrCtlDat fsw.fsw flr0 CtlDat s3a[7:0] Control Data from FSW to FLR0.

Although fsw flr0 fsw CtlDat s3a[7:0] is an output of FSW, it’s considered part of the “FLR0 input interface”
to FSW, so we provide it as an option in the FSW Input collector block.

11.13.2.5 FSW Input Collector Mux 3

Class

CtbFswiMux3

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

31:28 DmaToFswDat6360 fsw.dma fsw InDat0 s0a[63:60] Data from DMA to FSW bits 63-

60.

27:0 DmaToFswDat358 fsw.dma fsw InDat0 s0a[35:8] Data from DMA to FSW bits 35-

8.

11.13.2.6 FSW Input Collector Mux 4

Class

CtbFswiMux4

Attributes

-ocla -ctb -ctbfswi

Bit Mnemonic (Signal) Definition

May 14, 2014 574 Rev 51328

SiCortex Confidential 11.13. OCLA IN USE – FSW

Bit Mnemonic (Signal) Definition

31:8 DmaToFswDat5936 fsw.dma fsw InDat0 s0a[59:36] Data from DMA to FSW bits 59-

36.

7:0 DmaToFswDat70 fsw.dma fsw InDat0 s0a[7:0] Data from DMA to FSW bits 7-0.

11.13.2.7 FSW Input Collector Mux 5, 6, 7

Gives you the same as Mux 4.

11.13.2.8 FSW Output Collectors Qualifying Triggers

Class

CtbFswoQtrig

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

1 FswToDmaDatVal fsw.fsw dma DatVal0 s2a Qualify collection on Fsw to Dma data

valid.

0 FswToFltIdle fsw.fsw flt0 Idle s2a Qualify collection on Fsw to Flt0 Idle.

11.13.2.9 FSW Output Collector Mux 0

Class

CtbFswoMux0

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

31:28 FswToFltDat6360 fsw.fsw flt0 OutDat s2a[63:60] Data from FSW to FLT0 bits 63-

60.

27:0 FswToFltDat358 fsw.fsw flt0 OutDat s2a[35:8] Data from FSW to FLT0 bits 35-

8.

11.13.2.10 FSW Output Collector Mux 1

Class

CtbFswoMux1

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

31:8 FswToFltDat5936 fsw.fsw flt0 OutDat s2a[59:36] Data from FSW to FLT0 bits 59-

36.

7:0 FswToFltDat70 fsw.fsw flt0 OutDat s2a[7:0] Data from FSW to FLT0 bits 7-0.

11.13.2.11 FSW Output Collector Mux 2

Class

CtbFswoMux2

May 14, 2014 575 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

31:8 FswToFltDat5936 fsw.fsw flt0 OutDat s2a[59:36] Data from FSW to FLT0 bits 59-

36.

7:0 FltToFswCtlDat fsw.flt0 fsw CtlDat s0a[7:0] Control Data from FLT0 to FSW.

Although flt0 fsw fsw CtlDat s0a[7:0] is an input of FSW, it’s considered part of the “FLT0 output interface”
to FSW, so we provide it as an option in the FSW Output collector block.

11.13.2.12 FSW Output Collector Mux 3

Class

CtbFswoMux3

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

31:28 FswToDmaDat6360 fsw.fsw dma OutDat0 s2a[63:60] Data from FSW to DMA bits 63-

60.

27:0 FswToDmaDat358 fsw.fsw dma OutDat0 s2a[35:8] Data from FSW to DMA bits 35-

8.

11.13.2.13 FSW Output Collector Mux 4

Class

CtbFswoMux4

Attributes

-ocla -ctb -ctbfswo

Bit Mnemonic (Signal) Definition

31:8 FswToDmaDat5936 fsw.fsw dma OutDat0 s2a[59:36] Data from FSW to DMA bits 59-

36.

7:0 FswToDmaDat70 fsw.fsw dma OutDat0 s2a[7:0] Data from FSW to DMA bits 7-0.

11.13.2.14 FSW Output Collector Mux 5, 6, 7

Gives you the same as Mux 4.

11.14 OCLA in use – DMA

11.14.1 DMA Triggers

The DMA engine has a CSW Bus Stop trigger and collector unit, one vector trigger unit and one capture block.
The inputs to the TRBV and the CTB are muxed from a set of 128 signals. The CSW side of the DMA engine is
connected to a TRBC unit with connections shown in Section 11.14.1.1.

11.14.1.1 DMA Codeword Triggers

DMA Engine to Central Switch codeword triggers.

May 14, 2014 576 Rev 51328

SiCortex Confidential 11.14. OCLA IN USE – DMA

Class

TrbcDma

Attributes

-ocla -trbc -trbcdma

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:0] CswToDmaCmd xxx trb CodeSamp0[4:0] m csw dma Command c2a[4:0] The incoming command code

W1[4:0] CswToDmaCmdAddrTid xxx trb CodeSamp1[4:0] m csw dma CmdAddrTID c2a[4:0] The incoming command TID

W2[4:0] CswToDmaDataTid xxx trb CodeSamp2[4:0] m csw dma DataTID c4a[4:0] The incoming data TID

W3[4] xxx trb CodeSamp3[4] Reserved (drive to ’0’)

W3[3] xxx trb CodeSamp3[3] Reserved (drive to ’0’)

W3[2] DmaToCswECmdAddrReq xxx trb CodeSamp3[2] dma csw ECmdAddrReq c1a Even bound command request

W3[1] DmaToCswOCmdAddrReq xxx trb CodeSamp3[1] dma csw OCmdAddrReq c1a Odd bound command request

W3[0] CswToDmaCmdAddrGnt xxx trb CodeSamp3[0] csw dma CmdAddrGnt c2a Comand grant

W4[0] Cv0CswToDmaCmdAddrValid xxx ctb CodeValid0 x0a m csw dma CmdAddrValid c2a Comand/transfer is valid

W5[0] Cv1CswToDmaDataValid xxx ctb CodeValid1 x0a m csw dma DataValid c4a Data is valid

The input to the TRBV is selected as shown in Sections 11.14.1.2, 11.14.1.3, 11.14.1.4, and 11.14.1.5. The
TRBV trb xxx MuxSel xa[1:0] outputs select from among the four groups. The TRBV has one CodeValid input,
connected to m ue xxx DbgValid c2a.

11.14.1.2 DMA Vector Trigger Inputs (Mux 0)

DMA Engine transmit and receive port buffer status.

Class

TrbvDmaMux0

Attributes

-ocla -trbv -trbvdma

Bit Mnemonic (Signal) Definition

W0[31] Rxp0ToUEngBufAvail rxp0 ue BufAvail c1a Receive port 0 to microengine buffer avail-

able

W0[30] Rxp1ToUEngBufAvail rxp1 ue BufAvail c1a Receive port 1 to microengine buffer avail-

able

W0[29] Rxp2ToUEngBufAvail rxp2 ue BufAvail c1a Receive port 2 to microengine buffer avail-

able

W0[28] UEngRxThreadStart copy ue RxThreadStart c1a Microengine receive thread start

W0[27] Txp0ToUEngBufAvail txp0 ue BufAvail c1a Transmit port 0 to microengine buffer avail-

able

W0[26] Txp1ToUEngBufAvail txp1 ue BufAvail c1a Transmit port 1 to microengine buffer avail-

able

W0[25] Txp2ToUEngBufAvail txp2 ue BufAvail c1a Transmit port 2 to microengine buffer avail-

able

W0[24] UEngTxThreadStart copy ue TxThreadStart c1a Microengine transmit thread start

W0[23] UEngToRxp0BufXfr ue rxp0 BufTransfer c5a Microengine to receive port 0 buffer trans-

fer

W0[22] UEngToRxp1BufXfr ue rxp1 BufTransfer c5a Microengine to receive port 1 buffer trans-

fer

W0[21] UEngToRxp2BugXfr ue rxp2 BufTransfer c5a Microengine to receive port 2 buffer trans-

fer

May 14, 2014 577 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (Signal) Definition

W0[20] UEngRxThreadDone ue copy RxThreadDone c5a Microengine receive thread done

W0[19] UEngToTxp0BufXfr ue txp0 BufTransfer c5a Microengine to transmit port 0 buffer

transfer

W0[18] UEngToTxp1BufXfr ue txp1 BufTransfer c5a Microengine to transmit port 1 buffer

transfer

W0[17] UEngToTxp2BufXfr ue txp2 BufTransfer c5a Microengine to transmit port 2 buffer

transfer

W0[16] UEngTxThreadDone ue copy TxThreadDone c5a Microengine transmit thread done

W0[15] unused Reserved

W0[14] UEngDbgThreadValid ue xxx DbgValid c4a Microengine thread valid

W0[13:10] UEngDbgThread ue xxx DbgThread c4a[3:0] Microengine thread number

W0[9:0] UEngDbgPc ue xxx DbgPc c4a[9:0] Microengine PC

W1[0] UEngDbgValid ue xxx DbgValid c2a Microengine Debug Valid Flag [See Note 1]

Note 1: W1[0] = ue xxx DbgValid c2a was a mistake, asserts 2 cycles before the other Dbg signals, it should
have been ue xxx DbgValid c4a. But since ue xxx DbgValid c4a is available as one of the triggers, you can still
achieve qualification by DbgValid by just including W0[14] (ue xxx DbgValid c4a) == 1 as part of the equation
for a match.

11.14.1.3 DMA Vector Trigger Inputs (Mux 1)

DMA Engine transmit and receive port reference counts.

Class

TrbvDmaMux1

Attributes

-ocla -trbv -trbvdma

Bit Mnemonic (Signal) Definition

W0[31:29] Reserved

W0[28:25] CswToDmaCmdOrigin csw dma CmdOrigin c1a Origin of CSW command

W0[24] CifToRxp0RefCntZero cif rxp0 RefCntZero c5a Receive port 0 reference count is zero

W0[23] CifToRxp1RefCntZero cif rxp1 RefCntZero c5a Receive port 1 reference count is zero

W0[22] CifToRxp2RefCntZero cif rxp2 RefCntZero c5a Receive port 2 reference count is zero

W0[21] CifRxRefCntZero cif copy RxRefCntZero c5a Copy receive reference count is zero

W0[20] CifToTxp0RefCntZero cif txp0 RefCntZero c5a Transmit port 0 reference count is zero

W0[19] CifToTxp1RefCntZero cif txp1 RefCntZero c5a Transmit port 1 reference count is zero

W0[18] CifToTxp2RefCntZero cif txp2 RefCntZero c5a Transmit port 2 reference count is zero

W0[17] CifTxRefCntZero cif copy TxRefCntZero c5a Copy transmit reference count is zero

W0[16] CifToUEngStartIo cif ue StartIo c1a Microengine IO Start

W0[15:14] CifToUEngStartIoType cif ue StartIoType c1a[1:0] Microengine IO Start Type

W0[13:10] CifToUEngStartIoAddr cif ue StartIoAddr c1a[6:3] Microengine IO Start Address

W0[9] UEngToCifRdyForStartIo ue cif RdyForStartIo c3a Microengine ready for Start IO

W0[8] UEngToCifTaskStart ue cif TaskStart c5a Microengine task start

W0[7:4] UEngToCifTaskThread ue cif TaskThread c5a[3:0] Microengine task thread

W0[3:0] UEngToCifTaskType ue cif TaskType c5a[3:0] Microengine task type

W1[0] UEngDbgValid ue xxx DbgValid c2a Microengine Debug Valid Flag

11.14.1.4 DMA Vector Trigger Inputs (Mux 2)

DMA Engine’s central switch to transmit/receive port interfaces.

May 14, 2014 578 Rev 51328

SiCortex Confidential 11.14. OCLA IN USE – DMA

Class

TrbvDmaMux2

Attributes

-ocla -trbv -trbvdma

Bit Mnemonic (Signal) Definition

W0[31:23] Reserved

W0[22] CifMemInPbufSel cif copy MemInPbufSel c4a tbs

W0[21] CifMemInRmbSel cif copy MemInRmbSel c4a tbs

W0[20] CifToTxpMemInTxp0Sel cif txp MemInTxp0Sel c4a tbs

W0[19] CifToTxpMemInTxp1Sel cif txp MemInTxp1Sel c4a tbs

W0[18] CifToTxpMemInTxp2Sel cif txp MemInTxp2Sel c4a tbs

W0[17] CifMemOutPbufSel cif copy MemOutPbufSel c2a tbs

W0[16] CifMemOutWmbSel cif copy MemOutWmbSel c2a tbs

W0[15] CifToRxpMemOutRxp0Sel cif rxp MemOutRxp0Sel c2a tbs

W0[14] CifToRxpMemOutRxp1Sel cif rxp MemOutRxp1Sel c2a tbs

W0[13] CifToRxpMemOutRxp2Sel cif rxp MemOutRxp2Sel c2a tbs

W0[12] CifToRxpMemOutCopySel cif rxp MemOutCopySel c2a tbs

W0[11:8] CifMemInAlign cif xxx MemInAlign c4a[3:0] tbs

W0[7:0] CifMemInAddr cif xxx MemInAddr c4a[7:0] tbs

W1[0] UEngDbgValid ue xxx DbgValid c2a Microengine Debug Valid Flag

11.14.1.5 DMA Vector Trigger Inputs (Mux 3)

DMA Engine internal memory writes.

Class

TrbvDmaMux3

Attributes

-ocla -trbv -trbvdma

Bit Mnemonic (Signal) Definition

W0[31] DmemResultSel ue dmem ResultSel c5a Asserted when dmem is written by an in-

struction

W0[30:21] DmemResultAddr ue xxx ResultAddr c5a Address in dmem where ALU result is writ-

ten

W0[20:0] DmemResultData alu xxx ResultDat c5a[20:0] ALU result to be written to dmem

W1[0] UEngDbgValid ue xxx DbgValid c2a Microengine Debug Valid Flag

11.14.2 DMA Collector

The DMA engine has a single 1024 x 33 bit CTB. Its inputs are configured identically to those for the vector
TRB in the DMA engine. (See Tables 11.14.1.2, 11.14.1.3, 11.14.1.4 and 11.14.1.5.)

11.14.2.1 DMA Input Collectors Qualifying Triggers

The CTB has two qualifier inputs. Qtrig[1] is connected to ue xxx DbgValid c2a, and Qtrig[0] is connected to
ue cif TaskStart c5a.

Class

CtbDmaQtrig

May 14, 2014 579 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Attributes

-ocla -ctb -ctbdma

Bit Mnemonic (Signal) Definition

1 UEngDbgValid dma.csr.ue xxx DbgValid c2a Microengine Debug Valid Flag [Broken, see

Note 1]

0 UEngToCifTaskStart dma.csr.ue cif TaskStart c5a Microengine To CIF Task Start

Note 1:
This is broken, it should have been connected to ue xxx DbgValid c4a in order to allow us to collapse collection

of “Dbg” signals. With it connected to ue xxx DbgValid c2a we effectively cannot use this collection qualifier at
all.

11.14.2.2 DMA Input Collector Mux 0

Class

CtbDmaMux0

Attributes

-ocla -ctb -ctbdma

Bit Mnemonic (Signal) Definition

31 Rxp0ToUEngBufAvail dma.rxp0 ue BufAvail c1a Receive port 0 to microengine buffer

available

30 Rxp1ToUEngBufAvail dma.rxp1 ue BufAvail c1a Receive port 1 to microengine buffer

available

29 Rxp2ToUEngBufAvail dma.rxp2 ue BufAvail c1a Receive port 2 to microengine buffer

available

28 UEngRxThreadStart dma.copy ue RxThreadStart c1a Microengine receive thread start

27 Txp0ToUEngBufAvail dma.txp0 ue BufAvail c1a Transmit port 0 to microengine buffer

available

26 Txp1ToUEngBufAvail dma.txp1 ue BufAvail c1a Transmit port 1 to microengine buffer

available

25 Txp2ToUEngBufAvail dma.txp2 ue BufAvail c1a Transmit port 2 to microengine buffer

available

24 UEngTxThreadStart dma.copy ue TxThreadStart c1a Microengine transmit thread start

23 UEngToRxp0BufXfr dma.ue rxp0 BufTransfer c5a Microengine to receive port 0 buffer

transfer

22 UEngToRxp1BufXfr dma.ue rxp1 BufTransfer c5a Microengine to receive port 1 buffer

transfer

21 UEngToRxp2BugXfr dma.ue rxp2 BufTransfer c5a Microengine to receive port 2 buffer

transfer

20 UEngRxThreadDone dma.ue copy RxThreadDone c5a Microengine receive thread done

19 UEngToTxp0BufXfr dma.ue txp0 BufTransfer c5a Microengine to transmit port 0 buffer

transfer

18 UEngToTxp1BufXfr dma.ue txp1 BufTransfer c5a Microengine to transmit port 1 buffer

transfer

17 UEngToTxp2BufXfr dma.ue txp2 BufTransfer c5a Microengine to transmit port 2 buffer

transfer

16 UEngTxThreadDone dma.ue copy TxThreadDone c5a Microengine transmit thread done

15 Unused Reserved

14 UEngDbgValid dma.csr.m ue xxx DbgValid c4a Microengine thread valid

13:10 UEngDbgThread dma.csr.m ue xxx DbgThread c4a[3:0] Microengine thread number

9:0 UEngDbgPc dma.ue xxx DbgPc c4a[9:0] Microengine PC

May 14, 2014 580 Rev 51328

SiCortex Confidential 11.14. OCLA IN USE – DMA

11.14.2.3 DMA Input Collector Mux 1

Class

CtbDmaMux1

Attributes

-ocla -ctb -ctbdma

Bit Mnemonic (Signal) Definition

31:29 Reserved

28:25 CswToDmaCmdOrigin csw dma CmdOrigin c1a Origin of CSW command

24 CifToRxp0RefCntZero cif rxp0 RefCntZero c5a Receive port 0 reference count is zero

23 CifToRxp1RefCntZero cif rxp1 RefCntZero c5a Receive port 1 reference count is zero

22 CifToRxp2RefCntZero cif rxp2 RefCntZero c5a Receive port 2 reference count is zero

21 CifRxRefCntZero cif copy RxRefCntZero c5a Copy receive reference count is zero

20 CifToTxp0RefCntZero cif txp0 RefCntZero c5a Transmit port 0 reference count is zero

19 CifToTxp1RefCntZero cif txp1 RefCntZero c5a Transmit port 1 reference count is zero

18 CifToTxp2RefCntZero cif txp2 RefCntZero c5a Transmit port 2 reference count is zero

17 CifTxRefCntZero cif copy TxRefCntZero c5a Copy transmit reference count is zero

16 CifToUEngStartIo cif ue StartIo c1a Microengine IO Start

15:14 CifToUEngStartIoType cif ue StartIoType c1a[1:0] Microengine IO Start Type

13:10 CifToUEngStartIoAddr cif ue StartIoAddr c1a[6:3] Microengine IO Start Address

9 UEngToCifRdyForStartIo ue cif RdyForStartIo c3a Microengine ready for Start IO

8 UEngToCifTaskStart ue cif TaskStart c5a Microengine task start

7:4 UEngToCifTaskThread ue cif TaskThread c5a[3:0] Microengine task thread

3:0 UEngToCifTaskType ue cif TaskType c5a[3:0] Microengine task type

11.14.2.4 DMA Input Collector Mux 2

Class

CtbDmaMux2

Attributes

-ocla -ctb -ctbdma

Bit Mnemonic (Signal) Definition

31:23 Reserved

22 CifMemInPbufSel cif copy MemInPbufSel c4a tbs

21 CifMemInRmbSel cif copy MemInRmbSel c4a tbs

20 CifToTxpMemInTxp0Sel cif txp MemInTxp0Sel c4a tbs

19 CifToTxpMemInTxp1Sel cif txp MemInTxp1Sel c4a tbs

18 CifToTxpMemInTxp2Sel cif txp MemInTxp2Sel c4a tbs

17 CifMemOutPbufSel cif copy MemOutPbufSel c2a tbs

16 CifMemOutWmbSel cif copy MemOutWmbSel c2a tbs

15 CifToRxpMemOutRxp0Sel cif rxp MemOutRxp0Sel c2a tbs

14 CifToRxpMemOutRxp1Sel cif rxp MemOutRxp1Sel c2a tbs

13 CifToRxpMemOutRxp2Sel cif rxp MemOutRxp2Sel c2a tbs

12 CifToRxpMemOutCopySel cif rxp MemOutCopySel c2a tbs

11:8 CifMemInAlign cif xxx MemInAlign c4a[3:0] tbs

7:0 CifMemInAddr cif xxx MemInAddr c4a[7:0] tbs

May 14, 2014 581 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.14.2.5 DMA Input Collector Mux 3

Class

CtbDmaMux3

Attributes

-ocla -ctb -ctbdma

Bit Mnemonic (Signal) Definition

31 DmemResultSel ue dmem ResultSel c5a Asserted when dmem is written by an in-

struction

30:21 DmemResultAddr ue xxx ResultAddr c5a Address in dmem where ALU result is writ-

ten

20:0 DmemResultData alu xxx ResultDat c5a[20:0] ALU result to be written to dmem

11.14.2.6 DMA Input Collector Mux 4, 5, 6, 7

Collects all-zeros.

11.15 OCLA in use – PMI

11.15.1 PMI/PCI/BBS Triggers

The PMI/PCI/BBS contains two codeword trigger units. The first trigger unit is on its CSW bus stop and the
second trigger unit is for signals internal to the PMI.

11.15.1.1 “TrbcPmi” PMI CSW Bus Stop Codeword Triggers

The CSW side of the PMI is connected to the first TRBC unit with connections as shown below. This“TrbcPmi”
is “trbc0” in the Verilog source code file PmiOcl.v. Note that for all TRBs, word x (that is W0, W1, W2, W3)
maps to CodeSampX (CodeSamp0, CodeSamp1... respectively.) W4 and W5 map to the two CodeValid inputs.

No external mux is used, there is only one set of signals wired to this trigger block. Field “ExtMuxSel” of
R TrbcPmiTrigCtl has no effect, can be left unchanged, or written to any value.

Class

TrbcPmi

Attributes

-ocla -trbc -trbcpmi

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:0] CswToPmiCommand xxx trbc CodeSamp0 x0a[4:0] csw pmi Command c1a Inbound Command Code from CSW

W1[4:0] CswToPmiCmdAddrTID xxx trbc CodeSamp1 x0a[4:0] csw pmi CmdAddrTID c1a Inbound Request Transaction ID from

CSW

W2[4:0] CswToPmiDataTID xxx trbc CodeSamp2 x0a[4:0] csw pmi DataTID c3a Inbound Data Transaction ID from CSW

W3[4] PmiToCswECmdAddReq xxx trbc CodeSamp3 x0a[4] pmi csw ECmdAddrReq c0a Outbound to COHE Command Request

from PCI

W3[3] PmiToCswOCmdAddrReq xxx trbc CodeSamp3 x0a[3] pmi csw OCmdAddrReq c0a Outbound to COHO Command Request

from PCI

W3[2] CswToPmiCmdAddrGnt xxx trbc CodeSamp3 x0a[2] csw pmi CmdAddrGnt c1a Inbound Command Grant to PCI

W3[1] xxx trbc CodeSamp3 x0a[1] Reserved (Always ’0’)

W3[0] xxx trbc CodeSamp3 x0a[0] Reserved (Always ’0’)

W4[0] Cv0CswToPmiCmdAddrValid xxx trbc CodeValid0 x0a csw pmi CmdAddrValid c1a Command/Transfer Valid, CSW is sending

cmd to PCI

May 14, 2014 582 Rev 51328

SiCortex Confidential 11.15. OCLA IN USE – PMI

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W5[0] Cv1CswToPmiDataValid xxx trbc CodeValid1 x0a csw pmi DataValid c3a CSW is sending data to PCI

11.15.1.2 “TrbcPmii” PMI Internal Signal Codeword Triggers

The following PMI internal signals are connected to the second TRBC unit as shown below. This “TrbcPmii”
is “trbc1” in the Verilog source code file PmiOcl.v.

No external mux is used, there is only one set of signals wired to this trigger block.
Due to Bug 1959, affecting PMI only in Ice9A, the ExtMuxSel field of R TrbcPmiiTrigCtl is the mux-select of

input signals for PMI’s CTB! This is fixed in Ice9B.
The value 7 has no special “power-savings” meaning like in other units. In PMI it selects a set of signals to

collect. Field ExtMuxSel in R CtbPmiColCtl does nothing, can be left unchanged or set to any value.

Class

TrbcPmii

Attributes

-ocla -trbc -trbcpmi

Bit Mnemonic (Codeword Sample Input) (Signal) Definition

W0[4:2] xxx trbc CodeSamp0 x0a[4:2] Reserved

W0[1] SycToCcrRdHdrValid xxx trbc CodeSamp0 x0a[1] m RdHdrVal c1a Flopped syc ccr RdHdrVal c0a valid bit for

header

W0[0] CmdInProcess xxx trbc CodeSamp0 x0a[0] m CommandInProcess c1a A command is being processed

W1[4] SycToCcwWrHdrValid xxx trbc CodeSamp1 x0a[4] syc ccw WrHdrVal c0a tbs (flopped one more time than

m WrSmState c1a)

W1[3:0] WrSmState xxx trbc CodeSamp1 x0a[3:0] m WrSmState c1a[3:0] tbs

W2[4] RrfToCcmSetValid xxx trbc CodeSamp2 x0a[4] rrf ccm SetValid c4a tbs

W2[3] CxdToRrfCmdValid xxx trbc CodeSamp2 x0a[3] cxd rrf CmdValid c4a tbs

W2[2] CcrToSycRdHdrPop xxx trbc CodeSamp2 x0a[2] ccr syc RdHdrPop c1a tbs

W2[1] CcwToSycDatPop xxx trbc CodeSamp2 x0a[1] ccw syc DatPop c1a tbs

W2[0] CcwToSycWrHdrPop xxx trbc CodeSamp2 x0a[0] ccw syc WrHdrPop c1a tbs

W3[4] UartToPmiWishbAck xxx trbc CodeSamp3 x0a[4] uart pmi wbAck c Wishbone ack from UART core.

W3[3] PmiToI2cWishbStrobe xxx trbc CodeSamp3 x0a[3] pmi i2c wbStrobe c Wishbone strobe to I2C core.

W3[2] PmiToUartWishbStrobe xxx trbc CodeSamp3 x0a[2] pmi uart wbStrobe c Wishbone strobe to UART core.

W3[1] I2cToPmiWishbAck xxx trbc CodeSamp3 x0a[1] i2c pmi wbAck c Wishbone ack from I2C core.

W3[0] PmiWishbCycle xxx trbc CodeSamp3 x0a[0] pmi ui2c wbCycle c Wishbone cycle signal from PMI.

W4[0] Cv0Always1 xxx trbc CodeValid0 x0a[0] Always ’1’

W5[0] Cv1Always1 xxx trbc CodeValid1 x0a[0] Always ’1’

11.15.2 PMI/PCI/BBS Collector

The PMI/PCI/BBS contains one 1024 x 33 bit CTB, with an external mux to select sets of signals to collect.

Due to Bug 1959, affecting PMI only in Ice9A, the ExtMuxSel field of R TrbcPmiiTrigCtl is the mux-select of
input signals for PMI’s CTB! This is fixed in Ice9B.

The value 7 has no special “power-savings” meaning like in other units. In PMI it selects a set of signals to
collect. Field ExtMuxSel in R CtbPmiColCtl does nothing, can be left unchanged or set to any value.

11.15.2.1 PMI Input Qualifying Triggers

Class

CtbPmiQtrig

May 14, 2014 583 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

1 Qtrig1Always1 xxx ctb QualTrigger1 x0a m high Always at ’1’

0 Qtrig0Always1 xxx ctb QualTrigger0 x0a m high Always at ’1’

11.15.2.2 PMI Input Collector Mux 0

Class

CtbPmiMux0

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:29 xxx ctb SampleDataIn0 x0a[31:29] Reserved

28 SycToCcrRdHdrVal xxx ctb SampleDataIn0 x0a[28] m RdHdrVal c1a Flopped syc ccr RdHdrVal c0a, valid bit

for header

27:24 SycToCcrRdLastBe0 xxx ctb SampleDataIn0 x0a[27:24] m RdLastBe c1a[3:0] Flopped syc ccr RdLastBe c0a[3:0]

23:20 SycToCcrRdFirstBe0 xxx ctb SampleDataIn0 x0a[23:20] m RdFirstBe c1a[3:0] Flopped syc ccr RdFirstBe c0a[3:0]

19:10 SycToCcrRdDwLen0 xxx ctb SampleDataIn0 x0a[19:10] m RdDwLen c1a[9:0] Flopped syc ccr RdDwLen c0a[9:0] lower

10 bits of 11.

9 CcrToSycRdHdrPop0 xxx ctb SampleDataIn0 x0a[9] m CcrSycRdHdrPop c2a Flopped ccr syc RdHdrPop c1a

8 Buf2Busy xxx ctb SampleDataIn0 x0a[8] m Buf2Busy c6a tbs

7 Buf1Busy xxx ctb SampleDataIn0 x0a[7] m Buf1Busy c6a tbs

6 Buf0Busy xxx ctb SampleDataIn0 x0a[6] m Buf0Busy c6a tbs

5 Serv2 xxx ctb SampleDataIn0 x0a[5] m Servicing2 c7a tbs

4 Serv1 xxx ctb SampleDataIn0 x0a[4] m Servicing1 c7a tbs

3 Serv0 xxx ctb SampleDataIn0 x0a[3] m Servicing0 c7a tbs

2 CmdInProgress xxx ctb SampleDataIn0 x0a[2] m CommandInProgress c1a tbs

1:0 RdSmState xxx ctb SampleDataIn0 x0a[1:0] m RdSmState c1a[1:0] tbs

11.15.2.3 PMI Input Collector Mux 1

Class

CtbPmiMux1

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31 SycToCcwWrHdrVal1 xxx ctb SampleDataIn1 x0a[31] syc ccw WrHdrVal c0a Write Header Valid

30:27 SycToCcwWrLastBe1 xxx ctb SampleDataIn1 x0a[30:27] syc ccw WrLastBe c0a[3:0] tbs

26:23 SycToCcwWrFirstBe1 xxx ctb SampleDataIn1 x0a[26:23] syc ccw WrFirstBe c0a[3:0] tbs

22:13 SycToCcwWrDwLen1 xxx ctb SampleDataIn1 x0a[22:13] syc ccw WrDwLen c0a[9:0] tbs, the lowest 10 bits of 11-bit WrDwLen

12 CcwToSycWrHdrPop1 xxx ctb SampleDataIn1 x0a[12] ccw syc WrHdrPop c1a tbs

11:5 CcwWrSeqNum xxx ctb SampleDataIn1 x0a[11:5] ccw xxx WrSeqNum c1a[6:0] tbs, the lowest 7 bits of 11-bit WrSeqNum

4 CmdBusy xxx ctb SampleDataIn1 x0a[4] m CmdBusy c2a tbs (flopped one less time than signals

above)

3:0 WrSmState xxx ctb SampleDataIn1 x0a[3:0] m WrSmState c1a[3:0] tbs (flopped one less time than signals

above)

May 14, 2014 584 Rev 51328

SiCortex Confidential 11.15. OCLA IN USE – PMI

11.15.2.4 PMI Input Collector Mux 2

Class

CtbPmiMux2

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:30 xxx ctb SampleDataIn2 x0a[31:30] Reserved

29 CcwToSycDatPop xxx ctb SampleDataIn2 x0a[29] ccw syc DatPop c1a tbs

28 CcwToSycWrHdrPop2 xxx ctb SampleDataIn2 x0a[28] ccw syc WrHdrPop c1a tbs

27 SycToCcwWrHdrVal2 xxx ctb SampleDataIn2 x0a[27] syc ccw WrHdrVal c0a tbs

26:23 SycToCcwWrLastBe2 xxx ctb SampleDataIn2 x0a[26:23] syc ccw WrLastBe c0a[3:0] tbs

22:19 SycToCcwWrFirstBe2 xxx ctb SampleDataIn2 x0a[22:19] syc ccw WrFirstBe c0a[3:0] tbs

18:9 SycToCcwWrDwLen2 xxx ctb SampleDataIn2 x0a[18:9] syc ccw WrDwLen c0a[9:0] tbs, the lowest 10 bits of 11-bit WrDwLen

8 xxx ctb SampleDataIn2 x0a[8] Reserved

7:0 SycToCcwWrReqTag xxx ctb SampleDataIn2 x0a[7:0] syc ccw WrReqTag c0a[7:0] tbs

11.15.2.5 PMI Input Collector Mux 3

Class

CtbPmiMux3

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:28 xxx ctb SampleDataIn3 x0a[31:28] Reserved

27 CcrToSycRdHdrPop3 xxx ctb SampleDataIn3 x0a[27] ccr syc RdHdrPop c1a tbs

26 SycToCcrRdHalt xxx ctb SampleDataIn3 x0a[26] syc ccr RdHalt c0a tbs

25:19 SycToCcrRdSeqNum xxx ctb SampleDataIn3 x0a[25:19] syc ccr RdSeqNum c0a[6:0] tbs, the lowest 7 bits of 11-bit RdSeqNum

18 SycToCcrRdHdrVal3 xxx ctb SampleDataIn3 x0a[18] syc ccr RdHdrVal c0a tbs

17:14 SycToCcrRdLastBe3 xxx ctb SampleDataIn3 x0a[17:14] syc ccr RdLastBe c0a[3:0] tbs

13:10 SycToCcrRdFirstBe3 xxx ctb SampleDataIn3 x0a[13:10] syc ccr RdFirstBe c0a[3:0] tbs

9:0 SycToCcrRdDwLen3 xxx ctb SampleDataIn3 x0a[9:0] syc ccr RdDwLen c0a[9:0] tbs, lower 10 bits of 11.

11.15.2.6 PMI Input Collector Mux 4

Class

CtbPmiMux4

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:29 xxx ctb SampleDataIn4 x0a[31:29] Reserved

28 CcmToCxdDone xxx ctb SampleDataIn4 x0a[28] ccm cxd Done c3a tbs

27 RrfToCxdCmdEmpty xxx ctb SampleDataIn4 x0a[27] rrf cxd CmdEmpty c3a tbs

26 CxdToRrfCmdValid xxx ctb SampleDataIn4 x0a[26] cxd rrf CmdValid c4a tbs

25:21 CxdToRrfTid xxx ctb SampleDataIn4 x0a[25:21] cxd rrf TID c4a[4:0] tbs

20:13 CxdToRrfBMask xxx ctb SampleDataIn4 x0a[20:13] cxd rrf BMask c4a[7:0] tbs

May 14, 2014 585 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Bit Mnemonic (CTB Input) (Signal) Definition

12:8 CxdToRrfCmd xxx ctb SampleDataIn4 x0a[12:8] cxd rrf Cmd c4a[4:0] tbs

7:4 CxdToRrfCmdOrigin xxx ctb SampleDataIn4 x0a[7:4] cxd rrf CmdOrigin c4a[3:0] tbs

3 WriteOutstanding xxx ctb SampleDataIn4 x0a[3] m WriteOutstanding c4a tbs

2 DataNeeded xxx ctb SampleDataIn4 x0a[2] m DataNeeded c4a tbs

1 DataValid xxx ctb SampleDataIn4 x0a[1] m DataValid c4a tbs

0 NpOpWait xxx ctb SampleDataIn4 x0a[0] m NpOpWait c4a tbs

11.15.2.7 PMI Input Collector Mux 5

Class

CtbPmiMux5

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:0 xxx ctb SampleDataIn5 x0a[31:0] Reserved, all zeros

11.15.2.8 PMI Input Collector Mux 6

Class

CtbPmiMux6

Attributes

-ocla -ctb -ctbpmi

Bit Mnemonic (CTB Input) (Signal) Definition

31:25 CcwWrSeqNum xxx ctb SampleDataIn6 x0a[31:25] ccw xxx WrSeqNum c1a[6:0] tbs

24:18 RrfToCcmSeqNum xxx ctb SampleDataIn6 x0a[24:18] rrf ccm SeqNum c4a[6:0] tbs

17:15 RrfToCcmCplState xxx ctb SampleDataIn6 x0a[17:15] rrf ccm CplState c4a[2:0] tbs

14 RrfToCcmSetValid xxx ctb SampleDataIn6 x0a[14] rrf ccm SetValid c4a tbs

13 CcmToCxdDone xxx ctb SampleDataIn6 x0a[13] ccm cxd Done c3a tbs

12 CxdToCcmCmdVal xxx ctb SampleDataIn6 x0a[12] cxd ccm CmdVal tbs

11 CxdToCcmLinkDwn xxx ctb SampleDataIn6 x0a[11] cxd ccm LinkDwn c4a tbs

10 CxdToCcmRdOp xxx ctb SampleDataIn6 x0a[10] cxd ccm RdOp c4a tbs

9 xxx ctb SampleDataIn6 x0a[9] Reserved, always 0 (See Note 1)

8:5 CxdToCcmDest xxx ctb SampleDataIn6 x0a[8:5] cxd ccm Dest c4a[3:0] tbs

4:0 CxdToCcmTid xxx ctb SampleDataIn6 x0a[4:0] cxd ccm TID c4a[4:0] tbs

Note 1:
In the verilog RTL, cxd ccm Dest c4a is [3:0], but in the behavioral model it’s [4:0]. In the behavioral model

xxx ctb SampleDataIn6 x0a[9] is connected to cxd ccm Dest c4a[4], although it should always simulate with this
bit = 0.

11.15.2.9 PMI Input Collector Mux 7

Class

CtbPmiMux7

Attributes

-ocla -ctb -ctbpmi

May 14, 2014 586 Rev 51328

SiCortex Confidential 11.16. REGISTER ADDRESS RANGES

Bit Mnemonic (CTB Input) (Signal) Definition

31:24 PmiWishbOutData xxx ctb SampleDataIn7 x0a[31:24] pmi ui2c wbDatO c[7:0] Outbound PMI Wishbone Data

23:16 PmiWishbInData xxx ctb SampleDataIn7 x0a[23:16] ml WbDti c5a[7:0] Muxed Inbound PMI Wishbone Data

15:9 xxx ctb SampleDataIn7 x0a[15:9] Reserved

8 UartToPmiWishbAck xxx ctb SampleDataIn7 x0a[8] uart pmi wbAck c UART to PMI Wishbone Ack

7 PmiToI2cWishbStrobe xxx ctb SampleDataIn7 x0a[7] pmi i2c wbStrobe c PMI to I2C Wishbone Strobe

6 PmiToUartWishbStrobe xxx ctb SampleDataIn7 x0a[6] pmi uart wbStrobe c PMI to UART Wishbone Strobe

5 I2cToPmiWishbAck xxx ctb SampleDataIn7 x0a[5] i2c pmi wbAck c I2C to PMI Wishbone Ack

4 PmiWishbCycle xxx ctb SampleDataIn7 x0a[4] pmi ui2c wbCycle c Outbound PMI Wishbone Cycle

3 PmiWishbWriteEnb xxx ctb SampleDataIn7 x0a[3] pmi ui2c wbWriteEnb c Outbound PMI Wishbone Write Enable

2:0 PmiWishbAddr xxx ctb SampleDataIn7 x0a[2:0] pmi ui2c wbAdr c[2:0] Outbound PMI Wishbone Address

11.16 Register Address Ranges

11.16.1 TrbcPs0

Register

R TrbcPs0* : R Trbcx*

Address

0xE 0C00 0000-0xE 0CFF FFFF

11.16.2 TrbcPs1

Register

R TrbcPs1* : R Trbcx*

Address

0xE 1C00 0000-0xE 1CFF FFFF

11.16.3 TrbcPs2

Register

R TrbcPs2* : R Trbcx*

Address

0xE 2C00 0000-0xE 2CFF FFFF

11.16.4 TrbcPs3

Register

R TrbcPs3* : R Trbcx*

Address

0xE 3C00 0000-0xE 3CFF FFFF

11.16.5 TrbcPs4

Register

R TrbcPs4* : R Trbcx*

May 14, 2014 587 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Address

0xE 4C00 0000-0xE 4CFF FFFF

11.16.6 TrbcPs5

Register

R TrbcPs5* : R Trbcx*

Address

0xE 5C00 0000-0xE 5CFF FFFF

11.16.7 TrbcPs6

Register

R TrbcPs6* : R Trbcx*

Attributes

-Product=TWC9A+

Address

0xE 4900 0000-0xE 49FF FFFF

11.16.8 TrbcPs7

Register

R TrbcPs7* : R Trbcx*

Attributes

-Product=TWC9A+

Address

0xE 5900 0000-0xE 59FF FFFF

11.16.9 TrbcPs8

Register

R TrbcPs8* : R Trbcx*

Attributes

-Product=TWC9A+

Address

0xE 6900 0000-0xE 69FF FFFF

11.16.10 TrbcPs9

Register

R TrbcPs9* : R Trbcx*

May 14, 2014 588 Rev 51328

SiCortex Confidential 11.16. REGISTER ADDRESS RANGES

Attributes

-Product=TWC9A+

Address

0xE 7900 0000-0xE 79FF FFFF

11.16.11 TrbcDma

Register

R TrbcDma* : R Trbcx*

Address

0xE 6C00 0000-0xE 6CFF FFFF

11.16.12 TrbvDma

Register

R TrbvDma* : R Trbvx*

Address

0xE 7C00 0000-0xE 7CFF FFFF

11.16.13 TrbcPmi

Register

R TrbcPmi* : R Trbcx*

Address

0xE 0F00 0000-0xE 0FFF FFFF

11.16.14 TrbcPmii

Register

R TrbcPmii* : R Trbcx*

Address

0xE 4F00 0000-0xE 4FFF FFFF

11.16.15 TrbcCoho

Register

R TrbcCoho* : R Trbcx*

Address

0xE 3A00 0000-0xE 3AFF FFFF

11.16.16 TrbcCohe

Register

R TrbcCohe* : R Trbcx*

May 14, 2014 589 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

Address

0xE 2A00 0000-0xE 2AFF FFFF

11.16.17 TrbvFswo

Register

R TrbvFswo* : R Trbvx*

Address

0xE 1F00 0000-0xE 1FFF FFFF

11.16.18 TrbvFswi

Register

R TrbvFswi* : R Trbvx*

Address

0xE 2F00 0000-0xE 2FFF FFFF

11.16.19 TrbcFsw

Register

R TrbcFsw* : R Trbcx*

Address

0xE 3F00 0000-0xE 3FFF FFFF

11.16.20 CtbPs0

Register

R CtbPs0* : R Ctbx*

Address

0xE 0B00 0000-0xE 0BFF FFFF

11.16.21 CtbPs1

Register

R CtbPs1* : R Ctbx*

Address

0xE 1B00 0000-0xE 1BFF FFFF

11.16.22 CtbPs2

Register

R CtbPs2* : R Ctbx*

May 14, 2014 590 Rev 51328

SiCortex Confidential 11.16. REGISTER ADDRESS RANGES

Address

0xE 2B00 0000-0xE 2BFF FFFF

11.16.23 CtbPs3

Register

R CtbPs3* : R Ctbx*

Address

0xE 3B00 0000-0xE 3BFF FFFF

11.16.24 CtbPs4

Register

R CtbPs4* : R Ctbx*

Address

0xE 4B00 0000-0xE 4BFF FFFF

11.16.25 CtbPs5

Register

R CtbPs5* : R Ctbx*

Address

0xE 5B00 0000-0xE 5BFF FFFF

11.16.26 CtbPs6

Register

R CtbPs6* : R Ctbx*

Attributes

-Product=TWC9A+

Address

0xE 4100 0000-0xE 41FF FFFF

11.16.27 CtbPs7

Register

R CtbPs7* : R Ctbx*

Attributes

-Product=TWC9A+

Address

0xE 5100 0000-0xE 51FF FFFF

May 14, 2014 591 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.16.28 CtbPs8

Register

R CtbPs8* : R Ctbx*

Attributes

-Product=TWC9A+

Address

0xE 6100 0000-0xE 61FF FFFF

11.16.29 CtbPs9

Register

R CtbPs9* : R Ctbx*

Attributes

-Product=TWC9A+

Address

0xE 7100 0000-0xE 71FF FFFF

11.16.30 CtbDma

Register

R CtbDma* : R Ctbx*

Address

0xE 6B00 0000-0xE 6BFF FFFF

11.16.31 CtbPmi

Register

R CtbPmi* : R Ctbx*

Address

0xE 7B00 0000-0xE 7BFF FFFF

11.16.32 CtbCoho

Register

R CtbCoho* : R Ctbx*

Address

0xE 1A00 0000-0xE 1AFF FFFF

11.16.33 CtbCohe

Register

R CtbCohe* : R Ctbx*

May 14, 2014 592 Rev 51328

SiCortex Confidential 11.17. OCLA PROGRAMMING SUGGESTIONS

Address

0xE 0A00 0000-0xE 0AFF FFFF

11.16.34 CtbFswi

Register

R CtbFswi* : R Ctbx*

Address

0xE 4A00 0000-0xE 4AFF FFFF

11.16.35 CtbFswo

Register

R CtbFswo* : R Ctbx*

Address

0xE 5A00 0000-0xE 5AFF FFFF

11.17 OCLA Programming Suggestions

11.17.1 Ready-To-Use OCLA Scripts

Available scripts for using OCLA are documented in: <project>/specs/diags/DiagnosticOCLA.lyx
Some pre-written OCLA scripts for the diagnostics “dash” environment are in: <project>/diags/ocla test/
These allow you to use OCLA with a few short commands in simple cases where a per-unit trigger is not needed.
For easy diagnostics dash control of OCLA, whether using the above-mentioned scripts, or your own configura-

tion, look in: <project>/diags/ocla/

11.17.2 Example Code for OCLA

For examples of OCLA programming, look at the simulation tests we wrote to verify OCLA.
Most of the OCLA simulation tests are listed and described onWiki page: http://apollo.sicortex.com/swiki/OclaVerification
Commands to simulate these tests are (under svn rev control) in: <project>/hw/tests/testlists/ocla use.vtest
Source code (under svn rev control) is in directory: <project>/sw/anthrax/tests/ocla/
Each overall OCLA “program” in this directory requires 2 files and has 3 major parts. For example, test

“ocla ps3 t1c2q biuwr” is coded in files ocla ps3 t1c2q biuwr.c and ocla ps3 t1c2q biuwr util.cpp. The util.cpp
file contains 2 parts, the upper part creates the OCLA LAC program, and the lower part defines the values to
write into OCLA configuration registers before the LAC program would be run. The .c file is the test, an Anthrax
program to be loaded into PS-0 and PS-3 (in this case), which will configure OCLA registers, load the LAC program,
start the LAC program, and create appropriate Ice9 activities so that this particular OCLA configuration and LAC
program will trigger-on and collect interesting data.

11.17.3 Use Our Examples on a Real Machine

The OCLA configuration of any<project>/sw/anthrax/tests/ocla/ simulation test can easily be converted
into a diagnostics dash perl script for use on a real machine.

Instructions for how to convert the OCLA configuration (LAC program plus register configurations) of any of
these simulation tests into a diagnostics dash script are found in<project>/sw/anthrax/tests/ocla/README,
and consists of a quick make command. What you do is go to <project>/sw/anthrax/tests, the directory above
where the tests are, and type“make ocla/<base name> cfg.pl”, where <base name> is the part of the filename end-
ing in util.cpp that’s before the util.cpp. The resulting perl script shows up in the<project>/sw/anthrax/tests/ocla/
directory.

May 14, 2014 593 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

If you need an OCLA configuration different than what’s found there, find one of the * util.cpp files that’s close
to what you need, copy it to a new <something> util.cpp name, change it to do what you want, and run the make
command to get a dash script.

11.17.4 Create Your Own Counter

You can use OCLA as 1 or 2 highly-configurable counters.
In this use of OCLA, Collector Blocks are unused, CollectTrace never turned-on. A LAC program is needed,

but it’s fairly simple for the one-counter case. OCLA’s two counters are in the LAC unit, incremented by LAC
program instructions.

To create one counter, configure a trigger from any signal or combination of signals, and then write a LAC
program that has a tight 1-state loop that increments the counter whenever the trigger is asserted. This counter
has 12-bits in Ice9A, 16-bits in Ice9B.

To create two counters in Ice9B, configure 2 triggers, and have that 1-state tight loop increment one counter if
one trigger is true, the other counter if the other trigger is true, and both counters if both triggers are true.

Creating two counters in Ice9A is less accurate, because Ice9A doesn’t have the INCRBTH instruction, so if
both triggers are true, you can only increment one of the counters.

To get one larger counter you can effectively concatenate the two available counters by having nested loops in
the LAC program. This gives you 24 bits in Ice9A, 32 bits in Ice9B. When you nest the 2 counters there’s a chance
of tiny inaccuracies in the count because the LAC program has to ignore a potential event when clearing the lower
counter, each time the lower counter rolls over and increments the higher counter.

11.17.4.1 You might prefer SCB Performance Counters

Because counting in OCLA requires a LAC program, it may be easier to feed the signals or triggers to SCB
Performance Counters, and do the counting there. SCB Performance Counters are 32 bits whereas OCLA counters
are only 16 bits (12 bits in Ice9A).

SCB Performance Counters is pretty powerful. If you wish to count one trigger qualified by another, SCB
Performance Counters can do that. If you wish to count one trigger qualified by a delayed or advanced version of
another trigger, SCB Performance Counters can do that, with the delays being applied in OCLA LAC before the
triggers are sent to SCB Performance Counters.

One motivation to count in OCLA rather than SCB Performance Counters is that SCB Performance Counters
has black-out periods (missing counts) whenever an SCB write or read is in progress.

Another motivation to create a counter in OCLA is if SCB Performance Counters is already in use, or if you
wanted more than 2 continuously-counting counters. 2 continuous full-count counters in SCB Performance Counters
plus one in OCLA gives you 3 at once.

2 in SCB Performance Counters plus 2 in OCLA gives you 4 at once.

11.17.5 Defensive Programming

Sometimes when you use OCLA on an Ice9 you don’t know how that OCLA was used previously. State can be
left around that will confuse the results of your OCLA run, or even interferes with it’s operation! Even the same
OCLA config-and-run done twice in a row can have problems the 2nd time you do it. Don’t rely on reset values of
any OCLA register in LAC, Trigger Blocks, or Collector Blocks. Reset is often long ago, with much history since.

Do one or both of: (a) Before your OCLA run, run an OCLA-config and LAC-program specifically designed to
clean up everything. (b) Code your OCLA config and LAC program“defensively”, to clean up everything it can in
the beginning, as it gets started.

Here’s a list of things to clean up before or during your config and LAC program, with “when to clean it up” in
parentheses.

• LAC Flag-0 (early LAC)

• LAC Flag-1 (early LAC)

• External OCLA trigger output pin (early LAC)

• LAC Debug Interrupt (config before)

• LAC Slow Interrupt (config before)

May 14, 2014 594 Rev 51328

SiCortex Confidential 11.17. OCLA PROGRAMMING SUGGESTIONS

• all LAC Mask and Match registers, used or not (config before)

• every-CTB’s EnableCollect (config before)

• every-CTB’s Write Address (config before)

• you CTB is stuck-at-full (config before)

• every-CTB’s contents (separate OCLA run before)

• CollectTrace (separate OCLA run before, if needed)

All of these could be accomplished by a separate “cleanup”OCLA config-and-run, but most of the cleanup can just
be included as part of the OCLA config-and-run you are writing for your desired purpose.

“early LAC”means clearing these in the first few instructions of your OCLA LAC program.

“config before”means during the SCB-registers configuration you must do to get ready to run your LAC program.

“separate OCLA run before”means doing a generic “cleanup”OCLA run, involving SCB-registers configuration,
loading a LAC program, running that LAC program, maybe followed by more register writes.

Well-written LAC programs, properly manually-terminated if they don’t see their trigger, do not leave the
CollectTrace signal ON afterwards. But if it’s ON, you may need or want to shut it OFF.

11.17.6 CTB stuck-at-full

From trial and error we’ve found it best to write the appropriate R CtbxColCtb twice for each CTB you are
using, otherwise you risk not collecting anything.

First write: EnableCollect=0, WtAddrClr=1, ExtMuxSel=your desired mux setting, QTrigState and QualTrig
= your desired settings, StopOnFull doesn’t matter.

Second write: EnableCollect=1, WtAddrClr doesn’t matter, ExtMuxSel=your desired mux setting, QTrigState
and QualTrig = your desired settings, StopOnFull=your desired setting.

11.17.7 Shutting-Off CollectTrace

In Ice9A chips, sometimes lac ctb CollectTrace c2a gets left on. That can cause problems reading CTBs, and
problems with the next OCLA run.

This is fixed in Ice9B and later to have a shut-off of the LAC program also shut-off CollectTrace.

CollectTrace can only be turned ON or OFF by a SETCOLL or CLRCOLL opcode in a running LAC program.
In Ice9A there are no register writes which can turn it OFF, although a reset of the chip will turn it OFF.

All LAC programs should make sure to do a CLRCOLL before reaching their final state, or in their final state,
no matter whether whether they have a “good” termination or “bad” termination (like a timeout, or user-requested
termination).

11.17.7.1 Why would CollectTrace be Left ON?

CollectTrace can be left ON due to a bad LAC program, a LAC program with no timeout that never got a
trigger, or by writing GO=0 to stop a LAC program in the middle, when CollectTrace is still ON. In Ice9A, now
only a running LAC program that executes opcode CLRCOLL can shut it off!

11.17.7.2 Why is CollectTrace ON a Problem?

If CollectTrace is still ON after running a LAC program:

1. You may get all-zeros when reading-out the contents of a CTB! (even though the CTB does not contain
all-zeros) Although misleading and frustrating, this can be solved by clearing that CTB’s EnbleCollect bit.

2. As you start configuring for your next OCLA LAC program, some or all of the space in your CTB may
get used-up before you can even say GO to your new LAC program! This applies when using a CTB in
StopOnFull mode.

May 14, 2014 595 Rev 51328

SiCortex Confidential CHAPTER 11. ON CHIP LOGIC ANALYZER

11.17.7.3 Is CollectTrace ON?

To find out if CollectTrace is ON, read bit “Collecting” in the R CtbxColCtl of any CTB (even if that CTB has
EnableCollect=0, or even even if it has StopOnFull=1 and full).

11.17.7.4 How to Read CTB Contents While CollectTrace is ON

Clear bit EnableCollect in the CTB’s R CtbxColCtl, then read the CTB.

11.17.7.5 Fastest Way To Shut Off CollectTrace in Ice9A

1. Write 0x00000000 to R LacCtl.

2. Write 0x00000000 to all 5 Aggregate Mask Registers, R LacAggMsk[4:0].

3. Write 0xffffffff to all 5 Aggregate Match Registers, R LacAggMat[4:0].

4. Write 0x007 to R LacRam[0x000], R LacRam[0x400], R LacRam[0x800], R LacRam[0xc00]. (This is a tiny
LAC program. There is no need to write or clear the other LAC locations.)

5. Write 0x00000001 to R LacCtl.

6. Write 0x00000000 to R LacCtl.

This should clear CollectTrace.
Of course you’ve now slightly messed-up your previous LAC program and previous OCLA registers configuration.

You can either try to restore the changed values or load a complete new configuration and program for OCLA.
To restore: Prior values of R LacCtl, R LacAggMsk[4:0], and R LacAggMat[4:0] could be read and remembered

ahead of time, then restored afterwards. R LacRam is write-only, so to know what values to restore to it you’ll
have to read your LAC-program source-code, or look at a logfile.

How this shuts-off CollectTrace:
The value 0x007 in R LacRam[0x000]means {CLRCOLL, GO TO State-0}. The instruction in R LacRam[0x000]

will get executed by the write of 0x00000001 to R LacCtl, and then CollectTrace will be OFF.
The other writes are to keep CollectTrace OFF during the time it takes to write 0x00000000 to R LacCtl. Many

LAC steps may get executed during that time. State-0 has 128 locations in LacRam, depending on Aggregate Match
and counter overflow bits. The writes to Aggregate Mask and Match registers will zero-out the Aggregate Match
bits, Reducing State-0 to only 4 locations based on counter overflow bits. With an 0x007 in all 4 of those locations
we’ll stay within those 4 locations, and not start executing other instructions of the previous LAC program (which
might contain a SETCOLL).

May 14, 2014 596 Rev 51328

Chapter 12

Clocking, ECC, Test Logic, Reset, and
Initialization

[$Id: chipmisc.lyx 50689 2008-02-07 15:05:46Z wsnyder $]

12.1 Overview

This section describes the “miscellaneous” pieces of the ICE9 chip. These include:

• Clock generation and distribution

• ECC general description

• The Design For Test (DFT) support for internal test scan and boundary scan at manufacturing.1

• Reset and related logic

• Boot time-line

12.2 Differences, Bugs, and Enhancements

12.2.1 Product and Chip Pass Differences

1. ICE9A1 returns a different revision (ICE9A1 vs ICE9A0) when reading the IDECODE register.

2. ICE9B fixes Sms Reset syncronized to the wrong clock, bug2055. This required the smsclock to be turned off
whenever we wiggle reset, then turned on again a bit later.

3. ICE9B eliminates R SysTapDint, replaced with the SCB-space R ScbDInt, bug2223.

4. ICE9B supports transmit interrupts for R SysTapAtnMsp, and separates RW1C bits, bug2222.

5. NEED IMPL: TWC9A changes the default value for R SysTapPll D*clkDifv to support a processor default
clock frequency of *FIX* MHz, bug3384.

6. TWC9A fixes access to any SCB bus slave hanging while the DDR controller is in reset, bug2928.

7. TWC9A adds an R SysTapReset Lac and Pmi to separate the R SysTapReset Scb bit from also controling
the BBS/PMI reset, bug2929. Earlier products needed caution when maintaining FSW/FL traffic during
partial reboots.

8. NEED IMPL: TWC9A adds R SysTapReset Proc6, and ProcSms6 to support the additional cores.

9. TWC9A uses R SysTapInstrTwc instead of R SysTapInstReg to support the additional cores.

1See also the “IEEE Standard Test Access Port and Boundary-Scan Architecture” ref. document; IEEE Std 1149.1-2001 IEEE Joint
Test Action Group (JTAG).

597

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

10. TWC9A adds R SysTapScb64 to access doubleword SCB registers. Code should use this new registers or 64
bit SCB registers will not be visible.

11. NEED IMPL: TWC9A adds R SysMemInit register and associated functions for on-chip memory initalization.
In previous products BIST was used to initalize on-chip memories.

12. NEED IMPL+SPEC: TWC9A will merge the SysChain and E-Silicon chain on-chip instead of off-chip.

13. NEED IMPL+SPEC: TWC9A will replace or make the E-Silicon chain IEEE compliant (on the correct edges).

12.2.2 Known Bugs and Possible Enhancements

1. [Larry] Add a new LBS+SCB region. The msp could set the start address in 32 or 64 bit steps, and then scan
in, say 128 bytes with a continuous shift on the scan. Then, while the ice9 digests that block, the msp scans
in 128 bytes into the alternate half of the block. This is essentially a block of shared memory accessed on the
ice9 side by scb and on the msp side by efficient scan. The scan chain would shift in a direction compatible
with the qspi as well. This shared area would be used instead of fastdata (since it would be much faster) for
boot2 loading, and we would also use it for block transfers of attn data instead of doing that 26 bits at a time
via the current attn register.

12.3 Clock generation and distribution

12.3.1 Goals and Features

The Sicortex system clock architecture (includes specifics of board design) has the following goals:

1. The system clock architecture has one system clock (sys clk) and each board receives a copy of the sys clk.
The system clock architecture will minimize the possibility of a single point of failure in the clock tree.

2. The distribution frequency of the system clock (sys clk) will be 66.67 MHz and with a long term accuracy of
100 ppm, and jitter spec of +/- 50ps.

3. Each ICE9 chip will generate on-chip clocks for its sub-systems using 2 (differential) copies of sys clk
(sys clk e h/l & sys clk o h/l). Thus all generated clocks in the system will be derived from a single os-
cillator.

4. The inter-ICE9 fabric is a “Mesochronous Interconnect” where each node in the fabric is frequency locked
(but not phase locked) with every other node.

5. The fabric switch operating speed is targeted at 200MHz. Correspondingly, the fabric link will operate at
8B10B encoded data rate of ten times the operating speed of the fabric switch. The PLL design will allow
adjusting fabric switch clock speed by up to +/- 25% from its design goal.

6. The primary design goal of the processor/cache operating speed is 500MHz/250MHz. The PLL design will
allow selecting processor/cache clock speed by as much as +/- 20% from its design goal.

7. The primary design goal of DDR2 interface is to operate with industry standard SDRAM DIMMs. The
industry standard SDRAM are (will be) available at 200/266/333/400 MHz clock speeds. The PLL design
will allow DDR2 clock speed selection from 200 MHz to 400 MHz.

8. The primary design goal of PCIe root complex and PCIe controller is to use clock at 250 MHz. The primary
design goal of PCIe PHY is to use RefClk clock at 125 MHz. These clocks come from the PCI Express PHY.
The PLL design will generate PCI reference clock at 100 MHz for use by the PHY and to be driven off-chip
for use by an attached card.

9. The PLL design will allow configuring each PLL in BYPASS mode. (See the test clock discussion in Section
????.)

Clock generator features of ICE9 are listed below:

1. ICE9 clock domains can be categorized into four clock groups as follows:

May 14, 2014 598 Rev 51328

SiCortex Confidential 12.3. CLOCK GENERATION AND DISTRIBUTION

(a) Group-A: For Fabric switch and fabric links, sclk from 200MHz to 250MHz.

(b) Group-B: Processor/cache clocks, pclk/cclk maintaining phase aligned 2:1 frequency ratio for pclk and
cclk. The range of pclk is from 400 MHz to 800 MHz.

(c) Group-C: DDR2 clocks, dclk. This group will need dclk and dclk90. The operating range of dclk is from
250 MHz to 400 MHz. Operating values are 200, 267, 333, and 400MHz. Each of the the two DDR2
interfaces has it’s own PLL to generate the in-phase and quadrature clocks: d1clk & d1clk m90 and
d0clk & d0clk m90.

(d) Group-D: PCIe interface, pci ref clk/pci ref clk x2 maintaining a 1:2 frequency ratio, phase alignment
is not necessary, for pci ref clk and pci ref clk x2 at 100 MHz and 200 MHz.

2. ICE9 will use one PLL design, (called PLL AB), to generate clocks for various sub-systems.
The PLL AB design has two outputs. The relationship bewteen the two outpus is configurable from three
choices. The output selection choices are :

(a) DIV2-0deg, DIV4-0deg : factor of 2 frequency difference, outputs are phase aligned.

(b) DIV4-0deg, DIV4-90deg : same frequency, 90 degree phase shift between outputs

(c) DIV4-0deg, DIV8-0deg : factor of 2 frequency difference, outputs are phase aligned.

3. ICE9 has total of five instances of the PLL AB design. The 5 PLLs are placed in 2 groups: one near the
south-west (odd-link) corner of the chip and one near the north-east (even-pci) corner of the chip. The east-
side PLL group contains the pclk/cclk PLL, the pci ref clk PLL and the d0clk/d0clk m90 PLL. The west-side
PLL group contains the sclk PLL and the d1clk/d1clk m90 PLL.

4. ICE9 will get 2 copies of the differential sys clk on 4 reference-clock input pins. The “RefClk” pin of all 5
instances of the PLL AB will be connected to the sys clk nearest it.

12.3.2 Sys clk distribution tree

The Sicortex system will use a backplane and connectors as the inter-board connection medium. The backplane
will not have any active components. Boards make signal connections to each other through its connector on the
backplane.

In the chassis, the clock distribution tree originates at an oscillator operating at 133.33 MHz. The oscillator
output is divided by 2 and then distributed as “sys clk” at 66.67 MHz to all boards. On board, a copy of sys clk
is connected to the 2 “sys clk” inputs of each of the 27 ICE9 chips. Because all copies of sys clk in the chassis
originate from a single oscillator, all generated clocks in ICE9 are frequency locked w.r.t. to each other. The sys clk
input to ICE9 is in 2 distinct pairs of LVDS pins received in 2 LVDS receivers - one for the southwest PLL group
and one for the northeast PLL group. The board-level sys clk distribution tree has 54 sys clk destinations on each
module board (2 for each ICE9 chip).

The system clock distribution scheme is shown in Figure-12.1.
Figure 12.1 shows three connectors, M, N, and P, each receiving copy of sysclk and driving buffered version of

the sys clk to 27 ICE9 chips with 2 receiver ports each. The on-chip clock generating in ICE9 consists of 5 instances
instances of PLL AB.

Figure 12.2 shows that in ICE9, the clock PLLs generate clocks for Processor/L2-cache, DDR2 interface, PCIe
interface, and the fabric switch. The fabric switch clock, in conjunction with multiple fabric link receiver PLLs,
and multiple fabric link transmitter PLLs, builds the complete clocking scheme of the fabric links. The fabric link
clocking is described below. A similar strategy is employed for the PCIe SERDES links.

Each fabric link connects two logically adjacent ICE9 chip using SERDES PHY technology which drives em-
bedded clock and data on differential pair of wires. The sclk PLL generates the clock for fabric switch which is
which is also used by the link transmitter PHY. The fabric link transmitter PHY has a PLL, called Tx PLL (an
integral part of the link PHY), which uses the fabric switch clock signal as a reference clock and drives a serial data
stream on the transmitter PHY port five times faster than the switch clock in DDR mode. The fabric link receiver
also has a clock-data-recovery PLL (CDR-PLL), also integral to the link PHY and dedicated to the receive lane,
to recover data and clock from incoming data streams.

In Figure 12.1, five instances of the PLL AB will use sysclk at 66.67 MHz as a reference clock which is sourced
from single oscillator, hence, all generated clocks will operate in frequency locked mode w.r.t. each other.

May 14, 2014 599 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Figure 12.1: Clock Tree Distribution

Note-: Jitter spec (estimated, needs validation) of sysclk at the pins of ICE9

Instance ppm spec jitter spec in ps

OSC : 133.33 MHz 100 25
Divider : DIV2 - TBD
BUF : 36 FO - TBD
BUF : 27 FO - TBD
sysclk @ ICE9 100 +/- 50

12.3.3 Clock Generation in ICE9

The clock generation for ICE9 takes place in 2 physically distinct PLL groups. For logical purposes these may
be treated as a single module, though the chip hierarchy will include them as separate entities. The logical clock
generation module is shown in Figure 12.2. It has five instances of the PLL AB and it generates sclk for the fabric
switch interface, pclk/cclk for the processor core and L2-cache interface, separate dclks for the DDR2 controllers,
and pci ref clk for the PCIe interfaces. Each instance of the PLL AB has several control signals, described below.
There are two instances of the PLL AB for generation of the two dclks. Each dclk domain (d0clk & d1clk) will be
provided with a “normal” clock signal (used for the majority of the logic) and a -90-degree phase clock (used only
in the PHY).

12.3.4 PCIe clocking

The clocking scheme for the PCI express interface has changed from the original plan. The PLL originally
planned to generate the 250MHz iclk will now generate a 100MHz pci ref clk from the 66.67MHz sys clk. The
100MHz pci ref clk will then be driven off-chip to the clock pin of the PCIe slot on the module board (perhaps
through a buffer or level translator). It will also be driven to the PCIe PHY, where it will be used to generate the
250MHz iclk (and internally to clock the SERDES transmitters). The result is that the root of the iclk tree will
now be an the output pin of the PCIe PHY.

Note that the PCI Express specification allows the reference clock frequency to be “downspread”by up to 0.5%,
to allow spread-spectrum clocking for radio-frequency emissions control purposes. The system design may take
advantage of this by using more widely available 133MHz oscillators, resulting in a 66.5MHz sys clk frequency,
0.25% below nominal. This works because both ends of all our PCI Express links will use the same reference clock

May 14, 2014 600 Rev 51328

SiCortex Confidential 12.3. CLOCK GENERATION AND DISTRIBUTION

Figure 12.2: ICE9 Clocks and Data Rates

as just described.

12.3.5 Block diagram of PLL AB

The block diagram of the PLL AB is shown in Figure 12.3 and the pins are listed in Table 12.1.

The PLL receives REF input as its reference clock input and its VCO multiplier factor through DIV signal.
The PLL LOCK signal is a status signal which will be set when PLL has acquired lock. The PLL can be held in
reset state by RESET signal.

There are 2 outputs from PLL AB. They are PLLOUT-1 and PLLOUT 2. Both outputs from PLL are config-
urable through OUTPUT SEL signal. There are 3 choices of output selection.

The PLL AB also supports PLL in bypass mode when BYPASS ENAB signal is set. In bypass mode, there
are 2 options available for selecting BYPASS CLK at two output ports - (a) Both outputs are connected to
BYPASS CLK, and (b) One of the outputs is connected to the half frequency clock of BYPASS CLK.

ICE9 PLL Instantiation & Configuration Notes:

1. The RESET signal for the PLL AB must be gated with a decode of {test mode en, test mode[*]} to ensure
it is asserted in the appropriate scan modes.

2. All pins (including REF signal) of PLL AB are regular core-voltage CMOS signals.

3. Control signals for the PLL ABs which are CSRs must be explicitly registered on the appropriate chain. The
PLL macro does not register the bits internally.

4. Any changes to CSR bits affecting PLL operation should be appropriately guarded by reset for both the PLL
and downstream (clocked) logic to prevent deleterious effects due to unstable PLL operation, clock glitches,
runt pulses, etc.

5. Invalid settings: When DIVF[4:0] is less than 5’d11 or greater than 5’d23 or OUTPUT SEL[1:0] equals to
2’d3, no damage will occur to the PLL, but the output behavior is not defined.

May 14, 2014 601 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Signal Name From To Description

REF primary input PLL AB Reference clock at 66.67 MHz
RESET SysChain PLL AB PLL internal reset.

This signal is gated with scan enable and stays as-
serted during chip reset.

DIVF[4:0] SysChain PLL AB VCO feedback divider encodings of 4’d11 through
4’d23 will provide multiplier from 12 to 24. Multi-
plier value = (DIVF[4:0] + 1)

OUTPUT SEL[1:0] SysChain PLL AB PLL output selector for [PLLOUT 1, PLLOUT 2].
The selector encodings are: 0 - DIV2, DIV4 (both
outputs are phase aligned) 1 - DIV4, DIV4-90 2 -
DIV4, DIV8

BYPASS ENA SysChain PLL AB PLL bypass enable
BYPASS CLK1 primary input PLL AB Bypass clock when BYPASS ENA is set
BYPASS CLK0 primary input PLL AB Bypass clock when BYPASS ENA is set
BYPASS CLK SEL SysChain PLL AB selects BYPASS CLK0 or 1 when for output BY-

PASS ENA asserts
LOCK PLL AB SysChain PLL Lock indicator
PLLOUT 1 PLL AB clock-tree PLL 1 output.

This signal has 50% duty cycle in normal mode.
Refer to encodings of OUTPUT SEL[1:0]

PLLOUT 2 PLL AB clock-tree PLL 2 output This signal has 50% duty cycle
in normal mode. Refer to description of OUT-
PUT SEL[1:0]

Analog VDDA/VSS chip bumps PLL AB Analog power and ground pins (chip bumps)
VDD/VSS I/O ring PLL AB Core power/ground, connect by abutment in the

I/O ring

Table 12.1: PLL AB Pins

May 14, 2014 602 Rev 51328

SiCortex Confidential 12.3. CLOCK GENERATION AND DISTRIBUTION

Figure 12.3: PLL AB Block Diagram

BYPASS ENAB RESET BYPASS CLK SEL PLL LOCK PLLOUT 1 PLL OUT 2

0 0 X Normal mode Normal mode Normal mode
0 1 X 0 LOW LOW
1 X 0 0 BYPASS CLK1 BYPASS CLK0
1 X 1 0 BYPASS CLK1 BYPASS CLK1

Table 12.2: PLL Bypass Control

6. The divider flops, including “DIV2” flop on BYPASS CLK path, are not scannable. If they do not work it
will become apparent when no clock is observed.

12.3.5.1 Bypass mode in PLL AB

Each PLL AB has three primary pins to support bypassing PLL. Those pins are BYPASS ENAB, BYPASS DIV2 ENAB,
and BYPASS CLK. The output of the PLL AB will be selected as per Table 12.2. The pins are driven by the test
mode controller based on the state of the test mode pins described in Table 12.4 and by the SysChain scan control
chain that is used by the module service processor to initialize and configure the ICE9 chip. (See Section 12.6.9.)

12.3.6 Implementation of PLL AB

ICE9 will have five instances of PLL AB to generate primary clocks - sclk, pclk, dclk, and pci ref clk. (There
are 2 instances of the DDR clock PLLs for the 2 dclk domains.) The clock implementation is shown in Figure-12.4.

The implementation scheme provides range of operating speeds for each clock by varying DIVF[4:0] input.
Valid settings and the range of clock outputs for those settings are shown in Table 12.3.
Note that the first row identifies clock name and the value of OUTPUT SEL[1:0] pins in brackets. This register

is controlled via the SysChain scan registers described in Section 12.6.9.
The 5 PLLs are placed on the chip in 2 groups: Pllsw & Pllne. Pllsw contains an LVDS sys clk receiver, PLLs

for d1clk/d1clk90 & sclk, and an LVDS driver for test clk o h/l. Pllne contains contains an LVDS sys clk receiver,

May 14, 2014 603 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Figure 12.4: Clocks using PLL AB

DIVF[4:0] sclk (osel=0) sclk (osel=2) pclk/cclk (osel=0) dclk (osel=1) pci ref clk x2/pci ref clk (osel=2)

5’d0 - 5’d10 invalid invalid invalid invalid invalid
5’d11 200 100 400/200 200 200/100
5’d12 217 108 433/217 217 217/108
5’d13 233 117 467/233 233 233/117
5’d14 250 125 500/250 250 250/125
5’d15 267 133 533/267 267 267/133
5’d16 283 142 567/283 283 283/142
5’d17 300 150 600/300 300 300/150
5’d18 317 158 633/317 317 317/158
5’d19 333 167 667/333 333 333/167
5’d20 350 175 700/350 350 350/175
5’d21 367 183 733/367 367 367/183
5’d22 383 192 767/383 383 383/192
5’d23 400 200 800/400 400 400/200

5’d24 - 5’d31 invalid invalid invalid invalid invalid

Table 12.3: PLL VCO Scaling Factors

May 14, 2014 604 Rev 51328

SiCortex Confidential 12.4. GENERAL ECC STRATEGY

PLLs for d0clk/d0clk90, pci ref clk, & pclk/cclk, and an LVDS driver for pci ref clk l/h.
The test clko o h/l and the pci ref clk h/l LVDS output pins are driven through muxes to select several oper-

ational and test clocks as indicated in section 12.6.9

12.4 General ECC strategy

This section on ECC strategy describes general guidelines for implementation of ECC on the ice9 chip. Specifics
of how the ECC is implemented in any given section are described in the appropriate chapter of this spec.

The following registers should be implemented by memories which have ECC generation and/or checking. All
of these registers are read/write master/slave registers on the SCB (or other software-visible bus/chain). Access
to SCB registers and operation of the SCB is described in the ”Serial Configuration Bus” chapter of the chip spec.
The specific names of these registers is documented with each section’s SCB registers.

Control Registers Status Registers

ECC Mode Register[1:0] ECC Error Status Register[2:0]
ECC Drive Bad Data Register[1:0] ECC Error Address Register[x:0] (not all cases, see below)

ECC Error Syndrom Register[7:0] (not all cases, see below)
ECC handling for the L1 caches (I & D) has been modified to leverage the existing parity and interrupt

mechanisms in the M5Kf processor core and is therefore somewhat differenc than described here. The L1 I-cache
treats a parity error as a miss, which causes a fetch from the (ECC protected) L2 cache. This effectively provides
single-bit-error correction but not double-bit-error detection. The L1 D-cache implements byte-wide ECC to support
byte writes. See the Processor Segments chapter for more details.

12.4.1 ECC Control Register descriptions:

12.4.1.1 ECC Mode Register[1:0] (associated with ECC correction)

ECC Mode Register[1] - ECC error detection enable: Enables Writing of ECC status registers and assertion of the
ECC interrupt line from this block.

ECC Mode Register[0] - ECC error correction enable: Enables ECC correction of data passing through the cor-
rection block

12.4.1.2 ECC Drive Bad Data Register[1:0] (associated with ECC generation)

ECC Drive Bad Data Register[1] - flip bit [1] of the data coming out of the ECC generator (into the storage array)

ECC Drive Bad Data Register[0] - flip bit [0] of the data coming out of the ECC generator (into the storage array)

Asserting either causes a single-bit error to be generated. Asserting both causes a double-bit error to be generated.

Note:

• In most cases, ”ECC Drive Bad Data Register”applies to all writes after the bit(s) are set, relying on software
restrictions (i.e., clearing the register bit at an appropriate time) to ensure that reasonable behavior is obtained
during software testing.

• If convenient, ”ECC Drive Bad Data Register”MAY be implemented as a single-cycle operation (i.e., only
the first write after asserting bits in the register contains bad data; then the register bit is cleared & subsequent
writes return to normal operation).

12.4.2 ECC Status Register Descriptions

12.4.2.1 ECC Error Status Register[2:0] (associated with ECC correction)

ECC Error Status Register[2] - sets if more than one ECC error occurs, i.e, if (ECC Event Occurs&& ECC Mode Register[1]
&& (ECC Error Status Register[1] || ECC Error Status Register[0]) => set ECC Error Status Register[2]

ECC Error Status Register[1] - sets if an ECC-correctable error is detected

ECC Error Status Register[0] - sets if a non-correctable ECC error is detected

May 14, 2014 605 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Note:

• Updates of ECC Error Status Register due ECC errors are blocked if ECC Mode Register[1] is deasserted.

For ECC correctors on the path to/from main memory (i.e., coming on/off the CSW), the following
2 registers may also be required:

12.4.2.2 ECC Error Address Register[x:0] - x depends on the size of address space (associated with
ECC correction)

Holds the (physical) address of the first ECC error since setting of any bit of ECC Mode Register[1:0]. This
register is required only for ECC checkers for data on the main memory path in ICE9 (i.e., at the CSW interfaces
to the L2 caches in the processor slices, and, optionally, at the Pci/Csw interface and at the Dma/Csw interface.)

12.4.2.3 ECC Error Syndrom Register[7:0] (associated with ECC correction)

Holds the syndrome of the first ECC error since setting of any bit of ECC Mode Register[1:0]. This register is
required only for ECC checkers for data on the main memory path in ICE9 (i.e., at the Csw interfaces to the L2
caches in the processor slices, and, optionally, at the Pci/Csw interface and at the Dma/Csw interface.)

Note:

• bits of ECC Error Status Register& ECC Error Address Register are set by the ECC logic during operation.
Clearing of the register bits following an ECC event is up to software as a part of the interrupt routine triggered
on a ECC event.

• Separate ECC Error Status Register, * Address Resister and * Syndrom Register will be required for data
coming out of the L2 cache and for data coming out of the CSW to distinguish between ECC events in the
L2 and events in the CSW/DDR memories.

12.4.3 ECC Implementation & Test considerations

In order to test the ECC logic during manufacturing chip test, we’ll need to ensure observability of the outputs
of the ECC generation logic and controllability over the inputs to the ECC correction logic. If we don’t do anything
special this is a problem because the whole point of ECC is to transparently correct errors without impacting
normal operation. So, what we’re doing is the following:

12.4.3.1 Compiled memories with Synchronous Write Through (SWT) mode

When the Virage compiled memory supports SWT, we’ll use it. With appropriate control settings, SWT
provides a path for the write data coming into the memory to bypass the array and instead go to a flop, which
is then driven (through a mux) to the output pins. The additional logic is incorporated in a wrapper around the
memory array. The added flop is on a scan chain with control signals, scan-in and scan-out brought to pins of the
wrapper. See Figure 12.5

The BypassMUX and OutputMUX select signals must be set appropriately during test (by tying them to a
decode of test mode). Once that’s done, ECC generator outputs become observable via the scan flop and it’s
scan chain. Controllability over the inputs to the ECC correction logic is accomplished via the same mechanism.
Nothing special is required in the design of the logic around the RAM.

12.4.3.2 Compiled memories with Asynchronous Write Through (AWT) and no Synchronous Write
Through (SWT)

For this case, there are 2 concerns: 1) observability and controllability for testing the ECC logic, and 2) ensuring
that AWT does not introduce combinational loops. Since the compiled memory does not provide a convenient scan-
flop and we’ll need to provide one externally (”rammaker”will be modified to do this by default). We have a choice
of putting the mux on the memory inputs or outputs; to be consistent with what’s provided for SWT-enabled
rams, we’ll put in on the output, unless there’s a reason not to. If necessary, the flop and mux may be inserted
into upstream of the RAM on the data input side of the compiled memory & wrapper; see Vasu about a change
to rammaker if you need to do this. (See Figure 12.6.) The OutputMUX select signal should be tied to a decode

May 14, 2014 606 Rev 51328

SiCortex Confidential 12.5. DFT AND TEST SUPPORT

Figure 12.5: SWT ECC observability & controllability

of test mode, as should the BypassMUX select signal. In this case the OuputMUX and the flop must be explicitly
incorporated into the design. Scan insertion of the flop will ensure the the necessary observability/controllability
is achieved. (If the instance of the RAM requires immediate flopping of read data before ECC correction, there is
no need to add anything special; observability & controllability are already available.)

By default, the explicit flop & mux should be added to both data and ECC correction bits. If no combinational
loops are introduced by AWT, the flop/mux may be added to only the ECC bits, thus saving on the flop count.

Figure 12.6: AWT ECC observability & controllability (also breaks any combinational loops)

12.5 DFT and Test Support

The ICE9 chip supports two different scan interfaces for test.
The first is a serial “muxscan” interface used for chip test at wafer and die test stages. It provides up to 100

parallel scan chains and test mode configuration pins. The scan modes are selected via the test mode input pins as
shown in Table 12.4. The control pins relating to muxscan features are all prefixed with the name “test ”; any pin
with the prefix“test ” is used in test-modes only and can be tied off for normal operation. As per eSilicon’s practice,
the test control pins are: test scan en (eSilicon’s name is scan enable), test mode en (eSilicon: chip test),
and test mode[2:0] (eSilicon: test mode!). When the ICE9 chip is installed on a module, test scan en and
test mode en will be tied FALSE and the other three test mode[2:0] pins will be ignored. In muxscan mode
(“stuck-at scan” and “transition fault scan”), the DDR DQ & AD pins provide 88 bits of scan data output and
scan data input between the two DDR controllers. The DDR DQ & AD spins also have test sdi[*] & test sdo[*]
overrides. See Section 17.3 for a complete list of signal pins and test-mode overrides. The remaining 12 bits of
scan in and scan out are provided on dedicated pins labeled test sdi[99:88] and test sdo[99:88]. Some of the entries

May 14, 2014 607 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

in Table 12.4 seem to be duplicates with respect to PLL bypassing. In some cases, they are assigned different
test mode[3:0] entries due to different test-mode overrides.

Anytime the PLL output is bypassed with a test clk or syc clk, that PLL should be held in reset by the LBS.

The second test interface is the JTAG test scan chain used for boundary scan. This mode is implemented in
an IEEE-JTAG 1149.1 Test Access Port (TAP) controller supplied by eSilicon. The JTAG chain has its own chip
pins, prefixed with “jtag ” and only these signals carry the jtag prefix.

The SysChain, described below, is used for in-system maintenance and initialization. The SysChain may also
be used to set PLL controls and Virage RAM configuration parameters during manufacturing test.

Because specifics of the distribution of the clocks and reset signals is important to ATPG test generation, it’s
further described in Figure 12.10

12.5.1 Boundary scan (normal mode)

For board-level continuity testing, the chip supports JTAG boundary scan. The PCIe PHY comes as a hard
macro with boundary scan pre-inserted. The link PHYs do not support boundary scan. The DDR I/Os, LVDS
clock I/Os and selected general-purpose I/Os will have boundary scan cells inserted by eSilicon along with the
JTAG TAP controller insertion. The boundary scan-chain ordering follows the diagram below (JTAG TAP ->
DDPo -> Pllsw -> DDPe -> Pllne -> PCIe PHY -> general purpose I/O block -> JTAG TAP):

+------------++-----------++------+

| /----------<<-----------<<----\ |

| | StdI/O || Pphy ||Plle| |

+-v----------++-----------++----^-+

+---v---+ |

| JTAG | |

/-----< | |

| +-------+ |

| /--------------------------------|---\

| | | |

+-v----+ | | +-v----+

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | D | | | | | D |

| | D | | | | | D |

| | P | | | | | P |

| | o | | | | | e |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

+-v----+ | | +-v----+

+-v----+ | \---/

| |Pllw| |

| +---->-/

+------+

12.5.2 Stuck-at Scan (test mode 16)

eSilicon ATPG tests using mux-scan. Virage memories in SWT-mode (where supported) or AWT-mode.

12.5.3 Transition Fault Scan (test mode 17)

Similar to stuck-at scan - eSilicon ATPG tests using mux-scan. Virage memories in SWT-mode (where sup-
ported). AWT-mode should not be used due the multi-cycle paths created.

May 14, 2014 608 Rev 51328

SiCortex Confidential 12.5. DFT AND TEST SUPPORT

test mode en,

test mode[3:0]
Description

pclk/cclk

PLL
sclk PLL

pci ref clk

(AB) PLL /

iclk (PHY)

PLL

d0clk/

d0clk m90

PLL

d1clk/

d1clk m90

PLL

0, X (0-15)

(test mode[*]

will be tied low

on the module

board)

Normal Operation +

(DDR, link PHY &,

PCIe PHY functional

tests w/ all PLLs) +

(Memory BIST w/ PLL)

+ (JTAG BScan)

operating operating
operating/

operating
operating operating

1, 0 (16)
Stuck-at scan - Virage

SWTon/AWTon

test pclk/

test cclk
test sclk

test iclk/

bypassed

test d0clk/

test d0clk

test d1clk/

test d1clk

1, 1 (17)
Transition Fault Scan -

Virage SWTon/AWToff

test pclk/

test cclk
test sclk

test iclk/

bypassed

test d0clk/

test d0clk

test d1clk/

test d1clk

1, 2 (18)
PLL, separate pins?, low

speed, lock
operating operating

operating/

operating
operating operating

1, 3 (19)

DDR ODT & drive

strength parametric

BScan

operating operating
operating/

operating
operating operating

1, 4 (20) Memory BIST (no PLL)
test pclk/

test cclk
test sclk

test iclk/

bypassed

test d0clk/

test d0clk

test d1clk/

test d1clk

1, 5 (21)
DDR Functional Tests

(no PLL)

test pclk/

test cclk
test sclk

test iclk/

bypassed

(inactive)

test d0clk/

sys clk e

(90deg

apart)

test d1clk/

sys clk o

(90deg

apart)

1, 6 (22)
Slow DDR DLL Test (no

PLL)

test pclk/

test cclk

(inactive)

test sclk

(inactive)

test iclk/

bypassed

(inactive)

test d0clk/

sys clk e

test d1clk/

sys clk o

1, 7 (23)
Fast DDR DLL Test

(PLL)

test pclk/

test cclk

(inactive)

test sclk

(inactive)

test iclk/

bypassed

(inactive)

operating operating

1, 8 (24)
PCI Functional Tests

(PLLs)

test pclk/

test cclk

(slow,

maybe

inactive?)

test sclk

(slow,

maybe

inactive?)

operating/

operating

test d0clk/

test d0clk

(slow,

maybe

inactive?)

test d1clk/

test d1clk

(slow,

maybe

inactive?)

1, 9 (25)

PCI Functional Tests

w/o pci ref clk PLL

(PCIe PHY iclk PLL

operating)

test pclk/

test cclk

(slow,

maybe

inactive?)

test sclk

(slow,

maybe

inactive?)

test iclk/

operating

test d0clk/

test d0clk

(slow,

maybe

inactive?)

test d1clk/

test d1clk

(slow,

maybe

inactive?)

1, 10 (26)

PCI Functional Tests (no

PLLs) (PCIe PHY iclk

PLL bypassed)

test pclk/

test cclk

(slow,

maybe

inactive?)

test sclk

(slow,

maybe

inactive?)

test iclk/

bypassed

test d0clk/

test d0clk

(slow,

maybe

inactive?)

test d1clk/

test d1clk

(slow,

maybe

inactive?)

1, 11 (27)
Fabric link Transceiver

Functional Tests (PLL)

test pclk/

test cclk

(slow)

operating

test iclk/

bypassed

(slow)

test d0clk/

test d0clk

(slow)

test d1clk/

test d1clk

(slow)

1, 12 (28)

Fabric link Transceiver

Functional Tests (no

PLL)

test pclk/

test cclk

(slow)

test sclk

test iclk/

bypassed

(slow)

test d0clk/

test d0clk

(slow)

test d1clk/

test d1clk

(slow)

1, 13 (29) UNUSED

1, 14 (30) UNUSED

1, 15 (31) UNUSED

May 14, 2014 609 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

12.5.4 PLL Test (test mode 18)

A test of the 5 primary clock PLLs. With a 66.67MHz differential sys clk o & sys clk e,

- look for the lock indication from each PLL - present at the *clkLock pins (active in test-mode 18, see Section
17.3) or in the PLL control register (Section 12.6.9)

- Step through entries in Table 12.13, using the ClkOutCtrl[*] pins (active in test-mode 18, see Section 17.3) or
the PLL control register, to bring out all possibilites listed. Depending on tester capabilities, check for presence of
a toggling LVDS signal, check duty cycle, and check frequency.

12.5.5 DDR ODT & Drive Strength Parametric Test (test mode 19)

Similar to normal operation, boundary scan is used for parametric testing of the DDR PHY inputs & out-
puts with controllable drive strength (impedance) and controllable on die terminaion (ODT). In this mode the
test sdi[99:88] & test sdo[99:88] pins are used to control the drive impedance settings, the ODT termination set-
tings, and the ODT (read) termination enable for both instances of Ddp. In addition, the results of the impedance
calibration block for the 2 instances of Ddp are available. See Section 17.3 for detail on test mode 19 pin overrides.
Because this test is performed with JTAG boundary scan functioning, the pins we overrride in this test mode must
NOT be boundary scan inserted (or they may have observe-only boundary scan insertion).

By making the results of the impedance calibration logic available at the chip pins, it is possible for the tester
to check the impedance calibration using at least one and possibly several values of precision external resistor.

12.5.6 Memory BIST and Repair (test mode 0, 20)

Memory BIST is typ[ically done in the normal operating mode; bypassing PLLs with test mode 20 is available
if needed. This path uses the JTAG 1149.1 TAP controller to access the Virage STAR Memory self test and repair
features. Two test-modes are provided, one with clocking from active PLLs, one with the active PLLs bypassed.

12.5.7 DDR Functional Test (test modes 0, 21)

It is expected that DDR functional tests will be done in normal operating mode. Test mode 21 is available if
we want to bypass all PLLs for DDR functional testing. DDR functional tests probably require code running on a
M5Kf core - specifics open here pending recommendation from the eSilicon DDR design team. We may need some
pretty fancy load board design to support full-speed testing of the DDR I/Os.

12.5.8 Slow DDR DLL Test (test mode 22) (whether all DLL tests will be used in
mfg. test is still open)

Note that both DLL test modes have a special set of pin overrides to allow the tester direct control over the
DLLs. See Section 17.3

12.5.8.1 DLL low speed test 1 (DLL vendor recommended)

Control Slave Input, Observe Slave Output.

1. set DLL BYPASS SLAV= DLL FORCE INPUT= 1.

2. hold DLL in reset

3. set slave ADJ[] to max value

4. set TSTCTRL[2:0]=3, TSTCTRL[5:3]=3 (TSTCLK1= slave0 out; TSTCLK2= slave1 out).

5. check that slave output is a buffered version of the slave input. This test can be performed by either applying
an oscillating input and observing an oscillating output, or by setting the input to constant values and observing
the same values at the output (in our case, this observability is accomplished through the DLL tstclk mux4 by
selecting the slave outputs onto TSTCLK1/TSTCLK2 and verifying that the CLK M90 is present. If we want a
constant value on the slave0 input, this can only be accomplished by holding CLK M90 either high or low, which
would also appear to be ok since the DLL is held in reset).

May 14, 2014 610 Rev 51328

SiCortex Confidential 12.5. DFT AND TEST SUPPORT

12.5.8.2 DLL low speed test 2 (DLL vendor recommended)

Check Master Through TSTCLK Outputs.
1. set DLL BYPASS SLAV= DLL FORCE INPUT= 1.
2. hold DLL in reset
3. set MADJ[] to max value
4. set TSTCTRL[2:0]=0, TSTCTRL[5:3]=1 (TSTCLK1= ref pd; TSTCLK2= fb pd).
5. check that TSTCLK1 & TSTCLK2 are buffered version of RCLKI.

12.5.9 Fast DDR DLL Test (test mode 23) (whether all DLL tests will be used in
mfg. test is still open)

Note the both DLL test modes have a special set of pin overrides to allow the tester direct control over the
DLLs. See Section 17.3

12.5.9.1 DLL High Speed Test 1

DLL vendor recommended test:
1. set DLL BYPASS SLAV= DLL FORCE INPUT= 1.
2. hold DLL in reset.
3. set RCLKI to lowest operating frequency required.
4. set MADJ[] to a nominal value.
5. wait 1us for the analog control to reset
6. release reset, wait 500 RCLKI cycles for the DLL to lock.
7. set TSTCTRL[2:0]=0, TSTCTRL[5:3]=1 (TSTCLK1= ref pd; TSTCLK2= fb pd).
8. check that TSTCLK1 & TSTCLK2 have closely aligned rising and falling edges.

12.5.9.2 DLL Functional Slave Test

Recommended by eSilicon:
1. set DLL BYPASS SLAV= DLL FORCE INPUT= 1
2. hold DLL in reset.
3. set RCLKI to 400MHz.
4. set MADJ[7:0] to 184 (0xb8).
5. wait 1us for the analog control to reset.
6. release reset, wait 500 RCLKI cycles for the DLL to lock.
7. set TSTCTRL[2:0]=3, TSTCTRL[5:3]=3 (TSTCLK1= slave0 out; TSTCLK2= slave1 out)
8. set ASIC pins: DDR DQSP[8:0]=400MHZ, DDR DQSN[8:0]=(˜(400MHz)). (this is the input to slave1;

slave0 input= CLKM90= RCLKI).
9. set ADJ0[7:0]= 0; ADJ1[7:0]= 0; (slave0 delay= slave1 delay= 562 ps).
10. check the phase relationship of TSTCLK1 & TSTCLK2 relative to RCLKI (i.e. the input clock in step ’3’

above from the tester). Save this to variables phase tstclk1 0, phase tstclk2 0.
11. set ADJ0[7:0]= 92; ADJ1[7:0]= 92; (do not reset the DLL). (slave0 delay= slave1 delay= 1812 ps).
12. check the phase relationship of TSTCLK1 & TSTCLK2 relative to RCLKI. Save this to variables phase tstclk1 1,

phase tstclk2 1.
13. compare the saved variables:
result0= phase tstclk1 1 - phase tstclk1 0;
result1= phase tstclk2 1 - phase tstclk2
14. pass/fail: result0 & result1 should both be approx. 1250ps. Note: this test is accomplished on the tester

by running one continuous pattern, as follows:
a. apply signals
b. run loop and find measured values 0.
c. break loop.
d. change ADJ[] signals.
e. run loop and find measured values 1.
f. break loop.
g. compare the measured values 0 and 1.
h. pass fail the measured variables.

May 14, 2014 611 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

12.5.10 PCI Functional Tests (test modes 0, 24, 25, or 26)

Loop-back / PRBS tests as described in the PCIe PHY documentation. These can be performed in the normal
operating mode of the chip, with all PLLs for non-PCI clocks bypassed (and potentially inactive - test mode 24),
with the AB pci ref clk PLL bypassed (test mode 25) and, optionally, the Synopsys PCIe PHY PLL bypassed as
well (test mode 26).

12.5.11 Fabric Transceiver Functional Test (test modes 27, 28)

Testing and configuration of the Fabric Transceivers is via the ICE9 Serial Control Bus linkage on the SysChain.
Most likely, this will be perfomed in a mode (27) which enables the fabric link PLLs in operational mode and drives
all other clocks with the test clock input (CCLK, pci ref clk, and DCLK PLL is in bypass mode). This test can
also be performed in the normal operating mode of the chip or with the sclk PLL bypassed.

For a description of the path to load status into the link control registers see Section ??, and the link control
register descriptions in Section 2.20.

12.6 SysChain

In operation, the ICE9 chip provides a system control scan chain interface (SysChain) to the Module Service
Processor (MSP). The MSP uses this chain to load boot code into the ICE9 chip, enable and monitor clocks, assert
and release internal reset signals and enable each of the chip’s subsystems. The SysChain is also used to read status
from the chip and communicate with the processor core EJTAG interfaces. The MIPS EJTAG features are quite
powerful and allow almost all of the operations normally obtained with an in-circuit emulator. See the MIPS 5Kf
EJTAG specification for further information.

The SysChain functions use the IEEE-JTAG 1149.1 protocol, but the SysChain is not a test feature. It is
provided for maintenance and management of the ICE9 chip: JTAG just happens to be a handy protocol to
provide this feature. All SysChain chip pins are prefixed with “sch ” and only those pins related to the SysChain
carry the “sch ” prefix.

Note that in order to be consistent between the various TAPs, the bit numbering convention for all SysChain
TAP registers is MSB closest to TDI, while LSB is closest to TDO.

The SysChain Test Access Port (TAP) consists of eight JTAG controllers wired in series, as shown in Figure
12.7. The first (nearest TDI) is the PCI-Express TAP controller, which has an 8 bit wide Instruction Register
(IR). Next is the SysChain TAP controller, which has a 5 bit wide IR. The remaining six controllers are the
MIPS EJTAG TAPs, each of which has a 5 bit wide IR. This presents a composite SysChain TAP IR width of
8+5+(6×5) = 43bits. To complicate matters further, on the ICE9 module the E-Silicon JTAG chain is also wired
in series in front of the SysChain, see section 12.6.15 and Figure 12.8. Therefore the TOTAL Length of the SysTap
IR is:

SysTap IR Length: 18+ 8+ 5+(6×5)= 61 bits.

Note that for all descriptions that follow, the COMPLETE JTAG chain is accounted for. Thus IR length of the
System TAP chain includes both the externally (module) wired JTAG as well as the SysChain JTAG.

Each TAP controllers’ IR selects which User-defined Data Register (UDR) is connected between that TAP’s
Test Data Input (TDI) and Test Data Output (TDO) signals. All IR selectable UDR’s are documented in section
12.6.5. Note that the relative position of each UDR stays they same, that is, first the selected E-Silicon UDR,
followed by the PCI-Express UDR, followed by the ICE9 SysChain UDR, then the six MIPS EJTAG UDRs. Also
note that the width each UDR occupies in the chain varies with the UDR selected.

Typically, SysChain accesses will be confined to a UDR in one TAP controller. The MSP will select which TAP
and UDR it wishes to access during the initial IR scan, placing the other TAPs into the JTAG BYPASS mode.
When a UDR is being sampled, it is up to software running on the MSP to insure that the proper data values
are shifted into this UDR during JTAG Capture-Shift-Update-DR operations to prevent signals from inadvertently
changing.

By wiring the TAP controllers in series there is a small amount of overhead introduced when shifting a particular
UDR. Again, referring to Figure 12.7, notice that any E-Silicon UDR has eight downstream TAP controllers that
in the best case are in bypass mode. This introduces eight bits of prefix data to any E-Silicon UDR being shifted
out. For any PCI-Express UDR the overhead is one bit less and for any SysChain UDR the overhead is two bits

May 14, 2014 612 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

less, since there are only the six MIPS cores downstream of it. When accessing a MIPS Core UDR, the number of
overhead bits will vary depending upon which core is being accessed, see Figure 12.7. When shifting data into a
UDR the situation is reversed. In either case, the MSP must remember what UDRs have been configured on the
chain in order to know their relative positioning.

12.6.1 SysChain Ordering Rules

A write to a syschain register may not immediately take effect, there may be downstream logic that requires
extra syschain clocks for the write to complete. If software requires a write to have been completed before doing
something else, it must follow the normal system ordering rule, namely read the register back. This read will insure
the write has been completed.

12.6.2 Vregs Package

Package

chip lbs spec

Attributes

-public rdwr accessors

12.6.3 SysChain TAP Constants

Defines

SYSTAP
Constant Mnemonic Definition

32’d61 IR LENGTH System TAP instruction length

32’d43 SCH IR LENGTH System Chain instruction length

32’d18 JTAG IR LENGTH ESI JTAG TAP controller’s instruction length

32’d8 PCI TAP IR LENGTH PCIe TAP controller’s instruction length

32’d5 SCH TAP IR LENGTH SCH TAP controller’s instruction length

12.6.4 SysChain TAP Enumeration

This enumeration allows code to select which TAP is to be operated upon. Software should assume the taps
are layed out in the order specified by this enum; see R SysTapInstrReg for that information as well.

Enum

SysChainTaps
Constant Mnemonic Product Definition

5’h0 ESI eSilicon TAP
5’h1 PCI PCI-Express TAP
5’h2 SCH SysChain TAP
5’h3 CPU2 CPU 2 EJTAG TAP
5’h4 CPU0 CPU 0 EJTAG TAP
5’h5 CPU1 CPU 1 EJTAG TAP
5’h6 CPU3 CPU 3 EJTAG TAP
5’h7 CPU5 CPU 5 EJTAG TAP
5’h8 CPU4 CPU 4 EJTAG TAG

Enum

SysChainTapsTwc

May 14, 2014 613 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

sch_tms

sch_tck

sch_tdi

PCIExpress
TAP

Controller

SysChain
TAP

Controller

sch_tdo

P2 EJTAG
TAP

Controller

P0 EJTAG
TAP

Controller

P1 EJTAG
TAP

Controller

P3 EJTAG
TAP

Controller

P5 EJTAG
TAP

Controller

P4 EJTAG
TAP

Controller

Figure 12.7: SysChain TAP Connections

May 14, 2014 614 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

Constant Mnemonic Product Definition

5’h0 ESI TWC9A+ eSilicon TAP
5’h1 PCI TWC9A+ PCI-Express TAP
5’h2 SCH TWC9A+ SysChain TAP
5’h3 CPU2 TWC9A+ CPU 2 EJTAG TAP
5’h4 CPU0 TWC9A+ CPU 0 EJTAG TAP
5’h5 CPU1 TWC9A+ CPU 1 EJTAG TAP
5’h6 CPU3 TWC9A+ CPU 3 EJTAG TAP
5’h7 CPU5 TWC9A+ CPU 5 EJTAG TAP
5’h8 CPU4 TWC9A+ CPU 4 EJTAG TAG
5’h9 CPU6 TWC9A+ CPU 6 EJTAG TAG
5’ha CPU7 TWC9A+ CPU 7 EJTAG TAG
5’hb CPU8 TWC9A+ CPU 8 EJTAG TAG
5’hc CPU9 TWC9A+ CPU 9 EJTAG TAG

note: twc9 order TBD

12.6.5 System TAP Instructions

Description

The System TAP instruction enumerations can be loaded into their respective JTAG TAP Controller IRs to
select any one of the UDRs listed. Each UDR is documented further in the sections that follow. There is one set of
enumerations per TAP Controller. Only the ICE9’s SysChain TAP enumerations are fully described in this spec.
The remaining TAPs are fully documented in their respective specifications.2

The SysTapEsiInstr enumeration below is a special case. The E-Silicon TAP IR is only 18 bits wide, but the
enumerations are specified as 26 bits wide to accommodate unique enumerations for DR’s of different sizes using a
single IR encoding. This is needed because the E-Silicon TAP supports an IEEE P1500 TAP controller as one of
the devices that can be connected to its scan chain. The P1500 can connect DRs of different sizes depending upon
what was written to the JPC or SMS IR, even though in each case the E-Silicon IR TAP encoding is the same.
Thus the P1500 breaks the typical one-to-one correlation between the E-Silicon TAP IR selected and the associated
DR length. In order to avoid maintaining state information in software to deal with the P1500; the enumerations
in this table were widened to allow software to specify directly the context of which JPC or SMS WDR is being
selected during the current scan operation. Note that in every case the least significant 18 bits of the encodings are
identical. This is what is shifted into the E-Silicon TAP IR. The remaining 8 bits are not scanned into the TAP,
but used by software to indicate the length of the associated DR register.

For the ICE9, there are important deviations from the JTAG Standard within the E-Silicon TAP. The E-Silicon
TAP uses an inverted TCK internally. When connected to JTAG scan chains that do not use the inverted TCK,
this has the side-effect of inducing one extra clock of delay to the shift chain across the E-Silicon TAP. Therefore
shifting data into or out of scan registers within the E-Silicon TAP require one extra TCK be inserted ahead of the
shift. In the special case of reading the SMS 512K Test Algo. or Status Registers the E-Silicon TAP requires two
extra TCKs be inserted prior to shifting data out of the register.

In addition, all JPC and SMS WDR registers shift in a direction opposite of the normal IEEE JTAG standard,
having their MSB connected to TDO and LSB connected to TDI instead of the other way round. Thus the contents
of these registers may need to be bit-swapped, depending upon how a given JTAG bus master shifts its scan chain.

Enum

SysTapEsiInstr

Constant Mnemonic Definition (TapSize) (Capture?) (Update?)

26’h00 00000 BYPASS0 Bypass 1 N N

26’h00 3FFFE IDECODE Device Identification Register* 32 Y N

26’h00 3FFFF BYPASS Bypass 1 N N

2For the E-Silicon JTAG TAP see section <tbd> entitled <tbd> in the document <tbd>. For the PCI-Express JTAG TAP see
Section 7.2 entitled “JTAG Interface” in the document, PCIe1TM90mm PHY Databook. For the MIPS EJTAG TAP see Chapter 10
entitled “EJTAG Debug Feature” in the MIPS64TM5KTMProcessor Core Family Software User’s Manual.

May 14, 2014 615 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Constant Mnemonic Definition (TapSize) (Capture?) (Update?)

26’h00 3FC7A SELECT JPC WIR Select JPC WIR 6 N Y

26’h00 3FD7A SELECT JPC WDR Select JPC WDR 5 Y Y

26’h01 3FD7A SELECT JPC WDR SMSNUM Select JPC SMS Num Register 5 Y Y

26’h02 3FD7A SELECT JPC WDR BYPASS Select JPC Bypass Register 1 N N

26’h00 3FE7A SELECT SMS WIR Select SMS WIR 6 N Y

26’h00 3FF7A SELECT SMS WDR Select SMS WDR 6 Y Y

26’h01 3FF7A SELECT SMS WDR TBX32K Select SMS 32K Test Algo. Reg 234 Y Y

26’h02 3FF7A SELECT SMS WDR TBX512K2P Select SMS 512K2P Test Algo. Reg 556 Y Y

26’h03 3FF7A SELECT SMS WDR TBX512K1P Select SMS 512K1P Test Algo. Reg 308 Y Y

26’h04 3FF7A SELECT SMS WDR STS32K Select SMS 32K Status Reg. 6 Y N

26’h05 3FF7A SELECT SMS WDR STS512K Select SMS 512K Status Reg. 6 Y N

26’h06 3FF7A SELECT SMS WDR BYPASS Select SMS Bypass 1 N N

26’h00 3FFE8 EXTEST Extest 1 (?TBD)

26’h00 3FFF8 SAMPLE Sample 1 (?TBD)

26’h00 3FFF8 PRELOAD Preload (same value as Sample) 1 (?TBD)

26’h00 3FFCF HIGHZ Highz 1 (?TBD)

26’h00 3FFEF CLAMP Clamp 1 (?TBD)

<TBD - Add the remaining E-Silicon TAP Instructions>
* = Test-Logic-Reset Default

Enum

JpcSms

Attributes

-descfunc
Constant Mnemonic Product Definition
5’h1 BBS chip.bbs
5’h2 CAC0 chip.ps0.cac
5’h3 CAC1 chip.ps1.cac
5’h4 CAC2 chip.ps2.cac
5’h5 CAC3 chip.ps3.cac
5’h6 CAC4 chip.ps4.cac
5’h7 CAC5 chip.ps5.cac
5’h8 COHO chip.coho
5’h9 COHE chip.cohe
5’ha CPU0 chip.ps0.cpu.m5kf
5’hb CPU1 chip.ps1.cpu.m5kf
5’hc CPU2 chip.ps2.cpu.m5kf
5’hd CPU3 chip.ps3.cpu.m5kf
5’he CPU4 chip.ps4.cpu.m5kf
5’hf CPU5 chip.ps5.cpu.m5kf
5’h10 DDRE chip.ddre.ddi
5’h11 DDRO chip.ddro.ddi
5’h12 DMA chip.dma
5’h13 FSW chip.fsw

Enum

SysTapPciInstr

Constant Mnemonic Definition (TapSize) (Capture?) (Update?)

8’h01 IDECODE Device Identification Register* 32 Y N

May 14, 2014 616 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

Constant Mnemonic Definition (TapSize) (Capture?) (Update?)

8’h0D USERCODE User Code Register 32 Y N

8’h31 CRSEL Control Register 18 Y Y

8’h3D APUCRSEL APU Control Register 18 Y Y

8’hA1 OVRDREG OVRD Register 45 Y Y

8’hAD EXTEST Extest 1(?TBD)

8’hC1 EXTEST TRAIN Extest training 1(?TBD)

8’hCD EXTEST PULSE Extest pulse 1(?TBD)

8’hF1 PRELOAD Preload 1(?TBD)

8’hF1 SAMPLE Sample 1(?TBD)

8’hFF BYPASS Bypass (all unused codes are bypass) 1

* = Test-Logic-Reset Default

Enum

SysTapSchInstr

Constant Mnemonic Product (RegName) Definition (TapSize) (Capture?) (Up

5’h00 BYPASS0 Bypass 0 1

5’h01 IDECODE R SysTapIDecode Device Identification Register* 32 Y

5’h08 PLL R SysTapPll PLL Control Register 64 Y

5’h09 RESET R SysTapReset Reset Control Register 64 Y

5’h0A CPUDINT ICE9A R SysTapDint CPU Debug Interrupt Control Register 8 Y

5’h0B SMSBIST R SysTapSmsBist SMS RAM BIST Control Register 16 Y

5’h0C SCB R SysTapScb Serial Configuration Bus Interface Register 64 Y

5’h0D ATNMSP R SysTapAtnMsp Attention MSP Register 32 Y

5’h0F MEMINIT TWC9A R SysTapMemInit Memory Zero Register 32 Y

5’h10 SCB64 TWC9A R SysTapScb64 Serial Configuration Bus 64-bit access Register 104 Y

5’h1F BYPASS Bypass 1

* = Test-Logic-Reset Default

Enum

SysTapCpuInstr

Constant Mnemonic Definition (TapSize) (Capture?) (Update?)

5’h01 IDECODE Device Identification Register* 32 Y N

5’h03 IMPCODE Implementation Register 32 Y N

5’h08 ADDRESS Address Register 36 Y Y

5’h09 DATA Data Register 64 Y Y

5’h0A CONTROL EJTAG Control Register 32 Y Y

5’h0B ALL Address, Data and EJTAG Control Registers 132 Y Y

5’h0C EJTAGBOOT Forces Debug Exception after Reset. 1

5’h0D NORMBOOT Execute reset handler after Reset. 1

5’h0E FASTDATA Data and Fastdata Registers 65 Y Y

5’h1F BYPASS Bypass 1

* = Test-Logic-Reset Default

May 14, 2014 617 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

12.6.6 System TAP Instruction Register

Description

The System Test Access Port Instruction Register consists of the all JTAG TAP IRs concatenated together.
This is used only in ICE9, for TWC9 see R SysTapInst.

Class

R SysTapInstrReg

Attributes

-tapSize=61

Bit Mnemonic Access Reset Product Definition

60:43 Esi W 1 E-Silicon TAP Instruction Register
42:35 Pci W 1 PCI Express TAP Instruction Register
34:30 Sch W 1 System Chain TAP Instruction Register
29:25 Cpu2 W 1 CPU 2 TAP Instruction Register
24:20 Cpu0 W 1 CPU 0 TAP Instruction Register
19:15 Cpu1 W 1 CPU 1 TAP Instruction Register
14:10 Cpu3 W 1 CPU 3 TAP Instruction Register
9:5 Cpu5 W 1 CPU 5 TAP Instruction Register
4:0 Cpu4 W 1 CPU 4 TAP Instruction Register

12.6.7 System TAP Instruction Register for TWC9

Description

The System Test Access Port Instruction Register consists of the all JTAG TAP IRs concatenated together.
This is used only in TWC9, for ICE9 see R SysTapInst.

Class

R SysTapInstrTwc

Attributes

-tapSize=81

Bit Mnemonic Access Reset Product Definition

80:63 Esi W 1 TWC9A+ E-Silicon TAP Instruction Register
62:55 Pci W 1 TWC9A+ PCI Express TAP Instruction Register
54:50 Sch W 1 TWC9A+ System Chain TAP Instruction Register
49:45 Cpu2 W 1 TWC9A+ CPU 2 TAP Instruction Register
44:40 Cpu0 W 1 TWC9A+ CPU 0 TAP Instruction Register
39:35 Cpu1 W 1 TWC9A+ CPU 1 TAP Instruction Register
34:30 Cpu3 W 1 TWC9A+ CPU 3 TAP Instruction Register
29:25 Cpu5 W 1 TWC9A+ CPU 5 TAP Instruction Register
24:20 Cpu4 W 1 TWC9A+ CPU 4 TAP Instruction Register
19:15 Cpu7 W 1 TWC9A+ CPU 7 TAP Instruction Register
14:10 Cpu6 W 1 TWC9A+ CPU 6 TAP Instruction Register
9:5 Cpu9 W 1 TWC9A+ CPU 9 TAP Instruction Register
4:0 Cpu8 W 1 TWC9A+ CPU 8 TAP Instruction Register

May 14, 2014 618 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

12.6.8 Device Identification Register

Description

The Device Identification (IDECODE) Register contains the ICE9 and Sicortex device specific information in
the IEEE 1149.1 JTAG Standard format.

Class

R SysTapIDecode

Attributes

-tapSize=32

Bit Mnemonic Access Reset Type Definition

31:28 Version R pins Sicortex part version for the ICE9 device. Returns 1 for ICE9A0/ICE9B0,

2 for ICE9A1/B1, etc.

27:12 PartNumber R pins AddrProduct Sicortex part number for the ICE9 device. Always ICE9.

11:1 ManufId R SICORTEX AddrTapMfgr JEDEC derived IEEE 1149.1 manufacturer identifier for SiCortex

0 JtagOne R 0x1 IEEE 1149.1 JTAG required constant ’1’

12.6.9 PLL Control Register

Description

The PLL Control Register chain has one control and status register for each PLL on the ICE9. The registers
control the input signals described in Tables 12.2 and 12.3. The PLL Control Register chain also has a 3-bit register
for each of the 2 PLL groups (Pllsw & Pllne) that makes one of the clocks in the group observable through pins on
the chip. The order of the bits in the scan chain across the five PLLs and the two clock output control registers
is shown in the attribute table below. The reset values should be such that the PLLs run at their nominal system
speeds, to minimize the complexity of the ATE initialization sequence.

Class

R SysTapPll

Attributes

-tapSize=64

Bit Mnemonic Access Reset Type Definition

63 Reserved

62 IclkReset RW 1 PCI PHY and PMI Clock PLL Reset

61 IclkLock R 0 PMI Clock PLL Lock (1=locked, 0=unlocked)

60:58 Pllsw RW 0 Clock output control register (see Pllsw description below).

57:55 Pllne RW 0 Clock output control register (see Pllne description below).

54 D1clkReset RW 0 DDR1 Controller Clock PLL Reset.

53:49 D1clkDivf RW 23 DDR1 Controller Clock PLL Divisor Factor.

48:47 D1clkOutSel RW 1 DDR1 Controller Clock PLL Output Select.

46 D1clkBypClkSel RW 0 DDR1 Controller Clock PLL Bypass Clock Select

45 D1clkBypEnb RW 0 DDR1 Controller Clock PLL Bypass Enable.

44 D1clkLock R 0 DDR1 Controller Clock PLL Lock (1=locked, 0=unlocked).

43 D0clkReset RW 0 DDR0 Controller Clock PLL Reset.

42:38 D0clkDivf RW 23 DDR0 Controller Clock PLL Divisor Factor.

37:36 D0clkOutSel RW 1 DDR0 Controller Clock PLL Output Select.

35 D0clkBypClkSel RW 0 DDR0 Controller Clock PLL Bypass Clock Select

34 D0clkBypEnb RW 0 DDR0 Controller Clock PLL Bypass Enable.

May 14, 2014 619 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Bit Mnemonic Access Reset Type Definition

33 D0clkLock R 0 DDR0 Controller Clock PLL Lock (1=locked, 0=unlocked).

32 PciRefReset RW 0 PCI Reference Clock PLL Reset.

31:27 PciRefDivf RW 11 PCI Reference Clock PLL Divisor Factor.

26:25 PciRefOutSel RW 2 PCI Reference Clock PLL Output Select.

24 PciRefBypDiv2Enb RW 0 PCI Reference Clock Bypass Divide by 2 Enable.

23 PciRefBypEnb RW 0 PCI Reference Clock Bypass Enable.

22 PciRefLock R 0 PCI Reference Clock PLL Lock (1=locked, 0=unlocked).

21 SclkReset RW 0 Switch Fabric SERDES Clock PLL Reset.

20:16 SclkDivf RW 11 Fabric Switch and Links Clock PLL Divisor Factor.

15:14 SclkOutSel RW 0 Fabric Switch and Links Clock PLL Output Select.

13 SclkBypDiv2Enb RW 0 Fabric Switch and Links Clock PLL Bypass Divide by 2 Enable.

12 SclkBypEnb RW 0 Fabric Switch and Links Clock PLL Bypass Enable.

11 SclkLock R 0 Fabric Switch and Links Clock PLL Lock (1=locked, 0=unlocked).

10 PclkReset RW 0 Processor Clock PLL Reset Reset.

9:5 PclkDivf RW 14 Processor Clock PLL Divisor Factor.

4:3 PclkOutSel RW 0 Processor Clock PLL Output Select.

2 PclkBypDiv2Enb RW 0 Processor Clock PLL Bypass Divide by 2 Enable.

1 PclkBypEnb RW 0 Processor Clock PLL Bypass Enable.

0 PclkLock R 0 Processor Clock PLL Lock (1=locked, 0=unlocked).

The PLL control register chain also has a 3-bit register for each of the 2 PLL groups (Pllsw & Pllne) that makes
one of the clocks in the group observable through pins (test clk o h/l in Pllsw or pci ref clk h/l for Pllne) See
Table 12.13 below for a complete description of which clocks are made observable for each of these registers based
on the settings of these two registers.

For both Pllsw and Pllne, the reset default value causes the differential outputs to be tri-stated. With an
operating PCIe interface, an ICE9 would need to have the Pllne register set to select pci ref clk. For the ddr-clock
PLLs, we also allow for driving out the XOR of the in-phase and 90 degree phase shifted PLL outputs. This allows
for a crude measure of phase alignment of the 2 clocks; if they’re exactly 90 degrees out of phase, the XOR signal
will have a 50% duty cycle. Since we won’t use a real analog mixer for the XOR, the resulting signal will be only
a rough approximation to the ideal.

In all cases, what’s driven to the output mux & LVDS output cell is taken from very close to the PLL output,
i.e., near the root of the clock tree, not tapped off the end of the clock tree. The provided functionality is for testing
PLL operation, not the clock distribution network.

Bit Field Values Read/Write Value after Reset Description (Pllsw) Description (Pllne)
<2:0> 0 RW 0 select no output (HiZ) select no output (HiZ)

1 select sys clk o select pci ref clk
2 select no output (HiZ) select iclk (from PCIe PHY)
3 select sclk select pclk
4 select sclk x2 select cclk (pclk div2)
5 select d1clk select d0clk
6 select d1clk90 select d0clk90
7 select (d1clk .XOR. d1clk90) select (d0clk .XOR. d0clk90)

Table 12.13: Clock Output Control Register (2 copies)

12.6.10 Reset Control Register

Description

The Reset Control Register allows the MSP to assert resets and enables on a unit by unit basis. All reset signals
are SET after a hardware reset. All enables are CLEAR after a hardware reset. All reset and enable bits are
directly read upon a SysChain Capture-DR operation and directly written on an Update-DR.

May 14, 2014 620 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

There are two types of reset implemented by the Reset Control Register; Unit resets and Virage STAR Memory
System (SMS) resets. The Unit resets are used to initialize specific functional units within the ICE9. The SMS
resets are used to reset the Built In Self Test (BIST) status for all the SMS RAMs in the ICE9.

At power-on both Unit and SMS resets are asserted. The MSP will bring the ICE9 out of reset by first de-
asserting the SMS resets so that BIST can be performed on all RAMs that support it while keeping the Unit resets
asserted. In the ICE9, BIST is used not only for testing RAM but also to initialize some RAMs into a useful
state for system bring-up. During BIST, it is necessary that each functional unit that contains SMS RAM be held
in reset, to prevent improper operations from being induced by the BIST activities. Once BIST has successfully
completed, the MSP will bring the functional units out of reset by de-asserting the appropriate Unit reset bits as
part of system bring-up.

Restrictions

Whenever the MSP is changing more than one of these bits in a single Update-DR operation, it must not set
bits while clearing others. All multi-bit operations must be isotonic (all set or all clear). This restriction avoids
race hazards in downstream logic that may use combinatorial expressions made from more than one of these bits.

Class

R SysTapReset

Attributes

-tapSize=64

Bit Mnemonic Access Reset Product Definition

63:50 Reserved

49 Lac RW 1 TWC9A+ LAC reset. Prior to TWC9, this was ganged into the Scbm reset.

48 Pmi RW 1 TWC9A+ PMI reset. Prior to TWC9, this was ganged into the Scbm reset.

47:44 ProcSms6 RW 0x3F TWC9A+ Reset for Processor 9:6 SMS (Pclk). See ProcSms6.

(**) (**) Reserved. FIX; spread ProcSms6 and Proc6 to allow
room for CPU10-15.

43:40 Proc6 RW 0x3F TWC9A+ Reset for Processor 9:6. See Proc.

39 SmsClkEnb RW 1 SMS Clock Enable

38 Ddr0Sms RW 1 Reset for DDR0 controller SMS (D0clk).

37 Ddr1Sms RW 1 Reset for DDR1 controller SMS (D1clk).

36 CoheSms RW 1 Reset for COH and DDI even SMS (Cclk).

35 CohoSms RW 1 Reset for COH and DDI odd SMS (Cclk).

34 FabSwSms RW 1 Reset for Fabric Switch SMS (Sclk).

33 DmaSms RW 1 Reset for DMA Engine SMS (Cclk).

32 CswOclaSms RW 1 Reset for Central Switch OCLA SMS (Cclk).

31 L2CacSms RW 1 Reset for Level 2 Cache SMS (Cclk).

30 ScbmSms RW 1 Reset for SCBM SMS (Cclk).

29 BbsSms RW 1 Reset for BBS SMS (Cclk).

28 PciSms RW 1 Reset for PCI SMS (Iclk).

27:22 ProcSms RW 0x3F Reset for Processor 5:0 SMS (Pclk) [six resets, one per SMS]. See

also ProcSms6.

21 Dimm0 RW 1 Reset for DIMM0.

20 Dimm1 RW 1 Reset for DIMM1.

19 Ddr0 RW 1 Reset for DDR0 controller.

18 Ddr1 RW 1 Reset for DDR1 controller.

17 Cohe RW 1 Reset for COH and DDI even.

16 Coho RW 1 Reset for COH and DDI odd.

15 FabSw RW 1 Reset for fabric switch.

14 FabLn RW 1 Reset for fabric links.

May 14, 2014 621 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Bit Mnemonic Access Reset Product Definition

13 Dma RW 1 Reset for DMA engine.

12 Csw RW 1 Reset for Central Switch.

11 L2Cac RW 1 Reset for Level 2 Caches.

10 Scb RW 1 Reset for SCB. Prior to TWC9A, this also reset the BBS including

the OCLA.

9 I2c RW 1 Reset for I2C.

8 UartIoEnb RW 0 Enable for UART I/O.

7 Uart RW 1 Reset for UART.

6 Pci RW 1 Reset for PCI.

5:0 Proc RW 0x3F Reset for Processor 5:0 [six resets, one per processor]. See also

Proc6. This will reset all processor registers, excluding the

R IcetxTime register.

12.6.11 Memory Init Register

Description

The Memory Init Register allows the MSP to initalize on chip memories on a unit by unit basis. Memories are
NOT reset by default and the MSP must use this register to insure proper memory state.

Class

R SysTapMemInit

Attributes

-tapSize=32

Bit Mnemonic Access Reset Product Definition

31:26 TWC9A+ Reserved. (For extending CPUs to 15:10)
25:16 Cpu RW 0 TWC9A+ Init Processor 9:0. One per processor.
15:13 TWC9A+ Reserved.
12 Lac RW 0 TWC9A+ Init LAC.
11 Pmi RW 0 TWC9A+ Init PMI.
10 Ddr RW 0 TWC9A+ Init DDR0 + 1 controller (D1clk).
9 Cohe RW 0 TWC9A+ Init COH and DDI even (Cclk).
8 Coho RW 0 TWC9A+ Init COH and DDI odd (Cclk).
7 Fabsw RW 0 TWC9A+ Init Fabric Switch (Sclk).
6 Dma RW 0 TWC9A+ Init DMA Engine (Cclk).
5 CswOcla RW 0 TWC9A+ Init Central Switch OCLA (Cclk).
4 L2Cac RW 0 TWC9A+ Init Level 2 Cache (Cclk).
3 Scbm RW 0 TWC9A+ Init SCBM (Cclk).
2 Bbs RW 0 TWC9A+ Init BBS (Cclk).
1 Pci RW 0 TWC9A+ Init PCI (Iclk).
0 Done R 0 TWC9A+ Init busy. To initalize a memory, software writes the

appropriate bits one. This bit will then remain cleared
until all RAMs are finished, at which point it will read
as a one. Software must then zero this register. Once the
register is zero, the MSP has the option of initalizing
other memories.

May 14, 2014 622 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

12.6.12 Processor Debug Interrupt Register

Description

The Processor Debug Interrupt Control Register allows the MSP to send a Debug Interrupt (DINT) request to
one or more MIPS cores in the ICE9. The MIPS EJTAG Specification specifies that a debug interrupt is requested
when the DINT signal transitions from low to high.3 The associated MIPS core is allowed to synchronize this signal
to its own clock before detecting its rising edge. Section 8.2.2 of the specification also states that the DINT high
and low times must observe a minimum of 1uS in order to leave enough time for the CPU core to synchronize the
DINT signal to its internal clock domains. The DINT signal rise/fall times are also specified for a maximum of
3nS. The MSP and associated logic should observe these restrictions for bits in this register.

This register only exists in ICE9A. In ICE9B it was moved to R ScbDInt.

Class

R SysTapDint

Attributes

-tapSize=8

Bit Mnemonic Access Reset Product Definition

7 ICE9A Reserved.

6 CpuDintEnb RW 0 ICE9A Enable any processor or OCLA to send a debug interrupt to all processors.

5 Dint5 RW 0 ICE9A Processor Core 5 Debug Interrupt (on transition from 0 to 1).

4 Dint4 RW 0 ICE9A Processor Core 4 Debug Interrupt (on transition from 0 to 1).

3 Dint3 RW 0 ICE9A Processor Core 3 Debug Interrupt (on transition from 0 to 1).

2 Dint2 RW 0 ICE9A Processor Core 2 Debug Interrupt (on transition from 0 to 1).

1 Dint1 RW 0 ICE9A Processor Core 1 Debug Interrupt (on transition from 0 to 1).

0 Dint0 RW 0 ICE9A Processor Core 0 Debug Interrupt (on transition from 0 to 1).

12.6.13 SMS BIST Contol Register

Description

The SMS BIST Control Register allows the MSP to initiate BIST on all of the Virage SMS RAMs inside the
ICE9. To insure proper operation, BIST should only be initiated after every SMS reset has been de-asserted in the
Reset Control Register. SMS BIST performs RAM tests, loads the memory fuse map and performs initialization
on those RAMs that require specific data initialization prior to normal operation. This is important for Tag arrays
and some other memory structures that, because of the BIST requirement, can’t be initialized under reset. BIST
is activated via the Virage SMART signals; which are entirely separate from the P1500 port connected to the test
JTAG chains. The attribute table below shows the format of the register.

For chips installed in systems, all Virage BIST operations are completed while unit resets are asserted, see
12.6.10. This includes the INITIALIZE operation. The proper behavior for all components on the chip that have
RAM arrays is to clear all address registers to 0 while RESET is asserted and the RAM is not in INITIALIZE
mode. While RESET is asserted and the RAM is in INITIALIZE mode, the hardware should clear all locations to
a known and repeatable state. INITIALIZE and BITS commands should be ignored when RESET is not asserted.

The MSP prepares for Virage BIST by first clearing all of the SMS Resets in the Reset Control Register, making
sure that the Unit resets remain asserted to prevent unpredictable hardware operations while BIST is running. The
MSP then enables Virage BIST by asserting both SmartEnb and SmartRun bits in R SysTapSmsBist and then
de-asserting SmartEnb. BIST is complete for all SMS RAMs when the SmartDone bit is asserted. The MSP must
poll this bit to determine when BIST has completed. After BIST completion, the MSP can examine the SmartFail
bit to determine if BIST passed or failed. The MSP should be aware that one of the SMART failure modes is
the inability to complete and should timeout after a suitable polling period has elapsed and SmartDone has not
asserted.

3“EJTAG Specification”, Revision 3.10, MIPS Technologies document number MD00047.

May 14, 2014 623 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

SMART activity can be altered by writing to the other control bits in this register prior to setting the SmartRun
bit. For normal system bring-up the MSP should leave the other writable bits at their reset defaults. This allows
SMART testing to load the hardware programmed repair mask before running BIST across all SMS groups. De-
asserting the SMS CLK Enable bit in the Reset Control Register will inhibit BIST operation.

Class

R SysTapSmsBist

Attributes

-tapSize=16

Bit Mnemonic Access Reset Type Definition

15:9 Reserved

8 SmartDone R 0 SMART Done (0=not-done, 1=done).

7 SmartFail R 0 SMART Failure (only valid after SmartDone bit is set; 0=passed,

1=failed).

6 SmartReady R 1 BIST Group Done (signals when the current SMS BIST group has

finished).

5 CurrentError R 0 BIST Group Failure (signals when the current SMS BIST group has

failed).

4 RunBist RW 1 Run BIST as part of SMART testing.

3 HardRepair RW 1 Use hardware programmed repair mask (enable before BIST).

2 SoftRepair RW 0 Use software programmed repair mask (leave disabled).

1 SmartEnb RW 0 Enable SMART testing.

0 SmartRun RW 0 Runs SMART on transition to ’1’, clears SmartDone on transition

to ’0’.

12.6.14 Serial Configuration Bus Interface Register

Description

The Serial Configuration Bus (SCB) Interface Register allows the MSP to communicate with devices on the
SCB. All chip clocks need to be running when the SysChain accesses the SCB. In chip test mode we ensure this
by putting all but the fabric SERDES clocks in bypass mode. In a system we ensure this by either tying all clocks
into bypass mode to SCH TCK or by starting all the PLLs.

Any register on the SCB may be written from the SysChain. The SCB mechanism is particularly useful in
testing the fabric link hardware. The attribute table shows the layout of the SCB scan register. There is just one
SCB scan register on the ICE9 chip.

Class

R SysTapScb

Attributes

-tapSize=64

May 14, 2014 624 Rev 51328

SiCortex Confidential 12.6. SYSCHAIN

Bit Mnemonic Access Reset Type Definition

63:32 Data RW 0 Read/Write Data. On writes, data to be written. On reads, when

Busy is cleared, the read data.

31 Reset RW 0 Reset SCB slaves. Applied when Go set. On the next “Go”, before

sending the read or write transaction, first send a RESET. This is

a method of last resort - one short of asserting a real reset wire - to

allow hung slaves to be accessed.

30:2 Addr RW 0 Address. Applied when Go set.

1 Write W 0 Write, not read. Applied when Go set. Assert for writes, clear for

reads.

1 Busy R 0 Command busy. SCB sets this return on a“Go”and clears it when a

SysChain write completes or a read returns data. Overlaps allowed.

0 Go W 0 Go and start command. Must be a one for the SCB to process this

command. The SCB will then clear this bit in the response.

Class

R SysTapScb64

Attributes

-tapSize=104
Bit Mnemonic Access Reset Product Definition

103:99 TWC9A+ Reserved

98 Reset RW 0 TWC9A+ Reset SCB slaves. Applied when Go set. On the next “Go”, before

sending the read or write transaction, first send a RESET. This is

a method of last resort - one short of asserting a real reset wire - to

allow hung slaves to be accessed.

97 Busy R 0 TWC9A+ Command busy. SCB sets this return on a “Go” and clears it

when a SysChain write completes or a read returns data. Note

the R SysTapScb register has this bit overlapped with Go, here it

is separate.

96 Go W 0 TWC9A+ Go and start command. Must be a one for the SCB to process this

command. The SCB will then clear this bit in the response.

95 TWC9A+ Reserved.

94:66 Addr RW 0 TWC9A+ Address bits 30:2. Saved when Go set.

65 Write RW 0 TWC9A+ Write, not read. Applied when Go set. Assert for writes, clear for

reads.

64 Dword RW TWC9A+ Doubleword access. Applied when Go set. Indicates this transac-

tion is 64 bits instead of 32 bits. Note 32 bit transactions write and

return data in naturally aligned position, that is if Addr[2] is set,

then Data[63:32] is used.

63:0 Data RW 0 TWC9A+ Read/Write Data. On writes, data to be written. On reads, when

Busy is cleared, the read data.

12.6.15 MSP-Hosted Node Attention Register

R SysTapAtnMsp provides the MSP manipulated side of the MSP to node chip communication channel. When
used in conjunction with the node chip manipulated register R ScbAtnChip, two-way communication can be pro-
vided via the SysChain between software running on the MSP and software running on the node chip. See 10.14.12
for a more detailed description of the R ScbAtnChip register.

To send a 25-bit character to the chip, the MSP polls until SendVld is clear. The MSP then writes SendData
and writes a one to SendVld. To receive a 25-bit character, the MSP polls for RecvVld set, reads the data from
RecvData and then writes a one to RecvTaken.

Note that a register read or 8 SysChain clocks must occur after any write to this register for the write to take
effect (see 12.6.1).

May 14, 2014 625 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

Class

R SysTapAtnMsp

Attributes

-tapSize=32

Bit Mnemonic Access Reset Product Definition

31:30 ICE9A Reserved.

31 SendReq W1CS 0 ICE9B+ Send Data Request. Write one to set and indicate new send data

for chip. This will cause SendVld to assert.

30 TxAtnMask RW 0 ICE9B+ Transmit Attention Mask. Write one to indicate sys atn l pin should

be asserted if SendVld is clear, indicating new data may be sent. If

clear, sys atn l is not asserted for this reason. Note that SendVld

is clear in the idle steady state, so to prevent permanent attention

this bit should be cleared when there is no data to be sent. Overlaps

Allowed.

29 NonComAtn R 0 ICE9B+ Non-Communication Attention Request. Attention is required

for other then AtnMsp register reasons. A duplicate of the

R ScbAtnInt NonComAtn bit to avoid the MSP having to change

instruction registers in the fast path. (Note writing this bit has no

effect, so old ICE9A code that writes RecvAtn will NOP.)

29 RecvAtn RW 0 ICE9A Receive Attention Enable. Write one to indicate sys atn l pin should

be asserted if RecvVld is also asserted. If clear, sys atn l is never

asserted for this reason. Overlaps Allowed.

28 RecvTaken W1C 0 Receive Data Taken. Write one to send to chip indication that

RecvData was accepted, and clear RecvVld.

27 RecvVld R 0 Receive Data Valid. Valid flag from Chip, one indicates Data con-

tains new receive data. Cleared by writing one to RecvTaken.

26 SendVld RW1CS(*) 0 (See Text) Send Data Valid. ICE9A: RW1S; write one to set and indicate new

send data for chip. ICE9B+: Read only, write using SendReq in-

stead. BOTH: Read to indicate send data pending for chip. Cleared

when chip takes the data.

25:0 RecvData R 0 Receive Data. Overlaps SendData.

If RecvVld is set, returns the next data to be received from the

MSP. Note this is different data then that written.

25:0 SendData W 0 Send Data. Overlaps RecvData.
If SendVld is simultaniously being written with a one, enqueues new
send data for the chip, and sets SendVld.

If SendVld is not being written with a one, this is ignored. This

enables the MSP on a read of this register to set only bit 29 inbound,

and not recirculate other bits.

12.6.16 External JTAG Chains

Figure 12.8 shows how the SysChain and JTAG TAPs are connected on the CPU module. All nine ICE9 TAPs
are connected in series, and share common TRST, TCK, and TMS lines. TDI, TRST, and TCK are distributed
module-wide; all ICE9s see the same values of these signals at all times. TMS is separately distributed to each
ICE9 to facilitate manipulating a subset of the ICE9s on a module without having to place the others in reset or
bypass mode. TDO is individually multiplexed from each ICE9 to allow the MSP to receive a single ICE9’s serial
data even if multiple ICE9s are being scanned.

12.7 Global reset

The ICE9 chip implements a 2-level reset strategy. Hard-reset (normally asserted at power-on) is a chip pin.
To provide for reset of parts of the chip under module-service-processor control there are soft-reset bits from the

May 14, 2014 626 Rev 51328

SiCortex Confidential 12.7. GLOBAL RESET

3

 m
odule

Chip Boundary

M
SP

JTAG_TDO

SCH_TCK
SCH_TMS

JTAG_TCK

in

out

out JTAG_TDI

SCH_TRST_L

JTAG_TRST_L

SCH_TDI

JTAG_TMS

SCH_TDO

PCIe, SysChain, and MIPS EJTAG

TAPs

TAP
ESilicon JTAG

3

3

connections

Figure 12.8: ICE9 E-Silicon and SysChain JTAG TAP Connections

May 14, 2014 627 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

SysChain’s Reset Control Register (See Section 12.6.10.) which OR into the reset distribution for the relevant parts
of the chip. Distribution of hard-reset assertion is asynchronous; distribution of the de-assertion is synchronous
within a PLL clock domain. Hard-reset is distributed to all resetable logic on the chip. Assertion of the soft-
resets is synchronous to the SysChain TCLK scan clock, which is asynchronous w.r.t. the clocks for the logic
being reset. De-assertion of the soft-resets is synchronous after passing through the dual-rank synchronizer for the
appropriate clock domain, like the de-assertion of hard-reset. Perhaps the Figure 12.9 will make things clear. The
RCREG RESET CCLK[*] and PLLCREG RESET PLLC pins are signals from the SysChain reset vector (section
12.6.10), hence they are in the SysChain TCLK scan clock domain. The 2 flops form a dual-rank synchronizer to
bring the signals into, in this case, the cclk domain. The gates downstream provide an asynchronous path around
the flops for the asserting edge, so that only the deasserting edge is synchronous in the cclk domain. For the
PLL resets (RESET PLL C in the figure), both edges must be asynchronous, since the clock will not be running
to clock the flops until the deassertion of reset propagates to the PLL.

CCLK

n
QD D Q

similar circuitry for domains D, S, I and P
SCAN_MODE

SYS_RST

n
n

n
RCREG_RESET_CCLK[n−1:0] RESET_C[n−1:0]

RESET_PLL_C
PLLCREG_RESET_PLLC

Figure 12.9: Reset Distribution for the CClk domain

For logical clarity the figure is drawn without any indication of signal assertion level. RESET C[*] is the normal
reset and would be used for most logic.

There will be a number of reset signals, one for each part of the chip which needs to be reset separately under
control of the module service processor. The distribution of resets and clocks are shown in Figure 12.10.

12.8 Boot Timeline

This section describes the order of system bring-up from outlet-power.4 Specifics on power sequencing, etc, may
be found in the system specification.

12.8.1 SSP Boot Timeline

1. On power being applied to the cabinet, the first thing to power up and boot is the System Service Processor.

2. Whether automatically or on command from an administrator, the SSP enables power to the CPU modules.

12.8.2 MSP Boot Timeline

1. Once power is applied, the hard reset pin, sys rst l, and sch trst l are asserted to every ICE9. This is done
with hardware even before the MSPs (module service processors) boot. The sys clk is insured to be running

4Other documents reference the step numbers in the sections that follow. It is highly recommended that the ordering of existing
steps remain unchanged. Adding steps to the end of a list is safe, but if additional steps must be inserted into the middle of a list, add
them at an indented level as a,b,c,... etc. If a step must be removed from a list, keep the step, but replace its text with an italicized
comment; such as: This operation removed; continue to the next step.

May 14, 2014 628 Rev 51328

SiCortex Confidential 12.8. BOOT TIMELINE

Lbs

s
y
s
_
p
a
d
_
r
s
t
_
l

t
e
s
t
_
p
a
d
_
m
o
d
e
_
e
n

t
e
s
t
_
p
a
d
_
m
o
d
e
[
2
:
0
]

t
e
s
t
_
p
a
d
_
s
c
a
n
_
e
n

Pll_control signals

Bbs

Ps0 Ps1 Ps2

reset_e1pr_l[0]

reset_e1pr_l[1]

reset_e1pr_l[2]

Ps3 Ps4 Ps5

reset_e1cr_l[3]
reset_e1pr_l[3]

reset_e1pr_l[4]

reset_e1pr_l[5]

Dma

Fsw

(PCIe, UART,
I2C)

Csw CoheCoho

D
d
r
e

D
d
r
o

reset_e1cr_l[7]

reset_e1dor_l

reset_e1cr_l[5]

reset_e1sr_l[0]

reset_e1sr_l[1]

cclk

pclk

Fl

(5kf + L2 Cache)

reset_e1ir_l (reset, sysTAP,
sysControlReg)

PLLE &
LVDS Pads

sy
s_

cl
k_

e_
h

sy
s_

cl
k_

e_
l

te
st

_p
cl

k_
*

te
st

_c
cl

k_
*

te
st

_i
cl

k_
*

te
st

_d
0c

lk
_*

d0clk

pci_ref_clk

PLLW &
LVDS Pads

d
1
c
l
k

sclk

sy
s_
cl
k_
o_
h

sy
s_
cl
k_
o_
l

te
st
_s
cl
k_
h

te
st
_s
cl
k_
l

te
st
_d
1c
lk
_h

te
st
_d
1c
lk
_l

r
e
s
e
t
_
e
1
c
r
_
l
[
6
]

reset_e1cr_l[4]

reset_e1cr_l[2:0]

reset_e1der_l

Figure 12.10: Reset & Clock distribution block diagram with real net names

May 14, 2014 629 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

so that sys rst l propagates throughout every ICE9 as described below.

2. Each MSP boots from its internal flash. The MSPs request a kernel and application from the SSP, which
serves them via TFTP or similar mechanism.

3. Each MSP turns on the DC-DC converters that power the ICE9 chips on its module.

4. Each MSP begins an orderly bring-up of all the ICE9 chips on its module, in parallel.

12.8.3 Pre-DRAM Boot Timeline

SCH_TCK

2 3 41

SYS_RST

SYS_CLK

internal clock

internal reset

Figure 12.11: Reset Timing

1. The power-on assertion of sys rst l at the ICE9 has two effects on the ICE9. First, the PLL reference clocks,
sys clk e h/l and sys clk o h/l, bypass their respective PLLs, so that all domains are clocked by sys clk. Since
most ICE9 resets are pipelined and are therefore effectively synchronous, this ensures that reset propagates
throughout the chip. Second, sys rst combinationally bypasses the sys chain reset register, so that reset is
applied without the need for any sys chain scan activity. In figure 12.11, “internal reset” represents a reset
signal in any clock domain.

2. At some later time (sch tck activity block 1 in figure 12.11), the MSP resets the sys chain TAP controller
and the six EJTAG TAP controllers, which share a common 4-wire TAP, by issuing two sequences of five
TCK pulses with TMS asserted, followed by one TCK pulse with TMS de-asserted. This sequence guarantees
that all TAP controllers in the sys chain are reset and left in the RUNTEST/IDLE state and, by running the
sequence twice, that the Virage Fuse-ROM values have been properly loaded. Every TCK pulse with sys rst l
asserted initializes the PLL, Reset, CPU Debug Interrupt, and SMS RAM BIST control registers, and the
SCB interface and Attention MSP registers, to their reset values.

3. Subsequently, the MSP stops asserting sys rst l. However, all internal resets remain asserted because of the
initialization of the Reset control register. The PLLs are no longer bypassed with sys clk; each will run at
a frequency determined by the values with which the PLL Control register was initialized. The allows RAM
BIST activity via ATE to proceed at an appropriate speed.

4. The MSP must poll the lock status of each PLL until either its lock bit is set or the MSP times out waiting
for lock. This is shown as SCH TCK activity block 2 in figure12.11. Prior to polling for lock, the MSP may
at this time make changes to the PLL control values. The correct method for changing any PLL control value
is to first assert reset to the PLL to be changed, changing the control value and then de-asserting reset to
the PLL followed by polling its lock bit for assertion. Setting the PLL control registers can be skipped if the
values established in step 3 are the desired values, however in all cases the MSP must poll each PLL for lock
before proceeding to the next step.

5. Prior to Virage BIST, the MSP deasserts all SMS Resets in the Reset Control Register, leaving all normal
resets asserted. The MSP then enables Virage BIST and waits for the results and reads them back (see section
12.6.13 for details). After successful BIST completion, the Virage RAMs will have been cleared and the MSP
de-asserts the SMS CLK Enable bit in the Reset Control Register to prevent further BIST operation. This
is shown as SCH TCK activity block 3 in figure12.11.

May 14, 2014 630 Rev 51328

SiCortex Confidential 12.8. BOOT TIMELINE

(a) After Virage BIST, the MSP must bring the ICLK PLL out of reset. It is the only PLL that comes
up held in reset state by assertion of sys rst l. To bring the ICLK PLL out of reset, the MSP must
first insure that the PCI Reference Clock PLL is in lock (done in step 4 above). The MSP then must
write 3’b1 to bits <57:55> (the Pllne field) of the sys chain register R SysTapPll to insure that the PCI
Reference Clock is driven onto the ICE9 pins. The default value of this field after reset is 3’b0 which
would leave the PCI Reference Clock pins in HighZ mode.

(b) After the MSP has set the R SysTapPll register to deliver the PCI Reference Clock to the chip pins, it
then de-asserts the IclkReset bit in the PLL control register and polls the IclkLock bit for assertion. At
this point the ICLK PLL is operating normally and is no longer in reset.

6. The MSP sends an EJTAGBOOT instruction to each of the 6 processor EJTAG controllers. When reset is
released in a later step, this will override the default fetch from 1FC0000 at reset, and instead immediately
cause the CPU to take a debug exception and wait for instructions over EJTAG.

7. The MSP then deasserts the internal reset signals for all functional blocks (see 12.6.10). This is shown as
SCH TCK activity block 4 in Figure12.11.

(a) Note: UartIoEnb is left de-asserted. This will be bundled into whatever code the MSP uses to mux
Serial I/O to the ICE9s. Whenever a connection is opened to a particular ICE9, that chip’s UartIoEnb
will be asserted at that time. It will be de-asserted when the MSP closes the connection.

8. The MSP uses the SysChain/SCB interface to load the module number into R ScbChipNum (see 10.14.7.)

9. The MSP scan in of EJTAGBOOT in step 6 and release of reset in step 7 causes the CPUs to wait for EJTAG
instructions. The MSP sends the initial boot routine (boot0.s) to CPU 0 only and then force jumps it via
EJTAG to the start of the boot0 image.

10. CPU 0 begins running the boot0 image. The boot0 routine initializes the register file, TLB and caches and
copies the boot1 routine (boot1.s) from the MSP into the L2 cache. Boot0 then jumps to the boot1 image in
the L2 cache.

11. Boot1 begins executing from the L2 cache. At this point the only memory-system difference from normal
operation is that the DDI initializes in a mode which returns bogus data on reads; otherwise the normal
L1/L2 write-allocate would hang on the first miss.

12. CPU 0 starts a memory copy loop, which reads from the EJTAG debug region and writes the L2 cache.

13. The MSP sends the second boot image to CPU 0 (boot2), using the FASTDATA EJTAG command. This
requires ˜71 shifts per 64-bits of data, or ˜2.5 seconds for 256KB at 1 MHz sch tck. The entire image is
limited to the L2 cache size, or 256 KB; if this is exceeded the DRAM would need to be initialized before this
loop to prevent the L2 from creating victims.

14. The MSP boot image also includes configuration data for the boot process, including PCI-connected and
DRAM frequency information.

15. When the copy loop completes, CPU 0 executes the code. This image starts the next phase of the boot
process.

12.8.4 DRAM Boot Timeline

1. The newly installed cache code initializes DRAM. This includes reading the DIMM I2C configuration, pro-
gramming the controller, and testing/zeroing memory. (Of course, the code needs to be careful not to overwrite
or evict itself until it competes the memory copy. One alternative is to have stage one boot load at 31GB -
above where there will be memory.)

2. The code performs the BIOS-ish initalization required prior to kernel boot.

3. After DRAM is initialized, the boot0/boot1 step described for CPU 0 is repeated on CPUs 1-5. The download
copy loop steps for boot1 are skipped, as the boot1 image is already in the L2 cache. CPUs 1-5 jump directly
to boot1 at the end of boot0.

May 14, 2014 631 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

4. Now running from the caches, CPUs 1-5 enable interrupts and execute a WAIT instruction, which will put
them to sleep until they receive an interrupt from CPU 0 during kernel boot.

5. The kernel loader is copied into DRAM by CPU 0 from the MSP via the EJTAG FASTDATA command.
At the completion of the copy, the MSP force jumps the CPU 0 into the kernel loader. Unlike the previous
memory copy loops, the kernel loader performs decompression and checksumming of the kernel.

6. The MSP receives the compressed kernel image fromthe SSP and uses the EJTAG FASTDATA command to
transfer it to the kernel loader running on CPU 0.

7. Upon successful completion of the kernel download, it is executed.

12.8.5 Kernel Boot Timeline

1. The kernel performs its normal boot sequence.

2. When kernel boot is complete, CPU 0 sends a interrupt to CPUs 1-5, which releases them from WAIT.

3. The kernel asks the MSP to enable the watchdog timer. (Or, more correctly, switch from a very long wait-
for-boot timeout to a shorter heartbeat timeout.)

4. The fabric and DMA drivers initialize the fabric switch, links, and DMA engine as described below.

5. Login :)

12.8.6 Booting the Fabric Switch and Links

1. At power-on, the fabric links, fabric switch, and DMA are held in reset by bits in the R SysTapReset register.
Deassert reset to FSW (clear FabSw bit in R SysTapReset).

2. Configure the FSW registers through writes on the SCB. See the FSW chapter for details on each register. In
particular, in R FswBlockReset, deassert reset on all blocks. In R FswBlockEnable, enable all blocks. The
FSW is now ready to transfer packets to/from the links and DMA, but nothing will happen yet since the
links and DMA are still in reset.

3. Bring fabric links out of reset (clear FabLn bit in R SysTapReset).

4. Configure the FL registers through writes on the SCB. Bring up each link into MissionMode. See the Fabric
Link chapter for details.

At this point, the ICE9 can accept packets from its three upstream neighbors and send them to its three downstream
neighbors. The MSP or a processor can use out-of-band communication channels, watch packet statistics, set and
clear interrupts, etc. This ICE9’s DMA engine cannot send any packets because it is still in reset. Any packets
coming from upstream that are destined for the DMA flow through the fabric switch to the DMA RX port, which
because it is in reset, will accept the packets and drop them.

On nodes with BIST, DRAM and other failures preventing Linux boot, the MSP will be able to initalize the
fabric by this process using the SysChain/SCB alone (without any cpu core).

12.8.7 Booting the DMA Engine

It is assumed that the fabric switch and links are already initialized as described in the previous section.
For the processors to communicate with the fabric (other than reading and writing CSRs), they must boot the

DMA engine. The DMA engine must be configured by processors, because many of the configuration registers are
accessible only through the CSW.

1. Bring the DMA engine out of reset (clear Dma bit in R SysTapReset).

2. Configure the DMA engine

(a) Write zero to every location in R DmaDmem and R DmaImem.

(b) Write DMA microcode to R DmaImem and initial data to R DmaDmem from the DMA loader file.

May 14, 2014 632 Rev 51328

SiCortex Confidential 12.8. BOOT TIMELINE

(c) Initialize the DMA microcode application data as described in the Initialization section of the DMA
chapter. For example, the application needs the physical address of various queues and data structures.

3. Start the DMA Engine by setting all ThreadEnable bits in R DmaThreadSel.

4. Deassert reset to the DMA’s TX and RX ports in R DmaBlockReset. This allows packets to begin to flow
between the DMA and fabric switch.

12.8.8 Rebooting with Fabric Still Up

The ICE9 allows the fabric switch and links to be operated even while the rest of the node is being reset. As
long as the FabSw and FswLn bits of R SysTapReset are deasserted, the fabric switch and link will continue to
route fabric traffic. This allows the ICE9 to be rebooted without backing up the fabric. When software has decided
to reset the chip without affecting the fabric, the sequence of events is as follows:

1. Disable the crosspoint buffers in the fabric switch leading from DMA to the fabric transmitters by clearing
R FswBlockEnable bits for XB30, XB31, and XB32. This prevents any new DMA traffic from flowing into
the fabric. (Using R FswBlockEnable instead of R FswBlockReset stops traffic on clean packet boundaries.)

2. First shut down the DMA (cleanly if possible) and then assert reset to the DMA. Once the DMA is in reset,
its RX port accepts incoming packets and throws them away, and its TX port will not send anything else.

3. Reset anything else in the chip that is needed. At the point in the boot process that the fabric switch would
be initialized, you need to detect whether the fabric switch and link are already running. For example, the
detection could be based on whether FSW and FL are already out of reset, or if fabric links are in mission
mode, or it could be based on nonzero packet counter statistics. If the FSW and FL are not running, you
would initialize them as described in section 12.8.6. If they are already running, continue with this sequence.

4. Enable all blocks in R FswBlockEnable.

5. Proceed with Booting the DMA Engine, described in section 12.8.7.

May 14, 2014 633 Rev 51328

SiCortex Confidential CHAPTER 12. CLOCKING, ECC, TEST LOGIC, RESET, AND INITIALIZATION

May 14, 2014 634 Rev 51328

Chapter 13

PCI Express Subsystem

[$Id: chippci.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

13.1 Overview

The ICE9 chip includes a PCI-Express root complex subsystem. The PCI-Express subsystem provides the ICE9
cores with access to PCI-Express peripheral chips either on the processing module or on external cards. While
the subsystem typically talks to just a single PCI-Express device, there is no hardware limitation that prevents
implementation of more complex topologies.

The specifications for tphycr
he PCI-Express subsystem are:

• Implements a root complex.

• Supports packet sizes of 128B, 256B, and 512B.

• Supports end-to-end CRC checking.

• Supports one virtual circuit.

• Supports PCI-Express power off mode L3.

• Translates CPU physical addresses to/from PCI addresses. See Chapter 16.

13.2 Differences, Bugs, and Enhancements

13.2.1 Product and Chip Pass Differences

1. ICE9B fixes legacy interrupt D behavior incorrect during a link down, bug1984. In ICE9A if an AS-
SERT INTD message arrives from the endpoint, software will service the interrupt. During this time, if
the link goes down, an implicit DEASSERT INTD should occur, but this did not happen. So if the interrupt
service routine ends with a ”wait for DEASSERT INTD”, and it is possible that it will hang forever.

2. ICE9B fixes ecc error ignored when CLEAR comes at the same time, bug2028. In ICE9A if an ECC error
is in effect and the interrupt is raised. Some time software clears the interrupt and an ECC error comes at
the same time (in PMI where is checks, or not checks, for ecc error and clear), PMI ignores the second ECC
error.

3. ICE9B fixes the MsiBaseAddr register addressing, bug2097. In ICE9A, software has to program the PMI
MsiBaseAddr register with an Ice9 address converted into a PCIe space address (look at the address mapping
in the hardware spec).

4. ICE9B fixes RX detection not being completed when some lanes are disabled, bug2113. In ICE9A, when one
or more lanes of a multi-lane link are disabled using TxCompliance/TxElecIdle as described in Section 8 of
the PIPE specification, initiating a receiver detection sequence will cause the PCS layer to hang due to the

635

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

”turned off” lanes not performing the receiver detection operation. To workaround, enable all lanes prior to
performing a receiver detection operation, as lanes which are turned off will not participate in the receiver
detection sequence.

5. NEED IMPL: TWC9A fixes only the bottom 16 bit being writable in R PmiVmReqDat, bug2760. We
couldn’t find any PCIe vendor which uses vendor messages, so this is of only minor concern.

13.2.2 Known Bugs and Possible Enhancements

1. None.

13.3 Internal Structure

The PCI-Express subsystem consists of six layers:

1. The PHY layer, which implements the 2.5Ghz SerDes used for PCI-Express I/O.

2. The PCS layer, which converts parallel data binary data received from the MAC layer to 8B/10B encoded
serial data for the PHY.

3. The MAC layer, which implements the physical connection path for PCI-Express.

4. The link layer, which implements the logical connection path for PCI-Express.

5. The transaction layer, which implements PCI-Express transactions and queues

6. An application layer, which interfaces between the L2 cache and the transaction layer.

Layer 6, the application layer, is designed by SiCortex, and is synthesized RTL. Layers 3-5, the transaction, link, and
MAC layers, are part of the PCI-Express controller core. This core is purchased from Synopsys and is synthesized
RTL. Layers 1-2, the PCS and PHY layers, are part of the PCI-Express PHY core. This core is purchased from
Synopsys. The PCS layer is synthesized RTL. The PHY layer is a hard macro.

13.4 Known Bugs and Enhancements

1. R SysTapReset Scb was originally intended to reset only the SCB and the OCLA LAC. However, in ICE9A,
ICE9A1 and ICE9B this also ends up resetting the cclk parts of the PMI. This was not intended. In future
revisions of the chip an additional bit may be added to the R SysTapReset register to allow for resetting the
PMI without resetting the SCB and OCLA LAC. bug2929.

13.5 Process Requirements

The PCI-Express PHY core requires 2.5V or 3.3V thick oxide and input voltage for its analog circuits. For its
90nm general purpose (G) process, TSMC offers either a dual oxide option (1.0V/2.5V) or a triple oxide option
(1.0V/1.8V/3.3V). Since the DDR PHY is a dual-process DDR/DDR2, 2.5V/1.8V design, it does not require
1.8V oxide, and ICE9 will use the dual oxide option; thus the PCI-Express PHY will run off 2.5V, as will all
general-purpose IO buffers and PLLs.

13.6 Application Layer and the PMI

PMI is the unit name for the PCI controller and all application layer components. This unit also includes the
interface between the L2 cache switch (CSW) and the miscellaneous I/O units including the UART, I2C and the
SCB. Figure 13.1 shows the top level block diagram of the application layer and its connection to the root complex.

The PMI is comprised of 5 major pieces. The CSI is a control/status register interface that allows processors
to perform I/O register reads and writes to the UART (see Section 15), the I2C controller (Section 14), the Serial
Control Bus (Section 10), the RC’s configuration port (DBI), the RC’s vendor message interface (VMI), the RC’s
system information interface (SII), the PCI PHY configuration port and internal control and status registers. The

May 14, 2014 636 Rev 51328

SiCortex Confidential 13.6. APPLICATION LAYER AND THE PMI

PMI

DMXCMX

PRC
Synopsys PCI Express Root Complex

XALI0 RCPL RTGT1 XALI1SII DBI

CSI REQ CMP

InCmd/Addr_c2

InDat0/1_c4

Cmd/Addr to CSW Data to CSWCmd/Addr from
CSW

Data From
CSW

BBS

PPHY
Pci Phy

UART I2C

Wishbone

SCB
Master

VMI

Figure 13.1: PMI Block Diagram – The Application layer between the CSW and PCI Root Complex

May 14, 2014 637 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Addr/Cmd V

PXD

PS0 Data<63:0>

XALI0 Link to RC

InCmd/Addr/Data
from CSW

To Command Mux
CMX

CXD

PCM

CCM

V PS0 Data<63:0>

To Data Mux
DMX

Response
Register

Request
Registers

RCPL Link from RC

RRF

Figure 13.2: REQ Unit

REQ handles all requests from processors and the responses generated by the PCI network. The CMP handles
inbound requests from downstream devices and generates completion events in response to the requests. The CMX
is the command multiplexer and the DMX the data multiplexer. Each of these components are described below.

It is important to note that the PMI contains logic that runs in TWO different clock domains. The RC is driven
by a fixed frequency ICLK at 250MHz. The PMI interface to the CSW runs at that CCLK frequency that may
range from 200 to 300 MHz, as it is tied to the processor clock rate. The synchronizer boundaries between the two
domains are contained entirely in the CSI, REQ, and CMP units.

13.6.1 The Requestor Unit REQ

The requester unit transforms CSW I/O accesses (RDIO and WTIO) into PCI Express Transaction Layer
Packets (TLPs). In the case of read transactions, the REQ also handles the returning completion TLP from the
RC and turns it into a 64 bit data transfer over the CSW back to the original requesting processor. RDIO and
WTIO requests are limited to no more than 64 bits. As such, only CSW Data0 and the associated byte mask are
relevant. The REQ generates six kinds of TLPs: Memory Read, Memory Write, IO Read, IO Write, Config Read
and Config Write. In the case of all non-posted requests, the PCI TID assigned to the transaction is equal to the
TID received on the CSW command/address TID inputs. This allows simple matching of completion events to the
initiating request.

A block diagram of the REQ is shown in Figure 13.2.

13.6.1.1 REQ Memory Read Request Handling

A memory read request is initiated by a CSW RDIO to an address in the PCI Memory Address Range. The
RDIO CSW operation arrives on the inbound command bus. It is then converted into a transaction on the XALI0

May 14, 2014 638 Rev 51328

SiCortex Confidential 13.6. APPLICATION LAYER AND THE PMI

interface that will create a memory read request transaction. At some later time, the RC will respond with a
completion packet on the RCPL port. This will be converted by the REQ into a transaction on the CSW Data
lines. All memory read requests from the CSW are 64 bit aligned. Addresses on the PCI, however, can be 32 bit
aligned. As such, if the active bits in the byte mask indicate that the TLP can be contained within a 32 bit aligned
chunk of data, the address will be modified to be 32 bit aligned and only 4 bytes will be retrieved across the PCI.
Returned data will either occupy all 64 bits of the Data0 lines on the CSW, in the case of a 64 bit access, or the
32 bits retrieved will be duplicated on the upper and lower 32 bits of Data0. Requests to addresses within the first
4GB of the PCI Memory Address range will cause 3 DW header (32 bit address) transactions, while those to the
remainder of the range will cause 4 DW headers (64 bit address) transactions.

13.6.1.2 REQ Memory Write Request Handling

A memory write request is initiated by a CSW WTIO to an address in the PCI Memory Address Range. The
WTIO CSW operation arrives on the inbound command bus. The REQ responds by initiating a RDIO CSW
operation to retrieve the write data from the original requesting processor. Once the data has arrived, the REQ
builds a memory write TLP by wiggling the appropriate signals on the XALI0 interface to create a memory write
transaction with the appropriate byte mask. Like read requests, write requests are aligned to 64 bits. However, if
the data to be written is contained within one 32 bit aligned chunk, as indicated by the byte mask, the address
will be modified to be 32 bit aligned and only 4 bytes of data will be sent. Requests to addresses within the first
4GB of the PCI Memory Address range will cause 3 DW header (32 bit address) transactions, while those to the
remainder of the range will cause 4 DW headers (64 bit address) transactions.

13.6.1.3 REQ IO Read Request Handling

An IO read request is initiated by a CSW RDIO to an address in the PCI I/O Address Range. Other than the
transaction type field driven to the RC, the REQ processes an IO Read Request in the same manner as a memory
read request. IO requests are, however, limited to no more than 32 bits of data and address (this means the byte
mask for Data0 from the CSW can only have bits set in the upper or lower nibble). The address is appropriately
modified as per the bits in the bit mask.

13.6.1.4 REQ IO Write Request Handling

An IO write request is initiated by a CSW WTIO to an address in the PCI I/O Address Range. Other than the
transaction type field driven to the RC, the REQ processes an IO Write Request in the same manner as a memory
write request. IO requests are, however, limited to no more than 32 bits of data and address (this means the byte
mask for Data0 from the CSW can only have bits set in the upper or lower nibble). The address is appropriately
modified as per the bits in the bit mask.

13.6.1.5 REQ Configuration Read Request Handling

A config read request is initiated by a CSW RDIO to an address in the PCI Configuration Address Range. The
REQ processes a Configuration Read Request in a similar manner as a memory read request. The transaction type
is different and the address is modified to shift bits [27:12] up to bits [31:16]. The address is also appropriately
modified to account for config transactions being 32 bit aligned. If bits [27:20] in the CSW address match the
primary bus number of the RC, an error will be returned to the originator. This signifies an attempt to access the
RC config registers. Accesses of the config register within the RC can only be made via the DBI. If bits [27:20] in
the CSW address match the secondary bus number, a CONFIG0 type transaction will be sent. Any other values
will be sent as a CONFIG1 type transaction.

13.6.1.6 REQ Configuration Write Request Handling

A config write request is initiated by a CSW WTIO to an address in the PCI Configuration Address Range. The
REQ processes a Configuration Write Request in the similar manner as a memory write request. The transaction
type is different and the address is modified to shift bits [27:12] up to bits [31:16]. The address is also appropriately
modified to account for config transactions being 32 bit aligned. If bits [27:20] in the CSW address match the
primary bus number of the RC, an error will be returned to the originator. This signifies an attempt to access the
RC config registers. Accesses of the config register within the RC can only be made via the DBI. If bits [27:20] in

May 14, 2014 639 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

the CSW address match the secondary bus number, a CONFIG0 type transaction will be sent. Any other values
will be sent as a CONFIG1 type transaction.

13.6.1.7 REQ Sub-blocks

The REQ spans both the CCLK and the ICLK domains. The CXD and CCM both operate in the CCLK
domain. The PXD and PCM operate in the ICLK domain. The RRF handles all clock domain crossings.

Commands from the CSW are pushed into a FIFO within the CXD. The FIFO is six entries deep (one for each
of the six processors – we don’t allow the DMA engine to send transactions to the RC). Commands are taken off
the FIFO one at a time and fully processed before the next command is attended to. The CXD is responsible for
decoding the incoming address (to determine which address region – PCI Memory, PCI I/O, or PCI Configuration
– the address maps into) and sending the command/data to the RRF. If the operation is a write operation, the
CXD must issue a RDIO command to first fetch the data payload and will write the command and data once the
RDIO data is received. Read commands are sent to the RRF directly after address decoding.

The PCI Express side of the transmit path (the PXD) reads the command/data from the RRF. The PXD
converts the Address, Command, Byte mask, and TID from the CSW into the appropriate outbound packet via
the XTALI0 bus to the RC.

Completion packets arrive on the RCPL port from the root complex and go to the PCM. The PCM rips the
reply packet apart and writes the returned 64/32 bit word and transaction ID into the RRF. A completion can not
be serviced until all write transactions that preceded it coming from the RC have been completed. The CCM takes
the data from the RRF and passes it to the DMX, in the case of read operations. It also sends a release to the
CXD for all completions, allowing it to move onto the next command.

13.6.1.8 REQ Exception Handling

Errors conditions can arise in a number of places in the REQ:

Errored Completion from Root Complex If the RC signals an error in a completion, the error details will
be logged in the PmiReqCompErr register (section 13.13.15) and a bit set in the PmiIntr register (section 13.13.2).
Sources of this error include bad ecrc, poisoned, unsupported request, completer abort, config retry, tlp abort, dllp
abort and completion timeout. The PmiReqCompErr register includes information containing the reason for the
failed completion.

If the transaction was a read, all ones data will be returned to the originating processor. The exception to this
is a Config Read with an “unsupported request” completion; this is a normal part of the enumeration process and
so all ones data will be returned, but no error logged.

It is expected that in the event of a config retry, the originating processor will reissue the config command after
a suitable delay as required by the PCI Express specification.

Data with Bad ECC from CSW If data with an ECC error arrives from the CSW, the error details will be
logged in the PmiReqEccErr register (section 13.13.14) and a bit set in the PmiIntr register (section 13.13.2). The
transaction will be completed regardless of whether the error was of a single bit or double bit nature.

13.6.1.9 RC Config Register Access

The Requester unit does NOT support the legacy I/O based configuration mechanism present in some earlier
personal computer based implementations of PCI root complexes. That is, we don’t support the “PCI Compatible
Configuration Mechanism” using I/O addresses 0CF8 and 0CFC. All configuration transactions to non-RC devices
are via the PCI Express Enhanced Configuration Mechanism. The RC config registers can only be accesed via the
DBI interface. See Section 13.6.3.

13.6.2 The Completer Unit CMP

The Completer Unit is responsible for handling incoming requests from downstream PCI Express devices. The
primary goal in the design of the CMP is to maximize the available bandwidth. We are not necessarily aiming
for low latency; we’ll trade latency for more bandwidth whenever we get the chance. The PMI must support an
aggregate bandwidth of 2GB/s in each direction to keep the link fully busy.

May 14, 2014 640 Rev 51328

SiCortex Confidential 13.6. APPLICATION LAYER AND THE PMI

The CMP handles three transaction types: Memory Write, Memory Read and Message Signalled Interrupt
operations. Each is first handled in the ICLK domain where the incoming completion or request packet is disas-
sembled and digested. The digested form is then sent to a component in the CCLK domain where it is converted
into a command or sequence of commands on the CSW. Data and header information for read requests are sent
back into the ICLK domain to be sent along to the RC.

13.6.2.1 Memory Write Operation

When a downstream device on the PCI Express bus writes a block of memory, the data item may range in size
from a single byte up to a 512B block. (We are capping the size to 512B within the RC). The data may or may not
be aligned to a 64 byte boundary. Figure 13.3 shows the major blocks that participate in serving memory write
operations. Note that PCI Express MemWrites are posted operations, so that no response is required on the part
of the application layer.

Memory write operations are first fielded by the SYC, which is shared between the memory write and memory
read logic. The payload is written into a data FIFO. The data is aligned to 128 bit boundaries, as found on the
CSW, before it is written. The SYC also writes the byte masks, the start address, and data block length into the
write command FIFO. When either the data or command FIFOs are full the SYC will assert a flow control halt
signal back to the RC to stall the incoming request bus. All of this is done in the ICLK domain.

The CCW pulls the header/data from the FIFOs. The domain crossing from the ICLK to the CCLK is handled
by this action. In the case of data blocks that are correctly aligned, the CCW will initiate a BWT operation for
each 64 byte block in the incoming payload. It is important that we keep the data writes in order. For this reason
and in order to prevent deadlock conditions, the CCW will not send out the command for a BWT to block X+1
until it has seen the BWTGO response for the BWT operation on block X. This may limit a single PCI device to
less than the 4GB available bandwidth on the CSW data bus.

For blocks that are not naturally aligned or are less than 64B, the CCW must perform a write merge. The CCW
will launch a RDEX operation for the initial block of data, a WINV to return the merged data, BWT operations
as required for intermediate data and a final RDEX/WINV as required at the end. Each of these steps are handled
serially and therefore only one write 64B merge buffer is required. The performance of transactions requiring merges
will be much less than aligned transfers. Write requests from the PCI must be allowed to pass read requests from
the PCI to forestall deadlock conditions.

The posted data buffer in the RC will be ECC protected. In the event of an uncorrectable error, status registers
will record the syndrome and address associated with the error and a slow interrupt will be generated if enabled.
The write will otherwise proceed as if un-errorred. If RDEX merge data has an uncorrectable error, the address
and syndrome associated with the error will be recorded and a slow interrupt will be generated if enabled. Control
registers allow the purposeful corruption of the data coming from the RC posted data buffer and written to the
write data FIFO in the SYC.

13.6.2.2 Memory Read Operation

Memory read operations are non-posted transactions, so a completion is required. The memory read logic is
shown in Figure 13.4.

Incoming read requests arrive at the SYC via the RTRGT1 port – the same port that carries write requests and
MSI delivery packets. The SYC receives the incoming read requests and places them into a read request FIFO.
This is done in the ICLK domain.

The request is pulled from the FIFO by the CCR, thereby effecting the clock domain crossing to the CCLK.
A request can not be serviced until all write requests that preceeded it out of the RC have been completed by
the CCW. The request is parsed into one or more BRD operations. If the request begins or ends at an unaligned
address, the unneeded data from the first and last BRDs will be discarded prior to being presented to the SYC and
written into the Completion Data FIFO. This weeding is done on 128 bit quanta.

Up to three BRDs can be in flight at any one time. The data associated with the BRDs need not come back
from the CSW in the order they were requested, but they must be presented to the SYC in order. Three buffers
within the CCR first accept the data from the CSW as it arrives. A separate state machine reads the data from
these buffers and sends it to the SYC in the needed order. The “weeding”mentioned above is done at this point.

At the time the request service begins, the request information is also written into the Completion header FIFO
in the SYC. A state machine in the SYC services each request in turn, generating the appropriate PCI transactions.
Servicing of a completion header begins by determining if a split completion is required, what the data alignment is
and how much data is required in quanta of 128 bits. While the PCI Express requests may ask for up to 4KBytes

May 14, 2014 641 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

SYC

WMB

CCW

WCMD FIFO

Data
Payload

Write
Commands

RTRGT1

Incoming Request
from RC

XALI1

Outgoing Completion
to RC

InData0/1
From CSW

Addr/CmdData0/1

Addr/Cmd/TID
to CMX

Data to
DMX

Read
Commands

To/From CCR

Read
Data

WDAT BUFFER

Write Merge
Buffer

Figure 13.3: Memory Write Machinery

May 14, 2014 642 Rev 51328

SiCortex Confidential 13.6. APPLICATION LAYER AND THE PMI

SYC

Data
Payload

Write
Commands

RTRGT1

Incoming Request
from RC

XALI1

Outgoing Completion
to RC

To Write
Request
Logic

RCMD FIFO

CCR

Addr/Cmd Read Data

Addr/Cmd/Tid
to CMX

Data from
CSW

CMPHDR FIFO CMPDAT FIFO

Read Buffer 0

Read Buffer 1

Read Buffer 2

Figure 13.4: Memory Read Machinery

May 14, 2014 643 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

in a single transaction, we limit our completions to 512B. The actual size is set by the Max Payload Size register
in the RC. When the correct amount of data is present in the Completion data FIFO, a completion is sent to the
RC via the XALI1 interface.

Data coming from the CSW is ECC protected. The data with ECC is forwarded to the Completion Data FIFO
without being checked. When read out of this FIFO, the ECC is checked and a “bad EOT” signalled to the RC
in the event of an uncorrectable error. Status registers will record the syndrome and address associated with the
error and a slow interrupt will be generated if enabled.

13.6.2.3 Message Signalled Interrupts

MSI interrupts are implemented by PCI Express devices as memory write transactions to an address that was
initially written by the configuration software. That is, each device capable of initiating an MSI interrupt has a
message address register to which it will write to signal the interrupt. Each such device also has a 16 bit message
data register that will be written to the message address when the interrupt is signalled.

That fits rather nicely in with the interrupt scheme implemented in the ICE9 processor segment. Interrupts
are delivered to a processor via the CSW INTR transaction that writes a 16 bit value to an interrupt cause FIFO.
The low three bits (the intsel or interrupt select field) of the interrupt designate which of the six interrupts is to be
signalled. The upper 13 bits (the reason field) contain any information the device requires to identify the reason
for the interrupt.

So, the MSI scheme is rather simple. When the CCW detects a memory write to an address range specified
by the PmiMsiAddr register (section 13.13.19), it generates a CSW INTR command to the processor (address bus
stop) identified by address bits 5:2. The ”address” associated with this command are the low 12 bits from the write
data payload.

The MSI INTR command always uses TID PCIWT3.

13.6.3 The Control/Status Widget CSI

The control/status widget implements the interface between the CSW and the DBI/SII/VMI ports on the root
complex, as well as supporting access to the Serial Configuration Bus controller, the PCI Express Phy, internal
PMI configuration registers, and the 16550 UART. The CSI is shown in Figure 13.5.

Commands from the CSW are pushed into a FIFO. The FIFO is six entries deep, one for each of the six
processors. Commands are taken off the FIFO one at a time and fully processed before the next command is
attended to. The CSI processes only RDIO and WTIO commands from the CSW command/address bus. In the
case of a RDIO, it will read the appropriate data register from the target and return the data. In the case of a
WTIO, the CSI will initiate a RDIO command to the processor that issued the WTIO so as to acquire the write
data. When the RDIO completes, the write data will be written into the target register.

The CSI is comprised of the WBI, DBI, CIF, CRI and CIN sub-blocks. The WBI is the wishbone bus interface
to the UART and I2C. The DBI accesses the interface of the same name on the RC. The CIF contains the CSW
command FIFO and handles the interfacing to the CSW. The CRI handles the interface to the Phy. The CIN
contains the PMI internal status and control registers as well as allowing access to the RC SII and VMI signals. It
also handles the slow interrupt generation.

13.6.3.1 The CSW Interface CIF

The CIF executes the CSW protocol. It accepts commands from the CSW and places them into a FIFO. The
commands are pulled from the FIFO and parsed to determine if a RDIO back to the originating processor is required
and also to determine which sub-function within the CSI should receive the command/data. The appropriate sub-
function is sent the request and an ack awaited before moving directly onto the next command, in the event of a
write, or sending the data back to the CSW and awaiting a CSW grant, in the event of a read, before moving onto
the next command.

13.6.3.2 The Wishbone Interface WBI

The WBI receives requests from the CIF and translates them into the wishbone protocol. It awaits an ack from
a wishbone device (the UART or I2C) and signals the CIF that the request has been completed. In the event that
an ack is not received in a timely fashion, a completion is sent back to the CIF anyway. If the request was a read,
all ones data is returned with the completion. The number of clock ticks until a timeout occurs is under software
control via the PmiWbToVal register (section 13.13.20).

May 14, 2014 644 Rev 51328

SiCortex Confidential 13.6. APPLICATION LAYER AND THE PMI

CIN

InCmd/Addr/Data
from CSW

To Command Mux
CMX

CIF

DBIWBI

To Data Mux
DMX

to RC SII to RC VMI

CRI

to UART/I2C to RC DBI to PHY

Figure 13.5: The Control/Status Widget

May 14, 2014 645 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.6.3.3 The RC Register Interface DBI

The DBI receives requests from the CIF and translates them into the data bus interface protocol as defined
in the Synopsys Root Complex documentation. All configuration header space and extended configuration header
space registers that pertain to the RC, are only accessable via this interface. The data bus interface includes a
request/ack handshake. When the ack occurs, a completion is signalled back to the CIF, with or without data.
This interface requires a clock crossing from the CCLK to the ICLK domains for a request and from the ICLK to
the CCLK domains for the ack/read data.

13.6.3.4 The Phy Interface CRI

The CRI receives requests from the CIF and translates them into the interface protocol as defined in the Phy
Core documentation. The interface includes a request/ack handshake. When the final ack occurs, a completion is
signalled back to the CIF, with or without data. This is an asynchrounous interface; only the ack signal coming
back from the PHY needs to syncronized to the CCLK.

13.6.3.5 The PMI Register Block CIN

The Cin performes a number of functions:
The CIN enacts the Vendor Message Interface (VMI) handshake. This is used to cause the RC to send a

downstream vendor message. It is initiated by writing the appropriate data to the PmiVmReqDat (section 13.13.21),
PmiReqHdr (section 13.13.22) and PmiVmReqCmd (section 13.13.23) registers. When the ack returns from RC, a
completion is signalled to the CIF so that it can move onto the next command.

The CIF also aggregates all the SII (System information Interface) signals into a a number of registers. They
are enumerated and described in the PMI Control and Status Register section (section 13.13).

All of the various error and status conditions that could cause a slow interrupt are aggregated into the PmiIntr
register (section 13.13.2) withinn the CIN. The interrupt enable register PmiIntrEn (section 13.13.3) determines
which of the potential sources can cause a slow interrupt. Some of the sources can be cleared directly by writing
a one to the appropriate bit in the PmiIntr register. Others can only be cleared by sifting through the causality
hierarchy to find the origin.

In the event that the RC signals that a legacy interrupt has been asserted, this assertion will not be readable
via the CSW until all write commands that preceeded the interrupt message have been completed by the CCW.

13.6.3.6 CSI Exception Handling

Errors conditions can arise in a number of places in the CSI:

Data with Bad ECC from CSW If data with an ECC error arrives from the CSW, the error details will be
logged in the PmiCsiEccErr register (section 13.13.10) and a bit set in the PmiIntr register (section 13.13.2). The
transaction will be completed regardless of whether the error was of a single bit or double bit nature.

Out of range address from CSW If a request arrives whose address does not pertain to any of the subfunctions
within the CSI, the error details will be logged in the PmiCsiAddrErr register (section 13.13.11) and a bit set in the
PmiIntr register (section 13.13.2). The CSW protocol will be completed, meaning that read data with all ones will
be returned for a read and a RDIO will be issued for a write with the subsequently returned data being discarded.

64 bit DBI access request The DBI port to the RC has a 32 bit data path. If an access of more than 32 bits
is requested, the error details will be logged in the PmiCsiDbiErr register (section 13.13.12) and a bit set in the
PmiIntr register (section 13.13.2). The CSW protocol will be completed, meaning that read data with all ones will
be returned for a read and a RDIO will be issued for a write with the subsequently returned data being discarded.

Wishbone Timeout If an access to a wishbone component (the UART or I2C) times out, , the error details will
be logged in the PmiCsiWtoErr register (section 13.13.13) and a bit set in the PmiIntr register (section 13.13.2).
The CSW protocol will be completed, meaning that read data with all ones will be returned for a read. (The
protocol for a write had already completed prior to the transaction to the wishbone being started and hence before
the timeout.)

May 14, 2014 646 Rev 51328

SiCortex Confidential 13.7. VALID CSW OPERATIONS

13.6.4 The Command/Address Multiplexer CMX

The Command/Address multiplexer takes command inputs from each of the command processing units (REQ,
CMP, CSI, and CIN). Requests from the CMP are given priority over the other three, who are selected on a LRU
basis. The command processing units can only present requests one at a time and move onto a new request only
when given a grant.

The CMX also buffers the Command/Address from the CSW headed to the CMP, REQ or CSI. It parses the
address to determine the target of the incoming command. There is no throttling mechanism for incoming requests
from the CSW, so they are parsed and sent to FIFOs within each of the target units.

13.6.5 The Data Multiplexer DMX

The data multiplexer accepts inputs from each of the data sourcing units (REQ, CMP, and CSI). Requests from
the CMP are given priority over the other two, who are selected on a LRU basis. The data sourcing units can
only present requests one at a time and move onto a new request only when given a grant. In the case of requests
from the REQ and CSI, the data can only be up to 64 bits in length and hence is accepted at the time of the
grant. Data from the CMP is 64B in length. At the time of a request from the CMP, the DMX will immediately
issue a grant as long it is not busy servicing another request. The data from the CMP is then streamed into the
DMX in preparation for streaming onto the CSW data lines as soon as the CSW grant is received. This puts the
outbound data right next to the CSW and allows the buffer within the CMP to be freed for the assembly of the
next transaction. The DMX generates ECC for all data headed to the CSW. The PmiFrcEccErr register (section
13.13.9) allows the purposeful corruption of the data headed out to the CSW. The DMX also buffers the data
transactions from the CSW.

13.7 Valid CSW Operations

The PMI both accepts commands/data from the CSW and sends commands/data to the CSW. The following
enumerates the sequence of events that are permissible in interacting with the PMI. The nomenclature used is that
“PMI:BWT(COH)”means that a BWT command was sent by the PMI to the COH via the CSW.

CSW:RDIO -> PMI:DATA
CSW:WTIO -> PMI:RDIO -> CSW:DATA
PMI:BWT(COH) -> CSW:BWTGO(COH) -> PMI:DATA(COH)
PMI:BWT(COH) -> CSW:BWTGO(PX) -> PMI:DATA(PX)
PMI:BWT(COH) -> CSW:BWTNOHIT -> PMI:DATA(COH)
PMI:BWT(COH) -> CSW:PRBINV -> PMI:DATA(COH)
PMI:RDEX(COH) -> CSW:DATA(COH)
PMI:RDEX(COH) -> CSW:DATA(PX) -> PMI:PRBDONE(COH)
PMI:RDEX(COH) -> CSW:PRBNOHIT -> PMI:RDEXR(COH) -> CSW:DATA(COH)
PMI:WINV(COH) -> PMI:DATA(COH)
PMI:BRD(COH) -> CSW:DATA(COH)
PMI:BRD(COH) -> CSW:DATA(PX) -> PMI:PRBDONE(COH)
PMI:BRD(COH) -> CSW:PRBNOHIT -> PMI:BRDR(COH) -> CSW:DATA(COH)
CSW:PRBWIN(PX) -> PMI:PRBNOHIT
CSW:PRBBWT(PX) -> PMI:BWTNOHIT
CSW:PRBBRD(PX) -> PMI:PRBNOHIT
CSW:PRBSHR(PX) -> PMI:PRBNOHIT
PMI:INTR -> CSW:DONE

13.8 Valid PCI Operations

Coming from an endpoint, the RC and PMI will only accept completions, MemWrites, MemReads, vendor
messages and MSIs (which look just like MemWrites). A core within the ICE9 can initiate a MemWrite, MemRead,
IO Write, IO Read, Config Write or Config Read transaction headed to a downstream device. It can also cause
certain status messages to be sent, as specified in the register definitions below and in the RC specification.

All Config and IO transactions use 32 bit addressing and data. A MemWrite or MemRead can use 32 or 64 bit
addressing and up to 64 bits of data. A Mem command to an address with Addr[63:32] = 0x8 will result in 3 DW

May 14, 2014 647 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

header (32 bit address) being sent. Mem commands with those same bits set to 0x9, 0xA or 0xB will cause a 4
DW header (64 bit address)to be sent. A practical consequence of this is that 32 bit endpoints will use up some of
the bottom 4GB of the main memory allocation.

13.9 Ordering Rules

Before stating the ordering rules, it would be good to define a couple terms. An “inbound” transaction is one
originating at an endpoint and heading to the ICE9. An “outbound” transaction is one originating within the ICE9
and heading to an endpoint.

Inbound transactions can only be posted operations (memory writes, message signalled interrupts (MSIs) or
vendor messages), memory reads or completions. Posted operations are handled in order; a posted operation can
not pass another posted operation. The exception to this, in the case of the ICE9, is that vendor messages are
handled at presentation from the PRC to the PMI, whereas the other two types of posted operations are stuck
in a queue and handled when they get to the top of the queue. Posted operations can pass memory reads and
completions. Memory reads and completions are also handled in order of presention, but neither are handled before
any posted operation that preceded it. Completions can, however, pass memory reads.

Outbound transactions can be posted (memory writes or vendor messages), non-posted (config reads/writes, IO
reads/writes or memory reads) or completions. Similar rules as above apply to the outbound transactions. Posted
operations occur in order except that vendor messages can pass memory writes. Non-posted operations occur in
order, as do completions. Completions can pass non-posted operations, but can not pass posted operations.

For the puposes of the ICE9, the “timestamp” of an operation is not when it first comes across the CSW, but
when it gets to the top of the REQ queue and, if needed, the associated data has been retrieved from the originating
processor.

13.10 Auxiary PCI Signals

There are a number of signals needed to control the PCI Express module or card.

13.10.1 PERST# output

PCIe express module or card fundamental reset. Active low on the PCB. Resets the PCIe card or express module
attached to the ICE9 when asserted. The logic is PERST# = ˜(ResetCard | MPWRGD#). The ResetCard signal
is bit 11 in the Core Control Register (section 13.13.1). Drives PERST# on cards and MRST# on express modules.

13.10.2 MPWRGD# input

PCIe express module power good. Active low on PCB. See PERST# for usage. On CPU modules, which
support PCIe express modules, MPWRGD# is pulled up on the PCB. Therefore, MPWRGD# is deasserted by
default; an express module must drive it low to assert it, and PERST# cannot be deasserted until it does so. On
development boards, which support PCIe cards, MPWRGD# is pulled down on the PCB; therefore, it is always
asserted. This is necessary since PCIe cards don’t support MPWRGD# and PERST# could never be deasserted
otherwise.

13.10.3 PWRFLT# input

PCIe express module power fault. Active low on PCB. When asserted a 1 should appear in Slot Status Register[1]
(Power Fault Detected). This is probably meant to be a sticky bit since PWRFLT can be transient. On CPU
modules and development boards PWRFLT# is pulled up on the PCB. Therefore, it is deasserted by default; an
express module must drive it low to assert it. PCIe cards don’t support this signal, so it is never asserted on
development boards.

13.10.4 PWREN# output

PCIe express module power enable. Active low on PCB. Driven by Slot Control Register[10] (Power Controller
Control).

May 14, 2014 648 Rev 51328

SiCortex Confidential 13.11. DEFINITIONS

13.10.5 PRSNT# input

PCIe express module or card present. Active low on PCB. When asserted a 1 should appear in Slot Status
Register[6] (Presence Detect State), otherwise a 0. Presence Detected Changed presumably has to get set when
PRSNT changes state, and is a sticky bit.

13.10.6 ATNLED output

PCIe express module attention LED. A state machine controls this output, which can be on, off, or blinking.
The output behavior is defined by Slot Control Register[7:6]). If blinking, the on or off time of the 50% duty cycle
signal is defined by the LED Blink Rate Register (section 13.13.4). This register gives the high or low time in clock
cycles; the frequency should be 1-2Hz.

13.10.7 PWRLED output

PCIe express module power LED. A state machine controls this output, which can be on, off, or blinking. The
output behavior is defined by Slot Control Register[9:8]). If blinking, the on or off time of the 50% duty cycle
signal is defined by the LED Blink Rate Register (section 13.13.4). This register gives the high or low time in clock
cycles; the frequency should be 1-2Hz.

13.11 Definitions

Package

chip pci spec

13.11.1 PCI Type Enumerations

Enum

PciType
Constant Mnemonic Definition

5’h0 MRW Memory Reads and Writes
5’h1 MRLK Reserved. (Memory Read Request-Locked)
5’h2 IORW IO Reads and Writes
5’h4 CFG0RW Config Type 0 Reads and Writes
5’h5 CFG1RW Config Type 1 Reads and Writes
5’ha CPL Completions
5’hb CPLLK Completions for Locked Memory Reads

13.11.2 PCI Format Enumerations

Enum

PciFmt
Constant Mnemonic Definition

2’h0 NODAT3DWH 3 DW header without data
2’h1 NODAT4DWH 4 DW header without data
2’h2 DAT3DWH 3 DW header with data
2’h3 DAT4DWH 4 DW header with data

13.11.3 PCI Completion Status Enumerations

Enum

PciCplStat

May 14, 2014 649 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Constant Mnemonic Definition

3’h0 SC Successful Completion
3’h1 UR Unsupported Request
3’h2 CR Configuration Request Retry Status
3’h4 CA Completer Abort

13.11.4 PCI Completion State Machine State Enumerations

Enum

PciCmpSm

Constant Mnemonic Definition

2’h0 IDLE Idle state
2’h1 WAIT Wait for data to accumulate
2’h2 STREAM Stream data out to RC

13.11.5 PCI Block Write State Machine State Enumerations

Enum

PciBwtSm
Constant Mnemonic Definition

4’h0 IDLE Idle state
4’h1 RDEXCMD Sending RDEX command
4’h2 RDEXDATA Receiving RDEX data
4’h3 PRBDONCMD Sending PRBDONE command
4’h4 WINVCMD Sending WINV command
4’h5 WINVDATA Sending WINV data
4’h6 BWTCMD Sending BWT command
4’h7 BWTDATA Sending BWT data
4’h8 INTRCMD Sending an INTR command
4’h9 INTRDONE Waiting on the DONE in response to the

INTR

13.11.6 PCI Block Read State Machine State Enumerations

Enum

PciBrdSm
Constant Mnemonic Definition

2’h0 IDLE Idle state
2’h1 BRDCMD Sending BRD command
2’h2 BRDRCMD Sending a BRDR command
2’h3 PRBDONCMD Sending PRBDONE command

13.11.7 PMI Request Result Enumerations

Enum

PmiReqRes

May 14, 2014 650 Rev 51328

SiCortex Confidential 13.11. DEFINITIONS

Constant Mnemonic Definition

4’h0 NODAT Successful Completion without Data
4’h1 DAT32 Successful Completion with 32-bit Data
4’h2 DAT64 Successful Completion with 64-bit Data
4’h3 UNSUPPORTED Unsupported Request
4’h4 POISONED Poisoned
4’h5 BADECRC ECRC error detected by Root-Complex
4’h6 BADLENGTH Bad TLP length received
4’h7 DLLPABORT DLLP Abort asserted by Root-Complex
4’h8 TLPABORT TLP Abort asserted by Root-Complex
4’h9 TIMEOUT Request timed out
4’ha RETRY Config retry
4’hb ABORT Completer Abort

13.11.8 Pmi Events

The following events are trackable by SCB statistical event counting.

Enum

PmiScbEvent

Attributes

-descfunc

Constant Mnemonic Definition

8’h00 CYCLES Core clock cycles. Always counts.
8’h01 CONFIGW OUT Number of outbound PCI Config Write transactions.
8’h02 CONFIGR OUT Number of outbound PCI Config Read transactions.
8’h03 PCI IOW OUT Number of outbound PCI IO Write transactions.
8’h04 PCI IOR OUT Number of outbound PCI IO Read transactions.
8’h05 MEMW32 OUT Number of outbound PCI Memory Writes with 32 bit

data.
8’h06 MEMW64 OUT Number of outbound PCI Memory Writes with 64 bit

data.
8’h07 MEMR32 OUT Number of outbound PCI Memory Reads with 32 bit data.
8’h08 MEMR64 OUT Number of outbound PCI Memory Reads with 64 bit data.
8’h09-8’h0f Reserved.
8’h10 MEMWA64 IN Number of inbound aligned memory writes with data of

64B or less.
8’h11 MEMWA128 IN Number of inbound aligned memory writes with data of

128B or less.
8’h12 MEMWA256 IN Number of inbound aligned memory writes with data of

256B or less.
8’h13 MEMWA512 IN Number of inbound aligned memory writes with data of

512B or less.
8’h14 MEMWU64 IN Number of inbound unaligned memory writes with data

of 64B or less.
8’h15 MEMWU128 IN Number of inbound unaligned memory writes with data

of 128B or less.
8’h16 MEMWU256 IN Number of inbound unaligned memory writes with data

of 256B or less.
8’h17 MEMWU512 IN Number of inbound unaligned memory writes with data

of 512B or less.
8’h18-8’h1f Reserved.

May 14, 2014 651 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

8’h20 MEMRA64 IN Number of inbound aligned memory reads with data of
64B or less.

8’h21 MEMRA128 IN Number of inbound aligned memory reads with data of
128B or less.

8’h22 MEMRA256 IN Number of inbound aligned memory reads with data of
256B or less.

8’h23 MEMRA512 IN Number of inbound aligned memory reads with data of
512B or less.

8’h24 MEMRU64 IN Number of inbound unaligned memory reads with data of
64B or less.

8’h25 MEMRU128 IN Number of inbound unaligned memory reads with data of
128B or less.

8’h26 MEMRU256 IN Number of inbound unaligned memory reads with data of
256B or less.

8’h27 MEMRU512 IN Number of inbound unaligned memory reads with data of
512B or less.

8’h28-8’hff Reserved.

13.12 PCI Express Root Complex Registers

All of the registers in this section are within the Synopsys Root Complex. The details of these registers were
taken from the document supplied by Synopsys.

13.12.1 Device/Vendor ID Register

Description

Register

R PcieId

Attributes

-kernel

Address

0xE 9800 0000

Definitions

Bit Mnemonic Access Reset Type Definition

31:16 DeviceID RW 1 Device ID.
15:0 VendorID RW 0x19B2 Vendor ID. Assigned by PCI-SIG.

13.12.2 Command and Status Register

Description

Register

R PcieCmdStat

Attributes

-kernel -writeonemixed

May 14, 2014 652 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

Address

0xE 9800 0004

Definitions

Bit Mnemonic Access Reset Type Definition

31 DetParErr RW1C 0 1 = forwarding an outbound Poisoned TLP (bit is set
regardless of ParErrEn).

30 SigSysErr RW1C 0 Set when RC generates ERR (NON)FATAL message and
SerrEn = 1 in the Command Register (bit 40 in this reg-
ister)

29 RcvdMstrAbrt RW1C 0 Set when primary side of RC receives UR Completion Sta-
tus for Request.

28 RcvdTgtAbrt RW1C 0 Set when primary side of RC receives CA Completion Sta-
tus for Request.

27 SigTgtAbrt RW1C 0 Set when RC sends CA Completion Status for Request.
26:25 R 0 Reserved
24 MstrDatParErr RW1C 0 1 = received (and forwarding) an inbound Poisoned TLP

(and Parity Error Response bit - bit 38 - in Command
portion of this Register is set).

23 R 0 Reserved.
22 R 0 Reserved.
21 R 0 Reserved
20 CapList R 1 Indicates presence of extended Capabilities List.
19 IntStatus R 0 Indicates pending INTx Message. Irrelevant for RC.

18:11 0 Reserved
10 IntDis RW 0 Disables INTx interrupts from being sent.
9 R 0 Reserved
8 SerrEn RW 0 (Non)fatal error messages (from Endpoint) reported if this

bit is 1 (or if another bit in Device Control Register is set).
This reporting takes the form of updating Root Control
register and/or Root Error Command register, and log-
ging in the Root Error Status register and Error Source
ID register.

7 R 0 Reserved
6 ParErrResp RW 0 Parity Error Response
5:3 R 0 Reserved
2 BusMstrEn RW 0 Bus Master Enable. 0 = treat incoming MEM/IO re-

quests as Unsupported Request.
1 MemDecEn RW 0 1 = Allow MEM accesses from Endpoint
0 IoDecEn RW 0 1 = Allow IO accesses from Endpoint

13.12.3 RevID, Class Code Register

Description

Register

R PcieRevId

Address

0xE 9800 0008

Definitions

May 14, 2014 653 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

31:8 ClassCode RW 0x060400 Class Code.
7:0 RevID RW 1 Revision ID.

13.12.4 Cache Line Size, BIST etc register

Description

Unsure what the Revision ID and Class Code is for this chip. The Cache Line Size is irrelevant for PCI Express
functionality. Master Latency Timer Register is hardwired to 0. Need to find the details of Header Type and BIST
fields.

Register

R PcieCcMisc

Address

0xE 9800 000C

Definitions

Bit Mnemonic Access Reset Type Definition

31:24 Bist R 0 Not supported by RC Core.
23 MfDev RW 0 Multi Function Device

22:16 HdrTyp R 1 Config Header Format
15:8 MstrLatTim R 0 Hardwired to 0.
7:0 CacLinSiz RW 0 System Cache Line Size. Irrelevant for us.

13.12.5 Base Address Register 0

Description

The Base Address Registers specify the windows for Memory and IO access from the endpoint. For our Root
Port, we have no need for this and so will keep it at 0.

Register

R PcieBar0

Address

0xE 9800 0010

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 BaseAddr R 0x4 [31:4} are 0. [3:0] indicate non-prefetchable (0), 64 bit
(10), memory (0).

13.12.6 Base Address Register 1

Description

The Base Address Registers specify the windows for Memory and IO access from the endpoint. For our Root
Port, we have no need for this and so will keep it at 0.

May 14, 2014 654 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

Register

R PcieBar1

Address

0xE 9800 0014

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 BaseAddr R 0 Hardwired to 0.

13.12.7 Bus Number Register

Description

The Primary Bus number for a Root Complex is 0. The Secondary Bus number is 1. The Subordinate Bus
number can be any number from 1 (indicating an Endpoint connection) to a number greater than 1 (indicating a
Switch connection).

Register

R PcieBusNum

Address

0xE 9800 0018

Definitions

Bit Mnemonic Access Reset Type Definition

31:24 SecLatTim R 0 Hardwired to 0.
23:16 SubBusNum RW 0 Subordinate Bus Number
15:8 SecBusNum RW 0 Secondary Bus Number
7:0 PriBusNum RW 0 Primary Bus Number

13.12.8 I/O Base/Limit, and Secondary Status Register

Description

Register

R PcieSecStat

Attributes

-writeonemixed

Address

0xE 9800 001C

Definitions

Bit Mnemonic Access Reset Type Definition

31 DetParErr RW1C 0 1 = received Poisoned TLP in inbound direction (regard-
less of ParErrResp bit value in Bridge Control register).

May 14, 2014 655 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition
30 RcvSysErr RW1C 0 1 = Received incoming ERR (NON)FATAL message (Er-

rata doc on Page 104 says that this bit is not dependent
on SERR Enable bit in Bridge Control Register).

29 RcvMstrAbrt RW1C 0 Set when RC receives UR Completion Status for outbound
Request.

28 RcvTgtAbrt RW1C 0 Set when RC receives CA Completion Status for outbound
Request.

27 SigTgtAbrt RW1C 0 Set when RC sends CA Completion Status for inbound
Request.

26:25 R 0 Reserved
24 MstrDataParErr RW1C 0 1 = sent an outbound Poisoned TLP (and Parity Error

response bit - bit 0 - in Bridge Control Register is set). If
ParErrResp bit in Bridge Control register is 0, this bit is
always 0.

23:16 R 0 Reserved
15:12 IoLimit74 RW 0 IO Limit Register Value (alongwith implicit zeroes in

lower 12 bits, provides end/limit of address space of out-
bound IO transactions in 64KB address space).

11:8 IoLimit30 R 0x1 0 = 16-bit IO address decode (64KB space). 1 = 32-bit
IO address decode (4GB space). Value in IO Upper Limit
Register valid if this value is 1. Values 0x2 through 0xF
are reserved.

7:4 IoBase74 RW 0 IO Base register value (alongwith implicit zeroes in lower
12 bits, provides start address space of outbound IO trans-
actions in 64KB address space).

3:0 IoBase30 R 0x1 0 = 16-bit IO address decode (64KB space). 1 = 32-bit
IO address decode (4GB space). Value in IO Upper Base
Register valid if this value is 1. Values 0x2 through 0xF
are reserved.

13.12.9 Non-Prefetchable Memory Base and Limit Register

Description

These registers define the start and end address range for valid outbound Memory transactions.

Register

R PcieMemBase

Address

0xE 9800 0020

Definitions

Bit Mnemonic Access Reset Type Definition

31:20 MemLmt RW 0 End Address of Memory range. Upper 12 bits of implicit
32-bit range (lower 20 bits are assumed 0xFFFFF).

19:16 R 0 Reserved
15:4 MemBase RW 0 Start Address of Memory range. Upper 12 bits of implicit

32-bit range (lower 20 bits are assumed 0).
3:0 R 0 Reserved

May 14, 2014 656 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.10 Prefetchable Memory Base and Limit Register

Description

These registers define the start and end address range for valid outbound Memory transactions.

Register

R PciePreMemBase

Address

0xE 9800 0024

Definitions

Bit Mnemonic Access Reset Type Definition

31:20 PMemLmt RW 0 Prefetchable Memory Limit
19:17 R 0 Reserved
16 Addr64L RWS 1 64 bit addressing if a one
15:4 PMemBas RW 0 Prefetchable Memory Base
3:1 R 0 Reserved
0 Addr64B RWS 1 64 bit addressing if a one

13.12.11 Prefetchable Memory Upper Base Register

Description

These are the upper bits of prefetchable memory base.

Register

R PciePreBaseUpper

Address

0xE 9800 0028

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 PMemBU RW 0 Prefetch Memory Base Upper register

13.12.12 Prefetchable Memory Upper Limit Register

Description

These are the upper bits of prefetchable memory limit.

Register

R PciePreLimitUpper

Address

0xE 9800 002C

Definitions

May 14, 2014 657 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

31:0 PMemLU RW 0 Prefetch Memory Limit Upper Register

13.12.13 I/O Base and Limit Upper Register

Description

These registers define the Upper Base and Limit range for outbound IO space if that space is 32-bits wide.

Register

R PcieIOUpperBaseLimit

Address

0xE 9800 0030

Definitions

Bit Mnemonic Access Reset Type Definition

31:16 IoLimitU RW 0 Upper 16 bits of IO Limit register (only valid if outbound
IO space is in 4GB space rather than 64KB space).

15:0 IoBaseU RW 0 Upper 16 bits of IO Base register (only valid if outbound
IO space is in 4GB space rather than 64KB space).

13.12.14 Capability Pointer Register

Description

Register

R PcieCapabilityPtr

Address

0xE 9800 0034

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 R 0 Reserved.
7:0 CapPtr RW 0x40 Capability Pointer. Points to (contains the offset to) reg-

ister set associated with the next Capability.

13.12.15 Expansion ROM Register

Description

We do not support an Expansion ROM within the Root Complex bridge.

Register

R PcieExpRom

Address

0xE 9800 0038

May 14, 2014 658 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

Definitions

Bit Mnemonic Access Reset Type Definition

31:4 Address R 0 Reserved. Expansion ROM not supported.
3:1 R 0 Reserved
0 Enable R 0 Expansion ROM enable

13.12.16 Bridge Control Register

Description

Register

R PcieBrgCtrl

Address

0xE 9800 003C

Definitions

Bit Mnemonic Access Reset Type Definition

31:23 R 0 Reserved
22 SecBusRst RW 0 1 = Triggers Hot Reset on PCI-E link.
21 MstrAbort R 0 Not applicable
20 VGA16 RW 0 VGA 16 bit decode
19 VGAEn RW 0 VGA Enable
18 ISAEn RW 0 ISA Enable
17 SerrEn RW 0 1 = Allows forwarding of received ERR {COR, NONFA-

TAL, FATAL} error messages to primary side of Bridge.
The SerrEn bit in the Command Register controls report-
ing of these forwarded messages to the Root Complex.

16 ParErrResp RW 0 1 = Enable Master Data Parity Error status bit in both
primary and secondary status registers.

15:8 IntPin RW 0x1 Interrupt Pin register. Irrelevant for Root Complex.
7:0 IntLine RW 0xff Interrupt Line register. Irrelevant for Root Complex.

13.12.17 PCI Power Management Capabilities Register

Description

Register

R PciePMCap

Address

0xE 9800 0040

Definitions

Bit Mnemonic Access Reset Type Definition

31 R 0 Reserved
30:27 PMESup RWS 0xb Bits 30, 28, 27 set to 1 for Root Port to indicate in which

states it will forward received PME Messages to the Root
Complex.

26 D2Sup RW 0 D2 Support

May 14, 2014 659 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

31 R 0 Reserved
25 D1Sup RW 1 D1 Support

24:22 AuxCur RW 0x7 Auxiliary current
21 SpecInit RW 0 Device Specific Initialization

20:19 R 0 Reserved
18:16 CapVer RW 2 Capability Version (as mandated by PCI-SIG)
15:8 NxtCapPtr RW 0x50 Offset to next PCI capability structure
7:0 CapId R 0x01 ID indicating PCI Express Capability Structure.

13.12.18 PCI Power Management Control Register

Description

Register

R PciePMCtrl

Attributes

-writeonemixed

Address

0xE 9800 0044

Definitions

Bit Mnemonic Access Reset Type Definition

31:24 R 0 Reserved
23:22 R 0 Reserved
21:16 R 0 Reserved
15 PMESt RW1C 0 Root Complex will not set this bit.
14:9 R 0 Reserved
8 PMEEn RW 0 Since Root Complex never sends PME Message, this bit

can be hardwired to 0.
7:0 R 0 Reserved

13.12.19 MSI Capabilities Register

Description

Register

R PcieMSICap

Address

0xE 9800 0050

Definitions

Bit Mnemonic Access Reset Type Definition

31:24 R 0 Reserved.
23 MSI64En RWS 1 64-bit Address Capable

22:20 MultiMSIEn RW 0 Multiple Message Enabled
19:17 MultiMSICap RW 0 Multiple Message Capable (writable through DBI)
16 MsiEn RW 0 MSI Enabled (when set, INTx must be disabled)

May 14, 2014 660 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

Bit Mnemonic Access Reset Type Definition
15:8 NxtCapPtr RW 0x70 Offset to next PCI capability structure
7:0 CapId R 0x05 ID indicating MSI Capability.

13.12.20 MSI Address Register

Description

Contains the MSI Lower 32-bit address (only upper 30 of these 32 bits are writable).

Register

R PcieMSIAddr

Address

0xE 9800 0054

Definitions

Bit Mnemonic Access Reset Type Definition

31:2 MSIAddrL RW 0 MSI Lower 32-bit Address
1:0 R 0 Reserved.

13.12.21 MSI Upper Address/Data Register

Description

Bits 31:0 in this register contain the MSI Upper Address Register, if MSI64En = 1. Otherwise, it contains the
MSI Data Register.

Register

R PcieMSIUpper

Address

0xE 9800 0058

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 MSIAddrH RW 0 Upper 32-bit Address (or MSI Data register if
MSI64En=0)

13.12.22 MSI Data Register

Description

Contains the MSI Data register is MSI64En = 1.

Register

R PcieMSIData

Address

0xE 9800 005C

May 14, 2014 661 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Definitions

Bit Mnemonic Access Reset Type Definition

31:16 R 0 Reserved.
15:0 MSIData RW 0 MSI Data (if MSI64En=1)

13.12.23 PCI Express Capabilities Register 0

Description

Register

R PcieCap0

Address

0xE 9800 0070

Definitions

Bit Mnemonic Access Reset Type Definition

31:30 R 0 Reserved
29:25 IntMsgNum RW 0 Interrupt Message Number
24 SlotImp RW 1 1 = Link connected to a Slot. Hardware initialized to a

1.
23:20 PortType R 0x4 Device/Port Type. 4 = Root Port of PCIE Root Complex
19:16 CapVer R 1 Capability Version (as mandated by PCI-SIG)
15:8 NxtCapPtr RW 0x0 Offset to next PCI capability structure
7:0 CapId R 0x10 ID indicating PCI Express Capability Structure.

13.12.24 PCI Express Capabilities Register 1

Description

Register

R PcieCap1

Address

0xE 9800 0074

Definitions

Bit Mnemonic Access Reset Type Definition

31:16 R 0 Reserved
15 RBErrRep RW 1 Role Based Error Reporting

14:12 R 0 Reserved
11:9 L1Lat RW 1 Endpoint Acceptable L1 latency
8:6 L0sLat RW 1 Endpoint Acceptable L0s latency
5 ExtTag RW 0 Only 5-bit Tag field supported.
4:3 PhanFunc RW 0 No Phantom Functions supported.
2:0 MaxPaySiz RW 0x2 Max Payload Size Supported. 2 = 512 bytes.

May 14, 2014 662 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.25 Device Control/Status Register

Description

Register

R PcieDevCtlStat

Attributes

-writeonemixed

Address

0xE 9800 0078

Definitions

Bit Mnemonic Access Reset Type Definition

31:22 R 0 Reserved
21 TrnPend R 0 1 = Outbound non-posted transactions pending (ie. have

not completed or have not been terminated by the Com-
pletion Timeout mechanism)

20 AuxPwrDet R 0 0 = No Aux Power Detected
19 URDet RW1C 0 1 = Unsupported Request Detected. Independent of any

control or mask setting.
18 FatErrDet RW1C 0 1 = Fatal Error Detected. Independent of any control or

mask setting.
17 NFErrDet RW1C 0 1 = Non-Fatal Error Detected. Independent of any control

or mask setting.
16 CorErrDet RW1C 0 1 = Correctable Error Detected. Independent of any con-

trol or mask setting.
15 R 0 Reserved

14:12 MaxRdReq R 0x2 Maximum permissible inbound read request size.
11 NoSnpEn RW 0 Always 0. We do not enable “No Snoop”.
10 AuxPowEn RW 0 Enable Aux Power.
9:8 R 0 Reserved
7:5 MaxPaySiz RW 0 0 = 128 bytes, 1 = 256 bytes, 2 = 512 bytes.
4 EnRlxOrd RW 1 Always 0. We do not enable Relaxed Ordering.
3 UrRepEn RW 0 1 = enables reporting of Unsupported Request (ie. in-

bound packet encounters a UR which needs to be reported
to the host)

2 FatErrEn RW 0 1 = Enables reporting of fatal errors (equivalent of en-
abling ERR FATAL messages for a Root Port)

1 NFErrEn RW 0 1 = Enables reporting of non-fatal errors (equivalent of
enabling ERR NONFATAL messages for a Root Port)

0 ErrCorrEn RW 0 1 = Enables reporting of correctable errors to the host
(equivalent of enabling ERR COR messages for a Root
Port)

13.12.26 Link Capabilities Register

Description

Register

R PcieLnkCap

May 14, 2014 663 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE 9800 007C

Definitions

Bit Mnemonic Access Reset Type Definition

31:24 PortNum RW 0 Port Number for the PCI Express Link.
23:21 R 0 Reserved
20 DLLEn R 1 Data Link Layer Active Reporting Capable
19 SurDwn R 0 Surprise Down Error Reporting Capable
18 ClkPmCap RW 0 Clock Power Management

17:15 L1ExLat RW 0x6 L1 Exit Latency. Irrelevant for us since we do not support
L1.

14:12 L0sExLat RW 0x3 L0s Exit Latency.
11:10 ASPM RW 0x3 Active Link Pm Support
9:4 MaxLnkWth RW 0x8 Max Link Width. 8 lanes in our case.
3:0 MaxLnkSpd RW 0x1 1 = 2.5Gb/s Link. All other encodings are reserved.

13.12.27 Link Control/Status Register

Description

Register

R PcieLnkCtl

Address

0xE 9800 0080

Definitions

Bit Mnemonic Access Reset Type Definition

31:30 R 0 Reserved
29 DLLayerAct R 0 1 = Data Link Layer Active
28 SltClkCfg RW 1 1 = Component uses same reference clock as on the con-

nector. Initialized by hardware to correct value.
27 LnkInTrn R 0 1 = Link Training in progress. Should be set to 0 by

hardware after successful training to the L0 state.
26 TrainErr R 0 1 = Link Training Error occurred. Should be set to 0 by

hardware after successful training to the L0 state.
25:20 NegLnkWth R 1 Negotiated link width. We should see values of 1, 2, 4, or

8.
19:16 LnkSpd R 0x1 1 = 2.5Gb/s. All other encodings are reserved.
15:8 R 0 Reserved
7 ExtSync RW 0 1 = Forces extra FTS ordered sets when transitioning

from low power states to L0.
6 ComClkCfg RW 0 1 = Common Reference Clock at both sides of the Link.

0 = Asynchronous clocks at both sides of the link.
5 LnkRetrain R 0 1 = Initiate Link retraining via the Recovery State. Reads

always return 0.
4 LnkDis RW 0 1 = disable the Link.
3 RCB RW 0 Read Completion Boundary. 0 = 64 bytes.
2 R 0 Reserved
1:0 ASPMCtl RW 0 1 = L0s Entry Enabled. Can be disabled by writing 0x0.

May 14, 2014 664 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.28 Slot Capabilities Register

Description

Register

R PcieSltCap

Address

0xE 9800 0084

Definitions

Bit Mnemonic Access Reset Type Definition

31:19 PhySltNum RW 0x0 Physical Slot Number. I believe this should be 0 for a
Root Port.

18 SltNoCCSup RW 0 Slot No Command Complete Support
17 SltEmlPrsnt RW 0 Slot Electromechanical Interlock Present

16:15 SltPwrScl RW 0 Slot Power Limit Scale. Writes to this register cause Port
to send Set Slot Power Limit Message.

14:7 SltPwrLmt RW 0xf Slot Power Limit Value. Writes to this register cause Port
to send Set Slot Power Limit Message.

6:0 SlotCap RW 0x7a These 7 bits in the Slot Capabilities register are all hard-
ware initialized to some value.

13.12.29 Slot Control/Status Register

Description

Register

R PcieSltCtl

Attributes

-kernel -writeonemixed

Address

0xE 9800 0088

Definitions

Bit Mnemonic Access Reset Type Definition

31:23 R 0 Reserved.
22 PrnDetSt R 0 1 = Indicates presence of card in slot. 0 = Slot Empty.
21 MRLSenSt R 0 MRL Sensor State. 0 = MRL Closed. 1 = MRL Open.
20 CmdCpl RW1C 0 1 = Hot Plug Controller completes an issued command.
19 PrnDetChg RW1C pins 1 = Presence Detect change is detected.
18 MRLSenChg RW1C 0 1 = MRL Sensor State Change is detected.
17 PwrFltDet RW1C 0 1 = Power Controller detects power fault in this slot.
16 AttButPrs RW1C 0 1 = Attention Button is Pressed.

15:11 R 0 Reserved and Preserved.
10 PwrCtlCtl RW 0 1 = Power applied to the slot is Off. 0 = Power applied

is On.

May 14, 2014 665 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition
9:8 PwrIndCtl RW 0x3 Non-zero writes to this register set these

bits as well as send the appropriate
PWR INDICATOR {ON,OFF,BLINK} Message.

7:6 AttIndCtl RW 0x3 Non-zero writes to this register set these
bits as well as send the appropriate
ATTN INDICATOR {ON,OFF,BLINK} Message.

5 HotPlugEn RW 0 1 = Enable Hot-Plug interrupt generation for enabled
Hot-Plug events.

4 CmdCplEn RW 0 1 = Enable Hot-Plug interrupt generation for Command
Completion by Hot Plug Controller.

3 PrnDetEn RW 0 1 = Enable Hot-Plug interrupt generation for presence
detect changed event.

2 MRLSenEn RW 0 1 = Enable Hot-Plug interrupt generation for MRL Sensor
Changed event.

1 PwrFltEn RW 0 1 = Enable Hot-Plug interrupt generation for power fault
event.

0 AttButEn RW 0 1 = Enable Hot-Plug interrupt generation for Attention
Button Pressed event.

13.12.30 Root Control Register

Description

Register

R PcieRootCtl

Address

0xE 9800 008C

Definitions

Bit Mnemonic Access Reset Type Definition

31:4 R 0 Reserved
3 PMEIntEn RW 0 1 = Root Port should generate interrupt if PME Status

register bit is set indicating receipt of PME Message. If
PME Status bit is already set when this bit is enabled,
interrupt should be generated. (Errata doc Page 110 says
that the Root Port should generate interrupt wire only
when Interrupt Disable bit in Command Register is 0 in
addition to the above 2 bits being set).

2 FatErrEn RW 0 1 = RC should generate system error if Fatal Error re-
ported by the Root Port or by devices in its hierarchy.
This should not happen if SerrEn bit in Command regis-
ter = 0 (based on Errata doc Page 107).

1 NFErrEn RW 0 1 = RC should generate system error if NonFatal Error re-
ported by the Root Port or by devices in its hierarchy.This
should not happen if SerrEn bit in Command register =
0 (based on Errata doc Page 107).

0 CorrErrEn RW 0 1 = RC should generate system error if Correctable Error
reported by the Root Port or by devices in its hierar-
chy.This should not happen if SerrEn bit in Command
register = 0 (based on Errata doc Page 107).

May 14, 2014 666 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.31 Root Status Register

Description

The Root Status Register are described here.

Register

R PcieRootStatus

Address

0xE 9800 0090

Definitions

Bit Mnemonic Access Reset Type Definition

31:18 R 0 Reserved.
17 PMEPend R 0 1 = Another PME is pending when PME Status bit is set.

When PME Status is cleared by software, pending PME
will cause PME Status to be set again with the updated
Req ID. Process will continue until no more PMEs are
pending.

16 PMEStat RW1C 0 1 = PME was asserted by requester in bits 15:0.
15:0 PMEReqId R 0 Indicates PCI Requester ID of the last PME requester.

13.12.32 Advanced Error Reporting Enhanced Capability Header Register

Description

Register

R PcieAdvErrCapHdr

Address

0xE 9800 0100

Definitions

Bit Mnemonic Access Reset Type Definition

31:20 NxtCapOff R 0x0 Next Capability Offset (relative to address 0 of config
space)

19:16 CapVer R 0x1 Capability Version. Assigned by PCI-SIG.
15:0 ExtCapId R 0x1 PCI Express Extended Capability ID. Assigned by PCI-

SIG.

13.12.33 Advanced Error Reporting Uncorrectable Error Status Register

Description

Bits in this register are sticky and report the error status of individual error sources.

Register

R PcieUCorrErr

May 14, 2014 667 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE 9800 0104

Definitions

Bit Mnemonic Access Reset Type Definition

31:21 R 0 Reserved
20 URErrSt RW1C 0 Unsupported Request Error Status
19 ECRCErrSt RW1C 0 ECRC Error Status
18 MlfTLPSt RW1C 0 Malformed TLP Status
17 RcvOvfSt RW1C 0 Receiver Overflow Status
16 UnxCplSt RW1C 0 Unexpected Completion Status
15 CplAbrtSt RW1C 0 Completer Abort
14 CplTOSt RW1C 0 Completion Timeout Status
13 FCErrSt RW1C 0 Flow Control Protocol Error Status
12 PsnSt RW1C 0 Poisoned TLP Status
11:5 R 0 Reserved.
4 DLErrSt RW1C 0 Data Link Protocol Error Status
3:1 R 0 Reserved.
0 TrnErrSt RW1C 0 Training Error Status (default undefined for Rev 1.1)

13.12.34 Uncorrectable Error Mask Register

Description

All unreserved bits in these registers are sticky.

Register

R PcieUncErrMsk

Address

0xE 9800 0108

Definitions

Bit Mnemonic Access Reset Type Definition

31:21 R 0 Reserved
20 URErrMsk RWS 0 Unsupported Request Error Mask
19 ECRCErrMsk RWS 0 ECRC Error Mask
18 MlfTLPMsk RWS 0 Malformed TLP Mask
17 RcvOvfMsk RWS 0 Receiver Overflow Mask
16 UnxCplMsk RWS 0 Unexpected Completion Mask
15 CplAbrtMsk RWS 0 Completer Abort Mask
14 CplTOMsk RWS 0 Completion Timeout Mask
13 FCErrMsk RWS 0 Flow Control Protocol Error Mask
12 PsnMsk RWS 0 Poisoned TLP Mask
11:5 R 0 Reserved.
4 DLErrMsk RWS 0 Data Link Protocol Error Mask
3:1 R 0 Reserved.
0 TrnErrMsk R 0 Training Error Mask.

May 14, 2014 668 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.35 Uncorrectable Severity Register

Description

All unreserved bits in these registers are sticky.

Register

R PcieUncErrSev

Address

0xE 9800 010C

Definitions

Bit Mnemonic Access Reset Type Definition

31:21 R 0 Reserved
20 URErrSev RWS 0 Unsupported Request Error Severity
19 ECRCErrSev RWS 0 ECRC Error Severity
18 MlfTLPSev RWS 1 Malformed TLP Severity
17 RcvOvfSev RWS 1 Receiver Overflow Severity
16 UnxCplSev RWS 0 Unexpected Completion Severity
15 CplAbrtSev RWS 0 Completer Abort Severity
14 CplTOSev RWS 0 Completion Timeout Severity
13 FCErrSev RWS 1 Flow Control Protocol Error Severity
12 PsnSev RWS 0 Poisoned TLP Severity
11:5 R 0 Reserved.
4 DLErrSev RWS 1 Data Link Protocol Error Severity
3:1 R 0 Reserved.
0 R 0 Reserved.

13.12.36 Correctable Error Status Register

Description

All unreserved bits in these registers are sticky.

Register

R PcieCorErrSt

Address

0xE 9800 0110

Definitions

Bit Mnemonic Access Reset Type Definition

31:14 R 0 Reserved
13 NFErr RW1C 0 Advisory NonFatal Error Status
12 RplTOSt RW1C 0 Replay Timer Timeout Status
11:9 R 0 Reserved.
8 RplRollSt RW1C 0 Replay Num Rollover Status
7 BadDLLPSt RW1C 0 Bad DLLP Status
6 BadTLPSt RW1C 0 Bad TLP Status
5:1 R 0 Reserved.
0 RcvErrSt RW1C 0 Receiver Error Status

May 14, 2014 669 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.12.37 Correctable Error Mask Register

Description

All unreserved bits in these registers are sticky.

Register

R PcieCorErrMsk

Attributes

-writeonemixed

Address

0xE 9800 0114

Definitions

Bit Mnemonic Access Reset Type Definition

31:14 R 0 Reserved
13 NFErrMask RW1C 1 Advisory NonFatal Error mask
12 RplTOMsk RW 0 Replay Timer Timeout Mask
11:9 R 0 Reserved
8 RplRollMsk RW 0 Replay Num Rollover Mask
7 BadDLLPMsk RW 0 Bad DLLP Mask
6 BadTLPMsk RW 0 Bad TLP Mask
5:1 R 0 Reserved.
0 RcvErrMsk RW 0 Receiver Error Mask

13.12.38 Advanced Error Capabilities Control Register

Description

Register

R PcieAdvErrCapCtrl

Address

0xE 9800 0118

Definitions

Bit Mnemonic Access Reset Type Definition

31:9 R 0 Reserved
8 ECRCChkEn RW 0 1 = ECRC Checking on inbound packets enabled. Sticky.
7 ECRCChkCap R 1 1 = This device is capable of checking ECRC.
6 ECRCGenEn RW 0 1 = ECRC Generation Enabled. Sticky.
5 ECRCGenCap R 1 1 = This device is capable of generating ECRC.
4:0 FstErrPtr R 0 First Error Pointer. Identifies bit position of first error re-

ported in the Uncorrectable Error Status register. Sticky.

May 14, 2014 670 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

13.12.39 Advanced Error Capabilities/Header Log Register (1st Dword)

Description

The Header Log is 4 Dwords and contains the header of the TLP that contained a detected error. All bits in
Header Log register(s) are sticky.

Register

R PcieHdrLog1

Address

0xE 9800 011C

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 HdrLog1 R 0 First Header of TLP that contained a detected error.
Sticky.

13.12.40 Header Log Register (2nd Dword)

Description

Register

R PcieHdrLog2

Address

0xE 9800 0120

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 HdrLog2 R 0 Second Header of TLP that contained a detected error.
Sticky.

13.12.41 Header Log Register (3rd Dword)

Description

Register

R PcieHdrLog3

Address

0xE 9800 0124

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 HdrLog3 R 0 Third Header of TLP that contained a detected error.
Sticky.

May 14, 2014 671 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.12.42 Header Log Register (4th Dword)

Description

Register

R PcieHdrLog4

Address

0xE 9800 0128

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 HdrLog4 R 0 Fourth Header of TLP that contained a detected error.
Sticky.

13.12.43 Root Error Command Register

Description

This register allows the Root Complex to control reporting (ie. generating or disabling interrupts) of incoming
ERROR messages.

Register

R PcieRootErrCmd

Address

0xE 9800 012C

Definitions

Bit Mnemonic Access Reset Type Definition

31:3 R 0 Reserved
2 FatErrEn RW 0 1 = Enable interrupt generation when ERR FATAL mes-

sage received. (Errata doc Page 111 says that the Root
Port should generate interrupt wire only when Interrupt
Disable bit in Command Register is 0 in addition to the
above).

1 NFErrEn RW 0 1 = Enable interrupt generation when ERR NONFATAL
message received. (Errata doc Page 111 says that the
Root Port should generate interrupt wire only when In-
terrupt Disable bit in Command Register is 0 in addition
to the above).

0 CorrErrEn RW 0 1 = Enable interrupt generation when ERR COR mes-
sage received. (Errata doc Page 111 says that the Root
Port should generate interrupt wire only when Interrupt
Disable bit in Command Register is 0 in addition to the
above).

13.12.44 Root Error Status Register

Description

The Root Error Status register reports the status of error messages (where these could be ERROR messages
received from other devices, or detected by the Root Port itself). Bits 6:0 of this register are sticky.

May 14, 2014 672 Rev 51328

SiCortex Confidential 13.12. PCI EXPRESS ROOT COMPLEX REGISTERS

Register

R PcieRootErrSt

Address

0xE 9800 0130

Definitions

Bit Mnemonic Access Reset Type Definition

31:27 MsgNum R 0 Since we allocated only 1 MSI interrupt number, this field
is irrelevant for us.

26:7 R 0 Reserved.
6 FatErrMsgRcv RW1C 0 1 = One or more fatal uncorrectable errors detected. This

should not happen if SerrEn bit in Command register =
0 (based on Errata doc Page 107).

5 NFErrMsgRcv RW1C 0 1 = One or more non-fatal uncorrectable errors detected.
This should not happen if SerrEn bit in Command register
= 0 (based on Errata doc Page 107).

4 FstUncFat RW1C 0 1 = Bit 2 was set due to a FATAL error.
3 NFErrMul RW1C 0 1 = Uncorrectable error detected while bit 2 was already

set.
2 NFErrRcv RW1C 0 1 = Uncorrectable error detected (by Root Port or via

ERR (NON)FATAL message). This should not happen
if SerrEn bit in Command register = 0 (based on Errata
doc Page 107).

1 CorrErrMul RW1C 0 1 = Correctable error detected while bit 0 was already
set.

0 CorErrRcv RW1C 0 1 = Correctable error detected (by Root Port or via
ERR COR message). This should not happen if SerrEn
bit in Command register = 0 (based on Errata doc Page
107).

13.12.45 Root Error Source Identification Register

Description

The Error Source Identification register (all of whose bits are sticky) keeps track of the requester ID of the first
such ERROR message for a given category (correctable or uncorrectable).

Register

R PcieRootErrSrcId

Address

0xE 9800 0134

Definitions

Bit Mnemonic Access Reset Type Definition

31:16 UncErrId R 0 Contains ReqID of uncorrectable error (message) detected
when bit 2 is being set

15:0 CorErrId R 0 Contains ReqID of correctable error (message) detected
when bit 0 is being set

May 14, 2014 673 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.13 PMI Control and Status Registers

13.13.1 Core Control Register

Register

R PmiCoreCtrl

Attributes

-noregtest -kernel

Address

0xE 9800 1000
Bit Mnemonic Access Reset Definition

63:12 R 0 Reserved
11 PERSTN RWS 0 slot reset
10 PWRRSTN RWS 0 power reset
9 NSTICKYRSTN RWS 0 non sticky reset n
8 STICKYRSTN RWS 0 Sticky reset n
7 CORERSTN RWS 0 Core reset n
6 APPREQL1EXIT RW 0 Application requests L1 exit
5 APPREQL1ENTRY RW 0 Application requests L1 entry
4 R 0 Reserved
3 APPREQRST RW 0 Application requests Hot Reset on PCIE link
2 RXLNFLP RW 0 Rx Lane Flip Enable
1 TXLNFLP RW 0 Tx Lane Flip Enable
0 ENA RW 0 Write 1 to start the PCI link training. Typically

after reset

13.13.2 PMI Interrupt Summary Register

Description

This register is a summary of the various sources of intterrupts. The source of the interrupt must be cleared to
clear bits that are not labelled RW1C. The state of the bits in this register are independent of the R PmiIntrEn
register.

Register

R PmiIntr

Attributes

-kernel

Address

0xE 9800 1008

May 14, 2014 674 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

Bit Mnemonic Access Reset Product Definition

63:34 R 0 ICE9A Reserved
(Overlaps allowed)

63:40 R 0 ICE9B+ Reserved
(Overlaps allowed)

39 REQCOMPMULT RW1C 0 ICE9B+ REQ received multiple errored completions
38 CSIECCMULT RW1C 0 ICE9B+ CSI detected multiple ECC errors.
37 REQECCMULT RW1C 0 ICE9B+ REQ detected multiple ECC errors.
36 CCWSYCECCMULT RW1C 0 ICE9B+ Data from the SYC to the CCW had multiple

ECC errors.
35 CCWCSWECCMULT RW1C 0 ICE9B+ Data from the CSW to the CCW had multiple

ECC errors.
34 SYCECCMULT RW1C 0 ICE9B+ Data from the CSW to the SYC had multiple

ECC errors
33 REQRST R 1 RC requests reset due to link down status.
32 R 0 Reserved
31 DATLINKDWN R 1 PCI Data Link Layer Down Indication
30 PMTLPBLK R 0 PM requests blocking of outbound

non-completion TLPs.
29 INTD R 0 INTD Active
28 INTC R 0 INTC Active
27 INTB R 0 INTB Active
26 INTA R 0 INTA Active
25 CORERR RW1C 0 Received a Correctable Error Message
24 NFERR RW1C 0 Received a Non-Fatal Error Message
23 FERR RW1C 0 Received a Fatal Error Message
22 PME RW1C 0 Received a PM PME Message
21 TOACK RW1C 0 Received a PME Turnoff Ack Message
20 VEN RW1C 0 Received Vendor Message
19 AERINT R 0 AER INT
18 AERMSI RW1C 0 AER MSI
17 PMEINT R 0 PME INT
16 PMEMSI RW1C 0 PME MSI
15 HPPME R 0 Hot-plug PME Wake Generation
14 HPINT R 0 Hot-plug Interrupt
13 HPMSI RW1C 0 Hot-plug MSI
12 R 0 Reserved
11 CSIADRINT RW1C 0 CSI detected an out of range address.
10 CSIECCINT RW1C 0 CSI detected an ECC error.
9 R 0 Reserved
8 CSIWTOINT RW1C 0 A timeout occurred on the wishbone interface.
7 CSIDBIINT RW1C 0 A 64 bit access was requested of the DBI.
6 R 0 Reserved
5 REQECCINT RW1C 0 REQ detected an ECC error.
4 REQCOMPINT RW1C 0 REQ received an errored completion.
3 CCWSYCECCINT RW1C 0 Data from the SYC to the CCW had an ECC

error.
2 CCWCSWECCINT RW1C 0 Data from the CSW to the CCW had an ECC

error.
1 SYCECCINT RW1C 0 Data from the CSW to the SYC had an ECC

error.
0 R 0 Reserved

May 14, 2014 675 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.13.3 PMI Interrupt Enable Register

Register

R PmiIntrEn

Attributes

-kernel

Address

0xE 9800 1010

May 14, 2014 676 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

Bit Mnemonic Access Reset Product Definition

63:34 RW 0 ICE9A Reserved
(Overlaps allowed)

63:40 RW 0 ICE9B+ Reserved
(Overlaps allowed)

39 REQCOMPMULT RW 0 ICE9B+ REQ received multiple errored completions
38 CSIECCMULT RW 0 ICE9B+ CSI detected multiple ECC errors.
37 REQECCMULT RW 0 ICE9B+ REQ detected multiple ECC errors.
36 CCWSYCECCMULT RW 0 ICE9B+ Data from the SYC to the CCW had multiple

ECC errors.
35 CCWCSWECCMULT RW 0 ICE9B+ Data from the CSW to the CCW had multiple

ECC errors.
34 SYCECCMULT RW 0 ICE9B+ Data from the CSW to the SYC had multiple

ECC errors
33 REQRST RW 0 RC requests reset due to link down status.
32 Unused32 RW 0 unused 32
31 DATLINKDWN RW 0 PCI Data Link Layer Down Indication
30 PMTLPBLK RW 0 PM requests blocking of outbound

non-completion TLPs.
29 INTD RW 0 INTD Active
28 INTC RW 0 INTC Active
27 INTB RW 0 INTB Active
26 INTA RW 0 INTA Active
25 CORERR RW 0 Received a Correctable Error Message
24 NFERR RW 0 Received a Non-Fatal Error Message
23 FERR RW 0 Received a Fatal Error Message
22 PME RW 0 Received a PM PME Message
21 TOACK RW 0 Received a PME Turnoff Ack Message
20 VEN RW 0 Received Vendor Message
19 AERINT RW 0 AER INT
18 AERMSI RW 0 AER MSI
17 PMEINT RW 0 PME INT
16 PMEMSI RW 0 PME MSI
15 HPPME RW 0 Hot-plug PME Wake Generation
14 HPINT RW 0 Hot-plug Interrupt
13 HPMSI RW 0 Hot-plug MSI
12 Unused12 RW 0 unused 12
11 CSIADRINT RW 0 CSI detected an out of range address.
10 CSIECCINT RW 0 CSI detected an ECC error.
9 Unused9 RW 0 unused 9
8 CSIWTOINT RW 0 A timeout occurred on the wishbone interface.
7 CSIDBIINT RW 0 A 64 bit access was requested of the DBI.
6 Unused6 RW 0 unused 6
5 REQECCINT RW 0 REQ detected an ECC error.
4 REQCOMPINT RW 0 REQ received an errored completion.
3 CCWSYCECCINT RW 0 Data from the SYC to the CCW had an ECC

error.
2 CCWCSWECCINT RW 0 Data from the CSW to the CCW had an ECC

error.
1 SYCECCINT RW 0 Data from the CSW to the SYC had an ECC

error.
0 Unused0 RW 0 unused 0

May 14, 2014 677 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.13.4 LED Blink Rate Register

Register

R PmiLedBlinkRate

Attributes

-kernel

Address

0xE 9800 1018
Bit Mnemonic Access Reset Definition

63:32 Reserved
31:0 BLINKRATE RW 0 Count in ICLK of the PWWR and ATTN in-

dicators. (This count defines the high (and the
low) time of the 50% duty cycle blink rate.

13.13.5 Send Unlock Message Register

Register

R PmiSndUnlkMsg

Address

0xE 9800 1028
Bit Mnemonic Access Reset Definition

63:1 Reserved
0 GO W1C 0 Write 1 to send an unlock message out. Self-

clearing bit

13.13.6 Send Turnoff Message Register

Register

R PmiSndTrnOffMsg

Address

0xE 9800 1030
Bit Mnemonic Access Reset Definition

63:1 Reserved
0 GO W1C 0 Write 1 to send a turn-off message out. Self-

clearing bit

13.13.7 Link Status Register

Register

R PmiLinkStat

Attributes

-kernel

May 14, 2014 678 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

Address

0xE 9800 1038
Bit Mnemonic Access Reset Definition

63:15 Reserved
14:12 PMDS R 0x4 Power Management D-State
11:7 LTSSMCS R 0 Link Training and Status State Machine Current

State
6:4 PMCS R 0 Power Management Current State
3 DATLK R 0 PCI Data Link Layer Up/Down Indication
2 REQRST R 1 RC requests reset due to link down status.
1 PHYLK R 0 PCI Phy Link Up/Down Indication
0 PMTLPBLK R 0 Power management control to block schedule of

new TLP requests

13.13.8 Root-Complex Debug Info

Register

R PmiRcDbg

Address

0xE 9800 1040
Bit Mnemonic Access Reset Definition

63:12 R 0 Reserved
11 XSCRDIS R 0 Transmit Scrambler Disabled
10 XLKDIS R 1 Transmit Link Disabled
9 XLKTRN R 0 Transmit Link In Training
8:3 Reserved
2 DETLOOP R 0 PIPE TxDetextRx/Loopback on. PHY is doing

a receiver detection or is in loopback mode
1 TXEIDLE R 0 PIPE TxElecIdle on. PHYtransmits electrical

idle
0 TXCOMPL R 0 PIPE TxCompliance on. PHY transmits com-

pliance patterns

13.13.9 Force Ecc Error Register

Description

Used to artificially cause single bit ECC errors at various generators within the PMI.

Register

R PmiFrcEccErr

Address

0xE 9800 2000

May 14, 2014 679 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Definition

63:5 Reserved
4 EnECCCorr RW 1 Enable correction of ECC errors.
3 SycBadDat1 RWS 0 Flip bit 1 of word 0 of data coming out of the

SYC write buffer.
2 SycBadDat0 RWS 0 Flip bit 0 of word 0 of data coming out of the

SYC write buffer.
1 CswBadDat1 RWS 0 Flip bit 1 of word 0 of data going out on the

CSW.
0 CswBadDat0 RWS 0 Flip bit 0 of word 0 of data going out on the

CSW.

13.13.10 CSI Ecc Error Register

Description

Debug information in the event an ECC error was detected by the CSI. This is for data coming from the CSW
to the CSI.

Register

R PmiCsiEccErr

Address

0xE 9800 2018
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:54 R 0 Reserved
53 Dbe R 0 It was a double bit error.
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 Synd R 0 Syndrome of the errored data.
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.11 CSI Address Error Register

Description

Debug information in the event an out of range address was detected by the CSI. This is for commands coming
from the CSW that are in the gross CSI range, but not in the range of any specific function within the CSI. To
wit, the following must be true for the address to be valid:

Addr[35:12] = 0xE980xx where xx <= 0x30
or
the address is within the IoSCB space
or
the address is within the I2C space
or
the address is within the Uart space

Register

R PmiCsiAdrErr

May 14, 2014 680 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

Address

0xE 9800 2020
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:53 R 0 Reserved
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding interrupt bit in
the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 R 0 Reserved
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.12 DBI 64bit Access Error Register

Description

Debug information in the event a 64 bit access to the DBI was detected by the CSI.

Register

R PmiCsiDbiErr

Address

0xE 9800 2028
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:53 R 0 Reserved
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding interrupt bit in
the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 R 0 Reserved
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.13 CSI Wishbone Timeout Error Register

Description

Debug information in the event a timeout occurred in a Wishbone transaction.

Register

R PmiCsiWtoErr

Address

0xE 9800 2030

May 14, 2014 681 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:53 R 0 Reserved
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding interrupt bit in
the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 R 0 Reserved
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.14 REQ Ecc Error Register

Description

Debug information in the event an ECC error was detected by the REQ. This is for data coming from the CSW
to the REQ.

Register

R PmiReqEccErr

Address

0xE 9800 2040
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:54 R 0 Reserved
53 Dbe R 0 It was a double bit error
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 Synd R 0 Syndrome of the errored data.
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.15 REQ Completion Error Register

Description

Debug information in the event an errored completion was received by the REQ from the Root Complex.

Register

R PmiReqCompErr

Attributes

-kernel

Address

0xE 9800 2048

May 14, 2014 682 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

Bit Mnemonic Access Reset Definition

63:60 Reas R 0 Reason code for errored completion.
59:53 R 0 Reserved
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 R 0 Reserved
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.16 SYC CSW Ecc Error Register

Description

Debug information in the event an ECC error was detected by the SYC. This is for data coming from the CSW
to the SYC. The address given is the PCI address of the completion or of the current completion segment.

Register

R PmiSycCswEccErr

Address

0xE 9800 2050
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:54 R 0 Reserved
53 Dbe R 0 It was a double bit error
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 R 0 Reserved
43:36 Synd R 0 Syndrome of the errored data.
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.17 CCW CSW Ecc Error Register

Description

Debug information in the event an ECC error was detected by the CCW. This is for data coming from the CSW
to the CCW.

Register

R PmiCcwCswEccErr

Address

0xE 9800 2060

May 14, 2014 683 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:54 R 0 Reserved
53 Dbe R 0 It was a double bit error
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 Synd R 0 Syndrome of the errored data.
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.18 CCW SYC Ecc Error Register

Description

Debug information in the event an ECC error was detected by the CCW. This is for data coming from the SYC
to the CCW.

Register

R PmiCcwSycEccErr

Address

0xE 9800 2068
Bit Mnemonic Access Reset Definition

63:60 R 0 Reserved
59:54 R 0 Reserved
53 Dbe R 0 It was a double bit error
52 Mult R 0 Multiple Errors received since last serviced.

Cleared when the corresponding multi-interrupt
bit in the summary register is cleared.

51:44 Origin R 0 The origin of the errored transaction.
43:36 Synd R 0 Syndrome of the errored data.
35:3 Addr R 0 Address of the errored transaction.
2:0 R 0 Reserved

13.13.19 MSI Address Register

Register

R PmiMsiAddr

Attributes

-kernel

Address

0xE 9800 3000
Bit Mnemonic Access Reset Definition

63:6 Addr RW 0 Base address for the MSI range.
5:0 R 0 Reserved

May 14, 2014 684 Rev 51328

SiCortex Confidential 13.13. PMI CONTROL AND STATUS REGISTERS

13.13.20 Wishbone Timeout Value Register

Register

R PmiWbToVal

Address

0xE 9800 3008
Bit Mnemonic Access Reset Definition

63:8 R 0 Reserved
7:0 WBTOVAL RW 0x10 Timeout value in CCLKs

13.13.21 VSM Request Double Word 1 and 2 Register

Register

R PmiVmReqDW12

Address

0xE 9801 0000
Bit Mnemonic Access Reset Definition

63:56 Unused1 RW 0 Unused 1
55:48 CODE RW 0 Code field
47:40 Unused0 RW 0 Unused 0
39:24 REQID RW 0 Requestor id
23 TD RW 0 Digest present
22 EP RW 0 Poisoned indicator

21:20 ATTR RW 0 Attribute Field
19:10 LEN RW 0 Length Field. Valid values are 0 and 1. Other

values will default to 1.
9:7 TC RW 0 Traffic Class
6:5 FMT RW 0 Format field
4:0 TYPE RW 0 Type field

13.13.22 VSM Request Double Word 3 and 4 Register

Register

R PmiVmReqDW34

Address

0xE 9801 0008
Bit Mnemonic Access Reset Definition

63:0 ADDR RW 0 64 bit address

13.13.23 VMI Request Data Register

Register

R PmiVmReqDat

Attributes

-writeonemixed

May 14, 2014 685 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE 9801 0010
Bit Mnemonic Access Reset Definition

63:33 R 0 Reserved
32 GO W1C 0 Write 1 to initiate a Vendor Message Request.

Software needs to setup the Vendor Message
Data Registers and the Vendor Message Header
Register before setting this flag. This is a self-
resetting flag

31:0 DAT RW 0 Optional data for the request

13.13.24 Received Vendor Message Double Word 1 and 2 Register

Register

R PmiRcvVenMsgDW12

Address

0xE 9801 0018
Bit Mnemonic Access Reset Definition

63:56 R 0 Reserved
55:48 CODE R 0 Code field
47:40 TAG R 0 Tag field
39:24 REQID R 0 Requestor id
23 TD R 0 Digest present. PRC has been configured to strip

ECRC, hence this bit will likely always be 0.
22 EP R 0 Poisoned indicator

21:20 ATTR R 0 Attribute Field
19:10 LEN R 0 Length Field
9:7 TC R 0 Traffic Class
6:5 FMT R 0 Format field
4:0 TYPE R 0 Type field

13.13.25 Received Vendor Message Double Word 3 and 4 Register

Register

R PmiRcvVenMsgDW34

Address

0xE 9801 0020
Bit Mnemonic Access Reset Definition

63:0 ADDR R 0 64 bit address

13.13.26 Received Vendor Message Payload Register

Register

R PmiRcvVenMsgPld

Address

0xE 9801 0028

May 14, 2014 686 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Definition

63:34 R 0 Reserved
33 OVFLW R 0 Received Vendor Message Overflow. Set if a Ven-

dor Message received before previous message
was serviced

31:0 PAYLD R 0 Received Vendor Message Payload

13.14 PCI Express Phy Registers

All of the registers in this section are within the PCI Express Phy. The contents of these registers come from
the PCIe1 90nM PHY Core Data Book.

13.14.1 Less Than Limit Compare Point Register

Description

Less Than Limit Compare point

Register

R PciePhyCrClockCrcmpLtLimit

Address

0xE98100008
Bit Mnemonic Access Reset Type Definition

15:0 CrcmpLtLimit RW 0x0 Less Than Limit Compare point.

13.14.2 Greater Than Limit Compare Point Register

Description

Greater Than Limit Compare point

Register

R PciePhyCrClockCrcmpGtLimit

Address

0xE98100010
Bit Mnemonic Access Reset Type Definition

15:0 CrcmpGtLimit RW 0xFFFF Greater Than Limit Compare point.

13.14.3 Compare/Scratch Value Mask Register

Description

Compare/Scratch value mask

Register

R PciePhyCrClockCrcmpMask

Address

0xE98100018
Bit Mnemonic Access Reset Type Definition

15:0 CrcmpMask RW 0xFFFF Compare/Scratch value mask.

May 14, 2014 687 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.4 Scratch Space Control Register

Description

Scratch space control bits

Register

R PciePhyCrClockCrcmpCtl

Address

0xE98100020
Bit Mnemonic Access Reset Type Definition

1 HoldScratch1 RW 0 Don t update Scratch1 on register reads.
0 HoldScratch0 RW 0 Don t update Scratch0 on register reads.

13.14.5 Scratch Register Comparisons To Limits Results Register

Description

Results of scratch register comparisons to limits

Register

R PciePhyCrClockCrcmpStat

Address

0xE98100028
Bit Mnemonic Access Reset Type Definition

5 S1S0Outside RS X Logical OR of S1 S0 LOW and S1 S0 HIGH useful to de-
termine if the difference is.

4 S0Outside RS X Logical OR of S0 LOW and S0 HIGH useful to determine
if the value is near signed.

3 S1S0High RS X Masked(Scratch1-Scratch0) is higher than CR-
CMP HT LIMIT.

2 S1S0Low RS X Masked(Scratch1-Scratch0) is lower than CR-
CMP LT LIMIT.

1 S0High RS X Masked Scratch0 is higher than CRCMP HT LIMIT.
0 S0Low RS X Masked Scratch0 is lower than CRCMP LT LIMIT.

13.14.6 Number Of Samples To Count Register

Description

Number of samples to count

Register

R PciePhyCrClockScopeSamples

Address

0xE98100030
Bit Mnemonic Access Reset Type Definition

15:0 ScopeSamples RW 0x100 Number of samples to count.

May 14, 2014 688 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.7 Scope Counting Results Register

Description

Results of scope counting A write to this register will start the counting process The value of FFFF indicates
counting still in progress

Register

R PciePhyCrClockScopeCount

Address

0xE98100038
Bit Mnemonic Access Reset Type Definition

15:0 ScopeCount RS X Results of scope counting A write to this register will start
the counting proce.

13.14.8 Support DAC Values And Controls Register

Description

Support DAC values and controls

Register

R PciePhyCrClockDacCtl

Address

0xE98100040
Bit Mnemonic Access Reset Type Definition

14:12 DacMode RW 0x0 DAC output mode 0 - powered down 1 - unused 2 - hi-
range margining (VP25*418e-6.

11 OvrdRtuneRx RW 0 Write DAC VAL[5:0] to the Rx rtune bus.
10 OvrdRtuneTx RW 0 Write DAC VAL[5:0] to the Tx rtune bus.
9:0 DacVal RW 0x1FF Digital value to use for DAC.

13.14.9 Resistor Tuning Controls Register

Description

Resistor tuning controls

Register

R PciePhyCrClockRtuneCtl

Address

0xE98100048

May 14, 2014 689 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

10 AdcTrig RW 0 Trigger ADC conversion.
9 RtuneTrig RW 0 Trigger manual resistor calibration.
8 RtuneDis RW 0 Disable automatic resistor recalibrations.
7 CmpInvert RW 0 Invert output of comparator (to reverse SAR feed- back

loop).
6 DacChop RW 0 Polarity of chop control for DAC.
5 RscX4 RW 1 Set x4 in rescal circuitry.
4 SelAtbp RW 0 Select atb s p for A/D measurement.
3 PwronLcl RW 0 Value of poweron to force.
2 FrcPwron RW 0 Override internal poweron.
1:0 Mode RW 0x0 Restune SAR mode 0 - normal restune 1 - ADC 2 - Rx

Resistor test 3 - Tx Resistor.

13.14.10 ADC Process Results Register

Description

Results of ADC process A read from this register starts a new A/D conversion

Register

R PciePhyCrClockAdcOut

Address

0xE98100050
Bit Mnemonic Access Reset Type Definition

10 Fresh RS X Flag indicates that a new A/D conversion result is present.
9:0 Value RS X A/D conversion result Based on RTUNE CTL.

13.14.11 Current MPLL Phase Selector Value Register

Description

Current MPLL phase selector value

Register

R PciePhyCrClockSsPhase

Address

0xE98100058

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

12 ZeroFreq RWS 0 Current MPLL phase selector value Must be set for
PHASE writes to stick.

11:2 Val RWS 0x0 Current MPLL phase selector value.
1:0 Dthr RWS 0x0 Current MPLL phase selector value.

13.14.12 JTAG Chip ID Register (Lower 16 Bits)

Description

Internal Chip ID used by JTAG - upper 16 bits Not unique between UP3 1.0 parts

May 14, 2014 690 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrClockChipIdHi

Address

0xE98100060
Bit Mnemonic Access Reset Type Definition

15:0 ChipIdHi R 0x3005 Internal Chip ID used by JTAG - upper 16 bits Not unique
between UP3 1.

13.14.13 JTAG Chip ID Register (Upper 16 Bits)

Description

Internal Chip ID used by JTAG - lower 16 bits Not unique between UP3 1.0 parts

Register

R PciePhyCrClockChipIdLo

Address

0xE98100068
Bit Mnemonic Access Reset Type Definition

15:0 ChipIdLo R 0x4CD Internal Chip ID used by JTAG - lower 16 bits Not unique
between UP3 1.

13.14.14 Frequency Control Inputs Status Register

Description

Status of Frequency control inputs Reset value depends on inputs

Register

R PciePhyCrClockFreqStat

Address

0xE98100070
Bit Mnemonic Access Reset Type Definition

15 Reserved RS X Always reads as 1.
14:13 Prescale RS X Prescaler control.
12:8 Ncy RS X Divide by 4 cycle control.
7:6 Ncy5 RS X Divide by 5 control.
5:3 IntCtl RS X Integral charge pump control.
2:0 PropCtl RS X Proportional charge pump control.

13.14.15 Various Control Inputs Status Register

Description

Status of various control inputs Reset value depends on inputs

Register

R PciePhyCrClockCtlStat

May 14, 2014 691 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98100078
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14 FastTech RS X Technology is fast.
13 VpIs1p2 RS X Low voltage supply is 1.
12 VphIs3p3 RS X High voltage supply is 3.
11 WideXface RS X Wide interface control.
10 RtuneDoTune RS X Manual resistor tune control.
9 Reserved RS X Always reads as 1.
8:6 CkoWordCon RS X Cko word mux control.
5:4 CkoAliveCon RS X Cko alive mux control.
3 MpllSsEn RS X Spread spectrum enable.
2 MpllPwron RS X Mpll power-on control.
1 MpllClkOff RS X Reference clock is off.
0 UseRefclkAlt RS X Use alternate refclk.

13.14.16 Level Control Inputs Status Register

Description

Status of level control inputs Reset value depends on inputs

Register

R PciePhyCrClockLvlStat

Address

0xE98100080
Bit Mnemonic Access Reset Type Definition

15 Reserved RS X Always reads as 1.
14:10 TxLvl RS X Transmit level.
9:5 LosLvl RS X Loss of Signal Detector level.
4:0 AcjtLvl RS X AC JTag Comparator level.

13.14.17 Creg Control I/O Status Register

Description

Status of creg control I/O Reset value depends on inputs

Register

R PciePhyCrClockCregStat

Address

0xE98100088

May 14, 2014 692 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

8 Reserved1 RS X Always reads as 1.
7 OpDone RS X Operation is complete output.
6 PowerGood RS X Power good output.
5 CrAck RS X Creg request Acknowledgement.
4 Reserved RS X Always reads as 1.
3 CrCapAddr RS X Capture Address request.
2 CrCapData RS X Capture Data request.
1 CrWrite RS X Write request.
0 CrRead RS X Read request.

13.14.18 Frequency Control Inputs Override Register

Description

Override of Frequency control inputs

Register

R PciePhyCrClockFreqOvrd

Address

0xE98100090
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 Prescale RW 0x2 Prescaler control 00 - no scaling 01 - double refclk freq 10

- halve refclk freq.
12:8 Ncy RW 0x5 Divide by 4 cycle control MPLL Divider Pe-

riod=4*(NCY+1)+NCY5 Valid only when NCY.
7:6 Ncy5 RW 0x1 Divide by 5 control MPLL Divider Pe-

riod=4*(NCY+1)+NCY5 Valid only when
NCY5<=NCY.

5:3 IntCtl RW 0x0 Integral charge pump control Integral current =
(n+1)/8*full scale.

2:0 PropCtl RW 0x7 Proportional charge pump control Proportional current =
(n+1)/8*full scale.

13.14.19 Various Control Inputs Override Register

Description

Override of various control inputs

Register

R PciePhyCrClockCtlOvrd

Address

0xE98100098

May 14, 2014 693 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

15 OvrdStatic RWS 0 Override static controls (bits 14:10).
14 FastTech RW 0 Technology is fast.
13 VpIs1p2 RW 0 Low voltage supply is 1.
12 VphIs3p3 RW 0 High voltage supply is 3.
11 WideXface RW 1 Wide interface control.
10 RtuneDoTune RW 0 Manual resistor tune control.
9 OvrdClk RWS 0 Override clock controls (bits 8:0).
8:6 CkoWordCon RW 0x1 Cko word mux control.
5:4 CkoAliveCon RW 0x1 Cko alive mux control.
3 MpllSsEn RW 0 Spread spectrum enable.
2 MpllPwron RW 1 Mpll power-on control.
1 MpllClkOff RW 0 Reference clock is off.
0 UseRefclkAlt RW 0 Use alternate refclk.

13.14.20 Level Control Inputs Override Register

Description

Override of level control inputs

Register

R PciePhyCrClockLvlOvrd

Address

0xE981000A0
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Override all level controls.
14:10 TxLvl RW 0x10 Transmit level.
9:5 LosLvl RW 0x10 Loss of Signal Detector level.
4:0 AcjtLvl RW 0x10 AC JTag Comparator level.

13.14.21 Creg Control I/O Override Register

Description

Override of creg control I/O

Register

R PciePhyCrClockCregOvrd

Address

0xE981000A8
Bit Mnemonic Access Reset Type Definition

8 OvrdOut RWS 0 Override outputs (bits 7:5).
7 OpDone RW 0 Operation is complete output.
6 PowerGood RW 1 Power good output.
5 CrAck RW 0 Creg request Acknowledgement.
4 OvrdIn RWS 0 Override inputs (bits 3:0).
3 CrCapAddr RW 0 Capture Address request.
2 CrCapData RW 0 Capture Data request.
1 CrWrite RW 0 Write request.
0 CrRead RW 0 Read request.

May 14, 2014 694 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.22 MPLL Controls Register

Description

MPLL Controls

Register

R PciePhyCrClockMpllCtl

Address

0xE981000B0
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
mpll gear shift 2 - mpll.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
mpll gear shift 2 - mpll.

4 RefclkDelay RW 0 Delay refclk output of prescaler.
3 DisParaCreg RW 0 Disable Parallel creg xface.
2 OvrdClkdrv RWS 0 Override clock driver controls.
1 ClkdrvDig RW 0 Value for digital clock drivers.
0 ClkdrvAna RW 0 Value for analog clock drivers.

13.14.23 MPLL Test Controls Register

Description

MPLL Test Controls

Register

R PciePhyCrClockMpllTst

Address

0xE981000B8
Bit Mnemonic Access Reset Type Definition

15 OvrdCtl RWS 0 Override MPLL reset and gearshift controls.
14 GearshiftVal RW 0 Value to override for mpll gearshift.
13 ResetVal RW 0 Value to override for mpll reset.
12:2 MeasIv RW 0x0 Measure various mpll controls bit 12 - enable phase lin-

earity testing of phase i.
1 MeasGd RW 0 Measure GD Should be set when various MEAS IV bits

are set for correct measureme.
0 AtbSense RW 0 Hook up ATB sense lines.

13.14.24 Transmit Control Inputs Status Register (Lane 0)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane0TxStat

May 14, 2014 695 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98110008
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.25 Receiver Control Inputs Status Register (Lane 0)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane0RxStat

Address

0xE98110010
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.26 Output Signals Status Register (Lane 0)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane0OutStat

Address

0xE98110018
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 696 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.27 Transmitter Control Inputs Override Register (Lane 0)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane0TxOvrd

Address

0xE98110020
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.28 Receiver Control Inputs Override Register (Lane 0)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane0RxOvrd

Address

0xE98110028
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.29 Output Signals Override Register (Lane 0)

Description

Override of output signals

Register

R PciePhyCrLane0OutOvrd

May 14, 2014 697 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98110030
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.30 Debug Control Register (Lane 0)

Description

Debug control register

Register

R PciePhyCrLane0DbgCtl

Address

0xE98110038
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.31 Pattern Generator Controls Register (Lane 0)

Description

Pattern Generator controls

Register

R PciePhyCrLane0PgCtl

Address

0xE98110080
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.32 Pattern Matcher Controls Register (Lane 0)

Description

Pattern Matcher controls

May 14, 2014 698 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane0PmCtl

Address

0xE981100C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.33 Pattern Match Error Counter Register (Lane 0)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane0PmErr

Address

0xE981100C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.34 Current Phase Selector Value. Register (Lane 0)

Description

Current phase selector value.

Register

R PciePhyCrLane0Phase

Address

0xE981100D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 699 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.35 Current Frequency Integrator Value. Register (Lane 0)

Description

Current frequency integrator value.

Register

R PciePhyCrLane0Freq

Address

0xE981100D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.36 Scope Control Register (Lane 0)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane0ScopeCtl

Address

0xE981100E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.37 Recovered Domain Receiver Control Register (Lane 0)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane0RxCtl

Address

0xE981100E8

May 14, 2014 700 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.38 Receiver Debug Register (Lane 0)

Description

Control bits for receiver debug

Register

R PciePhyCrLane0RxDbg

Address

0xE981100F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.39 RX Control Register (Lane 0)

Description

RX Control Bits

Register

R PciePhyCrLane0RxAnaCtrl

Address

0xE98110180

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 701 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.40 RX ATB Register (Lane 0)

Description

RX ATB bits

Register

R PciePhyCrLane0RxAnaAtb

Address

0xE98110188

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.41 8 Bit Programming Register (Lane 0)

Description

8 bit programming register

Register

R PciePhyCrLane0PllPrg2

Address

0xE98110190

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 702 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.42 10 Bit Programming Register (Lane 0)

Description

10 bit programming register

Register

R PciePhyCrLane0PllPrg1

Address

0xE98110198

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.43 10 Bit Programming Register (Lane 0)

Description

10 bit programming register

Register

R PciePhyCrLane0PllMeas

Address

0xE981101A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 703 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.44 TX ATB Control Register (Set 1) (Lane 0)

Description

TX ATB Control Bits

Register

R PciePhyCrLane0TxAnaAtbsel1

Address

0xE981101A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.45 TX ATB Control Register (Set 2) (Lane 0)

Description

TX ATB Control Bits

Register

R PciePhyCrLane0TxAnaAtbsel2

Address

0xE981101B0

Attributes

-noregtest

May 14, 2014 704 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.46 TX POWER STATE Control Register (Lane 0)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane0TxAnaControl

Address

0xE981101B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.47 Transmit Control Inputs Status Register (Lane 1)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane1TxStat

May 14, 2014 705 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98110808
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.48 Receiver Control Inputs Status Register (Lane 1)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane1RxStat

Address

0xE98110810
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.49 Output Signals Status Register (Lane 1)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane1OutStat

Address

0xE98110818
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 706 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.50 Transmitter Control Inputs Override Register (Lane 1)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane1TxOvrd

Address

0xE98110820
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.51 Receiver Control Inputs Override Register (Lane 1)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane1RxOvrd

Address

0xE98110828
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.52 Output Signals Override Register (Lane 1)

Description

Override of output signals

Register

R PciePhyCrLane1OutOvrd

May 14, 2014 707 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98110830
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.53 Debug Control Register (Lane 1)

Description

Debug control register

Register

R PciePhyCrLane1DbgCtl

Address

0xE98110838
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.54 Pattern Generator Controls Register (Lane 1)

Description

Pattern Generator controls

Register

R PciePhyCrLane1PgCtl

Address

0xE98110880
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.55 Pattern Matcher Controls Register (Lane 1)

Description

Pattern Matcher controls

May 14, 2014 708 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane1PmCtl

Address

0xE981108C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.56 Pattern Match Error Counter Register (Lane 1)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane1PmErr

Address

0xE981108C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.57 Current Phase Selector Value. Register (Lane 1)

Description

Current phase selector value.

Register

R PciePhyCrLane1Phase

Address

0xE981108D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 709 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.58 Current Frequency Integrator Value. Register (Lane 1)

Description

Current frequency integrator value.

Register

R PciePhyCrLane1Freq

Address

0xE981108D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.59 Scope Control Register (Lane 1)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane1ScopeCtl

Address

0xE981108E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.60 Recovered Domain Receiver Control Register (Lane 1)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane1RxCtl

Address

0xE981108E8

May 14, 2014 710 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.61 Receiver Debug Register (Lane 1)

Description

Control bits for receiver debug

Register

R PciePhyCrLane1RxDbg

Address

0xE981108F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.62 RX Control Register (Lane 1)

Description

RX Control Bits

Register

R PciePhyCrLane1RxAnaCtrl

Address

0xE98110980

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 711 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.63 RX ATB Register (Lane 1)

Description

RX ATB bits

Register

R PciePhyCrLane1RxAnaAtb

Address

0xE98110988

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.64 8 Bit Programming Register (Lane 1)

Description

8 bit programming register

Register

R PciePhyCrLane1PllPrg2

Address

0xE98110990

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 712 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.65 10 Bit Programming Register (Lane 1)

Description

10 bit programming register

Register

R PciePhyCrLane1PllPrg1

Address

0xE98110998

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.66 10 Bit Programming Register (Lane 1)

Description

10 bit programming register

Register

R PciePhyCrLane1PllMeas

Address

0xE981109A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 713 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.67 TX ATB Control Register (Set 1) (Lane 1)

Description

TX ATB Control Bits

Register

R PciePhyCrLane1TxAnaAtbsel1

Address

0xE981109A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.68 TX ATB Control Register (Set 2) (Lane 1)

Description

TX ATB Control Bits

Register

R PciePhyCrLane1TxAnaAtbsel2

Address

0xE981109B0

Attributes

-noregtest

May 14, 2014 714 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.69 TX POWER STATE Control Register (Lane 1)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane1TxAnaControl

Address

0xE981109B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.70 Transmit Control Inputs Status Register (Lane 2)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane2TxStat

May 14, 2014 715 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98111008
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.71 Receiver Control Inputs Status Register (Lane 2)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane2RxStat

Address

0xE98111010
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.72 Output Signals Status Register (Lane 2)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane2OutStat

Address

0xE98111018
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 716 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.73 Transmitter Control Inputs Override Register (Lane 2)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane2TxOvrd

Address

0xE98111020
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.74 Receiver Control Inputs Override Register (Lane 2)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane2RxOvrd

Address

0xE98111028
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.75 Output Signals Override Register (Lane 2)

Description

Override of output signals

Register

R PciePhyCrLane2OutOvrd

May 14, 2014 717 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98111030
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.76 Debug Control Register (Lane 2)

Description

Debug control register

Register

R PciePhyCrLane2DbgCtl

Address

0xE98111038
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.77 Pattern Generator Controls Register (Lane 2)

Description

Pattern Generator controls

Register

R PciePhyCrLane2PgCtl

Address

0xE98111080
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.78 Pattern Matcher Controls Register (Lane 2)

Description

Pattern Matcher controls

May 14, 2014 718 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane2PmCtl

Address

0xE981110C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.79 Pattern Match Error Counter Register (Lane 2)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane2PmErr

Address

0xE981110C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.80 Current Phase Selector Value. Register (Lane 2)

Description

Current phase selector value.

Register

R PciePhyCrLane2Phase

Address

0xE981110D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 719 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.81 Current Frequency Integrator Value. Register (Lane 2)

Description

Current frequency integrator value.

Register

R PciePhyCrLane2Freq

Address

0xE981110D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.82 Scope Control Register (Lane 2)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane2ScopeCtl

Address

0xE981110E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.83 Recovered Domain Receiver Control Register (Lane 2)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane2RxCtl

Address

0xE981110E8

May 14, 2014 720 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.84 Receiver Debug Register (Lane 2)

Description

Control bits for receiver debug

Register

R PciePhyCrLane2RxDbg

Address

0xE981110F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.85 RX Control Register (Lane 2)

Description

RX Control Bits

Register

R PciePhyCrLane2RxAnaCtrl

Address

0xE98111180

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 721 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.86 RX ATB Register (Lane 2)

Description

RX ATB bits

Register

R PciePhyCrLane2RxAnaAtb

Address

0xE98111188

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.87 8 Bit Programming Register (Lane 2)

Description

8 bit programming register

Register

R PciePhyCrLane2PllPrg2

Address

0xE98111190

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 722 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.88 10 Bit Programming Register (Lane 2)

Description

10 bit programming register

Register

R PciePhyCrLane2PllPrg1

Address

0xE98111198

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.89 10 Bit Programming Register (Lane 2)

Description

10 bit programming register

Register

R PciePhyCrLane2PllMeas

Address

0xE981111A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 723 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.90 TX ATB Control Register (Set 1) (Lane 2)

Description

TX ATB Control Bits

Register

R PciePhyCrLane2TxAnaAtbsel1

Address

0xE981111A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.91 TX ATB Control Register (Set 2) (Lane 2)

Description

TX ATB Control Bits

Register

R PciePhyCrLane2TxAnaAtbsel2

Address

0xE981111B0

Attributes

-noregtest

May 14, 2014 724 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.92 TX POWER STATE Control Register (Lane 2)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane2TxAnaControl

Address

0xE981111B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.93 Transmit Control Inputs Status Register (Lane 3)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane3TxStat

May 14, 2014 725 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98111808
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.94 Receiver Control Inputs Status Register (Lane 3)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane3RxStat

Address

0xE98111810
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.95 Output Signals Status Register (Lane 3)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane3OutStat

Address

0xE98111818
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 726 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.96 Transmitter Control Inputs Override Register (Lane 3)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane3TxOvrd

Address

0xE98111820
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.97 Receiver Control Inputs Override Register (Lane 3)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane3RxOvrd

Address

0xE98111828
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.98 Output Signals Override Register (Lane 3)

Description

Override of output signals

Register

R PciePhyCrLane3OutOvrd

May 14, 2014 727 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98111830
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.99 Debug Control Register (Lane 3)

Description

Debug control register

Register

R PciePhyCrLane3DbgCtl

Address

0xE98111838
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.100 Pattern Generator Controls Register (Lane 3)

Description

Pattern Generator controls

Register

R PciePhyCrLane3PgCtl

Address

0xE98111880
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.101 Pattern Matcher Controls Register (Lane 3)

Description

Pattern Matcher controls

May 14, 2014 728 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane3PmCtl

Address

0xE981118C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.102 Pattern Match Error Counter Register (Lane 3)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane3PmErr

Address

0xE981118C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.103 Current Phase Selector Value. Register (Lane 3)

Description

Current phase selector value.

Register

R PciePhyCrLane3Phase

Address

0xE981118D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 729 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.104 Current Frequency Integrator Value. Register (Lane 3)

Description

Current frequency integrator value.

Register

R PciePhyCrLane3Freq

Address

0xE981118D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.105 Scope Control Register (Lane 3)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane3ScopeCtl

Address

0xE981118E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.106 Recovered Domain Receiver Control Register (Lane 3)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane3RxCtl

Address

0xE981118E8

May 14, 2014 730 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.107 Receiver Debug Register (Lane 3)

Description

Control bits for receiver debug

Register

R PciePhyCrLane3RxDbg

Address

0xE981118F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.108 RX Control Register (Lane 3)

Description

RX Control Bits

Register

R PciePhyCrLane3RxAnaCtrl

Address

0xE98111980

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 731 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.109 RX ATB Register (Lane 3)

Description

RX ATB bits

Register

R PciePhyCrLane3RxAnaAtb

Address

0xE98111988

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.110 8 Bit Programming Register (Lane 3)

Description

8 bit programming register

Register

R PciePhyCrLane3PllPrg2

Address

0xE98111990

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 732 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.111 10 Bit Programming Register (Lane 3)

Description

10 bit programming register

Register

R PciePhyCrLane3PllPrg1

Address

0xE98111998

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.112 10 Bit Programming Register (Lane 3)

Description

10 bit programming register

Register

R PciePhyCrLane3PllMeas

Address

0xE981119A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 733 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.113 TX ATB Control Register (Set 1) (Lane 3)

Description

TX ATB Control Bits

Register

R PciePhyCrLane3TxAnaAtbsel1

Address

0xE981119A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.114 TX ATB Control Register (Set 2) (Lane 3)

Description

TX ATB Control Bits

Register

R PciePhyCrLane3TxAnaAtbsel2

Address

0xE981119B0

Attributes

-noregtest

May 14, 2014 734 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.115 TX POWER STATE Control Register (Lane 3)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane3TxAnaControl

Address

0xE981119B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.116 Transmit Control Inputs Status Register (Lane 4)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane4TxStat

May 14, 2014 735 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98112008
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.117 Receiver Control Inputs Status Register (Lane 4)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane4RxStat

Address

0xE98112010
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.118 Output Signals Status Register (Lane 4)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane4OutStat

Address

0xE98112018
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 736 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.119 Transmitter Control Inputs Override Register (Lane 4)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane4TxOvrd

Address

0xE98112020
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.120 Receiver Control Inputs Override Register (Lane 4)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane4RxOvrd

Address

0xE98112028
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.121 Output Signals Override Register (Lane 4)

Description

Override of output signals

Register

R PciePhyCrLane4OutOvrd

May 14, 2014 737 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98112030
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.122 Debug Control Register (Lane 4)

Description

Debug control register

Register

R PciePhyCrLane4DbgCtl

Address

0xE98112038
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.123 Pattern Generator Controls Register (Lane 4)

Description

Pattern Generator controls

Register

R PciePhyCrLane4PgCtl

Address

0xE98112080
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.124 Pattern Matcher Controls Register (Lane 4)

Description

Pattern Matcher controls

May 14, 2014 738 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane4PmCtl

Address

0xE981120C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.125 Pattern Match Error Counter Register (Lane 4)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane4PmErr

Address

0xE981120C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.126 Current Phase Selector Value. Register (Lane 4)

Description

Current phase selector value.

Register

R PciePhyCrLane4Phase

Address

0xE981120D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 739 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.127 Current Frequency Integrator Value. Register (Lane 4)

Description

Current frequency integrator value.

Register

R PciePhyCrLane4Freq

Address

0xE981120D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.128 Scope Control Register (Lane 4)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane4ScopeCtl

Address

0xE981120E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.129 Recovered Domain Receiver Control Register (Lane 4)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane4RxCtl

Address

0xE981120E8

May 14, 2014 740 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.130 Receiver Debug Register (Lane 4)

Description

Control bits for receiver debug

Register

R PciePhyCrLane4RxDbg

Address

0xE981120F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.131 RX Control Register (Lane 4)

Description

RX Control Bits

Register

R PciePhyCrLane4RxAnaCtrl

Address

0xE98112180

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 741 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.132 RX ATB Register (Lane 4)

Description

RX ATB bits

Register

R PciePhyCrLane4RxAnaAtb

Address

0xE98112188

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.133 8 Bit Programming Register (Lane 4)

Description

8 bit programming register

Register

R PciePhyCrLane4PllPrg2

Address

0xE98112190

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 742 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.134 10 Bit Programming Register (Lane 4)

Description

10 bit programming register

Register

R PciePhyCrLane4PllPrg1

Address

0xE98112198

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.135 10 Bit Programming Register (Lane 4)

Description

10 bit programming register

Register

R PciePhyCrLane4PllMeas

Address

0xE981121A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 743 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.136 TX ATB Control Register (Set 1) (Lane 4)

Description

TX ATB Control Bits

Register

R PciePhyCrLane4TxAnaAtbsel1

Address

0xE981121A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.137 TX ATB Control Register (Set 2) (Lane 4)

Description

TX ATB Control Bits

Register

R PciePhyCrLane4TxAnaAtbsel2

Address

0xE981121B0

Attributes

-noregtest

May 14, 2014 744 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.138 TX POWER STATE Control Register (Lane 4)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane4TxAnaControl

Address

0xE981121B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.139 Transmit Control Inputs Status Register (Lane 5)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane5TxStat

May 14, 2014 745 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98112808
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.140 Receiver Control Inputs Status Register (Lane 5)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane5RxStat

Address

0xE98112810
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.141 Output Signals Status Register (Lane 5)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane5OutStat

Address

0xE98112818
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 746 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.142 Transmitter Control Inputs Override Register (Lane 5)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane5TxOvrd

Address

0xE98112820
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.143 Receiver Control Inputs Override Register (Lane 5)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane5RxOvrd

Address

0xE98112828
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.144 Output Signals Override Register (Lane 5)

Description

Override of output signals

Register

R PciePhyCrLane5OutOvrd

May 14, 2014 747 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98112830
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.145 Debug Control Register (Lane 5)

Description

Debug control register

Register

R PciePhyCrLane5DbgCtl

Address

0xE98112838
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.146 Pattern Generator Controls Register (Lane 5)

Description

Pattern Generator controls

Register

R PciePhyCrLane5PgCtl

Address

0xE98112880
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.147 Pattern Matcher Controls Register (Lane 5)

Description

Pattern Matcher controls

May 14, 2014 748 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane5PmCtl

Address

0xE981128C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.148 Pattern Match Error Counter Register (Lane 5)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane5PmErr

Address

0xE981128C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.149 Current Phase Selector Value. Register (Lane 5)

Description

Current phase selector value.

Register

R PciePhyCrLane5Phase

Address

0xE981128D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 749 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.150 Current Frequency Integrator Value. Register (Lane 5)

Description

Current frequency integrator value.

Register

R PciePhyCrLane5Freq

Address

0xE981128D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.151 Scope Control Register (Lane 5)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane5ScopeCtl

Address

0xE981128E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.152 Recovered Domain Receiver Control Register (Lane 5)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane5RxCtl

Address

0xE981128E8

May 14, 2014 750 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.153 Receiver Debug Register (Lane 5)

Description

Control bits for receiver debug

Register

R PciePhyCrLane5RxDbg

Address

0xE981128F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.154 RX Control Register (Lane 5)

Description

RX Control Bits

Register

R PciePhyCrLane5RxAnaCtrl

Address

0xE98112980

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 751 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.155 RX ATB Register (Lane 5)

Description

RX ATB bits

Register

R PciePhyCrLane5RxAnaAtb

Address

0xE98112988

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.156 8 Bit Programming Register (Lane 5)

Description

8 bit programming register

Register

R PciePhyCrLane5PllPrg2

Address

0xE98112990

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 752 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.157 10 Bit Programming Register (Lane 5)

Description

10 bit programming register

Register

R PciePhyCrLane5PllPrg1

Address

0xE98112998

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.158 10 Bit Programming Register (Lane 5)

Description

10 bit programming register

Register

R PciePhyCrLane5PllMeas

Address

0xE981129A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 753 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.159 TX ATB Control Register (Set 1) (Lane 5)

Description

TX ATB Control Bits

Register

R PciePhyCrLane5TxAnaAtbsel1

Address

0xE981129A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.160 TX ATB Control Register (Set 2) (Lane 5)

Description

TX ATB Control Bits

Register

R PciePhyCrLane5TxAnaAtbsel2

Address

0xE981129B0

Attributes

-noregtest

May 14, 2014 754 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.161 TX POWER STATE Control Register (Lane 5)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane5TxAnaControl

Address

0xE981129B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.162 Transmit Control Inputs Status Register (Lane 6)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane6TxStat

May 14, 2014 755 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98113008
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.163 Receiver Control Inputs Status Register (Lane 6)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane6RxStat

Address

0xE98113010
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.164 Output Signals Status Register (Lane 6)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane6OutStat

Address

0xE98113018
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 756 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.165 Transmitter Control Inputs Override Register (Lane 6)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane6TxOvrd

Address

0xE98113020
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.166 Receiver Control Inputs Override Register (Lane 6)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane6RxOvrd

Address

0xE98113028
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.167 Output Signals Override Register (Lane 6)

Description

Override of output signals

Register

R PciePhyCrLane6OutOvrd

May 14, 2014 757 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98113030
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.168 Debug Control Register (Lane 6)

Description

Debug control register

Register

R PciePhyCrLane6DbgCtl

Address

0xE98113038
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.169 Pattern Generator Controls Register (Lane 6)

Description

Pattern Generator controls

Register

R PciePhyCrLane6PgCtl

Address

0xE98113080
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.170 Pattern Matcher Controls Register (Lane 6)

Description

Pattern Matcher controls

May 14, 2014 758 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane6PmCtl

Address

0xE981130C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.171 Pattern Match Error Counter Register (Lane 6)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane6PmErr

Address

0xE981130C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.172 Current Phase Selector Value. Register (Lane 6)

Description

Current phase selector value.

Register

R PciePhyCrLane6Phase

Address

0xE981130D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 759 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.173 Current Frequency Integrator Value. Register (Lane 6)

Description

Current frequency integrator value.

Register

R PciePhyCrLane6Freq

Address

0xE981130D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.174 Scope Control Register (Lane 6)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane6ScopeCtl

Address

0xE981130E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.175 Recovered Domain Receiver Control Register (Lane 6)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane6RxCtl

Address

0xE981130E8

May 14, 2014 760 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.176 Receiver Debug Register (Lane 6)

Description

Control bits for receiver debug

Register

R PciePhyCrLane6RxDbg

Address

0xE981130F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.177 RX Control Register (Lane 6)

Description

RX Control Bits

Register

R PciePhyCrLane6RxAnaCtrl

Address

0xE98113180

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 761 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.178 RX ATB Register (Lane 6)

Description

RX ATB bits

Register

R PciePhyCrLane6RxAnaAtb

Address

0xE98113188

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.179 8 Bit Programming Register (Lane 6)

Description

8 bit programming register

Register

R PciePhyCrLane6PllPrg2

Address

0xE98113190

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 762 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.180 10 Bit Programming Register (Lane 6)

Description

10 bit programming register

Register

R PciePhyCrLane6PllPrg1

Address

0xE98113198

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.181 10 Bit Programming Register (Lane 6)

Description

10 bit programming register

Register

R PciePhyCrLane6PllMeas

Address

0xE981131A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 763 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.182 TX ATB Control Register (Set 1) (Lane 6)

Description

TX ATB Control Bits

Register

R PciePhyCrLane6TxAnaAtbsel1

Address

0xE981131A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.183 TX ATB Control Register (Set 2) (Lane 6)

Description

TX ATB Control Bits

Register

R PciePhyCrLane6TxAnaAtbsel2

Address

0xE981131B0

Attributes

-noregtest

May 14, 2014 764 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.184 TX POWER STATE Control Register (Lane 6)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane6TxAnaControl

Address

0xE981131B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.185 Transmit Control Inputs Status Register (Lane 7)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrLane7TxStat

May 14, 2014 765 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98113808
Bit Mnemonic Access Reset Type Definition

15 Reserved1 RS X Always reads as 1.
14:13 TxEdgerate RS X Edgerate control.
12:10 TxAtten RS X Attenuation amount control.
9:6 TxBoost RS X Boost amount control.
5 Reserved RS X Always reads as 0.
4 TxClkAlign RS X Command to align clocks.
3:1 TxEn RS X Transmit enable control.
0 TxCkoEn RS X Tx cko clock enable.

13.14.186 Receiver Control Inputs Status Register (Lane 7)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrLane7RxStat

Address

0xE98113810
Bit Mnemonic Access Reset Type Definition

14 Reserved RS X Always reads as 1.
13:12 LosCtl RS X LOS filtering mode control.
11 DpllReset RS X DPLL reset control.
10:8 RxDpllMode RS X DPLL mode control.
7:5 RxEqVal RS X Equalization amount control.
4 RxTermEn RS X Receiver termination enable.
3 RxAlignEn RS X Receiver alignment enable.
2 RxEn RS X Receiver enable control.
1 RxPllPwron RS X PLL power state control.
0 HalfRate RS X Digital half-rate data control.

13.14.187 Output Signals Status Register (Lane 7)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrLane7OutStat

Address

0xE98113818
Bit Mnemonic Access Reset Type Definition

5 Reserved RS X Always reads as 1.
4 TxRxpres RS X Transmit receiver detection result.
3 TxDone RS X Transmit operation is complete output.
2 Los RS X Loss of signal output.
1 RxPllState RS X Current state of Rx PLL.
0 RxValid RS X Receiver valid output.

May 14, 2014 766 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.188 Transmitter Control Inputs Override Register (Lane 7)

Description

Override of Transmitter control inputs

Register

R PciePhyCrLane7TxOvrd

Address

0xE98113820
Bit Mnemonic Access Reset Type Definition

15 Ovrd RWS 0 Enable override of all bits in this register.
14:13 TxEdgerate RW 0x0 Edgerate control.
12:10 TxAtten RW 0x0 Attenuation amount control.
9:6 TxBoost RW 0x0 Boost amount control.
5 Reserved RW 0 No effect.
4 TxClkAlign RW 0 Command to align clocks.
3:1 TxEn RW 0x3 Transmit enable control.
0 TxCkoEn RW 1 Tx cko clock enable.

13.14.189 Receiver Control Inputs Override Register (Lane 7)

Description

Override of Receiver control inputs

Register

R PciePhyCrLane7RxOvrd

Address

0xE98113828
Bit Mnemonic Access Reset Type Definition

14 Ovrd RWS 0 Enable override of all bits in this register.
13:12 LosCtl RW 0x1 LOS filtering mode control.
11 DpllReset RW 0 DPLL reset control.
10:8 RxDpllMode RW 0x4 DPLL mode control.
7:5 RxEqVal RW 0x0 Equalization amount control.
4 RxTermEn RW 1 Receiver termination enable.
3 RxAlignEn RW 1 Receiver alignment enable.
2 RxEn RW 1 Receiver enable control.
1 RxPllPwron RW 1 PLL power state control.
0 HalfRate RW 0 Digital half-rate data control.

13.14.190 Output Signals Override Register (Lane 7)

Description

Override of output signals

Register

R PciePhyCrLane7OutOvrd

May 14, 2014 767 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE98113830
Bit Mnemonic Access Reset Type Definition

5 Ovrd RWS 0 Enable override of all bits in this register.
4 TxRxpres RW 1 Transmit receiver detection result.
3 TxDone RW 0 Transmit operation is complete output.
2 Los RW 0 Loss of signal output.
1 RxPllState RW 0 Current state of Rx PLL.
0 RxValid RW 1 Receiver valid output.

13.14.191 Debug Control Register (Lane 7)

Description

Debug control register

Register

R PciePhyCrLane7DbgCtl

Address

0xE98113838
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 RW 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 RW 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk RW 0 Disable rx ck output.
3 InvertRx RW 0 Invert receive data (pre-lbert).
2 InvertTx RW 0 Invert transmit data (post-lbert).
1 ZeroRxData RW 0 Override all receive data to zeros.
0 ZeroTxData RW 0 Override all transmit data to zeros.

13.14.192 Pattern Generator Controls Register (Lane 7)

Description

Pattern Generator controls

Register

R PciePhyCrLane7PgCtl

Address

0xE98113880
Bit Mnemonic Access Reset Type Definition

13:4 Pat0 RW 0x0 Pattern for modes 3-5.
3 TriggerErr RW 0 Insert a single error into a lsb.
2:0 Mode RW 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.193 Pattern Matcher Controls Register (Lane 7)

Description

Pattern Matcher controls

May 14, 2014 768 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Register

R PciePhyCrLane7PmCtl

Address

0xE981138C0
Bit Mnemonic Access Reset Type Definition

3 Sync RW 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode RW 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.194 Pattern Match Error Counter Register (Lane 7)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrLane7PmErr

Address

0xE981138C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 RWS X If active, multiply COUNT by 128.
14:0 Count RWS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.195 Current Phase Selector Value. Register (Lane 7)

Description

Current phase selector value.

Register

R PciePhyCrLane7Phase

Address

0xE981138D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val RWS 0x0 Current phase selector value.
0 Dthr RWS 0 Current phase selector value.

May 14, 2014 769 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.196 Current Frequency Integrator Value. Register (Lane 7)

Description

Current frequency integrator value.

Register

R PciePhyCrLane7Freq

Address

0xE981138D8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

13:1 Val RWS 0x0 Current frequency integrator value.
0 Dthr RWS 0 Current frequency integrator value.

13.14.197 Scope Control Register (Lane 7)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrLane7ScopeCtl

Address

0xE981138E0
Bit Mnemonic Access Reset Type Definition

14:11 Base RW 0x0 Which bit to sample when MODE = 1.
10:2 Delay RW 0x0 Number of symbols to skip between samples.
1:0 Mode RW 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.198 Recovered Domain Receiver Control Register (Lane 7)

Description

Control bits for receiver in recovered domain

Register

R PciePhyCrLane7RxCtl

Address

0xE981138E8

May 14, 2014 770 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 SwitchVal RW 0 Value to override the data/phase mux.
13 OvrdSwitch RW 0 Override the value of the data/phase mux.
12:10 ModeBp RW 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue RW 0x0 Override value for FRUG.
7:6 PhugValue RW 0x0 Override value for PHUG.
5 OvrdDpllGain RW 0 Override PHUG and FRUG values.
4 PhdetPol RW 0 Reverse polarity of phase error.
3:2 PhdetEdge RW 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn RW 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.199 Receiver Debug Register (Lane 7)

Description

Control bits for receiver debug

Register

R PciePhyCrLane7RxDbg

Address

0xE981138F0
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 RW 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 RW 0x0 Select wire to go on DTB bit 0.

13.14.200 RX Control Register (Lane 7)

Description

RX Control Bits

Register

R PciePhyCrLane7RxAnaCtrl

Address

0xE98113980

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused RW 1 Unused.
4 RxlbiEn RW 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn RW 0 Wafer level (external) loopback enable bit.
2 Rck625En RW 0 Rck625 enable bit.
1 MarginEn RW 0 Margin enable bit.
0 AtbEn RW 0 ATB enable bit.

May 14, 2014 771 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.201 RX ATB Register (Lane 7)

Description

RX ATB bits

Register

R PciePhyCrLane7RxAnaAtb

Address

0xE98113988

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos RW 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm RW 0 Connect atb s m to RX vcm.
3 SensemRxM RW 0 Connect atb s m to rx m.
2 SensepRxP RW 0 Connect atb s p to rx p.
1 ForcepRxM RW 0 Connect atb f p to rx m.
0 ForcepRxP RW 0 Connect atb f p to rx p.

13.14.202 8 Bit Programming Register (Lane 7)

Description

8 bit programming register

Register

R PciePhyCrLane7PllPrg2

Address

0xE98113990

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel RW 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl RW 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl RW 0 1=force coupling in vco to maximum.
4 FrcPwron RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl RW 0 1=power is supplied to the PLL.
2 FrcReset RW 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl RW 0 1=PLL is held/placed in reset.
0 EnableTestPd RW 0 1=phase linearity of phase interpolator and VCO is being

tested.

May 14, 2014 772 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

13.14.203 10 Bit Programming Register (Lane 7)

Description

10 bit programming register

Register

R PciePhyCrLane7PllPrg1

Address

0xE98113998

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 Unused1 RW 1 Unused.
8 SelRxck RW 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl RW 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl RW 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused RW 0x1 Unused.

13.14.204 10 Bit Programming Register (Lane 7)

Description

10 bit programming register

Register

R PciePhyCrLane7PllMeas

Address

0xE981139A0
Bit Mnemonic Access Reset Type Definition

9 MeasBias RW 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl RW 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref RW 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 RW 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup RW 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco RW 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp RW 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v RW 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar RW 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused RW 0 Unused.

May 14, 2014 773 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

13.14.205 TX ATB Control Register (Set 1) (Lane 7)

Description

TX ATB Control Bits

Register

R PciePhyCrLane7TxAnaAtbsel1

Address

0xE981139A8

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

7 VbpfSP RW 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM RW 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP RW 0 Txm connected to ATB S P For term.
4 TxpSP RW 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP RW 0 Txp connected to ATB F P For term.
2 VregSM RW 0 Reg.
1 VrefSP RW 0 Tx vref.
0 VgrSP RW 0 Reg.

13.14.206 TX ATB Control Register (Set 2) (Lane 7)

Description

TX ATB Control Bits

Register

R PciePhyCrLane7TxAnaAtbsel2

Address

0xE981139B0

Attributes

-noregtest

May 14, 2014 774 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

7 AtbEn RW 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM RW 0 Ref.
5 VcmSP RW 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP RW 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM RW 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk RW 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk RW 0 Enable TX internal loopback.

13.14.207 TX POWER STATE Control Register (Lane 7)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrLane7TxAnaControl

Address

0xE981139B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst RW 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl RW 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo RW 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl RW 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon RW 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl RW 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused RW 0 Unused reg.

13.14.208 PHY Reset Register

Description

Write to a 1 to reset Phy Write-only (not a real register).

Register

R PciePhyCrReset

May 14, 2014 775 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Address

0xE9813F9F8
Bit Mnemonic Access Reset Type Definition

0 Reset WS 0 Write to a 1 to reset Phy Write-only (not a real register).

13.14.209 Transmit Control Inputs Status Register (Broadcast)

Description

Status of Transmit control inputs Reset value depends on inputs

Register

R PciePhyCrBcastTxStat

Address

0xE98151808

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

15 Reserved1 WS X Always reads as 1.
14:13 TxEdgerate WS X Edgerate control.
12:10 TxAtten WS X Attenuation amount control.
9:6 TxBoost WS X Boost amount control.
5 Reserved WS X Always reads as 0.
4 TxClkAlign WS X Command to align clocks.
3:1 TxEn WS X Transmit enable control.
0 TxCkoEn WS X Tx cko clock enable.

13.14.210 Receiver Control Inputs Status Register (Broadcast)

Description

Status of Receiver control inputs Reset value depends on inputs

Register

R PciePhyCrBcastRxStat

Address

0xE98151810

Attributes

-noregtest

May 14, 2014 776 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Bit Mnemonic Access Reset Type Definition

14 Reserved WS X Always reads as 1.
13:12 LosCtl WS X LOS filtering mode control.
11 DpllReset WS X DPLL reset control.
10:8 RxDpllMode WS X DPLL mode control.
7:5 RxEqVal WS X Equalization amount control.
4 RxTermEn WS X Receiver termination enable.
3 RxAlignEn WS X Receiver alignment enable.
2 RxEn WS X Receiver enable control.
1 RxPllPwron WS X PLL power state control.
0 HalfRate WS X Digital half-rate data control.

13.14.211 Output Signals Status Register (Broadcast)

Description

Status of output signals Reset value depends on inputs

Register

R PciePhyCrBcastOutStat

Address

0xE98151818

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Reserved WS X Always reads as 1.
4 TxRxpres WS X Transmit receiver detection result.
3 TxDone WS X Transmit operation is complete output.
2 Los WS X Loss of signal output.
1 RxPllState WS X Current state of Rx PLL.
0 RxValid WS X Receiver valid output.

13.14.212 Transmitter Control Inputs Override Register (Broadcast)

Description

Override of Transmitter control inputs

Register

R PciePhyCrBcastTxOvrd

Address

0xE98151820

Attributes

-noregtest

May 14, 2014 777 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

15 Ovrd WS 0 Enable override of all bits in this register.
14:13 TxEdgerate WS 0x0 Edgerate control.
12:10 TxAtten WS 0x0 Attenuation amount control.
9:6 TxBoost WS 0x0 Boost amount control.
5 Reserved WS 0 No effect.
4 TxClkAlign WS 0 Command to align clocks.
3:1 TxEn WS 0x3 Transmit enable control.
0 TxCkoEn WS 1 Tx cko clock enable.

13.14.213 Receiver Control Inputs Override Register (Broadcast)

Description

Override of Receiver control inputs

Register

R PciePhyCrBcastRxOvrd

Address

0xE98151828

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

14 Ovrd WS 0 Enable override of all bits in this register.
13:12 LosCtl WS 0x1 LOS filtering mode control.
11 DpllReset WS 0 DPLL reset control.
10:8 RxDpllMode WS 0x4 DPLL mode control.
7:5 RxEqVal WS 0x0 Equalization amount control.
4 RxTermEn WS 1 Receiver termination enable.
3 RxAlignEn WS 1 Receiver alignment enable.
2 RxEn WS 1 Receiver enable control.
1 RxPllPwron WS 1 PLL power state control.
0 HalfRate WS 0 Digital half-rate data control.

13.14.214 Output Signals Override Register (Broadcast)

Description

Override of output signals

Register

R PciePhyCrBcastOutOvrd

Address

0xE98151830

May 14, 2014 778 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

5 Ovrd WS 0 Enable override of all bits in this register.
4 TxRxpres WS 1 Transmit receiver detection result.
3 TxDone WS 0 Transmit operation is complete output.
2 Los WS 0 Loss of signal output.
1 RxPllState WS 0 Current state of Rx PLL.
0 RxValid WS 1 Receiver valid output.

13.14.215 Debug Control Register (Broadcast)

Description

Debug control register

Register

R PciePhyCrBcastDbgCtl

Address

0xE98151838

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

14:10 DtbSel1 WS 0x0 Select of wire to drive onto DTB bit 1 0 - disabled 1 -
half rate 2 - tx en[0] 3.

9:5 DtbSel0 WS 0x0 Select of wire to drive onto DTB bit 0 0 - disabled 1 -
half rate 2 - tx en[0] 3.

4 DisableRxCk WS 0 Disable rx ck output.
3 InvertRx WS 0 Invert receive data (pre-lbert).
2 InvertTx WS 0 Invert transmit data (post-lbert).
1 ZeroRxData WS 0 Override all receive data to zeros.
0 ZeroTxData WS 0 Override all transmit data to zeros.

13.14.216 Pattern Generator Controls Register (Broadcast)

Description

Pattern Generator controls

Register

R PciePhyCrBcastPgCtl

Address

0xE98151880

Attributes

-noregtest

May 14, 2014 779 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

13:4 Pat0 WS 0x0 Pattern for modes 3-5.
3 TriggerErr WS 0 Insert a single error into a lsb.
2:0 Mode WS 0x0 Pattern to generate 0 - disabled 1 - lfsr15.

13.14.217 Pattern Matcher Controls Register (Broadcast)

Description

Pattern Matcher controls

Register

R PciePhyCrBcastPmCtl

Address

0xE981518C0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

3 Sync WS 0 Synchronize pattern matcher LFSR with incoming data
must be turned on then off t.

2:0 Mode WS 0x0 Pattern to match 0 - disabled 1 - lfsr15 2 - lfsr7 3 - d[n]
= d[n-10] 4 - d[n] =.

13.14.218 Pattern Match Error Counter Register (Broadcast)

Description

Pattern match error counter A read resets the register. When the clock to the error counter is off, reads and
writes to the register are queued until the clock is turned back on

Register

R PciePhyCrBcastPmErr

Address

0xE981518C8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

15 Ov14 WS X If active, multiply COUNT by 128.
14:0 Count WS X Current error count If OV14 field is active, then multiply

count by 128.

13.14.219 Current Phase Selector Value. Register (Broadcast)

Description

Current phase selector value.

Register

R PciePhyCrBcastPhase

May 14, 2014 780 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Address

0xE981518D0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

10:1 Val WS 0x0 Current phase selector value.
0 Dthr WS 0 Current phase selector value.

13.14.220 Current Frequency Integrator Value. Register (Broadcast)

Description

Current frequency integrator value.

Register

R PciePhyCrBcastFreq

Address

0xE981518D8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

13:1 Val WS 0x0 Current frequency integrator value.
0 Dthr WS 0 Current frequency integrator value.

13.14.221 Scope Control Register (Broadcast)

Description

Control bits for per-transceiver scope portion

Register

R PciePhyCrBcastScopeCtl

Address

0xE981518E0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

14:11 Base WS 0x0 Which bit to sample when MODE = 1.
10:2 Delay WS 0x0 Number of symbols to skip between samples.
1:0 Mode WS 0x0 Mode of counters 0 = off 1 = sample every 10 bits (see

BASE) 2 = sample every 11.

13.14.222 Recovered Domain Receiver Control Register (Broadcast)

Description

Control bits for receiver in recovered domain

May 14, 2014 781 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Register

R PciePhyCrBcastRxCtl

Address

0xE981518E8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

14 SwitchVal WS 0 Value to override the data/phase mux.
13 OvrdSwitch WS 0 Override the value of the data/phase mux.
12:10 ModeBp WS 0x0 Set BP 2:0 to longer timescale (for FTS patterns) BP0 -

Start PHUG profile at 4/.
9:8 FrugValue WS 0x0 Override value for FRUG.
7:6 PhugValue WS 0x0 Override value for PHUG.
5 OvrdDpllGain WS 0 Override PHUG and FRUG values.
4 PhdetPol WS 0 Reverse polarity of phase error.
3:2 PhdetEdge WS 0x3 Edges to use for phase detection top bit is rising edges,

bottom is falling.
1:0 PhdetEn WS 0x3 Enable phase detector top bit is odd slicers, bottom is

even.

13.14.223 Receiver Debug Register (Broadcast)

Description

Control bits for receiver debug

Register

R PciePhyCrBcastRxDbg

Address

0xE981518F0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7:4 DtbSel1 WS 0x0 Select wire to go on DTB bit 1.
3:0 DtbSel0 WS 0x0 Select wire to go on DTB bit 0.

13.14.224 RX Control Register (Broadcast)

Description

RX Control Bits

Register

R PciePhyCrBcastRxAnaCtrl

Address

0xE98151980

May 14, 2014 782 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 Unused WS 1 Unused.
4 RxlbiEn WS 0 Digital serial (internal) loopback enable bit.
3 RxlbeEn WS 0 Wafer level (external) loopback enable bit.
2 Rck625En WS 0 Rck625 enable bit.
1 MarginEn WS 0 Margin enable bit.
0 AtbEn WS 0 ATB enable bit.

13.14.225 RX ATB Register (Broadcast)

Description

RX ATB bits

Register

R PciePhyCrBcastRxAnaAtb

Address

0xE98151988

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

5 SensemVrefLos WS 0 Connect atb s m to vref los (vref rx/14).
4 SensemVcm WS 0 Connect atb s m to RX vcm.
3 SensemRxM WS 0 Connect atb s m to rx m.
2 SensepRxP WS 0 Connect atb s p to rx p.
1 ForcepRxM WS 0 Connect atb f p to rx m.
0 ForcepRxP WS 0 Connect atb f p to rx p.

13.14.226 8 Bit Programming Register (Broadcast)

Description

8 bit programming register

Register

R PciePhyCrBcastPllPrg2

Address

0xE98151990

Attributes

-noregtest

May 14, 2014 783 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Bit Mnemonic Access Reset Type Definition

7 AtbSenseSel WS 0 Control of Proportional charge pump current 1=Enable
signals internal to the PLL.

6 FrcHcpl WS 0 Allow override of default value of hcpl 1=allow hcpl lcl to
control high-couplin.

5 HcplLcl WS 0 1=force coupling in vco to maximum.
4 FrcPwron WS 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
3 PwronLcl WS 0 1=power is supplied to the PLL.
2 FrcReset WS 0 Allow override of default value of pll pwron 1=allow

pwron lcl to control pll po.
1 ResetLcl WS 0 1=PLL is held/placed in reset.
0 EnableTestPd WS 0 1=phase linearity of phase interpolator and VCO is being

tested.

13.14.227 10 Bit Programming Register (Broadcast)

Description

10 bit programming register

Register

R PciePhyCrBcastPllPrg1

Address

0xE98151998

Attributes

-noregtest

Bit Mnemonic Access Reset Type Definition

9 Unused1 WS 1 Unused.
8 SelRxck WS 0 Use recovered clock as reference to the PLL.
7:5 PropCntrl WS 0x5 Control of Proportional charge pump current Propor-

tional current = (n+1)/8*full .
4:2 IntCntrl WS 0x2 Control of Integral charge pump current Integral current

= (n+1)/8*full scale De.
1:0 Unused WS 0x1 Unused.

13.14.228 10 Bit Programming Register (Broadcast)

Description

10 bit programming register

Register

R PciePhyCrBcastPllMeas

Address

0xE981519A0

May 14, 2014 784 Rev 51328

SiCortex Confidential 13.14. PCI EXPRESS PHY REGISTERS

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

9 MeasBias WS 0 Measure copy of bias current in oscillator on atb force m.
8 MeasVcntrl WS 0 Measure vcntrl on atb sense m If MEAS VREF is set as

well, atb sense p,m mea- su.
7 MeasVref WS 0 Measure vref on atb sense p; gd on atb sense m If

MEAS VCNTRL is set as well, at.
6 MeasVp16 WS 0 Measure vp16 on atb sense p; gd on atb sense m.
5 MeasStartup WS 0 Measure startup voltage on atb sense p; gd on

atb sense m.
4 MeasVco WS 0 Measure vco supply voltage on atb sense p; gd on

atb sense m.
3 MeasVpCp WS 0 Measure vp cp voltage on atb sense p; gd on atb sense m

If MEAS 1V is set as wel.
2 Meas1v WS 0 Measure 1V supply voltage on atb sense m If

MEAS VP CP is set as well, atb sense.
1 MeasCrowbar WS 0 Measure crowbar bias voltage on atb sense p; gd on

atb sense m.
0 Unused WS 0 Unused.

13.14.229 TX ATB Control Register (Set 1) (Broadcast)

Description

TX ATB Control Bits

Register

R PciePhyCrBcastTxAnaAtbsel1

Address

0xE981519A8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 VbpfSP WS 0 Vbpf in edge rate control circuit on ATB S P Set
ATB EN to make this useful.

6 TxmSM WS 0 Txm on ATB S M Set ATB EN to make this useful.
5 TxmFP WS 0 Txm connected to ATB S P For term.
4 TxpSP WS 0 Txp connected to ATB S P Set ATB EN to make this

useful.
3 TxpFP WS 0 Txp connected to ATB F P For term.
2 VregSM WS 0 Reg.
1 VrefSP WS 0 Tx vref.
0 VgrSP WS 0 Reg.

13.14.230 TX ATB Control Register (Set 2) (Broadcast)

Description

TX ATB Control Bits

May 14, 2014 785 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Register

R PciePhyCrBcastTxAnaAtbsel2

Address

0xE981519B0

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 AtbEn WS 0 Connect internal and external ATB busses Needed for all
ATB measurements.

6 VrefrxdSM WS 0 Ref.
5 VcmSP WS 0 Vcm replica on ATB S P Set ATB EN to make this use-

ful.
4 VbnsSM WS 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
3 VbpsSP WS 0 Vbps in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
2 VbnfSM WS 0 Vbnf in edge rate control circuit on ATB S M Set

ATB EN to make this useful.
1 Enlpbk WS 0 Enable TX external loopback Make sure internal loopback

is not ON.
0 EnTxilpbk WS 0 Enable TX internal loopback.

13.14.231 TX POWER STATE Control Register (Broadcast)

Description

TX POWER STATE Control Bits

Register

R PciePhyCrBcastTxAnaControl

Address

0xE981519B8

Attributes

-noregtest
Bit Mnemonic Access Reset Type Definition

7 FrcPwrst WS 0 Locally force power state tx en<1:0> input overridden by
EN LCL.

6:5 EnLcl WS 0x0 Locally force tx en<1:0> 00 - power off 01 - tx idle (slow)
10 - transmit data 1.

4 FrcDo WS 0 Force Dataovrd locally When ON, overrides input
data ovrd value.

3 DataovrdLcl WS 0 Local dataovrd control value Set FRC DO to make this
useful.

2 FrcBeacon WS 0 Force Beacon to local value (BCN LCL) When On,
BCN LVL overrides input value.

1 BcnLcl WS 0 Local Beacon On/Off Control Value Set FRC BEACON
to make this useful.

0 Unused WS 0 Unused reg.

May 14, 2014 786 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

13.15 Transaction, Link, MAC Layers

Please reference the Synopsys’ “PCI-Express Controller Core Data Book”. This provides a description of the
pins, the timing requirements, and the programmer-visible registers. We have configured the PCI-Express RC core
to fit our use. This section documents our configuration choices.

Parameters for design DWC pcie rc

General Configuration

Parameter Value Description Default? Disabled?

Symbols per Cycle
/ Operating
Frequency

1 Parameter Name : CX NB Specifies the operating frequency of the
core. This is also referred to as the number of symbols that are
handled each core clk cycle, or the S-ness of the core. 1S =>

250MHz : 2S => 125MHz.

Y

Maximum Number
of Lanes Supported

8 Parameter Name : CX NL Specifies the maximum number of lanes
that are supported by the core.

Y

Datapath Width 2 Parameter Name : CX NW Specifies the width of the datapath
(number of dwords per cycles)

Y Y

Number of Virtual
Channels

1 Parameter Name : CX NVC Specifies the number of Virtual
Channels supported by the core. A maximum of eigth VCs are
supported.

Y

Enable ECRC
Support

1 Parameter Name : CX ECRC ENABLE Removes support for
ECRC. May be disabled for smaller gate size if the Core is placed in
a system where it’s guaranteed that received TLPs don’t contain
ECRC AND the Application does not transmit ECRC from the
Client interfaces. This option is only available when Include Target
Interface 1 is selected.

Y

RAM data error
protection config

1 Parameter Name : CX RAM PROTECTION MODE RAM data
error protection mode Parity: Selects parity to check RAM data
error. ECC: Selects ECC to check and correct RAM data error.
None: Disables both parity and ECC modes.

Parity Config 8 Parameter Name : CX PAR MODE Config RAM data width per
parity bit

RAM ECC
pipeline enable

0 Parameter Name : CX ECC PIPE EN Enable RAM ECC pipeline Y Y

Remove Port Logic
Registers

0 Parameter Name : CX PL REG DISABLE Removes Port Logic
registers

Y

Use RocketIO
PHY

0 Parameter Name : RIO POPULATED FPGA design using Xilinx
RocketIO PHY

Y

DBI ReadOnly
Write Enable

0x1 Parameter Name : CX DBI RO WR EN Enable ReadOnly/HwInit
registers to be writable through DBI

FPGA 0 Parameter Name : FPGA This parameter specifies FPGA
application

Y

Include Target
Interface 1

1 Parameter Name : TRGT1 POPULATE Specifies the inclusion or
omission of the Target interface 1.

Y Y

Application Error
Reporting

0 Parameter Name : APP RETURN ERR EN Determines whether
to include input ports for application-detected error reporting.

Y

Mask Completion
Timeout Errors

0 Parameter Name : CPL TIMEOUT ERR MASK When defined, no
error will be reported to the CDM, application is responsible for
returning cpl timeout error through the application error return
interface (‘APP RETURN ERR EN).

Y Y

May 14, 2014 787 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Enable Address
Alignment

0 Parameter Name : GLOB ADDR ALIGN EN Allows the
application to enable address alignment When enabled, the core
performs address alignment and generates the first and last byte
enables based on the address and number of bytes of the TLP
requested from the client interface. NOTE: (This note applies to all
Switch Applications and to EP, RC, or Dual Mode Applications
that don’t have the CX ECRC EN macro defined): For Switch
Applications and other Applications where the CX ECRC EN is
not defined, this should normally be disabled. However, if the
Application requires this to be enabled, then the address alignment
pin at the top-level of the Application should only be high for those
TLP’s without ECRC. TLP’s w/ ECRC that are being transmitted
by the Application, the address alignment pin should be de-asserted
for that TLP.

Y

Provide Control to
Flip Physical
RX/TX Lanes

1 Parameter Name : CX LANE FLIP CTRL EN provide control
allowing physical RX/TX lanes to be flipped when this feature is
enabled, two pins are provided to control of RX/TX separtely.
input rx lane flip en; 0 – requires the RX LSB lane (i.e lane0) to be
physically presented. 1 – enables flipping, of the RX MSB lane to
lane0. input tx lane flip en; 0 – requires the TX LSB lane (i.e
lane0) to be physically presented. 1 – enables flipping, of the TX
MSB lane to lane0.

Number of Fast
Training (NFTS)
Sequences

15 Parameter Name : CX NFTS Specifies the number of Fast Training
Sequences the core advertises during link training. This is used to
inform the link partner the cores ability to recover synchronization
after a low power state. This number should come from the SerDes
vendor. Legal values are in the range 1 - 255

Y

NFTS when using
common clock

15 Parameter Name : CX COMM NFTS Specifies the number of Fast
Training Sequences the core advertises during link training when
common clock configuration is set. Legal values are in the range 1 -
255

Y

Technology Speed 0x2 Parameter Name : CX TECHNOLOGY Specifies the speed of the
technology relative to the clock frequency and architecture. This
parameter is used to enable additional pipelined stages internal to
the core to tradeoff latency and gates for ease of timing closure.
Note: This is always SLOW for FPGA’s

Y

Disable Lane
Deskew

0x0 Parameter Name : CX DESKEW DISABLE Enable or disable lane
deskew. This should be used with care.

Y

Enable Lane
Reversal Support

0x1 Parameter Name : CX LANE REVERSE Enable or disable core
support for lane reversal

Y

Enable ASPM L1
Timeout

0x1 Parameter Name : CX ASPM TIMEOUT ENTR L1 EN Enable or
disable the ASPM L1 timer. When enabled, core will automatically
go to L1 when the timer expires and the conditions in the PCIe
Specification are met.

Y

Maximum Tags
Supported

31 Parameter Name : CX MAX TAG Specifies the maximum number
of tags supported by the core. Used to size the completion
look-up-table and timeout ram.

Y

LBC Address Bus
Width

32 Parameter Name : CX LBC EXT AW Specifies the width of the
external Local Bus Controllers (LBC) address bus. Note: This
feature is not applicable for RC.

Y Y

Enable Diagnostic
Bus

0 Parameter Name : DIAGNOSTIC ENABLE Enables routing of
important diagnostic signals out of the top level.

Y

Maximum Payload
Size Supported

512 Parameter Name : CX MAX MTU Specifies the maximum packet
payload size supported by the core. This parameter is used to size
core memories.

May 14, 2014 788 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Enable Optional
Checks

0 Parameter Name : ENABLE OPTIONAL CHECKS Adds optional
protocol checks including byte enable and flow control.

Y

RAM Configuration

Parameter Value Description Default? Disabled?

Use External
RAMs

1 Parameter Name : CX RAM AT TOP IF Specifies whether to use
extrnal RAMs and include top-level interface or used embedded
RAMs

Y

RAM Type 0 Parameter Name : CX RAM TYPE Specifies the type of ram
model to use

Y Y

RAM Timing
Model

0 Parameter Name : RAM TIMING MODEL Specifies whether to
use Black Box timing, or physical RAM timing model if black box
timing is specified, Black box RAMS will be used to synthesize, and
timing constraints for RAM interfaces will be derived from
RAM*P RD ACCESS/RAM*P ADDR SU parameters. if physical
RAM timing is specified, it is expected to be provided by your
physical RAM model. [used by synth. timing model]

Y

single port RAM
Read Access Time
[ps]

1249 Parameter Name : RAM1P RD ACCESS Specifies the single port
RAM read Access time [used by synth. timing model]

Y

single port RAM
Address/Data
Setup Time [ps]

893 Parameter Name : RAM1P ADDR SU Specifies the single port
RAM data setup [used by synth. timing model]

Y

dual port RAM
Read Access Time
[ps]

1444 Parameter Name : RAM2P RD ACCESS Specifies the dual port
RAM read Access time [used by synth. timing model]

Y

dual port RAM
Address/Data
Setup Time [ps]

794 Parameter Name : RAM2P ADDR SU Specifies the dual port RAM
data setup [used by synth. timing model]

Y

Transmit Configuration

Parameter Value Description Default? Disabled?

Include 3rd Client
Interface

0 Parameter Name : CLIENT2 POPULATED Determines whether to
include top-level ports for the optional third application transmit
client interface (XALI2).

Y

Block Client 0
Interface

0x1 Parameter Name : CX CLIENT0 BLOCK NEW TLP This is
designed to allow customer to select whether or not to allow XADM
arbiter to block client0 interface When PMC is enabled with L1 and
L2, L3, there will be conditions that new TLP should be blocked.
But completions are always need to go. Therefore if customer
configures the completion and new TLP requests combined into
client0 interface, then it needs to set this value to 0 and takes over
the blocking function by monitoring the output signal
pm xtlh block tlp. Note: If core lbc is used or one client interface is
used for completions, then these block parameters should be set
accordingly. For example, if client0 interface has been used for
completion, then the parameter for client0 should be set to ’0’ so
xadm arbiter will not block this interface.

Y

May 14, 2014 789 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Block Client 1
Interface

0x0 Parameter Name : CX CLIENT1 BLOCK NEW TLP This is
designed to allow customer to select whether or not to allow XADM
arbiter to block client1 interface When PMC is enabled with L1 and
L2, L3, there will be conditions that new TLP should be blocked.
But completions are always need to go. Therefore if customer
configures the completion and new TLP requests combined into
client1 interface, then it needs to set this value to 0 and takes over
the blocking function by monitoring the output signal
pm xtlh block tlp. Note: If core lbc is used or one client interface is
used for completions, then these block parameters should be set
accordingly. For example, if client1 interface has been used for
completion, then the parameter for client1 should be set to ’0’ so
xadm arbiter will not block this interface.

Block Client 2
Interface

0x1 Parameter Name : CX CLIENT2 BLOCK NEW TLP This is
designed to allow customer to select whether or not to allow XADM
arbiter to block client1 interface When PMC is enabled with L1 and
L2, L3, there will be conditions that new TLP should be blocked.
But completions are always need to go. Therefore if customer
configures the completion and new TLP requests combined into
client1 interface, then it needs to set this value to 0 and takes over
the blocking function by monitoring the output signal
pm xtlh block tlp. Note: If core lbc is used or one client interface is
used for completions, then these block parameters should be set
accordingly. For example, if client1 interface has been used for
completion, then the parameter for client1 should be set to ’0’ so
xadm arbiter will not block this interface.

Y Y

Populate ports for
available credit
buses

0 Parameter Name : XADM CRD EN This parameter enables the
population of output ports for application monitoring of run-time
Avaliable credit information for VCn buses: xadm ph cdts
[NVC*8-1:0] : available VC0 - VCn header posted credits
xadm nph cdts [NVC*8-1:0] : available VC0 - VCn header
non-posted credits xadm cplh cdts [NVC*8-1:0] : available VC0 -
VCn header completion credits xadm pd cdts [NVC*12-1:0] :
available VC0 - VCn data posted credits xadm npd cdts
[NVC*12-1:0] : available VC0 - VCn data non-posted credits
xadm cpld cdts [NVC*12-1:0] : available VC0 - VCn data
completion credits Informatin for lower order VCs is presented on
the lower-order bits.

Y

Transmit Arbitration

Parameter Value Description Default? Disabled?

Transmit
Arbitration
Method

1 Parameter Name : CX XADM ARB MODE Transmit Arbitration
Method Client-Based: Provides Round Robin Arbitration Priority,
among transmit clients. Strict Pri.: Provides Strict Arbitration
Priority, among transmit clients. Client 0 has the lowest priority.
VC-Based: (available 5/2005) Provides VC based Arbitration
Priority across 2 VC classes LPVC/HPVC - LPVC groups can be
programmed to render Weighted Round Robin or Round Robin
Priority - HPVC groups provide Strict priority Arbitration, with
priority toward highest VIDs.

Y Y

Client Interface
TLP pullback
feature

0 Parameter Name : CLIENT PULLBACK When enabled, the client
interfaces are allowed to cancel a TLP currently submitted for
transmission

Y

May 14, 2014 790 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Enable LPVC
WRR Weights
Writable

0 Parameter Name : CX LPVC WRR WEIGHT WRITABLE Enable
LPVC Weighted Round Robin Weights registers to be writable
through DBI

Y Y

VC ID #0 Weight 0xf Parameter Name : LPVC WRR WEIGHT VC0 WRR Weighting
for VC ID #0

Y Y

VC ID #1 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC1 WRR Weighting
for VC ID #1

Y Y

VC ID #2 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC2 WRR Weighting
for VC ID #2

Y Y

VC ID #3 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC3 WRR Weighting
for VC ID #3

Y Y

VC ID #4 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC4 WRR Weighting
for VC ID #4

Y Y

VC ID #5 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC5 WRR Weighting
for VC ID #5

Y Y

VC ID #6 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC6 WRR Weighting
for VC ID #6

Y Y

VC ID #7 Weight 0x0 Parameter Name : LPVC WRR WEIGHT VC7 WRR Weighting
for VC ID #7

Y Y

XADMPosted

Parameter Value Description Default? Disabled?

Special Posted
TLP Handling

0 Parameter Name : SPECIAL MAX P CRD ENABLE This
parameter enables user to specify the necessary credits accumulated
before core will transmit Posted TLPs. Note: This option cannot be
selected if Compare Posted Credit is selected.

Y

Posted TLP Credit
Threshold

32 Parameter Name : SPECIAL MAX P CRD This parameter defines
the actual amount of Posted TLP credits core must accumulate
before transmitting a posted TLP

Y Y

Compare Posted
Credit

0 Parameter Name : P LEN CMP ENABLE This parameter enables
core to compare the requested posted payload length against enough
accumulated credits before transmission Note: This option cannot
be selected if Special Posted TLP Handling is selected.

Y

Transmit Completion

Parameter Value Description Default? Disabled?

Special Completion
Handling

0 Parameter Name : SPECIAL MAX CPL CRD ENABLE This
parameter enables user to specify the necessary credits accumulated
before core will transmit the completions. Note: This option cannot
be selected if Compare Completion Credit is selected.

Y

Completion Credit
Threshold

32 Parameter Name : SPECIAL MAX CPL CRD This parameter
defines the actual amount of completion credits core must
accumulate before transmitting a completion

Y Y

Compare
Completion Credit

0 Parameter Name : CPL LEN CMP ENABLE This parameter
enables core to compare the requested completion length against
enough accumulated credits before transmission Note: This option
cannot be selected if Special Completion Handling is selected.

Y

Common Register Configuration

Application Interface Options

May 14, 2014 791 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?

Configuration
Upper Limit

0x3ff Parameter Name : CONFIG LIMIT Upper limit of internally
handled Configuration requests. Any access to configuration register
above this address will go to TRGT1 interface

Y Y

Default Target
Interface

0x0 Parameter Name : DEFAULT TARGET Target Interface
Destination for received TLPs which are Unsupported Requests
Note: This feature is not applicable for RC.

Y Y

Target CPL LUT
Enable

0 Parameter Name : TRGT CPL LUT EN Let the core calculate the
correct byte count for CPL of incoming MemRd This feature is
available only if target 1 Interface is included. Note: This feature is
not available for Switch.

Y

Maximum Remote
Tags Supported

31 Parameter Name : CX REMOTE MAX TAG Specifies the
maximum number of tags track in the Target Completion LUT
Used to size the target completion look-up-table and timeout ram.

Y Y

RADM CPL LUT
STORE BYTE
COUNT

0 Parameter Name : RADM CPL LUT STORE BYTE CNT Store
the byte count in the RADM completion LUT

Y

Client
Data/Address Bus
Parity Protection

0 Parameter Name : CX CLIENT PAR MODE Select client
address/data parity mode.

Y

Application Par
Error Out Enable

0 Parameter Name : APP PAR ERR OUT EN Allow application to
monitor parity errors from core RAMs.

Y

Application Return
CRD Enable

0 Parameter Name : APP RETURN CRD EN Allow application to
directly control credit returns for each packet type.

Y

Port Logic Register

Parameter Value Description Default? Disabled?

Default Link
Number

0x4 Parameter Name : DEFAULT LINK NUM Default Link Number
value that the EP Core advertises to the Link partner. Valid values
are 0-255. (Only in RC/SW DOWN mode)

Y

Default ACK
Frequency

0x0 Parameter Name : DEFAULT ACK FREQUENCY The EP Core
accumulates the number of pending Ack’s specified here (up to 255)
before sending an Ack.

Y

Default Replay
Timer Adjustment

0x1 Parameter Name : DEFAULT REPLAY ADJ Default replay timer
adjustment. Each value increase the replay timer by 64.

Y

Default L1 Entry
Latency

0x2 Parameter Name : DEFAULT L1 ENTR LATENCY L1 Entrance
Latency

Y

Default L0S Entry
Latency

0x3 Parameter Name : DEFAULT L0S ENTR LATENCY L0s Entrance
Latency

Y

MSI/MSI-X

Parameter Value Description Default? Disabled?

MSI Capability 0x1 Parameter Name : MSI CAP ENABLE MSI Capability structure
enable

Y

Enable 64-bit MSI
Support

0x1 Parameter Name : MSI 64 EN 64-bit address MSI enable Y Y

Default Multiple
MSI Capability

0x0 Parameter Name : DEFAULT MULTI MSI CAPABLE Indicates
that multiple Message mode is enabled by system software. The
number of Messages enabled must be less than or equal to the
Multiple Message Capable value.

Y

MSI-X Capability 0x0 Parameter Name : MSIX CAP ENABLE MSI-X Capability enable Y

May 14, 2014 792 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

PCIe Capability

Parameter Value Description Default? Disabled?

L0S Exit Latency 0x3 Parameter Name : DEFAULT L0S EXIT LATENCY L0s Exit
Latency

Y

L0S Exit Latency
(common clk)

0x3 Parameter Name : DEFAULT COMM L0S EXIT LATENCY L0s
Exit Latency when using common clock

Y

L1 Exit Latency 0x6 Parameter Name : DEFAULT L1 EXIT LATENCY L1 Exit
Latency

Y

L1 Exit Latency
(common clk)

0x6 Parameter Name : DEFAULT COMM L1 EXIT LATENCY L1
Exit Latency when using common clock

Y

Port Number 0x0 Parameter Name : PORT NUM PCIe Port number for the given
PCIe link

Y

Use Platform
Reference Clock

0x1 Parameter Name : SLOT CLK CONFIG Slot Clock Configuration
Indicates that the component uses the same physical reference clock
that the platform provides on the connector.

Y

Physical Slot
Number

0x0 Parameter Name : SLOT PHY SLOT NUM Physical Slot Number Y

Slot Power Limit
Scale

0x0 Parameter Name : SET SLOT PWR LIMIT SCALE Slot Power
Limit Scale - Specifies the scale used for the Slot Power Limit Value

Y

Slot Power Limit
Value

0xf Parameter Name : SET SLOT PWR LIMIT VAL Slot Power Limit
Value - Upper limit of power supplied by slot

Slot is Hot-Plug
Capable

0x1 Parameter Name : SLOT HP CAPABLE When set indicates that
this slot is capable of supporting Hot-Plug operations

Slot Support
Hot-Plug Surprise

0x1 Parameter Name : SLOT HP SURPRISE When set indicates that a
device present in this slot might be removed from the system
without any prior notification

Disable Hot-Plug
Software
Notification

0x0 Parameter Name : SLOT NO CC SUPPORT When set, it indicates
that this slot doesn’t generate software notification when an issued
command is completed by the Hot-Plug Controller

Y

Electro-mechanical
Interlock
Implemented

0x0 Parameter Name : SLOT EML PRESENT When set, it indicates
that an Electromechanical Interlock is implemented on the chassis
for this slot.

Y

Slot Power
Indicator Present

0x1 Parameter Name : SLOT PWR IND PRESENT When set indicates
that a Power Indicator is implemented on the chassis for this slot.

Slot Attention
Indicator Present

0x1 Parameter Name : SLOT ATTEN IND PRESENT When set
indicates that an Attention Indicator is implemented on the chassis
for this slot.

Slot MRL Sensor
Present

0x0 Parameter Name : SLOT MRL SENSOR PRESENT When set
indicates that an MRL Sensor is implemented on the chassis for this
slot.

Y

Slot Power
Controller Present

0x1 Parameter Name : SLOT PWR CTRL PRESENT When set
indicates that a Power Controller is implemented for this slot.

Slot Attention
Button Present

0x0 Parameter Name : SLOT ATTEN BUTTON PRESENT When set
indicates that an Attention Button is implemented on the chassis
for this slot.

Y

PCIe Extended Capabilities

Parameter Value Description Default? Disabled?

Support Advanced
Error Reporting

0x1 Parameter Name : AER ENABLE Advanced Error Reporting
Capability enable

Y Y

Virtual Channel
Support

0x0 Parameter Name : VC ENABLE Virtual Channel Capability enable

May 14, 2014 793 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Serial Number
Capability

0x0 Parameter Name : SERIAL CAP ENABLE Device Serial Number
Capability enable

Y

Device Serial
Number (1st DW)

0x0 Parameter Name : DEFAULT SN DW1 Specifies the first 32-bit
device serial number

Y Y

Device Serial
Number (2nd DW)

0x0 Parameter Name : DEFAULT SN DW2 Specifies the second 32-bit
device serial number

Y Y

Vital Product Data (VPD)

Parameter Value Description Default? Disabled?

VPD Capability 0x0 Parameter Name : VPD CAP ENABLE Vital Product Data (VPD)
Capability structure enable

Y

Virtual Channel Capability

Parameter Value Description Default? Disabled?

VC Arbitration
Capability

0x0 Parameter Name : DEFAULT VC ARB 32 Types of VC
Arbitration supported by the device for the LPVC group bit 0 -
Weighted Round Robin arbitration with 16 phases bit 1 - Weighted
Round Robin arbitration with 32 phases bit 2 - Weighted Round
Robin arbitration with 64 phases bit 3 - Weighted Round Robin
arbitration with 128 phases bit 4-7 Reserved

Y Y

Low Priority
Extended VC
Count

0x0 Parameter Name : DEFAULT LOW PRI EXT VC CNT Indicates
the number of (exteded) VC in addition to the default VC belonging
to the LPVC group that has the lowest priority with respect to
other VC resources in a strict-priority VC arbitration.

Y Y

Function Configuration

Function 0 Configuration

Function 0 -> PCI Express Capability

Parameter Value Description Default? Disabled?

PCIe Capabilities
Interrupt Message
Number

0x0 Parameter Name : PCIE CAP INT MSG NUM 0 This register
indicates which MSI/MSI-X vector is used for the interrupt message
generated in association with the status bits in either the Slot
Status register

Y

Clock PM Support 0x0 Parameter Name : DEFAULT CLK PM CAP 0 When set indicates
that the component tolerates the removal of any ref clk when the
link is in the L1 and L2/3 ready states.

Y

Is Port Connected
to Slot

0x1 Parameter Name : SLOT IMPLEMENTED 0 When set indicates
that the PCI Express Link associated with this Port is connected to
a slot

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 0
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y

Add Support For
Attention Button

0x0 Parameter Name : DEFAULT ATT BUTT PRE 0 When set
indicates that an Attention Button is present

Y

Add Support For
Attention Indicator

0x1 Parameter Name : DEFAULT ATT IND PRE 0 When set indicates
that an Attention Indicator is present

May 14, 2014 794 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Add Support For
Power Indicator

0x1 Parameter Name : DEFAULT PWR IND PRE 0 When set
indicates that a Power Indicator is present

Support No-Snoop 0x0 Parameter Name : DEFAULT NO SNOOP SUPPORTED 0 When
set indicates that the device is permitted to set the No Snoop bit in
the Requester Attributes of transactions it initiates that do not
require hardware enforced cache coherency

Y

Active State Link
PM Support

0x3 Parameter Name : AS LINK PM SUPT 0 Active State Power
Management Support

Y

Enable Root RCB 0x0 Parameter Name : ROOT RCB 0 Indicates the RCB value for the
Root Port (RC-Only)

Y

Function 0 -> MSI-X Register Configuration

Parameter Value Description Default? Disabled?

MSIX Table Size 0x0 Parameter Name : MSIX TABLE SIZE 0 MSI-X Table Size -
Encoded as (Table Size - 1).

Y Y

MSIX Table BIR 0x0 Parameter Name : MSIX TABLE BIR 0 Table BAR Indicator
Register (BIR) Indicates which BAR is used to map the MSI-X
Table into memory space

Y Y

MSIX Table Offset 0x0 Parameter Name : MSIX TABLE OFFSET 0 Table Offset - Base
address of the MSI-X Table, as an offset from the base address of
the BAR indicated by the table BIR bits.

Y Y

MSIX PBA BIR 0x0 Parameter Name : MSIX PBA BIR 0 Pending Bit Array (PBA)
BIR Indicates which BAR is used to map the MSI-X PBA into
memory space

Y Y

MSIX PBA Offset 0x0 Parameter Name : MSIX PBA OFFSET 0 PBA Offset - Base
address of the MSI-X PBA, as an offset from the base address of the
BAR indicated by the PBA BIR bits.

Y Y

Function 0 -> Advanced Error Register Configuration

Parameter Value Description Default? Disabled?

Default ECRC
Check Capability

0x1 Parameter Name : DEFAULT ECRC CHK CAP 0 ECRC
Checking Capability

Y

Default ECRC
Generation
Capability

0x1 Parameter Name : DEFAULT ECRC GEN CAP 0 ECRC
Generation Capability

Y

Advanced Error
Interrupt Message
Number

0x0 Parameter Name : AER INT MSG NUM 0 This register must
indicate which MSI/MSI-X vector is used for the interrupt message
generated in association with any of the status bits of this capability

Y

Function 0 -> Power Management Register Configuration

Parameter Value Description Default? Disabled?

PME Support 0x1b Parameter Name : PME SUPPORT 0 5-bit field indicates the
power states in which the device may generate a PME.

Y

D1 Support 0x1 Parameter Name : D1 SUPPORT 0 Supports the D1 PM state Y
D2 Support 0x0 Parameter Name : D2 SUPPORT 0 Supports the D2 PM state Y
Device Specific
Initialization

0x0 Parameter Name : DEV SPEC INIT 0 Device Specific Initialization Y

Auxiliary Current 0x7 Parameter Name : AUX CURRENT 0 Auxillary Current
requirement

Y

May 14, 2014 795 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
No Reset on
D3hot->D0
Transition

0x0 Parameter Name : DEFAULT NO SOFT RESET 0 When set, it
indicates that this device when transitioning from D3hot to D0
because of powerstate commands don’t perform an internal reset.

Y

Function 0 -> PCI Register Configuration

Parameter Value Description Default? Disabled?

Device
Identification
Number

0x1 Parameter Name : CX DEVICE ID 0 Specifies the 16-bit device
identification number for the function.

Vendor
Indentification
Number

0x19b2 Parameter Name : CX VENDOR ID 0 Specifies the 16-bit vendor
identication number for the function. This value is controlled by the
PCI SIG.

Device Revision
Number

0x1 Parameter Name : CX REVISION ID 0 Specifies the 8-bit revision
number of the function.

Y

Base Class Code 0x6 Parameter Name : BASE CLASS CODE 0 Class code
Sub Class Code 0x4 Parameter Name : SUB CLASS CODE 0 Sub-class code
Programming
Interface Code

0x0 Parameter Name : IF CODE 0 Programming Interface code Y

IO Address Decode 0x1 Parameter Name : IO DECODE 32 0 IO Addressing (Type1-Only)
NOTE Should not appear for EP

Memory Address
Decode

0x1 Parameter Name : MEM DECODE 64 0 Memory Addressing
(Type1-Only) **NOTE** Should not appear for EP

Enable ROM BAR 0x0 Parameter Name : ROM BAR ENABLED 0 ROM BAR Enable
ROM BAR Mask 0xffff Parameter Name : ROM MASK 0 ROM BAR Mask ex: 32’hFFFF

= BAR size of 2ˆ16. Set to all Fs to disable
Y Y

Allow
Reprogramming of
ROM BAR Mask

0x0 Parameter Name : ROM MASK WRITABLE 0 When set enables
dynamic changing of ROM BAR Mask through DBI

Y Y

Specify ROM BAR
Target Interface

0x1 Parameter Name : ROM FUNC0 TARGET MAP Destination of
request matching ROM BAR Note: This feature is not applicable
for RC.

Y Y

Function 0 -> BAR 0 / BAR 1

Parameter Value Description Default? Disabled?

Enable BAR 0 0x0 Parameter Name : BAR0 ENABLED 0 BAR0 Enable
BAR 0 is Memory
or I/O

0x0 Parameter Name : MEM0 SPACE DECODER 0 BAR0 Memory
Space Indicator When set indicates IO space

Y Y

BAR 0 is
Prefetchable

0x0 Parameter Name : PREFETCHABLE0 0 BAR0 Memory
Prefetchable When set indicates BAR0 Memory BAR is a
prefetchable BAR

Y Y

BAR 0 Bit Size 0x2 Parameter Name : BAR0 TYPE 0 BAR0 Type - 32 or 64bit Y Y
Allow
Reprogramming of
BAR 0 Mask

0x0 Parameter Name : BAR0 MASK WRITABLE 0 When set enables
dynamic changing of BAR0 Mask through DBI

Y Y

BAR 0 Mask 0xfffff Parameter Name : BAR0 MASK 0 BAR0 Mask ex: 64’hFFFFF =
BAR size of 2ˆ20.

Y Y

Specify Target
Interface for
BAR 0

0x1 Parameter Name : MEM FUNC0 BAR0 TARGET MAP 1 – target
1 intended destination for request matching function 0/ bar 0 0 –
target 0 intended destination for request matching function 0/ bar 0
Note: This feature is not applicable for RC.

Y Y

Enable BAR 1 0x0 Parameter Name : BAR1 ENABLED 0 BAR1 Enable Y Y

May 14, 2014 796 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
BAR 1 is Memory
or I/O

0x0 Parameter Name : MEM1 SPACE DECODER 0 BAR1 Memory
Space Indicator When set indicates IO space

Y Y

BAR 1 is
Prefetchable

0x0 Parameter Name : PREFETCHABLE1 0 BAR1 Memory
Prefetchable When set indicates BAR1 Memory BAR is a
prefetchable BAR

Y Y

BAR 1 Bit Size 0x0 Parameter Name : BAR1 TYPE 0 BAR1 Type - 32 or 64bit Y Y
Allow
Reprogramming of
BAR 1 Mask

0x0 Parameter Name : BAR1 MASK WRITABLE 0 When set enables
dynamic changing of BAR1 Mask through DBI

Y Y

BAR 1 Mask 0xffffffff Parameter Name : BAR1 MASK 0 BAR1 Mask ex: 64’hFFFFF =
BAR size of 2ˆ20.

Y Y

Specify Target
Interface for
BAR 1

0x1 Parameter Name : MEM FUNC0 BAR1 TARGET MAP 1 – target
1 intended destination for request matching function 0/ bar 1 0 –
target 0 intended destination for request matching function 0/ bar 1
Note: This feature is not applicable for RC.

Y Y

Function 1

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 1
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 1 -> PCI Express Capability:

Function 2

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 2
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 2 -> PCI Express Capability:

Function 3

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 3
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 3 -> PCI Express Capability:

Function 4

Parameter Value Description Default? Disabled?

May 14, 2014 797 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 4
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 4 -> PCI Express Capability:

Function 5

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 5
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 5 -> PCI Express Capability:

Function 6

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 6
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 6 -> PCI Express Capability:

Function 7

Parameter Value Description Default? Disabled?

Extended Tag
Support

0x0 Parameter Name : DEFAULT EXT TAG FIELD SUPPORTED 7
Indicates the maximum supported size of the Tag field as a
Requester and the ability of accepting request with 8-bit tag.
Should only be set when CX REMOTE MAX TAG is set to 256

Y Y

Function 7 -> PCI Express Capability:

Filter Configuration

Parameter Value Description Default? Disabled?

FLT Q ADDR WIDTH64 Parameter Name : FLT Q ADDR WIDTH number of bits for Filter
field FLT Q ADDR

Y Y

Allow AER
(UR/CA Error) for
TLPs Destined for
Target 1

0x0 Parameter Name : CX MASK UR CA 4 TRGT1 1 - Allow AER
(UR/CA error) for TLPs destined for Trgt1 0 - Suppressed AER
(UR/CA error) for TLPs destined for Trgt1

Y

FLT Message Drop 0x1 Parameter Name : FLT DROP MSG Control whether or not
messages are passed along to the application or consumed by the
core.

Y

May 14, 2014 798 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Queuing & Buffer Configuration

Queue Depth Worksheet

Parameter Value Description Default? Disabled?

Enable Auto Size
of Retry Buffer

0x0 Parameter Name : CX RBUF AUTOSIZE Switch ON / OFF
automatic retry buffer sizing. When ON the retry buffer size is
derived from the Maximum Payload Size, the Link Width and the
core latencies. The SOTBUF Buffer size will be calucated from
these same criteria. When OFF the retry buffer size must be
specified by the user by entering this sizes directly in RBUF depth,
and SOTBUF depth.

MAC Tx Delay 4 Parameter Name : CX PHY TX DELAY MAC Transmitter delay
(MAC) in clock cycles

Y Y

PHY Tx Delay 5 Parameter Name : CX PHY TX DELAY PHY Transmitter delay
(PHY) in clock cycles

Y Y

MAC Rx Delay 4 Parameter Name : CX PHY RX DELAY MAC Receiver delay
(MAC) in clock cycles

Y Y

PHY Rx Delay 6 Parameter Name : CX PHY RX DELAY PHY Receiver delay
(PHY) in clock cycles

Y Y

Internal Delay /
Link Partner Delay

19 Parameter Name : CX INTERNAL DELAY The internal
processing delays for received TLPs and transmitted DLLPs. This
value is used to caclculate Retry buffer and SOTBUF buffer sizes.

Y Y

Parameter Value Description Default? Disabled?

Retry Buffer Depth 215 Parameter Name : CX RBUF DEPTH Number of locations in
Retry Buffer RAM

Y

Retry Buffer
Width

68 Parameter Name : RBUF WIDTH Width of Retry Buffer RAM
(number of address bits)

Y Y

Retry Buffer Configuration:

Parameter Value Description Default? Disabled?

Minimum SOT
Depth

32 Parameter Name : CX SOTBUF DEPTH Minimum Number of
RAM entries per packet. Actual sotbuf depth is adjusted to be at
least 32, and will be rounded up to the next power-of-2.

SOT Buffer Depth 32 Parameter Name : SOTBUF DEPTH Number of locations in
SOTBUF RAM

Y Y

SOT Buffer Width 8 Parameter Name : SOTBUF WIDTH Width of SOTBUF RAM
(number of address bits)

Y Y

SOT Buffer Configuration:

General Configuration

Parameter Value Description Default? Disabled?

May 14, 2014 799 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Specify Queue
Mode

2 Parameter Name : CX RADMQ MODE There are two Queue mode
supported: Multi-Q mode: Queue’s are separated based into
individual TLP queues. Single-Q mode: Queues that are not
bypassed, will be combined into a single header queue, and a single
data queue. The Posted Queue is the ’host’ queue used as the Single
Queue, therefore single qmode is not supported if posted queue is
bypassed. Segment Buffer: (available in an upcoming release)
Queues that are not bypassed are located on a single RAM but are
functionally treated as separate queues.

Inhibit RAM read
enable when
segment empty

1 Parameter Name : CX RADM ADDR COMP Inhibits the ram’s
read enable when the read and write addresses are equal. Turning
this option off will improve timing but may not be supported by
some ram implementations. NOTE: The core only requires that the
write data be written to the ram in this situation. The read data is
not used and can be x’s.

Y

Parameter Value Description Default? Disabled?

Receive VC
Arbitration

0x0 Parameter Name : CX RADM STRICT VC PRIORITY
Arbitration between VC. If set to strict VC Priority, VC0 is lowest
priority, VC7 is highest

Y

Support Relaxed
Ordering

0 Parameter Name : RELAXED ORDER SUPPORT Relaxed Order
Support When set allows CPL types to go out of order

Y

Enable Support for
Cut-Through
Mode

0 Parameter Name : CUT THROUGH INVOLVED Y

Enable Passing of
ECRC Values to
the Application

0 Parameter Name : ECRC ERR PASS THROUGH Y

Enable Dynamic
FC Credit
Adjustment

1 Parameter Name : CX DYNAMIC FC CREDIT

Enable Dynamic Q
Depth Adjustment

1 Parameter Name : CX DYNAMIC SEG SIZE

PCIe Ordering
Rules Support

1 Parameter Name : CLUMP SUPPORT PCIe Ordering Rules
support This option enables support for the PCIe Ordering Rules
arbitration mode. If this option is not set, PCIe Ordering Rule
based Arbitration will not be available.

Y

Segment Buffer Options:

Parameter Value Description Default? Disabled?

Posted Q Use
Ordering FIFO

1 Parameter Name : CX RADMQ P NB ORDER LIST If Posted
TLP Queues are not bypassed, this parameter provides a switch to
control whether the order fifo effects Posted queue operations. If the
bit is set to 1, presentation of received posted TLPs is controlled by
the Order FIFO. If the bit is set to 0, presentation of received
posted TLPs will not be influenced by the Order FIFO.

Y Y

May 14, 2014 800 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Non-Posted Q Use
Ordering FIFO

1 Parameter Name : CX RADMQ NP NB ORDER LIST If
Non-Posted TLP Queues are not bypassed, this parameter provides
a switch to control whether the order fifo effects Non-Posted queue
operations. If the bit is set to 1, presentation of received
Non-Posted TLPs is controlled by the Order FIFO. If the bit is set
to 0, presentation of received Non-Posted TLPs will not be
influenced by the Order FIFO.

Y Y

Completion Q Use
Ordering FIFO

0 Parameter Name : CX RADMQ CPL NB ORDER LIST If
Completion TLP Queues are not bypassed, this parameter provides
a switch to control whether the order fifo effects Completion queue
operations. If the bit is set to 1, presentation of received
Completion TLPs is controlled by the Order FIFO. If the bit is set
to 0, presentation of received Completion TLPs will not be
influenced by the Order FIFO.

Y Y

Multi Queue Options:

VC Configuration

In Single Queue and Multi-queue mode these settings are for ALL VC’s

Posted Advertised Credits

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC0 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y

Hdr 59 Parameter Name : RADM PQ HCRD VC0 Specifies the # of
Posted Hdr Credits to Advertise.

Data 105 Parameter Name : RADM PQ DCRD VC0 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Non-Posted Advertised Credits

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC0 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y

Hdr 59 Parameter Name : RADM NPQ HCRD VC0 Specifies the # of
Non-Posted Hdr Credits to Advertise.

May 14, 2014 801 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Data 16 Parameter Name : RADM NPQ DCRD VC0 Specifies the # of

Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Completion Advertised Credits

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC0 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Hdr 0 Parameter Name : RADM CPLQ HCRD VC0 Specifies the # of
Completion Hdr Credits to Advertise.

Y

Data 0 Parameter Name : RADM CPLQ DCRD VC0 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y

Additional VC 0 Options

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC0
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC0 Selecting
this option allow RAM depths to be specified independently from
the advertised credits.

Posted Buffer Depth

Parameter Value Description Default? Disabled?

Hdr 60 Parameter Name : RADM PQ HDP VC0 Specifies the depth of the
Posted Hdr Queue/RAM.

Y

Data 211 Parameter Name : RADM PQ DDP VC0 Specifies the depth of the
Posted Data Queue/RAM.

Y

Non-Posted Buffer Depth

Parameter Value Description Default? Disabled?

Hdr 60 Parameter Name : RADM NPQ HDP VC0 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y

Data 33 Parameter Name : RADM NPQ DDP VC0 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y

Completion Buffer Depth

May 14, 2014 802 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?

Hdr 5 Parameter Name : RADM CPLQ HDP VC0 Specifies the depth of
the Completion Hdr Queue/RAM.

Data 9 Parameter Name : RADM CPLQ DDP VC0 Specifies the depth of
the Completion Data Queue/RAM.

VC 1

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC1 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC1 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC1 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC1 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC1 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC1 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

May 14, 2014 803 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Mode 0x1 Parameter Name : RADM CPL QMODE VC1 Completion TLP

queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC1 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC1 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC1
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC1 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 1 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC1 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC1 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC1 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC1 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC1 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC1 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

May 14, 2014 804 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Completion Buffer Depth:

VC 2

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC2 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC2 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC2 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC2 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC2 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC2 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC2 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC2 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

May 14, 2014 805 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?
Data 0 Parameter Name : RADM CPLQ DCRD VC2 Specifies the # of

Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC2
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC2 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 2 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC2 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC2 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC2 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC2 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC2 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC2 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

Completion Buffer Depth:

VC 3

Parameter Value Description Default? Disabled?

May 14, 2014 806 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Mode 0x1 Parameter Name : RADM P QMODE VC3 Posted TLP queue

type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC3 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC3 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC3 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC3 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC3 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC3 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC3 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC3 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

May 14, 2014 807 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC3
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC3 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 3 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC3 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC3 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC3 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC3 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC3 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC3 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

Completion Buffer Depth:

VC 4

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC4 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC4 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

May 14, 2014 808 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Data 0 Parameter Name : RADM PQ DCRD VC4 Specifies the # of

Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC4 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC4 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC4 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC4 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC4 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC4 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC4
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC4 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

May 14, 2014 809 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Additional VC 4 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC4 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC4 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC4 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC4 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC4 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC4 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

Completion Buffer Depth:

VC 5

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC5 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC5 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC5 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

May 14, 2014 810 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Mode 0x1 Parameter Name : RADM NP QMODE VC5 Non-Posted TLP

queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC5 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC5 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC5 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC5 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC5 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC5
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC5 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 5 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC5 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC5 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

May 14, 2014 811 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC5 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC5 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC5 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC5 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

Completion Buffer Depth:

VC 6

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC6 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC6 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC6 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC6 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC6 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

May 14, 2014 812 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Data 0 Parameter Name : RADM NPQ DCRD VC6 Specifies the # of

Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM CPL QMODE VC6 Completion TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC6 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC6 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC6
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC6 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 6 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC6 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC6 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC6 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC6 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

May 14, 2014 813 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC6 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC6 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

Completion Buffer Depth:

VC 7

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM P QMODE VC7 Posted TLP queue
type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no Posted
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
P TLP’s are stored into queue, advertisment of an available TLP is
advertised only after the entire TLP is stored into the queue.
Cut-Through: P TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM PQ HCRD VC7 Specifies the # of
Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM PQ DCRD VC7 Specifies the # of
Posted Data Credits to Advertise. One data credit = 128 bits of
data

Y Y

Posted Advertised Credits:

Parameter Value Description Default? Disabled?

Mode 0x1 Parameter Name : RADM NP QMODE VC7 Non-Posted TLP
queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no NP
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
NP TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: NP TLP’s are stored into queue and presented to the
application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM NPQ HCRD VC7 Specifies the # of
Non-Posted Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM NPQ DCRD VC7 Specifies the # of
Non-Posted Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Non-Posted Advertised Credits:

Parameter Value Description Default? Disabled?

May 14, 2014 814 Rev 51328

SiCortex Confidential 13.15. TRANSACTION, LINK, MAC LAYERS

Parameter Value Description Default? Disabled?
Mode 0x1 Parameter Name : RADM CPL QMODE VC7 Completion TLP

queue type. There are three Queue types available
Bypass/Store-Forward/CutThrough. Bypass: There is no CPL
receive queue in this mode, the application must be able to accept
all traffic - as back-pressure is disabled in the mode. Store-Forward:
CPL TLP’s are stored into queue, advertisment of an available TLP
is advertised only after the entire TLP is stored into the queue.
Cut-Through: CPL TLP’s are stored into queue and presented to
the application at the same time it is being stored into the queue.

Y Y

Hdr 0 Parameter Name : RADM CPLQ HCRD VC7 Specifies the # of
Completion Hdr Credits to Advertise.

Y Y

Data 0 Parameter Name : RADM CPLQ DCRD VC7 Specifies the # of
Completion Data Credits to Advertise. One data credit = 128 bits
of data

Y Y

Completion Advertised Credits:

Parameter Value Description Default? Disabled?

Receive
Arbitration
Betweeen Types

0x1 Parameter Name : CX RADM ORDERING RULES VC7
Arbitration between transaction types (P/NP/CPL). If set to strict
priority, P is higher than CPL is higher than NP Otherwise, it’s set
to follow PCIe spec, Table 2-23 ordering rules

Y Y

Decouple Depth
from Credit

1 Parameter Name : RADM DEPTH DECOUPLE VC7 Selecting
this option allow RAM depths to be specified independantly from
the advertised credits.

Y Y

Additional VC 7 Options:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM PQ HDP VC7 Specifies the depth of the
Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM PQ DDP VC7 Specifies the depth of the
Posted Data Queue/RAM.

Y Y

Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM NPQ HDP VC7 Specifies the depth of
the Non-Posted Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM NPQ DDP VC7 Specifies the depth of
the Non-Posted Data Queue/RAM.

Y Y

Non-Posted Buffer Depth:

Parameter Value Description Default? Disabled?

Hdr 0 Parameter Name : RADM CPLQ HDP VC7 Specifies the depth of
the Completion Hdr Queue/RAM.

Y Y

Data 0 Parameter Name : RADM CPLQ DDP VC7 Specifies the depth of
the Completion Data Queue/RAM.

Y Y

May 14, 2014 815 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

Completion Buffer Depth:

AXI Configuration

Parameter Value Description Default? Disabled?

AXI Enable 0 No description available. Y Y

Master Interface Options

Parameter Value Description Default? Disabled?

Master Interface
Enable

0 Parameter Name : MASTER POPULATED Indicates that a
master interface is required

Y Y

Enable
Independent AXI
Master Clock

0 No description available. Y Y

Master
Decomposer
Enable

0 Parameter Name : RADMX DECOMPOSER POPULATED
Indicates that master interface requires a decomposer

Y Y

Maximum Master
Tags Supported

32 Parameter Name : CC MAX MSTR TAG Specifies the maximum
number of tags supported by the AXI Master.

Y Y

Remote Device
MAX Read
Request Size

128 Parameter Name : CX REMOTE RD REQ SIZE Specifies the
maximum read request size supported by the PCIe core receiver
when AXI or AHB is populated AXI Master. This parameter is
used to size AXI/AHB master composer memories.

Y Y

AXI Master
Address Width

32 Parameter Name : CC MSTR BUS ADDR WIDTH Specify the
master address width on AXI.

Y Y

AXI Master Data
Width

32 Parameter Name : CC MSTR BUS DATA WIDTH Specify the
master data width on AXI.

Y Y

Master Page
Boundary Size

13 Parameter Name : CC MSTR PAGE BOUNDARY PW Specifies
the page boundary size supported by AXI Master. No packets can
have an address that crosses this boundary. Packets will be split to
conform to this requirement.

Y Y

Parameter Value Description Default? Disabled?

Master Response’s
HEADER FIFO
Queue Depth

4 Parameter Name : CC XADMX CLIENT0 QUEUE HDP Indicates
that bridge’s master response HEADER FIFO queue size

Y Y

Master Response’s
DATA FIFO
Queue Depth

128 Parameter Name : CC XADMX CLIENT0 QUEUE DDP Indicates
that bridge’s master response DATA FIFO queue size

Y Y

Master Request’s
HEADER FIFO
Queue Depth

4 Parameter Name : CC RADMX DECOMPOSER HDRQ DP
Indicates that bridge’s master request HEADER FIFO queue size

Y Y

Master Request’s
DATA FIFO
Queue Depth

16 Parameter Name : CC RADMX DECOMPOSER DATAQ DP
Indicates that bridge’s master request DATA FIFO queue size

Y Y

Master Queue Options:

Slave Interface Options

Parameter Value Description Default? Disabled?

May 14, 2014 816 Rev 51328

SiCortex Confidential 13.16. PCS, PHY LAYERS

Parameter Value Description Default? Disabled?
Slave Interface
Enable

0 Parameter Name : SLAVE POPULATED Indicates that a slave
interface is required

Y Y

Enable
Independent AXI
Slave Clock

0 No description available. Y Y

Slave Composer
Enable

0 Parameter Name : RADMX COMPOSER POPULATED Indicates
that slave interface requires a composer

Y Y

Maximum Slave
Tags Supported

32 Parameter Name : CC MAX SLV TAG Specifies the maximum
number of tags supported by the AXI Slave.

Y Y

AXI Slave Data
Width

32 Parameter Name : CC SLV BUS DATA WIDTH Specify the slave
data width on AXI.

Y Y

AXI Slave Address
Width

32 Parameter Name : CC SLV BUS ADDR WIDTH Specify the slave
address width on AXI.

Y Y

AXI Slave ID
Width

5 Parameter Name : CC SLV BUS ID WIDTH Specify the slave ID
width on AXI.

Y Y

Enable in order
services of AXI
SLAVE

0 Parameter Name : SLAVE IN ORDER EN Indicates that slave
logic will ensure that the responses will be returned in order.

Y

Parameter Value Description Default? Disabled?

Slave Request’s
HEADER FIFO
Queue Depth

4 Parameter Name : CC XADMX CLIENT1 QUEUE HDP Indicates
that bridge’s slave request HEADER FIFO queue size

Y Y

Slave Request’s
DATA FIFO
Queue Depth

16 Parameter Name : CC XADMX CLIENT1 QUEUE DDP Indicates
that bridge’s slave request DATA FIFO queue size

Y Y

Slave Queue Options:

DBI Slave Interface Options

Parameter Value Description Default? Disabled?

Slave DBI Enable 0 Parameter Name : DBI 4SLAVE POPULATED Indicates that slave
interface requires DBI

Y Y

Enable
Independent AXI
DBI Slave Clock

0 No description available. Y Y

AXI DBI Slave
Address Width

32 Parameter Name : CC DBI SLV BUS ADDR WIDTH Specify the
slave address width on AXI.

Y Y

13.16 PCS, PHY Layers

Please reference the Synopsys’ “PCI-Express 90nm PHY Data Book”. This provides a description of the pins,
the timing requirements, and the programmer-visible registers.

13.17 Power Management

The PCI-Express subsystem is active in only a fraction of the ICE9 chips on a processing module. To minimize
power consumption, the PCI-Express subsystem must be capable of complete power-down when not in use. Support
of intermediate power states is not required.

May 14, 2014 817 Rev 51328

SiCortex Confidential CHAPTER 13. PCI EXPRESS SUBSYSTEM

May 14, 2014 818 Rev 51328

Chapter 14

I2C Interface

[Last Modified $Id: chipi2c.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

14.1 Overview

The chip implements an I2C Master Controller in order to read the Serial Presence Detect (SPD) configuration
of its local DIMMs using the industry standard I2C Bus.1 This chapter provides a brief description of the I2C
Master Controller, the registers provided to program it and the actions necessary to initialize and operate it.

14.2 Description

The ICE9 implementation uses the OpenCores (www.opencores.org) I2C Master Controller. The I2C core
will be contained in the BBS unit with the other programmed I/O devices. The core need only generate 7-bit
I2C addresses and will be operated at a frequency of 100kHz.2 In our implementation the I2C core will be the
sole I2C Bus master and should never have to arbitrate for bus mastership even though the core supports it. Our
implementation does NOT support interrupts and all mention of interrupts in the OpenCores documentation should
be ignored. See section 14.7 for descriptions of how to poll the I2C core to determine when it is no longer busy.
The core specification and programmer’s guide from OpenCores can be found on the WIKI at:

http://apollo.sicortex.com/swiki/I2cInterface

For a complete description of the I2C Bus Architecture see the Philips Semiconductors I2C Bus Specification at:

file:///net/sicortex/system/standards/PHILIPS_I2C_spec.pdf

14.3 Package Attributes

Package

chip i2c spec

14.4 Registers and Definitions

All registers in the I2C Core can be considered 8 bits wide. Although the Clock Prescale Register is internally
16 bits wide, it is read and written in two 8 bit halves and can therefore be considered as two 8-bit registers.
All registers described here are implemented as per the specification on the WIKI. The addressing, however, is
somewhat different. Each address is relative to the I2C Interface’s base address. Register 0 starts at I2C BASE +
0, register 1 starts at I2C BASE+8, and so on. That is, the registers appear in the address space to be 8 bytes apart

1Also known as the Inter-Integrated Circuit Bus or I2C Bus. Throughout this document it is simply referred to as the I2C Bus.
2Since the I2C Bus is usually transferring 1-bit of serial data on its SDA line per clock, the SCL frequency is sometimes also described

in terms of a bit rate, in bits per second, scaled appropriately as either kilobits per second (kbps) or megabits per second (Mbps). Thus
100kHz = 100kbps.

819

SiCortex Confidential CHAPTER 14. I2C INTERFACE

even though only one byte is being transferred. For transfers within the I2C address space, the byte transferred
is always the little-endian least significant byte of a 32-bit longword. Please note that all reserved bits are read as
zeros. To ensure forward compatibility, they should be written as zeros.

14.4.1 I2C Clock Prescale Register

Description

This register is used to prescale the I2C’s SCL clock line. The prescale register is 16 bits wide but must be
written as two 8 bit halves, with each half at its own unique address as shown below. Due to the structure of the
I2C interface, the core uses a 5*SCL clock internally. The prescale register must be programmed to this 5*SCL
frequency minus 1. You may change the value of the prescale register only when the EN bit in the control register
is cleared (disabled).

In this implementation, the I2C core derives its SCL clock from the L2 Cache clock (CCLK). With a 16 bit
prescale register, this implies that the SCL clock can run at any frequency from ˜763 Hz to 50 MHz. However
because I2C is an industry standard implemented by many different vendors using various processes, the I2C
specification establishes standard maximum I2C clock frequencies of 100 kHz (normal), 400 kHz (fast) and 3.4
MHz (high-speed). In order to support the broadest range of devices available, this implementation should operate
at the lowest standard maximum clock frequency of 100 kHz. Therefore the value for the prescale register should
be chosen such that the operating CCLK frequency is divided down to 100 kHz.

The formula for calculating the prescale value is:

prescale =
cclk

5 ∗ scl
− 1

Substituting our known frequency values for cclk and scl yields:

prescale =
250,000,000
5 ∗ 100,000

− 1 = 499 = 1F3(hex)

The two halves used to read and write the prescale register are as follows:

Register

R I2cPrerLo

Address

0xE A800 0000

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7:0 prerlo RW 0xFF Low byte of I2C clock prescale register.

Change only when EN bit of I2C Control Register is ’0’.

Register

R I2cPrerHi

Address

0xE A800 0008

Definitions

May 14, 2014 820 Rev 51328

SiCortex Confidential 14.4. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7:0 prerhi RW 0xFF High byte of I2C clock prescale register.

Change only when EN bit of I2C Control Register is ’0’.

14.4.2 I2C Control Register

Description

The Control Register enables I2C operation. The core responds to new commands only when the EN bit is set
and after pending commands are finished. Clear the EN bit only when no transfer is in progress, i.e. after a STOP
command, or when the command register has the STO bit set. If halted during a transfer, the core can hang the
I2C Bus.

Register

R I2cCtl

Address

0xE A800 0010

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7 en RWS 0 Enable I2C unit. When 1, the I2C widget is enabled.
6:0 0 Reserved

14.4.3 I2C Data Register

Description

On a write, contains next byte to send onto the I2C Bus from the master core. The byte can be either data or
the 7-bit I2C slave address along with the read/write command. On a read, contains the last byte received from
the I2C Bus.

Register

R I2cData

Address

0xE A800 0018

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7:0 rxData R X Last byte received from the I2C bus.

Overlaps allowed
7:0 txData WS 0 Next byte to transmit on the I2C bus.

Overlaps allowed.

May 14, 2014 821 Rev 51328

SiCortex Confidential CHAPTER 14. I2C INTERFACE

Bit Mnemonic Access Reset Type Definition
7:1 txAddr W 0 For slave address transfers these bits represent the 7-bit

I2C address.
Overlaps allowed.

0 txRW W 0 For slave address transfers this bit represents the I2C
R/W bit.
’1’ = reading from slave
’0’ = writing to slave
Overlaps allowed.

14.4.4 I2C Command and Status Register

Description

Controls the operation of the I2C Master core on write and reports its status on read. See the core specification
on the WIKI and the transfer sequences described in this document for a more detailed description on how to use
the bits in this register. Note that the STA, STO, RD, and WR bits are cleared automatically. These bits are
always read as zeros.

Register

R I2cCmdSts

Attributes

-writeonemixed

Address

0xE A800 0020

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved
7 sta WS 0 Generate start or repeated-start condition.

Overlaps allowed
6 sto WS 0 Generate stop condition.

Overlaps allowed
5 rd WS 0 Read data from slave.

Overlaps allowed
4 wr WS 0 Write data to slave.

Overlaps allowed
3 ack W1C 0 When acting as a receiver, send ACK (ACK=’0’) or

NACK (ACK=’1’).
Overlaps allowed

2:0 W 0 Reserved. Write as zero.
Overlaps allowed

7 rxack R 0 Received acknowledge from slave.
This flag represents acknowledge from the addressed slave.
’1’ = No acknowledge received
’0’ = Acknowledge received
Overlaps allowed

May 14, 2014 822 Rev 51328

SiCortex Confidential 14.5. RESET

Bit Mnemonic Access Reset Type Definition
6 busy R 0 I2C bus busy.

Use this flag to determine when a forced stop operation
is complete. A forced stop occurs when only the STO
bit in the command register is set. A return value of ’0’
indicates the operation has completed.
’1’ after START signal detected.
’0’ after STOP signal detected.
Overlaps allowed

5:2 R 0 Reserved
Overlaps allowed

1 tip R 0 Transfer in progress.
Use this flag to determine when a transfer is complete after
either the RD or WR bit has been set in the Command
Register.
’1’ when transferring data
’0’ when transfer is complete
Overlaps allowed

0 R 0 Reserved
Overlaps allowed

14.4.5 I2C Core Reset Register

Description

Provides a software controllable reset to the I2C core. This register is not actually part of the I2C Core logic. It
is implemented in the CSI widget of the PMI and is used to drive the synchronous software-based reset to the I2C
core. A write of any value to this register will assert the synchronous reset to the I2C Core for one CCLK cycle.

Register

R I2cReset

Address

0xE A800 0028

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 reset WS 0 I2C Core Reset
A write of any value will reset the I2C core.

14.5 Reset

The I2C Core can be reset under both hardware and software control. The hardware reset is provided at power-
on and under Module Service Processor control via the I2C Reset Control Bit in the Reset Control Register portion
of the SysChain implemented in the LBS. The hardware reset asserts asynchronously and releases synchronous to
CCLK. The ARST LVL core parameter described in the OpenCore spec is left unchanged so that the core supports
an active low asynchronous hardware reset. The software reset is provided by the R I2cReset register. Writing any
value to this register will reset the I2C Core synchronous to CCLK by asserting reset for one CCLK cycle.

May 14, 2014 823 Rev 51328

SiCortex Confidential CHAPTER 14. I2C INTERFACE

14.6 Initialization

For the ICE9 implementation the I2C Core exits reset synchronous to CCLK. During reset the following actions
occur:

• The Prescale Register is set to 0xFFFF the slowest I2C clock speed available.

• The EN bit in the Control Register is cleared, disabling the core.

• The Transmit and Receive Data Registers are both cleared.

• All bits in the Command Register are cleared.

• The I2C Master Controller is placed into the idle state.

• The I2C bus drivers are disabled, allowing the SCL and SDA wires to rise to a logic level of ’1’.

After reset, software should perform the following operations in the order listed to prepare the core for normal
operation:

1. Set the Prescale Registers to the correct value for a 100kHz I2C SCL frequency. You may write the halves in
any order, but it is probably easiest to write the MSB first and the LSB last.

2. Set the EN bit in the Control Register.

14.7 Transfer Sequences

14.7.1 Example 1: Byte Writes

Write to a slave memory device at I2C address 0x51, 1 byte of data (0xAC) to location 128 (0x80). To write
multiple bytes; simply repeat commands 9 to 12 below, but DO NOT set the STO bit in the Command Register
until sending the last byte. Note: Typically a slave memory device will wrap back to its first location when writing
past the last location of the device. Extra caution should be observed when writing to a DIMM SPD

Serial-EEPROM because of this behavoir. Also, SPD devices typically support multi-byte writes

only up to ablock size of 16 bytes. They may wrap around to the start address after 16 bytes.3

I2C-Sequence:

1. Generate a START command.

2. Send the slave device address + the write bit.

3. Wait for an acknowledge from the slave.

4. Write the address to be written.

5. Wait for an acknowledge from the slave.

6. Write the data to be written.

7. Wait for an acknowledge from the slave.

8. Generate a STOP command.

Commands:

1. Write 0xA2 (address 0x51 left shifted 1 bit to accomodate r/w bit + write bit of ’0’) to the Transmit Data
Register.

2. Set the STA and WR bits in the Command Register.

3Some Serial-EEPROM devices offer an I2C programmable write-protect feature. This feature prevents the writing of any data
into the device without first writing a special data pattern to a specific location to unlock the device. Writing a different special data
pattern or a different specific location will re-lock the device when finished.

May 14, 2014 824 Rev 51328

SiCortex Confidential 14.7. TRANSFER SEQUENCES

3. Poll TIP flag in the Status Register until it is negated.

4. Read RxACK bit from the Status Register, should be ’0’.

5. Write 0x80 (address to be written, location 128 decimal) to the Transmit Data Register.

6. Set WR bit in the Command Register.

7. Poll TIP flag in the Status Register until it is negated.

8. Read RxACK bit from Status Register, should be ’0’.

9. Write 0xAC (the data to be written) to the Transmit Data Register.

10. Set STO and WR bits in the Command Register.

11. Poll TIP flag in the Status Register until it is negated.

12. Read RxACK bit from the Status Register, should be ’0’.

14.7.2 Example 2: Byte Reads

Read from a slave memory device at I2C address 0x51, one byte of data at location 128 (0x80). To read multiple
bytes, simply repeat commands 13 to 15 below for each byte to be read, but DO NOT set the ACK and STO bits
in the Command Register until reading the last byte. Note: Typically a slave memory device will wrap back to its
first location when reading past the last location of the device.

I2C-Sequence:

1. Generate a START command.

2. Write the slave address + write bit.

3. Receive acknowledge from the slave.

4. Write the memory address to the slave.

5. Receive acknowledge from the slave.

6. Generate a repeated START command.

7. Write the slave address + read bit.

8. Receive acknowledge from the slave.

9. Read a byte from the slave.

10. Write no acknowledge (NACK) to slave, indicating end of transfer.

11. Generate stop signal.

Commands:

1. Write 0xA2 (address 0x51 left shifted 1 bit to accomodate r/w bit + write bit of ’0’) to the Transmit Data
Register.

2. Set the STA and WR bits in the Command Register.

3. Poll TIP flag in the Status Register until it is negated.

4. Read RxACK bit from the Status Register, should be ’0’.

5. Write 0x80 (the memory location to be read) to the Transmit Data Register.

6. Set the WR bit in the Command Register.

7. Poll TIP flag in the Status Register until it is negated.

May 14, 2014 825 Rev 51328

SiCortex Confidential CHAPTER 14. I2C INTERFACE

8. Read RxACK bit from the Status Register, should be ’0’.

9. Write 0xA3 (address 0x51 left shifted 1 bit to accomodate r/w bit + read bit of ’1’) to the Transmit Data
Register.

10. Set the STA and WR bits in the Command Register.

11. Poll TIP flag in the Status Register until it is negated.

12. Read RxACK bit from the Status Register, should be ’0’.

13. Set the RD bit, the ACK bit to ’1’ (NACK), and the STO bit in the Command Register.

14. Poll TIP flag in the Status Register until it is negated.

15. Read the byte in the Receive Data Register that was transferred over I2C from the slave memory.

14.7.3 Example 3: Unacknowledged Transfer

In this example, no slave acknowledges the address and the master must free the I2C bus with a stop. Assume
that the intended slave at I2C address 0x10 fails to acknowledge its address. In this case it is necessary to generate
a stop independent of a read or write transaction. To determine when the issued stop operation has completed,
it is necessary to poll the BUSY bit in the Status Register in place of the TIP bit. The TIP bit does not change
when only a STOP has been issued from the Command Register.

I2C-Sequence:

1. Generate a START command.

2. Send a write to an unused slave address.

3. Receive a no-acknowledge.

4. Abort the operation by generating a stop signal.

Commands:

1. Write 0x20 (address 0x10 left shifted 1 bit to accomodate r/w bit + write bit of ’0’) to the Transmit Register.

2. Set the STA and WR bits in the Command Register.

3. Poll TIP flag in the Status Register until it is negated.

4. Read RxACK bit from the Status Register, should be ’0’ but we obtain a ’1’ (no ack).

5. Set the STO bit in the Command Register to force a stop.

6. Poll the BUSY flag in the Status Register until it is set to ’0’.

It should be noted that unacknowledged transfers can also occur on data transfers between master and slave, not
just on an address as in this example. In either case, the master must abort the operation and free the I2C bus by
issuing a stop. In general, when commanding only a stop condition, the BUSY bit should be polled in place of the
TIP bit to determine when the master has completed the operation.

14.8 External Connections

The I2C interface uses a bi-directional serial data line (SDA) and a bi-directional serial clock line (SCL) for
data transfers. All devices connected to these two signals must have open drain or open collector outputs. Both
lines must be pulled-up to Vdd or Vcc by external resistors.

In the ICE9 implementation, the I2C core assumes open drain tri-state buffers for SDA and SCL will be added
at a higher hierarchial level. Internally it uses two uni-directional signals and an output enable for each of SDA
and SCL. Connections between the core and pins should be made according to the following figure:

May 14, 2014 826 Rev 51328

SiCortex Confidential 14.8. EXTERNAL CONNECTIONS

Figure 14.1: External Connections

sda_pad_i

sda_pad_o

sda_pad_oe_o

scl_pad_i

scl_pad_o

scl_pad_oe_o

SCL

SDA

May 14, 2014 827 Rev 51328

SiCortex Confidential CHAPTER 14. I2C INTERFACE

May 14, 2014 828 Rev 51328

Chapter 15

UART

[Last Modified $Id: chipuart.lyx 50693 2008-02-07 16:01:46Z wsnyder $]

15.1 Overview

The chip implements a standard UART to support kernel debugging from a serial console line. This chapter
provides a brief description of the UART, the registers provided to program the device and the actions necessary
to initialize and operate the device.

15.2 Differences, Bugs, and Enhancements

15.2.1 Product and Chip Pass Differences

1. FIX NEED IMPL: TWC9A removes the UART flow control signals. They were never used on the ICE9
modules.

15.3 Description

The ICE9 implementation uses the Open Cores (www.opencores.org) 16550 UART core. This core supports
the EIA RS232 serial line protocol and is Wishbone Bus compliant. For this application it has been modified to
operate strictly in 8-bit mode and does not support the special debug features that were in the original core.1 It
is nearly identical in operation to the industry standard National Semiconductor 16550A with the main exceptions
being that only the FIFO mode is supported and the scratch register is not implemented. For a full description,
see the Open Cores specification on the WIKI at:

http://apollo.sicortex.com/swiki/UartInterface

The UART core will be contained in the BBS unit with the other programmed I/O devices. The UART may
interrupt any of the six processors on the ICE9 node. The UART TX/RX data signals and RTS/CTS hardware
flow controls are brought out to pins on the chip that may be wired to a header on the board after level conversion
as well as to an external multiplexer on the Module Service Processor. This allows for both local and remote serial
console access to the chip.

15.4 Package Attributes

Package

chip uart spec

1Or were intended to be in the original core. The most recent version from Open Cores that was available to us when we started
had several bugs in this area. We finessed the problem by not implementing these unneeded features.

829

SiCortex Confidential CHAPTER 15. UART

15.5 Registers and Definitions

All registers in the UART are 8 bits wide and are fully described in the UART spec on the WIKI (see above).
All registers described here are implemented as per the specification on the WIKI. The addressing, however, is
somewhat different. Each address is relative to the UART base address. Register 0 starts at UART BASE + 0,
register 1 starts at UART BASE + 8, and so on. That is, the registers appear in the address space to be 8 bytes
apart even though only one byte is being transferred. For transfers within the UART address space, the byte
transferred is always the least significant byte of a little-endian 64-bit word. The UART BASE is simply the first
address used. Table 15.1 lists all of the registers implemented in the UART.

Table 15.1: UART Register List

Name Offset Width Access Description

Receiver Buffer 0 8 R Receiver FIFO output.
Transmitter Holding Register (THR) 0 8 W Transmit FIFO input.
Interrupt Enable 1 8 RW Enable/Mask Interrupts generated by the

UART
Interrupt Identification 2 8 R Get interrupt information
FIFO Control 2 8 W Control FIFO options
Line Control Register 3 8 RW Control connection.
Modem Control 4 8 W Modem control signals (unused)
Line Status 5 8 R Status Information
Modem Status 6 8 R Modem status (unused)
Divisor Latch Byte 1 (LSB) 0 8 RW The LSB of the divisor latch.
Divisor Latch Byte 2 (MSB) 1 8 RW The MSB of the divisor latch.

15.5.1 Baud Rate Generation using the Clock Divisor Latch

The Divisor Latch can be accessed by setting the 7thbit of LCR to ’1’. This bit should be set back to ’0’ after
setting the Divisor Latch in order to restore access to the other registers that occupy the same addresses. The two
bytes of the Divisor Latch form one 16-bit register, which is internally accessed as a single number. Therefore to
insure normal operation, both bytes of the register should always be set. The Divisor Latch is set to the default
value of 0 on reset, which disables all serial I/O operations in order to ensure explicit setup of the register by
software. The value in the Divisor Latch is used to determine the baud rate of the serial I/O lines as a function
of the input clock. The value set should be equal to (system clock speed) / (16 x desired baud rate). The internal
counter starts to work when the LSB of the Divisor Latch is written, so when setting the Divisor Latch, write the
MSB first and the LSB last.

In this implementation the input clock is the Level 2 Cache Clock (CCLK). The formula for computing the
contents of the Divisor Latch (DIVL) based on the baud rate is:

divl =
cclk

(16× baudrate)

Given a CCLK of 250MHz and a baud rate of 9600, the DIVL must be:

divl =
250,000,000

16× 9600
= 1,627.604→ 1,628 = 65Chex

Table 15.3 provides various DIVL settings for standard RS232 baud rates using CCLK values of 200, 225, 250
and 275 MHz. Note: The hexadecimal values shown reflect the DIVL values rounded to the nearest integer value.

May 14, 2014 830 Rev 51328

SiCortex Confidential 15.5. REGISTERS AND DEFINITIONS

Table 15.3: Divisor Latch Values for Common Baud Rates

Baud Rate DIVL @
200MHz
CCLK

DIVL @
225MHz
CCLK

DIVL @
250MHz
CCLK

DIVL @
275MHz
CCLK

300 41,666.67 A2C3hex 46875 B71Bhex 52,083.33 CB73hex 57291.67 DFCChex

600 20,833.33 5161hex 23437.5 5B8Ehex 26,041.67 65BAhex 28645.83 6FE5hex

1200 10,416.67 28B1hex 11718.5 2DC7hex 13,020.83 32DDhex 14322.92 37F3hex

2400 5,208.33 1458hex 5859.38 16E3hex 6,510.42 196Ehex 7161.46 1BFAhex

4800 2,604.17 A2Chex 2929.69 B72hex 3,255.21 CB7hex 3580.73 DFDhex

9600 1,302.08 516hex 1464.84 5B9hex 1,627.6 65Chex 1790.36 6FEhex

19200 651.04 28Bhex 732.42 2DChex 813.8 32Ehex 895.18 37Fhex

28800 434.03 1B2hex 488.28 1E8hex 542.53 21Fhex 596.79 255hex

38400 325.52 146hex 366.21 16Ehex 406.9 197hex 447.59 1C0hex

57600 217.01 D9hex 244.14 F4hex 271.27 10Fhex 298.39 12Ahex

115200 108.51 6Dhex 122.07 7Ahex 135.63 88hex 149.2 95hex

Since the protocol is asynchronous and the sampling of the bits is conducted during the middle of the bit time, it
is highly immune to small differences in the clocks of the sending and receiving sides. However, no such assumption
should be made when calculating the Divisor Latch values; these should be as precise as possible.

A word about the round-off errors for DIVL in the baud rate table above. The checked references indicate that
it is sufficient to maintain a baud rate clock to an accuracy of 3% (or better) of the bit time.2 To account for
possible bit rate errors at both ends of the connection a 1% tolerance figure is used. For the worst case scenario
of 115,200 bps the ideal bit time is 8.681uS. 1% of the ideal bit time is ±86.8nS; therefore any error must fall
within this constraint. With a rounded DIVL setting of 109, the baud rate for a worst case CCLK of 200MHz is
114,678.899 with a bit time of 8.720uS. The error is 8.720− 8.681 = .039uS = 39nS which is well within the 1%
constraint.

In general; the faster the source clock, the less the susceptibility to bit rate errors due to divisor latch rounding.
Even though higher baud rates have less tolerance for bit rate errors, in this implementation even the fastest RS232
baud rate is orders of magnitude slower than the source clock.

15.5.2 RX/TX Data and Divisor Latch LSB

Description

When read this register contains the output from the UART Receive FIFO. When written this register loads
the input to the UART Transmit FIFO. When the 7thbit of the Line Control Register is set to ’1’ this register
contains the least significant byte of the 16-bit clock divisor latch.

Register

R UartData

Attributes

-noregtestcpu reset -kernel

Address

0xE B800 0000

2Determining Clock Accuracy Requirements for UART Communication DALLAS/Maxim Application Note AN2141, see
the file at /net/sicortex/system/papers/UartClockAccuracy.pdf, the TIA/EIA-232-F Standard (http://global.ihs.com), and
http://www.seetron.com/ser an1.htm, etc.

May 14, 2014 831 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Definitions

May 14, 2014 832 Rev 51328

SiCortex Confidential 15.5. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
7:0 rxBuf RS X Receiver Buffer. Output from the UART Receiver FIFO.

Overlaps allowed.
7:0 txReg WS 0 Transmitter Holding Register. Input to the UART Trans-

mit FIFO.
Overlaps allowed.

7:0 divl1 RWS 0 Divisor Latch LSB. When LCR<7>=’1’ this field con-
tains the least significant byte of the 16-bit divisor latch.
Overlaps allowed.

15.5.3 Interrupt Enable Register (IER) and Divisor Latch MSB

Description

The IER enables the various interrupts provided by the UART. When the 7thbit of the Line Control Register
is set to ’1’ this register contains the most significant byte of the 16-bit clock divisor latch.

Register

R UartIntrEnb

Attributes

-kernel

Address

0xE B800 0008

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
7:4 Reserved.

Overlaps allowed.
3 ms RW 0 Enable Modem Status Interrupt.

Overlaps allowed.
2 rls RW 0 Enable Receiver Line Status Interrupt.

Overlaps allowed.
1 thre RW 0 Enable Transmitter Holding Register Empty Interrupt.

Overlaps allowed.
0 rda RW 0 Enable Received Data Available Interrupt.

Overlaps allowed.
7:0 divl2 RWS 0 Divisor Latch MSB. When LCR<7>=’1’ this field con-

tains the most significant byte of the 16-bit divisor latch.
Overlaps allowed.

15.5.4 Interrupt Identification Register (IIR) and FIFO Control Register (FCR)

Description

The IIR enables the programmer to retrieve the current highest priority pending interrupt. Bit 0 indicates that
an interrupt is pending when it’s logic ’0’. When it’s ’1’ no interrupt is pending. The FCR allows selection of the
FIFO trigger level (the number of bytes in the FIFO required to enable the Received Data Available interrupt).
In addition, the FIFOs can be cleared using this register. In this implementation the maximum FIFO depth is 16
bytes for both transmit and receive FIFOs.

May 14, 2014 833 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Table 15.8 lists the interrupts indicated by the intrId field along with their relative priority, source and reset
control.

Register

R UartIntrIdFifoCtrl

Attributes

-kernel -writeonemixed

Address

0xE B800 0010

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
Overlaps Allowed.

7:6 R 0x3 Reserved.
Overlaps Allowed.

5:4 R 0x0 Reserved.
Overlaps Allowed.

3:1 intrId R 0x0 Interrupt Id. (See Table 15.8 below)
Overlaps Allowed.

0 intrPend R 1 Interrupt Pending (active low)
’0’ - Interrupt pending.
’1’ - Interrupt not pending.
Overlaps Allowed.

7:6 rxFifoTrigLvl W 0x3 Receive FIFO Trigger Level. Define the Receive FIFO
Interrupt trigger level.
’0x0’ - 1 byte
’0x1’ - 4 bytes
’0x2 - 8 bytes
’0x3’ - 14 bytes
Overlaps Allowed.

5:3 W 0x0 Reserved.
Overlaps Allowed.

2 txReset W1C 0 Transmit FIFO Reset. Writing a ’1’ to this bit clears the
Transmitter FIFO and resets its logic. The shift register
is not cleared, i.e. transmitting of the current character
continues.
Overlaps Allowed.

1 rxReset W1C 0 Receive FIFO Reset. Writing a ’1’ to this bit clears the
Receiver FIFO and resets its logic. It does not clear the
shift register, i.e. receiving of the current character con-
tinues.
Overlaps Allowed.

0 W 0 Reserved.
Overlaps Allowed.

May 14, 2014 834 Rev 51328

SiCortex Confidential 15.5. REGISTERS AND DEFINITIONS

Table 15.8: Interrupt ID Field Definitions

Bit 3 Bit 2 Bit 1 Priority Interrupt Type Interrupt Source Interrupt Reset Con-
trol

0 1 1 1
Receiver Line
Status

Parity, Overrun or Framing er-
rors or Break Interrupt.

Reading the Line Sta-
tus Register.

0 1 0 2
Receiver Data
Available

FIFO trigger level reached. FIFO drops below trig-
ger level.

1 1 0 3
Timeout Indica-
tion

There’s at least 1 character in
the FIFO but no character has
been input to the FIFO or read
from it for the last 4 character
times. Should not occur under
normal operation.

Reading from the
FIFO Receiver Data
Register.

0 0 1 4
Transmitter
Holding Register
Empty

Transmitter Data Register is
empty.

Writing to the Trans-
mitter Data Register
or reading the IIR.

0 0 0 5 Modem Status
CTS, DSR, RI or DCD.
Only CTS should trigger this in-
terrupt under normal operation.

Reading the Modem
Status Register.

15.5.5 Line Control Register (LCR)

Description

The LCR allows the specification of the format of the asynchronous data communication used. A bit in the
register also allows access to the Divisor Latches, which define the baud rate. Reading from the register is allowed
to check the current settings of the communication.

Register

R UartLineCtrl

Attributes

-kernel

Address

0xE B800 0018

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
7 divl RWS 0 Divisor Latch Access Bit.

’0’ - The normal registers are accessed.
’1’ - The divisor latches can be accessed.

6 breakCtrl RW 0 Break Control Bit.
’0’ - The break state is disabled.
’1’ - The serial out is forced into logic ’0’ (break state).
Always leave at the reset value.

May 14, 2014 835 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Bit Mnemonic Access Reset Type Definition
5 stickParity RW 0 Stick Parity Control Bit.

’0’ - Stick Parity disabled.
’1’ - If bits 3 and 4 are logic ’1’, the parity bit is trans-
mitted and checked as logic ’0’. If bit 3 is ’1’ and bit 4 is
’0’ then the parity bit is transmitted and checked as ’1’.
Always leave at the reset value.

4 evenParity RW 0 Even Parity Select.
’0’ - Odd number of ’1’s are transmitted and checked in
each word (data and parity combined). In other words, if
the data has an even number of ’1’s in it, then the parity
bit is ’1’.
’1’ - Even number of ’1’s are transmitted in each word.
Always leave at the reset value.

3 parityEnb RW 0 Parity Enable.
’0’ - No parity.
’1’ - Parity bit is generated on each outgoing character
and is checked on each incoming one.
Always leave at the reset value.

2 stopBits RW 0 Stop bits. Specify the number of generated stop bits.
’0’ - 1 stop bit.
’1’ - 1.5 stop bits when 5-bit character length selected and
2 bits otherwise.
Note: The receiver always checks the first stop bit only.
Always leave at the reset value.

1:0 bitsPerChar RW 0x3 Bits per character. Select number of bits in each charac-
ter.
’0x0’ - 5 bits
’0x1’ - 6 bits
’0x2’ - 7 bits
’0x3’ - 8 bits
Always leave at the reset value.

15.5.6 Modem Control Register (MCR)

Description

The MCR allows transferring control signals to a modem connected to the UART.

Register

R UartModemCtrl

Attributes

-kernel

Address

0xE B800 0020

Definitions

Bit Mnemonic Access Reset Type Definition

31:5 Reserved.

May 14, 2014 836 Rev 51328

SiCortex Confidential 15.5. REGISTERS AND DEFINITIONS

Bit Mnemonic Access Reset Type Definition
4 loopback W 0 Loopback Mode.

’0’ - Normal operation.
’1’ - Loopback mode.
When in loopback mode, the Serial Output Signal
(STX PAD O) is set to logic ’1’. The signal of the trans-
mitter shift register is internally connected to the input
of the receiver shift register.
The following connections are made:
DTR -> DSR
RTS -> CTS
Out1 -> RI
Out2 -> DCD
Always leave at the reset value.

3 out2 W 0 Out2. In loopback mode, connected to Data Carrier De-
tect (DCD) input.
Always leave at the reset value.

2 out1 W 0 Out1. In loopback mode, connected to Ring Indicator
(RI) signal input.
Always leave at the reset value.

1 rts WS 0 Request To Send. (RTS) Signal Control.
’0’ - RTS is ’1’
’1’ - RTS is ’0’

0 dtr W 0 Data Terminal Ready. (DTR) Signal Control.
’0’ - DTR is ’1’
’1’ - DTR is ’0’
Unused in this implementation.

15.5.7 Line Status Register (LSR)

Description

The LSR provides the operational line status for the UART. The line status consists of transmitter line and
FIFO status and receiver FIFO error, break and ready indicators.

Register

R UartLineStatus

Attributes

-kernel

Address

0xE B800 0028

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
7 ei R 0 Receive FIFO Error.

’1’ - At least one parity error, framing error, overrun error
or break indications have been received and are inside the
FIFO. The bit is cleared upon reading from the register.
’0’ - Otherwise.

May 14, 2014 837 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Bit Mnemonic Access Reset Type Definition
6 te R 1 Transmitter Empty.

’1’ - Both the transmitter FIFO and transmitter shift reg-
ister are empty. The bit is cleared when data is being
written to the transmitter FIFO.
’0’ - Otherwise.

5 tfe R 1 Transmit FIFO Empty.
’1’ - The transmitter FIFO is empty. Generates Transmit-
ter Holding Register Empty interrupt. The bit is cleared
when data is being written to the transmitter FIFO.
’0’ - Otherwise.

4 bi R 0 Break Interrupt (BI) Indicator.
’1’ - A break condition has been reached in the current
character. The break occurs when the line is held in logic
0 for a time of one character (start bit + data + parity
+ stop bit). In that case, one zero character enters the
FIFO and the UART waits for a valid start bit to receive
next character. The bit is cleared upon reading from the
register. Generates Receiver Line Status interrupt.
’0’ - No break condition in the current character.

3 fe R 0 Framing Error (FE) Indicator.
’1’ - The received character at the top of the FIFO did
not have a valid stop bit. Of course, generally, it might
be that all the following data is corrupt. The bit is cleared
upon reading from the register. Generates Receiver Line
Status interrupt.
’0’ - No framing error in the current character.

2 pe R 0 Parity Error (PE) Indicator.
’1’ - The character that is currently at the top of the FIFO
has been received with parity error. The bit is cleared
upon reading from the register. Generates Receiver Line
Status interrupt.
’0’ - No parity error in the current character.

1 oe R 0 Overrun Error (OE) Indicator.
’1’ - If the Receive FIFO is full and another character
has been received in the receiver shift register. If another
character is starting to arrive, it will overwrite the data
in the shift register but the FIFO will remain intact. The
bit is cleared upon reading from the register. Generates
Receiver Line Status interrupt.
’0’ - No overrun state.

0 dr R 0 Data Ready (DR) Indicator.
’1’ - At least one character has been received and is in the
Receive FIFO.
’0’ - No characters in the Receive FIFO.

15.5.8 Modem Status Register (MSR)

Description

The MSR displays the current state of the modem control lines.

Register

R UartModemStatus

May 14, 2014 838 Rev 51328

SiCortex Confidential 15.5. REGISTERS AND DEFINITIONS

Attributes

-kernel

Address

0xE B800 0030

Definitions

Bit Mnemonic Access Reset Type Definition

31:8 Reserved.
7 cdcd R 1 DCD Complement Input. Always ’1’.

Or equal to Out2 in loopback mode.
6 cri R 1 RI Complement Input. Always ’1’.

Or equal to Out1 in loopback mode.
5 cdsr R 1 DSR Complement Input. Always ’1’.

Or equals DTR in loopback mode.
4 ccts R 0 CSR Complement Input.

Or equals RTS in loopback mode.
3 ddcd R 0 Delta Data Carrier Detect. Always ’0’.

’1’ - The DCD line has changed its state.
’0’ - Otherwise.

2 teri R 0 Trailing Edge of Ring Indicator. Always ’0’.
’1’ - The ring indicator has changed state from low to
high.
’0’ - Otherwise.

1 ddsr R 0 Delta Data Set Ready. Always ’0’.
’1’ - If the DSR line has changed its state.
’0’ - Otherwise.

0 dcts R 0 Delta Clear To Send.
’1’ - The CTS line has changed its state.
’0’ - Otherwise.

15.5.9 UART Enable Register

Description

The UART Enable Register allows software to observe the UART I/O Enable condition. This register is not
part of the UART core but is a read-only I/O space register implemented in the Wishbone Interface (WBI) widget
of the PMI. It is documented here because of its close affinity with UART operation.

Register

R UartEnable

Attributes

-kernel

Address

0xE B800 0040

Definitions

Bit Mnemonic Access Reset Type Definition

May 14, 2014 839 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Bit Mnemonic Access Reset Type Definition
31:1 Reserved
0 ioenb R 0 UART IO Enabled

’0’ - If the UART I/O is not enabled at the chip pins.
’1’ - If the UART I/O is enabled at the chip pins.
Settable only via the SysChain from the Module Service
Processor.

15.5.10 UART Reset Register

Description

The UART Reset Register allows software to reset the UART core. This register is not part of the UART core
but is a write-only I/O space register implemented in the Wishbone Interface (WBI) widget of the PMI. A write
of any value to this register will perform a reset of the UART. It is documented here because of its close affinity
with UART operation.

Register

R UartReset

Address

0xE B800 0048

Definitions

Bit Mnemonic Access Reset Type Definition

31:0 reset WS 0 UART Reset.
A write of any value resets the UART.

15.6 Reset

The UART Core can be reset under both hardware and software control. The hardware reset is provided at
power-on and under Module Service Processor control via the UART Reset Bit in the SysChain’s Reset Control
Register. The software reset is provided by the R UartReset register. Writing any value to this register will reset
the UART. Upon either reset, all UART registers revert to their reset default values and it is up to software to
write them with useful values afterwards.

15.7 Initialization

In the ICE9 implementation, the UART core exits reset synchronous to CCLK. During reset the core performs
the following tasks:

• The receiver and transmitter FIFOs are cleared.

• The receiver and transmitter shift registers are cleared.

• The Divisor Latch register is set to 0.

• The Line Control Register is set to 0.

• All interrupts are disabled in the Interrupt Enable Register.

After reset, perform the following initializations in the order listed for normal UART operation:

1. Set the Line Control Register to the desired line control parameters. Set bit 7 to ’1’ to allow access to the
Divisor Latches.

May 14, 2014 840 Rev 51328

SiCortex Confidential 15.8. INTERRUPTS

2. Set the Divisor Latches, MSB first, LSB last.

3. Set bit 7 of LCR to ’0’ to disable access to the Divisor Latches. At this time the transmission engine starts
working and data can be sent and received.

4. Set the FIFO trigger level. Generally, higher trigger level values produce fewer interrupts, so setting it to 14
bytes is recommended if the system responds fast enough.

5. Enable desired interrupts by setting the appropriate bits in the Interrupt Enable Register.

15.8 Interrupts

The UART core can send an interrupt to the processors via the ICE9 interrupt logic. See the Processor Segments
chapter in this specification for a complete description of how the processors handle this interrupt.

To generate a UART interrupt on reception of data; first set the encoding for the Receive FIFO Trigger Level
(rxFifoTrigLvl) in the FIFO Control Register (R UartIntrIdFifoCtrl) to the number of bytes (1, 4, 8, or 14) to be
buffered in the receive FIFO before an interrupt is sent; then set the Enable Receiver Data Available Interrupt (rdi)
bit in the Interrupt Enable Register (R UartIntrEnb). To generate a UART interrupt when sending data, set the
Enable Transmitter Holding Register Empty Interrupt (thre) bit. To enable interrupts whenever TxCTS L changes,
set the Enable Modem Status Interrupt (ms) bit.

When handling a UART interrupt, the interrupt handler should examine the Interrupt Id (intrId) bits in the
Interrupt Identification Register (R UartIntrIdFifoCtrl) to determine the cause of the interrupt. See Table 15.8 for
a complete description of the Interrupt Id bits.

15.9 External Connections

15.9.1 Module Service Processor Enabled I/O

In the ICE9 implementation, the UART TX and RX data lines and hardware flow control signals are brought to
pins off-chip. All off-chip UART signals are enabled by the Module Service Processor (MSP) via a bit in a shadow
latch on the SysChain in the LBS unit. Figure 15.1 below is a schematic that shows how the UART I/O pad on
the chip is configured.

If the UART is left disabled then the UART RX line and TxCTS L output flow control is driven internally by
the chip to a logic ’1’, causing the UART core to only see STOP bits with output flow control off, ignoring anything
that the MSP may be writing to the line. In addition, the UART TX line and RxRTS L input flow control are also
disabled, allowing another ICE9 chip to drive the line. This is accomplished by using an open-drain driver with a
hardwired input of logic ’0’ and an external pull-up on the Tx and RxRTS L output pins. Whenever the SysChain
UART Enable is asserted, the UART core’s outputs control the enables, allowing the driver to toggle between logic
levels. Otherwise the driver is left disabled and external weak pull-up resistors (Rext) is used to hold the lines at
the logic ’1’ state, effectively driving STOP bits to the MSP with input flow control off unless another ICE9 chip
is driving the wire.

This greatly simplifies the UART interconnect between the ICE9 chips and allows the MSP to control which
ICE9 UART port is active.

May 14, 2014 841 Rev 51328

SiCortex Confidential CHAPTER 15. UART

Figure 15.1: UART External Connections

(a) UART I/O Interface

Chip Boundary

SysChain UART Enable

UART Tx Out Pin

UART RxRTS_L Out Pin

UART TxCTS_L In Pin

UART Rx In Pin

uart_pad_rxrtso_l

pad_uart_txctsi_l

pad_uart_rxdi

uart_pad_txdo

uart_pad_rxrts_l = ’0’

uart_pad_txd = ’0’

uart_pad_rxrtsOe

uart_pad_txdOe

Rext

Rext

pad_uart_rxd

pad_uart_txcts_l

15.9.2 RS232 Line Voltage Conversion

Because the ICE9 supports I/O voltages of only 0 and +2.5 Volts on the UART pins, an external RS-232 line
converter chip should be used to match voltage and logic levels to the RS-232 standard if that is desired.

May 14, 2014 842 Rev 51328

Chapter 16

Addressing

[Last modified: $Id: chipaddr.lyx 43441 2007-08-17 17:38:27Z wsnyder $]

16.1 Overview

This chapter discusses the global address map. The ICE-9 physical address is 36 bits, split into half cached and
half uncached IO space. This allows a maximum of 32GB of main memory.

16.2 Differences, Bugs, and Enhancements

16.2.1 Product and Chip Pass Differences

1. TWC9A adds some values to the AddrBusStop enumeration to support the additional cores, bug3377 .

16.3 Physical Address Regions

The 36-bit CPU physical address is split into the following major regions.

Start Address End Address Size Access Description

0x0 0000 0000 0x7 FFFF FFFF 32GB Any Main memory - Cachable. There are some
magic regions in this space, including use of
the last 4GB for boot; see the Definitions.

0x8 0000 0000 0xB FFFF FFFF 15GB Any PCI-Express memory-mapped IO. The PCI
address is {28’b0, 1’b0, cpu addr[33:0]}. Note
32 bit PCI devices are visible in only the first
4GB of this region; only 64 bit devices are vis-
ible in the final 12GB.

0xC 0000 0000 0xC EFFF FFFF ˜4GB Any PCI-Express port-mapped IO. PCI port I/O
address = cpu addr[31:0].

0xC F000 0000 0xC FFFF FFFF 256MB 32-bit PCI-Express configuration space IO. PCI con-
fig address = {cpu addr[27:16], 4’b0, [11:0]}.

0xD 0000 0000 0xD FFFF FFFF 4GB None Reserved.

0xE 0000 0000 0xE 7FFF FFFF 2GB 32-bit Internal SCB bus registers. This space is fur-
ther divided into 128 subsections based on the
encoding described in AddrSubId. See 16.6.6.

0xE 8000 0000 0xE FFFF FFFF 2GB 64-bit Internal Non-SCB registers. This space is fur-
ther divided into 128 subsections based on the
encoding described in AddrSubId.

0xF 0000 0000 0xF FFFF FFFF 4GB None Reserved

843

SiCortex Confidential CHAPTER 16. ADDRESSING

Figure 16.1: Physical CPU to/from PCI addresses

16.4 PCI Address Regions

PCI has three distinct address spaces. PCI Config space and PCI port-mapped IO space are special spaces used
for CPU generated transactions, and have no special address decodings. The 64-bit PCI Memory Space is divided
into the following regions:

Start Address End Address Size Access Description

0x0 0000 0000 0x7 FFFF FFFF 32GB Any Maps back to cachable memory, or PCI
memory I/O registers, based on a sub-
tractive decode in the PMI. Note only
the low 4GB is visible to 32-bit PCI
devices, and thus this space may have
“holes” to insert the 32-bit devices.

0x8 0000 0000 0xF FFFF FFFF 32GB Any Maps back to cachable memory. The
PMI zeros PCI address bit 35 to gen-
erate the memory address. As this re-
gion maps all memory without I/O de-
vice holes, it should be the DMA region
used for all 64 bit PCI devices.

0x10 0000 0000 Rest Reserved

16.4.1 Software allocation of PCI address space

When allocating addresses for memory-mapped devices on the PCI bus, software needs to exercise caution in the
allocation of the addresses. While prefetchable memory must support 64 bit addressing, non-prefetchable may only
support 32 bit addressing, which limits devices to the low 4GB of the address space. This suggests the following
policy:

1. Allocate BARs starting with the largest request and working down. This avoids holes, as the PCI spec
suggests.

2. Allocate 64-bit capable memory BARs anywhere between PCI addresses 4GB and 16GB (Physical addresses
9 0000 0000 and D FFFF FFFF).

May 14, 2014 844 Rev 51328

SiCortex Confidential 16.5. GENERAL BEHAVIOR

3. Allocate 32-bit only capable memory BARs working down from FFFF FFFF to 0. Working from the top-down
increases the likelyhood that 32 bit DMA devices will be able to see all of memory.

4. 32-bit DMA devices, if there are any, may see main memory in a window between PCI addresses 0 and the
beginning of the first 32-bit BAR allocated in step 3. The rest of memory is inaccessable, and memory copies
will be required for DMA to memory outside this window. (High performance devices should be 64-bit, so
this shouldn’t matter for performance.)

5. 64-bit DMA devices access main memory with PCI addresses 8 0000 0000 to F FFFF FFFF, which map
down to physical addresses 0 to 7 FFFF FFFF. All of memory is visible in this window.

16.5 General Behavior

16.5.1 Access size

Software must use the appropriately sized transaction to access registers, using the wrong size results in unpre-
dictable behavior. See 16.3 on page 843 for which areas are 32-bit or 64-bit only.

16.5.2 Read side effects

Unless explicitly specified in a register definition with a “S” in the type field, reads do not have side effects.

16.5.3 Illegal Addresses

Access to addresses that are not implemented (either unspecified or mapping to non-existant memory) will cause
unspecified behavior. On writes, this may include a No-Op, aliasing to other addresses, or creation of machine
checks. On reads, this may include returning random data, aliasing to a register with read side effects, or creation
of machine checks. However, all illegal address accesses will complete, they shall not hang.

16.6 Registers and Definitions

16.6.1 Package Attributes

Package

chip addr spec

16.6.2 Definitions

Defines

ADDR
Constant Mnemonic Definition

32’d40 PABITS Physical Address Bits. Number of physical address bits implemented.
32’d39 IOBIT Memory/IO Bit. Address bit that selects memory versus non-

cachable IO space.
36’h0 1fc0 0000 BOOT Processor Boot Address. First processor fetch is from this address.
36’h7 2000 0000 BOOT1 PA Scratch space for boot1 phase.
64’ha000 0007 2000 0000 BOOT1 VA Scratch space for boot1 phase.
36’h7 2001 0000 BOOT2 PA Scratch space for boot2 phase.
64’ha000 0007 2001 0000 BOOT2 VA Scratch space for boot2 phase.
64’hffff ffff ff20 0000 EJTAG FASTDATA VA EJtag Fastdata register.
64’hffff ffff ff20 0200 EJTAG BOOT VA EJtag Boot address.

16.6.3 Manufacturer Enumeration

AddrTapMfgr specifies the JTAG manufacturer number in the R SysTapIDecode and R CpuTapIDCODE reg-
isters.

May 14, 2014 845 Rev 51328

SiCortex Confidential CHAPTER 16. ADDRESSING

Enum

AddrTapMfgr

Constant Mnemonic Definition

11’h2c2 SICORTEX EJTAG Manufacturer ID for SiCortex. (ID 66, bank 6.)

16.6.4 Product Enumeration

AddrProduct specifies the product name for the R ScbChipRev (see 10.14.6) and R CpuPRID registers. It is
also used for the JTAG part number in R SysTapIDecode and R CpuTapIDCODE register.

Enum

AddrProduct

Attributes

-kernel

Constant Mnemonic Product Definition

8’d19 ICE9 Ice9a for SCX-1000 series. Used in R CpuPRId,
R ScbChipRev and R SysTapIDecode registers.

8’d20 ICE9 CPU0 Ice9 EJTAG for CPU0. Used in R CpuTapIDECODE
EJTAG UDR only. This differs from ICE9 above so that
we may differentiate each EJTAG TAP from the SysChain
TAP.

8’d21 ICE9 CPU1 Ice9 EJTAG for CPU1.
8’d22 ICE9 CPU2 Ice9 EJTAG for CPU2.
8’d23 ICE9 CPU3 Ice9 EJTAG for CPU3.
8’d24 ICE9 CPU4 Ice9 EJTAG for CPU4.
8’d25 ICE9 CPU5 Ice9 EJTAG for CPU5.

8’d26 ICE9B Ice9b for SCX-1000 series. Used in R CpuPRId,
R ScbChipRev and R SysTapIDecode registers.

8’d27 ICE9B CPU Ice9b EJTAG part number for CPUs. Used in
R CpuTapIDECODE EJTAG UDR only. This differs
from ICE9 above so that we may differentiate each EJ-
TAG TAP from the SysChain TAP. In ICE9B, each pro-
cessor’s UDR is differentiated with the revision number,
rather then a different AddrProduct encoding.

8’d30 TWC9A twc9a+ Twice9A. Used in R CpuPRId, R ScbChipRev and
R SysTapIDecode registers.

8’d31 TWC9A CPU twc9a+ Twice9A EJTAG part number for CPUs.

16.6.5 Address Bus Stop Numbers

This enumeration contains the software bus stop number, used by the address assignments below, and interrupts.
Physical stop numbers may differ without affecting software, see 7.17.10.

Enum

AddrBusStop

Attributes

-kernel

May 14, 2014 846 Rev 51328

SiCortex Confidential 16.6. REGISTERS AND DEFINITIONS

Constant Mnemonic Product Definition

4’h0 COHO Coherence controller on odd side
4’h1 DMA DMA controller
4’h2 PS0 L2 segment for processor 0
4’h3 PS1 L2 segment for processor 1
4’h4 PS2 L2 segment for processor 2
4’h5 PS3 L2 segment for processor 3
4’h6 PS4 L2 segment for processor 4
4’h7 PS5 L2 segment for processor 5
4’h8 PCI Pci controller
4’h9 COHE Coherence controller on even side
4’hA PS6 TWC9A+ L2 segment for processor 6
4’hB PS7 TWC9A+ L2 segment for processor 7
4’hC PS8 TWC9A+ L2 segment for processor 8
4’hD PS9 TWC9A+ L2 segment for processor 9
4’hE Reserved. (Local loopback and aliasing.)
4’hF Reserved. (Broadcast to all nodes, legal from COHE or COHO only)

16.6.6 Sub-chip IDs

The IO region is split into 128 pieces, one for each major subcomponent on the ICE9. This same encoding
determines the upper address bits (30:24) of the control registers in each subchip, and if using the SCB, the SCB
identifier. Furthermore, address bits (27:24) or enum bits (3:0) must match the AddrBusStop of that component.
For example a AddrSubId of 7’h03 corresponds to SCB address 0xE03xx xxxx.

The Clk column below indicates what clock domain that SCB slave operates on, if it has a slave. Scb performance
counters only count cross-products correctly when comparing events in the same clock domain.

The Events column indicates the enumberation listing performance counter event definitions. See the appropriate
sub-chip spec for details.

Enum

AddrSubId
(This table is grouped by bus stop, thus is is sorted by the lower nibble, then upper nibble.)

Constant Mnemonic (Clk) (Events) Product Definition

7’h00 COHO cclk Odd Coherence Controller.
7’h10 WTIO n/a Magic address range used internally by CSW WTIO

transactions. See CAC IO WTIOADDR define.
7’h20 SIM n/a Magic address range for simulator control only.

7’h01 DMA cclk DmaScbEvent DMA Engine.
7’h41 OCTBPS6 cclk TWC9A+ OCLA Collector block for PS6
7’h51 OCTBPS7 cclk TWC9A+ OCLA Collector block for PS7
7’h61 OCTBPS8 cclk TWC9A+ OCLA Collector block for PS8
7’h71 OCTBPS9 cclk TWC9A+ OCLA Collector block for PS9

7’h02 CPU0 pclk CpuScbEvent Processor 0. Note all CPU encodings must be sequentially
encoded.

7’h12 CAC0 n/a L2 Cache 0. (Model directRead/directWrite access only;
use CACLOC for registers.)

7’h22 CPU6 pclk CpuScbEvent TWC9A+ Processor 6.
7’h32 CAC6 n/a TWC9A+ L2 Cache 6.

7’h03 CPU1 pclk CpuScbEvent Processor 1.
7’h13 CAC1 n/a L2 Cache 1.
7’h23 CPU7 pclk CpuScbEvent TWC9A+ Processor 7.
7’h33 CAC7 n/a TWC9A+ L2 Cache 7.

May 14, 2014 847 Rev 51328

SiCortex Confidential CHAPTER 16. ADDRESSING

Constant Mnemonic (Clk) (Events) Product Definition

7’h04 CPU2 pclk CpuScbEvent Processor 2.
7’h14 CAC2 n/a L2 Cache 2.
7’h24 CPU8 pclk CpuScbEvent TWC9A+ Processor 8.
7’h34 CAC8 n/a TWC9A+ L2 Cache 8.

7’h05 CPU3 pclk CpuScbEvent Processor 3.
7’h15 CAC3 n/a L2 Cache 3.
7’h25 CPU9 pclk CpuScbEvent TWC9A+ Processor 9.
7’h35 CAC9 n/a TWC9A+ L2 Cache 9.

7’h06 CPU4 pclk CpuScbEvent Processor 4.
7’h16 CAC4 n/a L2 Cache 4.

7’h07 CPU5 pclk CpuScbEvent Processor 5.
7’h17 CAC5 n/a L2 Cache 5.

7’h08 SCBM cclk ScbScbEvent Serial Control Bus Master. (SCBM’s own internal regis-
ters, not registers of other subchips on the SCB bus).

7’h18 PCIE cclk PmiScbEvent PCI-Express PMI internal registers. (Not devices ON the
PCI bus.)

7’h28 I2C n/a n/a I2C Bus Controller.
7’h38 UART n/a n/a UART.
7’h48 DDR0 dclk DdrxEvent SDRAM 0.
7’h58 DDR1 dclk DdrxEvent SDRAM 1.
7’h68 OCLA cclk n/a On-chip logic analyzer, common control block.

7’h09 COHE cclk Even Coherence Controller
7’h49 OTRBCPS6 cclk TWC9A+ OCLA Trigger block for PS6
7’h59 OTRBCPS7 cclk TWC9A+ OCLA Trigger block for PS7
7’h69 OTRBCPS8 cclk TWC9A+ OCLA Trigger block for PS8
7’h79 OTRBCPS9 cclk TWC9A+ OCLA Trigger block for PS9

7’h0A OCTBCOHE cclk OCLA Collector block for COHE
7’h1A OCTBCOHO cclk OCLA Collector block for COHO
7’h2A OTRBCCOHE cclk OCLA Trigger block for COHE
7’h3A OTRBCCOHO cclk OCLA Trigger block for COHO
7’h4A OCTBFSWI cclk OCLA Collector block for FSW Inputs
7’h5A OCTBFSWO cclk OCLA Collector block for FSW Outputs

7’h0B OCTBPS0 cclk OCLA Collector block for PS0
7’h1B OCTBPS1 cclk OCLA Collector block for PS1
7’h2B OCTBPS2 cclk OCLA Collector block for PS2
7’h3B OCTBPS3 cclk OCLA Collector block for PS3
7’h4B OCTBPS4 cclk OCLA Collector block for PS4
7’h5B OCTBPS5 cclk OCLA Collector block for PS5
7’h6B OCTBDMA cclk OCLA Collector block for DMA
7’h7B OCTBPMI cclk OCLA Collector block for PMI/BBS

7’h0C OTRBCPS0 cclk OCLA Trigger block for PS0
7’h1C OTRBCPS1 cclk OCLA Trigger block for PS1
7’h2C OTRBCPS2 cclk OCLA Trigger block for PS2
7’h3C OTRBCPS3 cclk OCLA Trigger block for PS3
7’h4C OTRBCPS4 cclk OCLA Trigger block for PS4
7’h5C OTRBCPS5 cclk OCLA Trigger block for PS5
7’h6C OTRBCDMA cclk OCLA Trigger block for DMA Codeword
7’h7C OTRBVDMA cclk OCLA Trigger block for DMA Vector

7’h0D FLR0 sclk FlrScbEvent Fabric Link 0 Receive. (via SCB)
7’h1D FLR1 sclk FlrScbEvent Fabric Link 1 Receive. (via SCB)
7’h2D FLR2 sclk FlrScbEvent Fabric Link 2 Receive. (via SCB)

May 14, 2014 848 Rev 51328

SiCortex Confidential 16.6. REGISTERS AND DEFINITIONS

Constant Mnemonic (Clk) (Events) Product Definition
7’h3D FLT0 sclk FltScbEvent Fabric Link 0 Transmit. (via SCB)
7’h4D FLT1 sclk FltScbEvent Fabric Link 1 Transmit. (via SCB)
7’h5D FLT2 sclk FltScbEvent Fabric Link 2 Transmit. (via SCB)
7’h6D QSC sclk n/a Fabric Link Quad Controller. (via SCB)
7’h7D FSW sclk FswScbEvent Fabric Switch (via SCB)

7’h1E CACLOC n/a n/a L2 Local Cache. Local access to control registers for Pro-
cessor X by Processor X.

7’h2E INTR n/a n/a Interrupt cycle. Local access by each processor.
7’h3E SPCL n/a n/a Special cycle. Local access by each processor.

7’h0F OTRBCPMI cclk OCLA Trigger block for PMI/CSW Bus Stop
7’h1F OTRBVFSWO cclk OCLA Trigger block for FSW Vector Output
7’h2F OTRBVFSWI cclk OCLA Trigger block for FSW Vector Input
7’h3F OTRBCFSW cclk OCLA Trigger block for FSW Codeword
7’h4F OTRBCPMII cclk OCLA Trigger block for PMI/BBS Internals

16.6.7 Main Memory Region

Register

R Mem[0x1 FFFF FFFF:0]

Address

0x0 0000 0000-0x7 FFFF FFFF

Attributes

-noregtest -kernel

Bit Mnemonic Access Reset Type Definition

31:0 Data RW x Main Memory. Transactions to this region will be cached,
and misses will go to the SDRAM.

16.6.8 PCI Memory Region

Register

R PciMem[0x0 FFFF FFFF:0]

Address

0x8 0000 0000-0xB FFFF FFFF

Attributes

-noregtest -kernel

Bit Mnemonic Access Reset Type Definition

31:0 Data RW x PCI-Express Memory. Transactions to this region will
initiate PCI-Express bus Memory reads or writes. Note
32 bit PCI devices are visible in only the first 4GB of this
region; only 64 bit devices are visible in the final 12GB.

16.6.9 PCI IO Region

Register

R PciIo[0x0 3BFF FFFF:0]

Address

0xC 0000 0000-0xC EFFF FFFF

Attributes

-noregtest -kernel

Bit Mnemonic Access Reset Type Definition

31:0 Data RW x PCI-Express IO Space. Transactions to this region will
initiate PCI-Express bus IO reads or writes.

May 14, 2014 849 Rev 51328

SiCortex Confidential CHAPTER 16. ADDRESSING

16.6.10 PCI Config Region

Register
R PciConfig[0x0 03FF FFFF:0]
Address
0xC F000 0000-0xC FFFF FFFF
Attributes
-noregtest -kernel
Bit Mnemonic Access Reset Type Definition

31:0 Data RW x PCI-Express Config Space. Transactions to this region
will initiate PCI-Express bus config reads or writes.

16.6.11 Internal SCB Region

Register
R IoScb[0x0 1FFF FFFF:0]
Address
0xE 0000 0000-0xE 7FFF FFFF
Attributes
-noregtest
Bit Mnemonic Access Reset Type Definition

31:0 Data RW x Internal SCB Registers. Transactions to this region go
over the SCB bus to the appropriate sub-chip registers.

16.6.12 Internal Non-SCB Region

Register
R Io[0x1FFF FFFF:0]
Address
0xE 8000 0000-0xE FFFF FFFF
Attributes
-noregtest
Bit Mnemonic Access Reset Type Definition

31:0 Data RW x Internal Non-SCB Registers. Transactions to this region
go over the CSW or other busses to the appropriate sub-
chip registers.

May 14, 2014 850 Rev 51328

Chapter 17

Pinout

[Last Modified $Id: chippins.lyx 18812 2006-04-26 17:37:49Z jackson $]

17.1 Overview

This chapter describes the signals, drivers, and pin assignments of the SC-1000. The pinout includes the
following major collections of signals:

• Clocks and reset

• 3 input and 3 output SiCortex fabric links

• 2 DDR2 channels

• 8-lane PCI Express port with auxiliary bus

• Console port, serial management bus, JTAG, chip tester scan chains, etc.

• Power and ground

17.2 Signal List

Group Signal # I/O Type Description

Fabric 0 79
flr0 dt h[7:0] 8 I f Fabric 0 inbound data (port a), high differential
flr0 dt l[7:0] 8 I f Fabric 0 inbound data (port a), low differential
flr0 fc h 1 O f Fabric 0 inbound data (port a) flow control, high

differential
flr0 fc l 1 O f Fabric 0 inbound data (port a) flow control, low

differential
flt0 dt h[7:0] 8 O f Fabric 0 outbound data (port x), high differential
flt0 dt l[7:0] 8 O f Fabric 0 outbound data (port x), low differential
flt0 fc h 1 I f Fabric 0 outbound data (port x) flow control, high

differential
flt0 fc l 1 I f Fabric 0 outbound data (port x) flow control, low

differential
VDDF 20 A power 1.2V fabric pad voltage
VSS 23 A power Ground

Fabric 1 79
fl[rt]1 * 36 * f Fabric 1 ports b (in) and y (out), similar to fl[rt]0 *
VDDF 20 A power 1.2V fabric pad voltage
VSS 23 A power Ground

851

SiCortex Confidential CHAPTER 17. PINOUT

Group Signal # I/O Type Description
Fabric 2 79

fl[rt]2 * 36 * f Fabric 2 ports c (in) and z (out), similar to fl[rt]0 *
VDDF 20 A power 1.2V fabric pad voltage
VSS 23 A power Ground

Fabric Miscellaneous 25
flrx nc h 1 O f Unused fabric transmit lane, high differential
flrx nc l 1 O f Unused fabric transmit lane, low differential
fltx nc h 1 I f Unused fabric receive lane, high differential
fltx nc l 1 I f Unused fabric receive lane, low differential
fl pll vdd[6:0] 7 A analog Fabric quad macro PLL voltage (filtered 2.5V)
fl pll rtn[6:0] 7 A analog Fabric quad macro PLL reference return
fl rext[6:0] 7 A analog Fabric quad macro termination reference resistor

DDR 0 251
d0 ck h[2:0] 3 O sstl1.8 DDR 0 clock, high differential
d0 ck l[2:0] 3 O sstl1.8 DDR 0 clock, low differential
d0 dm[8:0] 9 O sstl1.8 DDR 0 data mask
d0 dqs h[8:0] 9 B sstl1.8 DDR 0 data strobe, high differential
d0 dqs l[8:0] 9 B sstl1.8 DDR 0 data strobe, low differential

test-mode
overrides see
sec. 17.3

d0 dq[63:0] 64 B sstl1.8 DDR 0 data

test-mode
overrides see
sec. 17.3

d0 cb[7:0] 8 B sstl1.8 DDR 0 ecc (alias d1 dq[71:64])

d0 we l 1 O sstl1.8 DDR 0 write enable
d0 cas l 1 O sstl1.8 DDR 0 column strobe
d0 ras l 1 O sstl1.8 DDR 0 row strobe
d0 cs l[3:0] 4 O sstl1.8 DDR 0 chip select ([3:2] NC on PCB])
d0 ba[2:0] 3 O sstl1.8 DDR 0 bank address

test-mode
overrides see
sec. 17.3

d0 ad[15:0] 16 O sstl1.8 DDR 0 row and column address

d0 cke[3:0] 4 O sstl1.8 DDR 0 clock enable ([3:2] NC on PCB])
d0 odt[3:0] 4 O sstl1.8 DDR 0 on-die termination control ([3:2] NC on PCB])
d0 reset l 1 O sstl1.8 DDR 0 reset
D0 VREF 6 A analog DDR 0 reference voltage
d0 rext 1 A analog DDR 0 termination reference resistor
VDDM 7 A power 2.5V DDR2 receive pad voltage
VDDR 43 A power 1.8V DDR2 transmit pad voltage
VSS 54 A power Ground

DDR 1 250
d1 *, D1 VREF 59 * * DDR 1 control, similar to d0 *

test-mode
overrides see
sec. 17.3

d1 ad[15:0] 16 O sstl1.8 DDR 1 row & column address

test-mode
overrides see
sec. 17.3

d1 dq[63:0] 64 B sstl1.8 DDR 1 data

test-mode
overrides see
sec. 17.3

d1 cb[7:0] 8 B sstl1.8 DDR 1 ecc (alias d1 dq[71:64])

VDDM 7 A power 2.5V DDR2 receive pad voltage
VDDR 43 A power 1.8V DDR2 transmit pad voltage
VSS 53 A power Ground

May 14, 2014 852 Rev 51328

SiCortex Confidential 17.2. SIGNAL LIST

Group Signal # I/O Type Description
PCI Express 115

pci tx h[7:0] 8 O pcie PCI-E transmit data, high differential
pci tx l[7:0] 8 O pcie PCI-E transmit data, low differential
pci rx h[7:0] 8 I pcie PCI-E receive data, high differential
pci rx l[7:0] 8 I pcie PCI-E receive data, low differential
pci ref clk h 1 O lvds PCI-E 100MHz reference clock output, high differential

(also test clk e h)
pci ref clk l 1 O lvds PCI-E 100MHz reference clock output, low differential

(also test clk e l)
pci ref clk vref 1 A analog PCI-E reference clock output buffer reference voltage
pci rext 1 A analog PCI-E external reference resistor
pci atnled 1 O cmos, 4mA PCI-E module attention LED
pci pwrled 1 O cmos, 4mA PCI-E module power LED
pci pwren l 1 O cmos, 4mA PCI-E module power enable
pci pwrgd l 1 I cmos, pullup PCI-E module power good (pullup on PCB)
pci pwrflt l 1 I cmos, pullup PCI-E module power fault (pullup on PCB)
pci prsnt l 1 I cmos, pullup PCI-E module present (pullup on PCB)
pci perst l 1 O cmos, 4mA PCI-E module reset
VDDM 35 A power 2.5V PCI Express pad voltage
VSS 37 A power Ground

Miscellaneous 114
sys uart txd 1 T cmos, 4mA serial port transmit data (open drain output)
sys uart rxd 1 I cmos, pullup serial port receive data
sys uart rts l 1 T cmos, 4mA serial port receiver request-to-send output (open drain

output)
sys uart cts l 1 I cmos, pullup serial port transmitter clear-to-send input

test-mode
overrides see
sec. 17.3

sys i2c sda 1 B cmos, 4mA serial management bus data (open drain output)

test-mode
overrides see
sec. 17.3

sys i2c scl 1 B cmos, 4mA serial management bus clock (open drain output)

sch trst l 1 I cmos SiCortex test reset (pullup on PCB)
sch tck 1 I cmos SiCortex test clock
sch tms 1 I cmos SiCortex test mode select
sch tdi 1 I cmos SiCortex test data in
sch tdo 1 T cmos, 4mA SiCortex test data out
jtag trst l 1 I cmos JTAG test reset (pullup on PCB)
jtag tck 1 I cmos JTAG test clock
jtag tms 1 I cmos JTAG test mode select
jtag tdi 1 I cmos JTAG test data in
jtag tdo 1 T cmos, 4mA JTAG test data out

test-mode
overrides see
sec. 17.3

test sdi[99:88] 12 B cmos, 8mA, pullup Chip tester scan chain serial data in (NC on PCB).
These pins either get no boundary-scan insertion or get
observe-only boundary-scan.

test-mode
overrides see
sec. 17.3

test sdo[99:88] 12 B cmos, 8mA, pullup Chip tester scan chain serial data out (NC on PCB).
These pins either get no boundary-scan insertion or get
observe-only boundary-scan.

test mode[3:0] 4 I cmos, pulldown Chip tester test mode select (bus together and pull up
on PCB)

test mode en 1 I cmos, pulldown Chip tester test-mode valid (pull down on PCB)
test scan en 1 I cmos, pulldown Chip tester scan enable (pull down on PCB)
sys clk e h 1 I lvds 66.7MHz system reference clock, high differential
sys clk e l 1 I lvds 66.7MHz system reference clock, low differential

May 14, 2014 853 Rev 51328

SiCortex Confidential CHAPTER 17. PINOUT

Group Signal # I/O Type Description
sys clk o h 1 I lvds 66.7MHz system reference clock, high differential
sys clk o l 1 I lvds 66.7MHz system reference clock, low differential
test d0clk h 1 I lvds DDR 0 test clock, high differential (NC on PCB)
test d0clk l 1 I lvds DDR 0 test clock, low differential (NC on PCB)
test d1clk h 1 I lvds DDR 1 test clock, high differential (NC on PCB)
test d1clk l 1 I lvds DDR 1 test clock, low differential (NC on PCB)
test iclk h 1 I lvds PCI-E test clock, high differential (NC on PCB)
test iclk l 1 I lvds PCI-E test clock, low differential (NC on PCB)
test pclk h 1 I lvds Processor test clock, high differential (NC on PCB)
test pclk l 1 I lvds Processor test clock, low differential (NC on PCB)
test cclk h 1 I lvds Cache test clock. high differential (NC on PCB)
test cclk l 1 I lvds Cache test clock. low differential (NC on PCB)
test sclk h 1 I lvds Fabric test clock, high differential (NC on PCB)
test sclk l 1 I lvds Fabric test clock, low differential (NC on PCB)
test clk o h 1 O lvds Odd-side test clock output for PLL testing, high

differential
test clk o l 1 O lvds Odd-side test clock output for PLL testing, low

differential
test clk o vref 1 A analog Odd-side test clock output buffer reference voltage
sys d0pll vdd 1 A analog DDR 0 domain PLL voltage (filtered 2.5V)
sys d0pll rtn 1 A analog DDR 0 domain PLL reference return
sys d1pll vdd 1 A analog DDR 1 domain PLL voltage (filtered 2.5V)
sys d1pll rtn 1 A analog DDR 1 domain PLL reference return
sys ipll vdd 1 A analog PCI-E domain PLL voltage (filtered 2.5V)
sys ipll rtn 1 A analog PCI-E domain PLL reference return
sys ppll vdd 1 A analog Processor domain PLL voltage (filtered 2.5V)
sys ppll rtn 1 A analog Processor domain PLL reference return
sys spll vdd 1 A analog Fabric domain PLL voltage (filtered 2.5V)
sys spll rtn 1 A analog Fabric domain PLL reference return

test-mode
overrides see
sec. 17.3

sys node[4:0] 5 I cmos node number (0-26)

sys rst l 1 I cmos, pullup Hard reset (from MSP)
sys led l 1 T cmos, 12mA Status LED (open drain)
sys atn l 1 O cmos, 4mA Attention request (to MSP)
spare 1 B cmos, 4mA, pullup Spare pin (NC on PCB). Internal connection to

R ScbGpio register.
sys ocla trig 1 O cmos, 12mA On-chip Logic Analyzer trigger output
sys temp p 1 A analog Temperature-sensing diode P terminal
sys temp n 1 A analog Temperature-sensing diode N terminal
VDDM 9 A power 2.5V miscellaneous pad voltage
VSS 18 A power Ground

Core Power 160
VSS 80 A power Ground
VDDC 80 A power 1.0V core voltage

TOTAL Total 1152

17.3 List of Normal-Mode Signals and Their Test-Mode Overrides

All the following act according to their normal-mode signal names except when {test mode en, test mode[3:0]}
= 5’b1000x or when the SYS TAP instruction register is set to serial-scan mode. In those cases the indicated pins
take on the function indicated by the test signal names. The serial-scan-mode mux connection column indicates the
order in which the individual ATPG scan chains are connected in series to provide the serial-scan-mode function
accessed from the SYS TAP.

May 14, 2014 854 Rev 51328

SiCortex Confidential 17.3. LIST OF NORMAL-MODE SIGNALS AND THEIR TEST-MODE OVERRIDES

Several pins in the DDR PHY also take on a secondary test meaning when {test mode en, test mode[3:0]} =
5’b11000, 5’b11001, or 5’b11010. These test modes are for testing the slave DLLs in the DDR PHY. Each slave
DLL provides 2 test clock outputs; there are 2 slave DLLs for each byte lane. I’ve taken a guess as to which of the
dq pins will be used for this purpose, but the final decision will come from eSilicon when the DDR PHY is nearer
completion.

The test sdi[99:88] & test sdo[99:88] pins take on a third set of personalities in test mode 19 for parametric
testing of the DDR PHY drive strength and ODT settings and impedance calibration circuit. These are listed in
a separate table below. Because data drive onto these pins must be active during boundary scan (for parametric
measurements), any boundary scan that is inserted on the test sdi[99:88] & test sdo[99:88] pins must be observe-only
(or not have B-scan inserted at all).

Normal Signal

(chip level)
Test Signal

(chip level)
DDR2 PHY
IO instance
pin

DDR2 PHY
instance core
side pin

Test-Mode

to activate

{test mode en,

test mode[3:0]}

2’ndary Test Signal

(choice of specific

dq’s is a guess for

now, to be final-

ized when esilicon is

ready)

2’ndary Test

Mode to

activate

d0 dq[4] test sdi[0] dx dq[4] test sdi[0] 5’d16/17

d0 dq[5] test sdo[0] dx dq[5] test sdo[0] 5’d16/17

d0 dq[0] test sdi[1] dx dq[0] test sdi[1] 5’d16/17

d0 dq[1] test sdi[2] dx dq[1] test sdi[2] 5’d16/17

d0 dq[6] test sdo[1] dx dq[6] test sdo[1] 5’d16/17 test dllslav 00 tstclk1 5‘d22/23

d0 dq[7] test sdo[2] dx dq[7] test sdo[2] 5’d16/17 test dllslav 00 tstclk2 5‘d22/23

d0 dq[2] test sdi[3] dx dq[2] test sdi[3] 5’d16/17

d0 dq[3] test sdo[3] dx dq[3] test sdo[3] 5’d16/17

d0 dq[12] test sdi[4] dx dq[12] test sdi[4] 5’d16/17

d0 dq[13] test sdo[4] dx dq[13] test sdo[4] 5’d16/17

d0 dq[8] test sdi[5] dx dq[8] test sdi[5] 5’d16/17

d0 dq[9] test sdi[6] dx dq[9] test sdi[6] 5’d16/17

d0 dq[14] test sdo[5] dx dq[14] test sdo[5] 5’d16/17 test dllslav 01 tstclk1 5‘d22/23

d0 dq[11] test sdo[6] dx dq[11] test sdo[6] 5’d16/17 test dllslav 01 tstclk2 5‘d22/23

d0 dq[15] test sdi[7] dx dq[15] test sdi[7] 5’d16/17

d0 dq[10] test sdo[7] dx dq[10] test sdo[7] 5’d16/17

d0 dq[21] test sdi[8] dx dq[21] test sdi[8] 5’d16/17

d0 dq[20] test sdo[8] dx dq[20] test sdo[8] 5’d16/17

d0 dq[16] test sdo[9] dx dq[16] test sdo[9] 5’d16/17 test dllslav 02 tstclk2 5‘d22/23

d0 dq[17] test sdo[10] dx dq[17] test sdo[10] 5’d16/17 test dllslav 02 tstclk1 5‘d22/23

d0 dq[22] test sdi[9] dx dq[22] test sdi[9] 5’d16/17

d0 dq[23] test sdi[10] dx dq[23] test sdi[10] 5’d16/17

d0 dq[18] test sdi[11] dx dq[18] test sdi[11] 5’d16/17

d0 dq[19] test sdi[12] dx dq[19] test sdi[12] 5’d16/17

d0 dq[28] test sdi[13] dx dq[28] test sdi[13] 5’d16/17

d0 dq[29] test sdi[14] dx dq[29] test sdi[14] 5’d16/17

d0 dq[24] test sdi[15] dx dq[24] test sdi[15] 5’d16/17

d0 dq[25] test sdi[16] dx dq[25] test sdi[16] 5’d16/17

d0 dq[30] test sdo[11] dx dq[30] test sdo[11] 5’d16/17 test dllslav 03 tstclk1 5‘d22/23

d0 dq[27] test sdo[12] dx dq[27] test sdo[12] 5’d16/17 test dllslav 03 tstclk2 5‘d22/23

d0 dq[31] test sdi[17] dx dq[31] test sdi[17] 5’d16/17

d0 dq[26] test sdi[18] dx dq[26] test sdi[18] 5’d16/17

d0 dq[68] test sdi[19] dx dq[68] test sdi[19] 5’d16/17

d0 dq[69] test sdi[20] dx dq[69] test sdi[20] 5’d16/17

d0 dq[64] test sdo[13] dx dq[64] test sdo[13] 5’d16/17 test dllslav 08 tstclk2 5‘d22/23

d0 dq[65] test sdo[14] dx dq[65] test sdo[14] 5’d16/17 test dllslav 08 tstclk1 5‘d22/23

d0 dq[66] test sdi[21] dx dq[66] test sdi[21] 5’d16/17

d0 dq[70] test sdi[22] dx dq[70] test sdi[22] 5’d16/17

May 14, 2014 855 Rev 51328

SiCortex Confidential CHAPTER 17. PINOUT

Normal Signal

(chip level)
Test Signal

(chip level)
DDR2 PHY
IO instance
pin

DDR2 PHY
instance core
side pin

Test-Mode

to activate

{test mode en,

test mode[3:0]}

2’ndary Test Signal

(choice of specific

dq’s is a guess for

now, to be final-

ized when esilicon is

ready)

2’ndary Test

Mode to

activate

d0 dq[71] test sdi[23] dx dq[71] test sdi[23] 5’d16/17

d0 dq[67] test sdi[24] dx dq[67] test sdi[24] 5’d16/17

d0 ad[15] test sdo[15] dx ad[15] test sdo[15] 5’d16/17

d0 ad[14] test sdo[16] dx ad[14] test sdo[16] 5’d16/17

d0 ad[12] test sdo[17] dx ad[12] test sdo[17] 5’d16/17

d0 ad[9] test sdo[18] dx ad[9] test sdo[18] 5’d16/17

d0 ad[11] test sdo[19] dx ad[11] test sdo[19] 5’d16/17

d0 ad[7] test sdo[20] dx ad[7] test sdo[20] 5’d16/17

d0 ad[8] test sdo[21] dx ad[8] test sdo[21] 5’d16/17

d0 ad[6] test sdo[22] dx ad[6] test sdo[22] 5’d16/17

d0 ad[5] test sdo[23] dx ad[5] test sdo[23] 5’d16/17

d0 ad[4] test sdo[24] dx ad[4] test sdo[24] 5’d16/17

d0 ad[3] test sdo[25] dx ad[3] test sdo[25] 5’d16/17

d0 ad[1] test sdo[26] dx ad[1] test sdo[26] 5’d16/17

d0 ad[2] test sdo[27] dx ad[2] test sdo[27] 5’d16/17

d0 ad[0] test sdo[28] dx ad[0] test sdo[28] 5’d16/17

d0 ad[10] test sdo[29] dx ad[10] test sdo[29] 5’d16/17

d0 ad[13] test sdo[30] dx ad[13] test sdo[30] 5’d16/17

d0 dq[36] test sdi[25] dx dq[36] test sdi[25] 5’d16/17

d0 dq[37] test sdi[26] dx dq[37] test sdi[26] 5’d16/17

d0 dq[32] test sdo[31] dx dq[32] test sdo[31] 5’d16/17 test dllslav 04 tstclk2 5‘d22/23

d0 dq[33] test sdo[32] dx dq[33] test sdo[32] 5’d16/17 test dllslav 04 tstclk1 5‘d22/23

d0 dq[38] test sdi[27] dx dq[38] test sdi[27] 5’d16/17

d0 dq[39] test sdi[28] dx dq[39] test sdi[28] 5’d16/17

d0 dq[34] test sdi[29] dx dq[34] test sdi[29] 5’d16/17

d0 dq[35] test sdi[30] dx dq[35] test sdi[30] 5’d16/17

d0 dq[44] test sdi[31] dx dq[44] test sdi[31] 5’d16/17

d0 dq[45] test sdi[32] dx dq[45] test sdi[32] 5’d16/17

d0 dq[40] test sdi[33] dx dq[40] test sdi[33] 5’d16/17

d0 dq[41] test sdi[34] dx dq[41] test sdi[34] 5’d16/17

d0 dq[42] test sdo[33] dx dq[42] test sdo[33] 5’d16/17 test dllslav 05 tstclk1 5‘d22/23

d0 dq[43] test sdo[34] dx dq[43] test sdo[34] 5’d16/17 test dllslav 05 tstclk2 5‘d22/23

d0 dq[46] test sdi[35] dx dq[46] test sdi[35] 5’d16/17

d0 dq[47] test sdo[35] dx dq[47] test sdo[35] 5’d16/17

d0 dq[52] test sdi[36] dx dq[52] test sdi[36] 5’d16/17

d0 dq[53] test sdo[36] dx dq[53] test sdo[36] 5’d16/17

d0 dq[48] test sdo[37] dx dq[48] test sdo[37] 5’d16/17 test dllslav 06 tstclk2 5‘d22/23

d0 dq[49] test sdo[38] dx dq[49] test sdo[38] 5’d16/17 test dllslav 06 tstclk1 5‘d22/23

d0 dq[54] test sdi[37] dx dq[54] test sdi[37] 5’d16/17

d0 dq[55] test sdi[38] dx dq[55] test sdi[38] 5’d16/17

d0 dq[50] test sdi[39] dx dq[50] test sdi[39] 5’d16/17

d0 dq[51] test sdo[39] dx dq[51] test sdo[39] 5’d16/17

d0 dq[56] test sdi[40] dx dq[56] test sdi[40] 5’d16/17

d0 dq[61] test sdo[40] dx dq[61] test sdo[40] 5’d16/17

d0 dq[60] test sdo[41] dx dq[60] test sdo[41] 5’d16/17 test dllslav 07 tstclk2 5‘d22/23

d0 dq[57] test sdo[42] dx dq[57] test sdo[42] 5’d16/17 test dllslav 07 tstclk1 5‘d22/23

d0 dq[58] test sdi[41] dx dq[58] test sdi[41] 5’d16/17

d0 dq[63] test sdi[42] dx dq[63] test sdi[42] 5’d16/17

May 14, 2014 856 Rev 51328

SiCortex Confidential 17.3. LIST OF NORMAL-MODE SIGNALS AND THEIR TEST-MODE OVERRIDES

Normal Signal

(chip level)
Test Signal

(chip level)
DDR2 PHY
IO instance
pin

DDR2 PHY
instance core
side pin

Test-Mode

to activate

{test mode en,

test mode[3:0]}

2’ndary Test Signal

(choice of specific

dq’s is a guess for

now, to be final-

ized when esilicon is

ready)

2’ndary Test

Mode to

activate

d0 dq[59] test sdi[43] dx dq[59] test sdi[43] 5’d16/17

d0 dq[62] test sdo[43] dx dq[62] test sdo[43] 5’d16/17

d1 dq[4] test sdi[44] dx dq[4] test sdi[0] 5’d16/17

d1 dq[5] test sdo[44] dx dq[5] test sdo[0] 5’d16/17

d1 dq[0] test sdi[45] dx dq[0] test sdi[1] 5’d16/17

d1 dq[1] test sdi[46] dx dq[1] test sdi[2] 5’d16/17

d1 dq[6] test sdo[45] dx dq[6] test sdo[1] 5’d16/17 test dllslav 10 tstclk1 5‘d22/23

d1 dq[7] test sdo[46] dx dq[7] test sdo[2] 5’d16/17 test dllslav 10 tstclk2 5‘d22/23

d1 dq[2] test sdi[47] dx dq[2] test sdi[3] 5’d16/17

d1 dq[3] test sdo[47] dx dq[3] test sdo[3] 5’d16/17

d1 dq[12] test sdi[48] dx dq[12] test sdi[4] 5’d16/17

d1 dq[13] test sdo[48] dx dq[13] test sdo[4] 5’d16/17

d1 dq[8] test sdi[49] dx dq[8] test sdi[5] 5’d16/17

d1 dq[9] test sdi[50] dx dq[9] test sdi[6] 5’d16/17

d1 dq[14] test sdo[49] dx dq[14] test sdo[5] 5’d16/17 test dllslav 11 tstclk1 5‘d22/23

d1 dq[11] test sdo[50] dx dq[11] test sdo[6] 5’d16/17 test dllslav 11 tstclk2 5‘d22/23

d1 dq[15] test sdi[51] dx dq[15] test sdi[7] 5’d16/17

d1 dq[10] test sdo[51] dx dq[10] test sdo[7] 5’d16/17

d1 dq[21] test sdi[52] dx dq[21] test sdi[8] 5’d16/17

d1 dq[20] test sdo[52] dx dq[20] test sdo[8] 5’d16/17

d1 dq[16] test sdo[53] dx dq[16] test sdo[9] 5’d16/17 test dllslav 12 tstclk2 5‘d22/23

d1 dq[17] test sdo[54] dx dq[17] test sdo[10] 5’d16/17 test dllslav 12 tstclk1 5‘d22/23

d1 dq[22] test sdi[53] dx dq[22] test sdi[9] 5’d16/17

d1 dq[23] test sdi[54] dx dq[23] test sdi[10] 5’d16/17

d1 dq[18] test sdi[55] dx dq[18] test sdi[11] 5’d16/17

d1 dq[19] test sdi[56] dx dq[19] test sdi[12] 5’d16/17

d1 dq[28] test sdi[57] dx dq[28] test sdi[13] 5’d16/17

d1 dq[29] test sdi[58] dx dq[29] test sdi[14] 5’d16/17

d1 dq[24] test sdi[59] dx dq[24] test sdi[15] 5’d16/17

d1 dq[25] test sdi[60] dx dq[25] test sdi[16] 5’d16/17

d1 dq[30] test sdo[55] dx dq[30] test sdo[11] 5’d16/17 test dllslav 13 tstclk1 5‘d22/23

d1 dq[27] test sdo[56] dx dq[27] test sdo[12] 5’d16/17 test dllslav 13 tstclk2 5‘d22/23

d1 dq[31] test sdi[61] dx dq[31] test sdi[17] 5’d16/17

d1 dq[26] test sdi[62] dx dq[26] test sdi[18] 5’d16/17

d1 dq[68] test sdi[63] dx dq[68] test sdi[19] 5’d16/17

d1 dq[69] test sdi[64] dx dq[69] test sdi[20] 5’d16/17

d1 dq[64] test sdo[57] dx dq[64] test sdo[13] 5’d16/17 test dllslav 18 tstclk2 5‘d22/23

d1 dq[65] test sdo[58] dx dq[65] test sdo[14] 5’d16/17 test dllslav 18 tstclk1 5‘d22/23

d1 dq[66] test sdi[65] dx dq[66] test sdi[21] 5’d16/17

d1 dq[70] test sdi[66] dx dq[70] test sdi[22] 5’d16/17

d1 dq[71] test sdi[67] dx dq[71] test sdi[23] 5’d16/17

d1 dq[67] test sdi[68] dx dq[67] test sdi[24] 5’d16/17

d1 ad[15] test sdo[59] dx ad[15] test sdo[15] 5’d16/17

d1 ad[14] test sdo[60] dx ad[14] test sdo[16] 5’d16/17

d1 ad[12] test sdo[61] dx ad[12] test sdo[17] 5’d16/17

d1 ad[9] test sdo[62] dx ad[9] test sdo[18] 5’d16/17

d1 ad[11] test sdo[63] dx ad[11] test sdo[19] 5’d16/17

d1 ad[7] test sdo[64] dx ad[7] test sdo[20] 5’d16/17

May 14, 2014 857 Rev 51328

SiCortex Confidential CHAPTER 17. PINOUT

Normal Signal

(chip level)
Test Signal

(chip level)
DDR2 PHY
IO instance
pin

DDR2 PHY
instance core
side pin

Test-Mode

to activate

{test mode en,

test mode[3:0]}

2’ndary Test Signal

(choice of specific

dq’s is a guess for

now, to be final-

ized when esilicon is

ready)

2’ndary Test

Mode to

activate

d1 ad[8] test sdo[65] dx ad[8] test sdo[21] 5’d16/17

d1 ad[6] test sdo[66] dx ad[6] test sdo[22] 5’d16/17

d1 ad[5] test sdo[67] dx ad[5] test sdo[23] 5’d16/17

d1 ad[4] test sdo[68] dx ad[4] test sdo[24] 5’d16/17

d1 ad[3] test sdo[69] dx ad[3] test sdo[25] 5’d16/17

d1 ad[1] test sdo[70] dx ad[1] test sdo[26] 5’d16/17

d1 ad[2] test sdo[71] dx ad[2] test sdo[27] 5’d16/17

d1 ad[0] test sdo[72] dx ad[0] test sdo[28] 5’d16/17

d1 ad[10] test sdo[73] dx ad[10] test sdo[29] 5’d16/17

d1 ad[13] test sdo[74] dx ad[13] test sdo[30] 5’d16/17

d1 dq[36] test sdi[69] dx dq[36] test sdi[25] 5’d16/17

d1 dq[37] test sdi[70] dx dq[37] test sdi[26] 5’d16/17

d1 dq[32] test sdo[75] dx dq[32] test sdo[31] 5’d16/17 test dllslav 14 tstclk2 5‘d22/23

d1 dq[33] test sdo[76] dx dq[33] test sdo[32] 5’d16/17 test dllslav 14 tstclk1 5‘d22/23

d1 dq[38] test sdi[71] dx dq[38] test sdi[27] 5’d16/17

d1 dq[39] test sdi[72] dx dq[39] test sdi[28] 5’d16/17

d1 dq[34] test sdi[73] dx dq[34] test sdi[29] 5’d16/17

d1 dq[35] test sdi[74] dx dq[35] test sdi[30] 5’d16/17

d1 dq[44] test sdi[75] dx dq[44] test sdi[31] 5’d16/17

d1 dq[45] test sdi[76] dx dq[45] test sdi[32] 5’d16/17

d1 dq[40] test sdi[77] dx dq[40] test sdi[33] 5’d16/17

d1 dq[41] test sdi[78] dx dq[41] test sdi[34] 5’d16/17

d1 dq[42] test sdo[77] dx dq[42] test sdo[33] 5’d16/17 test dllslav 15 tstclk1 5‘d22/23

d1 dq[43] test sdo[78] dx dq[43] test sdo[34] 5’d16/17 test dllslav 15 tstclk2 5‘d22/23

d1 dq[46] test sdi[79] dx dq[46] test sdi[35] 5’d16/17

d1 dq[47] test sdo[79] dx dq[47] test sdo[35] 5’d16/17

d1 dq[52] test sdi[80] dx dq[52] test sdi[36] 5’d16/17

d1 dq[53] test sdo[80] dx dq[53] test sdo[36] 5’d16/17

d1 dq[48] test sdo[81] dx dq[48] test sdo[37] 5’d16/17 test dllslav 16 tstclk2 5‘d22/23

d1 dq[49] test sdo[82] dx dq[49] test sdo[38] 5’d16/17 test dllslav 16 tstclk1 5‘d22/23

d1 dq[54] test sdi[81] dx dq[54] test sdi[37] 5’d16/17

d1 dq[55] test sdi[82] dx dq[55] test sdi[38] 5’d16/17

d1 dq[50] test sdi[83] dx dq[50] test sdi[39] 5’d16/17

d1 dq[51] test sdo[83] dx dq[51] test sdo[39] 5’d16/17

d1 dq[56] test sdi[84] dx dq[56] test sdi[40] 5’d16/17

d1 dq[61] test sdo[84] dx dq[61] test sdo[40] 5’d16/17

d1 dq[60] test sdo[85] dx dq[60] test sdo[41] 5’d16/17 test dllslav 17 tstclk2 5‘d22/23

d1 dq[57] test sdo[86] dx dq[57] test sdo[42] 5’d16/17 test dllslav 17 tstclk1 5‘d22/23

d1 dq[58] test sdi[85] dx dq[58] test sdi[41] 5’d16/17

d1 dq[63] test sdi[86] dx dq[63] test sdi[42] 5’d16/17

d1 dq[59] test sdi[87] dx dq[59] test sdi[43] 5’d16/17

d1 dq[62] test sdo[87] dx dq[62] test sdo[43] 5’d16/17

test sdi[88] test dll MasterAdj[7] 5’d22/23

test sdo[89] test dll MasterAdj[6] 5’d22/23

test sdi[90] test dll MasterAdj[5] 5’d22/23

test sdo[91] test dll MasterAdj[4] 5’d22/23

test sdi[92] test dll MasterAdj[3] 5’d22/23

test sdo[93] test dll MasterAdj[2] 5’d22/23

May 14, 2014 858 Rev 51328

SiCortex Confidential 17.3. LIST OF NORMAL-MODE SIGNALS AND THEIR TEST-MODE OVERRIDES

Normal Signal

(chip level)
Test Signal

(chip level)
DDR2 PHY
IO instance
pin

DDR2 PHY
instance core
side pin

Test-Mode

to activate

{test mode en,

test mode[3:0]}

2’ndary Test Signal

(choice of specific

dq’s is a guess for

now, to be final-

ized when esilicon is

ready)

2’ndary Test

Mode to

activate

test sdi[94] test dll MasterAdj[1] 5’d22/23

test sdo[95] D1clkLock 5’d18 test dll MasterAdj[0] 5’d22/23

test sdi[96] test dll Slave0Adj[7] 5’d22/23

test sdo[97] D0clkLock 5’d18 test dll Slave0Adj[6] 5’d22/23

test sdi[98] ClkOutCtrl[1] 5’d18 test dll Slave0Adj[5] 5’d22/23

test sdo[99] PciRefLock 5’d18 test dll Slave0Adj[4] 5’d22/23

test sdi[99] ClkOutCtrl[2] 5’d18 test dll Slave0Adj[3] 5’d22/23

test sdo[98] SclkLock 5’d18 test dll Slave0Adj[2] 5’d22/23

test sdi[97] ClkOutCtrl[0] 5’d18 test dll Slave0Adj[1] 5’d22/23

test sdo[96] PclkLock 5’d18 test dll Slave0Adj[0] 5’d22/23

test sdi[95] test dll Slave1Adj[7] 5’d22/23

test sdo[94] IclkLock 5’d18 test dll Slave1Adj[6] 5’d22/23

test sdi[93] test dll Slave1Adj[5] 5’d22/23

test sdo[92] test dll Slave1Adj[4] 5’d22/23

test sdi[91] test dll Slave1Adj[3] 5’d22/23

test sdo[90] test dll Slave1Adj[2] 5’d22/23

test sdi[89] test dll Slave1Adj[1] 5’d22/23

test sdo[88] test dll Slave1Adj[0] 5’d22/23

sys node[4] test dll tstctrl[5] 5’d22/23

sys node[3] test dll tstctrl[4] 5’d22/23

sys node[2] test dll tstctrl[3] 5’d22/23

sys node[1] test dll tstctrl[2] 5’d22/23

sys node[0] test dll tstctrl[1] 5’d22/23

sys i2c sda test dll tstctrl[0] 5’d22/23

sys i2c scl test dll reset 5’d22/23

More test-mode overrides for the standard I/O block on the West (odd) end of the North (pci) side:

Normal Signal Test Signal Test-Mode

to activate

{test mode en,

test mode[3:0]}

Test Signal Test Mode

to activate

test sdi[88] ddp driv imped[2] 5’d19

test sdo[89] d1 imp n[1] 5’d19

test sdi[90] ddp driv imped[1] 5’d19

test sdo[91] d1 imp n[3] 5’d19

test sdi[92] ddp driv imped[0] 5’d19

test sdo[93] d0 imp p[1] 5’d19

test sdi[94] ddp term read 5’d19

test sdo[95] d0 imp p[3] 5’d19

test sdi[96] ddp term300 5’d19

test sdo[97] d0 imp n[1] 5’d19

test sdi[98] ddp term150 5’d19

test sdo[99] d0 imp n[3] 5’d19

test sdi[99]

test sdo[98] d0 imp n[2] 5’d19

test sdi[97]

test sdo[96] d0 imp n[0] 5’d19

May 14, 2014 859 Rev 51328

SiCortex Confidential CHAPTER 17. PINOUT

Normal Signal Test Signal Test-Mode

to activate

{test mode en,

test mode[3:0]}

Test Signal Test Mode

to activate

test sdi[95] d1 imp p[3] (tie OE

on)

5’d19

test sdo[94] d0 imp p[2] 5’d19

test sdi[93] d1 imp p[2] (tie OE

on)

5’d19

test sdo[92] d0 imp p[0] 5’d19

test sdi[91] d1 imp p[1] (tie OE

on)

5’d19

test sdo[90] d1 imp n[2] 5’d19

test sdi[89] d1 imp p[0] (tie OE

on)

5’d19

test sdo[88] d1 imp n[0] 5’d19

May 14, 2014 860 Rev 51328

Chapter 18

Programming Considerations

[Last modified $Id: pguide.lyx 42289 2007-07-24 15:55:03Z wsnyder $]

18.1 Overview

The rest of this document is pretty detailed. While you could probably find all you need to know in the spec,
we’ve attempted to get all the peculiarities relating to programming the chip right here. In all cases, the procedures
and rules outlined here are meant as programmer’s hints.

18.2 Memory Transactions and Ordering

18.2.1 The Sync Instruction

18.2.2 I-Stream vs. D-Stream Accesses

18.2.3 I/O ordering

I/O writes from a single CPU are processed in strict order within the memory system, but once the writes leave
the memory system, there is no longer any guarantee of ordering. For example, a write to an SCB register may not
complete (take effect) before a write to a subsequent DMA engine register. To enforce ordering in situations like
this, do an I/O read to the SCB register before doing the DMA engine register write (sync is not required).

When sending SPCL operations to the DMA engine, you must issue a SYNC instruction between every pair of
SPCLs, or some SPCLs may be lost in the L2 cache.

The DMA engine has a bug (#1991) which can cause RDIOs to return corrupted data when followed immediately
by a WTIO from the same CPU. I/O accesses from different CPUs are not affected, and SPCLs are not affected.
When it happens, the WTIO overwrites the data before it can be sent back to the core, so the RDIO incorrectly
returns the data from the WTIO. To avoid this, either issue a SYNC instruction between the RDIO and WTIO,
or be sure to use the RDIO result before issuing the WTIO. All DMA addresses are affected (RA DmaImem,
RA DmaDmem, RA DmaAppIface0,1, etc.) except for those in the SCB range (RA SDma*). The bug has only
been observed when DMA is in the process of doing lots of block writes and the CSW is heavily loaded.

18.2.4 D-Stream vs. I/O Operations and Interrupt Delivery

18.2.4.1 I/O read / Block Write interaction

I/O reads can have a hardware interaction with DMA (or PCI) block writes which has a substantial performance
impact. If CPU X is doing an I/O read to some device that’s really far away, a DMA or PCI BWT to a cache
line A which is owned as D-stream by that processor will not complete until the I/O read completes, regardless of
whether CPU X has any intention to use line A. Since the DMA engine writes out received packets using BWTs,
this can have a meaningful performance impact on DMA latency.

Software which wishes to use the DMA engine in a high-performance manner can prevent this unhappy circum-
stance by mapping its DMA receive buffers to physical pages which are not present in the caches of any processor

861

SiCortex Confidential CHAPTER 18. PROGRAMMING CONSIDERATIONS

which does I/O reads to far away places. Note that I/O reads to cache-local addresses (e.g. interrupt registers)
will never have this interaction, nor will I/O writes of any kind.

The hardware reason that this case occurs is that both I/O reads and BWTs that hit in a local L2 cache require
exclusive use of that L2 cache’s “might receive data soon” resource, and if the I/O read gets it first, the BWT might
have to wait a while.

18.2.5 Oddball Address Spaces and Physical Addressing

18.2.6 Error Traps

18.2.7 Interrupts and Interrupt Handling

18.2.8 Address Aliasing

Processor segment local control registers (RA CacLoc registers) are assigned addresses in the range 0xE9E000000
to 0xE9E001000. Addresses in the range 0xE9E000000 to 0xE9E000FFF may be decoded such that bits 11 and 10
are ignored. This means that addresses alias in this region such that 0xE9E000Cxx, 0xE9E0008xx, 0xE9E0004xx,
and 0xE9E0000xx all address the same register. Similarly addresses {0xE9E000Dxx, 0xE9E0009xx, 0xE9E0005xx,
and 0xE9E0001xx} and {0xE9E000Exx, 0xE9E000Axx, 0xE9E0006xx, and 0xE9E0002xx} and {0xE9E000Fxx,
0xE9E000Bxx, 0xE9E0007xx, and 0xE9E0003xx} form sets of aliased addresses.

18.3 The DRAM Controllers

18.3.1 Initial Calibration and Setup

One of the steps involved in DDR calibration involves forcing a write or read tp address X to go to DDR (and
not get caught in a cache). For the L2, this is done by previously reading two other addresses Y and Zwhich are
known to collide with X. The subtle part is that a sync is required after the two setup reads, because part of the
job of the reads of Y and Z is to flush X from the L1. Since the CPU processes hits under misses, if Y or Z is a miss
and X would have been a hit, we need to sync to make sure Y and Z have evicted X from the L2 before moving on
to read it.

18.3.2 On-the-fly ReCalibration

18.3.2.1 Software filtering of impedance calibration settings

The drive & ODT calibration settings for the DDR I/O cells come from the PDDR2CAL cell. This uses a
precision resistor on the board to calibrate out process, temperature and voltage variation effects for precise output
drive strength (output impedance) and on die impedance termination (ODT). Because the calibration may produce
spurious results, hardware is provided to allow for software filtering of the calibration settings before they are
applied to the I/O cells.

Here are some portntially important things to know in designing the software filtering algorithm
(These are pasted from email; the formatting isn’t pretty, but then, this is Lyx.)

1. Are IMP_P[3:0] & IMP_N[3:0] reset by CAL_RESET? If so, what values do they

take on at reset?

Answer: yes, they are reset, and the values in the SuperPhy are the same as

the SS values in the email below.

IMP_P[3:0]= 4’b1100

IMP_N[3:0]= 4’b1001

The reason is that when you power up, the CSN signal going to the DIMM from

the ASIC should be an immediate ’1’, so the SSTL18 buffers must have

sufficient drive strength under all PVT conditions. This also implies that

the DRIVE[] values from the core to the SuperPhy for CSN (and CLK) must also

have an appropriate value as well:

cti_clk_driv_imped[] <-------------

cti_addr_driv_imped[]

May 14, 2014 862 Rev 51328

SiCortex Confidential 18.3. THE DRAM CONTROLLERS

cti_ctrl_driv_imped[] <-------------

cti_dqs0_driv_imped[]

cti_dqs1_driv_imped[]

cti_dqs2_driv_imped[]

cti_dqs3_driv_imped[]

cti_dqs4_driv_imped[]

cti_dqs5_driv_imped[]

cti_dqs6_driv_imped[]

cti_dqs7_driv_imped[]

cti_dqs8_driv_imped[]

cti_dq_bl0_driv_imped[]

cti_dq_bl1_driv_imped[]

cti_dq_bl2_driv_imped[]

cti_dq_bl3_driv_imped[]

cti_dq_bl4_driv_imped[]

cti_dq_bl5_driv_imped[]

cti_dq_bl6_driv_imped[]

cti_dq_bl7_driv_imped[]

cti_dq_bl8_driv_imped[]

Finally, the ODT in the ASIC should be turned off, which it will be due to

the resetn effect on, for example, ddo_dqs_roe[0]. Note: clk and CSN have

these signals permanently turned off in the SuperPhy.

2. For software filtering of IMP_P[3:0] & IMP_N[3:0]:

- what is the counting sequence as settings cause decreasing impedance?

Answer:

For N: 9 is slow, 5 is typ, 3 is fast PVT.

So, if you have a single part sitting on the bench, operating with some

fixed voltage, temp, and process, all unchanging, then increasing

IMP_N[3:0] will decrease the output impedance.

For P: 12 is slow, 7 is typ, 4 is fast PVT.

So, increasing IMP_N[3:0] will decrease the output impedance.

- what are the expected nominal (i.e., TT process, 1.0V, 25C) values?

Answer: N= 5, P= 7.

- how much should we expect to see the values change with voltage &

temperature, i.e., sensitivites in LSBs /mV & /degree-C?

Answer: would have to do another HSpice sim to find this. But, based on

the PVT factors of [1.321, 1.185, 1.101], then a coarse answer would be:

Voltage

N: (9/5 - 1)* (0.185 / 0.72349)= 20.46%

i.e. 20.46% change for 100mV delta, or 0.2046% change for 1mV delta.

==> 0.2046% * 5 = 0.01023 numeric change / mV.

==> "1mV delta" will require changing the setting from:

5 to 5.01023.

P: (12/7 - 1)* (0.185 / 0.72349)= 18.26%

i.e. 18.26% change for 100mV delta, or 0.1826% change for 1mV delta.

==> 0.1826% * 7 = 0.012782 numeric change / mV.

May 14, 2014 863 Rev 51328

SiCortex Confidential CHAPTER 18. PROGRAMMING CONSIDERATIONS

==> "1mV delta" will require changing the setting from:

7 to 7.012782.

Temperature

N: (9/5 - 1)* (0.101 / 0.72349)= 11.168%

i.e. 11.168% change for 100C delta, or 0.11168% change for 1C delta.

==> 0.11168% * 5 = 0.005584 numeric change / C.

==> "1C delta" will require changing the setting from:

5 to 5.005584

P: (12/7 - 1)* (0.101 / 0.72349)= 9.9715%

i.e. 9.9715% change for 100C delta, or 0.099715% change for 1C delta.

==> 0.099715% * 7 = 0.00698 numeric change / C.

==> "1C delta" will require changing the setting from:

7 to 7.00698

18.3.3 DDR Impedance Calibration and Bug 2013

See Section 8.4.8.36 for a discussion of the different auto calibration modes. Note that CalMode 2 is not
currently supported. If any memory transaction is in flight at the time an autocalibration in mode 2 is initiated,
the autocal state machine will hang and prevent completion of the calibration loop and thus completion of the
memory reference.

18.4 Initializing the PMI/PCI Controller

18.4.1 Unused PCI Controllers

18.4.2 PCI Controllers With Connected Devices

18.4.3 PCI Controllers With No Connected Device

May 14, 2014 864 Rev 51328

Chapter 19

Differences, Bugs, and Enhancements

19.1 Overview

This chapter summarizes the product differences and errata for the different SiCortex chips. See the corre-
sponding chapters for more information.

19.2 User Code

19.2.1 Product and Chip Pass Differences

1. ICE9B fixes bug2619 whereby ICE9A requires double load-linkeds to insure atomicity. This also removes
the rationale for the suggestion in bug2807 that R CpuConfig LLTIME be programmed to 1 or greater to
allow enough time for most atomic sequences to complete; LLTIME may now be programmed to zero.

2. ICE9B1 fixes bug2826 whereby Multiply Double and friends may get a incorrect results when not followed
by a idle cycle, or after write-after-write stalls. This afflicted madd.d, msub.d, mul.d, nmadd.d, nmsub.d,
recip.d, rsqrt.d, and sqrt.d.

3. NEED IMPL: TWC9A adds more CPU cores, for a total of 10.

4. TWC9A uses a new core, IceT. This is described in a different document.

19.2.2 Known Bugs and Possible Enhancements

1. None.

19.3 Processor Core

19.3.1 Product and Chip Pass Differences

1. ICE9B returns a different product (ICE9B) when reading R CpuPRId and R CpuTapIDCODE.

2. ICE9B fixes bug1965 whereby R CpuErrCtl reads swap bits 31 and 28. In ICE9A any read-modify-writes
need to swap these bits before writing them back.

3. ICE9B improves micro DTLB performance bug 2200 with a entry size of 64KB when the corresponding
TLB entry is 64KB or larger. If the TLB entry is 16KB, the old 4KB uTLB entry size is used.

4. ICE9B improves probe performance by using 64 byte probes, see bug2202.

5. ICE9B removes an unnecessary syncronizer on the cac cpu int wires, this reduces interrupt latency by one
pclk.

6. ICE9B adds performance counter events for L2 misses and floating point operations, and allows all events
to be visible to both counter 0 and counter 1.

865

SiCortex Confidential CHAPTER 19. DIFFERENCES, BUGS, AND ENHANCEMENTS

7. TWC9A returns a different product (TWC9A) when reading R CpuPRId and R CpuTapIDCODE.

8. TWC9A uses a new core, IceT. This is described in a different document.

19.3.2 Known Bugs and Possible Enhancements (M5KF only)

1. On D-Cache ECC errors, R CpuCacheErr EW may record the incorrect way number and index, see
bug1575. As a workaround, software should flush the entire cache on ECC errors.

2. On filling the TLB with a 4KB page, we should pull a machine check, as 4KB pages are not supported.

3. On writes to accelerated space, we should pull a machine check, as they are not supported.

4. We should add a 64-bit cycle counter which is NOT writable, as the current count register is occasionally
overwritten by the kernel, bug3342.

5. We should implement the RDHWR instruction so user space code can see the cycle counter and processor
number.

6. We should add more VA bits, to enable the VA to be unique across the entire system.

19.4 Addressing

19.4.1 Product and Chip Pass Differences

1. TWC9A adds some values to the AddrBusStop enumeration to support the additional cores, bug3377 .

19.5 L2 Cache

19.5.1 Product and Chip Pass Differences

1. TWC9A’s L2 cache is part of the new IceT core, and is described in a different document.

2. TWC9A adds the CswStopNumTwc and CswTidTwc enumeration to support more cores, and more TIDs
per core, bug3377.

3. NEED IMPL: TWC9A fixes the R CacxIntCr[#] Overflowbit being mis-cleared when clearing R CacxIntCr[#] Active,
bug3165.

4. NEED IMPL: The R CohxEccMode CorEna bit must be set whenever the ICE9 caches are active, bug1990.

5. NEED IMPL: TWC9A pushes IO writes instead of using a special command, bug4898.

6. NEED IMPL: TWC9A removes SPCL in favor of IO writes, bug4899.

7. NEED IMPL: TWC9A stalls issuing probes to avoid large per-cpu probe queues.

19.5.2 Known Bugs and Possible Enhancements

19.6 Memory Controller

19.6.1 Product and Chip Pass Differences

1. ICE9B fixes the DDR unit to support IO driver calibration before the DRAM initialization sequence, bug2276.
In ICE9A the Ddr/Ddp units currently only support updating values into the IMP P HV[3:0] and IMP N HV[3:0]
inputs of the DDR2 IO cells during one of the mission mode time CalModes. When SoftReset is asserted the
PHY puts in default strong values (low impedence biased) into these.

May 14, 2014 866 Rev 51328

SiCortex Confidential 19.7. PCI

2. ICE9B fixes some of the ODT on/off range values, bug2401. The NWL controller was supposed to support
the following range of ODT turn on/off times for Ice9a’s DDR-Phy: ON time range: controlled by Ddrx-
PhyCfg2 AsicDqsOdtOn and DdrxPhyCfg2 AsicDqOdtOn -2.5 clocks <-> 0 clocks (in half cycle increments)
relative to the start of the read preamble OFF time range: controlled by DdrxPhyCfg2 AsicDqsOdtOff and
DdrxPhyCfg2 AsicDqOdtOff -1.5 clocks <-> 2 clocks (in half cycle increments) relative to the start of the
read preamble. However, the bug causes the -2.5 and -2 clocks turn on times to NOT work with turn off
times of 1.5 and 2 clocks.

3. TWC9A fixes access to any SCB bus slave hanging while the DDR controller is in reset, bug2928.

4. NEED IMPL: TWC9A drops support for unbuffered DIMMs.

19.6.2 Known Bugs and Possible Enhancements

1. Calibration Mode 2 can cause Ddi to hang waiting for Powerdown, see bug2013. When setting AutoCalUpdate
in cal mode 2 (update during prechargePowerdown), the Ddi can hang. This is caused when a request is at the
head of the queue requesting to be sent to the controller at the time we start the calibration update process.
The calibration logic spins in place waiting for powerdown entry. However, this pending request causes the
powerdown counter to be cleared on every cycle, which blocks the Ddr from ever entering powerdown mode.
To workaround, do not use calibration mode 2.

2. The DDR bank address could be changed to better optimize page hits, bug2068.

19.7 PCI

19.7.1 Product and Chip Pass Differences

1. ICE9B fixes legacy interrupt D behavior incorrect during a link down, bug1984. In ICE9A if an AS-
SERT INTD message arrives from the endpoint, software will service the interrupt. During this time, if
the link goes down, an implicit DEASSERT INTD should occur, but this did not happen. So if the interrupt
service routine ends with a ”wait for DEASSERT INTD”, and it is possible that it will hang forever.

2. ICE9B fixes ecc error ignored when CLEAR comes at the same time, bug2028. In ICE9A if an ECC error
is in effect and the interrupt is raised. Some time software clears the interrupt and an ECC error comes at
the same time (in PMI where is checks, or not checks, for ecc error and clear), PMI ignores the second ECC
error.

3. ICE9B fixes the MsiBaseAddr register addressing, bug2097. In ICE9A, software has to program the PMI
MsiBaseAddr register with an Ice9 address converted into a PCIe space address (look at the address mapping
in the hardware spec).

4. ICE9B fixes RX detection not being completed when some lanes are disabled, bug2113. In ICE9A, when one
or more lanes of a multi-lane link are disabled using TxCompliance/TxElecIdle as described in Section 8 of
the PIPE specification, initiating a receiver detection sequence will cause the PCS layer to hang due to the
”turned off” lanes not performing the receiver detection operation. To workaround, enable all lanes prior to
performing a receiver detection operation, as lanes which are turned off will not participate in the receiver
detection sequence.

5. NEED IMPL: TWC9A fixes only the bottom 16 bit being writable in R PmiVmReqDat, bug2760. We
couldn’t find any PCIe vendor which uses vendor messages, so this is of only minor concern.

19.7.2 Known Bugs and Possible Enhancements

1. None.

May 14, 2014 867 Rev 51328

SiCortex Confidential CHAPTER 19. DIFFERENCES, BUGS, AND ENHANCEMENTS

19.8 DMA

19.8.1 Product and Chip Pass Differences

1. NEED IMPL: TWC9A records the address and syndrome of DRAM ECC errors, bug2157.

2. NEED IMPL: TWC9A fixes generation of bad ECC when ECC correction disabled and a 32-bit aligned
packet is read, bug2396. R SdmaEccMode bit 6 (CifCorrEna) enables ECC correction in CIF. This logic is
only needed when the microengine does a BRD from a memory address with bit 2 set (32-bit realignment).
When CifCorrEna is off and the microengine does a BRD from a memory address with bit 2 set, the ECC
written into the DMA’s internal memory (TX or COPY port packet buffer) is incorrectly forced to zero. Data
with corrupted ECC may reach the FSW or main memory when the packet is sent. To workaround, leave
CifCorrEna always set.

3. NEED IMPL: TWC9A fixes non-correction of ECC during 32-bit realignment operations, bug2403. When
the CifCorrEna bit is on, and DMA is doing a read with 32-bit realignment, and there is a single bit error
on the data from the CSW, the RTL does not correct the error. The RTL corrects the error inside the
DmaCifDatacalg modules, but then incorrectly puts out the uncorrected data on cif xxx Data*[63:0] and into
the next DmaCifDatacalg module. But the ECC bits on cif xxx data*[71:64] are the ECC consistent with
the corrected data, so the resulting data appears to have just a single bit error. Workaround: None needed,
as the error will be corrected at the destination of the DMA engine.

4. NEED IMPL: TWC9A might double the size of the instruction memory, bug3390.

5. NEED IMPL: TWC9A removes SPCL in favor of IO writes, bug4899.

6. NEED IMPL: TWC9A removes 32 byte writes to support DDR x4 parts, bug4793.

7. MIGHTFIX: TWC9A might fix a performance issue which requires a dead cycle between DMA packets headed
into the FSW, bug597.

8. MIGHTFIX: TWC9A might fix DmaCif RDIO being corrupted by subsequent WTIO from the same core,
bug1991. This can cause RDIOs to return corrupted data when followed immediately by a WTIO from the
same CPU. I/O accesses from different CPUs are not affected, and SPCLs are not affected. When it happens,
the WTIO overwrites the data before it can be sent back to the core, so the RDIO incorrectly returns the
data from the WTIO. To avoid this, either issue a SYNC instruction between the RDIO and WTIO, or
be sure to use the RDIO result before issuing the WTIO. All DMA addresses are affected (RA DmaImem,
RA DmaDmem, RA DmaAppIface0,1, etc.) except for those in the SCB range (RA SDma*). The bug has
only been observed when DMA is in the process of doing lots of block writes and the CSW is heavily loaded.

9. MIGHTFIX: Various possible microinstruction enhancements, bug3392, bug3393, bug3394, bug3395, bug3396.

19.8.2 Known Bugs and Possible Enhancements

19.9 Fabric Links

19.9.1 Product and Chip Pass Differences

1. NEED IMPL: TWC9A fixes certain noise patterns from causing fabric deadlocks, bug2132.

2. NEED IMPL: All FL internal counters’ increment signals should be wired into the SCB counters, bug3488.

19.9.2 Known Bugs and Possible Enhancements

1. Force retraining should always complete, and software shouldn’t have to detect and implement retries.

2. The out-of-band path was never used by software, and could be removed for simplicity if desired.

May 14, 2014 868 Rev 51328

SiCortex Confidential 19.10. FABRIC SWITCH

19.10 Fabric Switch

19.10.1 Product and Chip Pass Differences

1. None.

19.10.2 Known Bugs and Possible Enhancements

1. The FSW has an architectural performance limit preventing 4 ford packets at max rate, bug1832.

19.11 SCB

19.11.1 Product and Chip Pass Differences

1. ICE9B returns a different product (ICE9B) and/or revision (ICE9A1 vs ICE9A0) when reading R ScbChipRev.

2. ICE9B has reduced latency accessing the SCB’s own registers.

3. ICE9B adds a interrupt/attention for when the Chip<->Msp channel is ready for transmit.

4. ICE9B adds R ScbDInt to replace the SysChain R SysTapDint register, see bug2223.

5. TWC9A returns a different product (TWC9A) and/or revision when reading R ScbChipRev.

6. NEED IMPL: TWC9A supports 64 bit SCB slaves and 64 bit registers, see bug4619.

7. TWC9A adds R ScbDInt SendDInt6, R ScbDInt Cpu6DM, R ScbAtnInt Cpu6DMMask, and R ScbAtnInt Cpu6DM
to support CPUs 6-9.

8. TWC9A fixes reads to fast DDR clock registers returning the wrong results after a CCLK register read,
bug4331. Earlier chips required a dummy read between such read sequences.

9. TWC9A will skip sampling bucket pairs where R ScbPerfBuckets Event == AllEvent INVALID. This is
backward compatible with other products, which should use that encoding for invalid buckets. bug4265.

19.11.2 Known Bugs and Possible Enhancements

1. In ICE9A and ICE9B, all SCB accesses must be done with 32-bit accesses. Using a 64-bit read/write to
access them will put return/write data in the wrong half of the quadword, not simply return or write half of
the data.

2. Decouple the SCB CPU# P[01] events from the CPU performance counter domain (U/S/K), perhaps with
new domain bits.

3. SCB performance counts from Ocla TrbC blocks depend on the TrbC configuration, this could be simplified.
bug1717.

4. R ScbPerfEna should have a way to stop immediately, without corrupting, for interrupt handlers. Perhaps
add a Pause bit that stops on current bucket and partial interval. We’ll also need to make the partial interval
programmable so context switches can reprogram it.

5. R ScbPerf* registers should be writable without needing to stop sampling.

6. R ScbInt should indicate what bucket(s) have caused the overflow, to save software from having to read the
entire count ram on each overflow, bug2164.

7. R SysTapMsp transactions should be double buffered, as the Msp decision loop is quite slow.

8. R ScbInt like most of the other blocks in the chip contains the interrupt state before masking. This requires
the interrupt handler to read (or cache) R ScbIntMask before dispatching interrupts.

May 14, 2014 869 Rev 51328

SiCortex Confidential CHAPTER 19. DIFFERENCES, BUGS, AND ENHANCEMENTS

19.12 LBS

19.12.1 Product and Chip Pass Differences

1. ICE9A1 returns a different revision (ICE9A1 vs ICE9A0) when reading the IDECODE register.

2. ICE9B fixes Sms Reset syncronized to the wrong clock, bug2055. This required the smsclock to be turned off
whenever we wiggle reset, then turned on again a bit later.

3. ICE9B eliminates R SysTapDint, replaced with the SCB-space R ScbDInt, bug2223.

4. ICE9B supports transmit interrupts for R SysTapAtnMsp, and separates RW1C bits, bug2222.

5. NEED IMPL: TWC9A changes the default value for R SysTapPll D*clkDifv to support a processor default
clock frequency of *FIX* MHz, bug3384.

6. TWC9A fixes access to any SCB bus slave hanging while the DDR controller is in reset, bug2928.

7. TWC9A adds an R SysTapReset Lac and Pmi to separate the R SysTapReset Scb bit from also controling
the BBS/PMI reset, bug2929. Earlier products needed caution when maintaining FSW/FL traffic during
partial reboots.

8. NEED IMPL: TWC9A adds R SysTapReset Proc6, and ProcSms6 to support the additional cores.

9. TWC9A uses R SysTapInstrTwc instead of R SysTapInstReg to support the additional cores.

10. TWC9A adds R SysTapScb64 to access doubleword SCB registers. Code should use this new registers or 64
bit SCB registers will not be visible.

11. NEED IMPL: TWC9A adds R SysMemInit register and associated functions for on-chip memory initalization.
In previous products BIST was used to initalize on-chip memories.

12. NEED IMPL+SPEC: TWC9A will merge the SysChain and E-Silicon chain on-chip instead of off-chip.

13. NEED IMPL+SPEC: TWC9A will replace or make the E-Silicon chain IEEE compliant (on the correct edges).

19.12.2 Known Bugs and Possible Enhancements

1. [Larry] Add a new LBS+SCB region. The msp could set the start address in 32 or 64 bit steps, and then scan
in, say 128 bytes with a continuous shift on the scan. Then, while the ice9 digests that block, the msp scans
in 128 bytes into the alternate half of the block. This is essentially a block of shared memory accessed on the
ice9 side by scb and on the msp side by efficient scan. The scan chain would shift in a direction compatible
with the qspi as well. This shared area would be used instead of fastdata (since it would be much faster) for
boot2 loading, and we would also use it for block transfers of attn data instead of doing that 26 bits at a time
via the current attn register.

19.13 UART

19.13.1 Product and Chip Pass Differences

1. FIX NEED IMPL: TWC9A removes the UART flow control signals. They were never used on the ICE9
modules.

19.14 OCLA

19.14.1 Product and Chip Pass Differences

1. ICE9B fixes GO->0 should shut OFF collection, bug2246. CollectTrace can be left ON by stopping an OCLA
program that had not yet seen it’s trigger. CollectTrace can only be controlled by a running OCLA program,
so you can’t shut it off by SCB writes. While CollectTrace is ON, you cannot dump any CTBs. Workarounds:
(a) A Diagnostics Dash script has been written that loads and runs a minimal OCLA program to shut off

May 14, 2014 870 Rev 51328

SiCortex Confidential 19.14. OCLA

CollectTrace. (b) The OCLA dump program has been written to detect CollectTrace=ON, and exit with
meaningful error message. (c) OCLA Dash scripts and all example OCLA programs have been written with
a âgraceful exitâ option, where a specific register-write tells it to shut CollectTrace OFF and stop watching
for the trigger it didn’t get yet.

2. ICE9B adds new INCRBTH Opcode, bug2179. In ICE9A, although OCLA has 2 counters, you cannot count
2 events concurrently, because if both happen on same clock there’s no way to increment both counters.

3. ICE9B enlarges counters from 12 to 16 bits, bug2244.

4. ICE9B fixes PMI CTB ExtMuxSel wired to TRBC, bug1959. The ExtMuxSel wires of OCLA PMI CTB were
wired to the SCB register that’s supposed to control OCLA PMII TRBC. To workaround, write desired PMI
CTB ExtMuxSel value to ExtMuxSel field in control register for PMII TRBC. Fortunately, PMII TRBC has
no ExtMux, so this field is otherwise unused. Simplest solution without determining whether you have Ice9A
or ICE9B is write desired PMI CTB ExtMuxSel value to both ExtMuxSel fields.

5. ICE9B fixes CAC trigger PrbState obscured by WtPrb2L2, bug1995. OCLA CAC TRBC mux=2 signals
PrbState[2:0] had WtPrb2L2 OR-ed into PrbState[2]. To workaround, don’t use PrbState as a trigger, or
only trigger on PrbState groups of state that you can identify with bits [1:0].

6. ICE9B fixes CAC trigger W0Hit/W1Hit instead of W0Miss/W1Miss, bug2243. In ICE9A, both CAC
Trigger Block and Collector Block hookups: (a) Change W0Miss/W1Miss to something better, perhaps
W0Hit/W1Hit. Miss is including Idle and I/O. (b) Adjust flops so W0Hit/W1Hit in same clock with related
signals. To workaround, (a) qualify with not-Idle and not-IO. (b) Separately feed Hit and the other signals
to LAC in separate triggers, then align them with Dly regs in LAC.

7. MIGHTFIX: TWC9A might fix OCLA to SCB uses LAC triggers, bug1717. Passing OCLA events from
trigger blocks to SCB Counters ties up LAC trigger configuration, usually preventing simultaneous OCLA
use for other purposes. To workaround, accept that you are tying up OCLA with this. The cross connections
between OCLA and SCB counting may not be used that much. You might prefer to count SCB events in
SCB counters, and count OCLA events in OCLA counters.

8. MIGHTFIX: TWC9A might allow trigger delays for blocks located in other than the CCLK domain, bug1854.

9. MIGHTFIX: TWC9A might add capture mux settings for the CPU program counter and L2<->L1 signals.

10. NEED IMPL: TWC9A might add capture mux settings for the FSW links 1 and 2, bug2232.

11. MIGHTFIX: TWC9A might fix DMA CTB qualifier in wrong clock, bug2193. In DMA’s hookups to OCLA,
the ue xxx DbgValid c2a signal is sent into the trigger block and CTB, when really it should be delayed by
two more cycles. In the CTB as a qualifier we pretty much cannot use it, because you want to use it in
combination with other signals like DbgThread c4a and DbgPc c4a. To workaround, only do un-qualified
collection in DMA CTB. In DMA trigger block, send it and other signals separately on the 2 triggers to LAC,
where the Dly regs can align them.

12. MIGHTFIX: TWC9A might add a WtAddr sticky overflow bit, bug2207.

13. MIGHTFIX: TWC9A

19.14.2 Known Bugs

1. Overflow bits still set as OCLA starts, bug1825. OCLA’s automatic clearing of counter overflow bits when
you start LAC program is delayed a clock or two. Early instructions in LAC program can falsely trigger on
overflow depending on the previous use of OCLA. To workaround, never branch on Counter Overflows in first
2 instructions of any LAC program.

2. C CTB WtAddrClr triggered by any address in CTB, bug2026. Writing 0x10 to any SCB register address in
a particular Ocla CTB can trigger WtAddrClr (clear write address reg). This even includes unused addresses
within the SCB address space of a CTB. To workaround, never write any of the read-only registers.

May 14, 2014 871 Rev 51328

SiCortex Confidential CHAPTER 19. DIFFERENCES, BUGS, AND ENHANCEMENTS

19.14.3 Possible Enhancements

1. Make both LAC counters 32-bit (currently 16-bits plus sticky overflow bit). There’s only one instance of the
LAC, so this is very affordable. We’ve wanted bigger counters when writing LAC programs, and unanticipated
but valuable use of OCLA as a highly-configurable counter would benefit from full 32-bit counters.

2. Separate“GO”Register. When you write OCLA management software for one of Ice9’s embedded processors,
or for the external SSP, you tend to write one function that configures OCLA ahead of time, and another
function to tell OCLA to “GO” at roughly the right moment. Currently the GO bit shares register R LacCtl
with some configuration fields that need to be written correctly for what you want OCLA to do. This
contributes to messy software design in that you must have handy the values to write to those fields when you
write a 1 to GO to start the LAC program. It would be nice if all OCLA configuration could be encapsulated
in, and completed by an OCLA configuration function.

3. If SCB reg addresses are cheap, consider breaking R LacCtl into 3 or 4 registers by type of access, making
software easier to write.

4. Collect ON/OFF by Register Write. Provide a super-simple alternative to writing a LAC program, for when
exact timing of collection is not critical. Provide one or two registers that allow you, by SCB register write
alone, to turn on and off CollectTrace to the CTBs. This allows someone with minimal knowledge of OLCA
to quickly collect some trace information and read it out, just by doing easy-to-understand SCB writes and
reads. Some semi-steady-state activities can be viewed at an arbitrary time, or you could try more than
once till you see it. Or, for more accuracy, you could have Ice9 embedded processor code trigger collection at
roughly the right time, and rely on the 1024-entry size of the CTBs to give you a pretty big window to land
in. These reg writes would the same logic as the SETCOLL and CLRCOLL opcodes from LAC.

5. Trigger by Register Write. There are ways to do this now, but they’re a little obscure. I’m suggesting a
very-simple up-front way to trigger your LAC program by writing an SCB register in LAC who’s sole purpose
is to do this. Aggregate Mask and Match bits 0 and 1 are available, so why not have them driven directly
from such a register.

6. Clarify When CTB Has New Contents. Currently it’s a little hassle to do sanity checks that your CTB really
got new contents from running your LAC program. Especially when you are wondering if you configured
everything correctly. You can “trust that a good-status completed LAC program means you have new CTB
contents”. You can alternate the CTB’s external mux between what you want to collect and something else,
then read-out the CTB and see that contents changed.

7. CTB Zeroing. An SCB-register “ClearCtb” action-bit in each CTB, that would zero-out the CTB (taking
1024 clocks). This bit could be readable and self-clears after the 1024 clocks have passed, so it’s safe to start
a new collection.

8. StopOnFull Final Address. Currently, in StopOnFull mode, when the CTB gets full and stops collecting, the
final address is 0x000, which is the same address it would have if it never started! Either change this to stop
at 0x3FF, or have a sticky overflow bit which clears when you write WtAddrClr in R CtbxColCtl.

9. StoppedOnFull Status Bit. If in StopOnFull mode, have a read-only bit StoppedOnFull in R CtbxColCtl.
This signal already exists in the CTB Verilog code.

10. Fix the“Collecting”Status Bit. Bit“Collecting”of R CtbxColCtl is directly flopped off of lac ctb CollectTrace c0a,
which means it doesn’t take into consideration a CTB in StopOnFull mode that has become full. Reading of
the CTB works in that case. Change Collecting to be false if StopOnFull and full. A signal with this info
is available in the CTB verilog code. You might also consider having “Collecting” read back as 0 when En-
ableCollect==0. To be able to see the level of signal lac ctb CollectTrace c0a clearly in one central place, add
read-only bit “CollectTrace” to R LacCtl (or if R LacCtl gets broken-up into several registers as suggested,
put this bit in whatever register contains the other read-only fields).

11. Have 0xFFFFFFFF Indicate Bad Read. If you try to read the contents of your CTB when you cannot,
you currently get all-zeros. All-zeros can mean you never collected anything, and also for some units it’s
a likely read-result if you collected during an idle time. A tiny change in the verilog could make it return
0xFFFFFFFF’s for reads when you can’t read the CTB. This would be clearly different than a failure to
trigger collection, and is an almost-impossible long series of values for any CTB to collect.

May 14, 2014 872 Rev 51328

SiCortex Confidential 19.14. OCLA

12. Stopping LAC Stops Collection. Have a transition of the GO bit 1 -> 0 cause the CLRCOLL action. This
eliminates the hazard of someone stopping the LAC program manually by clearing the GO bit, but then being
unable to read any CTB contents because CollectTrace is still ON. Have this be by 1 -> 0 transition, not by
GO==0, so we can have the previously-mentioned registers that turn on and off collection. The way OLCA
is now it can be very irritating if you happened to shut off LAC by writing 0 to the GO bit when collection
was ON. There’s no straightforward way to shut off collection of all enabled CTBs by register-write, you can
only shut them off by opcode CLRCOLL in a running LAC program. This is no problem when the next
LAC program you wish to run is of the CTB StopOnFull=0 unqualified style, but if you are doing qualified
collection with StopOnFull=1 and you want to start at CTB address=0 it can be a problem. You might think
you could just begin every LAC program with a CLRCOLL and your problems would be solved, but there’s
no way inside a LAC program to clear a CTB’s WtAddr.

13. Move Delay Registers into the Trigger Blocks. Having the Delay Registers centralized in LAC means they’re
all flopped in cclk domain. FSW triggers and trigger blocks are in sclk domain. To be able to line-up FSW
signals into a complex trigger is hard, although this was partly solved by providing some FSW trigger signals
to it’s trigger blocks more than once, with different sclk delays. The best solution to this is to have the delay
registers in the Trigger Blocks, not centralized in the LAC.

14. More External-Mux Values, or Extra Mux in FSW. Boost the number of bits to control external muxes from
3 to 4 or 5. Do this for all types of trigger and collector blocks. Almost no extra logic is created by this except
in those blocks where the extra external-mux-value options are used. The motivation for this is with regard
to the Link side of FSW. Currently OCLA in FSW only looks at FLR-0 and FLT-0 signals, due to mux-value
limitations. For better board and system debug, to use OCLA freely to see damaged traffic arriving any one
particular link, we really want all 6 links covered by OCLA. (b) Another way to get all 6 Link interfaces in
FSW into OCLA, without changing OCLA Trigger or Collector blocks, is to just put a new register into FSW.
This register in FSW’s register address space would take values of 0, 1, or 2, and would drive a first level
of muxing, selecting which link-number provides FLR and FLT signals to the current OCLA-register-driven
external muxes.

15. More Collection Qualifiers. CTBs currently allow up-to 2 Qualifier signals. In some uses of CTBs there were
more signals that would be handy to have available as qualifiers. The external mux selecting data for a CTB
often selects between a good number of unrelated interfaces. In a number of cases you just accept that you
have to do un-qualified collection, because the 2 qualifiers provided are not relevant to the interface or signals
you are looking at.

16. More CTB Qualifier Inputs. Perhaps 4.

17. Use External Mux on Qualifiers. When instantiating CTBs, follow the example of how FSW Vector Trigger
Blocks are instantiated, where the external mux selectors vary both the data and the qualifier to be used.

18. Eliminate Qualifiers in Codeword Trigger Blocks. The way Codeword Trigger Blocks work, all the trigger
inputs are effectively qualifiers on each other. There’s no reason to handle some inputs differently and call
them “qualifiers”.

19. Widen Vector Trigger Blocks to 64-Bits. FSW is really the only place where Vector Trigger Blocks are used,
because the way they’re used in DMA is more naturally served by Codeword Trigger Blocks. In FSW the
natural width of the busses looked-at is 64 bits. It would be a usage simplification if the Trigger Block just
looked at the 64 bits.

May 14, 2014 873 Rev 51328

Index

AddrMfgr, 845
AddrProduct, 846

BWTGO, 397

Commands
BRD, 407–409, 411–414
BRDR, 414
BWT, 396, 397, 399–405
BWTDONE, 374, 388, 399, 401, 412
BWTGO, 396, 397, 399, 402
BWTNOHIT, 403
DONE, 423
FLUSH, 395
INT, 422
PRBBRD, 411–414, 418
PRBBWT, 399–401, 403
PRBDONE, 370, 371, 373, 377, 380–382, 387, 397,

402, 405, 411, 413
PRBINV, 390–392, 404, 405, 417, 419
PRBNOHIT, 372, 386, 414
PRBSHR, 380–384, 387, 388, 418, 419
PRBWIN, 370, 371, 373, 374, 417, 418
RDEX, 365, 367, 368, 370, 373, 374, 390–392
RDEXR, 372
RDIO, 415, 416
RDS, 375, 377, 378, 380, 382, 383, 387, 388
RDSR, 386
RDSV, 376, 381, 384
RDV, 366, 371
SPCL, 423
WBCANCEL, 366, 371, 376, 381, 384, 392
WINV, 394
WRSTRANS, 383, 385
WTIO, 416

Control Link, 49

fabric switch, 119
FORD, 49
forward progress market, 122
FPM, 122

OCLA, SCB Triggering, 515

Performance Counters, 514

SCB, 503, 509
SClock, 49
Serial Control Bus (See SCB), 503, 509

Serial Link, 49
SPCL, 452
SysChain, Access to SCB registers, 513

874

