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INTRODUCTION

This book deals with a class of digital magnetic-core circuits
that consist of magnetic components and interconnecting conductors,
and which offer extremely high reliability, long life, and adapta-
bility to special environments, e.g., high~intensity radiation. The
history of such core-wire civcuits, as we refer to them in this
book, spans some 15 to 20 years, from the first discussions of
theoretical possibility to the large array of techniques and varia-
tions at present.

Four potential areas of study for any device and circuit tech-
nology are (1) the physics of the devices, (2) the development of
engineering models for use in circuit analysis, (3) the develop-
ment of circuit synthesis techniques, and (4) the development of
quantitative circuit-design methods. Part I is concerned with
areas (3) and (4) and is based on the use of a highly abstracted
magnetic-core model that greatly simplifies the discussion of
basic circuit principles. The bulk of the writing in Part I covers
many different core-wire techniques and represents an attempt to
integrate the published work of many different authors. Parts of
Chaps. 6 and 10 are concerned with circuit-design methods not
previously published. Part II covers areas (1) and (2), based on
use of more detailed, precise consideration of magnetic phenom-
ena, Chapter 11 provides a condensed summary of the physics
of magnetism for readers wishing some insight into the behavior
of square-loop cores. Chapter 12 covers recently developed core
models that permit accurate representation of flux switching in
square-loop cores.

Part I is a step-by-step development of the principles of
magnetic-core circuit techniques. In Chap. 1 we introduce the
language of flux linkage and current linkage, and show how ba-
sically different the circuit action is when a core is loaded with
resistive, inductive, or capacitive elements. In Chap. 2 we consider
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flux transfer from one core to another core, in which case a
change in flux linkage from the switching of a first core induces
a coupling-loop current that switches the second core; the change
in flux level, A¢, becomes our basic signal. We are primarily
interested in the ratio of received flux to transmitted flux, i.e.,
the flux-transfer ratio G, which is generally a function of the
transmitted flux level A¢,. Of special interest are the conditions
for G > 1, that is, for A¢ gain.

In Chap. 3 we show that in order to achieve bistable gain
characteristics, G must exhibit a certain form of functional
dependence on Aé,. Proper balancing of flux-gain and flux-loss
mechanisms permits the realization of the required functional
form. To maintain this transfer characteristic between two cores
embedded in a chain of similar cores, certain requirements on
forward and backward isolation must be met. It is shown how
diodes readily serve in this role, which is the basis of the well-
known core~diode logic circuits,

In Chap. 4 we introduce several varieties of core-wire cir-
cuits. This begins as an effort to replace the diodes in a core-
diode circuit by other toroidal cores. A systematic replacement
procedure is developed, and we show how any core-diode circuit
can in fact be realized in core-wire form, i.e., as a circuit con-
sisting simply of toroidal cores and interconnecting wire. We then
extend the class of core-wire circuits and develop new circuit
forms that have no equivalent core-diode forms. We also intro-
duce more complex core shapes, i.e., multileg cores, and show
their advantages over functionally equivalent arrays of simple
toroidal cores.

In Chap. 5 we show how to transform a core circuit to a
magnetic-network representation in which rate of flux change is
the flow variable. The network representation provides a common
language for flux-transfer schemes. Many schemes that super-
ficially appear different can be shown by the network representa-
tion to be functionally equivalent. Also, it is generally simpler
to convert from one type of scheme to another after transforming
to the network domain. Examples of transformations and reverse
transformations are given. In particular, it is shown that any
given network may often have many different forms of physical
realization,

In Chap. 6 we treat a specific core-wire scheme, designated
by the term MAD-R, that has been studied and applied more than
any other scheme. A quantitative design method for this form of
circuit is presented, and it is shown that circuits of this type can
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be designed to operate with very wide tolerances on temperature
and power-supply conditions.

The core-wire schemes known today were invented by many
different persons and generally in a rather ad koc and random
fashion, a situation that characterizes the early advances in many
fields. In Chap. 7, a technique is described by means of which one
can search for all possible schemes for a given configuration of
magnetic elements. Certain new schemes derived in this fashion,
as well as a formal ¢‘re-inventing’’ of certain of the schemes
discussed in Chaps. 4 and 5, are given by way of example, The
method itself offers interesting insight into the operation of these
circuits,

A comment is in order on scheme identification as generally
used throughout these chapters. Because it was not easy to de-
velop nomenclature that clearly distinguishes between various
schemes (in the fashion of the terms DCTL, TRL, and the like,
as applied to transistor circuits), we decided instead to identify
a scheme or method of approach by the name of the person with
whom it is associated, as far as we know, either by patent dis-
closure or publication., We depart from this policy in the case of
better-known schemes when a name has been established (e.g., the
MAD-R scheme).

In Chaps. 8 and 9 we introduce other methods of approach to
circuit synthesis that open up whole new families of schemes,
some of which offer significant potential for future practical ap-
plication. Three different techniques are introduced in Chap. 8,
each leading to new scheme types. Together these techniques pave
the way in Chap. 9 for an important class of bipolar schemes. In
the bipolar representation, the binary states (designated oze and
zero) are symmetrically represented;i.e., they are characterized by
flux transfer of equal amplitudes but opposite polarities, as opposed
to high and low levels of flux transfer in the unipolar schemes. A
number of especially interesting schemes based on the use of co-
herent rotation of magnetization in thin films fall into the bipolar
category.

Through Chap. 9 we are concerned strictly with the develop-
ment of basic transfer schemes, i.e., flux transfer along a simple,
iterative chain of circuits, without regard to logical fan-in or
fan-out. In Chap. 10 we investigate methods of general logic
synthesis with core-wire circuits.

Part II is concerned with the magnetic devices themselves.
Chapter 11 is a highly condensed, step-by-step exposition of
the physics of magnetism that leads to the basic square-loop
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characteristic and the basic mechanisms of flux switching. It pro-
vides the reader with some background to appreciate the empirical
models for flux switching that are discussed in detail in Chap. 12.

The goal of Chap. 12 is to model the static and dynamic flux
properties of square-loop magnetic cores. It is shown that a pair
of simple mathematical equations can model the major hysteresis
loop of a typical ferrite material, from which hysteresis loops for
thick-walled toroidal cores are derived and shown to fit experi-
mental data quite accurately, Parameters derived from these
static hysteresis curves are used in the dynamic switching models.
From the results of basic flux-switching experiments, it is shown
that the familiar elastic and inelastic components of flux switch-
ing can best be modeled in terms of two components each. The
two components of elastic switching are due to rotation of mag-
netization and local domain-wall movements; the two components
of inelastic switching relate to what are referred to as minor and
major wall displacements, Mathematical equations for all four com-
ponents are derived, and it is shown how these relations quite
accurately model flux switching of ferrite cores over a large
range of drive amplitudes, conditions of loading, and switching
speed (from nanoseconds to microseconds). Computational methods
for the models are also discussed. These models are presently
being applied with considerable success to computer-aided analy-
sis of complex magnetic-core circuits,

Two primary reasons can be singled out for the erratic de-
velopment of core-wire logic circuits over the past fifteen years:
the general lack of background, training, and understanding of
magnetics by engineers who are the potential users; and the rapid
growth of semiconductor technology, which has generally offered
circuits with performance superior to that of core circuits under
most, though not all, conditions. This book was begun over seven
years before publication, and the enthusiasm for following it to
completion has been similarly erratic., We finally came to the
conclusion, independently of short-time variations in general in-
terest, that core-wire or other magnetic-core logic circuits in one
form or another will likely find their niche—if not based on rugged-
ness and reliability one year, then on radiation immunity and ab-
sence of standby power the next. This factor provided a major
impetus to complete the book. But equally important, although the
underlying thread of this book is the highly specialized technology
of core-wire circuits, much of the material is relevant to mag-
netic devices and circuits in general,
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In order to develop some background for dealing with flux trans-
fer between cores, which is basic to any digital magnetic-core
circuit, we consider in this first chapter the properties of simple
circuits utilizing a single magnetic element in combination with
certain of the more common electrical components, The primary
intent is qualitative understanding rather than engineering detail.

1-1 Introduction

Let us first review the fundamental rules governing induced
electromotive force (emf) and induced magnetomotive force (mmf).
Consider a vector field B representing magnetic flux density at
any point in space. If B changes with time, then an electric field E
is induced, as described by one of Maxwell’s equations, namely

_dB
at
By vector manipulation, Eq. (1-1) may be converted to the integral

form
fE.dzz_ifB.dA (1-2)
P at v

3

cul E = VxE = (1-1)
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usually referred to as Faraday’s law of induction, where P is any
closed path, and A is any surface bounded by P. The line integral
of E along P is the loop emf e, and | B-dA is the magnetic flux
linking the closed loop P. When the same quantity of flux ¢ is
encircled N times by the loop P, that is, a winding of N turns,
then, effectively

fB.dA = N¢ (1-3)
and for this case, Eq., (1-2) may be rewritten as
e--N® (1-4)
dt

The minus sign in Eq. (1-4) implies that the induced emf tends to
produce current with associated flux linkage opposing the original
Ndg/dt, in accordance with Lenz’s law and use of a left~hand rule.
Normally we will be concerned with a coupling loop, i.e., a closed
path formed by an electrical conductor, in which the current that
flows is such that the total voltage drop around the loop is always
equal to the induced emf e.

In core circuits we are primarily concerned with magnetic
fields that are concentrated within the surface boundariesof cores.
In Fig. 1-1, assume that the field B is confined entirely to the two
core legs A and B with total flux values of ¢, and ¢, respectively.
The flux in each of these legs closes through some external mag-
netic structure. If the closed path Pencircles these legs N, and Ng
times, as shown, then the total flux linking the path is actually

Nydyp + Ngobge

Leg A LegB ,p'
g - ego p
£ —
3:3'\‘;\ NBC{
—_;—‘J) iy N
J ¢ ¢g

Fig. 1-1. Interconnecting two magnetic legs
with a coupling loop of N4 and Ng turns;
polarities are consistent with +dpa/dt or
+d¢ g/dt inducing a positive loop current i,.

Consider next a vector current density J that generates a mag-
netic field, according to another of Maxwell’s equations
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cul H = VxH =] (1-5)

The displacement-current term dD/dt that normally belongs in this
equation is omitted here because it is generally negligible in the
circuits in which we are primarily interested. Equation (1-5) can
be converted to the integral form

fﬂ-dl:f,LdA (1-6)
jo4 A

usually referred to as Ampere’s law, where P’ is a closed path and
A" is any surface bounded by P". The line integral of H is the loop
mmf F, and [ J-dA is the total current linkage of the closed loop P".
For a set of discrete currents i ; linking P'we can rewrite Eq. (1-6)
as

F = 2oNi; (1-7)

If P’ follows along Leg B, then the component of mmf generated by
current i, is Npi,, with direction given by the familiar right-hand
rule.

From Fig. 1-1 we see that any flux change in Leg A threads
the electric loop N, times and that any loop current encircles
Leg A the same number of times. This illustrates that the number
of interlinkages between a magnetic leg and an electric loop is
actually independent of which one wraps around the other. It also
brings out the distinction between total flux linkage through an
electric loop, versus simply the flux in a magnetic leg, and simi-
larly for total current linkage through a magnetic core versus
simply the current in a conductor.

Figure 1-2 shows the general circuit configuration to be con-
sidered in the following sections, in which we analyze separately
the effects of resistive, inductive, and capacitive loads on a core
connected to a drive current i; applied through N, turns. We will
assume some highly simplified core characteristics that are ade-
quate for the purposes of this chapter, and, in fact, for most of
Part 1.

First we assume that the core exhibits the idealized static &-F
hysteresis loop shown in Fig. 1-3(a). By the term sfatic, it is
meant that this is the curve that would be traced out if the mmf F
were changed very slowly (quasi-statistically) in time and the cor-
responding ¢ values plotted. The horizontal top and bottom of the
loop represent positive and negative flux saturation levels and the
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vertical sides imply that flux changes between negative and posi-
tive saturation with |F| only slightly greater than the thveshold
value Fj. An actual curve has finite slopes at the top and bottom,
which account for an inductive component in switching, often re-
ferred to as the elastic-flux component. (The source of this com-
ponent is discussed in detail in Chap. 12,) In any case, if a
core is driven into saturation and the drive is then reduced to
zero, that is, F =0, the resulting remanent flux level is desig-
nated as ¢,.. A core with a hysteresis loop approaching the
ideal shape shown in Fig. 1-3(a) is commonly referred to as having
a square-loop characteristic.

—time

Fig. 1-2. General circuit to be analyzed with a
resistive, inductive, or capacitive load connected

separately.
¢
té,
T
T, W, F E@
L —
d o
-¢,
(a) (b) (c)

Fig. 1-3. Equivalent circuit for a core, based on an idealized ¢ - F loop.

In addition to this simple static model, we assume for most pur-
poses in Part I that dynamic change of flux ¢ = d¢/dt in the range
-¢, < ¢ < ¢, is governed by the relation

¢ = p(F - Fy forF>F,
and (1-8)
¢ = p(F + Fy) for F < -F,
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where p (the average value of the inelastic switching parameter p)
is a constant and where F is equal to the mmf > N.i.. According
to this model, the rate of flux change is proportional to the excess
mmf, i.e., the amount by which F exceeds the threshold F,. In
Chap. 12 it is shown that the switching parameters are by no
means constant, as assumed here for p and F, but depend strongly
on the instantaneous flux state, on how this state was reached, and
also on F itself. Since the models for p and F, developed in
Chap. 12 are relatively complex, we have chosen here to assume
constant values of p and F, for mathematical simplicity in demon-
strating principles. Curves subsequently calculated from the
switching model of Eq. (1-8) are therefore accurate only in their
grosser aspects.

Based on this model, there is a simple electrical equivalent
circuit for a core under the conditions that |¢| < ¢, and F 2 F,.
In Fig. 1-3(b) is shown a core with no coupling-loop load. For
simplicity, the winding for i, is drawn as if to link the core only
once, but N d linkages are assumed., The emf e g due to switching
is

F
e, = pN,(Nyiy - Fo) - Nd2;7<id - _°> (1-9)
Ng
This expression may be represented by the equivalent circuit of
Fig. 1-3(c), where the diode is assumed to have zero forward
resistance and infinite back resistance. This ideal diode and the
current generator F,/N, in parallel with it together behave as a
current sink accepting all input current i, up to the value Fy/N,,
without supporting any voltage. For i, > Fy/N, the diode is cut off
and e, > 0. The equivalent circuit is valid until the core saturates,
i.e., until a time 7 such that ¢ = +¢_or A¢ = 2¢ _, where

T 1 T
f ppdt = — f e dt = 26, (1-10)
0 Nd 0

assuming the core starts in negative saturation -¢,. When the
core saturates at +¢,, and therefore terminates switching, the
equivalent switching resistance becomes zero and the core ef-
fectively represents a short circuit except for the inductance
term due to the elastic-flux component, which is ignored in
this chapter.
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1-2 Resistive Load; A¢ Dissipation

Consider the case in which the coupling loop of Fig. 1-2 con-
nects the core T, called a transmitter core, to a resistive element.
The loop inductance is assumed negligible. The core is driven by a
step i,(t) current pulse from an initial state ¢ = -¢, . During the
the pulse the net mmf drop F in the core is N,i; - Npi, and hence
from Eq. (1-8)

bp = p(Nyiy = Npip = Fy) (1-11)

Current i, is equal to eT/R, where e = NTq'ST. Hence

Npd
fp = — L (1-12)
R
Solution of the above two equations yields
; - . R
¢p = p(Nyiz - Fg) —— (1-13)
R + Nsz
and
N, Fy T (1-14
lp = p 1, — -
4 ata = Fo) o— N )

Note that the effect of the resistive loading is to reduce the
rate of switching by the factor R/(R + NTZE), relative to the no-
load case. If R - 0, then g'i>T -» 0, and the core cannot be switched
in finite time. For the case R = 0, there is in a sense no ‘‘re-
ceiver’ in the coupling loop to accept any transmitter flux-linkage
change N,A¢p. This is a useful interpretation that is worth pur-
suing further. By integration of Eq. (1-12) with respect to time,
we have

t
NpAdyp = jo‘ Rigdt = Rq, (1-15)

where q, is the net electric charge flow in the loop. The quantity
Rq, may be viewed as an equivalent flux-linkage change NA¢ = Rq,
absorbed by the resistance. It is sometimes useful to think of this
process as ‘‘dissipation’’ of flux linkage, or alternatively as A¢
dissipation of an amount Rg,/N,. When flux transfer from a trans-
mitter core to a receiver core is considered in Chap. 2, dissipa-
tion of a A¢ in the coupling-loop resistance will be found to be an
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important loss term subtracting from the A¢ otherwise available
to the receiver core.

We could also derive Egs. (1-13) and (1-14) by extending the
equivalent circuit introduced in Fig. 1-3. Let Eq. (1-11) be re-
written in the form

Fy N
. — . 0 T .
edszqu:dez(zd—_—_zg (1-16)
Nd Nd

The term N.j,/N, is the only one not accounted for in the previous
equivalent circuit, and it may be viewed as a current in the secon-
dary of an ideal transformer of turns ratio N,:N,, as shown in
Fig. 1-4. The ideal transformer and the load R may in turn be re-
placed by an equivalent resistance (N dz/NTZ) R, and from this
equivalent circuit Egs. (1-13) and (1-14) can be derived directly.

Ny NgiNg |
o

|
i s 9B o
|

[

Fig. 1-4. Equivalent circuit of a core driven by current i ;4 through N4
turns and loaded by resistance R across N turns.

For the simple flux~switching model assumed here, the circuit
within the dashed boundary in Fig. 1-4 is valid regardless of the
nature of the excitation and load at the terminals as long as F' > F,
and |¢| < ¢,. In conventional transformer terms, the differential
switching resistance N dzp_ is just a core-loss reésistance (in ferrite
cores, due primarily to internal damping effects rather than eddy
currents). This loss element and the current sink of value F,/N,
represent the departures from an ideal transformer. It should be
emphasized once more that for quantitative analysis of core dy-
namics, it is necessary to make use of the more accurate flux-
switching models described in Chap. 12.

1-3 Inductive Load; A¢ Storage

Let us next consider the case where the transmitter core in
Fig. 1-2 is loaded only by a linear inductance., The emf Ldi,/dt
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induced in the load must be exactly balanced by the emf across the
core, since we are assuming zero loop resistance. Hence

N dbp L dip 1-17
Toa (=17

or, by integration
NpApp = LAi, (1-18)

Recalling that self-inductance is defined as the change in flux
linkage per unit change of current in the same element, then LA,
is simply the change in flux linkage for a change Ai, in loop cur-
rent. This quantity represents all the flux linkage of the loop out-
side the core, including the contribution from wire inductance as
well as any lumped inductance in the loop.

Assume now that the step i;(t) current pulse causes the core
to switch, given the initial conditions ¢ = -¢, and i, = 0. As
flux switches, the load current i, increases according to i, =
(Np/L)A¢p. But, in accordance with Eq. (1-11), as i, increases,
the rate of flux switching necessarily decreases. By substituting
Eq. (1-11) into Eq. (1-17) we obtain

di N..25 Nop

4 T . T .
—+ ip = [—— YN i, - F,) 1-19
dt <L>g <L> d'd 0 ( )

Since i; is constant during switching, Eq. (1-19) is simply a first-
order linear differential equation whose solution is

N,i,-F —(N.2%
g - 44770 (1 _Nr ,o/L)t) (1-20)
Np

Thus, any changes in output current i, are associated with an L/R
time constant, where R = NTZE is the equivalent resistance of the
core as viewed across the N, turns.

Equation (1-20) is valid only so long as the core flux does not
reach saturation. If ¢, reaches the value +¢,, then ¢ = 0 and we
see from Eq. (1-18) that i, remains constant at the value N, (2¢)/L.
Otherwise, we see from Eq. (1-20) that i; approaches the asymptotic
value

N,i,-F
imer = 440 (1-21)
T
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and the net current linkage of the core is then equal to the thresh-
old value F.

For a given amplitude of i, there exists a unique value of in-
ductance L, for which A¢, approaches 2¢_ exactly in conjunction
with i, approaching the maximum value given by Eq. (1-21). For
this value of inductance, in other words, the net mmf N ;i a~ Npip
drops toward threshold just as the core approaches positive
saturation. From Egs. (1-18) and (1-21) we have

Np26)  Nyig - Fy

(1-22)
L, Ny
or
N.2(2¢)
L (1-23)
Ngig - Fy

For L <L, the loop current reaches it maximum value before the
core saturates, and we see from Egs. (1-18), (1-21), and (1-23)
that

Agpfinal _ LL 2¢) (1-24)

c

For L >L,, the core saturates before the loop current reaches
i™?*, and the final value of i, is

. L
i"fmal — fcifmax (1_25)

For L > L, the time - that it takes for the core to saturate can
be found by solving Eq. (1-20) for the time required for the current
to build up to 7,/"?!, We find

e‘(NTZ,B/L)T - 1- c (1-26)

or

L 1 )
T o= o In
Np“p 1 - L,/

For L = ~, (that is, for an open secondary), the simple result
7 =24 /pWNyi;~Fy can be derived from Eqgs. (1-26) and (1-23).
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A family of curves of load current as a function of time, for a
rectangular drive pulse of duration T,, is shown in Fig. 1-5. Note
that the load current is in a direction tending to switch the core
back toward -¢.. If iy > Fy/N, at ¢t = T, then for ¢t > Ty, i, decays
towards a final value of F;/N, with the same time constant L/NTZE
found in Eq. (1-20). As a result, the core switches back by the
amount (L/Ngp) lip - (FO/NT)], and the net flux change is LFO/NTZ, in
agreement with Eq. (1-18).

Ly

L:L, |
[ |
Increasing : I

__-finaI_Lc . Mmax
lg =

L

L=0—> Fo
L/e:m
7 t
01 L0 7(L-0)- % I
[ Nrp |
iq |
_O ———————————— _T >t

1

Fig. 1-5. Loop current i, as a function of time in the circuit of Fig. 1-2 with an
inductive load.

It is very useful to consider the notion of a flux-linkage change
Li,, or flux change A¢ = Li/N,, asbeing “stored”’ in the inductance.
This is based on the observation that the inductor can actually
drive the core, returning some flux linkage to it (the inductance
being the transmitter in this case), provided the loop current ex-
ceeds the core threshold F,/N, after the drive i, terminates.
However, in any actual circuit where loop resistance is not zero,
A¢ storage in inductance can only be temporary, since any flux
linkage not returned to the transmitter core is eventually dis-
sipated in the resistance.

1-4 Capacitive Load; A¢ Transformation

The effects of capacitive loading are qualitatively different
from those for inductive loading, although one might correctly
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guess that there is an RC time constant associated with the load
current, where R = NTZE is again the switching resistance of the
core, as viewed from the capacitor.

Consider the circuit of Fig. 1-2 with only the capacitor at-
tached. Assuming that the capacitor is not charged initially, the
voltage across the core winding must also be zero initially, im-
plying a starting value of load current iy = (N,i, - F4)/N,. As the
capacitor charges and its voltage increases, the load current must
decrease to permit the core to switch correspondingly faster. The
equation of voltage buildup can be obtained as follows. Substitution
of the relations i, = Cdv,/dt and vy = eq = Npdq into Eq. (1-11)
results in

dve Ve ENT(Ndid—FO)
—_—t — = — (1-27)
dt RC RC

with the solution
ve = PNp(Nyiy - F)(1 - e"RO) (1-28)

where R = NTZE . A family of curves of v, versus ¢, with C as a
parameter, is shown in Fig. 1-6. Note that all curves tend to build
to the same asymptotic value of voltage, v, = PN, (N,i, - Fy).
This is not surprising, for if the core did not saturate, equi-
librium would finally be reached with zero load current and a
constant output voltage v, = N, ésT whose value would depend only
on the drive strength. Thus, with a capacitive load, a switching
voltage Nop q’ST can be sustained without any load current i,, whereas
with an R or L load, a nonzero value of ¢ is not possible unless
a loop current i, is flowing (and changing in the latter case).

Area under each
curve =N;(2¢,)

Fig. 1-6. Output voltage v as a function of
time in the circuit of Fig. 1-2 with a capaci-
tive load.
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Integrating Eq. (1-28) in order to find the flux change, we ob-
tain

t .
NpAdp = f vedt = vRC | - = e VRO (1-29)
0 RC

From this equation we see that flux switched in the core increases
monotonically with time until the core saturates. Saturation oc-
curs at a time found by substituting Aé, = 2¢, into Eq. (1-29).
When the core saturates at +¢,, the switching resistance of the
core drops to zero, and the capacitor discharges rapidly, the
discharge current driving the core still further into positive
saturation. There is, of course, an abrupt drop in voltage when
saturation is reached, as indicated in the family of curves of
Fig. 1-6. (In actual practice, there would be a damped oscilla-
tion after saturation is reached because of the saturation induc-
tance of the core and the parasitic inductance and resistance of
the coupling loop.) The areas under the curves in Fig, 1-6 are
clearly identical, since each curve represents the same magnitude
of flux switching, namely, 2¢ .

Here we must note a very important difference between ca-
pacitive and inductive loading. An inductive load tends to maintain
the load current in the same direction after termination of drive,
whereas the capacitive discharge current is opposite to that of the
initial charging current., Thus, whereas the inductor discharge
current tends to switch the core back toward its original state,
the capacitive discharge current tends to keep the core switching
in the same direction as originally (see the examples in Fig. 12~30).

Let us finally consider the case of terminating the drive cur-
rent before saturation is reached, at time ¢ in Fig. 1-7. From
the arguments above, the capacitor discharge current will keep the
core switching in the same direction for some time. The pertinent
equation in this case is

dv v oN.F
_C + _E = - T (1_30)
dt RC RC
with the solution
vg = vg (e RC — GNLF 1 - e RO (1-31)

where again R = NTZE, and v, (¢;) is the value of voltage reached
when the drive is terminated. A typical response curve is shown
in Fig. 1-7(a).
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Fig. 1-7. Changing the ratio of flux switched during the drive pulse to that switched
after the drive pulse from>11in (a) to <1lin (b), by varying the magnitude of i ;.

An important observation is that the magnitude of flux switched
subsequent to drive termination can actually be larger than that
switched by the drive itself. We can see this from the following
argument, With a stronger drive, the voltage builds towards a
higher asymptotic value, and therefore the capacitor can be
charged to the same value in shorter time. Thus, the area under
the buildup portion of the curve can, in principle, be made vanish-
ingly small, although the curve during discharge is totally un-
affected by the initial drive strength. For example, compare the
curves of Fig. 1-7(a) and (b). In the limit of very strong drive, we
have the possibility of charging the capacitor to any specified
voltage with a negligible amount of core flux being switched.

A capacitor thus offers an interesting capability of A¢ trans-
Jormation, the capacitor being able to deliver to the core more,
or less, flux linkage than the core delivers to the capacitor dur-
ing the charging phase. There is nothing particularly mysterious
about this, since there are no basic constraints on the inte-
gral of capacitor voltage, even though the voltage itself is unique
for any particular charge state. Similarly, in the case of an
inductor, the current is fixed for any given flux-linkage state,
but there is no basic constraint on the integral of current, i.e.,
on charge.

1-5 Summary

Using a very simple core model, we have treated separately
the cases of core switching with resistive, inductive, and capacitive
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loads. With a resistive load, the loop current is simply propor-
tional to ¢, and flows, therefore, only so long as flux is switch-
ing (the flux switching is dissipative). With an inductive load,
the loop current is directly proportional to the magnitude of flux
change A¢ and this we interpret simply as flux-linkage storage,
in the sense that the same magnitude of flux linkage in the core is,
so to speak, regenerated in the linear inductance. We are able to
define an L/R time constant, where R is the equivalent resistance
of the switching core as viewed from the coupling loop winding. With
a capacitive load, we find an RC time constant, where R is the same
as in the inductive case, and steady state is reached when the
voltage generated in the core winding exactly equals that across
the capacitor, and no loop current flows. In this case, the magni-
tude of equivalent flux linkage stored in the capacitor during
charge can be less than, equal to, or greater than the flux linkage
subsequently delivered from the capacitor during discharge. This
is an important property interpreted as A¢ transformation.

This simplified treatment is of little value in quantitative pre-
diction, and is primarily for developing insight into manipulation
of flux change as a signal parameter. It should be intuitively clear
that the ability to dissipate, store, and transform this parameter
is important in circuit synthesis. Quantitative analysis of core
switching with various sorts of loads, using a better engineering
model for the core, is treated in Sec. 12-6.
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In the previous chapter we saw that loading a core with a re-
sistance, an inductance, or a capacitance results in A¢ dissipation,
storage, or transformation, respectively. Now let us consider
loading a core with another core, in which case we have the possi-
bility of A¢ transfer, i.e., transmission of flux from a transmitter
core to a receiver core.

2-1 Flux Transfer Ratio G

The flux transfer takes place through an electrical coupling
loop which is assumed for the moment to be purely resistive
(Fig. 2-1(a)). For such a coupled pair of cores, we are generally
concerned with the A¢ transfer ratio

Abp
G(Adpy) = o (2-1)
T

17
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where A¢p and A¢, are the flux changes in the receiver and
transmitter, respectively. In contrast with conventional electronic
circuits, the appropriate signal parameter here is A¢, rather than
voltage or current, and of special concern are the conditions for
achieving a transfer ratio G > 1.

. Re
i Ng : Ny Loy
o WA
2 _ 2 _
5 O Ng 5 er x O Ng 7
(b)
Ry
- AN —
N% 7 NG5 ’

er Er

+ 2 _ Ngig-For 2 _Fop AS
N — Ngp 5~
L _ TP( NT ) RP NR + 1

(c)

Fig. 2-1. Flux transfer from Transmitter Core 7" to Receiver
Core R.

Assume that each of the coupled cores starts in the -¢ flux
state and switches towards the +¢_ state, as governed by the flux~
switching model of Eq. (1-8). A transmitter drive pulse i; of con-
stant magnitude is also assumed. Under these assumptions, the
rates of change of flux ¢, and ¢, are independent of time (as long
as neither core reaches positive saturation), and the transfer ratio
G is simply equal to the ratio of switching rates, or
A

* _%r 2-2)

G- %o
Abp  dp
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In this chapter we are primarily concerned with the general effects
on the transfer ratio of turns ratio, loop impedance, receiver
threshold, and receiver loading resistance.

2-2 Requirement on Turns Ratio for G > 1

In the circuit of Fig. 2-1(a), the coupling loop is assumed to
have a resistance R,, but negligible inductance. Equating the net
emf around the loop to the voltage drop in R,;, we have

Npdqp = Npdp = Ryiy (2-3)

Integrating each term with respect to time, and rearranging, we
obtain

NpAdq = NgAdp + Ryqy (2-4)

where ¢, = fot igdt. This equation is similar to Eq. (1-15) for re-
sistive loading except that of the transmitted flux linkage here,
only part, namely, R,q,, is dissipated as a loss in Ry, and the re-
mainder Np A¢p reaches the receiver core.

Based on Egs. (2-1) and (2-4), we may write

N R,q Ryq
G- T o (@-5)
NR

Ng Adqp Np Ay

where n is the turns ratio N;/N,. Thus, despite the inevitable loss
of flux linkage during transfer, transfer gain G > 1 is nevertheless
possible if » > 1 by an amount sufficient to overcome the effect of
the subtractive term quF/NT A¢p. Note that this term is just the
ratio of dissipated flux linkage to transmitted flux linkage.

2-3 Limit on Loop Resistance

Let us now assume that » > 1 and consider how large R, can be
while maintaining G > 1. Based on our simple model, the circuit of
Fig. 2-1(a) may be represented by the equivalent circuit shown in
Fig. 2-1(b). The cores are assumed identical, with the same p and
the same threshold value F, = F, = Fp, though the latter symbols
are kept distinct for the purpose of discussing transmitter and re-
ceiver thresholds separately.
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Assuming that the drive current i; is large enough to make
Npip 2 Fyp, the diodes in the core model are nonconducting and
may be neglected. Then with current generators transformed to
equivalent voltage generators, and all quantities referred to the
transformer secondary, we obtain the equivalent circuit of Fig.
2-1(c) where e, = Np ¢ and ep = Np . Under the specified condi-
tion of G >1, it is clear that the highest upper limit on loop
resistance is obtained when the effective receiver threshold is
equal to zero. This condition can be approached with strong driving
so that N,i, > F,. Alternately, the receiver threshold can be ef-
fectively reduced by applying a bias mmf N,i, - F,, as shown ap-
plied to both cores in Fig. 2-2, The term bias is used in the usual
electrical engineering sense of determining an operating point, the
bias signal by itself nominally not causing any flux switching. It
may be either a dc bias or a constant-amplitude pulse synchronized
with the current i ;.

With the transmitter and receiver
each biased to threshold, that is,

with N, i, = F,, we simply have

bp = PNgi, (2-6)

Nbib:Fo a'nd

Fig. 2-2. Use of a bias mmf to over- d)T = E(Ndid - Np ig) (2-7)
come the switching thresholds of trans-
mitter and receiver.

Equations (2-6) and (2-3) may be
solved for G in the form
b Ng%p
G- Lton_F (2-8)
P Ry + Ng©p

This result is also clear from the equivalent circuit of Fig. 2-1(c),
where, with receiver threshold cancelled out, the emf ratio
ep/er = Npdp/Npdp is readily seen tobe equal to NR25/(R2 + NR25).

The above results may be interpreted as follows: of the total
flux linkage N, A¢, injected into the loop, a fraction G/n reaches
the receiver core, and the remaining portion 1 - G/n is lost by
dissipation in R;. The exact division of transmitted flux linkage is
generally very dependent on drive magnitude N,i,, and is inde-
pendent of drive here only because of our assuming idealized
core properties and the biasing of the receiver core exactly to
threshold.
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Based on the requirement that G > 1, we obtain directly from
Eq. (2-8) an upper limit on R,, namely

Ry < (n - DNR% (2-9)
from which we see that there is no limit on the ratio RK/NRzﬁ so

long as n can be made arbitrarily large. But by rewriting Eq. (2-9)
in terms of transmitter resistance NTZE , we find

Ry < (" - 1)NT25 (2-10)

n

and thus see that the upper limit on RZ/NTZ;T is 1/4, which is ob-
tained with a two-to-one turns ratio(n = 2), inwhich case Nsz' = Ry.
In other words, for G > 1 the loop resistance can never be more than
1/4 the transmitter resistance.

There are many other important factors relevant to choice of
coupling~loop turns ratio. The simple result here is most likely
to be significant where there is practical difficulty in constructing
a low-resistance coupling loop. In that case, it may be helpful to
specify N,/Np =2 in order to allow as large a value of R, as pos-
sible relative to N,%p.

2-4 Effect on G of Transmitter and
Receiver Thresholds

It is not always possible, or even desirable, to eliminate the
core thresholds by bias, so it is necessary to understand the ef-
fects of threshold on the transfer ratio. Let us consider the case
of constant drive and no biasing at all. From the equivalent cir-
cuit of Fig, 2~1(c), we can write

21N 2

N2 N iy - Fop)/Ngl + Np25 (Fyp/Np)

iy - 0 (2-11)
Nsz + Ry + NRZE

and

, Nyig-F
ep = Npdyp = NTZ,?(_"_"’_ET_"- i¢> (2-12)

For substitution into Eq. (2~5), we obtain the ratio
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t
R f ipdt .
Ryqy tJ, 't Ryiy
- - — 2-13)

N A¢ t Np¢
T 29T ; TPT
NT-/o- Ppdt

Substitution of this ratio, as evaluated from Eqgs. (2-11) and (2-12),
into Eq. (2-5) yields

N2 WNgig - Fop) - (Ry + Ny )Fop
G-n - (2-14)
n(Ry + Ng25 ) Ngiy ~ Fop) ~ Np2pFop

Equation (2-14) is valid only if N,i; is large enough that
Npip 2 Fyp. The limiting condition G = 0, corresponding to Ny i, =
Fop»s is obtained when N;i; has the critical value

No%p

R
(Nyi), = Fyp + n<1 b ! >FOR (2-15)
For any lower value of drive, G = 0 also.

The form of G as a function of N,i, has been sketched in
Fig. 2-3. Note that for N,i, » (N,i; . G approaches asymptotically
the value given by Eq. (2-8), since the threshold terms become
relatively insignificant. Also note that if we view F, and F,, as
the effective thresholds, then for the previous case of receiver
biasing, that is, Fy, = 0, Eq. (2-14) again reduces to Eq, (2-8). In
this case, the transmitter threshold has no effect on the transfer
ratio G, although the individual rates of switching are lower than
they would be if F, were zeroalso. In fact, from Eq. (2-14) we see
that the effect of nonzero F, on G may always be overcome simply
by increasing N;i, by the amount F,, which is equivalent to bias-
ing the transmitter. The effect of nonzero F,, in reducing G,

2
__________ NRP

n ——em
/ Re+Ng 7

(Ngig)e N?l—d

Fig. 2-3. Sketch of flux-transfer ratio as a
function of drive strength, from Eq. (2-14).
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however, cannot be completely overcome with any finite value of
N i
atae

2-5 Effect on G of Coupling-Loop Inductance

The control of coupling-loop inductance L, is often as important
as the control of the resistance R;. When L, is taken into account,
the values of iy and ¢ are no longer constant in time. Omitting
detailed analysis here, it can be reasoned that storage of the flux
linkage Lyi, in L, is at least a temporary flux loss en route to the
receiver. Furthermore, if the receiver stops switching at time Tg
(whether due to saturation or to lack of sufficient mmf), then a flux
linkage equal to Lyi,(Tg) is left storedin Ly, and this is transformed
into a permanent flux-linkage loss dissipated in R, as i, decays
exponentially.

2-6 Effect on G of Receiver Loading

For the circuit of Fig. 2-2, we say that G > 1 can be obtained
for any value of R, by making the turns ratio n sufficiently large.
However, if the receiver is also loaded, it may not be possible to
obtain G > 1 for any value of n, Consider, for example, the case
in Fig. 2-4(a), where the secondary winding of the receiver con-
tains the same number of turns N, as that of the transmitter. For

2
(b) €y N;ﬁ h

+ Nyl 2
i R Np l
2 NT

Fig. 2-4. Loading the receiver with resistance Ry through a winding
of N turns.
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the special case of R, = Ry, this circuit may be viewed as deriving
from an iterative core circuit in which the next core in the chain
beyond Core R is in some manner prevented from switching.

For simplicity of analysis, and in order to minimize the effect
of receiver loading, both cores are again assumed biased to thresh-
old. The equivalent circuit of Fig. 2-1(c) may then be expanded to
include the load by connecting R, as shown in Fig. 2-4(b). Solving
for the ratio ep/e, from this circuit and noting that

(isR eR/NR
bp  eq/Ng

we obtain

n

n®(Rp/R;) + (Ry/Np2p) + 1

G =

(2-16)

For the case of equal loop resistances R; = R,, Eq. (2-16) re-
duces to

n
GnRp - — - @2-17)
n® + (Rp/Ng“p) + 1

With respect to Ry, the largest value of G,

n

G(n) =

(2-18)

|

is obtained as Ry/Np%p - 0, and maximization of Eq. (2-18) with re-
spect to the turns ratio n = N;/N, yields

G . -

max

(2-19)

DO | =

for n =1. Thus, with R; = Ry it is not only impossible to achieve
G > 1 with a large turns ratio, but rather » = 1 results in the high-
est possible value of G. Furthermore, with R 1, = Ry, we obtain the
highest gain not by making R; large, but rather for the heaviest
possible receiver loading, i.e., as R; - 0, The latter result
merely means that G is more affected by the coupling~loop resis-
tance than by the loading resistance.

Since G > 1 cannot be obtained for R; = Ry, let us derive the
minimum value of R, /R, for which the condition G =1 can be
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achieved. To emphasize the Ry/R; dependence, let us assume
that R, is already small compared with NRZE so that Eq. (2-16)
becomes

n

G =

YN 2-2

n®(Ry/R;) + 1 (2-20)
Hence, for G > 1

R, N n2

? a n — 1
For G = 1, the minimum value

Ry,

=14 -

R, (2-21)

is obtained for turns ration = 2. Thus, with all conditions idealized,
it is necessary to have loading resistance at least four times the
loop resistance to obtain G > 1. This result has considerable sig-
nificance in connection with the iterative core circuits that we
shall treat, beginning in the next chapter.

2-7 Flux Pumping

The use of a turns ratio greater than unity could be viewed as
the gain mechanism for achieving G > 1 in the manner shown in the
previous sections., We will later describe other gain mechanisms
by which it is possible to achieve G > 1 even in cases where
NT/NR < 1. To illustrate this possibility, let us show here that
by the use of multiple transfers we can ‘‘pump’’ the receiver to a
fully switched condition even when the transfer ratio is less than
unity on any single transfer.

In the circuit of Fig. 2-4(a), suppose thatboth cores are initially
in negative remanence and that we apply a symmetrical pattern of
positive and negative currents that drive the transmitter repeatedly
between -¢,  and +¢ . With G <1, the receiver will then be driven
repeatedly between -¢_ and some flux level lower than +¢ . The
resulting history is sketched in Fig. 2-5(a). With a suitable asym-
metry, however, so that the receiver switches less flux in the
negative-going direction, the operating level in the receiver ap-
proaches closer and closer to positive saturation, as suggested in
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Fig. 2~5(b). In other words, we can ultimately achieve a net gain
(G 2D relative to the A¢, transmitted during a single transfer.
This is true even if the receiver is heavily loaded with a value of
R, <R

L < e

(a)

(b)

Fig. 2-5. Ilustrating symmetrical switching cycles in (a), and
showing receiver pumping effect with asymmetrical switching
cycles in (b).

As shown by Eq. (2-14), G is a function of drive strength as
long as the receiver threshold is nonzero. Hence, suitable asym-
metry could be achieved merely by using different drive strengths
in the two directions of switching, as in Fig. 2-6(a). A different
method is shown in Fig. 2-6(b), where a dc receiver bias aids the
loop current in the positive switching direction, but opposes it in
the negative switching direction.

R, Ry Re
, b , by ‘ ‘ iy
L g de

1, Iy

(a) (b) ’ (c)

Fig. 2-6. Two different ways to apply dc bias to achieve asymmetrical switching in (a, b);
pumping a single transmitter to fully switch a number of identical receiver cores in (c).

If a number of receiver cores are linked by the loop, as in
Fig. 2-6(c), all could be pumped to a fully switched level with a
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sufficient number of cycles. By doubling the number of pumping
cycles, i.e., by doubling the time, we can double the net gain. This
becomes a ‘“gain-bandwidth’’ problem for digitaltransfer (Chap. 3),
since the maximum bit rate is inversely proportional to transfer
time. Even within a single cycle there is a gain-bandwidth rela-
tion. Net gain per cycle could be increased if the amount of flux
switched back during the negative half cycle were reduced. In the
limit, if loop current magnitude during the negative half cycle were
below the effective receiver threshold, no receiver flux would
switch back at all. In this case, the loop resistance would dissipate
the entire flux linkage N,(-2¢) injected by the transmitter, and
the time for this operation would be correspondingly increased.
We will see that this is an important mode of circuit operation,
i.e., a transmitter slowly dissipating a flux-linkage change in loop
resistance.

2-8 Direct-Current Drive; Implicit Phasing

A dc mmf less than threshold can serve as a bias source in the
conventional sense of setting an operating point. A dc mmf greater
than threshold can cause significant switching, however, and there-
fore act as a driver. For example, in Fig. 2-7 a negative dc mmf
normally holds the first core in satu-
ration. Upon application of a positive N
pulse large enough to overcome thedc Ly
mmf plus the core threshold, the first
core can be switched to positive satu-
ration, and flux is transmitted to the i
second core. Upon termination of the
pulse, the dc mmf drives the first core — 1
back to its original condition. If thedc
drive is less than the net positive Fig. 2-7. Two-phase operation with
drive, then with repeated application a single pulse source and a dc mmf

. . large enough to switch the core back
of the drive pulse, the second core to its original state.
can be pumped as shownin Fig. 2-5(b).
With a dc mmf just slightly above threshold, the first core
switches back slowly, and essentially all flux linkage is dissipated
in loop resistance during the negative half cycle.

We see that it is possible to have more phases of circuit
operation than there are explicit pulse drivers. We can think of
the circuit of Fig. 2-7 as having a two-phase nature though only
one clock-pulse is needed, the second phase being achieved

Ry
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implicitly, The use of dc current for this purpose is not only
practical but often results in considerably simplified driver
systems.

There are two points to note about dc current sources in this
type of application. First, there cannot be any net energy exchange
between the dc current source and any core linked by this source.
Starting at time ¢ = 0, the net energy transferred from the current
source I;  to the core of Fig., 2-7 can be expressed simply as

t z

d

W= f Iy edt = I, f N®a - 1,NG, - 6) - 1, NAG
=0 t=0 di

where e is the induced emf in the winding, and ¢, and ¢, are the
final and initial values of the flux, respectively. Thus, there is as
much energy delivered from the current source duringone polarity
of flux change as is deliveredback tothe source during the opposite
polarity of flux change. After each complete cycle of switching,
<sz = ¢;, or A¢ = 0, and there isnonet exchange of energy, no matter
how complex the circuitry attached to the core.
A current source is often syn-
+y thesized with a large voltage source
Core V and large series resitance R
R L circuit ge series re €
[ (where V/R is the desired current),
= V being large compared to the larg-
Fig. 2-8. Use of a series inductance to  est expected voltage drop in the driv-
stabilize a dc current source of magnitude en circuitry., However, the power
lac = V/R. lost in the series resistance makes
this type of current source very inefficient. A large improvement
can generally be achieved by incorporating an inductance in series
with the load. Thus, for a relatively large L in Fig 2-8, a flux-
linkage change XN ;A¢,; across the core circuit can be absorbed, or
balanced, by a current change on the order of Al = IN;A¢./L,
which can be made arbitrarily small with a large inductance. This
is similar to the result in Eq. (1~18) where a change in flux linkage
results in a certain change in loop currentthat subsequently decays
with a time constant L/R, where R is the circuit resitance. The
use of a series inductance often simplifies the dc-source design
and permits the use of much smaller values of V and R than would
otherwise be possible. This technique is particularly useful for
magnetic~-core circuits that are cyclically operated because of the
bipolar nature of the load voltages. With unipolar loads, it would
be necessary to delay a certain number of L/R time constants
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between switching operations in order to prevent cumulative
current changes.

29 Summary

In this chapter we have treated specifically the case of a
second core acting as a load on a first core. Primary interest
is in the flux transfer ratio G, the ratio of flux change in the
recelving core to the flux change in the transmitting core, and
more particularly, in achieving transfer ratios greater than
unity, i.e., actual signal gain. An important method for achieving
G > 1 is to use a turns ratio greater than unity in the coupling loop
between transmitter and receiver. We make some basic observa-
tions on the effect on the gain of various circuit and device param-
eters such as loop resistance, loading resistance, and the static
thresholds of the transmitter and receiver elements. In particu-
lar, maximum limits on loop resistance and load resistance are
derived for the condition G > 1. Another gain mechanism, namely,
flux pumping, is also considered, although this is mainly of
academic interest. Finally, we consider the practically important
case of core switching with a dc current, which, upon termination
of a switching pulse, automatically restores the core to its
original state.
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We wish now to consider some of the basic requirements for
synthesizing digital transfer systems. In particular, we will show
how cores and diodes, or alternately cores and capacitors, can be
used in combination to achieve circuits for digital transfer. Since
core-diode circuits are discussed in detail elsewhere, for example,
by Meyerhoff (1960), their treatment in this book is limited to the
material of this section. Discussion of core-capacitor schemes is
also limited to this section, since such circuits are mainly of
academic interest and in any case are outside the primary interest
of this book. It is considered worthwhile tointroduce these schemes
before starting the treatment of core-wire schemes in order to
develop insight into A¢ gain and loss mechanisms, and into methods
for achieving isolation between varlous parts of a magnetic core
circuit. Diodes are obvious devices for achieving isolation, and
it is therefore easy to illustrate the principles of digital transfer
with core-diode circuits. In Chap. 4 we will use certain of these

30
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core-diode schemes as an introduction to the general synthesis of
core-wire schemes.

3-1 Binary Shift Register

A general logic network is a highly interconnected network of
digital circuits through which binary variables can be stably trans-
mitted. If we follow any one path of the network, we find many other
paths merging with it (fan-in), and other paths branching off from
it (fan-out). To simplify the study of digitaltransmission, it is con-
venient to concentrate on just the requirements for stable storage
and transfer of binary variables along a simple path with no side
branches, i.e., a common binary shift register. If a particular
circuit scheme can be used to build a shift register, then the basic
scheme can almost invariably be expanded for generallogic realiza-
tion. Thus, we can profitably evaluate and compare schemes on
the basis of shift register synthesis alone, without becoming much
involved in general logic techniques.

A binary shift register is basically a chainof storage elements,
such as flip-flops or magnetic cores, so interconnected that the
stored binary pattern can be shifted along the chain. The chain
may be arbitrarily long and may be closedon itself so that a binary
pattern can be continually circulated in the closed loop. We gen-
erally speak of an N-bit shift register, where N is the capacity of
the register, i.e., the number of bits in the shifting pattern.

There are many ways to structure a register. Suppose, for
example, that we have an N-bit binary patternheld in Cells 1 through
N of a closed ring of N + 1 storage cells, such as in Fig. 3-1. Upon
application of clock pulse C,, the bit
stored in the first cell is advanced
into Cell N + 1,formerly empty. Upon
application of clock pulse C,, the bit
stored in Cell 2 is advanced into Cell
1, and so on. The shifting occurs in
caterpillar fashion in this case, and
shifting an N-bit pattern requires
N + 1 clock sources.

A more common method of struc-
turing is to arrange for shifting all
data simultaneously. This mode re-
quir es more stor age cells but only a Fig. 3-1. N-bit register with (V + 1) cores
small, fixed number of clockdrivers, and (V + 1) clock sources.
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independent of the number of bits N. A common arrangement uses
two storage cells per bit and two clock pulses, as shown sche-
matically in Fig. 3-2, where the square boxes represent storage
cells and the arrowed lines represent interconnecting circuitry.
It is common to refer to the alternate cells as O (for odd) and E
(for even). To shift an N-bit pattern that is stored in the O-rank,
we activate the coupling circuitry between each O-cell and its
right-hand E neighbor, and thereby simultaneously shift the pattern
to the E-rank., This is referred to as an O - E shift, Next we ac-
tivate an E - O shift, and the pattern is transferred back to the
O -rank, but shifted one place to the right as required. The shifting
rvate, or bit vate, depends onthe time it takes to complete this basic
two-phase shift cycle.

E, £ j-1 £ i E j+1 Ey
Fig. 3-2. N-bit register with 2V cores and two clock sources.

An important aspect of binary transfer is the isolation required
between adjacent storage cells. In the transfer from Cell O ;o E;,
during an O - E transfer, the switching of E; must be prevented
from affecting the following O, ,, cell, i.e., forward isolation is re-
quired, and the switching or readout from 0; must be prevented
from acting on E 10 which is acting as a receiver from Cell Oj—l’
i.e., back isolation is also necessary. During an E - O transfer,
the roles must be reversed, the inactivated paths becoming ac-
tivated, and vice versa.

Although there are other possible shifting schemes, we con-
centrate primarily on this simultaneous shifting technique, which
is the most common. This results in no particular loss of gen-
erality.

3-2 Digital Transfer

In the previous section, we represented bistable storage cells
symbolically without specifying any particular device technology.
Pursuing this symbolic approach, we can derive some important
requirements for digital transfer between cells.
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A¢p Gain Requivements., The register circuit of Fig. 3-2 is re-
drawn along a single row in Fig. 3-3(a), with cells renumbered in
sequence. Let us follow just one of the bits of the pattern as it
moves along the chain. Suppose that the particular bit of interest
is initially stored in Cell j - 1. At the next shift pulse, there is a
transfer from Cell j - 1 to Cell j with A¢ transfer ratio

AQSJ.

Ad, 4
where A¢; represents the magnitude of flux switched in Cell j, and
Agp i1 is the magnitude of flux simultaneously switchedin Cell j - 1.
We will assume here that the value of A¢p when the cell is acting as
a transmitter is the same as the value of A¢ switched when the
same cell was previously a receiver (though there are important
exceptions, as we shall see in later chapters).

G (3-1)

j-! i j+1 j*2

.
| L
| Lo
BN
Dy Dy By Dby B Doy Dy Doy DyhgyDg  Doj-y
(b) (c)

Fig. 3-3. Flux-gain requirements for multistable flux transfer.

|
|
|
|

If the transfer ratio were exactly unity in each transfer, inde-
pendent of the magnitude of A¢, then we would have a very useful
‘‘analog delay line’’; any level of A¢ injected at one end of the chain
would emerge unchanged at the far end at a later time. However,
the transfer ratio generally depends on many different circuit pa-
rameters, and it is impossible to keep these parameters sufficiently
controlled to actually achieve unity transfer ratio over a range of
A¢ levels. Instead, let us consider different ranges of signal level,
and ask what form of gain characteristic G(A¢) is required to en-
sure that an initial signal level within any one range should be main-
tained within that range regardless of the length of the transmis-
sion chain, A form of G(A¢) characteristic that would satisfy this
requirement is indicated in Fig. 3-3(b). In some regions G > 1, in
other regions G < 1. At signal levels marked A, through A¢,, the
gain is exactly unity, but only levels A¢,, A¢s, and A¢; represent
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stable levels. By this we mean the following: if initially A¢y < A¢ <
Ad,, then G <1, or if initially A¢, < A¢ < A¢g, then G > 1, so that
in either case the level will monotonically approach A¢, during
subsequent transfers. If the initial signal level is exactly equal to
A¢,, then any noise in the system will shift the signal level away
from level A¢, toward either level A¢; or Ag,. Thus the levels Ad,
and A¢, are unstable points of unity transfer ratio.

The curve of Fig. 3-3(b) can be translated into the curve
of Fig. 3-3(c), known as a A¢-transfer curve, where the 45° line
is the locus of the stable and unstable unity-gain points., In the
case of binary transmission, the transfer curve has the form
shown in Fig. 3-4(a). We define the lower stable signal level as
the binary zero level, labeled A¢;, and the upper level as the bi-
nary one level, labeled A¢;. The intermediate, unstable unity-gain
point is labeled A¢;. This type of transfer curve applies to what is
generally referred to as a unipolar representation (based on a high
magnitude of signal for a one and a low magnitude of signal for a
zero). An alternate data representation is shown in Fig. 3-4(b)
where the two states have signal levels of equal magnitude but of
opposite polarity. This is referred to as a bipolar data represen-
tation (which is employed in the circuits discussed in Chap. 9).

Fig. 3-4. Flux-gain requirements for stable binary transmission: (a) unipolar mode;
and (b) bipolar mode.

Dvive-Curvent Tolevances. For achieving wide operatingtoler-
ances, the objective of design is to maintain the transfer curve
within proper bounds over as wide a range of drive currents as
possible. Here we wish only to point out the general nature of the
effect of current variations on the transfer curve.

Consider a register of the two-phase type shown in Fig. 3-2,
with drive currents having magnitudes I, and I_,. Assume that
one of the currents, say I E-0° is held at a nominal operating value,
and let us consider the effect of variations in the magnitude of the
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other current lo-g- As ly.p in- Do max
creases, the gain ratio G normally
increases for all values of A¢ i1 be- |
cause of lower percentage losses in |
coupling loops, as explained in Sec. |
2-4 for a coupled pair of cores. | i As.
Therefore, the entire transfer curve b ngM" N
shifts upward as drive current in-

creases. But there is a maximum Fig. 3-5. Limits on drive pulse amplitude
permitted value of I,., which cor- for bistable transfer.

responds to the lower portion of the

transfer curve becoming tangent to the 45° line, as indicated
in Fig. 3-5. Any further increase in current results in G > 1
for all values of A¢ < Ag, and the loss of a stable lower level.
Similarly, there is a minimum permitted value of I, below
which there is no stable upper level. If we plot the permitted
range in I, for each value of I;_,;, we obtain a two-dimensional
region, or vange map, of allowable drive values (as illustrated
later).

3-3 Gain and Loss Mechanisms

A gain or loss mechanism tends to raise or lower the transfer
curve relative to the 45° line, as shown in Fig. 3-5. Since the
overall effect of all the gain and loss mechanisms operating to-
gether must be nonlinear, at least one of the individual mechanisms
must be nonlinear. Gain is often obtained primarily by use of
coupling-loop turns ratio n > 1, and this is a linear effect. There-
fore, a nonlinear loss mechanism must be used if no other signifi-
cant gain mechanism is present. We consider two such nonlinear
loss mechanisms in this section.

Given a zero-impedance coupling loop, and turns ratio » > 1,
then the relation between Aqu and A¢ i1 is represented by the
dashed line of Fig. 3-6(a). Note that receiver saturation causes
the curve to flatten at a value of A¢ j = 2¢,. Clipping away a certain
portion of the transmitted flux A¢ i-1 shifts the curve to the right
(solid curve of Fig. 3-6(a)), and we then have the desired bistable
form, We wish to illustrate two basic types of flux clipping, one
exemplified by the use of an explicit clipping toroid in the loop
(énelastic clipping) and the other exemplified by coupling loop in-
ductance (elastic clipping).
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Fig. 3-6. Synthesizing a binary transfer characteristic with turns ratio n > 1 as the gain mech-
anism and a flux clipper as a nonlinear loss element.

For the inelastic method, an additional, small core C of flux
capacity & is included in the loop (Fig. 3-6(b)). Assume that the
number of turns N, of the small core is such that the flux-
linkage capacity N0 is relatively small (perhaps 10 to 20 per-
cent of the transmitted linkage), and that the threshold of Core C
is low compared to that of the receiver. Then, when the trans-
mitter switches, this clipper core switches first with a relatively
small loop current. When it saturates, the loop current increases
to the point where the receiver begins switching. For this circuit
we can write

NpAd, ;= Ngb + NpAg, (3-2)
or
Ny Neb
Apj = — (Bdj1 = —— (3-3)
NR NT

Assuming that the received flux will later be transmitted as A¢ i
then Eq. (3-3)isindeed represented by the solid curve of Fig. 3-6(a).
Note that for a transmitted flux less than N¢ 8/NT, no flux at all is
available to the receiver.

Elastic clipping can be achieved with loop inductance L,. As
the loop current iy builds up, flux linkage equal to Lyi, is stored in
the inductance. When the transmitter stops switching, current
still flowing in the loop inductance causes the receiver to con-
tinue switching until i, falls to F/N,, after which the remaining
flux linkage LF,/Np, stored in the inductance is dissipated in the
loop resistance. This dissipated flux is a relatively large part of
the low~-level loss subtracting from transferred flux.

This is a good point to summarize and preview some of the
known types of gain and loss mechanisms for core-wire circuits,
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exclusive of those unique to magnetic thin-film circuits, which will
be described in Chap. 9. There are four main types of gain mech-
anisms known: two of these are the use of turns ratio and the use
of ¢“soft-threshold’’ properties (described in connection with the
scheme of Sec. 4-5); the third is some type of flux pumping, intro-
duced in Sec. 2-7; the fourth is flux doubling, a circuit scheme de-
scribed in Sec. 5-5. There are three maintypes of loss mechanism,
all of which subtract an amount of A¢ from the the transmitted A¢
signal en route to the receiver. The first type is A¢ dissipation in
loop resistance. Second is elastic clipping, which may be either
undriven (necessarily so in parasitic loop inductance) or explictly
driven, as may be obtained either with use of a core of linear ma-
terial or by driving a square-loop core into saturation. Third is
inelastic clipping, which may also be driven or undriven at the
time of clipping, although the clipping element must subsequently
be cleared to its original state each cycle. The effect of receiver
threshold (Sec. 2-4), though not a loss mechanism itself, causes
the loss in loop inductance to be nonlinear., The loss in loop re-
sistance is also nonlinear due to the actual nonlinear character of
receiver resistance NRzﬁ, as shown in Chap. 12.

3-4 Forward Decoupling in a Magnetic Chain

The simplest possibility to consider for attempting to con-
struct a shift register is merely to string together a chain
of identical cores, neighboring cores being interconnected by
a set of identical coupling loops, as in Fig. 3-7. In such a
simple chain, however, receiver loading by adjacent cores (in
the sense of Sec. 2-6) is so great that G > 1cannot actually be
achieved. To achieve G > 1, it is necessary to decouple each
receiver element from the remainder of the chain. Such de-
coupling is readily achieved with a diode element inserted in
each loop in the manner of Fig. 3-8. Assume that Core j + 1is
in negative remanence (clockwise flux) and that Core j has been

Fig. 3-7. In a simple iterative core chain with no decoupling, receiver loading
results in G < 1.
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preset to a certain flux level, When Core j is explicitly cleared to
negative remanence by the current pulse i,, a coupling-loop
current i, flows and switches a certain amount of flux in Core
j+1. The diode in the output circuit of Core j + 1 prevents
receiver-loading current from flowing, and G > 1 can therefore

be obtained.

Fig. 3-8. Forward decoupling by means of a series diode in each loop.

In the transfer from Core j to Core j + 1, the diode in the out-
put circuit of Core j + 1 not only provides the necessary loop de-
coupling to achieve gain but also provides a forward isolation
function by assuring that the switching of Core j + 1 will not affect
Core j + 2, However, we must now consider a potentially serious
lack of back isolation, since the switching of Core j also results in
a back-loop current i; that might affect the switching of Core j - 1.

3-5 Backward Isolation; Core-Diode Transfer Schemes

Instead of assuming a drive only for the jth Core, as in Fig. 3-8,
let us now consider the case of interest, namely, a simultaneous
drive, first for all the O-cores, and then for all the E-cores, as in
Fig. 3-9. Each drive pulse unconditionally drives its associated
set of driven cores to their zevo condition, i.e., clockwise flux.
As described in Sec. 3-1, a basic shifting cycle thus consists of
an O > E pulse followed by an E - O pulse. With repetitive appli~
cation of clock pulses in this sequence, data is continually shifted
to the right along the string of cores (and possibly back to the first
core on the left via an end~around loop).

Let us now examine the potentially serious problem of backward
isolation. Suppose that initially Core O j-1 holds a zevo and Core O ;
a one. During the O - E pulse, a large magnitude of flux switches
in 0;, resulting in a relatively large back current i; that tends to
switch Core E; ;. The latter core shouldnominally not be switched,
except possibly for a low zevo levelof A¢ received from Core Oj_l.
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Any flux switched in Core Eiy due to current i; represents back
transfer of A¢. This A¢ would subsequently be transmitted for-
ward during the next E - O pulse, and we see then the possibility
of spurious buildup of a zero to a one as a result of this back-
transfer problem. In the present case, since N, < N, the amount
of A¢ transmitted backwards is less than thattransmitted forward,
and with sufficiently careful design this circuit can actually be made
to operate reasonably well. We will now consider three techniques
for greatly improving backward isolation, with corresponding im~
provement in performance. In effect, what we wishto do is increase
the directional asymmetry in the line. In contrast, if we were to set
Ng = Np in Fig. 3-9, there would be no asymmetry at all, and
there would be the same tendency for transfer of flux to the left as
to the right.

Fig. 3-9. Demonstrating the need for backward decoupling.

The first scheme for reducing back transfer isindicated in Fig.
3-10(a), where a shunt diode is introduced into each coupling loop.
The polarity of the diode is such thatit does not interfere with for-
ward transfer, though it short-circuits any back transfer. The re-
sistor R is necessary so that the shunt diode does not present a
short circuit to the switching core itself. Another scheme for re-
ducing back transfer is shown in Fig. 3-10(b). Here, back-to-back
diodes in each loop prevent the flow of loop current except when
one of the diodes is deliberately forward biased (by a current

(a) (b)

Fig. 3-10. Backward decoupling by means of: (a) a shunt diode in each loop; and (b) an ad-
ditional reversed diode which is forward biased only during forward transfer.
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source), so that a particular loop can be used for forward transfer,
More practical circuits of this type can be arranged so that only a
single extra pair of diodes is required, rather than one extra diode
per loop. (Both of these techniques lead to high performance, and
circuits of this type have found wide application.)

The above two methods for increasing the directional asym-
metry of the line involve the addition of extra elements per loop.
An equally important technique involves the use of additional loops.
Returning to Fig. 3-9, we see that the back current i; would cause
no harm if Core E; ; were not used as a receiver during the O; - E;
transfer. This situation can be provided by rearranging the drive
lines to the form shown in Fig. 3-11(a). Now when Core B; is the
transmitter and Core C; the receiver, Core A i is prevented from
switching by mmf applied to the winding labeled Hold. The drive
line shown is intended to provide simultaneous transfer from all
B cores to the neighboring C cores. The coupling loops between
the C and A cores are not shown completed, in order to emphasize
that the diodes prevent any forward current in these loops during
Clock Pulse B. If the A cores are held from switching, as shown,
then there can be no back transfer either, and we therefore have
achieved nominally perfect isolation during the B - C transfer.
Although not shown in the figure, if two other clock lines labeled
A and C are similarly provided and properly displaced along the
chain, then excellent performance can be achieved by applying
clock pulses in the sequence A,B,C, A, B, C, ....

Aj+1

Drive Hold Drive Hold

8 I [

(b)

Fig. 3-11. A 3-core-per-bit register requiring a three-clock driver.
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The explicit Hold windings shown in Fig. 3-11(a) can actually be
eliminated if the clock pulses are made to overlap in time in the
manner shown in Fig., 3-11(b). Thus, if the B pulse is applied be-
fore the A pulse terminates, then current through the A windings,
which previously drove each of the A cores to its reference, or
clear, state now plays the role of holding the A cores in this cleared
condition.

Note in Fig, 3-11 that if NT could be set equal to Np, then the
physical chain would be perfectly symmetrical and the direction
of shifting could be reversed merely by altering the clock sequence
to A,C,B,A,C,B,... (in the manner of reversing a three-phase
motor). Although this is not possible here, because N, > Np is
required for achieving flux gain, we will next consider a transfer
scheme in which bidirectional transfer can, in fact, be achieved
in just this manner, due to gain being achieved by a different
mechanism that allows N,/Ng to be set equal to unity.

3-6 Transfer Schemes Using Capacitance

In this section, we consider two types of registers using ca-
pacitors, in conjunction with cores, to illustrate several basic
points. The first scheme has not, to our knowledge, been put to
significant use, though the second one has been applied practically
and is described in detail in Chap. 14 of Meyerhoff (1960).

Core-Capacitov Scheme. This scheme, described by Dumaire,
Jeudon, and Lilamand (1958), makes use of the A¢ ~transformation
effect described in Sec. 1-4. If Core A in Fig. 3-12(a) is initially
in the ome state, then Pulse A switches the core and charges the
capacitor. The charging current i, cannot switch Core B because
it tends to drive Core B further into saturation. Just as Core A
begins to saturate, the capacitor discharges in the direction to
switch Core B. The capacitor voltage as a function of time is
sketched in Fig. 3-12(b). It was shown in Sec. 1-4 that the equiva-
lent flux linkage (measured in terms of the volt~second area under
the capacitor voltage curve) can actually be greater during dis-
charge than during charge, which may result in G > 1 even with
unity turns ratio.

Figure 3-12(c) shows a register chain based on this transfer
scheme, With unity turns ratio, we have bilateral symmetry in the
structure, and there could be no directional preference with only
two clock phases and two cores per bit. Therefore we use three



42 DIGITAL MAGNETIC LOGIC

= Time
Charge Discharge
(b)

(c) it A s B ¢ (A)

Hold Drive Hold Drive

- (c)
Fig. 3-12. A 3-core-per-bit symmetrical register with one capacitor per loop and a unity turns ratio.

cores per bit and employ the timing asymmetry and the same
drive-hold configuration as in Fig., 3-11. In Fig. 3-12(c), as
Core A switches, a back current i, anda forward current i, charge
the respective capacitors C; and C,. As Core A begins to saturate,
these capacitors start to discharge, both currents then being in a
direction to drive Core A further into saturation. Capacitor C,
discharges rapidly, the reversed current i, being limited pri-
marily by the coupling-loop impedance and the saturation inductance
of the cores. (In order to avoid oscillations and to limit the holding
mmf required, the loop resistance R, must be larger than a certain
minimum value.) Discharge current from C, switches Core B, as
desired. But Capacitor C; is a load on Core B; as a result, C, ini-
tially discharges rapidly and C4 charges rapidly until their voltages
are equal. Then both capacitors discharge simultaneously to con-
tinue the switching of Core B, In this manner, upon application of
the drive pulse A, all cores labeled A simultaneously transfer
their data states to their B neighbors.

To achieve continuous shifting, we require three clocks, as in
the three-phase register of Fig. 3-11. As there, we are able to
achieve the holding function without special Hold windings, by
overlapping the A, B, and C pulses (provided that Ry is large enough
to prevent the maximum backloop mmf from overriding the drive
mmf retained on the previous core for holding it clear). By thus
omitting the Hold windings, and with turns ratio » = 1, shifting to
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the left is achieved merely by reversing the order of the clock
pulses, as suggested at the end of Sec. 3-5.

Core-Diode-Capacitor Scheme. Although a register for simul-
taneous shifting of all data must have at least two storage cells
per bit, it is not necessary that each of the storage elements be
capable of holding data indefinitely. Itis sufficientif one set of ele-
ments provides only temporary, or dynamic, storage during the rela-
tively brief interval in which the long-term storage elements are
being cleared in order to be ready to receive the data back
again, in the shifted position. A common type of register of this
form is shown in Fig, 3-13, where the dynamic storage is provided
by the capacitors. Such a register requires only a single-phase
clock. The circuits are arranged so that during the drive pulse,
data is transferred to the right from coresto capacitors, and in the
interval between drive pulses the capacitors ¢‘transmit to,” i.e.,
discharge into, the neighboring cores to the right.

! J j* j*e

Drive

Fig. 3-13. A single-core-per-bit register requiring only a single-phase pulsing.

To follow the operation, assume that Core j is in the one state
when the drive pulse is applied. Core j therefore switches, and
forward and back loop currents i, and i, flow. The forward cur-
rent if charges Capacitor Cj+1, but is not able to set Core (j + 1)
because the drive pulse is still applied to this core. When the
drive pulse terminates (timing is arranged so that the drive ter-
minates when the switching cores reach saturation), the series
diode becomes cut off and the capacitor discharges through
Core (j + 1), setting it strongly. The backloop current i b result-
ing from Core j switching, tends to charge capacitor C;, but be-
cause of the relatively high impedance in this charging circuit, and
because of the lower number of receiver turns, C ; tends to charge
to a considerably smaller voltage than C; . Nevertheless, a cur-
rent i, small compared to i}, tends to flow through Core (j - 1).
The shunting thus provided by the capacitor is generally not as
good as that provided by the shunt diode in the circuit of Fig. 3-10(a).
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Hence, the isolation between transfers is not perfect (even ideally),
but it is sufficient for obtaining good performance. Single-phase
core~diode~capacitor circuits such as these have been used quite
widely.

3-7 Summary

This chapter covers the basic requirements for stable binary
transfer in a chain of magnetic elements. First we show that for
bistability it is necessary to have the flux transfer ratio G > 1 for
large values of A¢ and G < 1 for small values of A¢, where we
assume that a binary zevo state is represented by a small, ideally
zero, level of A¢, and a one state by a relatively large magnitude
of A¢. Various gain and loss mechanisms for shaping the gain
curve as a function of the A¢ level are discussed. From the limits
on coupling loop and load resistance found in Secs. 2-3 and 2-6, we
see that in order to achieve G > 1 in an iterative chain of identical
stages, it is necessary to unload each stage that is switching as a
receiver element; we refer to this as forward decoupling. Back-
ward decoupling is also required where a number of independent
stages are switched together along the magnetic chain., Diodes are
effective in providing these forward and backward decoupling func-
tions, and various core-diode schemes are discussed. It is also
shown how capacitors can be employed to provide the necessary
flux-gain mechanism, in terms of the A¢ -transformation property
of Sec. 1-4, and also to provide temporary storage in coupling
loops. Although the capacitor schemes are of secondary interest,
they provide good practice in the tracing and manipulation of flux
signals and aid in the understanding of basic requirements on flux
gain and loss mechanisms.
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In this chapter, we first show how the combination of a toroidal
core and a resistance, along with use of an extra clock phase, can
replace each diode of a core-diode circuit. Thisreplacement leads
to a class of circuits generally known as vesistance-type core-wire
circuits. Every core-diode circuit has sucha core-wire equivalent,
although as we will see, the converse isnot true. In these circuits,
dissipation of flux linkage in the coupling-loop resistance dur-
ing some portion of the clock cycle is a basic part of the operation.

Second, we show how the requirement for loop resistance can
in turn be eliminated by the use of still other cores, leading to
circuits generally known as nonvesistance-type core-wire circuits.
In these circuits, resistive flux dissipation is not required (in fact,
is undesired) in any part of the cycle, though any dissipation that

45
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does occur must be accounted for in detailed quantitative analysis.
The resistance circuits are generally much slower than the non-
resistance circuits but are much more tolerant to variations in
circuit components and drive~pulse amplitude.

The resistance and nonresistance types of circuits can each be
realized either with toroidal cores or with multileg cores. Each
of the possibilities is illustrated by example in this chapter. These
examples are specifically chosen to illustrate basic principles and
important differences in various types of core-wire circuits. Al-
though none of these examples represents schemes presently in
practical use, all have been successfully operated inthe laboratory.

The development of the various types of circuits in this chapter
is somewhat tedious, but the indulgence of the reader is sought, for
in this way one can better understand the very many possibilities
inherent in these circuits. The general principles on flux gain and
current tolerances that were introduced in Chap. 3 apply here, but
the emphasis will be on qualitative details for obtaining decoupling
and other basic requirements with the different circuit types.
Given the essential qualitative characteristics, detailed design for
bistable transfer can be accomplished by the methods discussed
later.

4-1 Simulation of Diode Action

Assume that the core of Fig. 4-1 is in negative remanence -¢,.

A positive current +i would drive the core further into negative
saturation, with small induced emf, whereas

a negative current —i would switch the core

_¢r
N

——— &—~—Hold

+i

~— Hold

Fig. 4-1. Simulating diode ac-
tion with a core;+i symbolizes
the forward (low impedance)
direction for both the diode
and its core replacement.

towards +¢,, with relatively large emf in-
duced in the winding. In analogy to diode
notation, the direction of current in which
the core is driven into saturation is called
the forwavd (low-impedance) direction; the
other direction is referred to asthe reverse
direction, If a current in a separate winding
(shown dashed in the figure) tends to hold the
core in its - ¢, condition, then the core will
exhibit low impedance to either direction of
current flow as long as the mmf in the re-
verse direction is less than the holding mmf.
The same effect is achieved with a diode by
applying a current bias, in which case a
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“‘backward current’”’ equal to the holding current can flow before
the diode circuit opens.

We note, however, the following differences between a diode and
its potential replacement:

1. For a constant applied current, the switching voltage is not
constant in time (the constant-p core model noted earlier is only a
rough approximation), i.e., the effective impedance of a switching
core is not constant,

2. A back impedance can be sustained only so long as the core
is actually switching. Once the core becomes saturated, the im-
pedance is again essentially zero.

3. When the core reaches the opposite state of saturation, the
“magnetic diode’’ has effectively been reversed, so that an oppo-
site polarity current will now cause the high-impedance state.

4. The ability to use a number of electrically isolated windings
on the same core, some of which may carry control currents (such
as holding currents), is an important property that has no diode
counterpart.

An example of diode replacement by a core is shown in Fig.
4-2, In Fig., 4-2(a), the diode prevents loop current from flowing
when the left-hand core (assumed to be a receiver core) is
switched by the drive mmf Npi.. The flux linkage injected by the
left core is dissipated in the back resistance of the diode. (This
can be achieved with very small loop current because of the high
value of back resistance.) In Fig. 4-2(b), we replace the diode with
a core, making use of the polarity convention of Fig. 4-1. Now the
flux linkage injected by the left-hand core is balanced by flux
switching in the ‘‘diode core.’”” If the latter has a low threshold,
and does not saturate before switching in the left-hand core is
completed, then the loop current i; is again very small, and no
flux switches in the right-hand core.

NRNT g NR

if lf Ll

(a) (b)
Fig. 4-2. Replacing the diode of (a) with a core and loop resistance in (b) along with the
addition of a clock phase.

We see then that both the diode and its replacement core can
accept flux linkages with very small current flow. An important
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difference, however, is that the core must be explicitly restored
to its original, or clear, state before it can play the same diode
function again. This is the role of the extra clock phase. In order
not to disturb either the left- or right-hand cores during the restore
operation, the restoring mmf N i must switch the core slowly,
and, since neither of the other two cores are to switch, there must
be a resistance in the loop to dissipate the injected flux linkage.
Thus, we see how a core and a loop resistance, along with use of
an extra clock phase, can replace the diode. In this fashion, each
of the core-diode circuits of Chap. 3 could be transformed to a
core-wire circuit. In the following section we consider a specific
example of such a circuit.

Briggs Scheme. A direct core-wire equivalent of the circuit of
Fig, 3-10(b) is shown in Fig. 4-3. For simplicity, only the O -> E
advance line is shown, although a similar E - O line is also neces-
sary. During O; - E; transfer, the small shaded cores B and F
are switched by very small loop currents and provide the required
backward and forward isolation functions, respectively. (In Fig.
3-10(b), these functions are provided by the corresponding diodes.)
This circuit is easily arranged with a single drive line that pro-
vides both the advance and hold functions, as indicated by the dashed
line in the figure, so that only a single power source is actually
needed for this phase of operation.

Fig. 4-3. Core-wire equivalent of the core-diode circuit of Fig. 3-10(b).

Although no windings are shown in Fig. 4~3 for the restoring
function, a single line linking all of the diode cores could be used.
A current pulse on this line following each advance pulse would
restore all of the small cores that were switching during the ad-
vance phase and leave unaffected the cores already in their clear
states. Alternatively, the restore line could be energized with
direct current, which would automatically restore these cores
following each advance pulse (see Sec. 2-8). In this case, the re-
sulting circuit operation still has a four-phase rhythm (0 - E,
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Restore, E - O, Restore), even though only two explicit clock
pulses are applied. The primary effect of applying the restore
current continuously is that the diode cores then have somewhat
poorer back resistance, in the sense that loop currents must
achieve higher values before overcoming the dc mmf, The circuit
of Fig. 4-3 is essentially identical to the one described by Briggs
(1952).

4-2 Core-Wire Scheme with No Core-Diode Equivalent

We noted earlier that although every core-diode circuit has a
core-wire equivalent, the converse is not true. To illustrate, we
will now show the development of a core-wire circuit that re-
quires only a single ‘diode core’’ per loop, but which has no
operable core-diode equivalent. To start, consider the arrange-
ment of Fig. 4-4(a) in which a diode shunts to ground between each
pair of cores. Assume that Core E; contains a one. During the
E - O transfer, Core E. switches to -¢, and a forward current i f
tends to flow through Diode D,. Since the main objective is to
switch Core Oj, we wish Current if to link that core, but go no

;gff i 7
| \) \w)

1
1!
Ej+1
W
D3 “b:ﬁ

~
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(a)

Hold Hold

Nnﬁmh A Ne Ny

Restore

Fig. 4-4. A core-wire register with no core-diode equivalent is shown in (b). The core-diode
version in (a) is inoperable because of lack of a gain mechanism.
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further. This is accomplished by forward-biasing the diode D,
with Current I3, as shown in the figure. The diodes D; and D4
in effect then establish a coupling loop between Cores E; and Oj .

All other E cores are simultaneously driven by the same E - O
pulse, and every other diode to the right of an O core is therefore
similarly forward biased, as shown by the dashed parts of Fig.
4~-4(a). During the alternate O - E drive periods, the other set of
diodes is similarly forward biased. To this extent, the core-diode
circuit appears proper. However, there is no place to obtain a
turns ratio >1 for flux gain, and no other A¢ gain mechanism
is present, so that in fact the circuit of Fig. 4-4(a), as it stands, is
inoperable as a shift register.

Russell Type-II Resistance Scheme. Simply replacing the di-
odes of Fig. 4-4(a) with cores (and, of course, coupling-loop re-
sistance) offers no advantages regarding flux gain., However, by
the use of a separate pair of windings of turns N, and Np, on each
shunt core (Item 4 of Sec. 4~1), we quite easily obtain the required
A¢ gain (Fig. 4-4(b)). Each advance-pulse line in Fig. 4-4(b) links
alternate shunt cores in order to hold them clear, analogous to for-
ward bilasing on the corresponding diodes in Fig. 4-4(a). The
Restore line can again be dc operated. This type of register, using
one shunt core per loop, was introduced by Russell (1957) and is
referred to as the Russell Type~II scheme.

Thus we see that although all core-diode circuits can be trans-
formed to core-wire circuits, the reverse is not true; in subse-
quent chapters, we will treat other examples of core-wire circuits
with no core-diode equivalents.

4-3 Replacement of Loop Resistance by a Core

We would like to show now how the coupling-loop resistance as
a functional element may, in turn, be replaced by another core. In
doing so we obtain an example of a nonresistance core-wire
scheme,

Russell Nonvesistance Scheme. The Russell-II scheme of the
previous section has a corresponding nonresistance version (Rus-
sell, 1959) that is identical in structure and clock sequence except
that the loop resistance is replaced with another core, as shown
in Fig. 4-5(a). For simplicity, only the E - O drive winding is
shown in the figure. For shifting a bit in from the left, during an
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Hold Hold
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~~Restore £ _
AN e

Restore O

Fig. 4-5. Replacing the functional loop resistance of Fig. 4-4 with another core to obtain
a nonresistance-type of core-wire circuit.

O » E transfer, the coupling core E; and the receiver core E, are
both switched as before. During this transfer, the coupling-loop
current i; is positive. The next operation is to restore the coup-
ling core E;. But now the A¢ from Core E; is not dissipated in
coupling-loop resistance, but rather is transferred to Core Ej.
(Let Restore-E be the operation of returning E, to its clear state.)

During the following E - O pulse, which clears Core E,, a posi-
tive loop current i; switches the coupling core O;, as a result of
which the receiver 0, is also switched (the right-hand coupling
core E, being held clear during this operation). Assume for the
moment that Core E; does not switch during this transfer operation.

Consider now the Restore-O phase during which the coupling
Core O, is restored. In the resistance version, flux linkages from
Core 0, are balanced by resistive flux dissipation in both the for-
ward and back loops. Here, however, there is no need for dissipa~
tion in the back loop, for if we clear Core Eq simultaneously, the
flux linkage earlier stored in Core E; can balance the flux linkage
from Core 0,. In other words, if Cores 0, and E; were cleared at
the same rate, then zero voltage would appear between points
a - a’, and there would simply be no back transfer, regardless of
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the rate of clearing. Now in the forward loop, a negative current
iy tends to clear Core O, at the same time that it tends to set
Core O3. To minimize switching of CoreO0,, this core can be biased
(up to threshold) in a direction to hinder switching, as shown in
Fig. 4-5(b), while at the same time Core O5 is biased forward to
minimize the required switching current. We might askwhy Core 0,4
couldn’t simply be small, compared with Core O,, so that we
would not have to forward-bias Core O, in this manner. To answer
this, we observe that during the subsequent O - E transfer phase,
Core O; must be prevented from switching (as was earlier noted
for Core E5 during the E » O phase). Hence,the effective backward
threshold of Core O; must be larger than the effective forward
threshold of Core E, (when loaded by E,, which is equal in size
to 0,). We conclude that the two cores on each loop are preferably
of comparable size.

Let us now see how it is that we can achieve higher-speed
operation in this nonresistance version. Consider again the resist-
ance version of Fig. 4-4(b). For low flux loss during transfer, the
loop resistance should be as low as possible. On the other hand,
for a high rate of flux dissipation during Restore, the resistance
should be as high as possible. The loop resistance, of course,
has the same value during each operation. By substituting a core
for resistance, however, as in Fig. 4-5, we can achieve a signifi-
cant difference in average core impedance during the two opera-
tions, by the selective biasing discussed above. In other words,
during a restore phase, a forward-biased core has a relatively
high effective impedance as seen by loop current (and hence
switches rapidly), whereas during the subsequent transfer phase,
the same core (still biased forward) presents a relatively low
impedance to the opposite polarity of loop current, making possible
a low loss of the transmitted A¢. Thus, at the expense of additional
core components and drive complexity, we can in general achieve
a considerably higher transfer speed in a nonresistance~type cir-
cuit than in its resistance-type counterpart.

4-4 Extra Isolation with Multileg Cores

Multileg Cove. We now introduce a more complex core shape.
One of the earliest such devices was the transfluxor (Rajchman and
Lo, 1955), in which a single, small (or minov) aperture was added
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to a simple core (Fig. 4-6(a)). Let us note some basic properties
of this device.

1. A current i of large amplitude results in a clockwise flux
throughout the entire core of Fig. 4-6(a), in particular in the legs
on both sides of the small aperture, just as in an ordinary toroid.
We refer to this clockwise flux state as the clear state.

(c)

Fig. 4-6. Multileg core: (a) clear state; (b) set state; (c) driving the output
aperture with a small mmf; (d) separate input aperture for digital setting.

2. Now consider a slowly increasing mmf of the opposite po-
larity (Fig. 4-6(b)). At some threshold value of current, flux be-
gins switching counterclockwise along the inner wall of the toroid;
as mmf increases further, flux switchestolarger and larger values
of radius. At some particular magnitude of current, exactly half of
the flux is switched, as shown in Fig. 4-6(b). (The switched flux is
indicated by the double arrow.) This state, in which the flux is in
opposite directions (relative to the major aperture) in the legs ad-
jacent to a minor aperture, is referred to as the set state.

3. With the core in the set state, it takes a relatively small
mmf to switch flux locally about the minor aperture (Fig. 4-6(c)).
The resulting flux pattern is shown by the dashed lines. The low
value of mmf results from the short switching path about this aper-
ture. In fact, in this state, flux canbe switched back and forth con-
tinuously with a small current of alternating polarity applied to the
minor aperture.

4. The set state can be achieved ¢‘digitally,’’ i.e., without re-
quiring a precise magnitude of input current, by the use of a sepa-
rate input aperture, as in Fig. 4-6(d). In this case, starting with a
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cleared core, a suffiently large input current i causes a complete
switching of flux in the leg linked by the input winding. If the cur-
rent i in Fig. 4-6(d) rises relatively slowly, then flux switching
occurs along the shortest physical path around the major aperture,
so that nominally no flux change links the output winding in this
setting operation. (In this figure, shaped areas are shown around
the minor apertures to suggest the desirability in general of having
constant cross-sectional area everywhere around the major aper-
ture. The subject of core shaping is discussedfurther in Sec. 6-9.)

With these simple notlons regarding a multileg core, we can
proceed to show new possibilities in core~-wire circuits and to
show why core~wire circuits involving multileg cores are generally
superior in performance to those synthesized strictly with toroids.

Cores with more than one aperture have been called by various
names: multiaperture cores, MADs, multileg cores, multipath
cores. In the following chapter each leg of a core will be repre-
sented by a branch in a general magnetic network representation,
and for this reason we prefer the term wmultileg. However, the
acronym MAD, from MultiAperature Device, has been applied to
certain schemes for a sufficiently long time that this term has
been retained in the names of those schemes.

Briggs-Lo Scheme. In Fig. 4-7(a), each multileg core incor-
porates into one element both the storage and coupling-core func-
tions of the Russell-II circuit of Fig. 4-4(b), and, as we will see,
contributes an important new function as well. This scheme was
initially discussed by Briggs and Lo (1961).

Assume that each of the E coresin Fig. 4-7(a) has been cleared,
i.e., is in its zero state, and that binary data is stored in the O
cores. The advance O -» E pulse switches all of the O cores to
their clear states, and transfers, in the process, the state of each
O core to its right-hand E neighbor. Assume that Core O, is in the
set state in the sense of Fig. 4-6(b). The O - E pulse clears Core
0, inducing a loop current i that in turn sets E,, accomplishing
thereby the desired transfer. (If O; were in its clear state, no
loop current would flow, and E; would remain in its clear state.)

In more detail, note that when O, is cleared, flux switches
only through its inner leg; flux in the outer leg is already in the
clockwise or clear direction. Therefore there is no back transfer.
In the forward loop, the current i sets E; by switching flux in its
outer leg and around the main aperture. But no flux can switch
in the inner leg, which is already saturated in the direction of the
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input mmf; thus unlike the case of the original Russell-II scheme,
no holding current is necessary for prevention of forward transfer.

E~-0 L

Fig. 4-7. In (a) and (b), Briggs-Lo multileg-resistance scheme similar to the Russell-II
scheme of Fig. 4-4(b), but not requiring holding; (c) Engelbart reduction.

Of the three legs in each multileg core, the major one can be
thought of as replacing the storage core in Fig. 4-4(b), and the
outer small leg as replacing the coupling core. The inner small
leg is somehow extra, and its presence happens to be the reason
that the holding function of the Russell-II scheme is no longer
necessary here. In terms of the network approach of the next
chapter we will see more clearly the role of such ‘‘extra’’ circuit
elements.

To continue with the cycle of operation, consider Fig. 4-7(b),
where a restore current (applied to all cores) switches flux slowly



56 DIGITAL MAGNETIC LOGIC

about the minor aperture of E,, injecting flux linkages into both the
forward and back loops, which is dissipated in the loop resis-
tances. The cycle is completed with an E - O transfer followed
by another restore pulse. We thus have a four-phase cycle, though
the restore line can again be energized by a single dec source, so
that actually only two explicit clock pulses are required.

Engelbart Reduction. With one more step we can obtain a scheme
with even one less clock phase, and only one coupling loop per bit.
But we must reintroduce a holding current. This scheme is indi-
cated in Fig. 4-7(c), where the multileg element E, has been re-
placed by a simple toroid of the same general size, and both coup-
ling loops are merged into one. This scheme was devised by
D. C. Engelbart of Stanford Research Institute (unpublished notes).
(In connection with Fig, 7-7(c), we will show that this is a minimal
scheme in terms of the number of elements per bit.)

To see how it is that we save a clock phase, and why hold-
ing is necessary, assume again that a one is initially stored in
Core 0,. During the subsequent O - E phase, a large positive
loop current sets Core E,. Although this current is in a direction
to set Core 0,, the setting mmf is necessarily less than the simul~
taneous drive on Core O,, and so holding is not necessary during
this phase.

We might have considered the restoring function in Fig. 4-7(b)
to be a flux transfer, in effect, from the outer to the inner leg of
Core E; with subsequent transfer from the inner leg. There is no
equivalent function in Fig. 4-7(c), and the E > O pulse can therefore
be applied immediately following the O - E pulse. A high positive
loop current flows during this E - O phase, setting O,. This cur-
rent also tends to set the inner leg of 0,. But since this leg is now
in its cleared state, it can be unconditionally held that way, as in-
dicated in the figure. The resulting system then has only one
toroid and one multileg core per bit, and a three-phase cycle
+eey E - O, Restore, O - E, ..., but holding is again required to
prevent back transfer.

4-5 Isolation of Input and Output in Separate Apertures

Having introduced multileg resistance schemes above, we wish
now to treat one last circuit arrangement, namely a multileg non-
resistance scheme. In the circuits of Fig. 4-7, the input and output
windings connect to the same minor aperture. Functionaldecoupling
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is achieved by a restore phase, which we noted can be considered
as a local flux transfer from the input leg to the output leg (around
the minor aperture), during which time we have balancing flux dis-
sipation in the loop resistances. Let us consider more explicit

isolation based on separate apertures for the input and output
windings.

MAD-N Scheme. The particular circuit to be discussed here,
which is shown in abridged form in Fig. 4-8, is referred to as the
MAD-N scheme, N for Nonresistance type (Crane, 1959). It uses
two multileg cores per bit andisbasedon a four-phase clock cycle.
Assume that each E core is initially in its clear state and that
Core O, stores a one, i.e., is in its set state. We will follow the
transfer of this binary oze through one complete clock cycle to
Core 0,. The flux states at each step are shown below the circuit,
and flux changes at any particular step are shown by double arrows.

01 " E1 02

0~E
Clear O

E-0 L
Clear E

Initial
o
state to} tot 10}

0—F S+ ot 104

Clear O 4 -; o8  tod
\_‘_/ -

E-0 toy 4ot

Clear E tot 4o

Fig. 4-8. Using separate apertures for input and output, resulting in the MAD-N scheme.

A pulse on the O - E line causes flux to switch locally around
the output aperture of Core O,. The resultant loop current +i sets
receiver Core E,, the flux nominally switching in the shortest path
that includes Legs 1, m, and 3. The output circuit is therefore ef-
fectively decoupled from the primary flux-switching path when the
core acts as a receiver. Since flux switches only locally about the
output aperture of the transmitter, transmission is said to be
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nondestructive. Though this basic nondestructive read-out feature
is very useful, it implies here thatthe O element must be explicitly
cleared, i.e., driven to its zevo state, before it can subsequently
be used as a receiver.

Clearing of the transmitter is achieved with a pulse on the
Clear O winding. The result is that flux is again reversed through
the output winding, and a negative loop current -i reverses flux
locally around the input aperture of the receiver, Core E;. The
significance of this operation is that the input leg of E; is now back
to its initial (cleared) direction, so that when the E core is sub-
sequently cleared there will be no flux linkage generated in the
input winding and hence no back transfer. The full clock cycle for
this register has the familiar four beat rhythm: O - E, Clear O,
E->O0,Clear E,....

For zevo transfer, the advance pulse should cause no flux
switching in the transmitter, and the receiver nominally remains
in its cleared state. To ensure no flux switching, the advance mmf
applied to Leg 4 of the transmitter mustbe limited to the threshold
for switching around the major aperture. But for one transfer,
this magnitude of drive mmf is not adequate to induce enough loop
current for switching flux around the major aperture of the re-
ceiver. In other words, the circuit shown in Fig. 4-8 is not
actually workable in the abridged form shown.

Exchange of Flux Gain and Excess MMF, To increase the maxi-
mum amount of drive mmf allowed, we canbias the transmitter and
receiver as shown in Fig. 4-9. Let F, represent the threshold for
major-aperture switching., In addition to applying this much mmf
to Leg 4 of the transmitter, a similar amount can be applied to the
receiver to bias it to threshold, as well as a similar amount in the
clear direction of Leg 3 of the transmitter. The latter mmf is
limited to a single threshold unit to prevent flux from being lost by

Fig.4-9. Increasing the drive mmf and biasing the
receiver.
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unsetting around the transmitter major aperture in the case of one
transmission. (Actually, because of the soft-threshold effects dis-
cussed in the next section, Leg-3 bias must generally be kept
somewhat below this amount.)

With this bias arrangement, we have a drive mmf 2F available
to switch flux around the transmitter output aperture, and since
the receiver is biased to threshold, any loop mmf Nji, is com~
pletely effective in causing switching of the receiver. An upper
limit on loop current is therefore 2F,/N, (assuming zero mmf
drop in the transmitter), and hence an upper limit on excess mmf
that can be supplied to the receiver is (N, /Np)2F,. But with turns
ratio as the flux-gain mechanism, the maximum gain ratio is
Np/Np. Hence an upper limit onthe product of gain ratio and excess
mmf (‘‘gain-excess’’ product) is simply 2F,. This result, which is
typical for many nonresistance circuits, implies that increasing
flux gain by increasing N./N, necessarily results in a reduction in
the maximum excess mmf, and hence reduces the maximum trans-
fer speed and potentially the drive-current range. (When actual
losses are taken into account, including nonlinear loss for main-
taining a stable zero level, there is some optimum turns ratio,
typically < 2 for nonresistive circuits, at whichdrive-current range
is a maximum,)

Soft-Thveshold Gain Mechanism. We have thus far assumed that
Adp () = App (), i.e., that an element starting in the clear state -¢_
is set to a certain flux level during one clock pulse (receive time)
and is returned to the initial clear state during some subsequent
clock pulse (transmit time)., But this is not always the case. In
particular, for the MAD-N scheme of this section, the advance
operation and the clear operation are quite distinct. Furthermore,
the main aperture mmf is in the same direction during both the
receive and transmit phases. This creates the possibility of trans-
mitting a larger amount of flux than was actually received.

To see how this can work, assume in Fig. 4-10(a) that only
about half of the flux capacity of the input leg of the O element is
switched during the input clock phase E - O. During the subse-
quent Clear-E pulse, a negative loop current switches flux locally
around the input aperture, Fig. 4-10(b). Now during the following
O » E phase (Fig. 4-10(c)), an amount of flux equal to the received
flux is easily switched around the output aperture. But, additional
flux, labeled A¢*, can simultaneously be switched around the main
aperture as well, resulting in a net output flux Ad:T( D= A¢R () + Agp*.
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Fig. 4-10. Use of the soft-threshold flux-gain mechanism.

Although we are now discussing one transfer, we must keep in
mind that for zero transfer, A (and hence also Aqb*) should
nominally be zero. To be a useful gain mechanism, therefore,
we must be able to achieve a significant magnitude of A¢* during
one transfer, but only a negligible amount during zero transfer.
Since the strength of the advance pulse isindependent of data state,
this could only occur if there were a significant difference in the
main aperture threshold for the two states. And this is precisely
what may occur.

A typical family of output curves is shown qualitatively in
Fig. 4-10(d). Note that the main-aperture threshold, shown by the
dashed line, significantly decreases with the level of flux A¢, set
during the input phase. Thus with an mmf F, applied, A¢* will be
very small for A¢, ~ O, whereas a significant level of Ag* can be
obtained for larger values of A¢. The transfer ratio can be written

Adp(G+ 1 App(+ 1D + Ad*
G = =

Adr () G -1
b (j Adn(j
but T T
N Ado () — A )
Mgl + 1) = T (4-2)

R
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where A¢, .. represents the amount of flux-linkage loss in the
coupling~loop resistance and inductance. Thus

NT Ad’loss Ad)*

G = — - + -
Np  NpAdp()  Adp())

(4-3)

With the relationship of Aqs*/Aqu(j) versus A¢,(j) suggested by the
dashed line in Fig. 4-10(e), and with [(N,/Np) - A o /Np Ad ()]
assumed constant, as a first approximation, we see that it is pos-
sible to achieve a proper digital gain curve even with N,/N, = 1.
Operation based on soft-threshold gain has in fact been verified
in the laboratory with N, = N, = 1, that is, with single turn wind-~
ings, though with relatively small circuit tolerances,

A potential advantage of exploiting the soft-threshold gain
mechanism is that a unity turns ratio is thus allowed, and the
resulting symmetry permits bidirectional shifting. It is easily
verified that if the bias winding on the E-core in Fig. 4-9 is re-
placed by a figure-eight winding, symmetrical with the drive wind~
ing on the O~core (and similarly forthe E - O drive windings), then
shifting can be caused to proceed to the left instead of to the right
simply by reversing the order of the two clear pulses. In any
case, whether this soft-threshold effect is relied onas the primary
gain mechanism or not, it contributes to the overall transfer char-
acteristic for many types of schemes.

4-6 Summary

In this chapter we have introduced a number of basically dif-
ferent core-wire schemes in order to illustrate a number of dif-
ferent aspects of these circuits. Although all of the schemes
discussed are actually operable, none are of any special practical
interest. They are introduced here primarily because they have
a certain direct simplicity, and through them one can quickly gain
insight into the basic operations. Perhaps it is no accident that
these were among the schemes reported earliest in the literature.

In Sec. 4-1 we show how a diode can be replaced by a core-
resistance combination together with an extra clock phase to
“restore’’ the core so that it can again perform its diode function.
The resistance is required for A¢ dissipation (in the sense of
Sec. 1-2) during the restore operation. The resistance thus intro-
duced into the circuit with this replacement technique leads to



62 DIGITAL MAGNETIC LOGIC

what are called resistance-type core-wire circuits. Every core-
diode circuit has such a core-~wire equivalent, though it is shown
in Sec. 4-2 that the converse is not true.

In Sec. 4-3, we show how the resistance function can be re-
placed in turn by still another core, leading to the synthesis of
nonresistance core-wire circuits, which are generally faster than
the resistance type circuits, but also have lower operating mar-
gins, Finally, it is shown in Secs. 4-4 and 4-5 how important
improvements in circuit isolation are obtained by the use of still
more complex circuits, in particular by the use of multileg cores.
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In the preceding chapters, digital magnetic core circuits were

evolved by matching the functional properties of cores to the re-
quirements for digital transfer in iterative circuits. In the pro-
cess, the effects of electrical elements in core circuits were con-
sidered. We also indicated a number of different ways in which
cores, coupled by wire only, could provide all of the properties
needed for realization of digital transfer. Later, we consider still
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other ways to synthesize such circuits. As an important aid
in deriving and understanding such a diversity of schemes and
techniques, we introduce in this chapter a generalized magnetic-
network representation for magnetic~core circuits.

As used here, a magnetic netwovk is an abstract representation
of a circuit. In general, such a network consists of magnetic
branches and nodes and electrical mutual coupling (conductive
coupling loops), just as an electric network consists of electric
branches and nodes and magnetic mutual coupling (transformers).
In a magnetic network it is particularly easy to trace flux switch-
ing paths, just as in an electric network it is easy to trace current
flow paths. Magnetic~network concepts are primarily useful here
for qualitative analysis and for derivation of new transfer schemes.

The main qualitative aspects that distinguish one formof trans-
fer circuitry from another are: (1) the basic topology; (2) the sig-
nificant flux states, and the mode of sequencing between these
states; and (3) the physical types of elements involved. Item (1) is
reflected in the structure of the network. Item (2) relates to the
order in which network elements are switched when the circuit is
cycled through a series of flux states. Item (3) involves specification
of whether the flux change in some networkbranch is an actual flux
change in a magnetic element, or whether it represents an equiva-
lent flux~linkage change in another type of element, e.g., dissipa-
tion in a resistance (Sec. 1-2).

The transformation of circuits into network terms helps in the
classification of known schemes. It is alsouseful for the derivation
of new schemes, by means of a nhumber of network operations that
we will develop. Also, with the network notation we can more
readily see how to trade off between wiring complexity, e.g., an
array of toroids, and core complexity.

In the first section of the chapter, magnetic-network concepts
are introduced in terms of a single multileg core linked by current-
carrying windings. Then, we consider the transformation of more
general core circuits into the magnetic~network domain. In Sec. 5-3
we describe a number of network operations that facilitate the
derivation of variations of a given basic transfer scheme. In Secs.
5-4 and 5-5, we show how the network methods can be applied in
the derivation of new schemes as well as aid in understanding the
operation of relatively complex schemes. Though these last two
sections are excellent exercises in deriving new schemes, and in
developing facility with network methods, they may be bypassed
without loss of continuity.
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5-1 Network Representation

We take the view that a complex core consists of legs connected
at junctions, and that each leg may be treated as a distinct magnetic
element, with properties similar to those of atoroidal core. Inter-
action between the legs is represented by constraintson the amount
of flux entering a junction and on the total mmf along a closed path
in the core. Additional constraints imposed by intercoupling elec-
tric circuitry may be represented in similar fashion, thus provid-
ing a common representation for both the cores and the wiring.
Several persons have contributed to the evolution of this represen-
tation to its present form, but the original impetus was provided
by D. C. Engelbart (unpublished notes).

Drawing Netwovk Structurves. In Fig. 5-1, three multileg cores
are shown, each of which consists of several legs and junctions, the
latter indicated by dots. Assume that the minimum cross-sectional
area of Legs 1, 2, 3, and 4 is the same in each of these cores and
the same as that of Leg 7 in Fig. 5-1(c). Also, assume that Legs 5
and 6 each have minimum cross-sectional areas twice that of the
other legs. It is helpful to consider the cores to have uniform
height (in the third dimension), in which case the above statements
apply to leg widths. We assume in Fig. 5-1 that all small legs are
of width w.

(a)

Fig. 5-1. Different forms of multileg cores having two minor apertures.

In Fig. 5-2, we show the basic magnetic-network structures of
the respective cores of Fig. 5-1. Here we represent only the legs
of the cores and how they are connected at junctions. Hence, it is



66 DIGITAL MAGNETIC LOGIC

sufficient to represent each leg by a line and each junction
by a node.

5
5
6

(a) (b) (c)

Fig. 5-2. Magnetic network representation of the multileg cores of Fig. 5-1.

The network structures of Fig. 5-2(a) and 5-2(b) may be con-
sidered equivalent because the amounts of flux in Legs 5 and 6 are
constrained to be the same. In fact, we may view Fig. 5-2(b) as a
‘reduction to unbalanced form of the balanced networkof Fig. 5-2(a),
and hence as a reduced network representation of the core of
Fig. 5~1(a) as well as a direct representation of the core of Fig.
5-1(b).

Loop and Node Constraints. In electric circuit theory, the basic
variables are voltage drop and current, the product of which is
power. We consider the analogous variables for magnetic circuits
to be mmf drop F, and rate of change of flux ¢, the product of
which is also power.

The constraint on each network node (following from Maxwell’s
equation V.B = 0) is simply

226, =0 (5-1)

implying

2b; =0 (5-2)

where the summation is over all flux values emanating from the
node. For the case of no linking currents, as in Figs. 5-1 and 5-2,
the constraint on each network loop, following from Eq. (1-7), is

2F; =0 (5-3)

where the summation is over all mmf drops around the loop.
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Representation of Satuvation Flux States. Considering the pos-
sibility of partial switching of cores, an unlimited number of flux
states are possible; however, we are concerned primarily with
digital flux states associated with nominal saturation of one or
more legs of a core. With this constraint, let us consider further
the network of Fig. 5-2(b), but now with orientation arrows drawn
on the branches, as in Fig. 5-3, where we show all the possible
flux states, assuming that each of the Legs 1, 2, 3, and 4 must be
saturated one way or another., Arrows represent only the direction
of flux saturation in this diagram. Though the flux states in Fig.
5-3(d), (e), and (f) are exactly the opposite of those in Fig. 5-3(a),
(b), and (c), respectively, it is important, relative to schemes
described later, to consider all of these possibilities.

VY Y Y Y Y

(b) (c) (d)

Fig. 5-3. All possible minor-leg saturation flux states for the network of Fig. 5-2(b).

The network diagrams drawn thus far give no indication of
areas or length of legs, but it is apparent that cross-sectional
areas are crucial relative to consideration of the saturation flux
states. Also, relative mmf thresholds of legs must be taken into
account when we consider whether it is possible to actually se-
quence through a given series of flux states. Therefore, we often
want some means for suggesting the relative cross~-sectionalareas
and lengths of legs. Where this is necessary, each branch can be
drawn as arectangle rather than a simple line, as in Fig. 5-4, where
the length and width of the rectangle are
suggestive of the length and cross-sec-
tional area of the leg, respectively. Lines
drawn between the rectangles and nodes
represent the connections of the legs at
the junctions. These lines may be thought
of as ideal magnetic-flux conductors. In
many cases, it is convenient to treat one
node of a network as a reference or a
¢ground’’ node, as shown in Fig. 5-4.

The use of rectangles also provides Fig. 5-4.  Rectangular branch

. representation to indicate rela-
a convenient means for showing the pres-

tive lengths and relative cross-
ent flux state of all of the branches, as is sectional areas.
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done in Fig. 5-4 for the core state shown in Fig. 5-3(b). The fact
that ¢ = 0 in the main leg may be indicated either with opposing
arrows, as in Fig. 5-4, or with no arrows at all. The clear or
reference state of the core may be indicated with triangular pointers
on the rectangles, as shown in Fig. 5-4 for the usual clear state of
a core of this type, i.e., clockwise saturation around the major
aperture.

Representation of Drive MMF, In order to sequence between
flux states, it is necessary to provide electric-current excitation.
A way to view currents in windings is as current linkages, analo-
gous to rate of change of flux linkages N¢ in an electric circuit.
When current linkages are present, Eq. (5-3) must be generalized
to the form

2F; - ;Nkik (5-4)
where N,i, is the mmf due to the kth winding linking the network
loop, with polarities defined such that positive values of the i, tend
to produce positive values of the F;,. This equation is just another
way of writing the integralform of Ampere’s law given by Eq. (1-6).

AN AR
INgiz=Nyiy

(a) (b)
Fig. 5-5. Network representation of drive mmf.

In Fig. 5-5(a) is shown a core linked by independent source
currents i, iy, and ig, in windingsof N, N,, N5 turns, respectively,
and a dependent, induced loop currenti, in a winding of N, turns.
A way torepresent these mmf in the network is shown in Fig. 5-5(b),
where the current-linkage sources N, i, Nyiy, and N;i; are shown
as mmf generators in appropriate branches of the network. The
variable output current i, is shown simply as a conventional loop
since we are not yet prepared to show the representation of
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dependent currents in network terms. (Note that Legs E and F are
both represented by a single branch G.)

Though the representation of Fig. 5-5(b) is very useful, we
must note that when all current linkages in a loop are transformed
into discrete generators in series with certain branches, then the
node potentials thus defined are artifices rather thanunique physical
quantities. This is so because for a given excitation pattern, only
the total loop mmf are specified, in the sense of Eq. (5-4), and the
assignment of particular mmf to particular branches is not unique.
For example, a completely equivalent choice for representing the
generators is to move the mmf N, i, to be in series with branch B
(shown dashed, and with opposite polarity) instead of branch A, and
to adjust the magnitude of the generator in series with branch G to
Ngig - Nyi;. But the total drive mmf in every closed path is iden-
tical in the two schemes, and of course the resultant mmf drop in
any leg (such as F, in Leg A)is unique, and independent of the par-
ticular equivalent set of mmf generators chosen.

Sequencing between Flux States. To see how the sequencing from
one flux state to another may be represented in a network, con-
sider Fig. 5-6, where we assume the vertical branches to be iden~
tical and the clear state to be the same as shown in Fig. 5-4. On
the basis of Eq. (5-2), any flux change entering a particular node
through one branch must be balanced by a flux change in one or
more other branches leaving the same node. In many cases, we
are concerned only with flux entering a node in a single branch and
leaving it in only one other branch. It is apparent that any such
flux change must occur in a single closed path in the network.

In Fig. 5-6(a), the initial flux state, as indicated by the arrows
within the boxes, is the clear state. Assume that a drive mmf N, i

.
[
|
i
I
|
|
|
\

(a) (b) (c) (d)

Fig. 5-6. Sequencing between flux states.
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is applied, which is sufficient to produce a flux change in the path
indicated by the dashed line. With this excitation alone, the flux
change would tend to divide equally between the branches C and D.
However, an mmf N,i, is applied simultaneously to Branch D in
order to hold it in its clear state. In Fig. 5-6(b), an mmf N, i] is
applied to cause a local flux reversal in Branches A and B. (The
arrows inside the boxes in Fig. 5-6(b) represent the flux state
resulting from the switching in Fig. 5-6(a).) In Fig. 5-6(c), the
mmf N,i; produces a similar local change in Branches C and D.
It is assumed that the mmf N, i{ and N, i; are too low in magnitude
to produce inelastic flux changes along the pathincluding Branch G.
In Fig. 5-6(d), mmf N, i; forces the core back to its clear state.

In the cycle of Fig. 5-6, each leg is switched from its clear
state to a second state and then back to the clear state. Only two
switching steps are required for a cycle of changes in any one
branch, but note that we have used four steps in sequencing the
whole network through this cycle of flux changes. Note also that this
sequence of changes is exactly the one undergone by a core in the
MAD-N scheme of Sec. 4-5. (The network representation for this
scheme is treated further in Sec. 5-4.)

Representation of Electrical Loads. In Fig. 5-7(a), a core is
shown driven by a current i; through N, turns and loaded with an
electrical loop containing series elements R, L, and C across N
turns. The network representation is shown in Fig. 5~7(b), with
the drive shown as an mmf generator N,i, inserted into Leg B.
Since the loading current iy, through N, turns constitutes a back
mmf Nrpi,, it is shown as an mmf potential difference N i, in-
serted into Leg C. This mmf is not a fixed generator but depen-
dent on other conditions in the core and loading circuit. It is ter-
minated by a pair of nodes in anticipation of inserting appropriate
equivalent network elements. Small circles are placed around
these nodes to distinguish them from the solid-dot nodes repre-
senting physical magnetic junctions.

The equation for the electrical loop in Fig. 5-7(a) is

' i L (5-5
N¢>=L_.+Ri+_.fi t -5)
T - Rig e = f

which may be rewritten as

' dWNgpip)  (Npip
g-c Tt T"+L/NTigdt
dt R, L, (5-6)
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[ R
m Cm m
Fig. 5-7. Network representation of clectrical loads.
where
L
Cm =
N. 2
T
1 R
- Gy - — (5-7)
R, Np
2
L, = Np°C

The quantity Npi, is the mmf drop between the pair of circled
nodes. The three terms on the right of Eq. (5-6) may be inter-
preted as equivalent amounts of ‘‘magnetic current’’ adding up to
the actual ¢ in Leg C. Three branches for carrying these ‘‘mag-
netic currents’’ are shown on the right side of Fig. 5-7(b). Note
that the magnetic representation for the loading circuit is com-
pletely dualistic to the physical electric circuit. That is, the
series combination of the linear parameters L, R, and C transforms
to the equivalent parallel circuit consisting of C, G, and L, each
multiplied by the appropriate scale factor as given by Eq. (5-7).
The emf N, ¢ transforms to ‘‘magnetic current’’ ¢ (with scale
factor 1/N,), electric current i, transforms to the mmf drop N, i,
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(with scale factor Np). A voltage v inserted into the loop would
transform into a magnetic current generator of value v/N, applied
across the node pair in Fig, 5-7(b).

The circled nodes associated with transformed electric cir-
cuitry will generally be termed synthetic nodes in order to be dis-
tinguished from physical nodes representing core junctions. The
general equation for ¢ continuity at a synthetic node is

26=0 (5-8)

where 3;4 includes the equivalent magnetic currents corre-
sponding to voltages in the electrical loop. (Equation (5~6) may be
put into this form by transferring all terms to one side of the
equation.) Integration of the terms in Eq. (5-8) results in

2%, = K (5-9)
where K is a general constant.

Equation (5-8) for a synthetic node is identical with Eq. (5-2)
for a physical node. Equation (5-9) differs from Eq. (5-1), how-
ever, since K is not necessarily equal to zero. The reason is that
the values of equivalent ¢, deriving from branches that represent
electric elements are actually only integrals of voltages, over
arbitrary lengths of time, and hence need not satisfy the flux con-
tinuity law, This fact makes it very important to distinguish syn-
thetic nodes from physical nodes in networks.

In the network of Fig. 5-7(b), there is one physical node for
each core junction and a pair of synthetic nodes in place of the
electrical loop. The same 3;¢; = 0 equation applies to both mem-~
bers of this pair of synthetic nodes. Figure 5-7(c) shows this
network reduced to the equivalent unbalanced form, with boxes
inserted in the branches to represent the three physical magnetic
legs. The single synthetic node represents the coupling loop.

Transformation of Coupling Loops. Let us next consider the
transformation of a coupling loop that links two cores, as in Fig.
5-8(a). Having previously shownhow electricalelements transform,
we now assume an ideal zero~impedance coupling loop, since it is
a straightforward process to reintroduce electric impedance pa-
rameters into the loop. In Fig. 5-8(b), the coupling loop mmf acting
on each core is represented by magnetic potentials N, i, and Np i,
between synthetic node pairs cc” and dd’, respectively. For N, = Np
these potentials are identical and the two node pairs can be merged
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directly into a single node pair, as suggested by the dashed lines.
The network could then be transformed to an unbalanced form, as
in the example of Fig. 5-7(c).

e
2 —‘é_

d

C
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+ ¢ d
0 o—
1 -
e
(b)

Fig. 5-8. Network representation of coupling loops.

For most purposes where network manipulations are useful, it
is sufficient to assume a coupling loop with a unity turns ratio, in
which case we can transform the circuit in the straightforward
manner shown above. Even if a loop with a nonunity turns ratio
is required in the final circuit, it may be substituted for a unity-
ratio loop after reverse transformation of the desired network into
the circuit domain (Sec. 5-3). Although we thus need not consider
the general transformation for N, # Ngp, we shall show the nature
of such a transformation.

Merging of the node pairs in Fig. 5-8(b) can be accomplished
for the case N, # Np by transforming to another set of mmf and &
variables in one network or the other while maintaining equiva-
lent internal magnetic behavior. This transformation is performed
here on the single-branch network on the right, since this is the
simpler one. Referring to Fig. 5-9(a), we define an equivalent

(a) (b)
Fig. 5-9. An equivalent receiver element for Fig. 5-8 that allows substitution
of a unity-turns-ratio coupling loop.
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branch [D], across whose terminals the mmf drop is equal to N i,
matching with the left-hand network of Fig. 5-8(b). Transformed
quantities are designated by square-bracketed subscripts, e.g.,
¢[p] in Fig. 5-9(a) replacing ¢, in Fig. 5-8(b). The meaning of
“‘equivalent magnetic behavior’’ is that the average B and H fields
in the branch remain unchanged, i.e., that

B[D]av = B and H[D]av = Hp? (5-10)

Given the area A, and average length [, of Core D, we may
then write

Npdp  Fro)  Hpol™ o)™

Npip  Fp Hp? 1,2
whence
av NT av av
Ip)™ = —1p™" = nlp (5-11)
Ng
and
Ng  4p]  Bp)™ A
Np  dp  BpA,
whence
N A
R D
Ap] = —Ap = — (5-12)
NT n

The toroid equivalent of Branch [D] is shown in Fig. 5-9(b). In
effect, we have replaced the coupling loop of turns-ratio N,/N, by
a loop of unity turns ratio N,/N, and scaled the area and the path
length in opposite directions by the ratio n = N;/Np. Since A, and
1,2V scale by reciprocal factors, the volume A [,*" remains un-
changed.

With this equivalent toroid, the node pairs cc’ in Fig. 5-8(b)
and ee’ in Fig., 5-9(a) may be directly merged and we arrive at the
same simple network form as with the original core and a unity
turns ratio. Processing from this point would be the same in either
case. As already noted, however, we generally need not concern
ourselves with this step of finding equivalent cores, but rather we
assume unity turns ratio directly and make any necessary cor-
rections as a final step.
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5-2 Ladder and Lattice Networks

We have seen above how to represent both magnetic and electric
circuitry in a magnetic network. Let us now apply these principles
to iterative core circuits of the type introduced in Chap. 4. Our ob-
jective is to relate the nature of the circuit coupling to features of
the corresponding network. An understanding of these relations in
transforming from circuit to network will aid considerably in re-
verse transformation from network to circuit.

A stage of the MAD-N circuit of Fig. 4-8 is shown again in
Fig. 5~10(a), without drive lines but with coupling-loop resistance
and inductance indicated. Following the procedure outlined earlier
in this chapter, the balanced network of Fig. 5-10(b) is obtained.

Fig. 5-10. Ladder network representation of the MAD-N scheme.
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The network is in the form of a simple ladder, with two synthetic
nodes per coupling loop and one physical node per core junction.
By combining corresponding pairs of series branches alongthe two
rails of the ladder, we may reduce the network to the unbalanced
form of Fig. 5-10(c), in which there is one synthetic node per loop
and one physical node per pair of junctions. Any balanced ladder
network can be converted to such an unbalanced form in which one
rail serves merely as the reference node.

A level of complexity beyond the ladder is the lattice network,
shown in skeletal form in Fig., 5-11, which in iterative form is
nonplanar. An example of a circuit leading to a lattice network is
shown in Fig., 5-12(a). This circuit (which is treated further in
Sec. 5-5) transforms to the lattice network of Fig. 5-12(b), which
is even more complex than the lattice of Fig. 5-11 since it also
contains transverse branches between each node pair. In order to
derive this network, we may proceed, as before, by representing
each loop with node pairs ae’ and bb" in Fig. 5-13(a). Branches
C, and C,, which represent toroids linked by only a single loop,
may be immediately drawn as shown. Unlike previous examples,
however, this circuit also includes cores that are linked by more
than one coupling loop each. Core A,, which is driven by the dif-
Jerence of the two loop currents, may be represented by the two
series halves shown in Fig. 5-13(b). Core B,, which is driven by
the sum of the two loop currents is similarly represented by two
series halves but drawn as in Fig. 5-13(c) in order to have mmf
potential (i, +i,) applied to it in a closed path including both
members, The final network of Fig. 5-12(b) is obtained by com-
bining the various elements of Fig. 5-13.

Fig. 5-11. A lattice form of magnetic network.

Quite independently of the iterative nature of the circuit here,
additional discussion is needed on the type of coupling. For sim-
plicity, consider the truncated circuit of Fig., 5-14(a), which has
the balanced network representation shown in Fig. 5-14(b). If we
attempt to reduce this network to unbalanced form by drawing a
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Fig. 5-13. Elements in the transformation of Fig. 5-12.

N
N
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Fig. 5-14. Illustrating a case of irreducibility of a balanced lattice network to an unbalanced
network having no electrical loops.

Fig. 5-15. Toroid realizations of the networks of Figs. 5-14(c) and (b),
respectively.
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ground rail and combining the two parts of A, as in Fig. 5-14(c),
we find it necessary to attach an ideal coupling loop, in order to
assure that identical flux switching prevails at all times in both
parts of B,. The loop current i  that flows will be such that i, - i
will exactly equal i, + i , as otherwise there would be a difference
in switching rates of the two halves of B,.

In general, when one constructs a network using two (or more)
branches to represent a single core leg, these branches must be
linked by ideal coupling loops in such a way as to guarantee the
same flux switching conditions in each branch representing part
of a given leg. This is not necessary in the network of Fig., 5-14(b)
only because of the symmetrical lattice form. By symmetvical, we
mean that the two A branches are identical, including equal divi-
sion of any drive mmf appliedto A, and likewise the two B branches.

We see then that the network representation of a given circuit
may validly take more than one form. (The network of Fig. 5-14(c)
is a correct representation, even though it is not purely in a mag-
netic form.) It is also true, as we shall show now, that there is
generally more than one circuit realization of a given network.

For example, if in Fig. 5-14(c), we let Nodes ¢ and b each be
replaced by a coupling loop and let each branch be replaced by a
toroid, we obtain the circuit of Fig. 5-15(a). Provided the two B
cores have the same initial state, this circuit must be equivalent
in behavior to that of Fig. 5-14(a). Alternately, if we interpret
each node in Fig., 5-14(b) as having a potential with respect to
some isolated ground node, and then replace each node by a sepa-
rate coupling loop, we obtain the circuit of Fig. 5-15(b). If we de~
fined any one of the nodes in Fig. 5-14(b) as ‘‘ground,’”’ then the
corresponding loop in Fig, 5-15(b) would vanish, since a zero value
of current would be implied. In this way we see that any one of the
four loops could be removed without changing the basic nature of
the circuit. An intuitive reason for this is that only the values of
current differences applied to the cores are significant, and these
values are not constrained by arbitrarily fixing the value (in par-
ticular, at zero) of any one current.

We can readily deduce a set of conditions on a toroidal-core
circuit in order for it to have a purely magnetic network repre-
sentation on the basis of just a single branch per toroid. Any given
branch is connected to exactly two nodes, and it experiences the
diffevence of potential between the two nodes. Hence, with each
nodal potential representing a coupling-loop current, a single
branch cannot possibly represent a toroid unless: (1) that toroid
is linked by no more than two coupling-loop currents; and (2) the
currents (if there are two) are of oppositely defined polarity. It is
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clear, from the way it was derived, that the circuit of Fig. 5-15(b)
satisfies these conditions, but that the circuits of Figs. 5-14(a)
and 5-15(a) do not.

5-3 Manipulation of Nodes; Reverse Transformations

Given a circuit, we have seen how to convert it to magnetic
network form. The reasons for making such a transformation
are that it helps us to understand the operation of known circuits,
or to develop new circuits that are basically different in the trans-~
fer method, or to find variations that permit easier physical real-
ization. We would like to consider now some manipulations that
increase the scope of physical realization possibilities. First we
will consider the effects of reversing node types—from a physical
node to a synthetic node, and vice versa—and then possibilities
arising from simply inserting new nodes into a network.

Exchange of Node Types. By reversing node types in anetwork,
we can often obtain a pair of circuits that are magnetically equiva-
lent but have very different physical form. For example, starting
with a coupling loop that transforms into a synthetic node in the
network, let us consider the effect of exchanging this node for a
physical node (a physical core junction). There is actually no
problem in substituting a physical node for a synthetic node in this
manner, if we assume a zero impedance coupling loop and if the sum
of the flux values entering the node (linking the loop) is equal to
zero. Whenever this condition is not satisfied, however, as in
Fig. 5-16(a), then the synthetic-to-physical exchange can be made
only by the artifice of adding a dummy branch across the node-pair
representing the loop, as in Fig. 5-16(b),for the purposes of proper
flux closure. The flux in this new branch must remain constant at
the negative of the sum of flux values in the other branches attached
to the same node. To prevent a flux change in this branch, it must

¢u ¢b
éq ép —{ =% | ~—

C—O e

(a) (b)

Fig. 5-16. Flux constraints at synthetic and physical nodes.
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either be held in a saturated state, e.g., by applying current to a
winding on it, or else it must have a large threshold so that it
functions like a permanent magnet relative to the rest of the
network,

There is also no problem in substituting a synthetic node for a
physical node, if again we hypothesize zero-impedance coupling
loops and require the initial value of total flux linking each coup-
ling loop to be zero. If, as often occurs, some legs of a multipath
element are required only for proper flux closure, as noted above,
but do not otherwise switch at any time, then the toroids corre-
sponding to these legs may be eliminated, the only effect being that
2;¢; #0 in coupling loops that would have coupled such toroids.

The above comments on node reversals are based on the as-
sumption of ideal coupling loops. Though generally not affecting
the gross logical properties of a network structure, the finite re-
sistance and inductance of coupling loops mustbe taken into account
when the operation of a circuit is analyzed in detail, especially in
connection with obtaining a bistable gain characteristicfor a trans-
fer circuit (see Chap. 3). In some cases of replacing a physical
node by a synthetic node, one must also take care to avoid the
phenomenon of “flux creep,’”’ where even small A¢ losses in loop
resistance may accumulate over many cycles to result in a spur-
ious first-order change of total flux in the set of cores linked by a
coupling loop. The flux pumping arrangements of Fig. 2-6 make
deliberate use of this creep possibility in a coupling loop with non-
zero resistance. This phenomenon cannot occur at a physical node,
since X;¢; in the attached branches is necessarily equal to zero.

Once we can independently choose the node type for each node
in the network, we have avastarray of possibilities for the specific
form of the physical realization—from all-toroid circuits, i.e., all
synthetic nodes, to a single magnetic element, i.e., all physical
nodes, and many possibilities between. Actually, networks with a
mixture of physical and synthetic nodes are the ones most com~
monly dealt with, and for good reasons. Toroidal-core circuits, as
in Fig. 5-12(a), require the largest number of individual cores and
the largest amount of coupling wiring, A circuit consisting of only
a single-core poses great fabrication problems for other than
trivially simple circuits. (We consider a specific example of a
single-core circuit in Sec. 5-5.) Furthermore, A¢~gain is readily
achieved by means of coupling-loop turns ratio, and we rely on
gain by this means for most transfer schemes. (In Sec. 5-4 we
illustrate some network manipulations that lead to variations in
the physical form of multileg core circuits.)
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Insertion of Nodes. Let us consider two specific types of net~
‘work modification, namely, insertion of synthetic nodes and in-
sertion of physical nodes. In the first case, we break certain
branches by insertion of a synthetic node, usually to allow incor-
poration of turns ratio for flux gain, but sometimes solely for the
purpose of breaking a complex structure into parts that can be
more readily fabricated. For an example of this type of insertion,
consider the ladder network of Fig. 5-17(a), which has no synthetic
nodes and therefore would call for realization as a single magnetic
component. Suppose that a synthetic node is inserted in the center
of each A branch having an even subscript, as in Fig. 5-17(b). The
shunt loss branches associated with the loop parameters R, and Ly
are shown. Although the original branch A, has been divided into
halves, and is realized in Fig, 5-17(c) as two legs in two different
cores, the change in structure is not logically significant as long
as coupling-loop losses are kept minor. (Should A¢ storage in
L, or A¢ dissipation in R, become significant, compared to flux
changes in the cores, then the alteration is logically as well as

A, A, Ay
A — >
) C C
(a 5, 1 5, 2
A 2, A, As
—{— D 7o\
C C
(b) f 2
B, / \ B,
Ry= 1/Ry Cne1/Ly

Fig. 5-17. Insertion of synthetic nodes in an otherwise all-physical-node network.
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practically significant, since independent switching of the two
halves of A, is implied.)

We see then that insertion of synthetic nodes can help divide
a circuit into more manageable pieces. On the other hand, inser-
tion of physical nodes is generally done in order to incorporate
more elements of the network into a single core. For example,
consider the iterative network and corresponding circuit of Fig.
5-18(a) and (b). To incorporate the toroid D, into one of the multileg
cores, it must be associated with either the branch to the left, or
with that to the right, of the synthetic node to which it is attached,
as shown in Fig. 5-18(c) and (e), respectively. But in either case,
an additional branch, E; or F,, must be inserted, thus generating
the new physical node x; ory,, respectively. Figure 5~18(d) and (f)
shows circuit realizations for incorporating the toroid to the left or
right, respectively. Which of the two realizations is the more
favorable depends upon the scheme in which the circuit is being

Fig. 5-18. Insertion of physical nodes to incorporate more elements of the network into a single core.
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used and on practical design details. If the coupling-loop resis-
tance is very small, then the new branch (E; or Fy) must switch in
conjunction with A, in the first case andwith C; in the second case.
However, if resistance R were used in a first-order way (meaning
a resistance type of scheme), then the new branch may switch in-
dependently of the mate just indicated for it, and its possible use
in the two realizations might be quite different. In any case, be-
cause of the additional leg E, or F,, it can be seen that incorpora-
tion of a toroid into a multileg core may do more than just result
in fewer separate cores in the circuit, but may actually augment
the capabilities of the circuit due to the increased complexity of
the structure. Conversion from the circuit of Fig. 4-4(b) to that
of Fig. 4~-7(a) may be interpreted in this sense.

5-4 Flux-State Sequencing in Magnetic Networks

In Sec. 5-1, it was shown in an abstract way how one could cycle
through a sequence of flux states in a simple network. In this sec-
tion, we wish to consider in more detail the sequencing of flux
states in specific networks. As a first example we consider op-
eration of the MAD-N scheme of Sec. 4~5 from the network point
of view. We then show how the network representation is useful
in deriving a number of variations on this scheme. One of these
variations in turn is used in the derivation of the flux~-doubling
scheme of Sec. 5~5, an interesting scheme whose network repre-
sentation is that of the lattice of Fig. 5-12(Db).

MAD-N Sequencing in Network Form. In connection with Fig.
4-8, it was indicated how the pattern of flux representing a binary
one is propagated along the structure. To increase facility with
the network representation, let us follow the same flux switching
in terms of the network diagram of Fig. 5-19(a), in which branches
representing coupling-loop impedance are ignored. As a starting
point, we assume that a one 1is introduced from the left during the
first O > E pulse (Fig. 5-19(b)). (Drive generatorswillbe indicated
in later phases.) It is clear from the initial state of By, that no flux
can be switched in it during this advance operation. Flux could
switch through output leg Dy, but there is no closing path of low
magnetic impedance comparable to the path through Cp. The re-
sulting flux state is shown by the arrows inside the boxes of
Fig. 5-19(c), which now portray the ¢‘present’” flux state just
prior to application of the Clear~0O pulse.
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Fig. 5-19. Tracing the flux-switching sequence in the network representation of the MAD-N scheme.
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In response to the Clear-O pulse, flux switches in input ele-
ments Ap and By, that is, locally about the input minor aperture.
Flux could conceivably switch along the path G, Cp as well, but the
mmf drop across Branch B, is so small that one can assume
negligible flux switching along the much longer path,

The flux switching path during the subsequent E - O pulse is
indicated in Fig. 5-19(d). In accordance with the drive arrange-
ment of Fig. 4-9, E > O drive generators are shown in series with
Branches Dy, Cp, and G, (the latter providing receiver bias). The
switching path, which includes all three of the E » O generators, is
the same as in Fig., 5-19(b), except for being shifted one stage along
the network. The subsequent Clear-E generator appears in series
with the driven leg G, (Fig. 5-19(e)). The resulting flux switching
is again as in Fig. 5-19(c), but shifted one stage to the right along
the network.

We have now translated the entire shifting sequence to the mag-
netic network representation. Of course, nothing new was added in
the process, since we simply converted from one form of repre-
sentation to another. We will find in the subsequent study, however,
that this network form is very useful. After a bit of practice, one
may use shortcuts such as not drawing boxes at all on each branch,
and so on, This permits rapid sketching of different types of shift~
ing schemes.

Note in Fig. 5~19 that each branch is cycled once, i.e., switched
two times, during a single shift cycle. This is generally true for
transfer schemes, except where nonswitching branches are present
solely for the sake of static flux closure. Hence, if there are n
branches per bit length (excluding the static-closure type), there
must be 2rn switchings per bit length during one clock cycle, when
a one is being transferred. Hence it is necessary that

my + mg + mg +my = 2n (56-13)

where m; is the number of switchings during the ith phase. From
Fig. 5-19(d) and (e) it is easy to see that in this example all the m,
have the same value, namely, 5, and that indeed n = 10, that is,
there are 10 branch elements per bit length.

The closed paths required for flux changes define the least
complex structure required for any particular scheme. The
structure is usually augmented in one way or another, however,
with nodes and branches that are not essentialto the basic scheme,
but which allow certain desired types of physical realization and
provide practical improvement for actual circuit design and
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operation. For example, the network structure just considered is
not the minimal one for this particular sequence of flux changes in
the paths indicated, and thereby provides us with the opportunity to
illustrate a number of different points, namely:

1. network reduction by node and branch elimination, in order
to arrive at the minimal structure;

2. some advantages in the nonminimal structure; and

3. the use of exchange and addition of nodes (and branches) 1n
order to obtain an alternate nonminimal realization.

All of these variations will involve the identical sequencing of flux
states, although the alternate core shapes and circuits obtained will
look quite different from the original ones.

Stablev and Engelbavt Vaviations. Suppose we first exchange all
of the synthetic nodes of Fig. 5-19(a) for physical nodes, and then
eliminate these nodes, as indicated in Fig. 5-20(a), on the basis
that two branches of the same material and cross-sectional area
connected in series are functionally identical to a single branch.
Conversion of this reduced network to all synthetic nodes now
leads to the toroid-wire circuit of Fig. 5-20(b), which was de-~
scribed by Stabler (1961).

Further examination of fig. 5-20(b) shows that Branches D and
Ay in fact serve no function necessarytothe scheme of sequencing,
except that the E - O drive is applied on Branch D, (Fig. 5-19(d)).
However, an equivalent drive may be achieved with generators on
Branches Cp and Gy (equivalent in the sense of providing the same
net drive mmf in each network loop). Branches D + A may thus be
eliminated and the pair of flanking nodes combined into one single
node, as shown in Fig. 5-20(c). This network is minimum in the
sense that no further reduction can be made for the sequence of
flux-change paths involved. The toroidal-core circuit realization
of this minimal network is shown in Fig. 5-20(d). This develop-
ment was originally done by Engelbart (1959).

Vaviations Avoiding Intevaction of Adjacent Bits. Although this
minimum form of the scheme canbe successfully operated, we would
like to point out the type of difficulty that one may encounter when
eliminating nonessential branches as we have done in going from
the network of Fig. 5-19(a) to the network in Fig. 5-20(a) and then
to the one in Fig. 5-20(c).

Let us consider the case of two adjacent ones propagating along
the register. Suppose in Fig, 5-21(a) that a one is stored in the O
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Fig. 5-20. The Stabler and Engelbart reductions of the MAD-N scheme.
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Fig. 5-21. Interaction of adjacent bits in the Engelbatt circuit.
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stage, in which case Cores B, and G, are in their set states. Sup-
pose that a ore is also stored in the preceding O stage to the left
(not shown), At the next O - E pulse, Core G, will be switched by
loop current i, (as indicated by the double-lined arrow), and a
current i; will flow. Since B, is in a set state (due to a ore stored
in the O stage), the loop current i; tends to simultaneously switch
some flux in both Cores Cp and B, as indicated by the double-
lined arrows above both of them. But, any flux switched in Core B,
is pumped back into Core Cp during the very next Clear-O pulse,
and the final flux configuration is nominally the same as though
Cores G and C had switched simultaneously in the first place (as
would have been the case if the right~hand O stage had held a zero).
However, although the final flux configuration is nominally the
same, it is clear that there will be slight differences in A¢ losses
(because of the extra transfers through resistive coupling loops),
depending on information states, and this may result in a problem
of sensitivity to the information state. With either of the ¢‘aug-
mented”’ schemes of Figs. 5-19(a) or 5-20(a), this interaction can
be prevented because the ‘‘redundant’’ branches are in their clear
states during this transfer and therefore can be unconditionally
held clear. This would provide complete isolation between stages,
except for small elastic flux changes induced by the holding mmf
and by loop currents.

The ability to hold these redundant cores in their clear states,
so as to achieve interstage isolation, is even more important with
regard to back transfer. This can readily be seen in connection
with Fig. 5-21(b). If during the Clear-O phase, we merely drive
Core G, then back current +i, tends to set output Core C, (which
could be very harmful since Cj is to be a transmitter on the next
E -~ O pulse), in addition to clearing Core B, as desired. To mini-
mize switching of Core Cp, we can drive Cores B, and G, simul-
taneously. If these cores could be switched at exactly the same
rate, there would be zero voltage across terminals ¢-a’, and hence
no back transfer. However, it is difficult to ensure that two cores
switch at exactly the same rate, especlally when they are of dif-
ferent size and when one is loaded during the switching (output
circuit loading on G;) and the other is not. Note that it is not a
sure solution to deliberately drive B, harder than G, since a
current -i, then tends to clear Cp, which would be harmful in the
case of C, containing a one.

Isolation between bits in the nonminimal schemes is achieved
by the series network branch (D, + A betweenadjacentbit storage
positions. In the minimum scheme of Fig. 5-20(c),no such element
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separates Cp from B, and it is for this reason that these branches
thus become simultaneously involved with the set state patterns of
two bits.

It may be noted that in the Russell scheme of Fig. 4-5(a), which
has the identical circuit configuration as that of Fig. 5-20(d), the
two singly linked cores in any loop are simultaneously in a set
state only in connection with the same bit of information. (This
results from setting and then immediately clearing the preceding
coupling core on adjacent clock phases.) Hence the coupling cores
of that circuit provide the type of isolation that is obtained for the
present scheme only from the additional coupling cores occurring
in an augmented version. (Still another scheme with this same
circuit configuration and in which this type of isolation can be ob-
tained in the minimal form is treated in Sec. 7-4.)

Network Varviations Resulting in Majov-Apevture Coupling. We
wish now to show how one may depart from the minimum structure
of Fig. 5-20(c) in a way that produces a nonminimum network with
some potential advantages (as well as possible disadvantages) rela-
tive to the other nonminimal networks of this section, and that re-
sults in a multileg circuit realization that is quite different from
the original circuit of Fig. 5-10(a).

Following the techniques of Sec. 5-3, let usintroduce new nodes
by dividing each G branch of Fig. 5-20(c) and inserting a new syn-
thetic node between the halves as shown in Fig. 5-22(a). A physical
realization of this network is shown in Fig. 5-22(b), with turns
ratio N,/Ny inserted, and with clear statesindicated by the arrows.
Note that what we have been calling an O stage or E stage no longer
corresponds directly to any one given multileg element. Rather,
‘“half of an E stage’’ appears on one multileg core, and the other
half on the adjacent core, and similarly for the O stages. To
emphasize this fact, the cores are labeled alternately as OE, EO,
and OE. The flux-switching path for O - E transfer of a one is
shown by the dashed line in Fig, 5-22(a).

The operation of both multileg versions, Figs. 5-10(a) and
5-22(b), is clearly similar. However, the geometries are very
different, and thus there could be important differences in details
of operation—for example, in terms of soft-threshold properties
(see Sec. 4-5). An obvious advantage of the present circuit is that
the coupling loops link major instead of minor apertures. This
makes physical wiring easier, and also, because larger wire could
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Fig. 5-22. Achieving major-aperture coupling by inserting new synthetic nodes.

be used, there would be greater flexibility in the design of the
coupling~loop impedance.

One other effect must be noted in order to underline an im-
portant difference that can result from manipulation of nodes.
During one transfer, there is a maximumnetdrive of 2F; - F, = F
tending to switch flux in the backward direction (around the major
aperture of the transmitter in Fig. 5-10(a)). Neglecting soft-
threshold effects, this mmf would cause no backward major-
aperture switching. In the circuit of Fig. 5-22(b), however, the
drive 2F, applied to the transmitter tends to switch flux about
the directly coupled half of the transmitter, since the effective
threshold of this leg is just F;/2 plus the portion of transmitter
bias applied to it. As a result, coupling-loop current -i; flows.
However, the resulting mmf N, i, acting on the left-hand part of
the E stage cannot exceed its effective threshold. Hence, except
for parasitic impedance, the coupling loop presents a short circuit
on the left-hand side of the EO core, which is thus largely pre-
vented from switching., But the small amount of switching that
would occur represents a flux loss to be accounted for in quanti-
tative analysis.
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With careful design, any of the nonresistance circuits in this
section can be made to operate reasonably well. These circuits
are primarily of academic value, however, because for proper
operation, the advance current pulses must be kept within too
limited a range, at least in the case of existing cores. In the next
section we illustrate an improved, ‘‘flux-doubling’’ scheme, which
has actually been used for design of a prototype system. We will
see how the network representation greatly aids in understanding
the basic operation of this relatively complex but very intriguing
scheme.

5-5 The Flux-Doubling Scheme and Its Network Representation

We now derive a scheme whose network representation is pre-
cisely that of the lattice of Fig. 5~12(b). We will see that there is
an inherent flux-doubling feature in the basic transfer scheme,
which provides an important flux-gain mechanism. To derive this
scheme, we return to the circuit of Fig. 5-21(b) where we noted a
potential back-transfer problem during the Clear-O pulse if Cores
B, and G, switch at different rates. As a first step towards
equalizing their switching rates, we might try usingidentical cores
in these positions, as suggested in Fig. 5-23(a). The turns N, and
Ng (on the Clear-0O winding) are adjusted so as to equalize as much
as possible the net mmf on Cores G, and B, during the Clear-0
pulse. ,

Note that the drive conditions for Cores G, and By are very
similar, G, being set by a counterclockwise loop current at O -~ E
drive time and By by a comparable magnitude of clockwise loop
current at Clear-O drive time. In fact, in order to prevent G
from being cleared by the latter loop current, positive bias wind-
ings on G and By have been added to the Clear-O line. But out-
put conditions for Cores G, and By are still very different. Spe-
cifically, any flux switched in G is coupled on ahead, whereas flux
switched into Bj ‘‘dead ends’’ there, being used merely to balance
the A¢ from G to prevent back transfer during Clear-E. The
question arises as to whether we can make Core B, comparable to
Core G relative to output as well as input, i.e., make B, a coup-
ling core also. Actually, all that is required is to thread the trans-
mitting ends of the coupling loops through the B as well as the G
cores, as indicated by the dashed lines in Fig. 5-23(a) and by the
solid lines in Fig. 5-23(b), where the coupling circuit is abstracted
and redrawn more symmetrically. Since loop current during the
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Fig. 5-23. The all-toroid flux doubler.

0 » E phase now negatively links B, in addition to G, B, is posi-
tively biased (dashed winding in Fig. 5-23(a)) to oppose the clear-
ing tendency of loop current. Further, based on symmetry, we can
now set Ny = Ny, achieving a circuit described by Bennion, et al.
(1961).

Demonstration of the Doubling Effect. The above alteration makes
it much easier to switch B, and G, at approximately equal rates,
but along with this we have actually achieved a much more in-
teresting property. We wish to show that inherent doubling of A¢
is now achieved during transfer (and hence that we do not require
NT/NR > 1 in order to achieve a transfer ratio G > 1). As an aid,
note first that the coupling circuit of Fig. 5-23(b) is exactly that
of Fig. 5-12(a), and hence the network representation is the lattice
network of Fig. 5-12(b), redrawn in Fig. 5-24(a). To verify that
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Fig. 5-24. Flux state sequencing in the flux doubler.
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flux doubling actually occurs, let us review the sequence of flux
transfers during a half cycle of operation. Suppose that we ini-
tially have one unit of set flux stored in each of the B, and G
branches and two units in Branch C, and suppose that these quan-
tities represent less than half the capacities for each of the
branches. Let the arrows inside the boxes of Fig. 5-24(b) repre-
sent the directions of set flux. The O - E drive causes the two
units of flux in C, to be transferred to G, (Fig. 5-24(c)). Then the
Clear-O drive causes the two units of flux stored in B, and G,
together to be transferred to B, (Fig. 5-24(d)). During these two
phases, the flux switched into G, and B, is coupled additively into
Cp, resulting in four units of flux being set into Cg. Thus, after
this half cycle of operation, we have the E branches set comparably
to the initial state of the corresponding O branches, but with twice
the original amount of signal flux., These statements of course
apply also to the corresponding cores of Fig. 5-23.

As the flux state is transferred along the register, the level
increases until saturation of either the C cores or the B and G
cores causes limiting. For steady-state register operation, this
limiting effect ensures that overall unity gain is achieved, though
we start with flux gain of 2:1 before losses are counted, as com-
pared to 1:1 for any of the previous schemes, assuming the same
turns ratio in each case.

Devivation of the Multileg-Core Doubler. Although the back
transfer problem was reduced in converting to a doubling scheme,
the toroid doubler of Fig. 5-23 still suffers from potential prob-
lems of adjacent-bit interaction. Let us now develop a much im-
proved, multileg~core version of the doubler. We could proceed by
adding branches to the network a step at a time in order to mini-
mize interaction; instead, however, let us start on a different track
and compare the results.

Suppose that we wish to utilize a double-transmitter arrange-
ment, as in Fig. 5-25(a), in order to increase flux gain. Then we
must ensure that these elements are both in the same state before
transmission. One technique for accomplishing this is to transmit
from one element to the other before transmitting from both to-
gether. Such an arrangement is indicated in Fig. 5-25(a), the local
transmitter~to-transmitter transfer being affected by a pulse
labeled TT. The sequence is: (1) read into the top element;
(2) transmit to the lower element; then (3) read from both simul-
taneously. The TT transmission can take place during clearing of
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Fig. 5-25. Multileg-core flux doubler.

the previous stage, so that no extra time is actually required for
this operation.) .

As indicated in Fig. 5~25(b), the TT loopneed not connect with a
separate aperture of the upper core but in fact can connect to the
same input aperture. Not only does this reduce’ the number of
apertures required, but it improves the operation. Assuming a one
had been received during the previous E - O transfer, then during
the simultaneous Clear E and TT operation, negative input current
(resulting from the clearing of the previous E element) aids in
switching around this aperture.

A flux-transfer arrangement based on this scheme is indicated
in Fig. 5-25(c). An N;/Np ratio of unity has been shown, in par-
ticular Np = Ngp =1, which is convenient for such a scheme. The
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TT loops have been drawn symmetrically here, and a second set of
input windings have been suggested by the dashed lines. (In terms
of the design example of Sec. 10-5, we will see that this doubler
circuit leads naturally to the formation of a two-input OR function
x + y, as indicated by the labeling of input and output variables in
Fig. 5-25(c).)

There is a basic similarity of the toroid doubler and the multi-
leg version. Legs C, and C, of Fig. 5-25(a) play the role of the
output toroid C in Fig. 5-23. During the input operation, a unit of
A¢ 1is switched in Leg C;, and stored there, then A¢ is switched
in Leg C,, and stored there, and then both units of A¢ are trans-
mitted simultaneously to the next receiver. Legs D, and D,, which
are needed for static flux closure in the multileg elements, have
no counterpart in Fig., 5-23, though they provide extra isolation
between stages, as discussed in connection with Fig. 5-21. Thus,
again, the multileg version has the advantage of decreased bit-
interaction problems, as is usual when using input apertures. The
multileg version also has the easy facility for adding an extra input,
as in Fig. 5-25(c), which is important in general logic circuits.

Continuous Magnetic Circuit, A magnetic network with only
physical nodes transforms to a continuous circuit with no coupling
loops at all. Though such a circuit is conceptually simple, physical
realization is very difficult. Further, with no coupling loops
present in the circuit, we must obviously rely on some other
A¢-gain mechanism to achieve a transfer ratio >1. The flux-
doubling effect is an ideal one for this purpose.

Assume that all synthetic nodes in the flux-doubler network of
Fig. 5-24(a) are replaced by physical nodes. The nonplanar circuit
realization is then as shown in Fig. 5-26, with the clear state in-
dicated, and with the method of driving suggested by the O - E
drive line. The doubling effect takes place in this structure in
exactly the fashion described in connection with the network dia-
grams of Fig. 5-24, thus making it unnecessary to rely on any
other gain mechanism to achieve G > 1.

One problem in designing an operating circuit in this form is
the need for built-in flux clipping, or some other nonlinear
loss mechanism, for making G < 1 for low values of A¢. But this
problem is generally not difficult to solve so long as one has
ample inherent A¢ gain to begin with, as is the case here. Such
structures have been designed and analyzed relative to flux-clipping
ratio and other parameters, and special devices have actually
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been fabricated, with laboratory operation demonstratedin one case
of simulation with a planar continuous structure (Van De Riet and
Bennion, 1965). However, fabrication for practical use appears to
be infeasible at this time.

(@}

-E Bias Drive Bias

ZBO

(at Clear E time)
(at E->0 time)

Fig. 5-26. Continuous magnetic circuit.

5-6 Summary

In an electrical diagram of a core-wire circuit, current flow
can be traced simply by following the lines representing electrical
conductors. It is generally not easy, however, to follow the flow of
flux change. By converting to a magnetic diagram, however, where
the lines now represent magnetic conductors, it is equally easy to
follow flux flow. Since flux linkage is our primary signal param-
eter, the ability to quickly sketch magnetic equivalents of core-
wire circuits is very useful.

In Secs. 5-1 to 5-3 we have shown how to convert from an elec-
trical circuit to an equivalent magnetic network and to reconvert
from a network to its corresponding circuit form. With a few basic
principles, the conversion and reconversion is actually quite simple
and the rewards of mastering the techniques well warrant the
effort. Not only is the network representation useful in circuit
analysis, but it provides a useful domain in which to vary the basic
structure and derive thereby new variations and new schemes. In
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other words, it is often more convenient to work in the magnetic
network domain than in the electric circuit domain. By means of
the network representation, it is often easy to show the equiva-
lence between circuit forms that on the face appear to be very
different. Also, it is simpler with network techniques to show how
to combine various core elements, e.g., simple toroidal cores,
into more complex multileg cores.

In Secs. 5-4 and 5-5, some new core-wire scheme variations
are derived, partly as an exercise in network manipulation. The
flux~doubling scheme of Sec. 5-5 is of particular interest in that
it well illustrates the power of the network representation as an
aid in understanding the basic operation of a relatively complex
scheme; further, this basic scheme is utilized in construction of a
core-wire logic system that is discussed in Sec. 10-5.
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The term MAD-R, in which R stands for Resistance, is an ab~

breviated name for a particular type of scheme that has been used
in the majority of core~wire logic applications up to this time.
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This scheme was developed independently by Briggs and Lo (1961),
Gianola (1960), Bennion (1960), and possibly others. Because of the
importance of the MAD-R scheme, three different derivations of it
are presented in this chapter, as summarized in Fig. 6-1. Though
the reader may bypass the second and third of these without any loss
of continuity, each derivation emphasizes different aspects of the
circuit.

Following these derivations, the remainder of the chapter is
concerned with design techniques for this type of circuit. Though
the basic circuit form is quite simple in appearance and can
readily be made operable, considerable care is required to obtain
optimum performance. The design technique presented here is
rather bulky and cumbersome (typical of highly nonlinear pro-
cesses), though, in fact, it is rather simple to apply, with a little
practice, and highly useful. By following this procedure, one almost
invariably obtains a near-optimum design in short order. The
method is a mixture of cut-and-try and rule of thumb based on
empirical data, though there is plausible reasoning and purpose
behind each step, which we try as much as possible to present as
we go along.

MAD-N scheme MAD-R

First derivation
— (OO

(Fig.4-8) (minor-aperture input)

Russell-I scheme

_Q O___@' @_6 <> () \cond derivation

(Fig.3-9) MAD-R

Series and shunt diodes

7) () % ) () —_ (major- aperture input)
@@w /Thlfd derivation
“/\/V‘

(Fig.3-10(a))

Fig. 6-1. Outline of three different derivations of the MAD-R scheme.

6-1 Derivation from MAD-N Scheme

For convenience, the circuit of the MAD-N scheme is redrawn
in Fig. 6-2(a). For this circuit, recall that the advance currents
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Prime O

(c)

Fig. 6-2. Derivation of the MAD-R circuit from the MAD-N scheme.

must be great enough to cause transfer of flux with unity gain for
the one state, yet are strictly ¢‘threshold-limited’’ at high levels
in order not to cause spurious setting of a transmitter in the zero
state. In the interest of enlarging this operating range, note that
if it were possible to transfer flux to the receiver simultaneously
with clearing the transmitter, then the drive current would no longer
be threshold-limited, since a zervo flux state in the transmitter
could not be inelastically disturbed. To be able to operate in this
manner, we must, first of all, reverse the polarity of one end of
the coupling loop, as shown in Fig. 6-2(b), where the desired flux-
switching paths during O - E are indicated. Second, to achieve the
required transmitter state prior to O - E transfer, flux must be
reversed locally around the output aperture (after still earlier
setting), as indicated in Fig. 6-2(c). The polarity of induced loop
current during this local flux reversal is such as not to switch the
receiver (Core E), and the transmitter flux change during this
phase is dissipated in loop resistance R,. Thus a resistance type
of scheme is indicated.
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The operation indicated in Fig., 6-2(c) is commonly called
priming and the associated drive current is labeled Prime O. This
phase of operation is analogous to the ‘‘restore’’ phase of Secs.
4-1 to 4-3, though here the elements being restored and the ele~
ments that we must avoid disturbing in the process are legs of
multiaperture cores. We will see in a moment why the prime
phase, like the restore phase, is relatively slow, so that what-
ever advantages are to be gained by this scheme relative to the
MAD-N scheme are at the expense of some loss in speed of
operation.

The priming mmf in this circuit is provided by current through
Winding N, in the output minor aperture. The winding N, is used to
bias the main aperture of the core so as to increase the maximum
allowable priming mmf, Since the main-aperture mmf due to prim-
ing current must always be kept below main~-aperture threshold,
priming current can simultaneously be applied to the receiver
elements without disturbing them, as indicated by the dashed
windings in Fig., 6-2(c). In fact, the priming current may even be
left on continuously, as its effects during the transfer phases are
readily overcome by the advance currents. Thus, priming may be
achieved with a single dc current applied to all cores, as in the
case of the restore currents of Secs. 4-1 to 4-3. Pulsed driving is
required, therefore, for only two of the four phases of operation
and is optional for the other two.

In summary, the basic clock cycle is Prime O, O - E, Prime E,
E - 0,.... The effect of priming, following an E - O transfer, is
to switch flux locally about all O-core output apertures that were
set during the E » O transfer. (Fluxisdissipatedin loop resistance
during this phase.) Flux transfer during the subsequent O - E
transfer, which simultaneously clears all O-~elements, is indicated
in Fig. 6-2(b). An important point to note is that the flux switched
in a core while it is being cleared links the back loop, thereby in-
ducing a back-loop current (i, in Fig. 6-2(b)) in a direction to set
(hence disturb a zevo state) in the previous receiver core. To
prevent such switching, a Hold-E winding of Ny turns is placed on
the output leg of each receiver core.

A physical wiring arrangement for this circuit that has some~
times been used is shown in Fig. 6~3 (AMP, 1960; Sweeney, 1961),
where the multileg elements are shown in cross section. Typical
numbers of turns are indicated on each winding. The clear wind-
ings are each wired straight through the main apertures of each
bank of cores. Because Ny, Ny, and N, generally have equal values
(in this case 3) they are realized by a single common winding
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Fig. 6-3. A physical wiring arrangement for the MAD-R circuit.

wired straight through the output apertures of all the cores. The
two phases of clock-pulse currents may be provided by two
triggered switches (e.g., four-layer diodes, silicon-controlled
rectifiers, transistors, thyratrons), discharging damped half- sinu~
soidal pulses from a common RC charging circuit. The dc source
need not have a very large source resistance for dc current, but
should be well isolated from the pulse sources (as in Sec. 2-8,
for example, by the use of a series inductance). For applications
in which zero standby power is desired, it is possible to arrange
the wiring such that the very same current that recharges the
driver capacitor C simultaneously constitutes the prime current
as well,

Curvent Tolevances Vevsus Speed. We will now derive an ap-
proximate value for the upper limit on speed of this circuit, rela-
tive to the MAD-N scheme, and then consider what has been gained
in terms of drive current tolerances. The clearing phase for the
MAD-N scheme and the advance phase for the MAD-R scheme can
 both be operated at relatively high speed and high tolerances, and
hence we need compare limits only on the advance phase for the
former and the priming phase for the latter.

First, consider the speed of the MAD-N circuit (Fig. 6-2(a)).
With the O - E current equal to its maximum value F,, the receiver
is biased to threshold, and hence its rate of switching can be
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estimated by
bp = p(F = Fy) = p(Ngi, + Fy = Fo) = pNgpi, (6-1)

assuming the core model of Sec. 1-1. Assuming the transmitter
minor-aperture path length to be ideally zero, so that the advance
mmf 2F, is fully bucked by coupling-loop mmf Ngi,, then i, =
2Fy/Np, OF

_ 2F, —

PN — = 20F, (6-2)

éSRmax _
NT

as an upper limit, assuming a unity turns ratio, that is, N = Np.
The corresponding minimum value of switching time r is equal to
2¢ /dp™*, that is,

s,

T, o= (6-3)
oF

For the MAD-R scheme, the maximum current coupled into the
loop during priming is also 2F,/N,, but the emf N, g'bT must now be
balanced by dissipation in Ry ; hence N q'ST = iyRy or

| 2FyRy

by = (6~4)

2
N
By integration of Eq. (6-4) over a priming time T, we obtain the
value

2
NT d’r

T - (6-5)

Rymax FO

where R,"* is the largest value of R, for which G > 1 can be ob-
tained during advance time. From Eq. (2-9), we see that even with
arbitrarily large advance drive to remove the effect of receiver
threshold, G = 1 implies

N
leax — NRZP_ _T__ 1> (6"6)
NR
From Egs. (6-5) and (6-6)
n2 ¢r

(6-7)
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where n = Np/Np. By minimizing T with respect to turns ratio »,
we find

T .- (6-8)

withn = 2,

Based on this highly idealized comparison, we see from Egs.
(6-3) and (6-8) that the MAD-R scheme is on the order of four
times slower than the MAD-N scheme. This approximate result
can be shown to be true for comparison of many other resistance
and nonresistance schemes as well.

In deriving approximate current tolerances for the two schemes,
we again need consider only the priming drive for the MAD-R scheme
and the advance drive for the MAD-N scheme, since only these cur-
rents have strict upper, as well as lower, limits (governed by the
core threshold). At the upper limits, either spurious setting in the
zevo case or spurious unsetting in the ome case occurs. The
upper limit on mmf is the same in both cases, namely, an amount
related to the minimum path length lMmin around the major aper-
ture. However, the lower limit on mmf, especially for very low-
speed operation, can be much more favorable in the case of prim-
ing, since the priming mmf need be only large enough to switch
flux slowly around the output aperture, whereas for the MAD-N
scheme, advance mmf must switch the transmitter rapidly enough
to set the receiver without undue losses in the coupling loop. The
priming current ratio I, /I . 1is therefore directly proportional
to the l,\/,“““/lm“""lx path-length ratio, where [ ™% is the maximum
length of the flux~-switching path around the output minor aperture.
In contrast, as we decrease advance mmf for the MAD-N scheme,
and realistically assume that receiver bias decreases along with
it, enough loop current must be induced to bring the receiver up to
threshold from the lowered bias point and to supply excess mmf
for switching at some minimum rate. Practically speaking, an ad-
vance current ratio I /I . of more than about2/1 for the MAD-N
scheme is difficult to obtain, even for large values of path~length
ratio lein/lmmax. Yet with very practical values of this ratio, say
about 4/1, priming current ratios I, /I ;. of 6/1 and even greater
are obtained. (Such large current tolerances are particularly im-
portant for operation over a wide temperature range, because of
the shift of threshold with temperature.. A detailed analysis in
Sec. 6-8 demonstrates how such large tolerances are actually
achievable.)
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6-2 Second Derivation, from Russell Type-I Scheme

This derivation helps to emphasize the importance of holding
output legs of receivers against back transfer and also the ad-
vantages of the MAD~R circuit relative to similar schemes using
only toroidal cores. The circuit of Fig. 3-9, with one series diode
per loop, is redrawn in Fig. 6-4(a), and its corresponding core-
wire version, referred to as the Russell Type-I scheme, is drawn
in Fig. 6-4(b). This circuit tends to be marginal in operation, be-
cause of a back-transfer problem (Sec. 4-2). We find that one type
of alteration to remove this problem leads naturally to the MAD-R
scheme, emphasizing its advantages in the use of ‘‘holding’’ to
avoid back transfer,

The magnetic network for this circuit is shown in Fig. 6-4(c).
Flux directions within the elements are those resulting from one
transfer during O - E, that is, setting of G, and D, with subse-
quent ‘priming’’ of Core Dy, that is, slow clearing of Core D,
with dissipation into the shunt resistance. The back transfer prob-
lem is now obvious. During the subsequent E - O transfer, there
is just as much tendency to switch the previous G, element as the
forward G, element, as suggested by the dashed switching path.
The forward direction is favored only because of the asymmetry
resulting from N, > Np.

To eliminate the back transfer problem, it is necessary to pro-
vide an effective shunt path between the G branch and the left-hand
G, branch. The shunt branch D, is in the desired position, but is
already saturated in the intended switching direction. However,
loop resistance can also serve as a shunt path. To take advantage
of this fact, let us add (in each stage) a new series magnetic
branch labeled H (to anticipate the fact that we will use this new
branch for holding against back transfer). In Fig. 6-4(d), if the
clear state of the new H; branch is in the direction indicated, then
it can be unconditionally held during the E - O transfer, thereby
eliminating any chance of back transfer. Now to provide a suitable
shunt path for transfer, R;n is added at the new coupling-loop node
s. (We will see ina moment that resistance R, is no longer needed.)
To obtain proper E - O transfer, flux must be set into the corre-
sponding new branch Hp prior to E - O drive. In this case, the
flux switching path during E - O transfer, as indicated in Fig.
6-4(d), is through R ,Gg, and Hg, to G, and D, (not shown) in
the next stage. Prior reversal of flux in branch Hy is easily
achieved by altering the priming operation. In the original scheme
of Fig. 6-4(b) and (c), the D, core is primed immediately after
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Fig. 6-4. Derivation of the MAD-R circuit from the Russell Type-I scheme.
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0 - E transfer, the flux being dissipated in R. If we eliminate the
corresponding branch R, , however, as in Fig. 6~4(e), then branch
Dp can be restored only by simultaneously switchingflux in the new
element H, with an identical amount of flux being dissipated in the
new resistance branch R;n. Reverse transformation of the network
of Fig. 6-4(e) with the E - O windings of Fig. 6-4(d) added, yields
the circuit of Fig. 6-5(a), which has previously been described by
Dick (1963). (Additional windings for priming the O cores and for
the O - E transfer are of course also required.)

Prime E

E-0 Hold Drive

£E—=0 Hold Drive
(b)

Fig. 6-5. An all-toroid version in (a), and a multileg verion in (b), of the MAD-R network
of Fig. 6-4(e).

Returning again to Fig. 6-4(e), now assume that the nodes labeled
t are all converted to physical nodes, with the G branches doubled
in width to satisfy the constraints of flux continuity. Reverse
transformation leads to the circuit of Fig. 6-5(b), which is iden-
tical to that of Fig. 6-2(b) except for the use of seperate input
apertures. (Though the use of a minor aperture for input is not
actually required for proper MAD-R operation, this practice leads
to certain advantages that will be discussed in Sec. 6-4.)

The circuit of Fig. 6-5(a) is the all-toroid version of the MAD-R
circuit using major-aperture input. Although this circuit is func-
tionally equivalent to the multileg version of Fig. 6-5(b), there is
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significant operational advantage, relative to the priming operation,
in favor of realization with multileg cores. This results from the
fact that there will always be some finite resistance R in the loop
linking Cores D and H in Fig. 6-5(a), and Core H will exhibit
some finite amount of switching in response to any mmf larger than
its own individual threshold. To minimize the amount of this
switching in the zevo state, we could consider the following
measures (though, all in all, the multileg circuit provides a much
greater combination of flexibility and performance than the all-
toroid version of the same scheme):

1. Bias Core H only to its own threshold or less. (Practically
speaking, this may mean no bias at all since H is such a small
core.) This would result in a very significant reduction in prim-
ing tolerances and speed, however, since Core H would now be
driven only from the loop current resulting from the switching of
Core D, and there would be a significant A¢ loss in any coupling
resistance R. This would place a lower limit on the rate of prim-
ing. These problems can be alleviated somewhat by using a lower-
threshold material for Core H only, as indicated by Dick (1963).

2. Apply dc priming to both cores (H and D), but operate the
circuit near the maximum rate to minimize the time for spurious
flux switching in Core H before the latter core is cleared again.,

3. Employ pulsed rather than dc priming. Even here, however,
there would tend to be some increase of the zero A¢ level, be-
cause of some flux switching in Core H during the relatively long
priming period, as well as a reduced oze level because of flux loss
in R during priming.

6-3 Third Derivation, Based on Series-Shunt Core-Diode Circuit

Here we return to the circuit of Fig. 3-10(a) with a series and
a shunt diode in each loop, redrawn in Fig. 6-6(a), followed by its
equivalent core-wire circuit in Fig, 6-6(b), and its network repre-
sentation in Fig. 6-6(c). Let us try to alter the circuit so as to
eliminate the need for more than one loop resistance per stage.
Comparing the network of Fig. 6-6(c) with that of Fig. 6-4(e), we
see that the main difference is the reversed clear-state polarity
of the Sk and H branches. Apparently then we can eliminate the
need for one resistance, namely R, , simply by reversing the po-
larity of Branch Sk in each stage.
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Fig. 6-6. Derivation of MAD-R from the series-and-shunt diode transfer scheme.

Let us consider why the clear state of the Sh elements must be
reversed if we are to eliminate one of the loop resistances. The
question is whether the circuit can be rearranged so as to elimi-
nate the need for resistance R. If so, when the series element Se
is restored by priming, a counterbalancing voltage drop in the loop
must be provided either by the switching of the previous G element
or the following Sh element. Since we do not wish to disturb the
state of G, after having just read into it, the only alternative is to
switch the Sh element simultaneously with the Se element, and it is
for this reason that the clear state of the Sh element must there-
fore be reversed from that shown in Fig., 6-6(c).

Through this route we see that if we try to view the reversed
Sk branch as a shunt ¢‘diode core’ and if we were to try to draw
an equivalent core-diode version, the shunt diode would point in
the opposite direction from that in the original core-diode circuit
of Fig. 6-6(a). This new circuit could not work, obviously, since
forward transmission would be short-circuited. Furthermore,
pointing in this new direction, the shunt diode would not even pre-
vent back transmission. Thus, the core-diode circuit correspond-
ing directly to the MAD-R circuit is not operable. Proper opera-
tion is achieved in the core-wire version only because, viewing S
again as a ‘‘diode core,’”’ it is possible to effectively reverse the
polarity of the core operating as a diode (recall property (3) of
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Sec. 4-1). By making use of this different capability of a core
versus a diode, the MAD-R circuit is actually a significant im-
provement over the core-wire circuit of Fig. 6-6(b), the most
similar scheme that does have a core~diode equivalent.

6-4 Minor-Aperture Input and Output

Input. In the first derivation of the MAD-R scheme, minor-
aperture input evolved directly from the use of a separate input
aperture in the MAD-N scheme. In the two subsequent deriva-
tions, input was applied directly to the major aperture. Clearly,
both methods of input are functionally identical, though the use
of an input aperture affords some extra design and operational
flexibility:

1. Effective clipping can be obtained with minor-aperture input,
as will be described in Sec. 6-9.

2. It is possible to prime the input aperture simultaneously
with the output aperture so that during subsequent advance (when
the transmitter is being cleared) there is no flux switched through
the input winding. This has the advantage of decreasing the re-
quired drive strength and eliminating the need for holding against
back transfer. A disadvantage is a reduction in the upper prime-
current limit, because mmf applied around both apertures are
additive relative to major-aperture setting. If the input and output
apertures are primed separately, however, then the range for each
priming current is as before.

3. Several input signals can be applied to a core without first-
order cross talk. If the various inputs each linked the main aper-
ture, any flux switched in the core would link each input winding.
With separate inputs applied to independent minor apertures, how-
ever, such linking is largely avoided.

Nondestructive Tvansfer. There are also important variations
that can be applied at the output. Previously, transmission was
accomplished by clearing the transmitter element. However, it is
possible to effect transfer nondestructively, i.e., without clearing
the transmitter core, by driving only around the output aperture.
An appropriate drive arrangement in this case is the figure-eight
winding indicated in Fig. 6-7, where it is assumed that after
priming both output apertures, we drive one set of receivers
during the (E - 0); pulse, a second set during (E - 0),, and only
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then clear the transmitter., Although this arrangement requires
extra drivers, the increased flexibility obtained can be useful,
for example, for high ¢fan out’’ in certain logic circuits.

AC Readout. We have seen above how (E~0),
nondestructive transfer within the system
can be achieved by switching flux only
locally around an output aperture of the
transmitter, We can also apply an alter-
nating waveform (e.g., a sine wave, typi-
cally in the range of 0,1 to 5 megacycles)
to a minor aperture, to obtain continuous Clear E
nondestructive readout from a core. With
the drive amplitude adjusted to avoid Fig 6-7. Separating the Advance
switching around the major aperture, the 2nd Clear functions in the trans-
output ¢ level is low and primarily elas- mitter.
tic in nature for a zero output from a cleared core (Fig. 6-8(a)),
but is relatively high from local inelastic switching for a one
output (Fig. 6-~8(b)). The output power obtainable from typical
cores used in logic circuits is of the order of a tenth of a watt
and hence may be used directly to drive incandescent bulbs or to
trigger power devices such as relays. (There is some discussion
in Sec. 6-9 regarding the shaping of minor apertures in order to
obtain a large one/zevo readout ratio.)

¢:out J\Vﬂ\r‘f;ou!

(E~0),

Ac drive

[¢)
a) (b)

Fig. 6-8. Continuous nondestructive readout from a minor aperture.

Aside from merely indicating the internal binary state, minor-
aperture output may be used for actual switching of analog signals
(e.g., audio signals), with good fidelity, as described by Crane and
English (1963), or for other control purposes. This on-off control
capability is an important feature of systems based on unipolar
schemes using multileg cores.
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6-5 An Approach to Circuit Design

The constant-p core model of Sec. 1-1 is useful primarily in
the demonstration of principles, and for obtaining rough quantita-
tive values for switching time, drive-current levels, average
switching voltages, etc. Its use in Sec. 6-1, for example, provided
a ratio for limits of switching speed for the MAD-R and MAD-N
schemes. In no case, however, are realistic waveforms of circuit
variables, e.g., coupling-loop current, obtained analytically by using
the constant-p model. The model is thus inadequate for detailed
circuit design, which depends on transient analysis.

In Chap. 12, accurate engineering models for core switching
are described, and their use in computer-aided analysis is illus-
trated. Though these models are quite complex, the obvious way to
future analysis and design of core-wire circuits is the further de-
velopment and application of such models and computer methods.
In the remainder of this chapter, we wish to describe a manual
method, which, though rather simple, has nevertheless been ex-
tremely useful in circuit design.

In the past, it has been found possible to design many core
circuits without dependence on precise analysis, though in some
cases such design amounted to nothing more than the making of
educated guesses followed by laboratory testing, typically followed
by several additional cycles of cut-and-try methods. Without ap-
propriate models, it is impossible to do away with the phase of
laboratory testing of circuits followed in general by some re-
design. In the case of MAD-R circuits, certain methods of measure-
ment and use of test data have been developed that make this pro-
cess quite systematic, and which have resulted in consistently
good design procedures with a surprisingly small amount of
iteration. With well-designed cores (see Sec. 6-9), one can
readily design MAD-R transfer circuits that have virtually no
upper limit on advance current and with very wide prime-current
range, at least for room-temperature use.

The primary objective in design of the coupling loops and
advance windings is minimization of voltage and current require-
ments on the driver while maintaining wide drive-current tol-
erances. This aspect is treated in Sec. 6~6. Procedures for ac-
quiring core data and for testing circuits in order to find and
adjust values of design parameters are described in Sec. 6-7. An
analysis leading to a design procedure for the priming circuit is
discussed in Sec. 6-8. The implications of the circuit design pro-
cedure on those features that are desirable in the core design
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itself are discussed in Sec. 6-9. (Extensionof the design procedure
to logic circuits is considered briefly in Sec. 10-6.)

6-6 Design of Coupling Loops and Advance Circuit

The MAD-R circuit of Fig., 6-2 is shown in more detail in
Fig. 6~9. Assume that a one is initially stored in a primed state
in the center transmitter core T. The initial states of this core
and of the two adjacent receivers R and R’ are designated by the
row of arrows representing minor-leg flux directions. Upon ap-
plication of an advance pulse i,,loop currents i ; and i, are induced,
and the flux changes indicated by arrows within cores T and R occur.
The major reversals are A¢,; and Aép, in the transmitter, and
Adpy and Aéy, - (closing through Leg 3) in the receiver. The arrows
in Legs 2 and 3 of T and Leg 2 of R represent flux changes that
are of second-order magnitude, but sometimes still significant.,
A half cycle of operation is completed by application of the prime
current i, to each receiver core, switching the flux signal from
Leg 3 to Leg 4 (A¢p, ~ Agpy) in Core R and inducing a loop current

I,

{5(t), one-half cycle of a damped sinusoid
A‘ i'A

Fig. 6-9. MAD-R circuit shown in detail.

Choice of Design Point. A typical range map for a MAD-R
register is shown in Fig. 6-10, where I, and I, represent peak
advance and prime currents, respectively. The open-ended top
indicates that no upper limit on I, is detected within the region
of measurement. (The top may ‘‘close in’’ due to either zero
buildup or ome dropout if poor cores or poor circuit designs are
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used.) The choice of the nominal operating value of I, is then
merely a matter of how much tolerance one wishes to reserve
above the minimum value. The nominal priming current might be
chosen for equal plus and minus tolerances.

For aspects of design considered in this section, we choose a
tentative value of priming current I,"°™ (the exact value not being
critical), and then consider operating conditions at the correspond-
ing value of minimum advance current! A“‘i“as indicated in Fig. 6~10.
This point serves as an operational design point for the coupling
loops and the advance circuit.,

Nominal
%opemﬂng point
nom
Iy

Design point

min
IA R

Inom lmax 1

min
0 I 0 P

p

Fig. 6-10. A typical form of the range map for the MAD-R circuit (the
shaded area being the allowed operating range).

We assume that advance current i, has the form of one-half
cycle of a damped sinusoid, as indicated in Fig. 6-11(a), with rise
and fall times T  and T,. This pulse shape is easily obtained by
discharging a capacitor through an L-R drive line linking the MAD~-R
circuit (see Fig. 6-3). A circuit designed in this fashion will also
operate well when driven by pulses of other shapes, e.g., triangular,
provided certain general characteristics are retained: inparticular,
similar pulse width and appropriate limits on rates of rise and
fall. Baer and Heckler (1962) describe other practical drivers for
core-wire circuits based on adaptation of Melville pulse-com-~
pression circuits, which also use nonlinear magnetic cores.

Coupling-Loop Design. The coupling-loop design problem, in
greatest generality, involves the choice of coupling loop turns N,
and N, and coupling-loop impedance in terms of wire resistance
and inductance R, and L; so as to satisfy the necessary flux gain
requirements during flux transfer. The basic relation can be
derived by summing the emf and voltage drops in the forward
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Fig. 6-11. Typical waveforms for ¢ and A¢, for both transmitter and receiver,
and for forward and backward loop currents, in response to Advance Current
Pulse of amplitude 4™

coupling loop of Fig. 6-9 during transfer, namely
. . ‘ dig

Npdrs = Npdpr = Reip+ Lo (6-9)

Since i, =0 initially, integration over time from 0 to ¢ yields

NpAdpy (0 = NgAdp, (0 = Ryg (0 + Lyi(n (6-10)
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where the A¢’s are the net flux changes and P is the charge flow

in the loop, that is
t
9 = ./0- ipdi (6-11)

Typical waveforms of ¢ and A¢ for both transmitter and re-
ceiver, and of forward and back loop currents, for I, =1 Ami“, are
shown in Fig. 6-11. Note that ¢ and loop-current waveforms re-
verse in sign toward the end of the advance pulse. This is pri-
marily because of elastic-flux components. The peak magnitude
of i, in the negative direction is related to the rate of fall of ad-
vance current, and for this reason the rate of fall of i, must be
limited to insure against spurious unsetting of flux in the receiver.
As seen in Fig. 6-11, the transmitter begins switching almost
immediately after time ¢ =0 (when the advance pulse is turned
on), but there is a delay in switching of the receiver until the
forward loop current builds up to the threshold of the receiver.
The switching time s, of the receiver is defined as the difference
in the times ¢; and ¢, at which éSRl is 10 percent of its peak value.
(In some cases, more consistent results are obtained by measuring
7p on the main-aperture éRm waveform because of the absence of
elastic flux clipped out by closure through Leg 2.)

We wish to consider Eq. (6-10) at the instant ¢ = ¢,, when the
inelastic flux switching is nominally complete. For I, > I,™", the
receiver would complete switching before the transmitter. As I,
is decreased, the difference in switching times decreases, until at
I, =1 A™" both cores complete their switching together at ¢ - to.
Thus, as implied by Fig. 6-11, both Aép, and Agp, reach peak
values very slightly after ¢,, and following Eq. (6-10),

NpAdg, P = Np Adp P = Ryq (1) + Lyiflty)  (6-12)

Figure 6-12 illustrates a ¢-F characteristic for flux switching
via the path including Legs 1, m, and 3 of the receiver in Fig., 6~9.
The mmf applied to this path is simply F = N i since we assume
that the priming current i, is zero duringthe advance pulses. (The
equations to be derived can readily be modified for the case of dc
priming, once the principles are understood.) The limiting cross-
sectional area is usually that of Leg 3; here we assume that 2¢4_in
Fig. 6-12 represents the maximum flux-setting capacity of Legs
1 and 3 in series. The dashed line in Fig. 6-12 represents the
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Fig. 6-12. The ¢-F characteristic for flux switching via the path including Legs 1,
m, and 3 of the receiver.

dynamic ¢ (F) variation during transfer. The value Npi f{tg), may be
viewed as a ‘‘stop-switching threshold,’”” which we call Fq. Be-
cause of the complexities of dynamic switching, this point does not
necessarily fall exactly on the static #(F) curve (as indicated in
Fig. 6-12) but may be on one side or the other. The question of
how to make measurements for estimating accurately just where
this point Fyg occurs in an operating circuit is one of the crucial
aspects of the design procedure, and this matter is covered in
Sec. 6-7.

In most cases, we have simply a single receiver turn, that is,
Np =1, but to retain flexibility for certain cases where it is de-
sirable to scale the values of N, and N, , we define a parameter

M, = Nga,(ty) (6-13)

which represents the total charge-turns that are required for
setting the receiver, up to the time t,. We may then rewrite
Eq. (6-12) in the form

R, 11, + L,F
eUp + LyFog
NpAdpy -~ NpAdpy = — (6-14)
R

where, for simplicity, we have suppressed the superscript ¢‘peak,’’
though Aé,, and Aép, are here understood to be peak values.
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Equation (6-14) is the primary expression relating to coupling-
loop design. It contains core-related parameters Adq,, Adp,, I,
and F,q, and coupling-loop parameters N, Ng, Ry, and Ly. It turns
out that I, is the only one of the parameters that varies signifi-
cantly with coupling-loop design. Very roughly, we can write

M ~ T + kFy7p (6-15)

where 7, = t, - t; is the receiver switching time, where I, is the
value of charge-turns required for rapid switching (i.e., for
7p » 0), and where k is an empirical constant with a value de-
pending on other core and circuit parameters, but usually in the
range of 1.0 to 2.0. (It can be shown that I ~ IS , where [ is path
length and S, is the switching coefficient, as represented in
Eq. (12-121), and also that £ = 1 + ‘1/2’R° However, these results
and Eq. (6-15) are given only to indicate roughly how II, varies
with 7, and will not be used further.)

The suggested coupling-loop design procedure starts with a
choice of values of N, and N, (usually 2 and 1, respectively) and
of I, and r,. Then a coupling loop is chosen with wire cross
section and length to provide a combination of values of Ry and L,
that result in satisfaction of Eq. (6~14). Practical considerations
of core and circuit dimensions may then dictate that the process
be repeated for different values of Ng, Np, and I, (or rg). This
process presumes that we have already determined the quantities
Adrpy> Appys Fog, and 1, as a function of 7p for the cores being
used. The experimental determination of these quantities is the
subject of Sec. 6-7.

In order to aid the choice of wire size and length, we rewrite
Eq. (6~14) in the form

Ng2(nAdqp, ~ Adpy) = Ryl + LyFyg (6-16)

where n = Np/Np. The choice of a wire loop for satisfying Eq. (6-16)
is complicated by the fact that the inductance of a loop of a given
shape and wire size is a nonlinear function of the total length of
wire. On the helpful side, however, it has been found empirically
that loops with N,/N, = 2/1, wound loosely without controlling the
shape, generally have an inductance approximately equalto (3/4 L,
where L is the inductance of a circular loop of the same length
and wire size. (To reduce the inductance substantially below this
value, it is necessary to make the loopinto the form of a strip-line
or at least to twist the wires very closely.) Considering this fact,
and also since the value L Fg4 is usually considerably smaller than
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R,ll,, it has normally been found accurate enough to set
Ly = 0.75L (6-17)

for the purpose of design.

Curves of L, as well as R, may therefore be plotted as func-
tions of wire length [,, for various wire gauges, and graphical
procedures may be established for selecting wire length and
gauge to yield a pair of values of R, and L, to satisfy Eq. (6-16).
However, we often know approximate wire length in advance, in
which case the use of a linear approximation for L, is expedient.
That is, we set

L, = i_LC - %(—a + bly) (6-18)

where ¢ and b are positive parameters characteristic of a given
wire size. (For example, for wire of gauge AWG No. 33, with /, in
the range of 1.5 inch to 3.0 inches, a = 0.010 microhenry and b =
0.0295 microhenry/inch.) We may also set R, proportional to
ly , that is '

Ry - &y (6-19)

Substitution of the above two equations into Eq. (6-16) results in
the following formula for J,

z N2 (nAdpy — Adgy) + 0.75aF g (6-20)
) - -
Tl + 0.75bF

If the calculated length [/, for the assumed wire size turns out
to be an impractically short length, there are several possibilities
for adjustment. A wire of larger diameter may be considered, if
the minor-aperture size allows it. Or the number of coupling-loop
turns may be scaled upward (e.g., from 2/1 to 4/2), with an in-
crease by a factor NR2 (for example, 4 to 1 for scaling of 2 to 1) in
the allowed values of R, and Ly, as can be seen from Eq. (6-16). Or,
finally, it may be necessary to reduce the design value of I, (also
reducing 7p), in order to allow a higher-impedance loop, and then
repeat the procedure to find a new value of /,.

Design of Advance Circuit, What we wish to find now are the
specifications for the advance windings N H NC, and N % In particular,
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we desire a design solution in which we have small integral turns
ratios so that these windings, which are driven in common, can be
realized with a small number of turns.

For convenience in calculating advance-current charge (i.e.,
the integral of advance current to time ty), We assume that

Tr =1 (6-21)

although we shall see that we can allow adjustment to certain
values of T <t, once a good circuit design has been obtained.
Next, it 1is necessary to consider values of advance-current
charge g, (t;,) and back-loop charge g¢,(t,) (Fig. 6-11) in compari-
son to the forward~loop charge qf(tz)- First consider the N x drive
around the output leg of the transmitter, which is not essential, but
nevertheless useful, for enhancement of flux gain. This winding is
normally chosen to approximately cancel the loop charge-turns
acting back on the transmitter (thus minimizing elastic-flux
effects), i.e., such that at time ¢,

Nya, = Nqu = nNqu = nllp (6-22)

In order to guarantee sufficient holding mmf with N, it is
necessary for the back-loop charge-turns to be canceled out in
Core R’ in Fig. 6-9, that is

Nyay 2 Npa, (6-23)
Let us assume that we can achieve the lower limit indicated
by Eq. (6-23), and hence that Core R’ makes no contribution of
flux-linkage change to the back loop. Then the back-loop equation
integrated to time ¢, yields

NgAbpy = Ryay(ty) + Lyi, (ty) (6-24)

By dividing Eq. (6~14) by Eq. (6-24), with the definitions of II,, and
Fyg considered, we obtain

NpAdpy = NpAdpy ) qufuz) + Lzl'f(t2) 6-25)
Ng Adpy qub(t2) + inb(tz)

For simply finding the value of Ny required, it has been found
empirically to be a good enough approximation to assume that the
ratio of inductive flux storage to resistive flux loss is the same
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in the back loop as in the forward loop at time ¢,, and also that all
of the A¢’s on the left side of Eq. (6-25) are equal. Then Eq. (6-25)
yields the approximate result

qf(tz)

(6-26)
n-1

From Egs. (6-26), (6-22), and the lower limit of Eq. (6-23), we
obtain

Ny = (6-27)

n=1

The transmitter and receiver cores switch at about the same
rate; hence, we can assume that the net charge-turns driving the
transmitter are equal to the charge-turns Il = Npq,(t;) driving the
recelver. That is, recalling that Ny g, (¢,) cancels N, q,(1y), We can
write

Npay(ty) = Npg, (b)) = Nqu(tz) (6-28)
From Egs. (6-26), (6-28), and the lower limit of Eq. (6-23),
Ny
Neay(ty) = T[qb(tz) + qf(lz)] ~ Npg,(ty) = Npq,lty)

whence

N~ = N

o = (6-29)

H
In summary, then, from Eqgs. (6-27) and (6-29) we find that
No = Ny = Ny/(n = 1). For the usual case of n -2, we see that
Ny = Ny. A practical effect of this result is that a single line
wound through all output apertures and fed in common from the
two Ng lines, through the O and E sets of cores, serves the pur-
pose of both the N, and Ny windings, with roles alternating for the
two advance pulses, as shown in Fig. 6-3.

Though Egs. (6-27) and (6-29) are approximate, Eq. (6-27) has
been found to be satisfactory over a wide range of conditions. For
low-drive designs (large 7,,), however, it has sometimes been found
that a value of N, equal to Ny, as in Eq. (6-29), does not result in
sufficient clearing of transmitters. In such cases, it has been
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found possible to increase N, (typically to N, = 4 if Ny = Ny = 3)
without causing insufficient holding, and such a value generally
obviates any possible problem of insufficient clearing.

In specifying parameters for the advance-pulse shape, a rule
of thumb for avoiding unsetting during the fall time is to set

T, = 2T, (6-30)
where T, and T, are defined as in Fig. 6-11(a). In order to obtain
a rough estimate of the peak advance currentl, (while still assum-
ing T, is to be set equal to t,), we first recall from Eq. (6-22) that

Nya,(ty) = Npg f(tz)~ Because of the damped-sinusoid nature of the
advance pulse

(t) = 21,1 6-31
qa'to 3 A2 ( )
and from Eq. (6~22) we obtain

(6-32)

Though we have assumed that T, = ¢, until now, it has been found
empirically that we may, for actual operation, scale down Tr and
T, until T, = (2/3)ty, without affecting transfer circuit operation
significantly, but economizing on power from the advance driver
appoximately in proportion to the scaling. (In actual designs, ¢, is
equal to about (3/2)r,. An actual value can be measured when the
first trial circuit is built, at which time the width of the advance
pulse may be readjusted.)

Redesign. Once a first design has been achieved, based on es-
timated values of A¢qy,, Adp,, 75, and I, the usual practice is
to build a short closed-loop register as a test circuit. With good
cores, such a circuit is always at least operable. If the circuit
does not operate within specifications, however, then measurements
are taken on the actual test circuit for redesign.

It is easy to obtain actual measurements of rp, Ad,,, and
A¢p, at the bottom of the range map (the design point), as will be
described in Sec. 6-7. The parameter F,q can be assumed un-
varied from the initial measurement. One may then use Eq. (6~14)
for determining an empirical value of I, onthe basis of the circuit
measurements, and this result provides an improved data point on
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the empirical curve of Il versus r,, wWhich very roughly has the
form of Eq. (6-15). The design procedure may then be repeated
with revised values of Adyp,, Adp,, and Il,. For simple transfer
circuits, it is seldom necessary to do more than one iteration, if
even that.

So far the design procedure has been based on one transfer. If
zervo buildup should turn out to be a problem, any specific amount
of clipping may be obtained by building it into the input aperture
(Sec. 6-9) or by incorporating flux-source clipping asused for logic
circuits (Sec. 10-5).

Placement of Dvive Windings. There are two extreme ways for
making multiple-turn drive windings. By the ¢‘straight-through’’
method, a single turn links all cores before the next turn is started.
By the ‘‘lumped-winding’’ method, each winding is completed in a
tight coil before the next winding along the drive line is started.
The straight-through method is better for quick, economicalwiring,
but the lumped-wiring method results in shorter drive lines of
lower intrinsic impedance. In either case, return paths for lines
should be bundled as closely as possible to the threading lines,
because large return loops can result in air fields large enough to
affect operation adversely.

6-7 Measurement of Design Parameters

If the core or circuit parameters are unknown to begin with, it
is desirable to make initial measurements on a test core before
attempting to build any transfer circuits. Onthe other hand, if these
parameters are known approximately, a test circuit (typically a
four-bit closed-loop register) can be designed and built im-
mediately, and then measurements can be made under operation
for adjustment of the design. One example of the latter case is the
use of a new batch of cores of specified shape and material con-
tent, but suffering from typical batch-to-batch variations. Another
example is a new design with a completely known core but for
lowered advance-current requirements. In any case, for simplicity
in measuring test parameters, we assume a coupling-loop turns
ratio Np/Np = 2, which generally yields good enough initial param-
eter measurements evenif some other ratio is eventually to be used.

Core Test Civcuit for Initial Measuvements. For the first mea~
surements on a relatively unknown core, the test circuit of
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Fig. 6-13. Test circuit for obtaining design parameters.

Fig. 6-13(a) may be used. Throughout this section, we add the
subscript ¢ to designate this test circuit and results obtained from
it, The prime-pulse amplitude is generally set roughly in the
middle of its range, which can be estimated by taking the average
between a value for switching fully around the minor aperture and
a value for just reaching the major-aperture threshold. The turns
N,, and N, are generally set at 3 and 1, respectively. As an ap-
proximation to the coupling-loop current shape, a half-sinusoid
test current i, is used. (For the moment, ignore the precursor
current i, indicated with the dashed line.) Rectangular pulses of
controllable amplitude may be used for the other currents i,, and
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iy, required for the test. The timing sequence for applying the
four required current pulses is indicated in Fig. 6-13(b). The test
current i, of peak value I . and width T,, and the waveforms of the
resulting ¢, and A¢, are shown in Fig. 6-14. At the instantt,,,
when ¢ ;; drops to 10 percent of its peak value, we wish to make a
measurement to obtain approximate values of Il, (as a function of
7r) as well as values of F;q and Agp,.

)

Area=I;/Npgy
an approximation to Mg/Ngy

/ Second 10% point

N t

N

tay

|
t
0 oy

Fig. 6-14. Test current waveform i, and resulting input waveforms ¢ irandAd ;.

Experience has shown that this objective can be achieved quite

satisfactorily with a procedure consisting of the following three
main steps:

1. Find the amplitude I, of test current corresponding to the
design point of Fig. 6~10.
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2. Simulate the relative drive mmf acting on the transfer cir-
cuit at time ¢,,.
3. Make final adjustments and actual measurements.

These steps will be detailed below, but note first that the only re-
maining parameter needed for the designequations (6-15) and (6-16),
namely A¢q,, may be approximated by measurement of the output
flux A¢,, (Fig. 6-13(a)) during the clear pulse i,,, again based on
appropriate adjustment of drive mmf values.

Simulation of Design-Point Operation. The first of the three
steps outlined above 1is the most interesting part of the test,
namely, finding the critical amplitude for the test pulse relating
to the design point of Fig. 6-10. The sequence of steps indicated
below is suggested as a useful procedure, though the designer,
with experience, may develop his own specific procedure.

Consider Fig. 6~15, where half-sine input test pulses of vari-
ous amplitudes are shown together with the corresponding q'sit
waveforms. Assuming that a design is desired for a given transfer
time r, for example, r = 1.0 microsecond, then we proceed as fol-
lows: First, select a value of test pulse width T, somewhat greater
than r, say 1.5 . Second, with the test sequence of Fig. 6-13(b) and
with fixed-amplitude values of iy, and i,, well above threshold,
increase the test-current amplitude I, to just above threshold, say
I,y 1in Fig. 6-15. Third, consider the resulting c}Sit (1) Waveform
and note t,,;, when ¢, , falls to 10 percent of its peak value. In
this low range, the amount of switching is not flux-limited, so that
for a small increase in current, say from amplitude I, ,, to I, ,,
a greater amount of fluxis switched and the second 10-percent point
on ¢; moves to the right (from tor(1y tO ty,(5)). During further in-
crease of current amplitude, a transition is passed having the
following characteristics:

1. The time of the second 10-percent point on (ﬁit reaches a
maximum value &,, for some specific amplitude I} with corre-
sponding &, waveform ¢%,, and then decreases steadily for higher
amplitudes, e.g., to {y,4, for amplitude I, 4, in Fig. 6-15.

2, At about this same point, i.e., where ty, is maximum, the
shape of the decaying portion of the ¢; waveform undergoes a
striking change, becoming rapidly steeper. This change in shape
is related to the fact that inelastic switching terminates at about
the base of the ¢‘wing’’ on the ¢-F loop of Fig, 6~12, which is
just about the point of operation desired for the design simulation.
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3. For amplitudes of current greater than I’:, switching may be
considered to be flux-limited; this observation fits with the fact
that the width of ¢, then decreases as the peak of ¢;, increases,
whereas the area A¢;, hardly increases further.

For test purposes, the amplitude of i, is set to the value I’: found
where this transition occurs.

Simulation of Dvive MMF, In principle, the drive levels through
Winding N, at setting time, and through Windings N, and Ny,
at clearing time should simulate transfer-circuit drive levels,
correcting for the expected back mmf values in the coupling loops,
which are not present in the test circuit of Fig. 6-13(a). From ex~
perience, it has generally been found sufficiently realistic to set
the holding mmf about equal to the peak test mmf, that is,

Ny Iy, = N

Helm: I (6-33)

Rt't
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This relation need be satisfied only approximately during any test
sequence—say within 10 percent, since holding is a relatively non-
critical function.

On a similar basis, at the time of clearing the test core with
current i,,, minor-aperture drive conditions for the transfer cir-
cuit, including loading by both input and output loops, are adequately
simulated by setting N, = 2Ny,, as indicated in Fig. 6-13(a), and

adjusting i,, so as to have output-aperture mmf Ny I, equal to
the test mmf NRtlt used for setting, that is
Nyider = Nroly (6-34)

Greater care is required to satisfy Eq. (6-34) than Eq. (6~33),
since the measurement of A¢ , is fairly sensitive to minor-
aperture drive. It should be emphasized that the main point is one
of consistency in how some rather arbitrary rules are adhered to,
since the simulation of actual circuit conditions is approximate
in any event.

Finally, in order to assure that any input-aperture flux-clipping
capacity (a matter of core design discussed in Sec. 6-9) is in a
‘‘prepared’’ or ¢‘‘cleared’’ state, it is desirable to apply to the
input aperture, prior to the test current i,, the negative current
pulse i, indicated in Fig. 6-13. The mmf value should be great
enough to just switch any uncleared flux in the input leg around
the input aperture. The pulse need not be rectangular and of
course could be applied on a separate additional winding instead
of on Np,.

Final Adjustment and Actual Measuvements. After the firstset-
ing of the amplitude of i,, as described earlier, the amplitudes of
iy, and i,, are adjusted to satisfy Eqgs. (6-33) and (6-34). In gen-
eral, I, will then no longer be set at the critical transition point,
which will have shifted slightly, and the adjustment procedure for
I,, followed by that for I, and I,,, may have to be iterated one or
more times, but convergence to definite final values is rapid.

When the two aspects of mmf simulation have been simul-
taneously achieved, then a set of measurements may be made.
The waveforms q’Sit and <2>0t are integrated as indicated in Fig.
6-13(a) and we assign Adp = A¢,P°% and A¢, = Ab L%, Refer-
ring to Fig. 6-14, the switching time -, is measured between
10 percent-points on &, (or ¢, . if preferred), and F¢ is measured
as the value of Np,i, at time {y,. The waveform i, could also be
integrated to time to, to obtain a value of Ht/N R However, because
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of the half-sine shape, the area may readily be calculated as a
function of I,, T,,and either ¢,, or Foge

In general, the first pair of values of II, and r, will not match
the original design specification, whether the latter is in terms of
I, or r,. However, the procedure may be repeated with a second
trial value of T,, resulting in a second point on the curve of II,
versus r, (generally without much change in the A¢ and F,g mea-
surements). With two or more such measurements, we may in-
terpolate or extrapolate to the set of parameters matching a
specified switching time (or some other original specification).

Transfev-Civcuit Measuvement for Redesign. From the set of
parameters obtained as described above, a design for coupling
loops and advance windings may be obtained by the procedures of
Sec. 6-6. Though design of priming circuitry will be covered in
Sec. 6-8, we may build a test circuit using priming pulses and
windings as specified for the test core of Fig. 6-13(a). A range
map such as in Fig. 6-10 may then be plotted. (If no range of
operation exists, it usually means that either the cores are very
poor, e.g., they have a low degree of squareness, or that the
original specification for switching time is unreasonably low or
high.) The left-hand and lower boundaries are governed by one
dropout in a single-~one pattern of information, due to insufficient
Prime current or Advance current, respectively. The right-hand
boundary is governed by either zero buildup or one dropout (or
preferably both simultaneously for the ‘‘matched’’ case discussed
in Sec. 6-8) due to excessive priming current. The upper boundary
(if detectable) is usually due to zero buildup from inelastic re-
celver switching induced by excessive elastic switching of the
transmitter, but may also be due to one dropout caused by various
‘‘unsetting’’ effects, such as can occur from too rapid a fall of
advance current,

The next step is to set a nominal value I "°"—preferably the
same value used for the core tests—and then decrease I, to the
lower range boundary. Revised values of A¢q, Agp and 7, are then
measured, using sense windings on the transmitter and the receiver
associated with one of the coupling loops. It is extremely difficult
to measure loop current (and hence F, and II,), however, without
affecting loop impedance. Fortunately, F,q can generally be as-
sumed unchanged from the core measurement, and hence a revised
experimental value of I, may be calculated from Eq. (6-14).

Based on the new pair of values obtained for Il and rp, the

curve of II, versus r, obtained from core measurements may be
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scaled to match the new point. A new design for a different value
of 7, may then be tried in the test circuit, a further adjustment
made in the II, - r, design curve, and so on, until design data as
precise and complete as desired is obtained. If just a single good
design is required, this can usually be achieved on the first or
second trial after a little experience with the procedures has been
obtained. .

6-8 Design of Priming Circuitry

As indicated in Sec. 6-7, it is easy to design for wide priming-
current range, at least for a single, constant temperature. Fol-
lowing Nitzan (1965), we now wish to show how priming range may
in fact be greatly enhanced and operation thereby achieved even
over a large range of temperature, though at the cost of a reduced
speed of operation.

In Fig. 6-16, the range map of Fig. 6-10 is shown, for room
temperature and for specified minimum and maximum tempera-
tures. Due to the effect of temperature T on the threshold field of
the core material, both Ipmin and Ip““"’lX decrease as T increases,
and vice versa. For operation within the temperature range
Toin ST ST, .. the priming range is therefore reduced to a band
narrower than at any single temperature.

Increased priming range at any given temperature can be
achieved by use of a priming pulse with a slowly rising front,
e.g., a ramp or a half-sine pulse, rather than a rectangular
pulse, in conjunction with control of the ratio N /N,. In this way,
the overlap range between given temperature extremes can be
greatly increased. In fact, an overlap range can be created with
a ramp pulse for temperature extremes (e.g., over the range from
-50°C to 100°C) where typically no overlap range even exists for
rectangular pulse priming. An alternative (and more costly) way
to obtain a wide temperature range is to design a compensated
prime-driver circuit that automatically supplies decreasing cur-
rent amplitude with increasing temperature, and vice versa.

We will first analyze the case of a rectangular pulse more
accurately than previously, as a basis for comparison, and then
show how to obtain improved designs with a slowly rising pulse—
specifically a ramp function. We will present quantitative results
that are useful for actual design for ramp-pulse priming. Similar
results can be obtained with other slowly rising pulse shapes, such
as a half-sine pulse, as described by Nitzan (1965).
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Rectangular Priming Curvent. Consider a rectangular priming
current pulse of amplitude I, and duration T, We wish to calculate
I, min and

P = min (1,50, 1, 1) (6-35)

where 1,7%* and [ 7°% are the maximum values of I which cause a

one dropout or a zero buildup, respectively. For flux changes re-
ceived by Leg 3 and then primed into Leg 4 (Fig. 6-9), a full one
corresponds to A¢g = A¢4 = 2<;/>r, where ¢ isthe maximum residual
flux of a minor leg. Suppose that A¢, and Ag, are gradually re-
duced below 2¢ by varying I, or I, or both. Initially, the one re-
mains stable, but when A¢, reaches a certain fraction y of 2¢ ,
for example, y ~ 0.9, the one drops to a zevo, because flux gain
falls below unity. The corresponding A¢ primed into Leg 4 is
Ap, = nAdq = my264, , where n < 1 as a result of insufficient priming.
Calculation of y and 5 is complex, especially because of second-
order effects of I, on y. A value of 7y ~ 0.8 has been observed to
be a good approximation in many cases of one dropout.
Interestingly enough, ome dropout may be caused by I, being
either too small or too large. For I, < Ipmm N I 1is too small to
switch enough flux through Legs 3 and 4, and priming may be said
to be mmf-limited. For I, >1,7%* NI causes flux to be unset
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around the major aperture, so that the amount of primed flux
is insufficient to sustain one transfer, and the priming may be
said to be flux-limited.

To derive a formula for Ipmi“, consider Fig. 6-17. The static
¢(F) curve around the minor aperture, i.e., for Legs 3 and 4 in
series, is plotted as ¢, versus F. The unsaturated portion of
¢, versus F is approximated by a straight line that intersects the
horizontal lines ¢ = -¢,  and ¢ = +¢, at two points whose F values
are | and F,, respectively, Thus, in this region

F = a+ Bo, (6-36)
where
F‘2 + Fl
a = — - (6~37)
2
and
F, - F
g-2 1 (6-38)
26,

The value of ¢, for which a one drops to zevo is (-¢_+ 7y26), and
the corresponding F value is denoted by F.. Substitution of
by = —¢, + ny2¢, into Eq. (6-36) gives

Fo = F; + qy(Fy - F)) (6-39)

For a very long priming pulse, NI pmi“ = F,; hence
pmin _ Lp (F, - F)) 6-40
p = N_ 1 +ny 2 711 ] ( - )
p

For a rectangular pulse of duration T,, it can be shown that
Eq. (6-40) is modified to the form

. 1 ny(Fy - F)
= Py 2 (6-41)
NP 1-¢ "2
where
26,  Ngp?
T = .
Fop-F, Ry

Note that as T, » ~, Eq. (6-41) reduces to Eq. (6-40).
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Consider next the case of a oze dropout due to excessive flux
unsetting around the major aperture via Legs 3 and 1. Since the
main leg is initially in a partially set state, the static ¢ (F)curve
for unsetting around the major aperture is narrower and rounder
than if the core were initially in a clear state. Let us denote by F},
the soft thveshold corresponding to the critical amount of flux
unsetting around the main leg. If N blp > F’;, a one drops to zero;
hence

F.*
fmex - M (6-42)
Ny

Finally, we examine the condition for a spurious zevo buildup.
It can be seen from Fig. 6-9 that the mmf (Np - NI p acts around
the major aperture along a closed path including Legs 4 and 2. Let
the dc threshold of this path be denoted by F,,. Although A¢ may
increase up to a certain fraction (e.g., up to about 20 percent) of
2¢  before a zero builds up, to be conservative we assume that,
due to the sharpness of the static ¢ (F) curve near its threshold, a
zevo buildup occurs if (Np -N b)Ip 2 Fy,. Hence
1mex = M (6-43)
Np - N,
The function of an N, -turn priming winding on the main leg is
thus clear—namely, to increase I 7%,



136 DIGITAL MAGNETIC LOGIC

Following Eq. (6-35), we set [ ™% = Ip‘fax = Ip’fax for an opti-
mum, matched case. Thus, when the circuit is properly designed,
Eqgs. (6-42) and (6-43) give

N_P =1+ Iiﬂ (6-44)

N, F’Kd
For typical ferrites that have been used for MAD-R circuits,
Fy ~ 2Fy; hence, if N, =1, then N, =3N, =3, which are the
values specified in Fig. 6-3. Note that ¢‘rectangular’’ priming is
implied when dc priming is used, since the priming current be-
comes fully effective immediately after the advance pulse ter-
minates.

For the matched-case condition, and assuming a very long
priming pulse, then from Egs. (6-40), (6-42), and (6-44), the maxi-
mum value of 1,"**/I ™" is found to be

%
FM+FM

max (6-45)

Fy + qy(Fy = F))

Ramp Priming Curvent. The maximum value of range ratio R
that can be obtained with a very long rectangular priming pulse is
expressed in Eq. (6-45). We shall show now that much higher
values of R can be achieved if we let the prime drive current i (1)
rise slowly so that in the ome case, ¢5 reaches -¢, just before
N,i,(t) reaches FL. Beyond this latter point, i, (1) continues to
rise toward its peak without causing any switching around the
major aperture, provided the peak value does not finally exceed
the zero-buildup upper-limit F,,/(N p ~ Ny In effect, what we will
find is that the longer the time we allow for the ramp, the closer the
optimal N /N ratio approaches unity (compared with (Np/Nb) =3
noted above for the rectangular-pulse case); in the limit, N, = Ny»
and we can see from Eq., (6-43) that I T?% . o,

We assume that the ramp priming current has variable slope k
and constant duration T,, that is, i = kt during 0 < < T,, and
i, =0 for ¢ > T,. The slope k = I, /T, varies between k_, and k.
as the peak value [, varies between I min and I o %, Flux switching
around .Legs 3 and 4 starts at t = T, = F1 /N, k). The resulting volt-
age N, ¢, induces a current i f=Npo 4/Ry inthe forward loop. Since
flux switching is relatively slow during priming, we assume that
the net mmf follows the static curve, Fig. 6-17; furthermore, since
A¢, does not exceed ny2¢, in the conditionsunder investigation, we
can equate this net mmf to the linear approximation previously
given in Eq. (6-36), thatis, F = « + B¢,. Combining of these relations
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results in a first-order linear differential equation whose solution
is

N k - -
830 = —b, v L qio 1y — o [1- T (6-46)
B
where
T = — (6~-47)

is the time constant with which ¢, rises.

Let Ty denote the time when prime switching is completed. As
k is increased (from some value corresponding to a stable one),
kTg increases despite the decrease in Tg. For the maximum value
of k, namely, k.., i, reaches [ %% = Fy/N, att = Tg, that is, when
py() = -+ ny2¢, , as we see in Fig. 6-18. (If &>k . ,aone
drops to a zero.) To find k_, , We substitute the relations ¢ = Tg =
Fay/Nyko o0y To = Fy/(NJk ), and ¢, (0 = -¢ + ny26, into Eq.
(6~46) and obtain

3
[em)-Em)| e
Roax{1l — exp = - — - — (6-48)
Roax? 5 T \N,

which, for given core and circuit parameters, is a transcendental
equation with one and only one solution for k__ .

For a value of k = k_ .., once priming is completed, ip(t) may
continue to rise beyond ¢ = Tg with no effect on flux unsetting, be~
cause Leg 3 is already in negative saturation. But, in order to
prevent zero buildup, the rise of ip(t) must terminate before reach~
ing Ip'fax, that is at ¢ = Tpm, as shown in Fig. 6-18, where

p

M 6-49
Ty = —————— (6-49)
pm
kmaX(Np - Nb)

The resulting i () waveform in this case, that is, k =k, and

t = Tpm, is considered to be a matched case because its slope and
amplitude have upper-limit values determined by both the one-
dropout and the zervo-buildup criteria. (Note that the matched case

cannot be realized if I7** > I T#%.) The duration T, is the border
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The lower limit of k, namely, k ; ,1scalculated for both Case a
and Case b by substituting the relations ¢ = T, Ty = F{ /(N k; ), and
by = -, + ny2¢4, Into Eq. (6~-46). We can thus derive the relation

(6-50)

min"'p
N

p

7

~-[T - (F,/k_. NI F, + ny(F, = F;)
p 1 1 2 1
koin Tp - 7[1 - exp ] =

from which k ; can be determined transcendentally. As T, in-
creases (for given N,/Ny), ky;, decreases at such a rate that

Ip“lin = ky;, T, decreases, and thus the range ratio R increases.
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Since I ™ also increases with T  in Case a, the increase of R
with T is faster in Case a than in Case b.

In normal operation we would set the priming duration equal to
the matched value since at this duration the range ratio is already
just about maximum. But the matched-value duration depends on
the turns ratio N p/N - In particular, we would like now to show that
the longer the primingduration, the closer N /N, - 1for the matched
case. In the limit,Np/Nb = 1,and Ip““‘j‘X - o, and hence also ?max > oo,
Recall from Eq. (6-44) that N,/Ny typically has a value =3 for a
matched case of rectangular-pulse priming.

To show this dependence on NP/N p let us assume a matched de-
sign in terms of Fig. 6-18, thatis, T, = T , and trace the effects
of a change in N /N,. From the limiting relations for &, and
1 pTaX, we can deduce that if either N, decreases, or N, increases,
or both, then %,  decreases and IpTaX increases. Thus, assume
that we increase the prime duration Tp. For this new duration to
represent a matched design, the intersection point of Fig. 6-18
must be moved to the right. But this can only be achieved by de-
creasing N /N,, which results in an increase in [ T%* and a de-
crease in k ... (Increasing N /N, would move the intersection
point to the left.) Thus, the larger the allowed priming time the
closer N /N, - 1 for a matched design.

The ramp i, (1 waveform may be modified to advantage by re-
placing the sudden fall at ¢ = T, by a gradual fall (such as an ex-
ponential decay) beyond ¢ = T,. The values of k _and Ipmax are
the same as for the simple ramp except for a minor increase in
kpax if T, is slightly below Tg. On the other hand, & ; and Ipmin
are lower, because switching may continue beyond ¢ = T,. Asa
result, R is even higher than for a ramp i,(), For the same rea-
son, an even better modification than a gradual fall is to maintain
i, constant for a specified time beyond ¢ - T,. The resulting
overall ip(t) waveform is then trapezoidal. Similarly, improved
results can be obtained with a half-sine priming current, as
shown by Nitzan (1965).

For a typical core used in MAD-R logic circuits, with minor
aperture about 1/10 the diameter of the major aperture, computed
and measured values of Ipmax and Ipmin versus T, at room tem-
perature are compared in Fig. 6-19 for a ramp priming current
with exponential decay of time constant = Tp/2. Two Np/N b
values are shown: 6/6 =1 and 6/4 = 1.5. Note that the unity-ratio
case, Np/Nb =6/6 =1, results in Ip‘?ax - «, that is, no flattening
of the curve, as predicted. But note that the case of Np/Nb =11is
actually superior to the case of N,/N, = 1.5 only if T, > 450 usec.
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Effect on Cove Designs, Enlargement of the minor apertures
may be desirable in order to reduce the cost of fabrication (be-
cause wiring is easier), but this reduces priming range. With the
technique of slow-rise priming just described, however, some re~
duction in range ratio R may be tolerated. For example, with a
minor aperture as much as 1/4 the area of the major aperture, we
calculate for a given core material at 25°C, ﬂmax = 4.8 with
N, /N, = 7/5 for a bit rate of 500/sec.,or R . = 10 for N, /N, = 6/5
for 60/sec. In comparison, we calculate R pax = 2.5 for a bit rate
of 60/sec. using a rectangular pulse. (This result as compared to
the results in Fig., 6-19 gives an idea of how relative path lengths
around major and minor apertures must be considered in con-
junction with overall core design, discussed in the next section.)
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6-9 Core Design

The purpose of this section is to outline the major considera-
tions in the design of multileg cores. Though the emphasis is on
aspects important to MAD-R circuitry, the underlying principles
are of more general nature. We consider only the geometrical
aspects of core design. The problems of designing material mixes
for certain specifications, and for controlling the mixing, pressing,
and firing operations are beyond the scope of this book. (It should
be mentioned, however, that there is the potential of using two dif-
ferent ferrite materials in different sections of the same core, in
order to enhance the ratio of major/minor aperture thresholds to
a value greater than the ratio of major/minor aperture path
lengths, as described by Heckler (1967).)

Gross Aspects of Size and Shape. Since the required drive cur-
rents are proportional to core path lengths (assuming a single ma-
terial), and switching voltage is proportional to cross-sectional
area, core miniaturization is important for achieving low current
and low power levels. An additional factor against large size, for
ferrite cores, is the press-and-die problem, since very high
pressures are required during the forming process to achieve
high-density uniform packing of the constituent metal-oxide powders.
On the other hand, miniaturization tends to be limited by such
mechanical factors as fragile elements in the core-forming dies,
fragility of the coresthemselves, and inadequate space for windings.

Of these factors, the size limitations based on requirements for
coupling loops are the most significant and fundamental. For ex-
ample, suppose we start with a well-designed circuit with N, = 1
and specify that wire length and all core dimensions are to be
scaled down uniformly, but that wire cross section is to be ad-
justed so as to maintain unchanged the ratio of loop resistance to
receiver switching resistance, namely, Rz /NRZE, in order to main-
tain a good design with transfer and priming times unchanged. The
switching resistance NR2;7 can be rewritten as NR2A¢>R/Swl, where [
is path length and S, is the switching coefficient of the material.
(For more discussion of S, , see Sec. 12-6.) Since A¢p is pro-
portional to the cross-sectional area of the core, thenp is pro-
portional to area/length—or just to the linear scaling factor since
all core dimensions are scaled uniformly. Since R; is proportional
to length/area of the wire, then with wire length scaled down with
core dimensions, the wire cross section must be kept constant in
order for R,/N Rzﬁ to remain constant. This means that the ratio of
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aperture area to wire cross section decreases as the square of the
scale factor, For typical cores and circuits (with minor-aperture
diameters of 20-30 mils), coupling-loop wires already fill a sub-~
stantial portion of minor-aperture space, so in fact very little
further miniaturization is possible without sacrifice in perform-
ance., (The practical lower lHimit on minor-aperture diameter for
MAD-R circuits, depending on other details of the cores, is prob-
ably in the range of 10-20 mils.)

Path~length ratio, i.e., the ratio of switching path lengths
around the major and minor apertures, affects drive tolerances
for all core-wire schemes, but has a most direct affect on the
priming range of MAD-R circuits (see Sec. 6-8). On the basis of
the desired path-length ratio and a minimum practial minor-
aperture size, an overall core size in the planar view may be
selected. There is still a question of how thin to make the core
(in the third dimension), the objective being to minimize voltage
requirements. Aside from the question of the mechanical strength
of the core, problems relating to air-flux leakage become signifi-
cant if the thickness of the core is substantially reduced in pro-
portion to the other dimensions, (The minimum practical thickness
is also of the order of 10-20 mils.)

The number of minor apertures required may range from one
(adequate for simple shift registers with major-aperture input) to
four, five, or more, for logic-circuit cores—say, two apertures
for inputs, two for outputs, and one, perhaps, for readout to a
power output device, as indicated in Fig. 6~8.

Shaping to Minimize Soft-Thveshold Effects. Consider the three-
leg core of constant thickness shown in Fig. 6-20(a), which has one
minor aperture in an otherwise purely toroidal core. In this case,
after a clearing mmf N.,i, has been applied and then removed,
Leg m cannot remain saturated because w, > w; + w,, Where w
represents the minimum leg width. The resulting soft threshold
of Leg m is undesirable as it may cause spurious setting (for
example, during the priming phase in MAD~R operation). To over-
come this problem, we may design the core so that w, = Wy + Wy,
This is generally accomplished by shaping Leg 4 as shown in
Fig. 6-20(b). Four alternative ways for shaping a core with two
minor apertures areillustrated in Fig. 6-20(c) to (f). In Fig. 6-20(e),
two slots are made in the upper and lower parts of Leg m as an
alternative to shaping around the minor apertures. In Fig. 6-20(f),
the axes of the major and minor apertures are perpendicular, and
Legs 1, 2, 3, and 4 are shaped in the third dimension.
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(c)

Fig. 6-20. Different methods of core shaping that maintain constant cross-sectional area, as
compared to the core in (a).

Design for High Ratio of One/Zero Ouiput. As discussed inSec.
6-4, the flux state of a multiaperture core may be detected non~
destructively by applying an ac drive to a minor aperture. Our ob-
jective now is to consider the effect on readout voltage (or flux)
as we vary the magnitude of wy + w, as compared with w, .

First, consider the case of a core with Wy + wy > w, . An mmf
Nqio large enough to saturate all legs is applied in the clear
direction to Leg m (Fig.6-21(a)). As i,1s removed, a magnetic pole
distribution is established, as indicated by the plus and minus
signs in Fig. 6-21(a), causing partial demagnetization of Leg 3
along the shortest path length. With acdrive applied as in Fig. 6-8,
some flux can now switch inelastically around the minor aperture,
in amount proportional to (w; + w, - w, )/2. The magnitude of
switchable inelastic flux for the core in the set state is propor-
tional to [min(wg,w,)], that is, the lesser of the two values w; and w,.
Therefore, the one/zero ratio of output flux valuesis approximately

A [min(wy, w,)] + 6
ERE 34 for wg +w, 2w, (6-51)
Apy  lwg + wy - w,)/2] + 8

where § is a correction term for elastic flux, assumed the same
for both the one and zervo cases. Following Eq. (6-51), the highest
one/zevo ratio is obtained for wy + w, = w, and wy = w,.
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Fig. 6-21. Circuits for testing the effect
of differences in cross-sectional areas of
the major leg versus the sum of the minor
leg areas on (a) one/zero readout ratio,
and (b) input-aperture clipping.

¥ w; +w, <w,, then after the clearing pulse, the polarity of
the poles is reversed from that shown in Fig. 6-21(a), and the re-
malning static field causes Legs 3 and 4 to be magnetically stressed
in the clear direction. The elastic permeability is therefore lower,
and the & terms of Eq. (6-51) are therefore even smaller than
in the case of wy + w, = w,, though the signal output for the set

state is very nearly the same as for w; + w, = w,. Thus, we can
actually obtain an enhanced one/zero ratio with wg = w, and
wy + w, slightly less than w_ . (It is not practical, however,
to design for equally enhanced one/zevo ratios from each of
two or more apertures, because of dimensional variations. The
highest ratio will actually be obtained from the aperture that
happens to end up with the smallest effective cross-sectional
area in its adjacent legs.)

Minor-Apevituve Flux Clipping. Consider again the case
w; + wy, >w, and the drive arrangement of Fig. 6-21(b). After a
large clearing mmf has been applied, Legs m and 1 will be left in
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a hard clear state and Leg 2 willbe partially demagnetized. In this
case, some inelastic flux will switch inLeg 2 in response to a rela-
tively low level of input information currenti,. In other words, flux
clipping may be achieved for Leg-1 input if Leg 2 is unsaturated
at the beginning of the input phase. This condition is assured in
Fig. 6-21(b) by the linking of a Clear winding around Leg 1 to
ensure that this leg is saturated by the Clear mmf. This provi-
sion is not actually necessary for typical MAD-R circuits, since
the back-loop current generally reverses in direction after re-
moval of the Clear pulse, with sufficient magnitude to assure full
clearing of the leg that is linked by the input coupling loop.

6-10 Summary

This chapter is concerned exclusively with the MAD~R scheme,
which to date has received the greatest study with respect to de-
sign and application. In Secs. 6-1 to 6-3, three different deriva-
tions of the MAD-R scheme are presented, each one starting from
a scheme that was developed earlier in the book., The approach is
to try to eliminate the prominent weakness of the previous scheme,
and in so doing, we end up in each case with a MAD-R circuit.
Each derivation adds emphasis to different aspects of the MAD-R
circuit and each therefore helps to convey some feeling for why this
scheme, though relatively simple in structure, exhibits such good
performance. (In Secs. 8~3 and 9-1, variations on the MAD-R
scheme are presented which hold promise of even further im-
proved performance, but at the expense of increased physical
complexity.)

The remainder of this chapter is concerned with techniques that
have been developed for practical design of the various portions of
MAD-R circuits, primarily the coupling loops and the advance and
prime circuits, as well as design of the cores themselves.
Coupling~-loop design involves the choice of transmitter turns and
receiver turns, as well as the choice of wire size and length,
which in turn govern the values of coupling~loop resistance and
inductance. Starting in Sec. 6~6, we develop basic design equations
for the coupling-loop and advance circuits, assuming the availability
of certain key design parameters. Then we describe relatively
simple experimental techniques for deriving quantitative expres-
sions for these design parameters. Analysis of the priming circuit
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shows the basic trade-off that is possible between speed of opera-
tion and drive-current tolerances. In particular, it is shown how
these circuits are relatively easily designed for operation over a
wide temperature range, e.g., from =50 to +75°C. Finally, it is
noted how certain aspects of the design of the multileg cores them-
selves affect performance.

The design techniques presented here are relatively crude
by comparison with those that might be developed, based on the
computer models for cores described in Chap. 12, However, these
techniques are actually quite simple to apply, and they have proven
to be very effective inthe development of practical MAD-R circuits.
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In the previous chapters, many of the concepts and principles
important to the subject of core-wire transfer circuits were intro-
duced, and a number of different types of schemes were derived.
In Chaps. 8 and 9, we will discuss still other kinds of core-wire
schemes, some of which may become quite practical, depending on
application requirements and future material developments. All of
these schemes, the earlier ones as well as those to be discussed
later, were discovered in rather random fashion, independently,
and it is therefore important to develop tools whereby the inter-
relations of these various schemes can be more clearly seen. The
network representation of Chap. 5 is helpful in that it provides an
easy way to follow sequencing between flux states. The method of
this chapter is another step in this direction; it provides some
formal steps for dissecting and classifying schemes, and leads to
an interesting overall way to view them. The technique is not es-
sential for understanding the remainder of the book, however, and

147
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the reader may therefore bypass this chapter without loss of con-
tinuity., The main reason for presenting this material now is that
it offers a more consolidated overall view of the relatively simple
schemes developed thus far, before we go on to the more complex
schemes of Chaps. 8 and 9.

The primary approach is: (1) choose a certain network con-
figuration to study; (2) list all possible flux patterns for this net-
work; (3) form a set-state chart, by investigating which flux
patterns can be converted into which other patterns by a A¢é-
transfer operation; and (4) form sequences of connected states
that represent closed cycles. Each such sequence represents a
potential scheme to study further, and all schemes can thus be
systematically searched. Though only a few simple types of
configurations have thus far been investigated in this manner,
the process has resulted in a systematic ‘‘rediscovery’’ of some
of the schemes already discussed, as well as some new ones.

7-1 Van De Riet Representation

In Sec. 5-3, it was noted that by manipulating node types, a
given scheme could be realized in various circuit configurations.
No matter how different the physical appearance, however, we
nevertheless considered the variations as realizations of the same
basic scheme. Differences between schemes were described only
on the basis of (1) the basic network form, and (2) the particular
sequence of flux states. For these criteria the node type is not
important. For consistency in discussion of schemes, then, we
might profitably think in terms of network diagrams in which all
nodes are deliberately of the same type; following Van De Riet
(1963) we will use all synthetic nodes, corresponding to an all-
toroid form of realization,

A given number of toroids can be interconnected in a large
number of ways. Our job is to find those methods of interconnec-
tion which lead to useful transfer schemes. We assume the same
method of data representation used in the previous chapters: a
binary one is represented by storage or transfer of a certain unit
of A¢, and a binary zevo is represented by nominally zero A¢
transfer. We temporarily add another constraint, namely that all
bits of a register are processed identically at every instant.

Configuvations (a) to (d). By the configuration of a toroid-wire
circuit, we mean the specific way in which the toroids and coupling
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loops are linked together. Two toroid-wire circuits have the same
configuration if they can be made to coincide geometrically by
stretching, twisting or bending the loops and elements. The con-
figuration of a circuit is important in classifying a scheme but we
will see that it is not complete in itself. In most cases, different
sequences of flux-state patterns can be shifted along the same
configuration, each of these then amounting to a different scheme
of transfer.

The number of coupling loops linking a given toroid is an im-
portant aspect of the circuit configuration and of the structure of
the equivalent network. A core linked by only a single coupling
loop will be referred to here as a loop cove. A core that couples
a pair of coupling loops, by virtue of being linked by both, will be
referred to as a coupling corve. The method discussed here has not
been developed in sufficient generality to handle circuits that con-
tain other than such singly and doubly linked cores.

It is convenient to distinguish between simple and complex con-
figurations. In a simple configuration, two adjacent loops are
coupled through only a single core so that there are just two
coupling cores linking each loop (though any number of loop cores).
Thus, a simple configuration can always be transformedto a ladder
network (see Sec. 5-2). In a complex configuvation, there may be
more than two coupling cores in some loops. For example, in the
toroid-wire flux doubler of Fig. 5-23, there are four coupling
cores and one loop core per coupling loop. (In the orthogonal
scheme of Fig. 8-13, we will find eight coupling cores and no loop
cores per coupling loop.) We consider here only simple configura-
tions, although there is no reason why the technique cannot be ex-
tended to complex configurations.

A simple configuration can be represented by a chain of
coupling loops, each pair of adjacent loops being interconnected
by a single coupling core. Some examples of simple configurations,
with their corresponding unbalanced network representations, are
sketched in Fig., 7-1. (No winding polarities are shown in the figure
because we need not be concerned with such details at the moment.)
Recall from Chap. 5 that each coupling loop is represented by only
a single node in an unbalanced network, there being one ground
node for the entire network. Coupling cores are represented by
series branches between two nodes, and loop cores are represented
by shunt branches to ground.

Iterative or periodic configurations have been indicated for all
the examples shown. The shortest section that repeats is called
the period. In Examples (a), (b), and (d), the period brackets only
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Fig. 7-1. Some simple configurations with their corresponding network representations.
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a single coupling loop. In Example (c), the period encompasses
two coupling loops. It is clear that aside from polarities, simple
configurations can differ only in the number of loop cores in the
coupling loops. Thus, all possible simple configurations can be
drawn by systematically increasing the number of loop cores in
each loop. We will treat schemes having the configurations shown
in the last three parts of Fig, 7-1,that is, schemes with configura-
tions (b), (c), or (d). (There can be no schemes having the con-
figuration of Fig. 7-1(a), since there can be no flux switching ex-
cept in all cores simultaneously.)

Transfer between Set-State Pattevns., With idealized zero-
impedance coupling loops, there are only certain patterns of
saturation states that can exist in a coupling loop, because there
can never be a net change in flux linkage in the loop. We will al-
ways assume one of these patterns tobe the clear state, arbitrarily
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(but not restrictively) defined as the state in which all cores are
saturated clockwise, Any set-state pattern then requires two or
more cores to be set, or saturated, counterclockwise. If any one
core in the circuit switches, then some other core in the same loop
must switch simultaneously. Assuming for now that all cores have
the same flux capacity and that if a core switches at all, it switches
completely, then only an even number of cores can switch simul-
taneously in every coupling loop.

Let us consider the set-state patterns involving only one pair
of set cores per loop, as in Fig. 7-2(a), (c), and (e), where the set
cores are shown shaded. From these patterns it can be inferred
that any pattern limited to a single pair of set cores per loop will
always be made up of two loop cores that are set, and some arbi-
trary number of set coupling cores between these two loop cores.
The networks corresponding to the circuits of Fig. 7-2(a), (c), and
(e) are shown in Fig. 7-2(b), (d), and (f).

2 2>
O A "I./ o

(e)

Fig. 7-2. Set-state patterns involving only one pair of cores per loop.

Though no winding polarities are shown in Fig. 7-2, allowable
polarity combinations can be readily determined. If two cores that
are linked by the same loop are switched simultaneously, they must
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have winding polarities that lead to emf cancellation in the loop.
Thus if two such cores are in their clear states (or both in their
set states) prior to switching, then they musthave opposite winding
polarity; and conversely, with their initial states opposite, the
winding polarities must be the same.

Let us now consider the transition from one data state, or flux-
state pattern, to another. For purposes of illustration we use the
Engelbart scheme of Fig. 5-20(d). The circuit for a three-bit sec-
tion of register is indicated in Fig. 7-3, where the bit length en-
compasses two periods of the structure. A one is represented by
each triple-core set-state pattern shown shaded (in the first and
second bit positions). The same group of toroids would contain a
zevo if all toroids in the group were initially in their clear states.
During the shifting operation, different groups of toroids will hold
the set-state pattern. For example, the pattern for 110 is shown
in the figure and it is assumed that there is a ze7vo to the left. The
drive sequence O - E, Clear O, E » O, Clear E, advances the pat-
tern exactly two periods, or one bit length, to the right, as indi-
cated below the figure. After one complete clock cycle, the triplet
of cores initially holding the set-state pattern for the jth bit again
holds the same pattern, but now representing the (j + 1)st bit.

In the logical concept of a shift register, a shift is a one~step
process in which all bits simultaneously move one position., In the
register representation, however, there may be a number of inter-
mediate steps involved before a shifting cycle is completed, and
during these steps, a one is not represented by a unique set-state

~— Bit length ——

Register
Representation

Bit content 1 1 0
i1 |+1] i+ |
0—E [|j+]jH IMIIRIEED ]
Clear 0 JH 1+ ]+ HERE
E—=>0 jri]j+ MIIIEEE i
Clear E |+ IHERE

Fig. 7-3. Cycle of set-state patterns for the Engelbart scheme of Fig. 5-20(d).



FORMAL. DERIVATION OF TRANSFER SCHEMES 153

pattern, but rather by a sequence of such patterns. Our main goal
now is to search for all of the possible sequences of set-state pat-
terns that can lead to proper binary transfer. (We might note that
a flux transfer, or transmission, can be thought of as the setting
of one core as the result of clearing another core linking the same
coupling loop. If necessary, bias drives are applied to aid the
switching of the receiver and inhibit the spurious switching of
other cores, It will be assumed here that proper clearing and
bias currents can be provided, and only the sequence of the trans-
fer will be considered, although it is possible to devise flux-
transfer sequences that satisfy all flux-state transition require-
ments, but yet cannot be driven in such a way as to be operable.)

7-2 Set-State Chart

Schemes with Configuration (b). The configuration of Fig, 7-1(b)
will be used to show a technique for generating all possible schemes
in a given category. One bit-length of a register having this con-
figuration is shown in Fig. 7-4. The bit-length is chosen as three

’<— Bit length —a{

|
| v X |
| | Possible
State Set cores | next state
1 2 2 i 1 1 2
2 2 2 | 1 3,4
3l 2 2 2 1 1 4
4 2 2 2 5,6
5 2 2 2 2 6
6 2 2 2 7.8
73 3 2 2 2 8
8] 3 3 2 2 9,10
9] 3 3 3 2 2 10
10 3 3 3 1,12
11 3 3 3 3 12
12 3 3 3

Fig. 7-4. List of set-state patterns for the configuration of Fig. 7-1(b) and a bit-
length of three periods.
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periods long because, as we will see, there are no schemes with
bit-lengths of only one or two periods for this configuration. As-
sume the bit-length of Fig. 7-4 holds part or all of a set-state
group which represents a one. Assume also that there are ones in
both adjacent bits, and let the three bits be represented by set-
state patterns labeled 1, 2, and 3.

In general, there is a relatively large number of possible set-
state patterns, though we will now describe a simple procedure
for listing all of the patterns for a given configuration. Consider
the second bit-length of some arbitrary simple configuration, and
draw the configuration with a coupling core as the leftmost core.
Build up the pattern, as in Fig. 7-4, by setting the two leftmost
cores and record it by placing a 2 in each of the two leftmost
columns. Now set other cores, as necessary, to meet the require-
ment of identical bit processing and an even number of set cores
in any given loop. Where there is more than one possibility, order
them so that the states with the leftmost set cores come first.
Following these rules, we obtain the first six rows of the chart in
Fig. 7-4. (The bottom six rows are identical to the top six rows
except that the numbering is advanced by one. Though redundant, it
is useful later to have these rows labeled independently.)

When we draw only a single bit-length, some of the cores in a
set-state pattern will of course not be shown because they are in
adjacent bit lengths. However, their locationis known because there
will be set cores in the bit-length in question, corresponding to
the ones not shown, In other words, the position of all cores in any
set-state pattern is known though only one bit-length is shown.
Thus we can readily see that in Row 1 the basic set-state pattern
contains four set toroids per bit, but that in Rows 2 and 4 there
are only three set toroids per bit in the set-state pattern.

Permitted Transitions. From the above, we see that under the
temporary restriction of processing all bits identically, there are
six and only six possible set-state patterns in a bit-length of the
configuration of Fig. 7-4. Any transfer scheme using this con-
figuration must therefore use set-state patterns included in the
above list, and any shifting process will simply represent a series
of changes from one set-state pattern to another.

In terms of the patterns listed in Fig. 7-4, a shift cycle is ac-
complished when all the numbers in the final set-state pattern
correspond in position to the numbers in the initial pattern, but
advanced by one. For example, a complete shift cycle should
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convert the pattern of Row 1 to the pattern of Row 7. To determine
what set-state patterns might be involved in a complete shift cycle,
it is necessary to determine for each pattern which other patterns
it can be changed to in one step. These changes are just the trans-
fers described earlier, where clearing of one loop core causes the
setting of some other loop core on the right, either directly in the
same loop, or indirectly through a chain of coupling cores. For
example, the set-state pattern of Row 1 can be changed or trans-
ferred in one step to that of Row 2 by clearing Cores X and Y and
setting Core Z. The set state in effect is taken out of Loop Core X
and put into Loop Core Z, reversing Coupling Core Y as it passes.

Finding which set-state pattern can be changed in one step into
which other ones can be done by inspection, provided we keep in
mind some simple rules. Basically, we check to see if one set-
state pattern can be changed into another one by the clearing of
one loop core and the setting of another, while reversing the state
of all intermediate coupling cores, according to these rules:

1. Only one loop core can be cleared in a bit length and only
one loop core set during one clock time.

2. No core being cleared can be set during the same clock
time.

3. Between the pair of loop cores being set and cleared, there
can be no coupling cores which hold part of a set-state
pattern representing a different bit.

Following these rules, we find the allowed transitions listed to the
right of each set-state pattern in Fig. 7-4.

Shift Cycles. It now becomes clear that finding all possible
schemes for a particular configuration is just a matter of finding
the possible paths between all pairs of set-state patterns repre-
senting endpoints of a complete shift cycle. To find these paths,
it is convenient to write down the row numbers for all of the set-
state patterns and to draw a line between each pair of numbers
for which a transfer is possible in one step. In this way we ob-
tain the transfer diagram of Fig. 7-5.

The problem of finding all possible cycles is now simple.
Consider, for example, the set-state patterns 2 and 8, which are
different by exactly one shift cycle. From Pattern 2 we can go to
Pattern 4; from 4 to 6:; and from 6 to 8. This scheme requires
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three steps to accomplish the shift, each of these
steps corresponding to one of three clock pulses.
This particular scheme is shown in networkform
in Fig. 7-6, along with the flux switching path for
the State-4 to State-6 transition. In this transi-
tion Branches V,W, and X are initially set, and
the idea is to transfer from V to Z, via Branches
W and Y, but without disturbing X. For this trans-
fer to be accomplished, the shunt branches must
have a relatively high threshold compared to the
coupling branches, so that proper biasing can be
applied.

We would like now to show that there are no
other possible schemes with the configuration of
Fig. 7-4 for three or less stages per bit. At first
glance, we might think that we could develop a
four-clock state sequence of theform2,4,5, 6, 8,
or even a six-clock sequence involving all of the
states, To see that these sequences are in fact
not possible, we must note an additional require-~
ment of consistency for the entire sequence of
states, in addition to the rulesfor a single transi-
tion between two states.

Consider States 4, 5, and 6. The transition to
State 4 must occur with Cores W and X switching
together from their initial clear states. This

implies that the two cores must have opposite winding polarities.
The transition from State 5 to State 6 also requires Cores W and X
to switch together, but this time starting from opposite flux states.
This requires that they have the same winding polarity in the loop.
The two requirements are clearly inconsistent and therefore make
it impossible to have a scheme in which these three states appear.
Similarly, none of the other states in the left-hand column of Fig.
7-5 can be included. Thus we see how the requirement of overall

Fig. 7-6. Three-clock scheme corresponding to set-state transition
sequence 2-4-6-8.
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consistency means that some transitions cannot appear in a given
cycle with certain other transitions.

From the above, we see that with a three-period bit-length for
Configuration (b), the three-clock scheme of Fig. 7-4 is the only
possible one. If we had assumed a bit-length of only two periods,
the set-state chart would have shown only two possible states,
with no allowed transition, and in the case of a single-period bit
length, there are no possible set states at all. Hence, we need at
least three periods per bit with this configuration.

7-3 Schemes with Configuration (c)

We could proceed to develop a new set-state chart and search
for permitted sequences based on Configuration (c) of Fig. 7-1(c),
but we can short-cut this entire effort based on the following ob-
servation. Configuration (c) is derived directly from Configura-
tion (b) if we can eliminate one of the coupling cores, specifically,
Core Y in the conversion from Fig. 7-7(a) to (b). We can be sure
that with this configuration and bit-length, there are no additional

f Bit length

(a)

Fig. 7-7. Converting from Configuration (b) of Fig. 7-1 to Configuration
(c) by eliminating Core Y; and then to a corresponding resistance scheme
by replacing Core Z by a resistor.
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schemes beyond those already shown for Configuration (b), since
the set-state chart for this abridged configuration would if any-
thing be more confined than the original.

Let us see now why Core Y can in fact be eliminated. First,
Core Y is not required for turns ratio since there are other coup-
ling cores in the chain available for this function. Second, by trac-
ing the state sequence 2 - 4 > 6 in Fig. 7-4 we see that Core Y is
set and cleared on adjacent clock pulses, and therefore serves no
essential memory function. The primary role of Core Y isin
isolating against back transfer (during transfer out of Core Z),
but it is not absolutely necessary. Thus the same three-clock
scheme derived for Configuration (b) applies also to Configuration
(c), though more care is required in the drive circuits. (One
might think that we could eliminate Core W as well, leaving only a
single coupling loop per bit, but there would then no longer be
sufficient isolation between bits.)

The physical process of eliminating Core Y can be thought of
as follows, Since Core Y is not required for turns ratio, we can
assume equal input and output turns. In this case, the voltages
generated in the two windings are always identical, and the two
windings may therefore be connected together, as indicated by the
dashed lines in Fig. 7-7(a). The circuit then has the form of
Fig. 7-7(b), and unless Core Y is used for holding against back
transfer, as described above, it can simply be eliminated.

A corresponding resistance version can be arranged by replac-
ing Core Z by a resistance, as in Fig, 7-7(c). This circuit is just
the all-toroid version of the Engelbart circuit of Fig. 4-7(c). Thus
we see that the latter arrangement is minimal in the sense of the
total number of branches required per bit, namely, four core
branches and one resistance branch. No known scheme in the
categories considered thus far has fewer cores and resistors per
bit (though in Sec. 9-2 we will find a scheme that requires only
1 1/2 magnetic elements and 1 1/2 resistors per bit, based on the
coherent~-rotation property of thin films).

7-4 Schemes with Configuration (d)

The configuration shown in Fig. 7-1(d) is one in which a number
of different schemes have been discovered. The set-state chart
and transfer diagram for this configuration are shown in Figs. 7-8
and 7-9, respectively. From the rather complicated nature of the
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1 2 2 ) i 1 2,3
2 2 2 1 1 3,5,6,8,9,11
3 2 2 1 1 5,6,7.9,10
4 2 f 2 1 1 5,6
5 2 2 i 1 6,8,9.13
6 2 2 1 1 7,9,12
7 2 2 2 1 1 10,12
8 2 2 1 2 1 113
9 2 2 10,11,12,13
10 2 2 2 11,12,13,14,18,19
1 2 2 2 12,13,14,18,20
12 2 2 2 13,14,15,16
13 2 2 2 14,1517
14 2 2 16,17,19,20
135 3 3 2 2 2 16,17
16 3 3 2 2 17,19,20,22,23,25
17 3 3 2 2 19,20,21,23,24
18 3 2 3 2 2 19,20
19 3 3 2 2 20,22,23,27
20 3 3 2 2 21,23.26
21 3 3 3 2 2 24,26
22 3 3 2 3 2 25,27
23 3 3 24,25,26,27
24 3 3 3 25,26,27,28
25 3 3 3 26,27,28
26 3 3 3 27,28
27 3 3 3 28
28 3 3
—— v h M
* *% XXX

X Set-state pattern number
** Set-state patterns
*¥% Set-state pattern number to which one-step transfer may be made

Fig. 7-8. Set-state chart for Configuration (d).

diagram, it seems as though one might find a large number of
three- and four-phase schemes, However, there are really only
two different three-phase schemes, and about ten significant four-
phase schemes (though the latter have not been exhaustively ex-
amined and counted). The reason for relatively so few schemes,
in spite of the large number of paths on the diagram, is that the
diagram indicates many schemes which are only trivially different
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Fig. 7-9. Transfer diagram for Configuration (d).

from each other. These trivial differences are of two types, related
to (1) starting point difference, and (2) differences due to loop-core
interchanges:

1. A scheme is a repeating sequence of set-state patterns, and
there is no real starting or ending pattern as such. Thus any given
sequence will show up as a scheme as many different times as
there are set-state patterns in the sequence, each scheme starting
with a different set-state pattern but having in effect the same
sequence.

2. Reversing the roles of two loop cores on the same loop
produces only trivially different schemes. The two sets of schemes
that result from this interchange manifest themselves ina mirror-
image symmetry, such that for every scheme path, there is another
that is exactly symmetrical with respect to a vertical line through
the center of the transfer diagram.
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We have already seen two four-phase schemes having this con-
figuration, namely, the Engelbart and Russell schemes of Secs. 5-4
and 4-3, respectively. Referring to the earlier derivations of these
schemes, it is readily verified that the set-state sequences are

357 > 12 - 15 - 17 (3) for Engelbart, and
359512 > 14 - 17 (3) for Russell,

which are sketched on the abridged diagram of Fig. 7-10.

RusseH

Yochelson Engelbart
\ Q *\

Fig. 7-10. Abridged transfer diagram showing the four-phase
schemes.

The circuits for these two schemes are shown together for com-
parison in Fig, 7-11(a) and (b), with the four clock phases indicated
by the notation 1, 2, 3, and 4. Recall that the Russell scheme has
better isolation than the Engelbart scheme, because the coupling
core is set and cleared on adjacent clock phases and therefore
can be unconditionally held to give good isolation. (For example,
in Fig. 7-11(b) we set E, through the coupler E;, and then im-
mediately set E; while clearing the coupler.) But recall also that
this resulted in the need for two large cores in the coupling loop,
which tends to increase flux losses because of the larger loop
currents that are therefore required.
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f|< Bit length

Rl A

)

N

@, © Engelbart

Es Russell
(b)

S5 NG O

E, Yochelson
(c)
0, Ey
)\j 0, E2 \
\\ \\ Russell-1 6—
(d)
Set
state #
® 2 2 O) 1
®] 2 ) [0) 1
() @) 2 2
® @ 2 @
M| 3 3 &) 2

Fig. 7-11. Four-phase schemes based on Configuration (d).

By still another change in sequencing we obtain the Yochelson
(1960) scheme in which we find that we can make E; a small core,
as shown in Fig. 7-11(c). The set~state sequence for this scheme
is 2-9-10~-14-16(2). In the Russell scheme we transmit
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from Cores E, and E5 in the same sequence that they are set, first
from E, and then from E,. However, in the Yochelson scheme we
transmit from Eg before E,, so that E; is set and cleared on ad-
jacent clock phases (i.e., it serves no storingrole during any other
clock phase) and can be held unconditionally during transfer from
Ez. It is for this reason ’cha.tE3 can be a small core, with the advan-
tage of smaller drive currents and therefore smaller flux losses.

Finally, in Fig. 7-11(d), we diagram the Russell Type-I
scheme of Fig. 6-4(b). Though this is'a resistance scheme, we can
determine the appropriate set-state sequence by imagining the
loop resistance to be replaced by a core. The sequence of flux
states thus obtained is shown below the circuit. Note that this
scheme is quite different from the other three, because of the
¢‘within-the-loop’’ transfer, that is, A¢ transfer from O, to the
loop resistance, or to its replacement core, at the time we clear
Oy. The circled “2? in the chart is a reminder that in the resist-
ance version of the scheme, the transmitted A¢ is actually dissi~
pated.

Though the set-state charts derived thus far are on the basis
of identical data-state representation in adjacent bit positions,
Van De Riet (1963) found one four-clock scheme, Fig. 7-12, that
uses nonidentical representation. The set state sequence for this
scheme is 2 > 11 - 20 > 26 > 30 (2).

<——Bit length1 ~ ——>}~—— Bit length 2 ——}<—— Bit length 3 ——
) )

)
A D, A, D, Ay D3
B, G g, K B, C, E, R B; C3 Es K
21414 3 3 3 21212 1 1
i1 4 4 4 31313 2 2 2
200 5 5 414 |4 3 3 3 212
26 51515 4 4 4 31313
30/ 6] 6 5 5 5 4 1414 3 3

Fig. 7-12. Van De Riet double-speed four-phase scheme.

This sequence was found from an expanded transfer diagram,
discussed by Van De Riet, of the type shown in Fig., 7-9 but where
the states for several bits of transfer are followed. State 30 of the
sequence comes from this extended diagram. An interesting point
regarding this scheme is that each data bit moves two bit positions
in a single four-phase cycle. From the flux states shown below the
figure, we see that each coupling core processes a new data bit
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every two clock phases. But each loop core responds only to every
other data bit. Core B; responds tothe even bits, and Core C; to the
odd bits. In the neighboring loop, Core E; responds to the odd
bits and Core F; to the even bits.

Van De Riet also shows that there are just two different three-
phase schemes that are possible with Configuration (d). One of
these has the sequence 2 - 6 - 12 - 16 (2), and the other one has
the only slightly different sequence, 2> 9 - 12 > 16 (2). The first of
these has a 2 - 6 within~the-loop transition, as in the Russell-I
scheme. The other sequence has a 2 - 9 transfer, which implies
that the data at one time is stored solely in the two loop cores in
a single loop, with no coupling cores involved. This is true also
of the Russell and Yochelson schemes, though not for the Engel-
bart scheme.

For Configuration (d), we have treated the only two possible
three-phase schemes and five of the four-phase schemes. These
five were selected from the ten or so significant ones for a cross-
section representation of the more distinctly different types of se-
quencing of states. Each of the remaining schemesis quite similar
to one or the other of the ones considered.

7-5 Summary

A method is illustrated by which all possible transfer schemes
can be derived for any given core-wire configuration. Though the
technique may be cumbersome for complex configurations, it is
relatively easy to apply for simple configurations, and we were
able by this method to formally derive and identify a number of the
schemes already discussed previously, as well as several new
schemes. Derivation within the framework of a formal method
such as this provides additional insight into the relationship be-
tween these different schemes. We were able to show examples
of: (1) different configurations, (2) schemes with different num-
bers of clock phases within a given configuration, and (3) even dif-
ferent schemes for the same configuration and the same number of
clock phases. However, exhaustive derivation of allpossible trans-
fer schemes in this way would be extremely tedious and is an area
in which automated computer search could offer great aid.
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Three concepts not discussed earlier are considered in this
chapter: flux sources, orthogonal switching, and dynamic bias., An
array of new schemes evolves with each of these concepts.

In the schemes developed thus far, a high or low level of flux is
transmitted according to whether a similar level of flux was re-
ceived previously. In Sec. 8-1 we consider the inverse situation,
where a high level of received flux leads to a low level subse-
quently transmitted, and vice versa. This mode of transfer is
referred to as mnegation tvansfer, in distinction to the first type
which may be termed simple transfer. Except in a few cases,
every simple-transfer scheme can be converted to a negation-
transfer scheme, and the use of flux sources is a primary way to
achieve this conversion. In Sec. 8-2, the notion of modes of switch~
ing, as opposed to individual paths of switching, is developed. A

165
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number of new schemes evolve from consideration of orthogonal
modes in particular. In Sec. 8-3, dynamic-~bias techniques for
effectively eliminating core threshold are introduced. These lead
to schemes of increased physical complexity, but improved per-
formance. (We will see in Chap, 9 how these concepts can be
effectively combined with the bipolar mode of data representation
to achieve still other transfer schemes of potentially practical
importance.)

8-1 Negation-Transfer Schemes

By the term mnegation, we mean complementation of the data
state, that is, replacement of each one by a zero, and vice versa.
Since negation is one of the basic logical operations, techniques
discussed here are relevant togeneral logic synthesis, as discussed
in Chap. 10. Here, however, we are interested in negation transfer
only from the standpoint of generating an additional class of trans-
fer schemes. We will show two methods that can be used to convert
most simple-transfer schemes to negation-transfer schemes, after
we point out some general properties of the latter.

Flux-Transfev Propevties for Negation, Consider the two~stage-
per-bit transfer circuit of Fig, 8-1(a) in which all transfers are
assumed to be negative. The basic response of each negation stage
is shown in Fig. 8~1(b) and can be expressed as

Ay () = 2¢ ~ Adg () (8-1)

where A¢p, (j) 1s the received A¢ and A¢,,(j) is the flux available for
subsequent transmission from the jth stage. Suppose datais stored
in the E stages. After two transfers the data is again held in the E
stages, in identical form but one bit-length removed, since two

Dg.(j)
2
E E 4)!
I_J\ D_
. A¢T(1)/ A¢T(J+1) Ag(j+2)
¢R J Dgelj+) Dgglj+2) OO % T
R
(a) (b)

Fig. 8-1. Negation transfer: the transfer chain of (a) is composed of stages having the basic
A p - A g characteristic shown in (b).
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negation transfers are logically equivalent to a simple transfer.
However, there are some special properties of this double-
negation mode of achieving transfer. In particular, flux clipping
(or any other low-level loss mechanism) is not required, and the
symmetry of the range maps is significantly altered.

Suppose that we introduce a gain mechanism by letting N,./N, =
n > 1. Assuming a lossless loop, then provided the receiver is not
saturated, that is, App(j + D < 2¢,, we have

Appj + 1) = nAdp () (8-2)
Under these conditions, substituting Eq. (8-1) into Eq. (8-2) yields
App (G + 1) = nl2é, - Ay (] (8-3)

which is plotted in Fig. 8-2(a). Note that for A¢,(j) < some
value Ag,, then Agp (i + 1) = 2¢, because of the saturation prop-
erties of the receiver. By substituting A¢,(j + 1) = 24,  into
Eg. (8-3), the magnitude of A¢, is found to be 2¢ (n - 1)/n.

The overall transfer curve for two stages has the bistable form
of Fig. 8-2(b), characterized by the equation

Adp( +2) = n®Ap () - n(n ~ 1)2¢, (8-4)

which is derived by extending Eq. (8-3) to the next stage. For
Abp () = Ad,, Adp(j + 1) = 2¢ , and hence Ap, (j + 2) = 0. Similarly,
for A¢p () 2 Ay, App(j + 1) < Ad,, and therefore A¢p(j + 2) = 2¢,.
Thus, with negation transfer we see that core saturation leads to
bistable operation with just a linear gain mechanism, without the
need for a subsidiary nonlinear loss mechanism.

In general, realistic negation transfer curves depart con-
siderably from the straight-line characteristics of Fig. 8-2(a) and
(b), being more like those of Fig. 8-2(c) and (d). The stable unity
gain points at levels A¢, and A¢, are found by intersection of the
single-stage transfer curve with its own reflection across the 45°
line, as in Fig. 8-2(c).

Let us now consider the change in symmetry in the range maps
with negation transfer. For the four-clock MAD-N scheme with
simple transfer, we saw that there was essentially no upper limit
on the clear currents. Plotting the allowed ranges of the two
advance currents, we obtain a map that has a certain symmetry
about the 45° line, as indicated in Fig. 8-3(a). An increase in I _
leads to increasedgainonthe E - O phase. This can be compensated
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Agglj+1) Dgglj+2)

| N\ i

A¢c A¢d/\2¢r A¢’R(j) A% A¢d A¢R(j)
(c) (d)

Fig. 8-2. Bistable flux-gain characteristic with negation transfer: (a,b) flux saturation in
the basic transfer characteristic leads to bistable response in two transfers; (c,d) more
realistic forms of response.

IO’E I0-‘F.

IE~~0 1E~0

(a) (b)

Fig. 8-3. Difference in range-map symmetry for (a) simple transfer, and
(b) negation transfer.
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by a corresponding decrease in I, _ , so that the overall transfer
function for two stages preserves two stable levels. In other
words, an increase in one current is compensated by a reduc-
tion in the other current, resulting in elongation perpendicular to
the 45° line. The opposite effect occurs for negation transfer.
Suppose that I _ , increases. This results in an increase in the
low level of flux transfer and a subsequent reduction in the high
level of flux for the following transfer. To compensate, we must
increase the following drive I, _ . Hence for negation transfer we
obtain the orthogonal elongation of the range map shown in Fig.
8-3(b). This new symmetry could result in practical advantage,
because with most driver arrangements the various clock pulse
amplitudes tend to vary in the same direction in response to
supply-voltage variations. Also, changes in core thresholds with
ambient temperature generally call for a similar scaling in both
driver currents, so that for a given set of clock drivers we can get
a larger range of temperature operation for negation circuits
without the need for compensation.

Driving the Transmitter to the Set State. Most schemes for
simple transfer can be converted to negation transfer simply by
driving the transmitter cores toward their sef rather than clear
states and reversing the polarity of coupling to the receiver cores.
Then, if a transmitter core had previously been fully set by an in-
coming one, only a zero level of flux would be transferred; but if a
zevo, i.e., no flux, had been previously received, then the trans-
mitter core would be set by the drive, causing the receiver core to
set, i.e., to receive a one.

For example, Fig. 8-4(a) shows the Engelbart scheme with the
appropriate sequence of set states from Fig. 7-8 tabulated below.
In Fig. 8-4(b) is shown the negation version. Note that with a one
initially in the E-stage, a zevo is now transmitted to the O-stage
during the E - O and clear-E phases. But if the E-stage initially
stores a zero, then the setting of Cp (by the driver) causes G, and
Cy to be set, and the subsequent clearing of C, causes Core B, to
be set, thus completing the same set-state pattern in the receiving
group of toroids that would have existed after simple transfer of
a one.

For typical four-phase schemes, the negation process can be
repeated for each half bit-length of a transfer chain, thus resulting
in double negation in each bit length. Except for the double-speed
register of Fig. 7-12, all of the four-phase schemes described in
previous chapters, when realized in toroid-wire form, can be
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Clear E
E-0
Transfer | | |
=N SN
T
G G, 6,
Ce Bo Co B¢
Set -state
pattern no. |
S E 2 f {
7 2 2 2 1 1
2 2 2 2 r
5 13 3 2 2 |
1703) | 3 3 2 | 2
(a)
Clear E
E->0
Negation 1ronsferb /
@)% Gy Gg
Be Ce Bo Co Bt
Start Doy D¢y A,
E-0 A¢1 A¢1 A¢1 A¢o A¢0
Clear E Doy Doy Agyg
0-E Doy D¢y D¢y A,
Clear0 Ay, B,
Note: Start with one in E; transfer zero to O;end with one in E'
(b)

Fig. 8-4. Comparison of flux-state sequences in corresponding simple- and negation-
transfer schemes: (a) Englebart scheme of Fig. 5-20(d); and (b) after conversion to
negation transfer.

converted to negation-transfer schemes by this technique without
requiring additional cores. But for realizations employing multileg
cores, this conversion generally cannot be done without alteration
of the core shape, because of the static flux-closure requirements.
To see why this is so, consider the multileg MAD-N scheme in
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network form (Fig. 8-5), but with the E - O drive source shown in
a direction to set Branch C, for negation transfer onthe E » O
phase. According to this method it is alsonecessary to reverse the
elements to the right of the dashed line; however, it is impossible
to reverse the reference state of D, without also altering the ref-
erence state of Gy or Cgs since these three branches connect at a
physical node. Hence, to achieve negation with this scheme we
must derive an alternate form of multileg core, which we now
consider.

Fig. 8-5. Conversion of the MAD-N scheme of Fig. 5-19 to negation
requires reversal of drive and reversal of element orientation to the
right of dashed line.

For negation transfer, the reference states of the legs adjacent
to the input and output apertures must be as shown in Fig, 8-6(a).
To satisfy the flux closure requirements, we insert a cross leg F,
as suggested by the dashed lines, which is held against actual
switching. (An actual holding mmf would not be required if the
cross leg F had a sufficiently high threshold.) In this way, any
flux switched through the input leg A is forced to switch through
Let Cp.

The corresponding network for this new magnetic circuit is
shown in Fig. 8-6(b). The main leg G is in effect divided into two
parts, labeled G, and G,. With this arrangement, the net flux
through G,, in the cleared state, is zero. Since an unsaturated
region can lead to soft-threshold problems, Leg G, should be made
as short as possible, i.e., the crosspiece should be moved close
to the output aperture.

In Fig. 8-6(c) is shown an alternative arrangement that over-
comes the soft-threshold problem by providing a separate Branch
Gy for flux switching, while utilizing single-width Legs G; and G,
for satisfying flux-closure requirements. A directphysicalrealiza-
tion of this element is shown in Fig., 8-6(d), where it is assumed
that Legs G, and G, are held in their clear states at all times.
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Ag 7 D¢ "D Hold
Z+ Hold *
(a) (b)

Fig. 8-6. Alteration of the basic multileg core shape to permit the required reversals of Fig. 8-5 for
negation transfer.

In terms of the device of Fig. 8-6(d), it is correct to think of
the logical operation of negation as taking place within the multi-
leg core itself. Note that this same core can be used for simple
transfer by reversing the clear state of Leg G, and still holding
Legs G, and G, clear, resulting in zero net flux in Leg F.

Negation by Use of a ¢ ov A¢p Source. In the method just con-
sidered, a transmitter core, driven in the set direction, switches
only if it has previously received a zevo. An alternate method is
to drive a transmitter core to its clear state, as for simple trans-
fer, but to incorporate in the coupling loop a suitable voltage source
v(t) with polarity to oppose the transmitted signal, as indicated in
Fig. 8-~7(a) for the configuration of Fig. 8-4. As in the previous
method, the polarities of the receiver cores (but not of the E - O
drive) are reversed. Thus, at E - O time, if the transmitter has
received a one, its flux~linkage signal cancels the integrated value
of v(#); if it had received a ze7vo, the new source sets the receiver
cores G, and C, to the one state, and negation transfer is thus
accomplished. For completing the cycle, the source is required
to provide a voltage of the opposite polarity at the next clock phase
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(Clear E), either to balance the emf due to the clearing of G or to

cause setting of B, depending upon whether G, had received a
zevo or a one, respectively.

Clear E

Fig. 8-7. Use of a qb or A¢ source for negation transfer.

The network representation for the circuit of Fig. 8-7(a) is
shown in Fig, 8-7(b), where the voltage source is represented by
a ¢ source that injects flux at a specified rate into the node repre-
senting the coupling loop. By use of preferential biasing during
E - O transfer, such that the effective threshold of Branch G, is
less than that of Branch Gy but more than that of Branch Cy, the
mmf drive in series with Branch C, may be eliminated, and the ¢
source will cause switching in the paths ¢ or b depending upon
whether Cp is set or cleared, i.e., contains a one or zevo, re-
spectively.

Let us return again to the network of Fig. 8-5, where it was
found that the first method of converting to negation transfer could
not be applied without changing the form of the multileg cores.
Note that to replace the mmf generator in series with Cp by a )
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generator in parallel with Cp, that is, connected to Node m, would
require a synthetic node. However, by sliding the ¢ generator to
the other side of Branch Dy, that is, to Node n, and by reversing
all branches to the right of Node n, we can achieve exactly what is
desired, as shown in Fig. 8-8(a). (This network is seen to be ex~
actly the same as that of Fig. 8-7 except for insertion of Branches
Dy and A,.) The circuit realization of the network of Fig. 8-8(a)
is shown in Fig. 8-8(b). With this method we can thus achieve
negation transfer with the same multileg elements as previously
used for simple transfer, but we must have means for providing a
suitable voltage source or ¢ source. In the case of a voltage
source, it must be energized for just the length of time needed to
inject the proper amount of flux linkage (measured in terms of
volt-seconds). To eliminate this additional requirement, the volt-
age source can be replaced by a A¢ source that injects just the
desired amount of flux linkage. An unconditionally driven toroid
can serve as such a source, in which case the network takes the
form of Fig. 8-8(c), with the corresponding circuit of Fig. 8-8(d).

E 0
D¢
Source +

E-0

(c) (d)

Fig. 8-8. Applyinga qS or A¢ source for negation transfer with minor-aperture input and output.

Conversion of the MAD-R scheme of Fig. 8-9(a) to negation, by
the two methods discussed, is summarized in Fig. 8-9(b) and (c).
With both methods applied in conjunction, as indicated in Fig. 8-9(d),
the effect is double negation in two phases (Prime O followed by
O - E), resulting in simple transfer astheneteffect in transferring
from an O to an E stage, or from an E to an O stage.
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(a) Simple

{b) Yo) Negation

Negation

(c)

Simple

Fig. 8-9. Summary of transfer methods: (a) simple transfer; (b) negation
transfer by driving to the set state; (c) negation transfer by use of a flux
source; (d) simple transfer by simultaneous application of both negation
transfer techniques.

In Secs. 8-3 and 8-4 we discuss other ways that A¢ sources
can be employed in achieving simple transfer. In Chap. 10, we
show how A¢ sources can be used not only for NEGATION syn-
thesis, but for synthesizing many other logic functions as well,

8-2 Engelbart Orthogonal-Mode Technique

It can be instructive and helpful to study the switching charac-
teristics of certain modes of a magnetic system, where a mode
involves the interaction of two or more cores, in addition to the
switching dynamics of individual toroids or core legs. To illus-
trate the method of modes as described by Engelbart (1963),
consider the two-toroid circuit of Fig, 8-10(a) for which we de-
fine the two modes as the flux linkages A, = ¢; + ¢y and Ay = ¢; ~ &y
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(a) (c)

Fig. 8-10. Orthogonal modes in: (a) a pair of toroids, (b) a multileg core, and (c) a Biax element.

(for simplicity we assume every winding to have a single turn).
Assuming zero-impedance coupling loops, AA, is the time-integrated
voltage across terminals a-a, and A\, is the time-integrated volt-
age across terminals b-b. For a voltage V applied across terminals
a-a for an interval T, then AA, is simply equal to VT no matter how
¢, and ¢, change individually. If ¢; and ¢, change identically, then
AAy = 0, and the modes are said tobe orthogonal; otherwise Ax, # 0.
In other words, the modes represent the terminal characteristics.
Given A, and A,, We can immediately solve for ¢; and ¢4, and
vice versa.,

The situation may be summarized in the plot of Fig, 8~11 in
which mode axes A, and A, are superimposed on the ¢, ¢, axes.
Suppose we start at some initial point A and trace the trajectory
ABC. A positive voltage applied to terminals a-a of the Mode~-a
winding generates a positive current i, that causes the necessary
flux switching, Assuming a constant-p model, so that both cores
" switch at the same rate, then the induced voltages cancel in the
Mode-b winding, though they add in the Mode-a winding. As long
as the switching is symmetrical, there is no change of state in
Mode b as Mode a increases itsfluxalong the path AB. At Point B,
however, Core 1 saturates (¢, = ¢), and Mode e obtains all of its
additional flux from Core 2. With only one core switching, equal
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(but opposite) voltages appear at the two mode-winding terminals
as flux switches along the path BC.

¢, A
G D _t/‘f’r
NO - C
\\-— |
L /J»B
+N\F A le— Saturation
4 limit
AN
: =14 S S L
1 AN ¢
! N§
H 1 J

Xp

Fig. 8-11. Relation between core flux values ¢; and ¢, and
mode flux values A, = ¢y + ¢prand Ay, = ¢; ~ ¢,

At Point C, both of the cores 1 and 2 are saturated in their
positive directions; Mode ¢ is saturated in its positive direction
(A, =2¢) and Mode b is at the midpoint of its range, that is,
A, = 0. Switching either core to the opposite saturation limit
would send Mode b to one of its limits, and Mode ¢ to its midpoint.

Now we turn our attention to Fig. 8-10(b) and the multileg
realization of the two-mode system. We have labeled three legs
in this figure, but the flux displacement in the three legs is not
independent, since ¢5 = ¢; + ¢y, If We consider Legs 1 and 2 as
independent, and expressthe modesas A, = ¢; + ¢, and Ay = b — bo,
we find that Fig. 8-11 is directly applicable, where Mode a repre-
sents the flux encircling the major aperture and Mode b represents
flux encircling the minor aperture. Note that two turns link the
minor aperture as opposed to one through the major aperture and
that flux switches in Mode b with considerably lower current than
for Mode a. The familiar characteristics of cores with minor
apertures are easily derived from Fig. 8-11 if it is kept in mind
that any switching of A  takes considerably more mmf than for A,.
For example, suppose that Mode b is excited at an mmf level
intermediate between the switching thresholds for the two modes.
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If the system state is at Point C, that is, the core is in its clear
state, no displacement in Mode b can occur, because a similar dis-
placement would be required in Mode @, which the mmf is too small
to permit, But if some larger mmf in either mode causes a dis-
placement in Mode a, say to Point F (that is, major-aperture
switching) then Mode b can be independently switched back and
forth between the saturation limits at D and E.

In the Biax core (Wanlass,1959) of Fig. 8-10(c), there are four
directly linkable legs, assuming that the two orthogonal apertures
intersect. However, flux-closure constraints demand that the dis-
placements of all four legs sum to zero, which reduces the num-
ber of independent variables to three. Further, if the core and its
switching characteristics are symmetrical, the fact that the mmf
from Modes ¢ and b act in equal but opposite manner upon Leg 1
and Leg 3, and in equal but opposite manner upon Leg 2 and Leg 4,
adds one more independent equation (either ¢; + Hg = 00r o, + ¢y =
0). Therefore, when driven by the windings shown, the Biax flux
state is completely characterized by ¢; = ~¢5 and ¢, = -¢,, and we
find again that A, = ¢; + ¢, and A, = #; + ¢, = ¢; - ¢,. Figure 8-11
is then seen to characterize the Biax core with symmetrical
characteristics as qualitatively identical to the toroidal-core
system of Fig. 8-10(a).

Nonideal Ovthogonality: The Threshold Buvden. Current in a
given mode winding causes an mmf in the system. This mmf can
be considered on the flux plane of Fig. 8~11 as a force vector try-
ing to move the flux-state point parallel to the mode axis, Current
in the other mode winding causes a similar vector parallel to the
other mode axis. In a truly orthogonal system, not only would the
mode axes be geometrically orthogonal, but the movement of the
flux-state point in response to any resultant mmf vector would be
exactly parallel to that vector (assuming that we have not reached
a saturation-limit boundary). All of the nominally orthogonal mag-
netic systems depart from this ideal for two reasons, both of which
stem from nonlinear switching characteristics of the individual
legs. The first reason is associated with the threshold mmf for
flux switching, and the second is due to the actual nonlinearity of
core switching resistance. To understand the first effect, consider
the system of Fig. 8-10(a). The mmf F, acting on Core 1 isi, + i,
and the mmf F, is equal to i, - i;. A necessary condition for any
flux switching in Core 1 or Core 2 is that the absolute value of F,
or F,, respectively, be greater than threshold F,,. Thus, a necessary
condition for any switching to occur in either one of the cores is
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that
ligl + liyl > F, (8-5)

If only one core is switching, then both modes are switching si-
multaneously with the same absolute magnitudes of A. To have one
mode switching more than the other one, it is necessary that both
cores be switching simultaneously, and for this we have the addi-
tional necessary condition

|ial—\ib|’>F0 ‘ (8-6)

Based on these conditions on mmf, it is readily seen that whenever
the two modes have different switching rates, the one with the larger
absolute value of A must carry the entire mmf burden of bringing
the two cores up to threshold plus the switching increment in ex-
cess of threshold. The low-A mode need essentially provide only
the mmf required to ‘steer’’ or redistribute the relative amount
of ¢ in the two cores. On the flux-plane of Fig. 8~11 this mmf
burden skews the total A vector away from the total mmf vector,
toward a horizontal or vertical axis. This effect can produce a
rather marked dependence of the current required in one mode (to
yield a given A) upon the concurrent switching rate of the other
mode. For example, a strong dependence will be found in both of
the symmetrical systems of Fig., 8-10(a) and (c), though for the
asymmetrical multileg core system of Fig. 8-10(b), it is only the
burden of the threshold mmf around the small aperture that is
passed back and forth to whichever mode has the higher A, and
the effect is not so noticeable.

Nonideal Ovthogonality: Vaviable Switching Resistance. The
second effect stems from the variation of switching resistance
with change in flux state. Based on the more realistic parabolic
#(¢) model (derived in Sec. 12-5), we find that a core whose flux
state is nearer its zero value yields a greater ¢ for a given mmf,
In general, therefore, if a flux-state point is subjected to a switch~
ing mmf from one of the modes, the switching trajectory will pro-
ject a A component onto the undriven-mode axis. (The only ex-
ception is a flux-state point lying on one of the mode axes and
being driven in that same mode. We will see in the next section
that it is just this condition that is important in dynamic bias.)
Thus, even if the threshold burden were carried by an outside mmf
source, the A vector resulting from a given mmf vector (resultant
of the two separate mode mmf) is not generally parallel to the mmf
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vector, and thus the two modes do not have truly independent
switching characteristics.

Nonovrthogonal Modes; MAD-R Example. The above deviations
from truly orthogonal modes can often be tolerated when the coup-
ling between modes can be countered by mmf that are smaller
than the threshold mmf of some critical, associated flux path.
Going further, the same threshold effects allow the use in some
circuits of modes that are not even nominally orthogonal. An ex-
ample is the arrangement of Fig. 8-12(a), in which an output
winding links only a single output leg. Here A, = ¢; + ¢, and
Ay = ¢9, and the mode axes, rather than being orthogonal, are
skewed, as in Fig. 8-12(b), where the trajectory GHIG for the
MAD-R scheme (Chap. 6) is traced. During the input phase, we
switch Mode-c¢ flux. Without other constraints, this would result
in a change in Mode-b flux as well, since flux tends to switch on
both sides of the output aperture. But current in the very low-
impedance output circuit prevents any significant Mode-b switch-
ing, and the operating point of Fig. 8-12(b) moves orthogonally to
Mode b, from G to H. Priming moves the operating point orthog-
onally to Mode a, from H to I. Clearing finally switches flux in
both modes simultaneously.

N\ Clear

(a) (b)

Fig. 8-12. Mode plot for the MAD-R scheme.
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Engelbart Ovthogonal Scheme. It is not possible to build a non-
resistance transfer scheme with the simple two-mode (orthogonal)
arrangement of Fig. 8-13(a) as the basic stage to be iterated, for
the following reason. To receive a certain magnitude of linkage
Ax;  without forward coupling, both cores would be set at identical
rates. To transfer out of the pair, without backward coupling, both
cores would be driven at equal and opposite rates, but then it would
be impossible to clear the pair without intolerable coupling, both
forward and backward.

a —b
A
{P B
M | ( J
/ c
D .
0+iq —b U iy
(a) (b) (c)

Fig. 8-13. Engelbart orthogonal-mode scheme.

One way to satisfy the decoupling requirements is to arrange
two two-mode circuits, as in Fig., 8-13(b). Assume each core in
this figure is cleared to a clockwise flux state. An input current
+i, sets Cores A and B at the same rate, and there is zero forward
transfer. A subsequent current -i, switches Cores C and D, also
at the same rate, again with no forward transfer. Forward transfer
is also a two-step process—Cores A and C being cleared first, and
then Cores B and D—with no back transfer in either case.

Iterating the arrangement of Fig. 8-13(b), Engelbart (1963)
developed the nonresistance transfer scheme of Fig. 8-13(c), which
has the particularly interesting feature of containing only doubly-
linked (coupling) cores. The basic operation can be summarized
as follows. A binary zero is represented by nominally zero flux
switching, typical of unipolar schemes. For the case of a binary
one, let us assume that all four toroids of the O stage have been
set. An O - E pulse clears A, and C,, which results in a positive
iy that sets cores Ap and B;. Orthogonality ensures no back trans-
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fer from the O stage or forward transfer from the E stage. The
Clear-O pulse now clears Cores B, and D, resulting in a negative
ip that sets Cp and Dy again with orthogonal isolation., Thus, the O
cores are cleared and the E cores set, and the cycle is completed
with an E - O pulse followed by a Clear-E pulse.

The network representation of this scheme takes the form of
the lattice of Fig. 5-11, redrawn in Fig. 8-14, and on which the
switching paths noted above are easily traced. Starting with all
cores of the O stage having been set, as illustrated by the internal
arrows, the 0 - E and Clear O operations have the symmetrical
switching paths shown in Fig, 8-14(b). The paths for subsequent
E > 0 and Clear-E switching are similar, but displaced one stage
along the register.

Clear O

(b)
Fig. 8-14. Network representation of the orthogonal-mode scheme.

We thus have a scheme configuration that is different from
any that we have previously discussed, namely, a configuration
that involves only coupling cores. Pursuing the orthogonal coupling
technique further, we will later find still a different configuration
in the bipolar, orthogonal-mode, thin~film scheme of Sec. 9-2.

8-3 Dynamic Bias

Besides the requirement of driving a transmitter core in order
to achieve flux transfer, we have seenthatit is generally necessary
in the case of nonresistance schemes, and sometimes desirable in
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the case of resistance schemes, to bias receiver or other cores
towards the sef state. For example, in the scheme of Fig. 7-6,
redrawn in Fig, 8-15, suppose we start with a binary one, i.e., a
set-state pattern, stored in Cores V, W, and X. On the next phase,
V and W are driven clear, inducing loop currents i; and i,. Posi-
tive bias is applied to Core X, to prevent it from being unset by i,
and to Core Z to lower its effective threshold relative to i,. If
these two cores are biased exactly to threshold, and if the drive is
limited so that i, comes just short of unsetting Core X, then this
condition results in the largest possible value of i;, which supplies
the excess mmf for switching the receiver core Z.

Fig. 8-15. Applying bias to the transfer scheme of Fig. 7-6.

Now consider the nature of the circuit tolerance for reducing
the drive below this maximum value, If the bias line is pulsed in
series with the drive line, then not only do loop currents decrease
with drive, but they must now provide part of the threshold of
Core Z, resulting in a still greater decrease of excess mmf acting
on Core Z. TFor typical wire-resistance values, relative loop
losses increase rapidly as loop currents, and therefore core
switching rates, decrease. Under these conditions, the lower end
of the current range is reached quickly as drive is decreased.

To increase the operating range, what is sought is a bias tech-
nique that can effectively maintain full-threshold bias over a range
of bias mmf, The clue to this achievement is provided by the
orthogonal-mode analysis of Sec. 8-2, where it was found that when
one mode of an orthogonal pair is switching more rapidly than the
other, the entire threshold burden is supplied by the current driving
the former mode, and the current for the slower-switching mode
acts entirely as excess mmf., Thus let us consider replacing the
receiver core Z in Fig. 8-15(b) by the pair of orthogonally linked
cores of Fig. 8-16(a). Corresponding to the terminology used in
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Sec. 8~2, we define Mode a relative tothe bias windings and Mode b
relative to the coupling-loop windings. To guarantee that Mode a
carries the entire threshold burden, the bias current must be set
somewhat greater than threshold. Thus for the caseof i; = 0 (nom-
inally so for zero transfer), the cores Z and Z* switch equally, and
there is no coupling into the loop, i.e., no Mode-b switching, Dur-
ing one transfer, i, > 0 and therefore ¢, > ¢, (ideally, ¢,- = 0).

b' Mode b b

Driﬁ_d/\— L
(a)
¢z'
Ng=d,td
vor 0" Pzte;
-2¢, 1124
/ Q
2 .
/// 4 T PN K2
vd — V/ o
3 L s, [\
r ér
Q Closure
W . leg
H \
26, (one) -¢, "'24)'\« Ao+ by-bp Drive | |__’
(b) (c)

Fig. 8-16. A pair of orthogonally connected cores for purposes of applying dynamic bias in (a);
its mode-plot representation in (b); and a single equivalent multileg core in (c).

The amount of flux-linkage signal stored in the Z-pair is the dif-
ference A\, = Ad, - Ad,-, and it is this amount of flux-linkage that
is available for later transmission. Because the bias current
causes switching in both receiver cores, regardless of binary
state, it is commonly termed dyramic bias.
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Note that if the bias current continues to switch flux after the
loop current has terminated, we have the danger that both cores
may be forced to positive saturation, thus forcing the difference
component, i.e., the signal, to zero. Tobetter see what may happen,
consider the mode plot of Fig., 8~16(b). The signal mode AA, for a
one is the distance perpendicular to the A, axis in the direction of
positive A,. It is seen that this can have a maximum value of 2¢
in the case where the change in the common mode AA, is also just
equal to 2¢ . The solid arrows, terminatingonthe A, axis, indicate
the desired changes for zero and ome transfer (in the latter case
only Core Z would switch), But if the bias current is not ter-
minated, then switching will continue along the dashed lines, forc-
ing the states for zevo and one to come closer together, yielding a
smaller A),, as the maximum point on the positive A, axis is
approached.

Limiting with a Ap Souvce. The answer to the above problem
is that the bias current should be derived from a flux source
of capacity exactly equal to 2¢,. This could be applied from
a voltage source V energized for a period r = 2¢ /V, though, as
suggested in Fig. 8-8, a more practical way is simply to use
another core, having the same flux capacity as each Z core.
Such an arrangement is indicated by the dashed circuitry of
Fig. 8-16(a), where the drive on the source core S, can vary
over quite a range and still cause proper dynamic biasing of the
Z cores. Incorporation of flux limitation makes dynamic bias a
valuable technique. Thus, we see another use of a A¢ source in
addition to those described in Sec. 8-1. This technique of flux-
limited dynamic bias was first applied to a unipolar scheme by
Heckler and Baer (1964).

By network transformation, the triplet of cores Z, Z, and S,
can be converted to the single multileg core of Fig. 8-16(c), a
basic core shape devised by Newhall (1963) for use in bipolar cir-
cuits (Sec. 9-1). The clear state is shown by the solid arrows.
(Note that it has been necessary to add an extra leg for proper flux
closure.) For receiving a zero, the flux reversed in the source leg
S, (dashed arrow) switches equally (ideally) through the two out-
side legs; for ome reception, flux switches predominantly through
the left~hand leg.

If each loop core in Fig., 8-15 is replaced by a triplet of cores,
the circuit of Fig. 8~17 is obtained. To transfer from Cores V and
W to Cores Y and Z, we clear Source Core S, and set Source Core
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S,, but do not apply dynamic bias to the X cores, since we do not
wish switching to occur in either one. However, there is even less
need now for biasing the X cores, since the operating loop currents
tend to be lower with dynamic bias on the Z cores, and in fact
some unsetting can even be tolerated, provided the coupling loop
turns ratio is >1. Nevertheless, it is still possible to supply or-
dinary bias to the X cores, as indicated by the dashed line, as a
possible means of improving the circuit performance still further,
We can also improve the transfer by unconditionally clearing
Coupling Core W as well as Loop Cores V and V', as suggested in
the figure. (This assures good return to the clear state.) In the
circuit, as shown, the current i; must still overcome the threshold
of Core Y, but the coupling cores may be made small compared to
the loop cores. (In Sec. 9-1, we willtake the additional step of also
replacing each coupling core by a dynamically biased pair of cores,
and we will then find that a radically different type of behavior is
obtained.)

To summarize to this point, a generalway for incorporating dy-
namic bias is, first, to startwith the scheme in toroidal-core form.
Second, each toroid selected for dynamic biasing (generally in-
cluding all the larger ones) is replaced by a pair of orthogonal-
mode cores connected to a third core acting as a flux source, as
in Fig. 8-17. If such a core is a coupling rather than a loop core,
then the pair of cores is linked by both input and output windings in
the same mode as well as a winding from the source core in the
orthogonal mode. Third, network methods are then used to trans-~
form the circuit from the all-toroidal form to whatever other form
may be desired.

W/

~

¥ Ordinary
X bias

——————

Drive

+
T

Fig. 8-17. Using the orthogonally connected core pairs of Fig. 8-16 to replace all of
the loop cores in Fig. 8-15, for purposes of applying dynamic bias.

The manner of achieving dynamic bias has been described in
terms of a particular scheme but, like the conversions to negation



FLUX SOURCES, ORTHOGONALITY, AND DYNAMIC BIASING 187

transfer in Sec. 8-1, it is generally applicable to all of the schemes
earlier described, including the resistance types.

Dynamically Biased MAD-R. For the MAD-R scheme (Chap. 6),
which already exhibits very good range, the benefit to be expected
from dynamic bias is higher speed. A straightforward way to in-
corporate dynamic bias in MAD-R is to start with the toroid-wire
equivalent of Fig. 6-5(a), sketched again in Fig, 8-18(a). To over-
come the threshold of the large cores with dynamic bias, we re-
place each of these by triplets as shown in Fig. 8-18(b). The
remaining part of the problem is to convert this circuit to a
practical form using multileg cores. The magnetic-network trans-
formation methods of Chap. 5 are very useful in making this
conversion,

Fig. 8-18. Applying dynamic bias to the main elements of the MAD-R circuit.

Inclusion of the flux-source cores (S, and Sp) in the transfor-
mation results in undue complication; hence we leave them out of
consideration for the moment, but they will have to be restored in
the final circuit after the conversion is otherwise completed. We
also assume single~turn coupling loops, so that we will have to
restore turns ratio >1 after the conversion also. With these items
in mind, we now proceed to construct a network representation for
the circuit of Fig. 8-18(b).

Each of the coupling loops of Fig. 8-18(b) is represented by a
node pair in Fig. 8-19(a), with the loop current appearing as the
associated mmf potential difference. Each toroid is represented
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by a single branch or pair of equal branches attached to the nodes
in such a way that the mmf acting on each branch or branch pair
are equal to the mmf imposed on the toroids by loop currents., For
example, the total mmf in series with the D pair of branches is
i, —i,, as required. Some of these nodes must be converted to
physical nodes (representing core junctions) in order to obtain a
realization using multileg cores. Let us replace the synthetic
nodes to which the C branches are attached by physical nodes.
The nodes to which resistance is attached must of course remain
synthetic. All the branches between the ¢ and ¢ node pairs can now
represent legs of one multileg core; the branches with E sub-
scripts represent the next multileg core; etc.

(b) (c)

Fig. 8-19. Converting to a multileg version of the dynamically biased toroid circuit of Fig. 8-18(b).

The reverse transformation, from network to circuit form,
amounts to rejoining the a and o’ ends of the A; and B, branch
pairs and the c and ¢’ ends of the D, branch pairs, followed by
restoration of appropriate coupling loops (Fig. 8-19(b)), except that
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if all legs are interpreted as having the same width, the net clear-
state flux does not sum to zero at each node, as required. A
straightforward physical realization is shown in Fig. 8-19(c), in
which an extra, double-width leg (E;) has been added to provide the
necessary flux closure.

Aside from the A and B legs being different in length, the core
of Fig. 8-19(c) is a difficult one to make because of the long slot.
A simpler version is the core of Fig. 8-20(a), with the B leg
flipped to the other side. Further, by splitting the E leg in two
halves, to be stretched out along the A and B legs, we obtain the
even simpler core of Fig., 8-20(b), to which a toroidal flux source
is shown connected. This design at first looks poor since the
entire right-hand leg remains in a soft-state after clearing. How-
ever, with dynamic bias present, good advance current range can
be retained and the main effect of the soft state is a moderate re-
duction of the upper limit on priming current (applied to Legs C
and D in figure-eight fashion, though not shown here).
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Fig. 8-20. Alternate forms of multileg cores for the dynamically biased version of MAD-R.

Laboratory results with experimental cores of the type shown
in Fig. 8-20(b) have shown that unity gain can be obtained with a
coupling-loop resistance several times higher than in the basic
MAD-R scheme, with a corresponding ratio of improvement
in priming speed of about 3 to1l (unpublished notes of W, K. English
of Stanford Research Institute). This result illustrates the higher-
speed potential of dynamically biased resistance-type circuits.
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8-4 Summary

In this chapter, we first discuss techniques for achieving
negative transfer, by which we mean transfer of a high level of
flux if a low level had previously been received, and vice versa.
One technique involves the specific use of flux-source cores in
the coupling circuitry. Though negation transfer is important for
general logic synthesis, the main interest here is the derivation of
basically different flux-transfer methods. We then develop the
notion of orthogonal modes of flux transfer, where we consider the
state of flux in several cores at once rather than in each core in-
dividually. This is a useful and important concept not only for
generating new transfer schemes, but also as a basic tool, as in
the development of the dynamic-bias technique.

Previously, bias was employed as a means of bringing certain
selected cores to their static switching threshold, with the bias
itself causing no switching. We have here shown how an improve-
ment in performance can be obtained by replacement of certain
selected cores by orthogonally connected pairs of cores. These
cores are drivenfrom aflux-source core and switch unconditionally,
but equally, when excited only by the drive current. The information-
bearing coupling~loop currents then need be only large enough to
“‘steer’ or ¢‘tip’’ the switching, i.e., to cause a differential in
switching rates of the two cores in a pair. The term dyramic
bias is used to describe this type of technique.

In Chap. 9, we will extend the use of dynamic bias to achieve a
completely symmetric circuit form in which the magnitude of flux
transfer is uniform, but of one polarity or the other depending on
the data state, referred to as a bipolar mode of transfer.
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With the unipolar representation used thus far a binary one is

represented by a high level of flux transfer and a binary zero by
nominally zero flux transfer. In an alternate representation, the
binary states are symmetrically represented and binary transfer
involves equal magnitudes of flux, of one polarity or the other. On
the basis of this bipolar principle, many important new schemes
can be evolved. A number of such schemes are developed in Sec.
9-1, some of which may have significant practical importance. We
will see that the technique of dynamic bias developed in Chap. 8 is
rather naturally adapted to use in bipolar circuits; in a sense, bi-
polar techniques are a natural step after dynamic bias.
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In Sec. 9-2, several magnetic thin-film transfer schemes are
considered. Of special interest is a distinctly different gain mech-
anism obtained from coherent rotation of magnetization in thin
films, which makes thin-film components ideally adapted tobipolar
operation. Because of the generally higher speed of thin-film
components, the thin-film circuits typically operate at higher rates
than the ferrite circuits; megacycle bit rates are not unusual, as
we will see, for example, in the elegantly simple multimegacycle
scheme of Dick and Farmer.

It becomes clear that unipolar and bipolar techniques do not ex-
haust the data representation possibilities when, in Sec. 9-3, we
consider still another form referred to asnon-return-to-reference
(NNR). In an NRR scheme, not all cores are unconditionally driven
to their reference state once each cycle, but rather, switching oc-
curs only to signal a change in the bit pattern; i.e., no switching
occurs during transmission of a string of zevos or a string of
ones. One such scheme is described; although it is not of any
particular practical interest, it has a basic elegance and is dis-
tinguished as the only two-phase core-wire circuit presently known
to have been built and operated. It, too, is naturally adapted to the
use of bipolar transfer.

9-1 Bipolar Schemes

Complete Dynamic Biasing: Newhall Scheme. By the proced-
ure given in Sec. 8~3 for applying dynamic bias to a toroidal-core
circuit, not all the toroids were replaced by dynamically biased
pairs. But suppose we do attempt to use full dynamic biasing so
that loop currents do not have to overcome even the minor thresh-
olds of the small coupling cores. For example, let us also replace
Cores W and Y in the circuit of Fig. 8-17 by such biased pairs, as
shown in Fig. 9-1.

For transfer from the V corestothe Z cores, the V and W cores
are unconditionally cleared and the Sy and S, sources are activated,
but not the S, source. With exactly zero net flux transmitted from
the clearing of the W pair, loop current i; is zero and there is only
common-mode switching (in the sense defined in Sec. 8-3) in the
Y pair, with no linkage to the forward or back coupling loops. How-
ever, if A¢, > Aé,., the resulting flux linkage injected into the
loop induces a +i; loop current, which causes transmission of
signal-mode flux through the Y cores to the Z cores.
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Fig. 9-1. Newhall bipolar scheme derived by dynamic biasing of all of the coupling cores and
loop cores in Fig. 8-17.

With the threshold burdens and primary switching mmf provided
by the sources, and with no flux-clipping introduced into the loop,
the transfer ratio tends to be as highfor low levels of signal as for
higher levels. Hence, with a gain mechanism present, even a small
signal will build up to a level limited only by core saturation, as
indicated by Point ¢ in Fig, 9-2(a). The really interesting point,
however, is that with all cores other than sources occurring in
symmetrical pairs, a negative value of flux linkage, resulting from
A¢, < Ad,-, can be transmitted as readily as a positive value.
Negative loop currents -i; and -i, will then flow, and this negative
signal mode will cause Core Z  to be set by a larger amount than
Core Z. The transfer curve for negative A¢ is therefore just the
reflection of the positive curve through the origin, with a stable
point b at the same magnitude of A¢ as the stable point a. By let-
ting the positive level of A¢ at Point ¢ represent a one, and the
negative A¢ at Point b represent a zero, we have in effect a bi-
polar scheme.
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Fig. 9-2. Bipolar gain curve: (a) with no low-level loss mechanism, and (b) with a low-level loss
mechanism leading to a third stable state.
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In terms of the orthogonal-mode plot of Fig. 8-16(b), zero
transfer is now represented by an arrow (not shown) veering off
toward the negative end of the A, axis, symmetrical with the arrow
shown going toward the positive end. Because of the full dynamic
biasing, the symmetrical nature of the transfer curve, and the
elimination of the need for clipping or some other low-level loss
mechanism, even greater drive tolerances can be obtained for this
circuit than for the dynamically biased unipolar circuit of Fig. 8-17.

For the present scheme, no biasing at allof the X cores is used
during transfer to the Z cores. Actually, for a coupling-loop turns
ratio of 2/1, it has been found experimentally that a considerable
amount of signal~-flux loss in the X cores can be tolerated, thus
resulting in an even greater range of operation than originally
anticipated.

The circuit of Fig. 9-1 is one form of the bipolar scheme de-
scribed by Newhall (1963). Newhall also shows how this scheme
may be realized in terms of cores of the general type shown in
Fig. 8-16(c)—either taken individually, or themselves built into
more compound structures to reduce the amount of wiring.

Modification fov Tevnary Operalion. Suppose that all of the A¢
sources for the coupling cores (Sy, Sy, etc.) are removed, or are
simply not activated. Then the circuit can still operate in bipolar
fashion, but of each coupling pair, only the upper core (W, Y, etc.)
will switch for one transfer and only the lower core (W, Y’ etc.)
will switch for zero transfer. But more important, either polarity
of loop current i; will have to overcome the threshold of a coupling
core, resulting in some bipolar flux-clipping due to the inductance
of the loop. Consequently, the transfer ratio can again be less than
unity for values of signal near zero, resulting in a third stable
point, at the origin, as indicated in Fig. 9-2(b). This stable
common-mode range of operation is undesired for the normal
case of a bipolar binary register, though it has potential use for
storing and shifting ternary information, each digit having possible
values -1, 0, +1. This ternary mode of operation is readily
achieved in bipolar circuits without the use of any dynamic bias
at all. With dynamic bias applied to the loop cores only, and with
small, bilateral clipping (which could be increased by inserting a
pair of small, oppositely cleared toroids in the loop), current
tolerances for all three states should be comparable to those for
dynamically biased unipolar circuits.

Devivation from a Paiv of Complementary Registers. It has
been assumed that the shape of the current pulse on each drive
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line is independent of the information state. However, for a uni-
polar scheme, where flux is switched only for transfer of a one, the
load imposed on the driver circuit is very dependent on the total
information state. For driving a long register that holds arbitrary
information, it is thus desirable to have a relatively high source
impedance in order to minimize drive-pulse variations. Such
drivers can be expensive and inefficient since they require a large
voltage source compared to the maximum switching voltage of the
register,

One way to reduce this driver problem is to add a second
register that carries the complement of the information in the first
register and is driven by the same driver, as indicated sche-
matically in Fig., 9-3. For an N-bit register, the total number of
ones in both registers is always equal to N; thus the load due to
core switching is independent of information and equalto the maxi-
mum load from one register alone. Because of this constant load,
the requirements on driver voltage and internal impedance are
greatly reduced. In fact, the driver now can be basically a con-
trolled voltage source, or flux source, that injects the proper
magnitude of flux linkage into the drive line.
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Fig. 9-3. Schematic representation of a coupled pair of registers that contain complementary
information, in order to make the driver load independent of the data state.

A pair of complementary registers based on the circuit of
Fig. 8-15 is shown in Fig. 9-4. This balanced circuit can really
be viewed as a form of bipolar circuit in the sense that at any
position of the register a unit of flux is transmitted in one coupling
loop, say the upper loop, for a one and an equal magnitude of flux
is transmitted in the other loop for a zevo. What we would like to
do now is show how to convert the circuit of Fig. 9-4 to the bipolar
circuit of Fig. 9-1 and in the process show why the circuit of
Fig. 9-1 is superior even to the balanced circuit of Fig. 9-4.

Dynamic bias can be applied to the pair of complementary
registers, without adding any additional cores other than A¢
sources, since corresponding loop cores can be connected in
pairs to a A¢ source, as indicated in Fig. 9-5. Drive is shown
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Drive

Fig. 9-4. Coupling a pair of unipolar registers of the form of Fig. 8-15 into a complementary
pair in the manner of Fig. 9-3.

Fig. 9-5. Dynamically biasing the loop cores of Fig. 9-4 with the addition of one flux
source for each pair of loop cores.

Fig. 9-6. Converting the circuit of Fig. 9-5 to a fully biased bi-
polar register of the same form as in Fig. 9-1.
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applied for the case of V - Z transfer, where Cores V and V' are
being cleared, and Cores Z and 7~ are the receiver cores for the
two registers, Suppose now that we alter this circuit further by
breaking each pair of corresponding coupling loops and reconnect-
ing them into a single loop in the manner shown for one pair of
loops in Fig. 9-6. Now the current causing one transfer along the
upper side flows in a dirction to actually oppose any flux switching
along the lower side, and vice versafor zevo transfer. As a result,
there is increased differential flux switching in receiver cores,
and hence effectively higher gain in the circuit of Fig. 9-6 as com-
pared to Fig. 9-5,

But note that the coupling-loop connection in the circuit of
Fig. 9-6 is exactly the same as in the circuit of Fig. 9-1, except
with the cores arranged in a different order. By merely adding
Sy and Sy sources (shown with dashed lines) for dynamic biasing
of the coupling cores, we have exactly the bipolar circuit of
Fig. 9-1. By having derived it this way, however, we see that the
bipolar circuit of Fig, 9~1 is superior to the balanced circuit of
Fig. 9-4, or even to the partially coupled circuit of Fig. 9-5.

Unipolar-to-Bipolar Conversion. To convertunipolar resistance
and nonresistance schemes to bipolar schemes, in general, one
need merely start with the unipolar circuit in toroidal-core form
and then replace each toroid by apair of dynamically biased toroids
or by a core of the type shown in Fig. 8-16(c), as was done in the
conversion from the circuit of Fig. 8-15 to that of Fig, 9-1. Then,
if desired, network methods can be used to transform the circuit
to a form using a smaller number of more complex multileg cores.

Bipolar MAD-R with Dynamic Bias. A straightforward approach
to a bipolar MAD-R scheme is shownin Fig. 9~7. This circuit does
not utilize dynamic bias and, though operable, is considerably
poorer even than the basic unipolar MAD-R circuit., By placing
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Fig. 9-7. Bipolar MAD-R without dynamic bias.
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two minor apertures in the center leg of each element, as shown
in Fig. 9-8(a), W. K. English (unpublished notes) has shown how
dynamic bias can be incorporated into this circuit. The leg be-
tween the two minor apertures serves as a one-unit flux source
that sets one-half unit of flux in each half of the core when no input
signal is present, Each of the other central legs must have 1-1/2
units of capacity for proper flux closure, as indicated by the pairs
of long and short arrows.

Drive for
flux source

Fig. 9-8. Incorporating dynamic bias into the bipolar MAD-R circuit of
Fig. 9-7: (a) by the use of two minor apertures in the central leg; and (b)
by the use of three minor apertures in the central leg, in which case the two
input windings may be replaced by a single input winding of twice the turns
through the central minor aperture, as shown.

The wiring is more complex for this circuit than for the
dynamically-biased unipolar MAD-R circuits of Sec. 8-3, though
the flux source is now built into the multiaperture core, making
an auxiliary toroid unnecessary. Laboratory results with experi-
mental cores of this type have shown that unity gain can be ob-
tained with a coupling loop resistance four to five times higher
than in the basic MAD-R scheme, with a corresponding ratio of
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improvement in priming speed. (As noted in Sec. 8-3, with the
dynamically biased unipolar version, the maximum increase is
about three to one.)

To illustrate the variety of form possible with bipolar cir-
cuits, we take note of one particularly interesting variation. By
dividing the flux source leg by still another aperture, as in Fig.
9-8(b), then the two receiver input windings of Fig. 9-8(a) may be
merged to a single winding through the added central aperture of
Fig. 9-8(b). As a result, the two transmitter windings and the
single receiver winding may now have the same number of turns
(in particular, single turn windings) without loss in flux gain. This
is in effect a flux-doubling configuration resulting from the fact
that during transfer, the input winding (of twice the turns) is linked
by only half of the signal flux, i.e., the difference flux, that is set
around the output apertures, For example, in the limiting case of
complete steering by the input current, the entire capacity of the
flux source switches to one side of the core, as indicated by the
dashed lines in Fig. 9-8(b), but only half of this flux actually links
the input winding.

9-2 Thin-Film Schemes

In the description of transfer schemes in previous chapters,
the basic elements have generally been assumed to be fabricated
from ferrite material, although any type of magnetic element with
reasonable threshold, saturation, and switching properties could
actually be used. In particular, considerable attention has been
given to the use of magnetic thin films in the realization of core-
wire circuits. The primary motivation is the potential of batch
fabrication, miniaturization, and low power consumption. Further-
more, higher speed and other increased functional capability might
be expected because of the coherent rotation properties of thin films.

Intevconnected Thin-Film Patches; Cohevent Rotation. In TFig.
9-9 we show a pair of planar thin films interconnected by a strip-
line coupling loop (ignore the dashed lines for the moment). Film
patches are typically of the order of a micron or less in thickness
and therefore have a much lower flux capacity than typical ferrite
toroids. The requirement of relatively low flux losses during
transfer therefore implies that the absolute magnitude of losses
be much lower than with ferrite cores, and hence (assuming com-
parable loop current and switching speed) that the value of loop R
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and L must be very small, (It is for this reason that a wide strip-
line configuration is shown for the coupling loop.)
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Fig. 9-9. A pair of planar thin films con-
nected by a strip-line coupling loop.

Considering practical limitations on strip lines (such as a
minimum spacing due to the requirement of a reliable insulation
layer), it was shown by Engelbart (1959) that transfer would be
extremely difficult to achieve with strip-line coupling loops unless
some functional difference were realized in the direct replace-
ment of ferrite toroids with thin films. Such differences are in
fact realized because flux switching by coherent rotation, rather
than by domain-wall motion, can readily be achieved with thin
films, resulting not only in increased speed and reduced loop
losses, but also in a new flux-gain mechanism,

The basic property of coherent rotation is illustrated in
Fig. 9-10. Each oriented film has preferred (i.e., ‘‘easy’’) di-
rections of magnetization, as indicated in Fig. 9-10(a) by the
arrows on the film, In Fig. 9-10(b) a current i; drives the mag-
netization into the ¢‘‘hard’’ direction, i.e., at right angles to the

iq i
b

L
— )

NP

(a) (b) (c)

Fig. 9-10. Coherent rotation of magnetization: (a) easy directions of
magnetization; 