ATV AR

RIyAN B EXN\A

GUARDIAN ’
Operating System
Programming

Manual
Volume 2

P/N

82337 A00

GUARDIAN (TM) OPERATING SYSTEM

PROGRAMMING MANUAL

Volume 2

Tandem Computers Incorporated
19333 vallco Parkway
Cupertino, California 95014

April 1982
Printed in U.S.A.

The GUARDIAN Operating System Programming Manual was published in
October 1981 as a two-volume manual with part number 82096 AOO for
each volume. The 82096 A00 version was the first edition to include
both NonStop and NonStop II information in one publication.

The April 1982 version revises the 82096 A00 version. With this

revision, the two volumes have been given separate part numbers;

volume I is now 82336 AO0O0, and volume II is now 82337 AO0O0. Users
of this publication should obtain both volumes.

Information has been added on the following new devices:

5106 Tri-Density Tape Subsystem

4116 540MB Winchester Disc Drive
411074111 128MB Winchester Disc Drives
5513/5514 Band Line Printers

5520 Serial Matrix Printer

6530 Multi-page Terminal

Copyright (c) 1982 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming languade, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, NonStop, AXCESS, DYNABUS, ENABLE, ENCOMPASS, ENFORM, ENSCRIBE,
ENVISION, ENVQY, EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual describes the interface between user programs and the
GUARDIAN operating system on the Tandem NonStop and NonStop II
systems.

Specifically, the manual discusses:

® calling the procedures provided by the GUARDIAN operating
system for file management, process control, general utility,
and checkpointing

® Uusing traps and trap handling
® using the features provided for security of files and processes

e performing advanced memory management on NonStop systems
and managing extended data segments on NonStop II systems

® using the sequential i/o procedures and the i/o formatter

® interfacing between application programs and the GUARDIAN
command interpreter

This manual is for systems and applications programmers with
special needs to call operating system procedures from their
programs. Familiarity with the Tandem Transaction Application
Language (TAL) or some other programming language, such as
FORTRAN or COBOL, is recommended. Before using this manual,
it is suggested that users read:

e Introduction to Tandem Computer Systems for a general overview of
the system

® GUARDIAN Operating System Command Language and Utilities Manual,
sections 1 and 2, for information about logging on to the system
and running programs in general

The "advanced" subsections in sections 2, 5, and 8 discuss
advanced features and require a knowledge of the system hardware
registers, machine instructions, and/or operating modes.

iii

Because of its size, this manual is bound as two volumes.
Volume 1 covers:

® Introduction
@ File System
® Process Control

Volume 2 covers:

Utility Procedures
Checkpointing Facility

Traps

Security System

Memory Management Procedures
Sequential I/0 Procedures
Formatter

COMINT/Application Interface
NonStop Programming Example
Appendices

To simplify cross-referencing and indexing, the two volumes are
section-numbered as if they were one book; i.e., volume 2 begins with
section 4. Each volume contains a complete table of contents and
index for both volumes, so that the reader can easily find the
information he needs.

Information that applies only to NonStop systems (not to NonStop II
systems) and information that applies only to NonStop II systems is

Cclearly marked as such -- for instance, by a page header or figure
title stating " (NonStop systems only)" or by a sentence at the start
of a paragraph beginning "On NonStop II systems, ...". Material not

so marked applies to both types of system.

For more information regarding the Tandem NonStop and NonStop II
systems, refer to the manuals listed below.

For NonStop systems only:

® NonStop System Description Manual

[]
® NonStop System Operations Manual

® NonStop System Management Manual

® GUARDIAN Operating System Messages Manual (NonStop systems)

® DEBUG Reference Manual (NonStop systems)

iv

For NonStop II systems only:

® NonStop II System Description Manual

® NonStop II System Operations Manual

® NonStop II System Management Manual

® GUARDIAN Operating System Messades Manual (NonStop II systems)

® DEBUG Reference Manual (NonStop II systems)

For both systems:

® GUARDIAN Operating System Command Languade and Utilities Manual

® Transaction Application Language Reference Manual

® ENSCRIBE Programming Manual

e EXPAND Users Manual

® ENVOY Byte-Oriented Protocols Reference Manual

® ENVOYACP Bit-Oriented Protocols Reference Manual

® AXCESS Data Communications Programming Manual

® SORT/MERGE Users Guide

® Spooler /PERUSE Users Guide

® Spooler System Manadement Guide

e UPDATE/XREF Manual

For a combined index to subjects covered in Tandem technical manuals,
identifying the manual and page number for each reference, refer to
the following publications:

® Master Index (NonStop systems)

® Master Index (NonStop II systems)

For a complete list of technical manuals and manual part numbers for
Tandem NonStop systems and Tandem NonStop II systems, refer to the
following publication:

® Technical Communications Library

CONTENTS

Volume 1

SECTION 1. INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM.:eeeeess.l=1
Process CONEtrOl.eeeeeeeeseeeacesnsoassssssssssssssssesscssssasssasssseal=h
Process StruCtUr@.ececeeeeseescessscacsnsccasscascsossscssscsassnsscsal=?
ProCesSsS PAilSeececessscssssssscssasasssssssescssasossssscscssssasesl=B
Process Control FUNCLiONS .. ceeteeesssacsocssssscsascsssosssssssnseel=9d
File SySteMeceeeeeeeacoosssscacsssssssssssssssossssscsssssessesseesl=l0
Utility ProCedUreS..cceeeccescsesscsesssssosscsssssssssesasasssssssal—l3
SYStem MESSAgEe S eeceececcsossssssoscsescssncssssossasssssssssossessssesl=l3
Checkpointing Facility (Fault-Tolerant Programming) eeecececesssssol=14
Traps and TrapP Handlinge.ceeeeesoeessesscecscsssssssscscsssassseeel=lb
SECUI ity eeeeeeeossecsoosesossosossasssasscssscssscooossssasssssacsceseesl—l?
Command INterPreter ceeeeeescsssscacossssscsssasscssosccsoassesaseesl=18
DebUg FACilitVeeoeseecoeeeesosceessscescssccoscsasecscscsccscsscscssssescesl—18
External Declarations for Operating System ProcedureS...c..e....1-18

SECTION 2. FILE SYSTEM‘...‘.‘.....IQ........‘...................
INTRODUCTION.......I..........‘........Q.‘...........'....O....

Files-oo........-..--..o........oo..o..o.................... .

2.
2.
2
DiSC Fi1leSeeeeeeessosescesssososcsossosscosoccsscosscsscscscsesel
NON-DiSC DEVIiCES eetseeacsosssssssassossscssvosssocssesssncocssele
2
2
2.
2.

Processes (Interprocess CommuUnication) seceeecececcssccsacnss
OPEratOr CONSOl@csesecscesesccssossasssscssssssscscscnnsssacsas
File ACCESS:.ieetceetesscrssstsosesssonssssossscssscssosascsscssocsscsass
DiSC FileSeeeseesosssssosssssssssscossssscsssassssseasscsassscses
TOrMINAlS eeeeeeaceeoscscssssssscsanassnssassssssscassnsscssaldel— 10
PrOCESSES ceceeesesssssssssssssssscsssassscsssscssssssscsscssscess2al=10
Access Coordination Among Multiple ACCESSOIrSeeeecsccccscesssl2.1=11
LOCKING e e eeoeeeeeeeeecoseesssansssosossascssssssssssnssseselel=l2
Wait/NO-Wait I/0ceceececcccscesosscsssssascacacccasssssssssaeceadel—l3
File System ImplementatioONe.ccececcecssscscsccsssscsascsscccssclel=16
File and I/0 System StrUCtUICeceeeosecsscsssscsscsccsscsssessl2el=lb
File System Procedure EXECULIiON.::teceeeessssccssessosssssssslel=21
File OPEN:.ccocceccessssscsssscsasnsessssssssssssccscassnnseslsl=2l
File TransSferSceceececscsscssesssssassasscsssscsssccssssscsssselel=24
BUfferingeeeeeeceeeeeecescescsscsssceosoasassssasssssssccssssssslel=26
File ClOSE.iceceestsocscsoesessoscssssssscsscssscscnsssssssssssdel=27
Automatic Path Error Recovery for DisC FileSeeeceoeaoasssal2.1-28
MIiZYOr VOlUMES e e teeoeeossssossscssscscscsossssssesssscsccsscseels =34

Hrahudhawrdkaw
m~d~Jht»b4F‘HF4

vii

Brror INAiCatioN.eececeeeeesssssccsscscsccsosssssscnssssssnsssl
Error Recovery..2.

=
ww

FILE NAMES . et oeteosocesssscscssessosssscsasosscssssssssssscssssssscacs
DIiSC File NAGMES e ceesosseacrsssasasosscssassscssssscscssocsssscsssencss
Volume NamMEeeeosesosoosacocses cescccscssrerssssrsscsennsescsne
SUDVO]l NAMe et eesesecesseoessossasssssscscsssssacssnssscsssncs
DISC Fi1le NAMEueeesoeososcssscesassssssssssscsssssasssnsssscsas
TempPorary File NaAMCeceeseeecooteencscesssssssasssccssacnsas
EXAMP] @S e e ceescccessscsssosassoocssssosssscsssessscsecscsassssse
DEVIiCEe NAMES e e eeesssesscesesssacsscsssscscsssssasssssassssssenss
Logical Device NUMberS.ccescseeesecessssosassscsssscssssssnsans
SRECEIVE . et ceceeecccscsesosscsscscscssesssoscsscsssesssscsssscsscssscsss
ProCeSS TD:eeeesecsesscssosscsossossscsssesssosscsssnssssosnccscass
TimeStAmDP FOIMeeeeesscsssssoscesssssssssssesssssssassscccss
Process Name FOIMecsecscscesscssccsscssacscsosssosssosssoscscsseoss
Obtaining @ ProCess IDeeeeecesssessessoscscsssscssssssccsssscaes
EXaAMP]l e S e cetoscsccescccsoscassososessescsscssncsscscsossassscsseans
S0 e eeeeerosnosasssacscasssssosscssccoscsssosasscscscssccccnnssss
Network File NaGmeS:.cceesceeoscssescccscccasasasssassscscscssoscseas
Process ID, NetWOrK FOIMeceecccescescsccscsssasccscssascsscosscs

FILE SYSTEM PROCEDURES . ¢ ccccceeseccsscsscsssssscsssscsscssssssssssse
CharacCteriStiCSeecececescosssscsccscscsscsssosocsscsscscscocccsccscsss
For Procedure Usage DY DevViCe TYPECcecccecesserssscrcsccacsns
COMPlEtiON.eeeeeeesescccescsscssscassssasascssssssassssacsasss
<file number> ParameterS.ceiceececessccscsssscssccascsocscsscs
<tag> ParameterS.cceececcsssss cceesevrsersesssssssssecsssennn
<bUffer> Parameler ccceeeececsccccssssecscscscsscsesosssscsnssnsss
<transfer count> Parameter......... cescesessessasassssen .o
CONAition COAESeeesseaccsvsansssasscssssscsssscssssssssnasssssce
BrroOrS.ecieeeeessessccsscsoscanns et sseccsssssasssascccons e
Access Mode and Security Checking for DisC FileSeceesossass
AWAITIO Procedure (All f£1leS) eseeceeccescsccoscscsccsssscosscsscss
CANCEL Procedure (2l]l fi1leS) eeeacececcccccssssascssscnconesele
CANCELREQ Procedure (All fileS).eeecoccoeosssoassoscsssaccsnnsscla
CLOSE Procedure (All fileS) .ceeeeeeeecccacsoccccacssoccssseel
CONTROL Procedure (All fi1leS)eeeeecseocssscssscssccsssssssnssel
CONTROLBUF Procedure (all fileS) eeeeeeseccosscccscscsnsossnssals
CREATE Procedure (diSC fi1leS) eeeeevsescssccesscosasnssssososocsel
DEVICEINFO Procedure (@ll fileS)eceeesssseesssscancaacscoassaescsl
EDITREAD Procedure (edit-type fileS)eeeeeccccecccocssossscsacel
2

2

2

2

NN OO MNDNDDDNDN NN

wwwwwwwwwwww' * o

WWwwwwwwwwww NNNI'\)NNNNNNNNMNNNNN

wwwwmwwb—'l—'}—'l—'l |
OAONANWOUIWNH~NIONOAO VTV WWH OO UTEREWWWWNDNDMNDNDN ~

EDITREADINIT Procedure (edit-type fileS) ..eeceeeeseececnncanss
FILEERROR Procedure (all fileS)eeeeseesocscassssosssassnncas
FILEINFO Procedure (Aall f£ileS) .eeeeoeeensssssssecccssccansss
FNAMECOLLAPSE Procedure (all fileS).eceeeeesccenaccns ceesc e 43
FNAMECOMPARE Procedure (8ll fileS) .ececeeeccsccsscccscsavsneceelel3—=45
FNAMEEXPAND Procedure (All fileS) eeeeeeetosccccecassesneeaseealel-48
GETDEVNAME Procedure (disc files and non-disc devices)2.3-52
GETSYSTEMNAME ProOCeAUrICeesescecsscessossocccscososscsceasseseelsld—04
LASTRECEIVE Procedure (SRECEIVE fil€) eeeeeoeenneas ceeeeseeea2.3-55
LOCATESYSTEM ProCedUrEcecescceccscsscssssscsssscssassscecs eeeessl2.3=-57
LOCKFILE Procedure (disc files)..... N 1<
MONITORNET ProOCeAUYEC ceceeecesescastsccsossoscssscacssssassocscsseeleld—b61

viii

MONITORNEW Procedure (NonStop II systems ONly) eeececceceesess .2.3-62

NEXTFILENAME Procedure (disc fileS).eeeeoeess ceecsscecssseseeal2.3-63
OPEN Procedure (3ll fileS) eeeeeeeeseosecescscsscaccncacccses .2.3-65
POSITION Procedure (AisSC fileS) ceeesesacsceaseccscsassscssscsaleld—13
PURGE Procedure (diSC f1leS) eececeeecesoscecscsacsoososncossscsss 2.3-75
READ Procedure (All fileS)eeeeeeeeeeecasoscsocnssscsas cecenen 2.3-76
READUPDATE Procedure (disc and SRECEIVE fileS)eeesecceceeessl2a3-79
RECEIVEINFO Procedure (SRECEIVE fil€)eteeeeoocccsssncssss v ee2.3-82
REFRESH Procedure (disC fileS).eceeeeseescsesnsacanse ceeesesesal2.3-85
REMOTEPROCESSORSTATUS ProcedUr@.cecescscceasccaes ceesccccscas eee2.3-86
RENAME Procedure (disc fileS)eseosscoscccss etecccccssssessse2.3-88
REPLY Procedure (SRECEIVE fil€)eesesccsccrccnnaans ceerecees ..2.3-89
REPOSITION Procedure (disc fileS)eeeeeesseeccncscccnssaseneslel=91
SAVEPOSITION Procedure (disC fileS) eeeeeeseoescvscscsoancs eee2.3-92
SETMODE Procedure (3ll fileS) eeeessssosscccasssssscscaasas «e.2.3-93
SETMODENOWAIT (all fileS)eeeeseooose teeeccst s scesssessensns ee.2.3-95

SETMODE Functions Table (@ll fileS) eeesvacescscsscssssscssseaaleld=97
UNLOCKFILE Procedure (disC fileS) eeeeeeoccssessssosssscssssl2ald=107

WRITE Procedure (Qll fileS) eeeosassesscccocssssossscscocaccses 2.3-108
WRITEREAD Procedure (terminal and process fileS).eeeeeeeacses .2.3-110
WRITEUPDATE Procedure (disc and magnetic tape files).......2.3-112
FILE SYSTEM ERRORS AND ERROR RECOVERY.c.eeceeceee ceescsccscccnsssl d=1
Error LiSteecececescceoscscssssssosssscscasssssosssscoscssssas ceeee2.4-2
Error REeCOVEeIYesessssssssas s et seecessasessssssnssssssssssceel d=29
DEeViCeeceeeeecnnennns ceccsssecssseassnens A 4
Path Errors (Errors 200-255) . .ccccccococsocoscocsscsccsscscsscl2ad—29
NO-Wait I/Ocececececosnsccannnns ceesccccssccnnas ceeesscecsssl d-32
File System Error Messages on the Operator Consol€.ceeceesses2.4=-32
TERMINALS: CONVERSATIONAL MODE/PAGE MODE::esseececoosssasassseealed=l
General Characteristics of TerminalSeeeeececccccccces ceecsseel2.5-1
Summary of Applicable ProcedureS........ cesesecsssssssssneeceslab=3
ACCessSing TerminNalSecceececscceceescesassssssssscscsssssssasscasas 2.5-4
Transfer Termination when ReadinNg..cececeeeceesssssscssscseeealed=5
Transfer MOdeS.ceceacesessss cesesccsetcesssessscccssssessseeaecled=0
Conversational Mode.....e... ceesecscseccssssescscsscccsssssassl2ed=B
Page MOA€.eeeevoaasse ce e s eseccseasessseseses et s sscnasnnns 2.5-16
Transparency Mode (Interrupt Character Checking Disabled)...2.5-22
Checksum Processing (Read Termination on ETX Character).....2.5-22
 27o] ¢ Vo Y AN Y A
TimeoOUutS.eeeeeeecocsacscs s eessecesssacsassesssassscasssacesseseesled=23
MOAEMS e e esseeosscecsssccsssasesns cesscsesans cecscsescessssssssealed=23
Break FEAtUr@eceeeeeseecsesssccesssssssssoccssccsss ceesssseeeal2a5-25
BREAK SYStem MeSSaAJCecsscocccososossscssssssscscancossss ceese2.5=-26
Using BREAK (Single Process per Terminal) eeeececessccss eese2.5-26
Using BREAK (More than One Process per Terminal) cecesseess.2.5=-28
Break MOd@.eeeeeeeececassnnonns e
ErrOr RECOVEIL Y eeeeeeccccescasasssscccsnssasssasssssssscsnsssasesled=34
Operation Timed Out (Error 40) c.cececcecescscccsacsacascacs .2.5-34
BREAK (Errors 110 and 1ll) ...eececsceccccccccccosssasssseseled=34
Preempted by Operator Message (Error 112)...ceeeessccscsss 2.5-35
Modem Error (Error 140) cveeeeeeececeeesssossscscscscsnssssslad=36

ix

Path Error (EfrOIS 200"‘255) ooo...c.....t.o....o..000-2-5_36
Configuration ParameterS.ceeeeccescesscsscscsssssscannnncsssl2ed—36
Summary of Terminal CONTROL and SETMODE OperationsS........2.5-37

LINE PRINTERS..... e s s s e ccaessscsesessececsesssssenenne s cceses
General Characteristics of Line PrintersS.ccesccecsccssssssens
Summary of Applicable ProcedUresS.ceccececccoccesscessssacsns
Accessing Line PrinNterSe.icccecceccescscsccsscscsscscsscsssnssscnss
FOrms CONtroOl.eeeeeseeeeecesesoscessscsosesssssscssocssscscssonssnss
Programming Considerations for the Model 5508 Printer.......

Programming Form Length and Vertical Tab StOpPS:ceeeescaces
Using a Model 5508 Printer Over a Phone LinN€.eeeececsonsas
Programming Considerations for the Model 5520 Printer.......
Programmatic Differences Between Model 5520 and 5508......
USIiNG DAVFU:eececoesccscscassccscsna ceessscssssssccsssscsans
LOaAding DAVEU:. cecceeceeescccensancecoscasscscsasscceasssssansoscscsns
Underline Capabilityeeeeeeeeeeeceteessesccsscccssssssassscs
Condensed and Expanded Print...ccccececeeccccsscscccnsacsss
Error Conditions for the Model 5520.......................2.6 12
Data Parity ErroOr RECOVEILYeeeeseocecsacccssssccsscsscssassslebd=13
Device Power On BrroOr.cccecsseccccsccscsncesns ceesescesscscssl.b6=-14
Using a Model 5508 or 5520 Printer Over a Phone Lin€..c.....2.6-14
Error RecCOVerYee.... Ceceecececcccsssesssssssssesccsssssssssssleb=15
NOt Ready.eeeeeeceacsacccccaccss N B)
Path Errors..... N R 1)
Summary of Printer CONTROL and SETMODE OperationsS..secececssee.2.6-17

* e
L]
1

.

L] L] L] .
L] L]
[|
OO ULUTWN N

DR
O\G’\O\O\O’\?\O\G\G\O\O\O\

DN

o
i

o

MAGNETIC TAPES .. ccecscesscscsssoscsscascasasaassssnsscsasssscsssnsscaesns
General Characteristics of Magnetic Tape File€Seececececcesacns
Summary of Applicable ProcedUreS...cecseescsscsssscecssscsssscss
Accessing Tape UnitSeeeeeeeeeeeasceenscecasocssocecassooncccsonss
Tape CONCePLS: 22222222220 ccacsssecccnanas cassescesacenscscccs

BOT and EOT MArKkerSececesesceceseceosassasssssesasscssssscsnses

FileSeeeeereescssasssonncssascnnaes crsesscecsesessennenceans
RECOIAS e eeeeeesscseescvososossasessssesasssssnssssnssassssssnas
Programming Considerations for the 5106 Tri-Density Tape
SUDSYSteMeseeeceeesstsossosssosssssossssssassssssscsccsssscsss
Downloading the MiCroCOAE ... eeeeeeeeseesccccscsssccscnssoes
DOWNload OpPeratiONeeeeeececssecesssccsascssccsscsssscssscseses
Invalid or Missing Microcode FileS.eeecececessccsssosssscos
Controller Downloading ErrOrS.ceeeccecccssssscscccsacsssss
Selecting Tape DeNSityVeeeeeeceeeeceeccccsceccccssssoscsnsss
Controller Self-Test FAilUr@eeeesoeeesoreassscsssosssoscncans
ErXrOr RECOVEIL Y eeseoceesososscsascsscossssssscsssssessassscssassass
Path ErrOrScceceescessccsscssassssasssssscsssasosssscsssccsccsss
Summary of Magnetic Tape CONTROL OperatiOnsS..cceecececececsces
Seven-Track Magnetic Tape Conversion MOd€S.e.cececssssccacscss
ASCIIBCD:ececesesososessssssassscscsssssnssssssscsssssssscsoss
BINARY3TOA e cvuoevesossssssssssasssssssssssscssscsassscssansss
BINARYZ2TO3 e e eeaceooeoonssossoanssscssscsanscssas ceserseseccee
BINARYITO L.ttt eeeeeaasnsssscessscasacssssocncees cescsescacsne
Selecting the Conversion MOA€.ccsscsovesssssssssssssccsans
Selecting Short Write MOde.:vessecesesossssnsesarosnnsnnessass

\l\l\l\l\l*\l\l\l]d\l\l\l\l\l\l\l\l
NDNN NN =

BHWWNHFHF YOOI WWWNH AUk W

NNDNNMDNNNDDNDNDNDNONDNDDNDNDDNDNDDNDND

»

CARD READERS ¢t e ecesessscssscsscssscsscsccscsscsscasscssoscsscnssoes cecene
General Characteristics of Card ReaderSeececeeecssscccoocanees
Summary of Applicable ProcedUreS.cceececesecscsccccssccccscoscnes
Read MOAES e eeieeeoseessoseccscscsesscssssssacscsscsscscsascoscscosscsss
Accessing a Card Readereceesececscccsacecans ceecccccctccconns
EIFrOr RECOVEI Y eeeeootsossassacsnsssssssessssssssscssossccsssss

NOt ReAdVeeeeeescescscscescsccnnes ceeceseseseccseesasesccecne
MOtion CheCK:iieeoeoeeeeeeeaanesasccesosossososacsoacsoosecses
ReAd CheCK it eeeeeeoosseeeoseesccccsccssaacenosnccsccsasascccsoss
Invalid Hollerith.ieeeoeeeeooorseossovoosoosscsscsscsosscscscnscssss
PAth BrrOr S eceeceececescsccccscscsccccscssoosoossossssosscsesssssses

NN
* o o o .

oooooooooo?ooooooooooo

NN

|
N oYU NN UL N

INTERPROCESS COMMUNICATION . cceeeseceososccssscsasscsesssscocoasncsss
General Characteristics of Interprocess CommunicatioN.eseeese.
Summary of Applicable ProcedUreS..ccccecscscccscscesssccassanse
COmMMUNICAtIiON. et e eetseeesssctsssscsssscessscscscsssacsscacsscesses

SYNChronizZation..eeceeesecesceessscessssssscccssossosnssosssscss
SRECEIVE FILE:.:eeeecececcsosascscsssnns
NO-WALt I/0ceceeeeecceccssssssosessosnsasssssssssssascccscscs
OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF
MESSATE S e eeseeesssesssassosssssscsssssensssesasscansscescs
Communication TYPE.ceeeesesssccaccaces cessessseccsassesacce
ProCeSS FileS.eeesseesosesssassssscssascosssssssssososnsssssass
Sync ID for Duplicate Request Detection....... csecscssssssas
Interprocess Communication EXampPle...cceecssesccccccssosaccass
System MeSSageSeeeceeccsecccssssssscsssannsss cecsesctcersecccca
ErrOr RECOVEIYeeessooossassssossssssosssssssasssscssssassssaccss

e o 9
DD

\D\O\O\IO\O\O\D

NN N

HEHEEFERRHEHE OWWwWWws
uaf\o

|
W~

WWwMhhNOH - = U1 O N OO oo

NN

OPERATOR CONSOLE ¢ et eceeccoscsessscsscsssssssssossosessssssssases
General Characteristics of the Operator COnsol€.eceeceeseccss
Summary of Applicable ProCedUreS.cccscccsssccsscscsssasccssas
Writing 8 MESSAJE.eccsceceorsosssssssssscsssosssosssssscsssssscaes
Console Message FOrmateceeeececcsstesassssassscsascesaccscnces
ErrOr RECOVEIY :eeeseoessocsassossssosscssassossssssssasassscsas
Console Logging to an Application ProCeSS.cccessscccccsccssss

.
MMM
e o o []
OQCOOOOCO O

I

FILE SYSTEM ADVANCED FEATURES .t ccecscscescssscscscscscsssosssssccss
Reserved Link ControOl BlOCKS .. e eeoeesoosococssscsosscccossscsaes
RESERVELCBS PrOCEAUICeccececscccosccsecsessssssssssccesssssss
Resident Buffering (NonStop SYStemS ONlY) ceessccosccccssccses

[] L] .
el el
1o

NN

SECTION 3. PROCESS CONTROL..... et esseescesensscscsasscsssssnssans
INTRODUCTION e ceooeosossossosscssscssccsssosscsosscsscsccssscccscsssasse
Process DefinitionN.eceeeeeeeeesescscseseccccscescscscacsoocoascacsscss
Process StateSeeeeeeeceseesrsssccssscssssscsssssssscssscscssccans
CreatiONeeeececeecesstsccesscsescssscssccccscscscsscsscsscscscscsecs
EXECULiON e easeeseteescseccscscsasscscoscsscooccces S |
DEletiONeeeeeeeeesesesccccscssscccsccacsosocscosscsooacccsses eees3
Process IDe.eeccasn S
CreatOr cceesesssesoscscscssenoscssanscssscssscsasassesscssocccaeans ceeesl
ProCess PairS.ceceeccesccecscscccscsccccaes ceccsecens crecssecas
Named Processes (Process-Pair DireCtOry) .cceceeeeeececsccccses
Primary PrOCESSceeescccesscsassscsssscsscscccssocss cesceecaane
Backup ProcesS...... cttcesscecsscsscssesessensascennns eees3.

wWwWwwww

e o 9
L O I |
NN OWVWO~IONUTUI - = nwH

Bt b b b b e b

W W
. . L]

il

e

1

Operation Of the PPDeccccecscccaasacss NG T S 4
Ancestor ProCesS.ceesceccess e T I A
Example Operation of the PPD....... ceseseecanse A P N)
ProceduresS.eceeeecececcessnssccens ceerasccscns cesesences evee3.1-17
Home TerminNal.ceeeeeeeeseessossecsscssnsscssscscosscssssscsascssass 3.1-18
Elapsed Timeout (NonStop II systems ONly)eeececeecseccce ceeses3.1-19

PROCESS CONTROIL PROCEDURES .t tccecessessccsscscsssssansscscnsaes eee3
ABEND ProCedUr@.icecececescsccscsccsccsscss G I
ACTIVATEPROCESS ProCedUrC.icececscccescssscssssssssssssssaccessl
ALTERPRIORITY ProCeAUrC.ccescesseccscsscasascncssnconocaes P
CANCELTIMEOUT Procedure (NonStop II systems only).eeeeceecesess 3.
CONVERTPROCESSNAME ProcedUr€..ceseses ceeescns teesescesasrescn
CREATEPROCESSNAME ProCeAUIrCececssecscscscscsscsscsassssnsasscss

DELAY ProCedUre.cescescsccsscssascscssscaes ceeveescsccscnns eee3.
GETCRTPID ProCeAUrCcecececcscscssososssssoscsscscscssssoscsscses eees3.2-12
GETPPDENTRY ProOCedUrC:.ceececcscsesosascsossssocosssocsscsssscaes ee.3.2-13
GETREMOTECRTPID ProCedUrCeecescecscsscscsessasccscsscssssscssesseldeal2=lb
LOOKUPPROCESSNAME ProCedUr€..essescscscscscsconscssacsnes ceseesesl3.2-16
MOM ProCedUrCeceeesccsscscesessccsasscsascasasncaes teessseccssesee3.2-18
MYPID ProCedUrCeceeseascascacscscsscssessasssasssassacsas ceseee3.2-20
MYSYSTEMNUMBER ProCeAUr@.cecececccesccscssscsssasccssssssssssaealdel=2]
MYTERM ProceduUr€........ ceescnse G Y
NEWPROCESS ProCeAUrC.eececececcsccsossosssssssscccnocsss ceeasseeld.2=-23
NEWPROCESSNOWAIT Procedure (NonStop II systems only)..... eee3.2-28
Errors for NEWPROCESS and NEWPROCESSNOWAIT :ecsecsccsscs ceeese32-32
PRIORITY ProCeAUr@.ccecceceescssseccsscssscssasscssascsssssscsscsesldsd=3d
PROCESSINFO ProCeAUr @ ccscscscscsssocossscsscsscssscscsscscssssess 3.2-35
PROGRAMFILENAME ProcedUre.ccececececsccess ceecesecessnscas cee.3.2-38
SETLOOPTIMER Procedur€e....... ceecescesescsssscessscssscssse3eal2=39
SETMYTERM ProCedUrCececcecesscsccscccccnasnsea ceccccccccccscssed2=42
SETSTOP ProcedUr€.cececsecas cecsesesessssasssensas cresscsecseeal.2=-43
SIGNALTIMEQUT Procedure (NonStop II systems Only)eseseceses...3.2-44
STEPMOM ProCedUrE.eccscscesstsceessscssccsssssasscsssscscscsscsscaeelel=4b
STOP ProCedUrC ecceeessssccsssssossssssssssssssscsssssssssssselsl=iqd8
SUSPENDPROCESS ProCeAUr@.iseecessecsscsssssascscscssssssescssssels2=49

CREATING AND COMMUNICATING WITH A NEW PROCESS.¢ccceececcccccccsals
3

3-1
Example....‘......O.....Q...0..............'..'...'.....’.Q.. .3-1
EXECUTION PRIORITY..............C...............0'........0....3
General INfoOrMaAtiONececeeeescescecessccacscasscssssncocscsosssl
Suggested Priority ValueS.ecceceeeeesccsccsocacens T, eee3

3

Example..-......o....................-....-..........-o-.....

Volume 2

SECTION 4. UTILITY PROCEDURES:c:cceecssssacses cececesseeessesscnenns
CONTIME ProOCeAUr @ cceeeescescscscsssscssassscsscscscssstsossccncsosscsssocsses
DEBUG PrOCEAULCeescescsssssssossssssssssssssosssscssssscssssscscssesss
FIXSTRING ProCedUrY Cececessssssssosscsscssssossssosssssscscssscsscssscessldm
HEAPSORT ProCedUrCeseecescssssscccscssssssssssesssssnss Ry o |

Xii

INITIALIZER Procedure..... ceesestoen ey S I
LASTADDR ProCedUrCeeceecccscccsssssscscaes cecetecsnees cesssscsessd=17
NUMIN ProCedUrC.ececescscscsccscsssssscsossassccnsscssscs ceecccns eeessd=-18
NUMOUT PrOCEAUICecececescscccscsssascssscsssocscsosssscsccnsssscscscesescsd=2]
SHIFTSTRING PrOCeAUr @ eecececssscecsocscsessssscsasscccossscccssesesld—=23
TIME ProCEeAUrCececesscscescsssssssssssscssssssssssscssssssess ceesd=24
TIMESTAMP PrOCeAULCecscscocscsssscscsssssscsssscsscsscssssscscssocsesed=2b
TOSVERSION PrOCEAUI . ceececosssccetoscscscssssossncscccssssccssssssld=26

SECTION 5. CHECKPOINTING FACILITY :eceeceoocsscsscsssssacscssonns
INTRODUCTION G e ceceececcsoscssessoscsscsoscsossscsossnsosossssassccsscss
Overview of Checkpointing ProcedureSe..ceececeecesccss cessssssns
Overview Of NONStOP PrOgramMScecececsscesssccsscsccssossssscscsscasss
Overview Of CheCKpointingeseeeeeeeeescosesssesssssccscsancscss
Data StaCK.eeeeeeeeeeeeoeoeeonesscacesosnosnsssssssssscssssas

Data BUfferSceeeeeeeecccscoscescasosssacssseassescsassssssnsass

SYNC BlOCKSeeeeeesoeesososesssossaascssosssssoscsssssssscssceas

o« o
o o
[

CRGRC RGN NC NN
Bt b b e e
UGTUTU s N =

CHECKPOINTING PROCEDURES c e e eecceccsccsccccccascsassssscsscssssscscssaccscse
CHECKCLOSE Procedure...... t et et eeeresecsessseresersseseceseees
CHECKMONITOR PrOCEAUrIr @ . eescssecscsscsecsssscsssssssssscnscscscss
CHECKOPEN PrOCEAUI . eeeeeeeseceeccceoeccsosnosasscscsasessncss
CHECKPOINT ProCedUrE€.eccesccsccscsoscsncscss ceceesecsssacscsans
CHECKPOINTMANY ProceduUr€.ceeeeceess e e e csesssseccsssssessesee e
CHECKSWITCH ProceduUr€..ceceecaes e e s ecassesssesssssesssces s
GETSYNCINFO Procedure (disSC fileS) ceeessessoscccccconsansocsns
MONITORCPUS ProCEeAUrECecescscssesoscscssssssssscccsosse cecececans
PROCESSORSTATUS ProCedUr@ccecececscccccscsscssnccsscs cececsssces
RESETSYNC Procedure (disC fileS)eesseesoscoscsnssss cececcsnes
SETSYNCINFO Procedure (disSC fileS) eeceesvsococcssssaassccnnss

i

[N SR I (V)
|

NN N
|
NN N e

L)
[SANS IC RS

GO T UTUT U Ule o
L] L] . (] L] L] L] .

LI | [B |
WNHFHFOOIEENOU W

USING THE CHECKPOINTING FACILITY teeeecosescooscsoscosssscssossssssed
NonStop Program StruCtUre..ceeereeeesecccceccoscsesssscococscacecds
Process Startup for Named Process PairSeeecseccececcececcesceseaade
Process Startup for Non-Named Process PairSeeceececececcsceesedeld—
Main Processing LOOPecececescecasssessosssssossssecsssscssssssesded=l
File OPENeteceecccsacesscosoccscssssoonsssessssosssssanssssessded=l
ChecKkpointingeseeeeeeseesssescascsseosnscesssoscssssscssscscssssssdeld—-14
Guidelines for ChecKkpointingeeesseseeccecccssscsssssssssssedeld=15
Example of Where Checkpoints Should OCCUrceceececeoocosesada3=17
Checkpointing Multiple DisSC UpdateS.ececececsscosscsssessesdes3=21
Considerations for NO-Wait I/O.eceseccesccesccssssacnnsasedsld=21
Action for CHECKPOINT FAilUr€.ceceoceccscssscossccssssscosssded=21
SYStemM MESSAUES e s seasssescacossssscscssssssssccscssnssssssssssdad—22
Recommended ACLiON.:eescesscccssccssoscesassasssscssscscsassesdald=23
Takeover DY BaCKUDP:eeeeoeeseeeessessscscssssacccssencsessesedeld=25
Opening a File DUring ProCesSiNge.cceccecccccsascsscssssscssocoaceade3=27
Creation of a Descendant ProCesSS (Pairf)eececscsccessssssssssssd.3-28

ADVANCED CHECKPOINT ING ® © 0 0 00 09 00 ° 00000000 ® ® 8 0 00 00000 0000000 5 . 4_
BaCkup Open-ooo-o-ouocoooooo'-oooooooooooooooooo.oao.ooooooo.504—
File Synchronization Information...ccceeecececscscccccosssssssaseded=

N

xiii

SECTION 6. TRAPS AND TRAP HANDLING . ceceeesoessoccossssscassasassessbdb=l
P AP S e eessaseesssessssscssssssssssssssssesssssscsssnsssssnssasnsaseeb=l
TrapP HAandlingeeeeeooeseesooscsssosssesssssssssssccsssssessesssssesb=3
ARMTRAP ProCeAUr @ ceeeceecsccscsssscsssscsssasscssasscssssassssssasccssscssb—?
EXAMPlE:eoaseesossassesssescsssesssseassssessssassssssssssscsssscsssb=7

SECTION 7. SECURITY SYSTEM::cccsccssccccsccscssscsacsocsosacsssssssoscsl
INTRODUCTION G ¢ e e eececeeccccssssssascsscsssascasasssncsscssssssssscesl
SYStemM USEILSeecececssoccsseccssocoscssossscscscssssnsssscscccnsnosl
Defining USErSeceeeeccecseesseocssssoscsssossssssncsssssscsscsosccsl
Naming CONventionS.ceeeceeeecccccacsccscacoscsssssssosccccccnascsl
LOGYINg ONeccecccessccceosaccsssssssssnecenssossnssacssssacsasnsal
PASSWOIrdS eeessescososcsescssssosesscsssosssssssssssasceasssasssasnsceld
ACCESSOY TDeececeosssosccsasssacsassssssosccsossssssssnsscsossosssald
DisC File SeCUritVeeeeceesceesssssscscacscssssssssssssscscsssssesl
Adopting a Program File's OWNEr ID.eeececccccccacscccccccsnonsl

7

LlcenSlngo-..o'-o..........---...........-...................

kaHfdrak4Tr~rakﬂh=H
OO U Ul b W

Interface to the Security SySteMeceeeecssecccecsconssassscaeelol 10
Command Interpreter INterfaCe.ccceceeccccscccccssassssaseeelol=10
FUP InterfaCe.cieecseeccecessscoscscssssssnssccscsossasssssaccesloal=1l0
ProgrammatiC InterfaCe.eecceeeecscscsecccccssccscsssssssasncssssll=1l
Operational LimitationS.ceececeecscscecessecoccsesssasassaslal=1ll

Network SeCUrityececeeacsssessssccccsssccscss B A S
Global Knowledge Of USEr ID'Seeecsasccccesssassssssscccesslol-14
Remote PasSSWOrdS.eeeesescssssssscscescescsscsssssssssasscssssslol=15
ProCesS ACCESSeeessssssosssosccsssssssssscssssssssssnnsssssselal=1l7
Programmatically Logging On...... A A R Y

SECURITY SYSTEM PROGRAMMATIC INTERFACE .. cccecoesscesssscssseassasle
CREATORACCESSID ProCedUrCeesscccscscsossssssssssssncssssscss eele
PROCESSACCESSID ProCedUrCeeesscecscsscscssssascsscassscssscccesl
Functions for SETMODE and SETMODENOWAIT ProceduUreS.:cccesssss?
SETSTOP ProcCedUrC.ccececccccscscscssassaccssces B
USERIDTOUSERNAME ProCedUr@.scsceecscscsscsocsscssscsssssssesccsd
USERNAMETOUSERID ProCedUr@eccececccscscscsscsscasscscsscscssssaonscssl
VERIFYUSER ProCeAUrCeccesceccccscscssososssasscssssassssasasccsle

DNe o o o o
'_l

SECTION 8. MEMORY MANAGEMENT PROCEDURES::ctsecesssscsscscoccsascss
MANAGING EXTENDED SEGMENTS (NonStop II systems oOnly)ecececesss
Segmented MeMOT Y e ceoeocesosescsoscscsasscssesssssscsasscascsasosscaes
Space Management Within a Segment...... ceecsrecsesassstenane
ALLOCATESEGMENT ProOCeAUIC cceccsccssscscscsscscssscscsssssssssaes
DEALLOCATESEGMENT ProCeAUrCeeeceeccescssssscesasssssscssssscasas
DEFINEPOOL ProCedUrC.ceeccescecescsascsceossasessnscscoscsssccssas
GETPOOL ProCcedUrC.ceeccescscsccccccs ceeeccsesssscasnans ceseeen
PUTPOOL PrOCEAUY . ciesssascssoscscsssccsssssssssssscsscsscssoss
USESEGMENT ProCedUrC.ecccescscsccscscsscacancaes ceesesness P -

s 00O 00 OO OO QO CO CO OO O

[—-lo .

TFJFJP‘TFJkJP‘H
..._l
OWW~JO B W

ADVANCED MEMORY MANAGEMENT ¢+ ccoeeeecocsssscesscscssssasosscnsscssBel=l
LOCKDATA Procedure (NonStop systemsS ONly) eeseeecccasssssessealal=2
LOCKMEMORY Procedure (NonStop II systems Only).ceceeccecccecese8.2-5
UNLOCKMEMORY Procedure (NonStop II systems only).ecceeceeces..8.2-8

Xiv

SECTION 9. SEQUENTIAL I/0 PROCEDURES :: et csesesesecasnssssccansesssdI=l
CHECK "BREAK PrOCEAUIC . eceeeeeccsaccesssccssecennones O « J
CHECK FILE PrOCEAUI s csesescsscsesssssssssassesscssssssoscsssseseesd=b
CLOSE " FILE PrOCEAUICeceeeeeeeeocaseesacsoscssssoscesssesssossessssnead=l2
GIVE " BREAK PrOCEAULCecececececocccsococesosossossssssesssnsenseessd=ld
OPEN"FILE PrOCEAUILC e eeeeocceecesecancesossccossesesesesessasnessad=1l5
READ " FILE PrOCEAULEC . ececeocccescscscosscsscsesscsasessnsseannsessd=2l
SET " FILE PrOCEAULCccceceeessesccesscscacsssasescscsssancscsccacseesdI=23
TAKE "BREAK PrOCEAUICceeeeecececcesececncsscocsssacasssasanscnsnnsesdI=33
WAIT " FILE ProOCEAUI @ e ecececseccccsscscessoassscscsscsasoscccnanesesI=3d
WRITE FILE ProCedUrI@eceeeeeeceoeecccaaccccnncnes R « e 1
I rOr S eteoeesasesssceesssnscsscsssoeosasecsssssasscsocssssccsscscsscscsscssesd=38
FCB SErUCHEULC et eeesossosasnsoscescsscscsssscsssssssoscancsscnscsssesd=d]l

Initializing the File FCBiceeeceseesrsesosssscsocsssssssssnssnesl=—4d?2
Interface With INITIALIZER and ASSIGN MESSAJESeessesssscssssssesd—46
INITIALIZER-Related DefiNeSeceeeesceccccotosescssssccsssoscsessaessd—46
USAQge EXAMPlEeeeesescessosscasssssssssesssasssscsssessssssesesI=5H0
Usage Example Without INITIALIZER ProCcedUre.cceccecccecssssssceeeasd=54
NO ERROR PrOCEAUIE.eeeesecscsccesscsasesosccacasescscscssccscscseasdI=56
SRECEIVE HaNAliNgeeeeeeeeeeeeeceacseoseaesoosseacssscassccscaasesasd=60
SRECEIVE Data Transfer ProtOCOl.eceeesceccccscscccsccccsssscessd=60
NO-WAIt T/0ceeeeeeeeeeeoenseeaoonsusosessasossssassssssssacanseesd=63
Summary Of FCB AttribUtesS...cceeeeescccecccessnssossssssssssnsseeesdI—64

SECTION 10, FORMATTER:cecsssosceccesssscsssscscassssscscscscssocsesaeesll=1
FORMATCONVERT ProCedUrECeceecsecsescessscssscsscsssassasssssssccssessll=2
FORMATDATA PrOCEAUICesssecsscsassssssssascssassssssscsssssasssasse ++.10=-5

ErrOrSeesesceeseeeassesssasnssssssssssssssassssssssssscssscsssesell=9
EXAMPlEeeeooosssessssssssasscssaasssssssssossssssssnssnsecssassseall=10
Format-Directed Formatting..cceeeescesssesasosecosssscsesscscssssssl0-13

Format CharacteristiCS.eeceececsscesssssossssscssssacsssssssssosll-—14

Edit DescriptOrs.ccecess I M RS Y

Non-Repeatable Edit DeSCripPtOrSeceecececsescscscssscscccscscssesl0-20

Tabulation DEeSCripPtOrSeceeeecsssccsscsccsssccecssssssssssssesl0=-20
Literal DESCripPtOrSececscecesssscssassasssssscecssssssasssssssl0=21
Scale Factor DesSCriptor (P) eeesescecccscccscsssossscsscsssseell=22
Optional Plus DescCriptors (S,SP,;SS) cceeccecsscocssscossssessl0-23
Blank Descriptors (BN, BZ) ceeecesssoccsscesosnacnceseesesss.l0-24
Buffer Control DescCriptOrs (/1:) cesecececesscccssscccscasssl0=-24
Repeatable Edit DeSCripPtOrSeeseecscssssesescscscscccssosscceseessl0=26
"A" Edit DEeSCripPtOr .ccecceeeccessssssssosscsassssassscascsssssl0=26
"D" Edit DeSCripPtOr eeeescesssscccscssssssesccscssssssssscaessl0-28
"E" Edit DesSCriptOrecececeeeeeececsscsccscssscsccsassssssssssesl0=-28
"F" EAit DeSCripPtOr seseccessescsccsssssvosccccssssssnssssssssll~31
"G" Edit DesSCriptOrecececeeeeessssssssosccsssssasssssssssssl0=32
"I" Edit DeSCripPtOr ceeeeeceeseossccsssssssscssssssssssscsessl(=-34
"L" Edit DesSCripPtOrceceeeeseesccsccessosssosssssosssssaasncscaessl0=35
"M" EJdit DeSCriptOreeccecccececeecececcscscsccsnsacsanssssssl0=-37
MOAifi@rSeeeeeeeseceeooscsesscoaassaassscsscssasasnasssssecssccssesl0—40
Field Blanking Modifiers (BN, BZ) ceceesecececcsccscaeseeesssl0-40
Fill Character MOAifier (FL) ceeeeesssassccsssssacsasccsssssl0-40
Overflow Character Modifier (OC).ceeececececssrsossnnssessall=41
Justification Modifiers (LJ, RJI) eeecessscsssceacsessanassssssl0-41
Symbol Substitution Modifier (SS) .ceeesecessecscscscoccccceell=42

XV

DEeCOrationNsS.seececoccccscss o I ¥
List-Directed Formatting.c.ceeeeceess cee st ecesesessseneasnnans ...10-48
List-Directed INPUL.eceeeceeesssscanssssssscsecsssassssscsccsssasl(0-48
List-Directed OUtPUL ecceeescsososscecsasssscccsssssssnsscesesll=49

SECTION 11. COMMAND INTERPRETER/APPLICATION INTERFACE..:sc0e0000.11-1
General Characteristics of the Command Interpreter......c.......11-1
File NOMESeesoeeesesssscscsossssssssssssssscssasasscsssssssscssesssll=2

Correspondence of External to Internal File NameS..e.oeeoeeees.11=-3
Disc File Name EXPaNSiON..cescecscscesssceascsasccssssssssssscassll—d
Network File NameS:.cceoeccccccococessssassssssssssscasssasssssell=9
Passing Run-Time Parameter Information to an
Application PrOCEeSS.cessssssecessssssssscsssssassssssssssesell—1ll
RUN COMMANA .+ essssceccocccossassseecssssssssssssssssssssssssssssell=l2
Startup MESSaAgE@ceeeecossosceccssssssoscsosssssscsssscsssssssssssseall—14
ASSIGN COMMANA e e eoeeesssoesoscessoscsascsassscscsssssss creesseseall-17
ASSign MEeSSAJE .eecceceecscsassssoscosssscssssssosccasses ceessseall-20
PARAM COMMANGA e e e cesctaasossessosssscncasssssscsscsssssssocsasscsesell=22
Param MESSAJE€.ceeeeeececscsescssssssasssssssssssssssescasssasssll=23
CLEAR COMMANA e e s eeoessoocsososssscosascsosssscsscsscsscsssssscsssssssll=25
Reading All Parameter MeSSaAgeS.ecececccccsccssssssscscssssscssssll—26
Application Process to CI InterproCess MeSSAgeSeseececescesssesssll-28
WaKeUp MeSSaAgE@ eeueeseeesssssocassosossssasssssssscnsnsssssssseesll=28
Display MESSAJCecesessssssssssssssasscss seesececssssssssasseesll—28
Application-Supplied CI Monitor Process ($CMON)eeeeeeeeeeeeessall=30
Communication between Command Interpreters and $CMON.........11-30
LOgON MESSaAgC ecceceecscesenssssoesssosssscscssssssscssssassseell=3l
LOgOff MESSAgECeceeeesseesassssssessssccsncassscssscssossssnsssssll=32
Process Creation MeSSagC .ceeesescsssessssssccssassssscssnssseall=32

SECTION 12. NonStop PROGRAMMING EXAMPLE....eeeeeccecescesssossosl2,.1-1
INTRODUCTIONtenQns.ea'feoee-ega-geoeeeegnoa- --------- ...oo-ov.llol_l
The NonStop Example Programe...cececessccssssessssasssassssasesl2.l=3
Example Program StruUCtUr@.eceeeecsececeeacesaccsocrnsscecssssasl2,1=-4
Request Integrity....-......................-............-12.1—6
CheCkPOintSooo.--oo..-o..--.....-.........................12.1—6
EXAMPLE PROGRAM CODING.-.....-'oo-...ooo;-co.'.occtoccooo..oo-12.2'_1
APPENDIX A. PROCEDURE SYNTAX SUMMARY:eeocescocceccacssccsosssseessA-1
APPENDIX B. FILE SYSTEM ERROR SUMMARY.:cceecosocccccssccccacacseseB=-l
APPENDIX C. SYSTEM MESSAGES:. .. ctecccccscsosccncsssscacscsassccssssssssC—1
APPENDIX D- SOURCE FOR $SYSTEM-SYSTEM.GPLDEFS~o-oooooo..uoo.oono-OD_]-
APPENDIX E. SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT.:.....ceoee...E-1
APPENDIX F. ASCII CHARACTER SET..ccececcccscccnscscccscscssssceccasesssb—-1

INDEX.---oooo.occuo-..---.ocoo'.--oo'o'-oo'oo ----- oo'oo.oco-onolndex-l

xvi

FIGURES

Volume 1

l-lo
1-2.

I
w
L]

|
HFHEWOWOJOUL&WNH OB

'_l
.

NNNNNNNI!\JNNNI'—‘F“'—‘
O e
.

wwwgpwww
~Sovu e W N+
L]

GUARDIAN Operating System: Mirror VolumeS....... ceesescaaael=2
A Primary/Backup ProCessS Paileeessscssesccassssssssssssssssssl=9
FileSeeesoeoeesosaeasosasssssessosecasssasssescssssssssosssecssel=ll
Checkpointingeeeeeeeeeeesseecsoseecsecoscsssssossscsssacsssasseel=l5
Files Open by a Primary/Backup Process Paireceeeeeeeecesssal=16
Disc File OrganizatiONeeceeesscecccesscessossssssssccssccsssslel=2
Communication with a Process via ProcCess ID.eceesccceseseslel=5
Communication with a Process Pair via Process Nam€........2.1-6
SRECEIVE Fil@eeeeeeosseeosaooossssnsscoassssssssssssnnnssa .2.1-6
Wait versus NO-Wait I/Occecececesccosssssccssssossscsanssssessl2el=1l3
No-Wait I/0 (Multiple Concurrent Operations)...eeeeeessss2.1-15
Hardware I/0 StrUCLULEC.eceeeeseeccsocesososccssscsssccsssoeloal=1l7
Primary and Alternate Communication PathS..seesccececeess2.1=-19
File System Procedure EXeCULiON..cesccocssscccccssssssssslsl=20
File OP€Nessessscrcccsss cesessseee ceesenes T, ceee2.1-23
File Transfer...cceceeee.. ceseesesceccssasnee cesecns ceesas .2.1-25
Bufferingeececececccesss ceeececescccssessscsssccsssessscccelel=20
MIirror VOlUME . s eesoososoeosssossssssossssssssssssssasascsseslel—=34
Action Of AWAITIO::ceeseeesoccsccssssasns cesaee cessas cesee2.3-10
File Security Checking.eeeeeeeeeeeoseocososssccccescsssassl2ald—70
File System Path Error RECOVEIYeeeeeeesosccscsssnasssssssl2.4-30
Transfer Modes for TerminalS.cececscscecsscecccsoscncanses eees2.5-7
Conversational Mode Interrupt CharacterSececcecesececesssa2.5-11
Page Mode Interrupt Characterseeeeceeceecss cesseccesnnasssseelad=17
BREAK: Single Process per Termindl.cececececcscsccssesossssl2ad>=28
Break Mod@:eeeeeesoeeaens cececccesesecssssssssssesscsesssled=32
ExXclusive Access Using BREAK:.:.eceeeeececcccccccne ceeecccassl2.5=-34
Column-Binary Read Mode for CardSecceeeececececses cesesseaceesl2.8-3
Packed-Binary Tead Mode for CardS.eeceeceecececsees - R
Link Control BlOCKSeeeeeoseseesssssscessasssssssoscocsssssss 2.11-1
Resident Buffering (NonStop systems Only).ceeeceeeceeeeesss2.11=-5
Program versus ProCeSS..sesss ctecscesecescsssssersesss s 3.1-2
A Process (NONStOP SYSteMS) ceeeeecscsscccccsasssssssssoasseldel=3
A Process (NONStoOp IT SYSELEMS) ceeeeccccecscscscsasscsasossl.l—d
Process Pairs..... Ceececcecccsssssssaresssasesns cesesesesed.l=11
Home Terminalececeeecscses cesesessetcasss sttt ccans eeees3.1-18
Effect Of STEPMOM: s cceoccocoscscssasscosssasosscsscnsssscssslel=4q7
Execution Priority EXampPle..ceececeeceeeeccccans T

Xvii

Volume 2

4-1. Last AdAreSS.cceesessssssssocassnnsss O e ¥
5-1. A NonStop Programeseceecssss L T R
5-2. Checkpoints and Restart Points.....coecesessses ceseesessead.3=-14
5-3. Backup Open by BacCKkUp ProCeSS.ececesecessscesccscassecsssesdd=1
7-1. Passing Of ACCESSOr ID'Seeeeerenenocscscccsocnnse B P)
7-2. Effect of Adopting a Program File's Owner IDe.cececececees cesell=9
9-1. FCB LinKinNgeeeeeeeeeseeacesossseassoscssssssssssassasnsenssssssd—dl
9-2. Precedence of Setting File CharacteristiCS.cecieececccecceccas 9-49
11-1. File NameS....... cecsecssasscans ceceescccsssaseana ceeeseeee .11-3
11-2, DisC File NAGMESeeseeeseasssosssssssssossasssssssasassssssssssll=b
12-1. "Serveobj" PrOgraM:.cceececeececseosceosecacnsaocsnssacs ceeesl2.1-3
12-2. Request ChecCkpoinNteeeeeeeeeeesscossccossscccsssasnasosssnsssl2,1-9

TABLES
Volume 1

[I |
¢ o 0

NNII\.)NI\)N
A W)
. L]

CONTROL OperatioOnS.c.c.cccecececescsassccosscsassasssssoscscssssslald=lT
CONTROLBUF OpPEeratiOnSecccceccessecsccsscssccccessoessssssscscccessled—22
Device Types and SubtypPesS.ccceeeeeeeeeecscncnncas ceeeseeal 327
Exclusion/Access Mode Checkingeeceeeeeeeenass cesecscseaceaslal3=71
SETMODE FUNCLIONS et s eeeossssasssssccccccssssscssssscscsssssleld—97
Path Error Recovery for Devices Other than Discs

and ProCeSSeSeeccecaecssss Y SR
2-7. Terminal CONTROL and SETMODE OperatioOnS.ceccesscescsecesseel2ead=37
2-8. Line Printer CONTROL and SETMODE Operations..... ceceecneeel b-17
2-9, Magnetic Tape CONTROL OpPeratiONS.csseeccccececcccccsasnscceslel=17
2-10. ASCII Equivalents to BCD Character Set.eecsceceececcccecss 2.7-19
Volume 2
5-1. Action Of CHECKMONITOR::eeeeecooocsss cessecesssssssssscssan.2=7
7-1. Allowability Of File ACCESSeecesccecccccusesccsssssccssssslol=8
7-2., Operational RestrictionSececcececscess s esssccasessesnnnne .7.1=-12
7-3. SETMODE Functions Related to SeCurity.ceececeececeees ceeesesle2=4
10-1. Modifiers Usable with Edit DesSCriptOrSececesecssescessasssal0-43
B-1. File System ErrOr SUMMALY .ececeeeeesscossaccccceaassasnnsoncesss B-3

xviii

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual.

NOTATION

UPPER-CASE
CHARACTERS

<lower-case
characters>

Brackets

Braces

Ellipses

MEANING

All keywords and reserved words appear in capital
letters. (A keyword is defined as one that, if it
is present at all in the context being described,
must be spelled and positioned in a prescribed way,
or an error will result. A reserved word is one
that can only be used as a keyword.) If a keyword is
opticnal, it is enclosed in brackets. If a keyweord
is required, it is underlined.

All variable entries supplied by the user are

shown in lower-case characters and enclosed in angle
brackets. If an entry is optional, it is enclosed
in brackets. If an entry is required, it is
underlined.

Brackets, [1, enclose all optional syntactic
elements. A vertically-aligned group of items
enclosed in brackets represents a list of selections
from which cone, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces, , represents a list of selections from
which exactly one must be chosen.

An ellipsis (...) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be
repeated a number of times. An ellipsis following a
pair of braces that contains a series of syntactic
elements preceded by a separator character indicates
that the entire series may be repeated, intact, a
number of times. (NOTE: 1In coding syntax of this

Xix

Colons

Punctuation

System
Procedure
Calls

XX

form, the separator is to be entered before each
repetition, not before the first occurrence of the
item or series.)

A colon (:) between two syntactical entities
signifies a "from...through..." relationship. For
example, the command CHANGE 1:6 " " gpecifies
that positions 1 through 6 are to be filled with
spaces.

All punctuation and symbols other than those
described above must be entered precisely as shown.
If any of the above punctuation appears enclosed in
quotation marks, that character is not a syntax
descriptor but a required character, and must
actually be entered.

Calls to operating system procedures are shown in
the following form:

1 CALL] <procedure name> (<parameters>)
<retval> :=

CALL is a TAL CALL statement.

"<retval> :=" indicates that the procedure is a
function procedure (i.e., it returns a value of the
indicated <type> when referenced in an exXpression).

<procedure name> is the name of the operating svstem
procedure.

Required parts of the calling sequence are
underlined. Optional parameters may be omitted, but
placeholder commas "," must be present except for
right-side omitted parameters.

A function procedure's return value is described as
follows:

<retval>, <type>
<type> is INT or INT:32

Note that a function procedure can be called with a
CALL statement. However, the return value will be
lost.

<parameters> are described as follows:

<parameter>,<type> : Eref 1 [+ <num elements>],
value

<type> is INT, INT(32), or STRING

"ref" indicates a reference parameter. Note that
if a parameter is a "STRING:ref" parameter, a word-
addressed variable (e.g., INT) can be passed for
that parameter; the TAL compiler will produce
instructions to convert the word address to a byte
address. Note, however, that on NonStcp systems,
an invalid address will result if the word address
is greater than 32767.

<num elements> indicates that the procedure returns
a value of <type> to <parameter> for <num
elements>. An asterisk "*" in this position
indicates that the number of elements returned
varies depending on the number of elements
requested.

"value" indicates a value parameter.

XxXi

The GUARDIAN operating system provides a number of utility procedures

SECTION 4

UTILITY PROCEDURES

for use by application programs. These procedures are as follows:

CONTIME

DEBUG

FIXSTRING

HEAPSORT

INITIALIZER

LASTADDR

NUMIN

NUMOUT

SHIFTSTRING

TIME

TIMESTAMP

TOSVERSION

takes 48 bits of a time stamp and provides a date
and time in internal machine representation

calls the debug facility

edits a string of characters based on information
supplied in an editing template

sorts an array of equal-size elements in place
reads the startup message and, optionally, the
assign and param messages to prepare global
tables and initialize File Contrcl Blocks (FCB”s)

preovides the glcobal (“G°[0] relative) address of
last word in the caller”s data area

converts the ASCII representation of a number into
its binary equivalent

converts the internal machine representation of a
number to its ASCII equivalent

upshifts or downshifts alphabetic characters in a
string

provides the current date and time in internal
machine representation

provides the current value of the processor clock
where this application is running

provides an identifying letter and number indicating

which version of the GUARDIAN operating system is
running

UTILITY PROCEDURES
CONTIME Procedure

The CONTIME procedure converts a 48-bit timestamp to a date and time
in integer form.

The call to the CONTIME procedure is:

CALL CONTIME (<date and time> , <t0> , <tl> , <t2>)

- = —— - — — — — - ———————— - a—a - e e m -

where
<date and time>, INT:ref:7,

is an array where CONTIME returns a date and time in the
following form:

<date and time>[0] year (1975, 1976, ...)
<date and time>[1] month (1-12)
<date and time>[2] day (1-31)
<date and time>[3] hour (0-23)

<date and time>[4]
<date and time>[5]
<date and time>[6]

minute (0-59)
second (0-59)
.01 sec (0-99)

<t0>, <tl>, <t2>, INT:value,
must correspond to the 48 bits of a timestamp for the
results of CONTIME to have any meaning (<t0> is the most
significant word, <t2> is the least).

example:

CALL CONTIME (time, t[0], t[1], t[2]);

For example, CONTIME can be used to convert the <last mod time>
timestamp into a readable form:

INT last”t[0:2], date”time[0:6];

Then the last modification time is obtained through a call to the
FILEINFO procedure:

CALL FILEINFO(fnum,,,,,,,,last”t);

Then CONTIME is used to convert the three words in "last”™t" to a date
and time:

CALL CONTIME (date”time,last”t,last™t[1l],last"t[2]);

Seven words of date and time are returned in "date"time".

UTILITY PROCEDURES
DEBUG Procedure

The debug facility can be invoked directly by calling the DEBUG
procedure.

The call to the DEBUG procedure is:

CALL DEBUG

For a description of the debug facility and instructions feor using
it, see the DEBUG Reference Manual for your type cof system (NonStop
system or NonStop II system).

UTILITY PROCEDURES
FIXSTRING Procedure

The FIXSTRING procedure is used to edit a string based on
subcommands provided in a template.

The call to the FIXSTRING procedure is:

CALL FIXSTRING (<template> , <template length>

r <maximum data length>
; <modification status>)

where
<template>, STRING:ref,

is the character string to be used as a modification
template.

<template length>, INT:value,
is the length, in bytes, of the template string.
<data>, STRING:ref,

is the string to be modified; the resulting string is
returned in this parameter.

<data length>, INT:ref,

the modified data string is returned in this parameter.
<maximum data length>, INT:value,
<data> may be expanded during the call to FIXSTRING. If
omitted, 132 is used for this wvalue.
<modification status>, INT:ref:1l,
if present, is returned an integer value as focllows:

0 no change was made to <data>.

on <data> (see "Considerations" below).

is the length, in bytes, of the data string. The length of

if present, contains the maximum length, in bytes, to which

1 a replacement, inserticon, or deletion was performed

4-4

UTILITY PROCEDURES
FIXSTRING Procedure

condition code settings:

A

(CCL) indicates that one or more of the required parameters
is missing.
(CCE) indicates that the operation completed successfully.

> (CCG) indicates that an insert or replace would have
caused the <data> string to exceed the <maximum data
length>,
example:

CALL FIXSTRING (template, temp”len, data, data”len,
mod“status);
IF > THEN ... ! too long

SUBCOMMANDS

There are three basic subcommands that may be used in <template>:
replacement, insertion, and deletion. 1In addition, replacement
can be either explicit (a subcommand beginning with "R"™) or
implicit (a subcommand beginning with any nonblank character other
than "R", "I", or "D"). The form of <template> is

<template> = { <subcommand> // ... }

<subcommand> =

R<replacement string> ! replace subcommand
I<insertion string> ! insert subcommand

D ! delete subcommand
<replacement string> 1 implicit replacement

A character in <template> is recognized as the beginning of a
subcommand if it is the first nonblank character in <template>,
the first nonblank character following "//", or the first
nonblank character following a "D" subcommand. Otherwise, it
is considered to be part of a previous subcommand.

Note that a subcommand may immediately follow "D" without being
preceded by "//".

If a subcommand begins with "R", "I", or "D", it is recognized

as an explicit command. Otherwise, it is recognized as an
implied replacement.

4-5

UTILITY PROCEDURES
FIXSTRING Procedure

The action of the subcommands is as follows:
R (or r), for "replace"

replaces characters in <data> with <replacement string> on
a one-for-one basis. Replacement begins with the character
corresponding to "R". The <replacement string> is
terminated by the end of <template> or by a "//" sequence
in <template>. Trailing blanks are considered part of the
replacement string (i.e., are not ignored).

Implied replacement

A subcommand that dces not begin with "R", "I", or "D" is
recognized as a <replacement string>. Characters in
<replacement string> replace the corresponding characters
in <data> con a one-for-one basis.

D (or d), for "delete"

deletes the corresponding character in <data>.

I (or i), for "insert"

inserts a string from <template> into <data> preceding the
character corresponding to the "I". The <insertion string>
is terminated by the end of <template> or by a "//" sequence
in <template>. Trailing blanks are considered part of the
insertion string (i.e., are not ignored).

Examples:

replacement
<data> on entry to FIXSTRING: THIS IS A STRING
<template>: rNEW STRING

<data> on return from FIXSTRING: THIS IS A NEW STRING

implied replacement
<data> on entry to FIXSTRING: THIS IS A STRIMG

<template>: N
<data> on return from FIXSTRING: THIS IS A STRING

4-6

UTILITY PROCEDURES
FIXSTRING Procedure

replacement terminated by "//"

<data> on entry to FIXSTRING: THID IS A BAD OLD STRING

<template>: s// rNEW STRING //
<data> on return from FIXSTRING: THIS IS A NEW STRING

(If the first "//" had been omitted, the "r" would be
considered part of the <replacement string> associated with
the implied replacement that begins with "S", and the
resulting string would be "THIS rNEW STRING". The
second "//" could be omitted, but the four trailing blanks
preceding it are necessary; without them, the resulting
string would be "THIS IS A NEW STRINGRING".)

deletion
<data> on entry to FIXSTRING: THIS IS A LONG STRING
<template>: ddddd

<data> on return from FIXSTRING: THIS IS A STRING
(Note that one of the spaces surrounding "LONG"
was deleted.)
"D" occurring as part of another subcommand
<data> on entry to FIXSTRING: THIS IS XATA
<template>: rD

<data> on return from FIXSTRING: THIS IS DATA

("D" is the <replacement string> associated with "r".)

insertion
<data> on entry to FIXSTRING: THIS IS A STRING
<template>: i NEW

<data> on return from FIXSTRING: THIS IS A NEW STRING

several operations combined in one <template>
<data> on entry to FIXSTRING: THID IS A BAD OLD STRIG

<template>: s// ddddrNEW// iN
<data> on return from FIXSTRING: THIS IS A NEW STRING

4-7

UTILITY PROCEDURES
FIXSTRING Procedure

CONSIDERATIONS

The <maximum data length> serves to protect data residing past the
end of the <data> string. Therefore, <data> is truncated whenever

<data length> exceeds <maximum data length> during processing by
FIXSTRING.

In particular, <data> is truncated by FIXSTRING if <data length>
temporarily exceeds <maximum data length>, even if <template>
contains delete subcommands that would have resulted in a <data>
string of the correct length.

If an insertion would cause the length of <data> to exceed <maximum
data length>, the <insertion string> is truncated. Example:

assume <maximum data length> is 6

<data> on entry to FIXSTRING: AB
<template>: 11234567890
<data> on return from FIXSTRING: Al234B

<modification status> is set to 1 if a replacement is performed
that leaves <data> unchanged. For example:

<data> on entry to FIXSTRING: THIS IS A STRING
<template>: THIS IS A STRING
<data on return from FIXSTRING: THIS IS A STRING

<modification status> is set to 1, since a replacement has been
performed by FIXSTRING.

USING FIXSTRING TO IMPLEMENT AN FC COMMAND

FIXSTRING is generally used to implement an FC command in an

interactive process (for example, the debug facility or the GUARDIAN
Command Interpreter).

An

FC command could be implemented in an interactive command

interpreter as follows:

4-8

INT .command[-1:3] := "< ",

command length <= 8 characters
.last”"command([0:3],

save previous command

Gy gme e qum

num, length of current command string
save " num; length of last command string
STRING .scommand := @command “<<” 1l; ! command addressed as string

INT PROC fc; FORWARD;

UTILITY PROCEDURES
FIXSTRING Procedure

PROC command”interpreter;
BEGIN

INT repeat := 0 a flag used to determine whether

command”interpreter should attempt
to execute a command upon return

-e

from "fc"
WHILE 1 DO ! the main locp of command”interpreter executes
BEGIN ! until an "exit" command is encountered.

IF NOT repeat THEN

BEGIN
command “:=" "<"; | assume "<" is the prompt character
CALL WRITEREAD(term, command, 1, 8, num);

Displays the prompt character and reads a command,
assuming "term" is the device number of the

terminal.
END;
IF command = "FC" THEN repeat := fc
ELSE
BEGIN ! identify and execute command,

! or print an "illegal command" message.

repeat := 0;
END;

IF num THEN
BEGIN
‘save”num := num;
last”command “:=" command FOR (save " num+l)/2;

Saves last command and its length in case next
command is "FC".

END;

END; ! main loop
1

END; command”interpreter

INT PROC fc;
BEGIN

INT .temp“array[0:35], ! array to hold modification template
temp”len; ! length of template

STRING .s"temp”array := @temp”array “<<” 1;

!

temp“array addressed as string

4-9

UTILITY PROCEDURES
FIXSTRING Procedure

4-10

command [-1] “:=" "< ",

r

num := save ' num;
command “:=" last”command FOR (num+l)/2;

DO
BEGIN

CALL WRITE(term, command[-1], num + 2:);
! display "<" followed by the last ccmmand.

temp”“array “:=" " ."; | template prompt

CALL WRITEREAD (term, temp“array, 2, 72, temp”len);

! display prompt and read template.
IF > OR temp”len = 2 AND temp“array = "//" THEN
BEGIN ! restore command
num := save num;

»

command “:=" last”command FOR (num+l)/2;
RETURN 0;
END;

An EOF or a template consisting of "//" causes "fc" to
return 0, indicating that "command”interpreter"™ should
not execute the command, but should prompt for a new
command instead. If the new command is "FC", then the
string to be fixed is the command that was originally
being modified on the previous call to "fc".

CALL FIXSTRING (s"temp”array, temp”len, scommand, num);

"scommand" now contains the modified command, and "num"
is its length. If "temp”len" > 0, the loop executes
again, displaying the modified command and expecting a
new template. If "temp“len" = 0, then a <cr> was input
instead of a template. 1In this case, FIXSTRING leaves
the command unchanged and returns a value of 1,
indicating that command”interpreter should attempt to
identify and execute the command.

END
UNTIL NOT temp”len;

! loop executes until "temp”len" = 0,
! indicating a <cr>

RETURN 1; ! indicates to the calling procedure that
! the command came from "fc" and shculd be
! identified and executed.
END; 1fe

UTILITY PROCEDURES
HEAPSORT Procedure

The HEAPSORT procedure is used to sort an array of equal-size elements
in place.

The call to the HEAPSORT procedure is:

CALL HEAPSORT (<array> , <num elements> , <size of element>

where
<array>, INT:ref,

is an array containing equal-size elements to be sorted.
<num elements>, INT:value,

is the number of elements in <array> to be sorted.
<size of element>, INT:value,

is the size, in words, of each element in <array>.

<compare proc>, INT PROC,

is an application-supplied function procedure that is called

by HEAPSORT to determine the sorted ordering (ascending or
descending) of the elements in <array>. It must be of the

form:

INT PROC <compare proc> (<element a> , <element b>)

INT .<element a> , .<element b> ;

where

the <compare proc> must compare <element a> with
<element b> and return either of the following values:

0 (indicating false) if <element b> should precede
<element a>

1 (indicating true) if <element a> should precede
<element b>

<element a> and <element b> are INT:ref parameters.

4-11

UTILITY PROCEDURES
HEAPSORT Procedure

example:

CALL HEAPSORT(array,num”elements,size,comp”proc);

The following example illustrates the use cof HEAPSORT.
LITERAL element”size = 12;

INT .array([0:119], ! array to be sorted.
num”elements;

Elements of twelve words each are to be sorted in ascending order.
Therefore the following "compare proc" is written:

INT PROC ascending (a,b);
INT .a, .b;
BEGIN
RETURN IF a < b FOR 12 THEN 1 ELSE O0;
END;

Then HEAPSORT is called to sort "array":

num”elements := 10;
CALL HEAPSORT (array,num”elements,element”size,ascending);

sorts the ten elements in "array" in ascending order.

4-12

UTILITY PROCEDURES
INITIALIZER Procedure

The INITIALIZER is a procedure used to read the startup and
(opticonally) assign and param messages sent by the Command
Interpreter. The INITIALIZER procedure optionally prepares tables of
a predefined structure and properly initialized file FCB”s with the
information read from the startup and assign messages.

The call to the INITIALIZER procedure is:

<status> := INITIALIZER (<rucb>
CALL =} emmemmeome-

<passthru>
<startupproc>
<paramsproc>
<assignproc>
<flags>)

- W N m -

where
<status>, INT,
is either:

0 = This is the primary process (of a potential

process pair).

-1

This is the backup process, CHECKMONITOR
returned (it received no stack checkpeints
from the primary), and bit 12 of <flags> was 1l.

<rucb>, INT:ref,

is a table which contains pointers to the FCB”s (see
section 9, "Sequential I/0 Procedures").

<passthru>, INT:ref,

is an array where the <startupproc>, <assignproc>,

and <paramsproc> procedures may pass information back
to the caller of the INITIALIZER.

<startupproc>, <paramsproc>, and <assignproc>
are application-supplied message processing

procedures that are called by the INITIALIZER when
a message of the appropriate type is received.

UTILITY PROCEDURES
INITIALIZER Procedure

These procedures must be of the form:

PROC <name> (<rucb>, <passthru>, <message>

,<meslen> ,<match>) VARIABLE

where

<rucb>, INT:ref,

is described in section 9, "Sequential I/0
Procedures”.

<passthru>, INT:ref,

is an array where the procedure may save information
for the caller of the INITIALIZER.

<message>, INT:ref,
is the startup, the param, or one of the assign
message(s) received. The maximum length of a message
is 1028 bytes (including the trailing null
characters).

<meslen>, INT:value,
is the length, in bytes, of the message.

<match>, INT:value,

is the number of FCB”s whose entire logical file
names match the logical file name in this ASSIGN
message.

If this is not an assign message or if the <rucb>
parameter is not passed, the match count is always
zZero.

<flags>, INT,

contains several fields that determine actions to be
taken by the INITIALIZER, as follows:

<flags>.<0:10>
<flags>.<1l1l>

must be zero
request assign and param messages?
0 = yes 1l = no

4-14

UTILITY PROCEDURES
INITIALIZER Procedure

<flags>.<12> = abend if backup takeover occurs before
first primary stack checkpcint?
0 = yes 1l = no
<flags>.<13> = if 1, CALL MONITORNET (-1)
<flags>.<1l4> = if 1, CALL MONITORCPUS (-1)
<flags>.<15> = if 1, CALL ARMTRAP (-1,-1)

The INITIALIZER procedure provides a way of receiving startup, assign,
and param messages without concern for details of the $RECEIVE
protocol. (See section 11, "COMINT/Applicaticon Interface".) The
INITIALIZER obtains messages from $RECEIVE and calls the user-supplied
procedure, passing the messages as a parameter to the procedure.

In addition, if the <rucb> parameter is supplied, the INITIALIZER will.
store FCB”s based on the information supplied by the startup and
assign messages. These FCB”s are in the form expected by the
sequential i/o procedures, and may be used with the sequential i/o
procedures without change. If the application does not use the
sequential i/o procedures to access the files, the information
recovered from the assign messages may be obtained from the FCB“s by

using the SET"FILE procedure. See section 9, "Sequential I/O
Procedures".

When invoked by the primary of a potential process pair, the
INITIALIZER reads the startup message, then opticnally requests assign
and param messages. For each assign message the FCB”s (if <rucb>

is passed) are searched for a logical file name matching the logical
file name contained in the assign message. If a match is found, the
information from the assign message is put into the file”s (or files”)
FCB(s), and the match count is incremented. For proper matching of
names, the "progname" and "filename" fields of the assign message

must be blank-filled.

The INITIALIZER is useful in program startup. It does the following:
In the primary process:

l. 1Inspects <flags>.<13:15>, and calls the appropriate procedures,
if any.

2. Determines if this is a primary of the process pair.
3. Opens $RECEIVE.
4. Reads the startup sequence from MOM:

a. Stores startup and assign information in <rucb> if an
array was passed.

UTILITY PROCEDURES
INITIALIZER Procedure

b. Calls procedures if any were passed (optionally, "assign"
and "params" procedures).

c. Calls ABEND, if the messages that are read from SRECEIVE
are not in the correct order. (The correct order is

the startup message, then the assign messages, then the
param message.)

d. Rejects messages from anycne other than MOM with reply
code 100 (OPEN messages) or 60 (all others).

Note: If bit 11 of <flags> is 0, the INITIALIZER replies to MOM’s

5.

6.

7.

startup message with an error return value of 70. This
requests assign and param messages from MOM. If bit 11 of
<flags> is 1, the INITALIZER replies to the startup message
with an error return value of 0 and no reply text. This
indicates that the process does not wish to receive assign
or param messages. (See section 11, "Command Interpreter/
Application Interface".)

Closes SRECEIVE.

Performs the following:

a. Substitutes the FCB”s actual file names for default
physical file names.

b. Expands partial file names in the FCBs.
c. Places information into the <rucb> if used.
d. Replaces system names with system numbers.

Returns 0, indicating primary process.

In the backup process:

Note:

Inspects <flags>.<13:15> and calls the appropriate procedures,
if any.

Determines that this is the backup of the named process pair.

Calls CHECKMONITOR. If CHECKMONITOR returns, this indicates
that the primary process failed before it made a stack
checkpoint.

In this case, if <flags>.<12> = 0, the INITIALIZER calls ABEND;
if <flags>.<12> = 1, the INITIALIZER returns -1, indicating
the CHECKMONITOR failed.

Normally CHECKMONITOR does not return; see section 5,
"Checkpeointing Facility".

UTILITY PROCEDURES
LASTADDR Procedure

The LASTADDR (last address) function procedure returns the “G”[0]

relative address of the last word in the application process”s data
area.

The LASTADDR function is invoked as follows:

<last address> := LASTADDR

where
<last address>, INT,

is the “G”[0] relative word address of the last word in
the application process”s data area.

example:

highest”address := LASTADDR;

The LASTADDR function can be used to determine the number of memory
pages allocated to a running application preogram:

num”pages := LASTADDR.<0:5> + 1;

A bit extraction is performed on the six high-order address bits
returned from LASTADDR. One is added to that value (figure 4-1).

— —t— G [0]

DATA
AREA

— —<— G [LAST ADDR]

Figure 4-1. Last Address

UTILITY PROCEDURES
NUMIN Procedure

The NUMIN function procedure converts ASCII representations of
numbers, bases from 2 through 10, to signed integer values.

The NUMIN function is invoked as follows:

} <next address> := } NUMIN (<ascii number> , <signed result>
CALL } mememm e e e

where

<next address>, INT,

is the “G”[0] relative string address of the first character
in <ascii number> that was not used in the conversion.

<ascii number>, STRING:ref,

is an array containing the number to be converted to signed
integer form. <ascii number> is of the form:

£ + } % <number> <nonnumeric>

where "%" means treat the number as an octal value
regardless of the specified <base>.

<signed result>, INT:ref:1,

is a variable where NUMIN returns the result of the
conversion.

<base>, INT:value,

specifies the number base of <ascii number>. Legitimate
values are 2 through 10.

<status>, INT:ref:1,

is a variable where NUMIN returns a number that indicates
the outcome of the conversion. The values for <status>

are:
1 = non-existent number (string does not start with "+",
".m_ "g", or numeric
0 = valid conversion
-1 = illegal integer (number cannot be represented in 15

bits) or illegal syntax

4-18

UTILITY PROCEDURES
NUMIN Procedure

example:

@next”addr := NUMIN(in"buffer, number, 10, stat);
or
CALL NUMIN(in"buffer, number, 10, status);

CONSIDERATIONS

e Number conversion stops on the first ASCII numerical character

representing a value greater than <base>-1 or non-numerical ASCII
character.

® Base-10 numerical values must be in the range of {-32768:32767}.
Numerical values in other number bases will be accepted if they can
be represented in 16 bits. Note that the magnitude is computed
first, then the value is possibly negated (e.g., %177777 = -%1).

Examples of NUMIN:

The value of NUMIN can be used to determine the number of characters
converted:

STRING number [0:9] := "12345 "e.
INT result, status, .next"char

Then NUMIN is invoked:
@next”char := NUMIN(number , result , 10 , status);

After NUMIN executes, the pointer variable "next”char" contains
the address of "number[5]" (the sixth element).

Then subtracting
num”converted := @next”char “-° @number;

provides the number of characters used in the conversion (i.e.,
five).

An alternate way of doing the same:

num”~converted := NUMIN (number,result,l0,status) “- @number;

Another example, this time showing a string containing an ASCII
number greater than the base being converted:

STRING number [0:5] := "%$19234";

Then NUMIN is invoked:

4-19

UTILITY PROCEDURES
NUMIN Procedure

@next”char := NUMIN (number, result, 8, status);

The only character converted to its octal representation is "1".
At completion, the pointer variable "next”char" points to the
character "3".

4-20

UTILITY PROCEDURES
NUMOUT Procedure

The NUMOUT procedure converts unsigned integer values to their ASCII
equivalents using any number base from 2 through 10. The result is
returned right-justified in an array, filled with leading zeroces.

The call to the NUMOUT procedure is:

CALL NUMOUT (<ascii result> , <unsigned integer> , <base>

where
<ascii result>, STRING:ref:*,

is the array where NUMOUT returns the converted value. The
ASCII representation is returned right-justified in <ascii
result> [<width> - 1], filled with leading zeros.

<unsigned integer>, INT:value,
is the value to be converted.

<base>, INT:value,
is the number base desired for the resultant conversion.

<width>, INT:value,

is the maximum number of characters permitted in <ascii
result>. Characters may be truncated on the left side.

example:

CALL NUMOUT (out”buffer, err”"num, 8, 5);

For example, an application wants to convert an INT value to its
base-10 ASCII equivalent:

STRING array[0:5];

INT variable := 2768;
LITERAL base = 10, width = 6;

CALL NUMOUT (array, variable, base, width);

After NUMOUT executes, "array" contains:

UTILITY PROCEDURES
NUMOUT Procedure

"002768"

Ancther example, using the same number but

CALL NUMOUT(array, variable, 8, width);

After NUMOUT executes, "array" contains:
"005320"
A final example, using the same number and

with a "width" of 3:

CALL NUMOUT(array, variable, 10, 3);

After NUMOUT executes, "array" contains:

ll'768|l

converting to base 8:

converting to base 10 but

The result is truncated toc three characters; the three leftmost

characters are lost.

UTILITY PROCEDURES
SHIFTSTRING Procedure

The SHIFTSTRING procedure upshifts or downshifts all alphabetic
characters in a string. Non-alphabetic characters remain unchanged.

The call to the SHIFTSTRING procedure is:

CALL SHIFTSTRING (<string> , <count> , <casebit>)

where
<string>, STRING:ref,

is the character string to be shifted.

<count>, INT,

is the length of the string in bytes.

<casebit>, INT,

indicates whether tc upshift or downshift the string. If
this parameter is even, the procedure upshifts, making all
alphabetic characters upper-case; if it is odd, the procedure
downshifts, making all alphabetic characters lower-case.

example:

CALL SHIFTSTRING (command, command”len, 0); ! upshift

4-23

UTILITY PROCEDURES
TIME Procedure

The TIME procedure provides the current date and time

The call to the TIME procedure is:

in

integer form.

CALL TIME (<date and time>

where

<date and time>,

INT:ref

is an array where TIME
the following form:

<date and
<date and
<date and
<date and
<date and
<date and
<date and

example:

time>[0]
time>[1]
time>[2]
time>[3]
time>[4]
time>[5]
time>[6]

CALL TIME(time"array);

7,

returns the current date and time in

year (1978,
month (1-12)
day (1-31)
hour (0-23)

minute (0-59)
second (0-59)
.01 sec (0-99)

1979,

)

4-24

UTILITY PROCEDURES
TIMESTAMP Procedure

The TIMESTAMP procedure provides the internal form of the CPU interval
clock where the application is running.

The call to the TIMESTAMP procedure is:

CALL TIMESTAMP (<interval clock>)

where
<interval clock>, INT:ref:3,

is an array where TIMESTAMP returns the current value of the
interval clock. A processor”s interval clock is incremented
every .0l second. <interval clock> is returned in the
following form:

<interval clock>[0]

most significant word

<interval clock>[1]

<interval clock>[2]

least significant word

example:

CALL TIMESTAMP (clock) ;

UTILITY PROCEDURES
TOSVERSION Procedure

The TOSVERSION function procedure provides an identifying letter and

number indicating which version of the GUARDIAN operating system is
running.

The TOSVERSION function is invoked as follows:

<version> := TOSVERSION

where
<version>, INT,
is returned a value of the form

<0:7> upper-case ASCII letter indicating system

level:

"A" = T.0.S.

"B" = GUARDIAN

"C" = GUARDIAN / 1.1

"D" = GUARDIAN / EXPAND

"E"™ = GUARDIAN / EXPAND / TMF

"K" = GUARDIAN, NonStop II system

<8:15> revision number of system, in binary

4-26

SECTION 5
CHECKPOINTING FACILITY
To aid in the development of NonStop programs, the checkpointing
facility, which is an integral part of the GUARDIAN operating system,
is provided.
The following topics are covered in this section:
e Overview of Checkpointing Procedures

e Overview of NonStop Programs
e Overview of Checkpointing

OVERVIEW OF CHECKPOINTING PROCEDURES

The checkpointing facility consists of a set of procedures which are
used to

e Transfer control to the backup in case of failure of the primary
process or its processor module:

CHECKMONITOR (backup process)
e Open and close a process pair”s files:
OPEN and CLOSE (primary process)
CHECKOPEN and CHECKCLOSE (primary process)
CHECKMONITOR (backup process)

e Checkpoint a primary”s execution state to its backup process:

CHECKPOINT or CHECKPOINTMANY (primary process)
CHECKMONITOR (backup process)

The following types of information are checkpointed:
- the primary process’s data stack (defines a "restart" point)

- individual arrays (e.g, file buffers) in the application
process”s data area

CHECKPOINTING FACILITY
Introduction

- for disc files, the file”s "synchronization block"

e Transfer control to the backup process so that the system load is
redistributed:

CHECKSWITCH (primary process)
CHECKMONITOR {bkackup process)

@ Monitor the operational state of one or more processor modules:
MONITORCPUS (primary and backup processes)
e Obtain the count and operational states of processor modules:

PROCESSORSTATUS

OVERVIEW OF NonStop PROGRAMS

The actions of the primary and backup processes of a NonStop program
are shown in figure 5-1.

CHECKPOINTING FACILITY
Introduction

PRIMARY BACKUP
PROCESS PROCESS

read ‘“‘startup’’ message CHECKMONITOR

OPEN files

create backup process

CHECKOPEN files

———- — .
A A .
READ entry from terminal READ
READ record from disc READ
update record in memory update ...
| .
CHECKPOINT CHECKPOINT ...
WRITE updated record to disc WRITE ‘ ..
— ——

THE BACKUP STAYS IN CHECKMONITOR WHILE THE PRIMARY IS OPERATIONAL.
IF THE PRIMARY FAILS, THE BACKUP LEAVES CHECKMONITOR AND BEGINS
EXECUTING AT THE POINT INDICATED BY THE LAST CALL TO CHECKPOINT BY
THE PRIMARY.

Figure 5-1. A NonStop Program

Basically, the following actions take place when a NonStop program
runs:

l. First, the program is given a process name at run time. This
permits the new process (and eventually its backup) to run as a
named process pair and therefore take advantage of facilities of
the Process-Pair Directory (PPD) (see "Process-Pair Directory" in
section 3, "Process Control"). (Nocte: An alternate, more
primitive method of setting up a NonStop program is to use two
non-named processes and have each call the STEPMOM procedure
to "adopt" the other.)

2. The new process, which typically is designated the primary
process, reads the startup message from its creator (e.g., a
Command Interpreter).

3. The primary process opens any files required for its execution.

5.1-3

CHECKPOINTING FACILITY
Introduction

4.

The primary process then creates the backup process in another
processor module. The backup process is given the same process
name as the primary.

The backup process, at the beginning of its execution, calls the
CHECKMONITOR procedure. This is as far as the backup executes
unless a failure of the primary process occurs.

The primary process opens the same files for the backup process
via calls to CHECKOPEN. This permits files to be cpen by the pair
in a manner that permits both members of the pair to have a file
open while retaining the ability to exclude other processes from
accessing a file. For disc files open in this manner, a record or
file lock by the primary is alsc an equivalent lock by the backup.

The primary process then begins executing its main processing
loop. At critical points through the execution loop, typically
before writes to disc files, the primary calls CHECKPOINT to send
part of its environment and pertinent file contrel information to
the backup preocess. Typically, a program contains several calls
to CHECKPOINT; each call checkpecints only a pertion of the primary
process”s environment. Calls to CHECKPOINT that checkpecint the
data stack define restart points for the backup process.

If the primary process fails, the backup begins executing at the
restart point indicated by the latest call to CHECKPOINT that

checkpointed the data stack. The backup process is now considered
tc be the primary process.

If the reason for the primary process failure was a processor
module failure {i.e., cpu down), the new primary process creates
a backup process when the failed processor module is repaired and
brought back online. This new backup process is then ready to
take over if the primary process fails. (This is the normally
recommended procedure; an alternative action is to create a
backup process immediately in another cpu.)

OVERVIEW OF CHECKPOINTING

The following types of information can be checkpointed:

the process”s data stack

The data stack, in this context, is considered to be the area from
an address specified in the call to CHECKPOINT (usually the address
of the last global variable) through the current top-of-stack
location (i.e., the word pointed to by the current setting of the S
register). This area contains the local data storage for all
currently active procedures and their stack markers.

individual blocks of data in the data area

These are usually file buffers, but may be any data desired.

5.1-4

CHECKPOINTING FACILITY
Introduction

e disc file "sync blocks"

A "sync block" contains control information about the current state
of a disc file (e.g., current value of the file pointers).

When a call to CHECKPOINT is made by the primary process, a message
containing the information to be checkpointed is formatted and sent to
the backup process in the form of an interprocess message. The
message is received and processed by the CHECKMONITOR procedure in the
backup process.

Data Stack

The purpose of checkpointing the data stack is to provide a restart
point for the backup process. This is possible because the stack
markers in the data stack define the executing environment of the
primary process at the time of the call to CHECKPOINT, and because the
primary”s data stack is duplicated in the backup. If the primary
process fails, CHECKMONITOR simply returns through the stack marker
for the latest call to CHECKPOINT. In this manner, the backup begins
executing following the latest call to CHECKPOINT.

Data Buffers

The purpose of checkpointing data buffers is to preserve the state of
the process so that the backup can continue processing. Typically,
data buffer checkpointing occurs just before writing to a disc file;
the data about to be written is checkpointed. Careful selection of
data buffers (and corresponding file sync information, discussed in
the following paragraphs) to checkpoint can increase the efficiency of
a NonStop program. An example of data buffer checkpointing is an
entry received from a terminal; the data buffer is checkpointed to
minimize the possibility that the operator would have to reenter data.
Note that data buffers residing in the data stack are checkpointed
when the stack is checkpointed.

Sync Blocks

The purpose of checkpointing the sync block is twofold:

1. To ensure that no write operation is duplicated when a backup
takes over from its primary

2. To pass the current values of file pointers to the file system
on the backup side

When a checkpoint of the sync block occurs, the information in the
sync block is passed to the file system by CHECKMONITOR.

CHECKPOINTING FACILITY
Introduction

The reason for preventing duplicate operations is illustrated in the
following sequence:

A primary completes the following write operation successfully, but
fails before a subsequent checkpoint to its backup -

RESTART POINT ——»(C) CHECKPOINT POSITION AND DATA

X POSITION(fl,-1D); ! position to eof
X WRITE(fl,fl"buffer);

k%% FAILURE OF PRIMARY ***

On the takeover from the primary, the backup reexecutes the
operations just completed by the primary. If the WRITE were
performed as requested, it would duplicate the record, but at the
new end-of-file location.

So that no write operation already performed by the primary will be
duplicated by the backup process, the <sync depth> parameter of OPEN
must be specified as a value greater than zero when opening the file.
For a file open in this manner, a sync ID in the sync block is used
by the file system in the event of a primary process failure to
identify the operation about to be performed by the backup. If the
backup requests an operation already completed by the primary, the
file system, through use of the sync ID, recognizes this condition.
Then, instead of performing the requested operation, the file system
returns the completion status of the operation to the backup (the
completion status was saved by the file system when the primary
performed the operation). However, if the requested operation had not
been performed, it is performed and the completion status is returned
to the backup. The course of action that is taken by the file system
is completely invisible to the backup process.

The file system has the capability to save the completion status of
the latest 15 operations with a file and to relate those completions
with up to 15 operations requested by a backup process upon takeover
from a failed primary process. The maximum number of completion
statuses that the file system is to save is specified in the <sync
depth> parameter to OPEN. The sync depth value is typically the
same as the maximum number of write operations to a file without an
intervening checkpoint of the file”s sync block. In most cases, the
sync depth value is 1. It cannot exceed 15.

CHECKPOINTING FACILITY
Checkpointing Procedures

The checkpointing procedures are:

CHECKCLOSE

CHECKMONITOR

CHECKOPEN

CHECKPOINT

CHECKPOINTMANY

CHECKSWITCH

MONITORCPUS

PROCESSORSTATUS

is called by a primary process to close a file in
its backup process

is called by a backup process to monitor the
operability of its primary process. CHECKMONITOR
performs two functions: 1) it performs the
operations required when CHECKOPEN, CHECKPOINT, or
CHECKCLOSE is called in the primary process, and 2)
it returns control to the appropriate point in the
backup process in the event that a failure of the
primary process or processor coccurs or if the
primary calls CHECKSWITCH

is called by a primary process to open a file in its
backup process

is called by a primary process to checkpoint its
data stack, local file buffers, and/cr file
synchronization information to its backup process.
The data stack and any combination of up to 13 data
blecks or file sync blocks can be checkpointed in a
single call

has the same function as CHECKPOINT, except that it
allows an unlimited number of data blecks and file
sync blocks to be checkpointed in a single call

is called by a primary process to switch contrel to
its backup process. A call to CHECKSWITCH is an
implicit call to CHECKMONITOR so that the primary
process becomes the backup process

instructs the GUARDIAN operating system to notify the
caller if the operating state of a designated
processor mcedule changes from an operable to a
non-operable state or from a non-operable to an
operable state

returns a count of the number of processors in the
system and the up-down state of each processor

Note: The following procedures are called implicitly by the
"CHECK" procedures, and therefore are not normally called
explicitly. However, they can be used by application
programmers when writing application-dependent failure
recovery techniques:

GETSYNCINFO

is called by a primary process to acquire a disc
file“s sync informaticen so that it can be can be
sent to its backup process

CHECKPOINTING FACILITY
Checkpointing Procedures

RESETSYNC is called by a backup process, following a takeover

from its primary, to clear a disc file”s sync
information on the backup side. RESETSYNC is called
prior to reexecuting disc operations when the backup
wants the operation to occur regardless of whether
or not the operation has already been performed by
the primary. RESETSYNC is also called to
resynchronize any open files whose file sync blocks
were not checkpointed after the most recent stack
checkpoint

SETSYNCINFO is called by a backup process, following a takeover

from its primary, to set a disc file”s sync
information on the backup side. SETSYNCINFO is
called prior to reexecuting disc operations that may
have just been performed by the primary so that
already-completed operations will not be repeated

CONSIDERATIONS

If a file is open with no-wait i/o specified, the following calls
are rejected with a file management error 27 if there are any
outstanding (i.e., uncompleted) operations pending:

GETSYNCINFO
RESETSYNC
SETSYNCINFO

A call to

CHECKCLOSE,

CHECKOPEN,
CHECKPOINT,

CHECKPOINTMANY, or
CHECKSWITCH

causes an interprocess message tc be sent to the process indicated
by the "creator process ID" in the caller”s Process Control Block.
The creator process ID is automatically set to the process ID of
the backup process .at process creation if the primary/backup
process pair is named. If the process pair is not named, then the
backup process must call the STEPMOM procedure, specifying the
primary process, before the primary process makes a call to one of
these procedures. (The interprocess message is received and
processed by CHECKMONITOR in the backup process.)

CHECKPOINTING FACILITY
CHECKCLOSE Procedure

The CHECKCLOSE procedure is called by a primary process to close a
designated file in its backup process. The backup process must be in
the "monitor" state (i.e., in a call to CHECKMONITOR) for the
CHECKCLOSE to be successful. The call to CHECKCLOSE causes the
CHECKMONITOR procedure in the backup process to call the file
management CLOSE procedure for the designated file.

The call to the CHECKCLOSE procedure is:

CALL CHECRCLOSE (<file number> , <tape dispesition>)

where
<file number>, INT:value,
identifies the file to be closed in the backup process.
<tape disposition>, INT:value,
if present, specifies mag tape disposition:
where

<tape disposition>.<13:15>

rewind and unlcad, don”“t wait for completicn
rewind, take offline, don”t wait for completion
rewind, leave online, don”“t wait for completiocon
rewind, leave online, wait for completion

don“t rewind, leave online

> W N O
W nu

if omitted, 0 is used.

condition code settings (from the CLOSE in the backup process):

A

(CCL) indicates that an invalid file number was supplied
or that the backup process dcoes not exist.

(CCE) indicates that the CLOSE was successful.

(CCG) is not returned by CHECKCLOSE.

\"

example:

CALL CHECKCLOSE (tape”file, 1);

7

CHECKPOINTING FACILITY
CHECKCLOSE Procedure

CONSIDERATIONS

The condition code returned from CHECKCLOSE indicates the outcome
of the CLOSE in the backup process.

See the considerations for "CLOSE" in the "File Management
Procedures" section.

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

The CHECKMONITOR procedure is called by a backup process to menitor
the state of the primary process, and to return control tec the
appropriate peoint in the backup process in the event of a failure of
the primary process.

The call to the CHECKMONITOR procedure is:

<status> := CHECKMONITOR
CALL, =} =

where
<status>, INT,
is returned a status word of the following form:
<0:7> = 2, <8:15> = 0 primary stopped
primary abended

primary”s processor failed
primary called CHECKSWITCH

[OVIN 0

Note: The normal return from a call to CHECKMONITOR is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the
call to CHECKMONITOR only if the primary process has not
checkpointed its stack via a call to CHECKPOINT.

example:

CASE CHECKMONITOR.<8:15> OF
BEGIN

END;

CONSIDERATIONS

e If the process pair is not named (i.e., not in the PPD), the
STEPMOM procedure must be called prior to the call to CHECKMONITOR
and before the primary process makes its first call to CHECKPOINT.

e While CHECKMONITOR executes, its local data area consists of
approximately 500 words starting at

“G” [$MIN (LASTADDR, 32767) - 500]

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

- that is, to 500 words below the last available location in the
application process”s data stack. This region is used by
CHECKMONITOR to call other operating system procedures. If the
primary attempts to checkpeint its data area in this region, then
an "illegal parameter" error is returned to the primary process
from CHECKPOINT.

If this failure occurs, then the number of data pages to be
allotted the process should be increased via the "?DATAPAGES" TAL
compiler command. (This method of increasing data area size should
be used, rather than increasing the data area at run time via the
Command Interpreter MEM parameter, to aveoid creating a backup with
a different data area size than its primary.)

® The specific action of CHECKMONITOR for an action by the primary
process is given in table 5-1.

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

Table 5-1. Action of CHECKMONITOR

Primary

Backup (CHECKMONITOR)

No action

CHECKOPEN

CHECKPOINT

CHECKCLOSE

CHECKSWITCH

Process
Failure

At beginning of CHECKMONITOR execution, the current
state of cpu monitoring for the caller is saved
(i.e., the current MONITORCPUS <cpu mask>), then
MONITORCPUS is called, specifying conly the primary”s
processor medule.

OPEN is called for the designated file.

If all or a portion of the primary”s data stack was
checkpointed, the data is moved into the
corresponding location in the backup”s data stack.

If a local data buffer was checkpointed by name, the

data is moved intc the appropriate location in the
backup®s data area.

If file synchronization information was checkpointed,
SETSYNCINFO is called for the designated file.

CLOSE is called for the designated file.

First CHECKMONITOR calls RESETSYNC for any file whose
synchronization information the primary did not
checkpeint in its preceding call to CHECKPOINT. CPU
monitoring is returned te the state that was in
effect before CHECKMONITOR was called. Contrel is
then returned to the point in the backup process as
indicated by the latest call to CHECKPOINT in the
primary process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following the
call to CHECKMONITOR.

(STOP or ABEND system message received for primary).
First CHECKMONITOR calls RESETSYNC for any file whose
synchronization information the primary did not
checkpeint in its preceding call to CHECKPOINT. CPU
monitoring is returned tco the state that was in
effect before CHECKMONITOR was called. Control is
then returned te the peint in the backup process as
indicated by the latest call to CHECKPOINT in the
primary process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following the
call to CHECKMONITOR.

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

Table 5-1. Acticon of CHECKMONITOR (cont”d)

Primary Backup (CHECKMONITOR)
Processor (Processor Failure system message received for
Failure primary”s processor module). First CHECKMONITOR

calls RESETSYNC for any file whose synchronization
information the primary did not checkpoint in its
preceding call to CHECKPOINT. CPU monitoring is
returned to the state that was in effect before
CHECKMONITOR was called. Control is then returned
to the point in the backup process as indicated by
the latest call to CHECKPOINT in the primary
process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following
the call to CHECKMONITOR.

CHECKPOINTING FACILITY
CHECKOPEN Procedure

The CHECKOPEN procedure is called by a primary process to open a
designated file for its backup process. The file must first be opened
by the primary process. The backup process must be in the "monitor"
state (i.e., in a call to CHECKMONITOR) for the CHECKOPEN to be
successful. The call to CHECKOPEN causes the CHECKMONITOR procedure

in the backup process to call the file management OPEN procedure for
the designated file.

The call to the CHECKOPEN procedure is:

CALL CHECKOPEN (<file name> , <file number>
r <sync or receive depth>
; <sequential block buffer>
, <buffer length>

, <back error>)

where

the following parameters must be passed the same values as

those passed for the corresponding parameters in the call to
OPEN for this file:

CHECKOPEN parameter corresponding OPEN parameter

<file name>, INT:ref

<file name>
<file number>, INT:value = <file number>
<flags>, INT:value = <flags>

<sync or receive depth>, INT:value

<sync or receive depth>

<sequential block buffer>, INT:ref

<sequential block buffer>
<buffer length>, INT:value = <buffer length>

The following parameter is required:

<back error>, INT:ref:l,

>= 0, is the file management error number reflecting the
call to OPEN in the backup process.

CHECKPOINTING FACILITY
CHECKOPEN Procedure

-1, indicates that the backup process is not running,
or that the checkpoint facility could not communicate
with the backup process.

Condition code settings (from the OPEN in the backup process):

A

(CCL) indicates that the OPEN failed. The file management
error number is returned in <back error>.
(CCE) indicates that the file cpened successfully.

> (CCG) indicates that the OPEN was successful, but an
excepticnal condition was detected. The file
management error number is returned in <back error>.
example:

CALL OPEN (filename, filenum);
IF < THEN ! OPEN failed for primary.

CALL CHECKOPEN (filename, filenum,,,,, error);
IF < THEN ... ! OPEN failed for backup.

CONSIDERATIONS

The condition code returned from CHECKOPEN indicates the outcome of
the OPEN in the backup process.

See the considerations for OPEN in the appropriate programming
manual (i.e., GUARDIAN, ENSCRIBE, or ENVOY).

If an "unable to communicate with backup" error occurs (i.e., <back
error> = -1), this normally indicates either that the backup
process does not exist or that a system rescurce problem exists. If
a system resource problem is indicated, then either the open
request message to the backup is unduly large or the SHORTPOOL size
in the processor module where the error occurs is tco small.

<back error> = 17 is returned if the file is not cpen by the
primary process or the parameters supplied to CHECKOPEN do not
match the parameters supplied when the primary process opened the
file.

If a process file is opened in a no-wait manner (<flag>.<8> = 1),
that file is CHECKOPENed as no-wait. Errors detected in parameter
specification and system data space allocation are returned by
CHECKOPEN in <backerr>, and the operation is considered complete.
If no error is returned in <backerr>, the operation must be
completed by a call to AWAITIO in the primary process. The tag
value returned by AWAITIO is -29D if the <tag> parameter is
specified; the returned count and buffer address are undefined. 1If

5.2-10

CHECKPOINTING FACILITY
CHECKOPEN Procedure

CCL is returned by AWAITIO, the file has been automatically
checkclosed by the checkpeinting facility. For a non-process file,
or a process file that was wait-opened, bit 8 is reset internally
te 0 and ignored. The user can call AWAITIO to complete CHECKOPENs
which he was required to complete for the primary open of the file,
by calling AWAITIO.

5.2-11

CHECKPOINTING FACILITY
CHECKPOINT Procedure

The CHECKPOINT procedure is called by a primary process to send
information pertaining to its current executing state to its backup
process. The purpose of the checkpoint informaticn is to enable the
backup process to recover from a failure of the primary process in an
orderly manner. The backup process must be in the "monitor" state
(i.e., in a call to CHECKMONITOR) for the CHECKPOINT to be successful.

The CHECKPOINT procedure provides for checkpointing the process”s data
stack and any combination of up to thirteen separate data blocks and
file synchronization blocks. A data block can be from any location in
the data area (these are usually file buffers that are not
checkpointed as part of the stack).

The call to the CHECKPOINT procedure is:

1 <status> := l CHECKPOINT (<stack base>

CALL
r <buffer 1> , <count 1>
, <buffer 2> , <count 2>

; <buffer 13> , <count 13>)

where
<status>, INT,
is returned a status word of the following form:

<0:7> = 0, no error
1, nc backup or unable to communicate with backup
<8:15> = file management error number
2, takeover from primary, then
<8:15> = 0, primary stopped
l, primary abended
2, primary”s processor failed
3, primary called CHECKSWITCH
3, illegal parameter, then
<8:15> = number of parameter in error
(leftmost position = 1)

<stack base>, INT:ref,

if present, checkpoints the process”s data stack from <stack
base> through the current top-of-stack location (“S%). A
checkpoint of the data stack defines a restart point for the
backup process.

5.2-12

CHECKPOINTING FACILITY
CHECKPOINT Procedure

<buffer n>, INT:ref,

if present, checkpoints a block of the process's data area
(usually a file buffer) from <buffer n> for the number of
words specified by the corresponding <count n> parameter. If
<buffer n> is omitted, <count n> is treated as a <file
number>, and that file's file synchronization block is
checkpointed.

<count n>, INT:value.

The use of this parameter depends on the presence or absence
of the corresponding <buffer n> parameter:

If <buffer n> is present, then <count n> specifies the
number of words to be checkpointed.

If <buffer n> is absent, then <count n> is the <file
number> of a file whose synchronization block is to be
checkpointed.

example:

@p := 0; ! beginning of global area
stat := CHECKPOINT (p,,fnum”a,,fnum”b);

CONSIDERATIONS

If an "unable to communicate with backup" error occurs, this
normally indicates either that the backup process does not exist or
that a system resource problem exists. If a system resource problem
is indicated, then either the checkpoint message to the backup is
unduly large or the SHORTPOOL size in the processor module where
the error occurs is too small.

If an attempt is made to checkpoint the data area in the region
used by CHECKMONITOR in the backup process, then an "illegal
parameter" error is returned. See the "Considerations" for
CHECKMONITOR for the recovery procedure.

If a file's sync information is checkpointed, the call to the
CHECKPOINT contains an implicit call to GETSYNCINFO for the file.
Therefore, checkpointing of a file's sync information should not be
performed between an i/o completion and a call to FILEINFO for the
file. If file sync information checkpointing is performed,
FILEINFO returns the status of the call to GETSYNCINFO (usually.,
<error> = 0).

5.2-13

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

The CHECKPOINTMANY procedure, like the CHECKPOINT procedure, is called
by a primary process to send information pertaining to its current
executing state to its backup process. The CHECKPOINTMANY procedure 1is
used in place of CHECKPOINT when there are more than 13 pieces of
information to be sent.

The CHECKPOINTMANY procedure provides for checkpeinting the process”s
data stack and any number of separate data blocks and file

synchronization blocks, limited by system limits on the size of the
resulting message.

The call to the CHECKPOINTMANY procedure is:

{ <status> := CHECKPOINTMANY (<stack base>
CALL

, <descriptors>)

where

<status>, INT,

is returned a status word of the following form:

<0:7> = 0, no error
1, no backup or unable to communicate with backup
<8:15> = file management error number
2, takeover from primary, then
<8:15> = 0, primary stopped
1, primary abended
2, primary”s processor failed
3, primary called CHECKSWITCH
3, illegal parameter, then
<8:15> = (see "Considerations" below)

<stack base>, INT:ref,

if present, checkpoints the process”s data stack from <stack
base> through the current top-of-stack location (“S”). A

checkpoint of the data stack defines a restart point for the
backup process.

<descriptors>, INT:ref,

if present, is an array which describes the items (data
blocks and/or file synchrcnization blocks) to be check-
pcinted. The first word of the array, <descriptors[0]>, is
a count of the number of items to be checkpointed.
<descriptors{0]> is in the range {1:32767}. The rest of the

——

5.2-14

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

array consists of pairs of words, each pair describing one
of the items.

If the first word of the pair is -1, the pair describes a
file synchrenization block item for the file whose file
number is in the second word of the pair:

-1
<file number>

<descriptors pair>[lst]
<descriptors pair>[2nd]

Otherwise the pair of words describes a data block tc be
checkpointed: the first word is the word address of the data

block, and the seccond word of the pair is the length, in
words, of the data block:

<buffer>
<count>

<descriptors pair>[lst]
<descriptors pair>[2nd]

The size, in words, of the <descriptors> array must be at
least

1l + 2 * <descriptors[0]>.

example:
desc[0] := 2; ! count of items
desc([l] := -1; ! sync item:
desc[2] := fnum a; ! file number
desc[3] := @buffer; ! data item: word address
desc[4] := 512; ! number of words

stat:= CHECKPOINTMANY(stk”base, desc);
! this is equivalent to:
! stat := CHECKPOINT(stk”base,,fnum”a,buffer,512);

CONSIDERATIONS

If <status>.<0:7>

3, then <status>.<8:15> has the following

meaning:
<status>.<8:15> = 1 : error in <stack base> parameter
<status>.<8:15> = n, n > 1 : error in <descriptor>[n - 2]

Following word 0, <descriptor> consists of pairs of words. If the
pair describes a file sync block (first word of pair = -1, second
word = file number) then <descriptor>[n - 2] is the second word
of the pair in the event of an error (such as GETSYNCINFO failed).

5.2-15

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

If the pair describes a buffer (first word = address, second word
length), then:

If the
bounds
of the
If the

pair.

address, or the address plus the length, results in a
vicolation, then <descripteor>[n - 2]

pair.

is the first werd

pair causes the system to run out of buffer space for the
checkpoint, then <descriptor>[n - 2] is the second word of the

If the total amount of data tc be checkpeinted (data + sync
blocks + stack) exceeds 32K bytes, n is set equal to 2 *
descriptor[0].

e If an attempt is made to checkpecint the data area used by
CHECKPOINTMANY for system-oriented stack maintenance, then an
"illegal parameter"™ error is returned.

® Also see the "Considerations"

5.2-16

for

"CHECKPOINT".

CHECKPOINTING FACILITY
CHECKSWITCH Procedure

The CHECKSWITCH procedure is called by a primary process to cause the
duties of the process pair to be interchanged. CHECKSWITCH is
intended to be used following the relcad of a processcr module. The
purpose is to switch the process pair”s work back te the original
primary processor module. CHECKSWITCH causes the current backup to
become the primary process and begin processing from the latest call
to CHECKPOINT. The call to CHECKSWITCH contains an implicit call to
CHECKMONITOR, so that the caller becomes that backup and monitors the
execution state of the new primary. The backup process must be in the

"moniter™ state (i.e., in a call to CHECKMONITOR) for the CHECKSWITCH
to be successful.

The call to the CHECKSWITCH procedure is:

<status> := { CHECKSWITCH
CALL } —mmmm——

where

<status>, INT,

on return, returns a status word of the following form:

<0:7> =1, could not communicate with backup, then
<8:15> = file management error number

2, <8:15> 0 primary stopped

1 primary abended

2

3

n
Wi

<0:7>

primary”s processor failed
primary called CHECKSWITCH

Note: The normal return from a call to CHECKSWITCH is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the

call to CHECKSWITCH only if the primary process has not

checkpointed its stack via a call to CHECKPOINT.
example:

stat := CHECKSWITCH;

CONSIDERATIONS

® See the CHECKMONITOR procedure for the action of CHECKSWITCH
fellowing the takeover by the backup process.

5.2-17

CHECKPOINTING FACILITY
GETSYNCINFO Procedure (disc and process files)

Note: Typically, GETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKPOINT.

The GETSYNCINFO procedure is called by the primary process of a
primary/backup process pair before starting a series of write
operations to a file open with paired access. GETSYNCINFO returns a
disc file”’s synchronization block so that it can be sent to the backup
process in a checkpoint message.

The call to the GETSYNCINFO procedure is:

CALL GETSYNCINFO (<file number> , <sync block>

, <sync block size>)

where
<file number>, INT:value,
identifies the file whose sync block is to be obtained.
<sync block>, INT:ref:*,

is returned the synchronizaticon block for this file. The
size, in words, of <sync block> is determined as follows:

- for unstructured disc files, size = 4 words
- for ENSCRIBE structured files, size, in words, =

7 + (longest alt key len + pri key len + 1) / 2
<sync block size>, INT:ref:1,
is returned the size, in words, of the sync bleock data.
condition code settings:
< (CCL) indicates that an error occurred (call FILEINFO).
= (CCE) indicates that GETSYNCINFO was successful.
> (CCG) indicates that the file is not a disc file.

example:

CALL GETSYNCINFO (file"num, sync®id);
IF < THEN; ! error

5.2-18

CHECKPOINTING FACILITY
MONITORCPUS Procedure

The MONITORCPUS procedure instructs the GUARDIAN operating system to
notify the application process if a designated processor module fails
(a failure being indicated to the operating system by the non-receipt
of an operating system "I'm alive" message) or returns from a failed
to an operable state (i.e., reloaded by means of a Command Interpreter
RELOAD command). The calling application process is notified by a
means of a system message read via the $RECEIVE file.

The call to the MONITORCPUS procedure is:

CALL MONITORCPUS (<cpu mask>)

where
<cpu mask>, INT:value,

has a bit set to "l"corresponding tc each processor module
to be monitored:

processor module O
processor module 1

<cpu mask>.<0>
<cpu mask>.<1>

<cpu mask>.<15>

processor module 15
<cpu mask> = 0 means no notification occurs.
example:

CALL MONITORCPUS (%140000); ! cpu“s 0 & 1

The system messages associated with MONITORCPUS, in word elements,
are:

® CPU Down message. There are two forms of the CPU Down message:

-2
<cpu>

<sysmsg>
<sysmsg>[1]

This form is received if a failure occurs with a processor
module being monitered. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

and

-2
$<process name>

<sysmsg>
<sysmsg>[1l] FOR 3
<sysmsg>[4]

5.2-19

CHECKPOINTING FACILITY
MONITORCPUS Procedure

This form is received by an ancestor process when the
indicated process name is deleted from the PPD because of a
processor module failure. This means that the named
process [pair] no longer exists.

e CPU Up message:

<sysmsg>
<sysmsg>[1]

-3
<cpu>

This message is received if a relocad occurs with a processor
module being monitored.

5.2-20

CHECKPOINTING FACILITY
PROCESSORSTATUS Procedure

The PROCESSORSTATUS procedure is used to obtain a count of the number
of processor modules in a system and their operatiocnal states.

The call to the PROCESSORSTATUS procedure is:

<processor status> := PROCESSORSTATUS

where
<process status>, INT(32),

is returned two words indicating the count and states of
processor modules.

The most significant word is the count of processor modules.

The least significant word is a bit mask indicating the
operational state of each processor medule:

<ls word>.<0> = processor module 0
<ls word>.<1l> = processor module 1

<ls word>.<15> = processor module 15

A "1" indicates that the corresponding processor module is
up (i.e., operaticnal). A "0" indicates that the
corresponding processor module is down or does not exist.

example:

INT(32) cpu”info;
INT num”cpus cpu”info,
cpu”state cpu”infe + 1;

wn

cpu”info := PROCESSORSTATUS;

5.2-21

CHECKPOINTING FACILITY
RESETSYNC Procedure (disc and prccess files)

Note: Typically, RESETSYNC is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The RESETSYNC procedure is used by the backup process of a
primary/backup process pair after a failure of the primary process
when a different series of operations will be performed than those of
the primary before its failure. The RESETSYNC procedure clears a
paired access file”s synchronization block so that the operations to
be performed by the backup are not errcnecusly related to the
operations just completed by the primary process.

RESETSYNC is also called to resynchronize any cpen files whose file

sync blocks were not checkpointed after the most recent stack
checkpoint.

The call to the RESETSYNC procedure is:

CALL RESETSYNC (<file number>)

where
<file number>, INT:value,

identifies the file whose synchronization block is to be
cleared.

condition code settings:
(CCL) indicates that an error occurred (call FILEINFO).

(CCE) indicates that RESETSYNC was successful.
(CCG) indicates that the file is not a disc file.

v ilA

example:

CALL RESETSYNC (file"num);
IF < THEN; ! error

5.2-22

CHECKPOINTING FACILITY
SETSYNCINFO Procedure (disc and process files)

Note: Typically, SETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The SETSYNCINFO procedure is used by the backup process of a
primary/backup process pair after a failure of the primary process.
The SETSYNCINFO procedure passes a paired accessed file”s latest
synchronization block (received in a checkpoint message from the
primary) to the file system. Following a call to the SETSYNCINFO
procedure, the backup process can retry the same series of write
operations started by the primary before its failure. (The use of the
synchronization bleck ensures that operations that may have been

completed by the primary before its failure are not duplicated by the
backup.)

The call to the SETSYNCINFO procedure is:

CALL SETSYNCINFO (<file number> , <sync block>)

where
<file number>, INT:value,

identifies the file whose synchronization block is being
passed.

<sync block>, INT:ref,

is the latest synchronization bleck received from the
primary process.

condition code settings:

(CCL) indicates that an error occurred (call FILEINFO).
(CCE) indicates that SETSYNCINFO was successful.
(CCG) indicates that the file is not a disc file.

vV ilA

example:

CALL SETSYNCINFO (file”num, syncid);
IF < THEN; ! error

5.2-23

CHECKPOINTING FACILITY
Using the Checkpointing Facility

This section describes

e The general structure of a NonStop program
® Considerations for opening files
® General considerations for checkpeointing
Example of where checkpoints should occur
Sync Blocks for disc files
Checkpointing multiple disc updates
Considerations for no-wait i/c
The action to take when a system message is read
The action to take when the backup takes over
How to open a file during processing
How a process pair should create a descendant process [pair]

NenStop PROGRAM STRUCTURE

The general structure of a typical NonStop program is
@ a process startup (beginning of program) phase, and

e a main processing loop.

Process Startup for Named Process Pairs

The use of named process pairs for NonStop programming is considered
to be the usual case. Non-named process pairs are used only in
special cases.

The process startup code is executed by both the primary and backup
processes following their creation.

The general steps involved in process startup are:

1. Save the stack base address for checkpointing.

2. Call ARMTRAP so process will abend if trap occurs.
3. Determine if the process is the primary or backup -

If primary then

begin
4. open SRECEIVE (no-wait) and, optionally, read startup message
5. open files
6. monitor the backup cpu
7. create backup process:
if created then
begin
8. open files in backup process
9. use Awaitio to complete nowait opens in backup process
10. checkpeint environment te backup
end
end

CHECKPCINTING FACILITY
Using the Checkpcinting Facility

11. else ! backup ! monitor the primary.
12, 1Initiate a read on $RECEIVE to check for backup stopped or
processor up/down messages.

After performing these steps, execute the main processing loop.

1. SAVE THE STACK BASE ADDRESS: This is necessary for subsequent
checkpointing of the data stack. The stack base address should be

kept in a global variable. The stack base address is that of the
first local variable of the main procedure:

INT .stackbase; ! global pointer variable.

PROC m MAIN;
BEGIN
INT .ppdentry[0:8], ! first local variable in MAIN.

base = “L” + 1; ! address equivalence.
@stackbase := @base; ! saves the address.

2. CALL ARMTRAP: The ARMTRAP procedure should be called to handle
any trap that may occur. The simplest method of using ARMTRAP is

CALL ARMTRAP (0, -1);
This causes the process to abend if a trap occurs.

The process may wish to analyze the reason for the trap. If this is
desired, refer to section 6, "Traps and Trap Handling".

Note: During the pregram debug phase, it is usually desirable to
omit the call to ARMTRAP. Then, if the process traps, DEBUG
will be called.

3. DETERMINE IF PRIMARY OR BACKUP: One way to determine if a process
is a primary or its backup is to look at its entry in the Process-Pair
Directory (PPD):

INT .ppdentry[0:8];

CALL GETCRTPID (MYPID, ppdentry);
CALL LOOKUPPROCESSNAME (ppdentry);
IF < THEN CALL ABEND; ! no entry.

This returns the PPD entry for this process. 1If

LOOKUPPROCESSNAME fails, either the process doces not have a
name or the system cannot access the PPD. In either case, a
serious problem exists.

IF NOT ppdentry[4] THEN ! i“m the primary
BEGIN

5.3-2

The

4

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

The fact that ppdentry([4] (i.e., <cpu,pin 2>) = 0 indicates
that no backup has ever been created. Therefore, this
process must be the primary.

following actions are taken by the primary process:

OPEN SRECEIVE: The SRECEIVE file should be opened with no-wait

i/0
can
for

specified. No-wait i/o is specified so that a read on $RECEIVE
be continually outstanding. This is desirable so that the "check
completicon" form of AWAITIO (i.e., <time limit> = 0D) can be used

te check for system messages or so that system messages can be read
when waiting for completions on other files.

5.

INT .receive[0:11] := ["$RECEIVE", 8 * [" "]],
rfnum,

global
variables.

CALL OPEN (receive, rfnum, 1);
IF < THEN CALL ABEND;

Next, if a startup message is expected (e.g., Command
Interpreter parameter messagde), it should be read:

CALL READ {(rfnum, buf, count);
IF <> THEN CALL ABEND;

CALL AWAITIO (rfnum,, countread);
IF <> THEN CALL ABEND;

At this peint, a check should be made to determine if the
messade is a valid startup message (i.e., first word of the
message = -1).

OPEN PRIMARY’S FILES: The files to be referenced by the process

should be opened in the primary (see "File Open").

LITERAL
flagsl
sync”depthl
flags2 ey
sync“depth?2 ceor

glebal data declarations.

e e o g

e s oy

flagsn
sync”depthn

* o 0o 7

-
e« s oy

INT .fnamel[0:11],
fnuml,
.fname2([0:11],
fnum2,

.fnumn{0:111,

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
fnumn; !

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

CALL OPEN (fnamel, fnuml, flagsl, sync”depthl);
IF < THEN ! see note.
CALL OPEN (fname2, fnum2, flags2, sync”depth2);
IJF < THEN ! see note.

CALL OPEN (fnamen, fnumn, flagsn, sync”depthn);
IF < THEN ! see note.

Note: The action that should be taken if a file open fails (i.e.,
error <> 0) is application-dependent. For example, the primary
could abort itself. Or, if an invalid file name was received
by the process, the terminal operator could be queried for a
valid file name.

6. MONITOR THE BACKUP CPU: The MONITORCPUS procedure should be
called for the backup process”s processor medule. This is necessary
so that processor medule failure/reload system messages will be sent
to the primary process.

INT backup®cpu; ! backup cpu no.

! monitor the backup cpu.
CALL MONITORCPUS (%100000 “>>“ backup”cpu);

7. CREATE THE BACKUP PROCESS: Backup process creation is best
accomplished by writing a procedure which performs the following
functions:

@ process creation
e opening of the backup®s files
e checkpointing the primary”s environment

The reason for including these functions in a procedure is that backup
process creation may be necessary at several peints during process
execution. These are: during process startup, after a takeover by a
backup following a failure of its primary, a failure of backup
(ABEND) , or a reload of the backup”®s processor module.

The following is an example of backup process creation:

PROC createbackup;
BEGIN

Create the process:

INT .pfile[0:11],
pname[0:3],
backup”pid{0:3],
error;

CHECKPOINTING FACILITY
Using the Checkpointing Facility

CALL PROGRAMFILENAME (pfile);

returns the file name of the primary”s program file.
CALL GETCRTPID (MYPID, pname);

returns the process pair”s name.

CALL NEWPROCESS (pfile,, (LASTADDR”>>"10) “+” 1, backup”cpu,
backup”pid, error, pname);

creates the process. (For an explanation of the memory
parameter, see the LASTADDR procedure in section 4.)

Open the files in the backup process (see "File Open" for
considerations) :

Note:

Note:

IF backup”pid THEN ! it was created.
BEGIN

backup®up := 1; ! global variable.

! SRECEIVE file.

CALL CHECKOPEN (receive, rfnum, 1,,,, error);

IF <> THEN ... ! see note.

CALL CHECKOPEN(fnamel,fnuml,flagsl,sync”depthl,,,error);
IF <> THEN ... ! see note.

CALL CHECKOPEN(fname2,fnum2,flags2,sync”depth2,,,error);
IF <> THEN ... ! see note.

CALL CHECKOPEN(fnamen,fnumn,flagsn,sync”depthn,,,error);
IF <> THEN ... ! see note.

The action that a primary should take if a file open in its
backup fails (i.e., error <> 0) is application-dependent. For
example, the primary could stop the backup, then abort itself.
Or, the primary could stop the backup but continue processing
without a backup. If the latter course of action is taken,
however, the primary will receive a process STOP system
messade for the backup. Therefore, the primary should contain
logic so that it does not re-create its backup.

When a server is opened in a no-wait manner by a process pair,
the OPEN and the CHECKOPEN must both have been completed
without error by AWAITIO before the sync block is checkpointed.
If this restriction is not obeyed, the CHECKOPEN is rejected
with an error, and a takeover occurs, then the server may not
recognize the backup as a valid opener. 1In this case,

pending requests may be rejected with an error if retried
without the backup process first opening the file on its own.
When using no-wait opens, the primary process of a pair should
create the backup in the following manner to ensure a valid
takeover:

5.3-5

CHECKPOINTING FACILITY
Using the Checkpointing Facility

1. Create backup using the NEWPROCESS procedure.
2. CHECKOPEN all files.
3. Complete all no-wait CHECKOPENs by calls to AWAITIO.

4. Checkpoint the stack and Sync Blocks.

If the primary process dies, the backup is now ready to
continue processing. Normal processing can continue in
parallel with step 3, which may take a while if one or more
servers responds slowly.

Checkpoint the primary”s data area to the backup process (this will
include any startup message). If the data area is large, this may
require multiple calls to CHECKPOINT due to operating system SHORTPOOL
limitations:

CALL CHECKPOINT (, addr, count, ...);

Checkpoint all files” sync information and the data stack in the same
call:

! set restart point.
IF (status := CHECKPOINT (stackbase ,, fnuml,, fnum2,, ...
yr Enumn)) THEN

CALL analyze”checkpoint”status (status);

"analyze "checkpoint”status® is a procedure which
takes appropriate action for a checkpeoint failure or
takeover by backup. See "Takeover by Backup" for a
description of the "analyze”checkpoint”status"
procedure.

If multiple calls to CHECKPOINT are necessary, the data stack should
be checkpointed last. This checkpoint is then a restart point if the
primary should subsequently fail.

END; ! open files
END; ! of createbackup

1l. MONITOR THE PRIMARY: This is the action taken by the process if
1t 1s the backup. First, MONITORCPUS is called for the primary’s
processor module (this is done sc that the primary”s processor module
will continue to be monitored if and when the backup takes over). The
actual monitoring of the primary is accomplished by calling the
CHECKMONITOR procedure:

CHECKPOINTING FACILITY
Using the Checkpointing Facility

ELSE ! i“m the backup
BEGIN
! save the primary”s cpu num.
backup®cpu := ppdentry[3].<0:7>;
! monitor the primary cpu.
CALL MONITORCPUS (%100000 “>>“ backup”cpu);
CALL CHECKMONITOR;
CALL ABEND;
END;

The backup process only returns from the call to CHECKMONITOR
if the primary has not checkpointed its data stack. The
primary checkpoints its stack for the first time at the end of
creation of the backup process.

12. READ $RECEIVE: The primary should keep a read outstanding on
SRECEIVE at all times. This is desirable sc that process deletion and
processor failure/reload system messages can be received.

CALL READ (rfnum, rbuf, count):;
SUMMARY: The following is the example code for process startup:

INT backup”cpu,
.stackbase, ! global pointer variable.
.receive[0:11] := ["$RECEIVE", 8 * [" "]],
rfnum,
stop”count := 0,
backup®up := 0;

global data
declarations.

Ve ps fee a G g

LITERAL
flagsl
sync"depthl
flags2 cesy
sync“depth2 ooy

e« e 07

* e o g

flagsn
sync”depthn

° o o g

L3
e e oy

INT .fnamelf0:11],
fnuml,
.fname2[0:11],
fnum2,

.fnumn([0:11],
fnumn;

Gum S g $ue Guw G fmw Gum Gme Gmw O gem Sm Geme O frw b G

PROC m MAIN;
BEGIN
INT .ppdentry[0:8], ! first leocal variable in MAIN.

CHECKPOINTING FACILITY
Using the Checkpointing Facility

base = “L” + 1; ! address equivalence.
@stackbase := @base; ! save the address.

! abort the process if a trap occurs.
CALL ARMTRAP (0, -1);

CALL GETCRTPID (MYPID, ppdentry);
CALL LOOKUPPROCESSNAME (ppdentry) ;
IF < THEN CALL ABEND; ! no entry.

IF NOT ppdentry[4] THEN ! i“m the primary
BEGIN
! open S$RECEIVE.
CALL OPEN (receive, rfnum, 1);
IF < THEN CALL ABEND;
! read the startup message.
CALL READ (rfnum, buf, count };
IF <> THEN CALL ABEND;
CALL AWAITIO (rfnum,, countread);
IF <> THEN CALL ABEND;

! open the primary”s files.
CALL OPEN (fnamel, fnuml, flagsl, sync”depthl
JF < THEN ! error.
CALL OPEN (fname2,fnum2,flags2,sync”depth2)
IF < THEN ! error.

CALL OPEN (fnamen, fnumn, flagsn, sync”depthn

IF < THEN ! errer.

! monitor the backup cpu.
CALL MONITORCPUS (%100000 “>>“ backup”cpu);

! create the backup process.
CALL createbackup (backup®cpu);
END
ELSE ! i“m the backup
BEGIN
! save the primary”“s cpu num.
backup®cpu := ppdentry[3].<0:7>;
! monitor the primary cpu.
CALL MONITORCPUS (%100000 “>>”“ backup”cpu)
CALL CHECKMONITOR;
CALL ABEND;
END;

~e

! read SRECEIVE.
CALL READ (rfnum, rbuf, count):;

{ execute the main program loop.
CALL main”locp;

5.3-8

-e

CHECKPOINTING FACILITY
Using the Checkpointing Facility

END;
The following is the example code in the "createbackup" procedure:

PROC createbackup (backup®cpu);
INT backup”cpu;

BEGIN

INT .pfile[0:11],
pname[0:3],
backup”pid[0:3],
error;

CALL PROGRAMFILENAME (pfile);
CALL GETCRTPID (MYPID, pname);

CALL NEWPROCESS (pfile,,,backup”cpu,backup”pid,error,pname);

IF backup”pid THEN ! it was created.
BEGIN

backup®up := 1;

CALL CHECKOPEN (receive,rfnum,l,,,,error) ! SRECEIVE file.
IF <> THEN ... ! error.

CALL CHECKOPEN(fnamel,fnuml,flagsl,sync”depthl,,,error);
IF <> THEN ... ! error.

CALL CHECKOPEN(fname2,fnum2,flags2,sync”depth2,,,error);
IF <> THEN ... ! error.

CALL CHECKOPEN(fnamen,fnumn,flagsn,sync”depthn,,,error);
IF <> THEN ... ! error.

CALL CHECKPOINT (,, fnuml,; fnum2,, ..ce..,, £numn);
CALL CHECKPOINT (, addr, count, ...):

IF (status := CHECKPOINT(stackbase)) THEN ! restart peint.
CALL analyze”checkpoint”status (status);
END; ! open files
END; ! of createbackup

Process Startup for Non-Named Process Pairs

The startup for non-named process pairs is nearly identical to that
for named process pairs, except for the following items:

e The determination of primary/backup designation.

e The primary must send a startup message to the backup.

CHECKPOINTING FACILITY
Using the Checkpeointing Facility

e The backup must call the STEPMOM procedure for the primary. This
is necessary because the checkpointing facility uses the creator

process ID in the primary”s Process Control Bleck to determine the
destination of checkpoint messages.

® The startup message must be read via the READUPDATE procedure (and,
therefore, replied to via the REPLY procedure). This is done so

that the primary process will be suspended (and therefore prevented
from checkpointing) until the backup calls the STEPMOM procedure.

Note: There is no "ancestor" relationship between a non-named

process pair and the process initially responsible for their
creation.

In the following list of the general steps involved in process
startup, the differences from the startup process for named
process pairs are indicated by lettered steps:

1. Save the stack base address for checkpointing.
2. Call ARMTRAP, so process will abend if trap occurs.

A. Open S$RECEIVE (no-wait, receive depth = 1) and read the startup
message via READUPDATE.

B. Determine if the process is the primary or backup -

If primary then
begin

reply to startup message

open files

monitor the backup cpu

create backup process:

if created then
begin
D. send non-standard startup message to backup
8. open files in backup process
9. checkpoint environment to backup
end

L]

N o0

end
else ! backup ! monitor the primary.

e

12. 1Initiate a read on $RECEIVE to check for backup stopped or
processor up/down messages.

After performing these steps, execute the main pregram loop.

A. READ STARTUP MESSAGE: The S$RECEIVE file should be opened with
no-wait 1/0 and <receive depth> >= 1 specified. <receive depth> >=1
is specified so that the startup message can be read via a call to
READUPDATE, then later replied to via a call to REPLY. This is
necessary so that the backup process, after it reads its startup
messade, can cause the primary process tc be suspended until it has a
chance to call the STEPMOM procedure on the primary process.

5.3-10

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

INT .receive[0:11] := ["$RECEIVE", 8 * [" "]], ! global
r fnum, ! variables.

CALL OPEN (receive, rfnum, 1, 1);
IF < THEN CALL ABEND;

Next, the startup message (e.g., Command Interpreter parameter
message) is read:

CALL READUPDATE (rfnum, buf, count):;
IF <> THEN CALL ABEND;

CALL AWAITIO (rfnum,, countread);

IF <> THEN CALL ABEND;

The call to READUPDATE causes the sender of the startup
message to be suspended until the message is replied to. At
this peint, a check should be made to determine if the

message is a valid startup message (i.e., first word of the
messade = -1).

B. DETERMINE IF PRIMARY OR BACKUP: A recommended way to designate
whether a non-named process is a primary or its backup, is to have the
primary process send a ncn-standard startup message to the backup
after the backup”s creaticn. Then, if the new process reads a
standard startup message, it knows that it is the primary; otherwise,

it knows that it is the backup. A recommended form for a non-standard
startup message is

<startup message>[0]
<startup message>[1]

-1
-2

The first word of the startup is the same as the Command Interpreter”’s
startup message (this allows the program logic for checking for a
valid startup message to be the same for both the primary and the
backup). The primary/backup designation is made by checking word[l] of
the startup message:

IF buf[1] <> -2 THEN ! i“m the primary
BEGIN

A startup message from the Command Interpreter contains the
"default volume/subvol” names starting in word[l]. Therefore,

word[1].<0:7> = "$" for a standard Command Interpreter
startup message.

C. REPLY TO STARTUP MESSAGE: The primary process must reply to the
startup message via a call to the REPLY procedure:

CALL REPLY;

permits the Command Interpreter to continue executing.

5.3-11

CHECKPOINTING FACILITY
Using the Checkpointing Facility

D. SEND NON-STANDARD STARTUP MESSAGE TO BACKUP: A non-standard
startup message is sent to the backup following the backup”®s creation.
The non-standard startup message provides the primary/secondary
designation for the process pair:

IF backup”pid THEN ! it was created.
BEGIN

! open a file to the backup process.
CALL OPEN (backup”pid, fnum);
IF <> THEN ... ! couldn”t open backup. Bad news.

! build non-standard startup message.
buf [0] := -1;
buf [1] := -2;

! send the startup message.
CALL WRITE (fnum, buf, 4);
IF <> THEN ... ! couldn”t write to backup. Bad news.

The primary process is suspended at this point until
the backup process replies to the startup message.

! close the file to the backup process
CALL CLOSE (fnum);

backup®up := 1;

! open files for backup process.
CALL CHECKOPEN(fnamel,fnuml,flagsl,sync”depthl,,,error);
IF <> THEN ... ! error.

-

E. MONITOR THE PRIMARY: This is the action taken by the process if
it is the backup. First, STEPMOM is called for the primary process
(this is necessary so that the backup process will receive the
checkpoint messages sent when the primary calls CHECKPOINT). Next,
REPLY is called to reply to the startup message (this allows the
primary to resume execution and make its first call to CHECKPOINT).
Then, MONITORCPUS is called for the primary”s processor mcdule (this
is done so that the primary”s processor module will continue to be
monitored if and when the backup takes over). The actual monitoring
of the primary is accomplished by calling the CHECKMONITOR procedure:

5.3-12

CHECKPOINTING FACILITY
Using the Checkpointing Facility

ELSE ! i“m the backup
BEGIN
CALL MOM (backup®pid);
CALL STEPMOM (backup”pid);
IF < THEN CALL ABEND;
CALL REPLY;
! save the primary”s cpu num.
backup”cpu := backup®pid[3].<0:7>;
! monitor the primary cpu.
CALL MONITORCPUS (%100000 “>>” backup”cpu);
CALL CHECKMONITOR;
CALL ABEND;
END;

The backup process only returns from the call to CHECKMONITOR
if the primary has not checkpointed its data stack. The
primary checkpoints its stack for the first time at the end of
creation of the backup process.

Main Processing Loop

In addition to normal transaction processing, the main processing lcop
must

l. checkpoint at appropriate points
2. check the $RECEIVE file for system messages

3. perform special action when taking over from the primary

FILE OPEN

Files are opened in a primary process via calls to the

OPEN procedure.

For disc files, when automatic path error recovery is desired, the
number of write operations whose outcome the system is to remember is
specified in the <sync depth> parameter to OPEN.

Files are opened in a backup process by its primary process via calls
to the

CHECKOPEN procedure.

The use of CHECKOPEN permits both members of a process pair to have a
file open, while retaining the ability to exclude other processes from
accessing a file. For disc files open in this manner, a record/file
lock by the primary is alsc an equivalent lock by the backup.

Note that the same parameter values that are passed toc OPEN are alsc
passed to CHECKOPEN; both files must be open with the same <file

5.3-13

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

number>, <flags> value, and <sync depth> value.
For example, in the primary process:
LITERAL

flagsl
sync"depthl

LR

-
* e 0y

INT .fnamel[0:11],
fnuml,
error;

! open the file for the primary.

CALL OPEN (fnamel, fnuml, flagsl, sync”depthl);
IF <> THEN ... ! error occurred.

! open the file for the backup.

CALL CHECKOPEN (fnamel, fnuml, flagsl, sync”depthl,,, error);
IF <> THEN ... ! error occurred.

CHECKPOINTING

Checkpoints are used to preserve transaction data and identify a
restart point in the event of a failure. For each checkpoint in a
primary process, there is a corresponding restart peint in its backup
process, as shown in figure 5-2.

PRIMARY : BACKUP :
— —-
(‘!) {checkpoint) > (1|) (restart point)
)I< WRITEREAD terminal)I< WRITEREAD terminal
(2) {checkpoint) > (l) (restart point)
)I(READ disc)I(READ disc
(Z!I) {checkpoint) > (l) {restart point)
)I(WRITE disc)I(WRITE disc
):(WRITE terminal)II< WRITE terminal
o —

Figure 5-2. Checkpoints and Restart Points

5 . 3—14

CHECKPOINTING FACILITY
Using the Checkpeointing Facility

For example, if a primary process fails subsedquent to the return from
a call to CHECKPOINT, its backup process will begin executing from
the corresponding call to CHECKPOINT:

PRIMARY BACKUP

. CALL CHECKMONITOR;
CALL CHECKPOINT (stk,,fnuma); CALL CHECKPOINT(stk,,fnuma) ;
CALL WRITE(fnuma,...): CALL WRITE(fnuma,...):;

a failure of the primary past
this peint causes the backup to
begin processing at this point

Enocugh checkpoints must be provided, and each must contain enough
information, so that in the event of the primary”s failure, the

backup can take over the process pair”s duties while maintaining the
integrity of any data involved in the current transaction.

The amount of checkpointing that must be performed depends on the
degree of recoverability desired. As an extreme example, a primary
process could, after execution of each program statement, send its
entire data area and its current program counter setting. A program
of this type is recoverable after each statement. However, the
amount of system resources needed to perform this type of
checkpeinting would be tremendous (a checkpoint following each
statement) .

In practice, however, checkpointing of internal calculations is not
necessary, as they can be performed with virtually no loss of system
throughput. 1In general, checkpointing is necessary only when data is
being transferred between the internal program environment and a file.
For example, the primary process may checkpoint the data just read
from a terminal sco that, if a subsequent failure occurs, the terminal
operator won“t have to reenter the data.

Guidelines For Checkpecinting

As a general rule, a call to CHECKPOINT should immediately precede:
e Any write to a file (including a WRITEREAD to a terminal)
e A call to CONTROL or SETMODE for a file

To provide a greater degree of recoverability, a call to CHECKPOINT
may immediately follow:

@ A read from a terminal.

5.3-15

CHECKPOINTING FACILITY
Using the Checkpointing Facility

>

X READ a record

x update it in memory

(c} CHECKPOINT (stackbase,buffer,count,,fnum):;

X WRITE a record

The call to CHECKPOINT should checkpoint the following information:

@ A value or set of values indicating the program state. This is
usually accomplished by checkpecinting the process”s data stack.

e If the checkpoint precedes a write to disc file, the file”s Sync
Block.

e The file“s data buffer. Note that if the data buffer is within the
memory stack area (i.e., from the application-defined stack base
through the address indicated by the current S register setting),
the data buffer will be checkpointed when the stack is
checkpointed.

Adherence to the above guidelines assures that an application program
can recover from disc file operations and, in most cases, terminal
operations.

Also, as a general rule, the programmer should strive to keep the
number of checkpoints in a processing loop and the amount of data
checkpointed in a given call to CHECKPOINT to a minimum. An approach
is to checkpoint only a portion of the program state (i.e., some data
buffers and/or data stack) at one time. 1In this case, however, the
programmer must be careful that any checkpoint which is also a restart
peint (i.e, includes the data stack) yields a valid program state.

The programmer must alsc be careful, when checkpointing a data buffer
without checkpointing the data stack, that the preceding restart point
is still valid (i.e., does not use the new value of the data buffer).
From the above, it should become apparent that proper checkpointing
can be achieved only by careful analysis of the operation being
performed and of the intended checkpeints and their contents.

Note also that i/o to non-disc and non-terminal devices involves very
application-dependent recovery procedures. For example, a report to a
line printer may have to be restarted from the last page, or a
magnetic tape may have to be repositioned.

5.3-16

CHECKPOINTING FACILITY
Using the Checkpointing Facility

Example of Where Checkpoints Should Occur

The following is an example of a simple transaction cycle to update

a record.

The record:

acctno —» cur “bal credit”limit

The transaction cycle (without checkpeoints):

N—-N—N—N—l

X
|
X
|
L

WRITEREAD (terminal,bufl,.); ! returns <acctno>
! and <amount>.

POSITION (acctfile, acctno);

READUPDATE (acctfile,buf2,..);

IF (x := cur”bal + amount) > credit”limit THEN
abort”"transaction;

cur "bal := x;
WRITEUPDATE (acctfile, buf2,..):

WRITE (terminal, bufl,..); ! result‘

5.3-17

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

The transaction cycle with insufficient checkpoints:

|

RESTART POINT —f—— (

~

CHECKPOINT (stk); ! idle state checkpeint.

returns <acctno>
and <amount>.
terminal data
checkpeint.

WRITEREAD (terminal,bufl,.);

RESTART POINT ——> (

—

CHECKPQINT (stk,bufl,cnt);

POSITION (acctfile, acctno):

READUPDATE (acctfile, buf2,..);

5 P B D —— 3 —

IF (x := cur”bal + amount) > credit”limit THEN
abort”transaction;

cur"bal := x;
WRITEUPDATE (acctfile, buf2,..);

WRITE (terminal, bufl,..); ! result

T—x————x—x

In this example, the first checkpecint identifies the program state as
being idle (or waiting from input from the terminal). The actual
checkpoint message consists of only the primary process”s data stack.

The second checkpoint identifies the program state as "terminal entry
just read". The checkpoint message consists of two parts:

1. the primary”s data stack
2. the data read from the terminal

Here the assumption is that, because the transaction is driven by the
data read from the terminal, this data is ample for the backup to
perform the identical operation. This assumption is incorrect,
however. A problem occurs if a failure occurs just following the

WRITEUPDATE of the "acctfile". This is illustrated in the following
transaction:

WRITEREAD (terminal, bufl,..); returns: "acctno"
"amount"

"12345",
Il$lOll

(2) checkpoint "12345, $10"
POSITION (acctfile, 12345D);

READ (acctfile,buf2,..):

5.3-18

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

returns: "acctno" "ocur “bal"” "credit™limit"

12345 ——> $485 $500

IF (x := $485 + $10) > $500 THEN ...
cur"bal := x;
WRITEUPDATE (acctfile,buf2,..);

writes: "acctno" "cur“bal" "credit®limit"

12345 ——> $495 $500

%kkk%x PATLURE HERE ***x%%x%

Backup®s restart with latest checkpecint data: "12345, $10"
POSITION (acctfile, 12345D);
READ (acctfile,buf2,..);

returns: "acctno" "cur“bal" "oredit™limit"

12345 ——> $495 $500

IF (x := $495 + $10) > $500 THEN ...

Here the test fails because the update to the disc completed
successfully and the "cur”bal" has already been updated. The
terminal operator is given an indication that "acctno" 12345 has
attempted to exceed its credit limit; therefore the purchase is
refused. However, account 12345°s balance reflects that a
purchase was made.

5 . 3—19

CHECKPOINTING FACILITY
Using the Checkpointing Facility

The transaction cycle with sufficient checkpointing:

|

RESTART POINT —— (1) CHECKPOINT(stk); ! idle state checkpoint

X WRITEREAD(terminal,bufl,.); i returns <acctno>

I ! and <amount>.
RESTART POINT ——+—> (2) CHECKPOINT(stk,bufl,cnt):; ! terminal data

| ! checkpoint.

X POSITION (acctfile, acctno);

T READUPDATE (acctfile, buf2,..);

x IF (x := cur”bal + amount) > credit”limit THEN

abort”transaction;
cur"bal := xX;

—

RESTART POINT —+— (3) CHECKPOINT(stk,buf2,cnt,,acctfile);
! updated record
! checkpoint.
WRITEUPDATE (acctfile, buf2,..):

WRITE (terminal, bufl,..); ! result.

L.

The additional third checkpoint, (3), identifies the program state as
"preparing to write an updated disc record to the disc". The
checkpoint consists of three parts:

1. the primary process”s stack
2. the disc file”s sync information
3. the updated record

If the primary process fails between checkpoints 1 and 2, the backup
process reissues the WRITEREAD to the terminal. If the primary
process fails between checkpecints 2 and 3, the backup uses the
terminal entry and continues the processing of the transaction. If
the primary process fails subsequent to checkpcint 3, the backup uses
the latest checkpeointing information to reexecute the write to disc.

Note that checkpecint (2) and its associated restart point could be

omitted. If this were done, a failure between checkpoints (2) and
(3) would require the operator to reenter the transaction.

5.3-20

CHECKPOINTING FACILITY
Using the Checkpointing Facility

Checkpointing Multiple Disc Updates

When performing a series of updates to one or more disc files, the
checkpoint for those updates can be performed at one point in the
program. The result is less system usage than that required for
several checkpoints.

The program should be structured so that the series of writes needed
to update a file are performed in a group. For each file to be
checkpointed in this manner, the <sync depth> parameter value of OPEN
is specified as the maximum number of calls to WRITE for the file that
are made between checkpoints for the file. Then, when a file is about
to updated by performing <sync depth> writes to the file, the file”s
"sync block" and the data buffers about to be written to the file are

checkpeinted. 1In any case, care must be taken to ensure the integrity
of any data referenced.

Considerations for Ne-Wait I/0

When taking over from a failure of the primary, any no-wait operations
initiated, but not completed by the primary before its failure, must
be reinitiated by the backup.

For example:

CALL READ {(rfnum, rbuffer, count }); ! no-wait.

CALL WRITE (fnuml, buffer, count): ! no-wait.

-

CALL CHECKPOINT (stackbase):

fnum := -1;
CALL AWAITIO (fnum, ..); ! wait on any completion.

If a failure occurs, the backup begins executing following the
call to CHECKPOINT. However, there will be nc ocutstanding i/o
cperations.

A solution may be to checkpoint before the i/o operations are
initiated. However, in the case of $RECEIVE, because the process may
wish to have a read continually outstanding, this may not be possible.
For SRECEIVE, the read can be reinitiated when the backup takes over.

Action for CHECKPOINT Failure

If an "unable to communicate with backup" error occurs when
checkpointing (CHECKPOINT.<0:7> = 1 on return), the primary process
should stop the backup process. The primary process should then
create a new backup process when the STOP system message (i.e., # -5)
is received (see "System Message, Recommended Action"). If the
checkpoint failure persists, the failure should be noted accordingly,

5.3-21

CHECKPOINTING FACILITY
Using the Checkpointing Facility

and the primary should stop the creation attempts. (See the

"analyze”checkpeint“status" example procedure under the heading
"Takeover by Backup" in this section.)

Note: A checkpeint failure of this type normally indicates a system

resource problem. Either the application process checkpoints
are unduly large, or the SHORTPOOL size in the processor module
where the failure occurs is toc small.

SYSTEM MESSAGES

The following system messages are related to recovery from process and
processor meodule failures. Their formats, in word elements, are

e CPU Down Message. There are two forms of the CPU Down messagde:

<sysmsg>
<sysmsg>[1]

-2
<cpu>

This form is received if a failure occurs with a processor
module being monitored. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

and
<sysmsg> = -2
<sysmsg>[1l] FOR 3 = $<process name>
<sysmsg>[4] = -1

This form is received by an ancestor process when the
indicated process name is deleted from the PPD because of a
processor module failure. This means that the named
process [pair] no longer exists.

Note: Following a takeover by a backup process because of a
processor module failure, the backup process, if it is an
ancestor process, can expect to receive the second form of
the CPU Down message. This message is received when a
descendant process [pair] of the backup no longer exists
because of the failure. Note that one of these messages
will be received for each descendant process [pair] of the
backup that disappears because of the processor module
failure.

e CPU Up Message

<sysmsg>
<sysmsg>[1]

nou
|
w

This message is received if a relcad occurs with a processor
module being monitored.

5.3-22

CHECKPOINTING FACILITY
Using the Checkpeointing Facility

@ Process Normal Deletion (STOP) Message

This message is received if a process deletion is due to a call to
the process control STOP procedure.

There are two forms of the STOP message:

<sysmsg> = -5
<sysmsg>[1l] FOR 4 process ID of deleted process,

This form is received by a deleted process”s creator if the
deleted process was not named, or by one member of a process
pair when the other member is deleted.

<sysmsg> = -5
<sysmsg>[1] FOR 3 = $<process name> of deleted process [pair]
<sysmsg>[4] = -1

This form is received by a process pair”s ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

® Process Abnormal Deletion (ABEND) Message

This message is received if the deletion is due to a call to the
process control ABEND procedure, or because the deleted process
encountered a trap condition and was aborted by the operating
system.

There are two forms of the ABEND message:

- 6
process ID of deleted process

<sysmsg>
<sysmsg>[1l] FOR 4

This form is received by a deleted process”s creator if the
deleted process was not named, or by one member of a process
pair when the other member is deleted.

<sysmsg> = -6
<sysmsg>[1l] FOR 3 = $<process name> of deleted process [pair]
<sysmsg>[4] = -1

This form is received by a preocess pair”s ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

Recommended Action

The following is the recommended action when the above messages are
received:

5.3-23

CHECKPOINTING FACILITY
Using the Checkpecinting

msqg #

-2, cpu down:

-3, cpu up:

-5, backup stopped:

-6, backup abended:
other message #:

Note:

Facility

action by primary

Ignore it.

An exception to this is if the

second form of the cpu down message is
received; the "ancestor" process may desire
to recreate the failed process [pair].

Create the backup, etc.

This shouldn”t happen, but if it doces, create

the backup.

Create the backup, etc.

Take application-dependent action.

For system messages #5 and #6, the program should assure that

the primary process does not loop continucusly because of
continually failing backup process.

Following a read of a system message, a read on the SRECEIVE file

should be initiated.

The following is an example procedure which analyzes system messages
and takes appropriate action:

PROC analyze”system"message;

BEGIN
CASE S$ABS (rbuf) OF
BEGIN
: ¢ 0.
H 1 1.
BEGIN ! 2 = cpu down.
backup®up := 0;
END:;
BEGIN ! 3 = cpu up.

stop”count := 0; !

this must be

CALL create”backup (backup”cpu

3.
H 4.
BEGIN ! 5

backup“up

END;

stop”count

bacgup stopped.
:= 0;

stop”“count + 1;

CALL create”backup (backup”cpu

END; 1 5.
BEGIN ! 6
backup”up

backup abended.

:= 0;

stop”count := stop”count + 1;
CALL create”backup (backup”cpu);

END; ! 6.
OTHERWISE !
BEGIN

5.3-24

other system message.

checkpointed.
):

CHECKPOINTING FACILITY
Using the Checkpeointing Facility

END;
END; ! case of system message.
! issue a read to SRECEIVE.
CALL READ (rfnum, rbuf, count);
END; ! analyze”system"message.

Note the "stop”count" variable. "stop“count" is used to
detect repeated backup process failures that are not due to
processor medule failures. Note alsc that the variable is
cleared when a CPU Up message is received. Nonstop programs
should include such a variable to ensure that the primary
process does not loop, continually recreating its backup. If
"stop”count" reaches a count of 10, then the problem should be
noted (e.g., a conscle message should be logged), and nc
further attempt at creation should occur until the problem is
corrected.

TAKEOVER BY BACKUP

The following is the recommended action by the backup when it takes

over from the primary. The action taken is dependent on the reason
for the takeover:

If return is from CHECKMONITOR, call ABEND (primary”s stack has
not been checkpointed).

If return is from CHECKPOINT, then:

reason (CHECKPOINT.<8:15>) action

0, primary stopped: Call STOP.

1, primary abended: Create backup, open its files,
etc.

2, primary cpu down: Nene (this will be taken care of

when a subsequent CPU Up system
message is received).

3, primary called CHECKSWITCH: None.
any except 0: Issue a read on SRECEIVE.

The following example procedure analyzes the value returned from
CHECKPOINT and takes appropriate action:

5.3-25

CHECKPOINTING FACILITY
Using the Checkpecinting Facility

PROC analyze”checkpeint®status (status);
INT status; ! return value of CHECKPOINT.

BEGIN
INT .backup”pid[0:3];

IF backup®™up THEN ! analvze’it.
CASE status.<0:7> OF

BEGIN
: 0 = good checkpoint.

BEGIN 1l = checkpeint failure.

! find out if backup is still running.

CALL MOM (backup®pid);
CALL GETCRTPID (backup”pid[3], backup”pid);
IF = THEN ! backup still running.
BEGIN
! stop the backup.
CALL STOP (backup®pid);
backup®up := 0;
END:;

END; 1 1.
BEGIN ! 2 = takeover from primary.

CASE status.<8:15> OF

BEGIN
! 0 = primary stopped.

-

CALL STOP;
11 = primagy abended.

1
H
1
.

BEGIN
backup®up := 0;
stop”count := stop”count + 1;

CALL create”backup (backup®cpu);

END:
! 2 = cpu down.
backup®up := 0;

! 3 = primary called CHECKSWITCH.

4
END; ! case of status.<8:15>.

! issue a read to SRECEIVE.
CALL READ (rfnum, rbuf, count):
END; ! 2.
BEGIN ! 3 = bad parameter to CHECKPOINT
CALL DEBUG;
END; ! 3.
END; ! case of status.<0:7>.

-

END; ! analyze”checkpeint”status.

See the "analyze"system"message" procedure in "System Message,
Recommended Action", for an explanation of the "stop“count"

variable.

5.3-26

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

OPENING A FILE DURING PROCESSING

The possibility exists, when files are opened after process startup,
that a failure could occur during the file open. This could result in
the backup process opening the same file twice. The following is a
recommended preocedure for opening a file during processing:

INT PROC fileopen (filename, fnum, flags, syncdepth);
INT .filename, .fnum, flags, syncdepth;

BEGIN
INT error := 1;

WHILE error DO
BEGIN
CALL OPEN (filename, fnum, flags, syncdepth);
IF <> THEN
BEGIN
CALL FILEINFO (fnum, error);:
RETURN error;
END;

At this point, the file is open in the primary.

IF (status := CHECKPOINT (stackbase , fnum

r 1)) THEN
CALL analyze”checkpoint®error (status);

CALL FILEINFO (fnum, error);

If this is executed because of a takecver from the
primary, error 16 ("file number has not been opened") is
returned from the call to file info. This will result
in the "WHILE error" lcoop being reexecuted.

END;

IF backup®up THEN
BEGIN ! copen the file in the backup.
CALL CHECKOPEN(filename,fnum,flags,syncdepth,,,error);
IF < THEN

BEGIN ! backup exists, but could not open the file.
CALL CLOSE (fnum);:
RETURN error;
END;
END;

RETURN 0; ! successful open by primary and backup if it exists.
END; ! fileopen.

5.3—27

CHECKPOINTING FACILITY
Using the Checkpeinting Facility

CREATION OF A DESCENDANT PROCESS (PAIR)

Like opening files during processing, the possibility exists during
creation of a descendant process or process pair that a failure could
occur. This could result in the backup process creating a process

already created by the primary. The following is a recommended methed
for descendant process creation:

CALL CREATEPROCESSNAME (pname) ;

The system generates a unique process name.

IF (status := CHECKPOINT(stackbase,pname,4)) THEN
CALL analyze”checkpoint”status (status);

CALL NEWPROCESS (progfile,,, cpu, desc”pid, error, pname);
IF error > 1 THEN
IF error.<0:7> <> 8 !

process name error.
AND error.<8:15> <> 10 ! can”“t communicate with sys mon! THEN

BEGIN ! unable to create the process due to resource problem
. ! or coding error.
END;
ELSE

The following is necessary only if the backup needs the actual
<cpu,pin> of the descendant process:

BEGIN ! duplicate name error, caused by takeover by backup.
ppdentry “:=" pname FOR 3;
CALL LOOKUPPROCESSNAME (buf)

IF < THEN ... ! process no longer exists.

! save descendant”s process ID.
desc”pid “:=" pname FOR 4;
! determine actual <cpu,pin> of descendant.
IF ppdentry[3].<0:7> <> cpu THEN
IF ppdentry[4].<0:7> = cpu AND ppdentry[4] <> 0 THEN
desc”pid[3] := ppdentry[4]

ELSE ... ! the process no longer exists in the cpu.
END;

5.3-28

CHECKPOINTING FACILITY
Advanced Checkpeointing

This section is intended for application programmers who do not wish
to use the checkpeinting facility, but want instead to write their own
checkpointing routines.

The following topics are discussed in this section:

e Backup Open

e File Synchronization Information

BACKUP OPEN

"Backup open" is a form of file open that permits a file to be open
concurrently by both the primary and backup of a process pair
regardless of the exclusion mode set by the primary process (except
that access and exclusion modes must be the same for both the primary
and the backup process, and file security is still enforced). This is
accomplished by passing two parameters to OPEN: the process ID of

the primary process which already has the file open, and the file
number that was returned to the primary when it opened the file.

After this form of OPEN, the primary and backup share access to the
file such that in the case of disc files, when one process locks

the file, the file becomes locked on behalf of both. (See figure
5—30)

PRIMARY PROCESS: BACKUP PROCESS:

CALL OPEN (fname,prlf\fnum)
.
createAbackup
: CALL MOM (pri pid)

* A ~ * A N,
send msg (fname,pti fnum) =ew————3» read msg (fname, pri fnum)
[] .

CALL OPEN (fname, back foum,..,
. pri fnum, pri pid)

NOTE: create backup 1S A DUMMY FUNCTION TO SIMULATE CREATION OF A
BACKUP PROCESS BY THE PRIMARY PROCESS. “MOM” 1S A PROCESS
CONTROL PROCEDURE THAT RETURNS THE process ID OF A
PROCESS’S CREATOR. send'msg AND read msg ARE DUMMY
FUNCTIONS TO SIMULATE SENDING AND RECEIVING INTERPROCESS
MESSAGES.

Figure 5-3. Backup Open by Backup Process

CHECKPOINTING FACILITY
Advanced Checkpecinting

FILE SYNCHRONIZATION INFORMATION

File synchronization information is used by the system to determine if
an operation by a backup process after a failure of its primary
process is a new operation or a retry of an operation just performed
by the primary.

The use of the sync information is accomplished in three parts:

l.

Sync Depth

The number of nonretryable operations that the file system is to
"remember" is specified in the <sync depth> parameter to the OPEN
procedure. This, normally, is the number of write operations that
a primary process performs to a file between checkpoint messages
to its backup.

An example of opening a file and specifying a synchronization
depth of one:

CALL OPEN (fname, fnum, ,1):

If opened by the backup process of a process pair, the primary
file number and process ID must also be specified.

GETSYNCINFO Procedure

When a primary application process is about to update a file by
performing "synchronization depth" writes to the file, it first
calls the GETSYNCINFO procedure, which returns "sync information"
for the file. This information (which, incidentally, is never
explicitly referenced by the application process) is then passed,
along with the data to be written, in a checkpoint message to the
backup application process. The primary process then performs the
write cperations, and upon completion informs its backup.

SETSYNCINFO Procedure

If the primary application process fails, the backup process is
notified by the operating system. Before attempting error
recovery, the backup calls SETSYNCINFO with the sync information
received in the latest checkpoint message. This synchronizes the
retry operations that the backup is about to perform with any
writes that the primary was able tc complete before it failed. The
backup then retries each write in the series (in the same order as
the primary). If any operation was completed successfully by the
primary, it is not performed by the file system; instead, just the
completion status is returned to the backup process.

For example, in the following sequence of file system operations, a
call to GETSYNCINFO precedes the file operations and a call to
SETSYNCINFO precedes the restart peoint:

5.4-2

CHECKPOINTING FACILITY
Advanced Checkpeinting

TAKEOVER
BY BACKUP

X SETSYNCINFO (f1l, sync); x GETSYNCINFO(fl,sync):

(c) checkpeint sync block, position,
RESTART POINT — and data.

X POSITION(fl,-1D); ! position to eof.
X WRITE(fl,fl"buffer,count);

**%* FAILURE OF PRIMARY **%*

(c) completion checkpoint

In this case, the write by the primary completed successfully, and
the write by the backup when it takes over is ignored. The backup
receives the completion status that the primary received prior to
the primary”s failure.

Another procedure, RESETSYNC, is provided for cases where, after a
failure, the backup process wishes to execute its error recovery by
performing different operations than those of the primary, or where
the backup process does ncet have a current synchronization block and
the operations performed by the primary are not known. In either
case, it is undesirable to have the file system mistakenly relate an
operation performed by the backup to a different operation which was
performed by the primary. By calling RESETSYNC after taking over for

the failed primary process, the backup process ensures that this does
not occur.

A call to RESETSYNC causes a RESETSYNC system message (system message
-34) to be sent to the paired-access process file referenced in the
call, indicating that the sync ID for that file has been reset to
zero. Upon receipt of this message (receipt of RESETSYNC messages
must be enabled by setting OPEN <flags>.<1l> = 1 when opening the
file), a server process using the sync ID mechanism should clear its
local copy of the sync ID value.

SECTION 6

TRAPS AND TRAP HANDLING

TRAPS

Certain critical error conditions occurring during process execution
prevent the normal execution of a process. The errors, which are for

the most part unrecoverable, cause traps to operating system trap
handlers. The conditions are:

trap no. description

o
|

= illegal address reference

1 = instruction failure

2 = arithmetic overflow

3 = stack overflow

4 = process loop timer timeout
11 (%213) = memory manager read error
12 (%14) = no memory available
13 (%15) = uncorrectable memory error
14 (%16) = map parity error (NonStop systems only)

@ Illegal Address Reference - an address was specified that was not
within either the virtual code area or the virtual data area
allocated to the the process. Virtual code area allocation is
determined by the size of the program”s code area. By default,
virtual data area allocation is determined by the TAL compiler to
be equal to the number of memory pages needed for the program”s
global storage plus one memory page for the program”s data stack.
The size of the virtual data area can be increased via the
?DATAPAGES command of the TAL compiler, the MEM parameter of the
Command Interpreter RUN command, or the <memory pages> parameter of
the NEWPROCESS procedure.

® Instruction Failure - an attempt was made to execute a code word
that is not an instruction; an attempt was made by a non-
privileged process to execute a privileged instruction; or on
NonStop II systems, an illegal extended address reference was made.

@ Arithmetic Overflow - the Environment Register "overflow" bit,
ENV.<10>, is a "1" and the Environment Register "traps enabled"
bit, ENV.<8>, is a "1". The overflow bit is set to "1" by the

TRAPS AND TRAP HANDLING
Introduction

hardware if the result of a signed arithmetic operation could not
be represented with the number of bits available for the particular
data type. Arithmetic overflow also occurs if a divide with a
divisor of zero is attempted. Note that the overflow bit in the
ENV register is not automatically cleared. 1If the application
process is to recover from the overflow condition, it must
specifically clear the ENV register overflow bit (otherwise,
another overflow trap will occur).

The "traps enabled" bit of the ENV register is set to "1", by
default, when a new process is created. If the process does not
want a trap to occur when an overflow condition occurs, then the
process must clear the traps enabled bit. This can be accomplished
by executing the following TAL statements:

STACK 7; CODE (SETE);

sets the Register Stack Pointer, ENV.<13:15>, to seven (7);
clears ENV.<8:12>, ENV.<0:7> are not affected.

Stack Overflow - an attempt was made to execute a procedure or
subprocedure whose (sub)local data area extends into the upper 32K
of the data area. Stack overflow also occurs, when calling an
operating system procedure, if there is not enough remaining
virtual data space for the procedure to execute (the procedure does
not execute). The amount of virtual data space available is the
lesser of “G”[32,767] and the upper bound of the process”s virtual
data area (i.e., number of data pages specified when the process
was created). Operating system procedures require approximately
350 words of user data stack space to execute.

Process loop timer timeout - occurs only if the process has enabled
"process loop timing" by making a call to the SETLOOPTIMER process
control procedure. This trap indicates that the new time limit
specified in the latest call to SETLOOPTIMER has expired.

Memory Manager Disc Read Error - indicates that a hard (i.e.,
(unrecoverable) read error occurred while attempting to bring a
page in from virtual memory.

No Memory Available - indicates that a page fault occurred but no
physical memory page is available for overlay.

Uncorrectable Memory Error - indicates that an uncorrectable memory
error was detected.

Map Parity Error (NonStop systems only) - indicates that a parity
error was detected by the memory map hardware when a memory
reference was made.

TRAPS AND TRAP HANDLING
Introduction

TRAP HANDLING

Generally, the first five trap conditions are caused by coding errors
in the application program. The last four errors indicate a hardware
failure or, in the case of "no memory available", a configuration
problem; these are beyond the control of the application program.

If a trap condition is detected, one of three courses of action is
taken:

l. TIf a process has previously made a call to the ARMTRAP procedure,
control is transferred to the process”s own trap handling
mechanism.

2. 1If the process has not provided its own trap handler, the DEBUG
procedure is called for the application process by the operating
system.

3. 1If a trap has occurred and another trap occurs before the process
can call ARMTRAP again, the process is deleted, and the creator of

the process is sent a message indicating that an abnormal deletion
occurred.

On NonStop systems, if DEBUG is entered because of a trap, the reason
can be found in the current “S“[-1:0] locations (use the DEBUG command
"D s-1,2"):

“S8”“[-1] = trap number
= S register setting at the time of the trap

On NonStop II systems, DEBUG automatically displays the trap number;
it is not available in the S register.

On both types of system, the P, ENV, and L register settings at the
time of the trap can be determined by displaying the register contents
(use the DEBUG command "D"). On NonStop II systems, the S register
contents are also displayed. On NonStop systems, if the trap occurred
while code in the system map was being executed, the process”s stack
is cut back until the first user stack marker is found. In this case,
the value found in “S”[0] is %177777.

Note: On NonStop systems, if DEBUG is entered because of a trap,
DEBUG sets the S register to

SMIN (LASTADDR,32767) - 400

- that is, to 400 words below the last available location in
the application process”s data stack. The region from the S
register setting to the last available location is used by
DEBUG to call other operating system procedures. If the
process”s L register pointed into this region at the time of
the trap, then referencing L-relative locations with DEBUG
produces meaningless results.

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

The ARMTRAP procedure is used to specify an entry point into the
application program where execution is to begin if a trap occurs. A
number representing the type of trap, as well as a stack marker of the
environment where the error occurred, is passed to the application

process.

The call to the ARMTRAP procedure is:

CALL ARMTRAP (<trap label> , <trap address>)

where
<trap label>, INT:value,

is a label (non-zero P register value) to initially arm the
trap mechanism. The label identifies a statement in the
program where control is to be transferred if a trap occurs.

is zero (0) to rearm the trap mechanism after a trap has
occurred and to cause the process to be re-launched. 1If
this is specified, the process”s registers at the time of
the re-launch are set to the values indicated by the
following “L” relative locations:

“L“[-3] = new value for S register
“L”[-2] = new value for P register
“L°[-1] = new value for ENV register
“L“I01 = new value for L register
“L°{1] = new value for RO

“L”[2] = new value for R1l

“L”[3] = new value for R2

“L“[4] = new value for R3

“L”[5] = new value for R4

“L“[6] = new value for R5

“L”[7] = new value for R6

“L“[8] = new value for R7

<trap address>, INT:value,

is an address specifying the local data area for the
application process”s trap handler. This also indicates
where the trap number and stack marker at the time of the
trap are to be passed to the application process. After a
trap occurs, “S” and “L” are set to <trap address> plus 5,
and the five words starting at <trap address> plus 1 are
(given relative to the new “L” setting):

6-4

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

“L”[-4] is the trap number: illegal address reference
instruction failure
arithmetic overflow

stack overflow

process loop timer timeout
memory manager read error
no memory available
uncorrectable memory error
= map parity error

(NonStop systems only)

'-l
NS
|

“L”[-3] is the value of “S” at the time of the trap; it
is %177777 if the trap occurred while executing
in the system code map

2] is the value of “P” at the time of the trap

1] is the value of “ENV” at the time of the trap
is the value of “L” at the time of the trap

s,

L°[-
;L; [_
L

e P

If <trap address> is passed as a value < 0, then any trap
will result in the process being stopped with an abnormal
deletion indication (i.e., ABEND message).

example:

CALL ARMTRAP (@trap, @trap”addr);

CONSIDERATIONS

If the trap handler is to call any operating system procedures, at
least 350 words must be available between the trap address value
specified to ARMTRAP and the last word in the application”s data
area or “G“[32767], whichever is less.

The trap handler data area should not be located below the memory
stack pointer, since the area below the stack pointer may be used
internally by the operating system before ARMTRAP is called. Some
programs which do so may operate correctly on NonStop systems but
fail on NonStop II systems.

Any local variables in the application program”s trap handling
procedure must be declared relative to the L register by using base
address equivalencing. Base address equivalencing relative to the
L register is of the form

<type> { [. 1 <name> = “L” [{ + | - } <word offset> 1 } ...

where

<type> is the data type of the variable <name>.

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

<word offset> specifies a positive or negative offset from
the L register where the variable exists.

Note that variables declared in this form cannot be initialized.

The trap handling procedure must contain a statement that
explicitly allocates storage for any locally declared variables
(see the next item).

® The Register Stack registers (i.e., RO-R7) upon entry to the
application process”s trap handler contain the values that they had
at the time of the trap. To save these values, the first statement
of the trap handler must be

CODE(PUSH %777)
which will save the Register Stack contents. Local storage may
then be allocated by adding the appropriate value to “S” via a
statement of the form

CODE (ADDS <num locals>)

where <num locals> is a LITERAL defining the number of words of
local storage needed.

® The value for the P register at the time of the trap depends
upon the trap condition:

trap P register

0 I
1 I
2 I +1
3 ?
4 I
11 I
12 I
13 ?

where I the address of the instruction being executed at the
time of the trap.

undefined.

?

® The <trap label> must be in the same procedure as the call to
ARMTRAP.

e If the application process”s trap handler procedure is entered
because of a trap, an exit from the procedure must be via a call to
ARMTRAP with <trap label> specified as "0". The procedure must not
exit through the stack marker at the current L register location

(this would result in an invalid S register setting following the
exit).

6-6

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

@ If the trap handler is entered because of an overflow trap and the
application process intends to continue processing, then the
overflow bit in the ENV register value in “L“[-1] of the trap
handler must be set to zero before the trap mechanism is rearmed.
Otherwise, another overflow trap will occur immediately.

e If “L”[-3] (value of “S” at time of trap) is %177777, the trap
handler should not re-arm traps without first changing “L”[-3] to
a more appropriate value. Otherwise, G[0] through G[10] of the
application”s data stack will be overwritten.

EXAMPLE

The following is an example of an application procedure that displays
the current value of the P register when an arithmetic overflow trap
occurs. Following an arithmetic overflow trap, the trap mechanism is
re-armed, and the application process continues processing. If any
other trap occurs, the procedure calls the DEBUG procedure.

The example trap handler procedure is:

PROC overflowtrap;

BEGIN
INT regs = “L7+1, RO-R7 saved here.
wbuf = “L°+9, buffer for terminal i/o.
preg = “L"-2, P register at time of trap.
ereg = “L”7-1 ENV register at time of trap.

trapnum = “L”°-4;
DEFINE overflow = <10>#;
STRING sbuf = wbuf;
LITERAL 1locals = 15;

trap number.

overflow bit in ENV register.
string overlay for i/o buffer.
of words of local storage.

Sme gew P s Gme et S G

! arm the trap.
CALL ARMTRAP(@Qtrap, SLMIN (LASTADDR, %77777) - 400);
RETURN;

! enter here on a trap
trap:
CODE (PUSH %777; ADDS locals);
saves R0O-R7 and allocates local storage.
IF trapnum <> 2 THEN CALL DEBUG;
calls DEBUG if the trap is not an overflow condition.
sbuf “:=" "ARITHMETIC OVERFLOW AT $%";
CALL NUMOUT(sbbuf{24], preg, 8, 6);
CALL WRITE(home”term, wbuf, 30);
IF <> THEN ...

formats and prints the message on the home terminal.

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

ereg.overflow := 0; ! clear overflow.
CALL ARMTRAP (0, SLMIN (LASTADDR, %77777) -400);

the overflow bit must be cleared before the old values of
the registers are restored.

END;
At the beginning of the program, the procedure is called:

CALL overflowtrap;

From this point on, any arithmetic overflows are logged on the home
terminal. For example, the following statement would cause the trap
handler to be entered:

I :=1/J;

if the current value of J was zero.

6-8

SECTION 7

SECURITY SYSTEM

This section discusses the following topics:

General Characteristics of the Security System
System Users

Defining Users

Logging on

Passwords

Accessor ID

Disc File Security

Licensing

Interface to the Security System

Network Security

GENERAL CHARACTERISTICS

The GUARDIAN security system is designed to fulfill four objectives:
® To prevent inadvertent purging or overwriting of files
e To prevent unautherized access to sensitive data files

e To prevent unauthorized interference with running programs
(processes)

e To provide a means of controlling intersystem accesses between
network nodes

However, the security system is designed so as not to interfere with
application design in systems where security is not desired.

Additional security may be provided by the application program. Some
examples of application program security checks are:

e Limitation of capability at a terminal

It is not necessary to have a GUARDIAN Command Interpreter running
at an application terminal. Therefore, the application program has
control over what the terminal operator sees, and can limit the
functions that he or she can perform.

SECURITY SYSTEM
Introduction

e Physical security
Programs that alter, or produce reports of, sensitive data may
include routines that check the terminal from which they are run.
This allows the application to restrict the running of the program
to a specific terminal that is physically secure (for example, in a
locked room for which there is only one key).

e Special devices

These include authorization terminals such as badge readers,
fingerprint readers, and so on.

SYSTEM USERS

Persons who have access to the system are called users. In general,
there are four classes of users, with the following capabilities:

e Standard User

A standard user is allowed to perform standard operations such as
creating and purging disc files, running programs, displaying the
system status, and sc on. However, a standard user is limited as
to the processes he or she can stop or debug.

e Group Manager

A group manager user is allowed to add and delete users within
the group, and to log on as any member of that group, as well as
performing the standard user operations.

e System Operator

A system operator user is allowed tc relcad processor modules, set
the system time-of-day clock, and alter the operating state of the
interprocessor buses, in addition to performing the standard user
operations.

e Super ID

The super ID user has total freedom to perform any operation in the
system. This includes debugging privileged programs, accessing any
file, logging on as any user without knowing the user”s password,
adding new user groups to the security system, running privileged
programs that have not been licensed (see "Licensing"), and so on.

Additionally, for systems where security is not desired, all standard
users can log on under the same standard user name. In a system like
this, all users have equal access to all files in the system. Such a
system must still have a super ID user, however, and perhaps a system
operator user, so that their functions can be performed. Another
alternative is for all users to access the system as the super ID.

SECURITY SYSTEM
Intreduction

DEFINING USERS

System users are defined to the system through the Command Interpreter
ADDUSER command. For each user, a user name and a corresponding
user ID must be specified:

ADDUSER <group name>.<user name> , <group id> , <user id>

\ / N\ /

user name user ID

The combination of <group name>.<user name> is referred to generically
as a user name; similarly, the combination of <group id>,<user id> is
referred to generically as a user ID.

Specifically, the form of a user name is:
<group name>.<user name>

<group name> identifies an individual as a member of a group
(a department, for example).
<user name> identifies the individual within the group.

The form of a user ID, as a single numeric entity, is:

bits 0 through 7 = <group id> (in the range of 0 through 255)
bits 8 through 15 = <user id> (in the range of 0 through 255)

Assignment of user names and user ID”s is entirely at the discretion
of system management. Note, however, that a direct correspondence
exists between <group name> and <group id>. This means that all users
having the same <group id> must have the same <group name>. For
example, a system may have the following groups defined:

<group name> <group id>
ADMIN 1
MANUFACT 2
MARKETNG 3
SUPER 255

As many as 256 groups, with up to 256 users each, are possible.
The following group ID”s and user ID”s have special significance:

255 , 255 = Super ID (who is alsc a system operator and a group
manager)

255 ,<255 = System operator
<255 , 255 = Group manager
0, 0 = Null user

SECURITY SYSTEM
Introduction

Only the super ID can define new groups. The super ID can define new

users in any group. A dgroup manager can define new users within his
or her group only.

Execution of the ADDUSER command causes the new user”s name and
accessor ID to be entered into a file named $SYSTEM.SYSTEM.USERID.
The Command Interpreter searches this file when the user logs on to
relate the user name supplied in the LOGON command with a user ID,
which is used internally in place of the user name. Note that only
processes running as the super ID user are allowed access to this
file (if it remains correctly secured).

As an example, assume the group ADMIN has previously been defined with
a group ID of 1. To define a new user designated as ADMIN.BILL,

with a user ID of 2 (which must be presently unassigned in group 1),
the following ADDUSER command would be used:

ADDUSER ADMIN.BILL,1,2

This would cause the following entry to be made in the USERID file:

ADDUSER ADMIN.BILL,1,2
USERID FILE

USER NAME USER ID
ADMIN ANN 1,1
ADMIN BILL 1,2

| ADMIN | MANAGER | 1,255 |

1 J

Naming Conventions

The following user names are conventionally given to the super ID
user, the system operator user, and the null user.

User Class User Name

super ID SUPER.SUPER

system operator SUPER.OPERATOR

null NULL.NULL
LOGGING ON

Before a user can gain access to the system, he or she must log on.
Logging on is accomplished by supplying the previously-defined user
name to the system by means of the Command Interpreter LOGON command.
For example, for a user defined as ADMIN.BILL to log on to the system,
the following LOGON command would be given:

LOGON ADMIN.BILL

7.1-4

SECURITY SYSTEM
Introduction

PASSWORDS

User names can be protected by passwords to prevent unautheorized
individuals from accessing the system. A user defines his or her
password by means of the Command Interpreter PASSWORD command. For
example, the user ADMIN.FRED wants to specify a password. First, a
LOGON command is executed to make ADMIN.FRED the current user:

LOGON ADMIN.FRED

Next, a PASSWORD command is executed and a password is specified:

PASSWORD KEEPOUT!

Whenever ADMIN.FRED logs on in the future, he must supply the password
KEEPOUT! as part of the LOGON command.

LOGON ADMIN.FRED,KEEPOUT!

Executing a PASSWORD command without specifying a password removes the
password protection from the current user.

ACCESSOR ID

Two accessor ID”s are associated with a process: the creator accessor
ID and the process accessor ID. The creator accessor ID identifies
the user who initiated the creation of the process. The process
accessor ID is normally the same as the creator accessor ID; however,
it is the same as the process owner”s user ID if file adoptiocn has

been specified for the related program file.

The security system uses the process accessor ID when determining if
file access should be allowed (see "File Security"). In addition, the
process accessor ID is used to determine whether certain restricted
operations (STOP, DEBUG, and STEPMOM) can be performed by users other
than a process”s creator and the super ID. Users who are allowed to
perform these operations are:

e The super ID

@ A user process with a process accessor ID that is the same as
that of the target process®s creator

@ A user process with a process accessor ID equal tc the target
process”s accessor ID (this includes the caller to STEPMOM)

When a process is created, the operating system passes the process
accessor ID to the descendant process. This ID becomes the creator
accessor ID of the new process. The process accessor ID of the new
process can come from either of two sources: from the process accessor
ID of its creator (this is the usual case; see figure 7-1) or from

the owner ID of the process”s program file (for special file security
applications; see "Adopting a Program File”s Owner ID").

SECURITY SYSTEM
Intreduction

(C1) PROCESS ACCESSOR ID = 8,10

(P1) CREATOR ACCESSOR ID
PROCESS ACCESSOR ID

8,10
8,10

(P2) CREATOR ACCESSOR ID =8,10
PROCESS ACCESSOR ID = 8,10

(P3) CREATOR ACCESSOR ID =38,10
PROCESS ACCESSOR ID =8,10

Figure 7-1. Passing of Accessor ID”s

A process can obtain its creator accessor ID and process accessor ID
via the CREATORACCESSID and PROCESSACCESSID procedures, respectively.

DISC FILE SECURITY

Each disc file has an owner, who is the user who created the file. A
file”s owner is identified by an owner ID, which is the same as the
creating user”s accessor ID.

Four types of access are allowed for a file: Read, Write, Execute
(run), and Purge. For each type of access, the file”s owner can
specify the level of security that is to be enforced. Seven levels
of security are available:

7 = local super ID only

6 = member of owner”“s user class -- i.e., owner (local or remote);
group ID and user ID match those of file”s cwner

5 = member of owner”s community -- i.e., member of owner”s group
(local or remote); group ID matches that of file”s owner

4 = any user (local or remote)

2 = owner (local); group ID and user ID match those of file”s owner

1 = member of owner”s group (local); group ID matches that of
file”s owner

0 = any user (local)

SECURITY SYSTEM
Introductiocn

When a disc file is created, it is assigned the owner”s current
default security (controlled by the Command Interpreter DEFAULT and
VOLUME commands). The security for a file may be changed via the file
management SETMODE or SETMODENOWAIT procedure, or via the File Utility
Program SECURE command. The following codes for security levels are
used by the DEFAULT, VOLUME, and FUP SECURE commands:

local super ID only

"U" = member of owner”s user class -- i.e., owner (local or remote)

"C" = member of owner”s community -- i.e., member of owner”s group
(Local or remcte)

"N" = any user (local or remote)

"O" = owner (loccal)

"G" = member of owner”s group (local)

"A" = any user (local)

When file opening is attempted, the local/remcte attribute and the
process accessor ID are used tco determine the accessor”s security
level. TIf the opener is the local super ID, the security check is
bypassed. Otherwise, the security level is determined in two steps:

1. The file”s owner ID is compared with the opener”s process
accessor ID:

a. If the opener is the file”s owner, or the group manager
(<group ID> is the same in both ID”s and <user ID> of the
process accessor ID = 255}, the security level is 2.

b. If the opener is not the owner, but is a member of the owner’s
group (<group ID> of both ID”s are equal), the accessor”’s
security level is 1.

c. If the opener is any other user, the accessor”s security
level is O.

2. If a remote process is making the access, 4 is added to the
accessor”’s security level.

The security system then compares the accessor”s security level with
the file security level that has been specified for the requested
access (read, write, execute, or purge). Table 7-1 shows the allowed
accesses.

SECURITY SYSTEM

Introduction
Table 7-1. Allowability of File Access
FILE SECURITY LEVEL
7 6 5 4 2 1 0
7 Y| Y |YlYy |YlYy|Y
6 -lYi{YyY|\ Y| -|-1-
5 -l -lY|Y|-|-1|-
ACCESSOR”S
SECURITY 4 -l =-{=-{Y|=-1-1-
LEVEL
2 -1 Y|Y | Y|Y|Y|Y
1 - =-1Yj{Yyl~-|Y]Y
0 -l =-1=-]Y¥Yi-1-1Y

For example, assume that a file owned by ADMIN.BILL has been secured
by the FUP command

SECURE BILLFILE, "AGNU"

which specifies that any leccal user can read from the file, only local
members of the ADMIN group can write to the file, anv network user can
eXxecute the file, and only the owner can purge it. ADMIN.ANN, if she
were operating via the network from a remote system, could do nothing
more than execute the file, but if she were logged on locally she
could also gain read or write access.

The Command Interpreter”s DEFAULT command allows a user to specify the

default file security for all files created by the user. This allows
protection for new files to be applied autcmatically.

Adopting a Program File”s Owner ID

This feature of the security system allows the owner of a program
file (or the super ID) to specify that the process accessor ID of
any process created from that program file is to be the same as the
program file”s owner ID instead of the creating process”s process
accessor ID. (See figure 7-2.) This adoption affects the files that
the new process can access, and the "restricted" operations that can
be performed on or by the process. Adoption is specified via the
SETMODE and SETMODENOWAIT procedures and the File Utility Program
SECURE command.

SECURITY SYSTEM
Introductiocn

{C1) PROCESS ACCESSOR ID =8,10

PROGRAM FILE
FOR PROCESS P1 {P1) CREATOR ACCESSOR ID =8,10
OWNER ID = 1,112 PROCESS ACCESSOR ID = 1,112

THIS PROGRAM FILE SECURITY
HAS BEEN SET TO “USE OWNER

ID AS PROCESS ACCESSOR ID” (P2) CREATOR ACCESSOR ID =1,112
PROCESS ACCESSOR ID =1,112

Figure 7-2. Effect of Adopting a Precgram File”s Owner ID

This feature, along with the ability to change the ID of a file”s
owner, enables the application programmer to create files that are
accessible only to certain programs.

For example, a record in an employee file may contain the employee”s
name, address, and salary, among other items of information. If
normal file security were used, either the file or the program that
accesses the file could be restricted to particular users. However,
it may be desirable for all users to have file access for cbtaining
name and address data, but not the employee”s salary. This could be
done by having a program that accesses the file and returns the names
and addresses only. The program file”“s owner ID and the data file’s
owner ID are the same; the program file”s security permits any user to
run it; the data file”s security permits reading and writing by the
owner only. When the query program is run, the new process”s accessor
ID is set to that of the program file owner”s. Thus, although the
program may be run by any user, it still provides controlled access

to the data file.

LICENSING

If a program contains privileged procedures (procedures having the
attributes CALLABLE or PRIV), it must be licensed before it can be
run in the system (unless run by the super ID). Licensing can be
performed only by the super ID via the File Utility Program LICENSE
command.

Programs running in the privileged mode have total freedom to access
operating system tables and toc execute privileged instructions and
procedures, so it is possible for such programs to circumvent the file
security checks and thereby gain access tc any file. However, some
privileged programs are needed in the system (for example, the Command

7.1-9

SECURITY SYSTEM
Introduction

Interpreter). Through licensing, the installation may run privileged
programs that it has authorized, but users can not run unauthorized
privileged programs.

NOTE: If a licensed file is opened with write access or read/write
access, the file becomes unlicensed.

INTERFACE TO THE SECURITY SYSTEM

User interface to the security system can be established through any
of three means:

e Through the Command Interpreter
e Through the File Utility Program (FUP)

e Through system procedure calls in user programs

Command Interpreter Interface

The following Command Interpreter commands provide the user interface
to the Security System:

ADDUSER command (super ID and group manager only)
DEFAULT command

DELUSER command (super ID and group manager only)
LOGOFF command

LOGON command

PASSWORD command

REMOTEPASSWORD command

USERS command

VOLUME command

These commands are described in the "Command Interpreter" section of
the GUARDIAN Operating System Command Language and Utilities Manual.

FUP Interface

The feollowing FUP commands provide the user interface to the Security
System:

GIVE command

LICENSE command (super ID only)
REVOKE command

SECURE command

These commands are described in the "File Utility Program" section of
the GUARDIAN Operating System Command Language and Utilities Manual.

7.1-10

SECURITY SYSTEM
Intreoduction

Programmatic Interface

The following procedures provide interface between user programs and
the Security System:

® Security System Procedures:
CREATORACCESSID
PROCESSACCESSID
USERIDTOUSERNAME
USERNAMETOUSERID
VERIFYUSER

@ File System Procedures:

SETMODE
SETMODENOWAIT

@ Process Control Procedure:
SETSTOP

Security interfacing with these procedures is described in sec. 7.2.

Operational Limitations

The security system limits the operations a given user is eligible to
perform, based on the classification of the user (see table 7-2).

7.1-11

SECURITY SYSTEM
Introduction

Table 7-2. Operational Restrictions

Classification Eligibility

Super ID User
Group Manager
Standard User

Command Interpreter

ADDUSER Defines new user to security system. X
Defines new group/user to security system.
DEBUG Debugs unprivileged precess run by current user. XX
Debugs any process, including privileged ones.

DEFAULT Sets current user”s default volume and subvolume XX
names and default security.

DELUSER Deletes user from security system. X
Deletes group from security system.
PASSWORD Sets current user”s LOGON password. X|x

PAUSE Allows <cpu,pin> form for designated process if X|x
both processes have same process accessor ID.

Allows <cpu,pin> form in any case.
RUN Starts a program. XX
Starts an unlicensed privileged program.
STOP Stops process run by current user (creator), or x| x
that has same process accessor ID as current

user, or that has stop mode of 0.

Stops any process.

USERS Lists attributes of current user. X|x
Lists attributes of all users in current group. X|X
Lists attributes of all users in all groups. X|x

VOLUME Changes current user”s current default volume X|x
and subvolume names and default security for
this logon session only.

7.1-12

SECURITY SYSTEM
Introduction

Classification Eligibility

Super ID User
Group Manager
Standard User

File Utility Program

GIVE Changes ownership of file owned by current user. X |X|X
Changes ownership of any file. X

INFO Lists a file”s characteristics. XXX

LICENSE Permits privileged program to be run by users X
other than super ID.

REVOKE Unlicenses privileged program. X

SECURE Sets file security of file owned by current user. [X[X|X
Sets disc file security of any file. X

File System Procedures

CREATE Creates a file with default security. X|xX|x
OPEN Opens a file if security check is passed. XXX
Opens any file. X

SETMODE and SETMODENOWAIT
Changes security of file owned by current user. X|X|x
Changes security of any file. X

Security System Procedures

CREATORACCESSID

Obtains process”s creator accessor ID. XixX|x
PROCESSACCESSID

Obtains process”s process accessor ID. X|X|X

7.1-13

SECURITY SYSTEM
Introduction

Classification Eligibility

Super ID User
Group Manager
Standard User

Process Control Procedures

STEPMOM Changes creator process ID for designated process [X|X|X
if both processes have same process accessor ID.

Changes creator process ID for designated X
process regardless of process accessor ID’s.

STOP Stops process started by creator, or that has X[x|xX
same process accessor ID as creator, or that
has stop mode of 0.

Stops any process. X

NOTE: In the preceding descriptions, the "current user" is the process
that invokes a command or procedure. The eligibility to perform
operations is determined by checking the process accessor ID of
that process.

NETWORK SECURITY

A user at system X wishing to access a file (disc file, device, or
process) residing on system Y must satisfy each of the following three
requirements:

® The user on system X must alsoc be a user on system Y.

e The user on system X must know the correct remote password for
accessing files on system Y.

e The user on system X must have the autherity to access a disc file
on system Y (explained previously under "File Security").

Global Rnowledge of User ID”s

Each user is known to the computer by a user name, such as ADMIN.BILL,
and a user ID, such as 1,2. A user can access files on a system only

if his user name and user ID are known to that specific system. So if
ADMIN.BILL, whose user ID is 1,2, wishes to access a file on a remote

system, that system must alsoc have a user named ADMIN.BILL whose user

ID is 1,2.

7.1-14

SECURITY SYSTEM
Introduction

Remote Passwords

Once the user ID”s of network users have been added to each node of
the network, a system of remote passwords is used to specify whether
remote access is permitted.

Each user ID has associated with it a set of remote passwords. One,
specified with the command

REMOTEPASSWORD \<my system name> , <allow-access password>

designates the password required for a remcte user to access this
system. The others, specified by

REMOTEPASSWORD \<remote system name> , <request-access password>

define passwords used on attempts to access a remote system; the
attempt is successful if the request-access password matches the
allow-access password previcusly specified by the remote user.

Both types of passwords consist of up to 8 nonblank characters.
Control characters are allowed, and lower-case characters are not
upshifted.

Consider two systems, named \A and \B, in a network. At each system,
a user named ADMIN.BILL, with user ID 1,2, has been defined.

At system \A, a user enters the commands:

LOGON ADMIN.BILL
REMOTEPASSWORD \A, SHAZAM

ADMIN.BILL”s allow-access password is SHAZAM. In the future, any
user who logs on at a remote system as ADMIN.BILL must specify SHAZAM
as his request-access password tc be able tc access system \A. For
example, at system \B, a user enters:

LOGON ADMIN.BILL
REMOTEPASSWORD \A, SHAZAM

This user now has remcote access to system \A as ADMIN.BILL, and may

now perform such operations as creating processes and accessing
certain disc files.

A remote password, once defined, remains in effect until modified by a
subsequent REMOTEPASSWORD command. ADMIN.BILL may log off and then
log on again without having to respecify his remcte passwords.

ADMIN.BILL, logged on at system \B, does ncot have quite the same
status at \A as the ADMIN.BILL at \A. ADMIN.BILL at \B is a remote
accessor of \A; consequently, he cannot access disc files on \A that
are secured for local access only.

7.1-15

SECURITY SYSTEM
Introduction

However, BADMIN.BILL at \A has no access at all to system \B. For
ADMIN.BILL to gain access tc \B, an allow-access password must be
defined for ADMIN.BILL at \B, matched by a request-access password
at \A. For example, at \B:

LOGON ADMIN.BILL
REMOTEPASSWORD \B, aardvark

and at \A:

LOGON ADMIN.BILL
REMOTEPASSWORD \B, aardvark

Now ADMIN.BILL at system \A can access system \B.

The following considerations apply to remote passwords:

e As shown previocusly, the absence of an allow-access password
prevents remote access as that user. Thus, if MARKETNG.SUE does
not supply an allow-access password, no remote user with the same
user ID can access MARKETNG.SUE”s system.

e The command
REMOTEPASSWORD \<system name>

removes any previously designated password (either for the local
system or a remote one). The command

REMOTEPASSWORD
removes all remcte passwords.
@ A request-—-access password can be issued before the corresponding
allow-access password. Remote access is permitted as soon as both

remote passwords have been defined (provided they match).

® Remote passwords are independent of local passwords. 1In the
preceding example, ADMIN.BILL could issue the command

PASSWORD <local password>

at either system to prevent unauthorized persons from logging on
as ADMIN.BILL.

7.1-16

SECURITY SYSTEM
Introduction

Process Access

Several security considerations relate to remote processes:

@ With respect to a given system, each process in the network is
either "local" or "remote." The following rules state that:

- A process is remote if it is running in a remote system.
- A process is remote if its creator is in a remote system.
- A process is remcote if its creator is remote.
By the last two rules, even a process that is running in a given
system may be remote with respect to that system. These rules
prevent a remote process from creating another process to access
a file whose security specifies local access only.

@ A remote process cannot suspend or activate a local process. A
remote process cannot stop a local process, unless the stop mode

of the local process is 0 (anyone may stop it).

e A remote process cannot put a local process into DEBUG.

Programmatically Logging On

A process that is remote with respect tco the system in which it is
running can become local. For example, a user on system \A can become
local in respect to system \B by starting a Command Interpreter in \B
and logging on. The creator of the CI in \B is the user”s CI in \A.
According to the preceding rules, the CI in \B is remote with respect
to \B, but the user”s LOGON command causes that CI to become local
with respect to \B. Sc the concept of local and remote users becomes
equivalent to that of local and remote processes: A user is lcocal (or
remote) with respect to a given system if his Command Interpreter is
local (or remote) with respect to that system. A process can make
itself local with respect to the system in which it is running by
programmatically logging on to that system. This is done by calling
the VERIFYUSER procedure, which verifies a user”s password and
optionally allows a process tc make the user”s ID its own, thereby
becoming local with respect to the system in which it is running.

7.1-17

The following procedures provide the
and the security system:

Security System Procedures

CREATORACCESSID
PROCESSACCESSID
USERIDTOUSERNAME
USERNAMETOUSERID
VERIFYUSER

File System Procedures

SETMODE
SETMODENOWAIT

Process Control Procedure

SETSTOP

interface

SECURITY SYSTEM
Programmatic Inter face

between user programs

SECURITY SYSTEM
CREATORACCESSID Procedure

The CREATORACCESSID procedure is used to obtain the accessor ID of the
process that created the calling process.

The call to the CREATORACCESSID procedure is:

<accessor id> := CREATORACCESSID

where
<accessor id>, INT,

is returned the accessor ID of the caller”s creator. It is
returned in the form

<accessor id>.<0:7> = group ID
<accessor 1id>.<8:15> = user ID

example:

creatorid := CREATORACCESSID;

CONSIDERATIONS

@ The accessor ID returned from CREATORACCESSID is that of the
calling process”s actual creator, which is not necessarily

SECURITY SYSTEM
PROCESSACCESSID Procedure

The PROCESSACCESSID procedure is used to obtain the accessor ID of the
the calling process.

The call to the PROCESSACCESSID procedure is:

<accessor id> := PROCESSACCESSID

where
<accessor id>, INT,

is returned the accessor ID of the caller. It is returned
in the form

<accessor id>.<0:7> = group ID
<accessor id>.<8:15> user ID

example:

myaccesscorid := PROCESSACCESSID;

CONSIDERATIONS

e For a given process, the accessor ID returned from the
PROCESSACCESSID procedure is normally the same as that returned
from the CREATORACCESSID procedure. The only time that the
accessor ID”s may differ is when a program file is run for which
"set accessor ID to program file”s owner ID" has been specified.
In that case, the accessor ID returned by PROCESSACCESSID is
the same as that of the program file”s owner.

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

The SETMODE and SETMODENOWAIT procedures can be used in a program
to set and/or obtain a file”s security and owner ID.

Note: Only a file”s owner or the super ID is allowed to set file
security or change the owner ID.

The SETMODE functions related to security are given in table 7-3.

Table 7-3. SETMODE Functions Related to Security

<function>
1 = set disc file security:
<parameter 1>

.<0> =1, for program files only. Set accessor”s ID to
program file”s ID when program file is run.

.<1>, clearonpurge file attribute; if set, clear data in
the file before purging file directory.

.<4:6>, ID allowed for read.
.<7:9>, ID allowed for write.
.<10:12>, ID allowed for execute.
.<13:15>, ID allowed for purge.

For each of the fields from .<4:6> through .<13.15>,
the value may be any one of the following:

any user (local)

member of owner”s group (local)

owner (local)

any user (local or remote)

member of owner”s community -- i.e., member of
owner”s group (local or remote)

member of owner”s user class -- i.e.,

owner (local or remote)

7 = super ID only (local)

VNN O
I u wu

N
]

<parameter 2> is not used.
2 = get disc file owner ID:

<parameter 1>.<0:7> = group ID
.<8:15> = user ID

<parameter 2> is not used.

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

Some examples:

First, to change a file”s security setting:

LITERAL security = %0222;

CALL SETMODE (fnum, 1, security);
IF < THEN ... ;

sets the file”s security to

read = any
write = owner
execute = owner
purge = owner

Second, to specify that the file”s owner ID should be used as the
process”s accessor ID when the program file is run:

LITERAL prog”sec = %$102202;

CALL SETMODE (pfnum, 1, prog”sec);
IF < THEN ... ;

sets the file”s security to

set accessor ID to owner”s ID when file is run

read = owner
write = owner
execute = any

purge = owner

Third, to change the file”s owner 1ID:

INT owner id;

owner”id.<0:7> := new"group”id;
owner"id.<8:15> := new user”id;
CALL SETMODE (fnum, 2, owner”id);
IF < THEN ... ;

sets the file”s owner ID tc the value specified in "owner”id".

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

Fourth, to obtain the file”s current security setting:

INT filesec;

CALL SETMODE (fnum, 1,,, filesec);
IF < THEN ... ;

returns the file”s current security settings in "filesec”.
Finally, to obtain the file”s owner ID:

CALL SETMODE (fnum, 2,,, owner’id);
IF < THEN ... ;

returns the file”s owner ID in "owner " id".

7.2-6

SECURITY SYSTEM
SETSTOP Procedure

The SETSTOP procedure permits a process to protect itself from being
deleted by any process but itself or its creator.

The call to the SETSTOP procedure is:

CALL

{ <last stop mode> := { SETSTOP (<stop mode>)
where
<last stop mode>, INT,

is returned either the preceding value of <stop mode>,
or -1 if an illegal mode was specified.

<stop mode>, INT:value,

specifies a new stop mode. The modes are:

0

stoppable by any process
1

stoppable only by

e the super ID

@ a process whose process accessor ID = this process’s
creator

e a process whose process accessor ID = this process”s
accessor ID (this includes the caller to STEPMOM)

2 = unstoppable (privileged users only)

example:

last™mode := SETSTOP(new mode);

CONSIDERATIONS

e The default stop mode when a process is created is 1.

e If a process”s stop mode is 1 and a STOP is issued to it by a
process without the authority to stop it, the process does not
stop; it is deleted, however, if and when the stop mode is
changed back to 0.

SECURITY SYSTEM
USERIDTOUSERNAME Procedure

The USERIDTOUSERNAME procedure returns the user name, from the file
S$SYSTEM.SYSTEM.USERID, that is associated with a designated user ID.

The call to the USERIDTOUSERNAME procedure is:

CALL USERIDTOUSERNAME (<id name>)

where
<id name>, INT:ref:8,

on the call, contains the user ID to be converted to a user
name. The user ID is passed in the form:

<id name>.<0:7>
<id name>.<8:15>

group ID 0:255{
user ID 0:255

on the return, contains the user name associated with the
specified user ID in the form:

<id name> FOR 4 = group name, blank filled
<id name>[3] FOR 4 = user name, blank filled

condition code settings:

< (CCL) indicates that <id name> is out of bounds, or that

- s

= (CCE) indicates that the designated user name was returned.
> (CCG) indicates that the specified user ID is not defined.

example:

id"name.<0:7> := group”id;
id"name.<8:15> := user”id;

CALL USERIDTOUSERNAME (id"name);
IF <> THEN ... ;

7.2-8

SECURITY SYSTEM
USERNAMETOUSERID Procedure

The USERNAMETOUSERID procedure returns the user ID, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user name.

The call to the USERNAMETOUSERID procedure is:

CALL USERNAMETOUSERID (<name id>)

where
<name id>, INT:ref:1l,

on the call, contains the user name to be converted to a
user ID. The user name is passed in the form:

<name id> FOR 4

group name, blank filled
<name id>[3] FOR 4

user name, blank filled

on the return, contains the user ID associated with the
specified user name in the form:

<name id>.<0:7> = group ID {0:2551
<name id>.<8:15> = user ID 0:255

condition code settings:

< (CCL) indicates that <name id> is out of bounds, or that

an i/c error occurred with the $SYSTEM.SYSTEM.USERIDS
file.
(CCE) indicates that the designated user ID was returned.

(CCG) indicates that the specified user name is not
defined.

v

example:

name”id “:=" group”name FOR 4;
name”id[3] “:=" user"name FOR 4;
CALL USERIDTOUSERNAME (name”id);

IF <> THEN ... ;

r

SECURITY SYSTEM
VERIFYUSER Procedure

The VERIFYUSER procedure verifies, and optionally logs on, a user.

The call to the VERIFYUSER procedure is:

CALL VERIFYUSER (<user name or id>
, <logon>, <default>, <default length>)
where

<user name or id>, INT:ref:12,

is an array containing either the name or user ID of the
user to be verified or logged on, as follows:

<user name or id>[0:3] = group name, blank filled
<user name or id>[4:7] = user name, blank filled

or
<user name or id>[0].<0:7>

<user name or id>[0].<8:15>
<user name or id>[1:7]

group ID
user ID
zeros (ASCII nulls)

In either case,

<user name or id>[8:11] = password, if supplied,
blank filled

<logon>, INT:value,
if present, has the following meaning:

0
<> 0

verify user, but do not log on
verify user and log on

if omitted, a value of 0 is understood.

7.2-10

SECURITY SYSTEM
VERIFYUSER Procedure

<default>, INT:ref:18,

if

specified in <user name or id>:

<default length>, INT,

is
be
be
to

condition code settings:

< (CCL) indicates that a buffer is out of bounds, cor that an

v

example:

CALL VERIFYUSER(user, lcogon, default, 36);

IF < THEN ... ! buffer or i/oc error

ELSE IF > THEN ... ! no such user, or bad password
ELSE ... ! successful

(CCE) indicates a successful verification and/cr logon.
(CCG) indicates that there is no such user, or that the

present, is returned information regarding the user

<default>[0:3]
<default>[4:7]
<default>[81.<0:7>
<default>[8] .<8:15>
<default>[9:12]
<default>[13:16]
<default>[17]

group name, blank filled

user name, blank filled

group ID

user ID

default volume, blank filled
default subvolume, blank filled
default file security, as follows:

<default>[17].<4:6> = read 0 = "A" 4 = "N"
<default>[17].<7:9> = write 1 = "g» 5 = ngn
<default>[17].<10:12> = execute 2 = "o" g = m"g"
<default>[17].<13:15> = purge 7 = n_m

the length, in bytes, of the <default> array; it must

given if <default> is given. This number should always
specified as 36; in the future, new fields may be added
<default>, requiring <default length> to become larger.

i/o error occurred on the user ID file.

password is invalid.

3 7«<” 8 + 17; ! user ID 3,17
“:=" 0 & user[1l] FOR 6; ! all zeros
“:=" password FOR 8;

= 1; ! log this user on

7.2-11

SECURITY SYSTEM
VERIFYUSER Procedure

CONSIDERATIONS

e Following a successful logon via this procedure, a process is
considered to be local with respect to the system on which it
is running.

® A process that passes an invalid password to VERIFYUSER for the
third time is suspended for 60 seconds.

7.2-12

SECTION 8
MEMORY MANAGEMENT PROCEDURES
The GUARDIAN operating system provides six basic procedures for the

management of memory in extended segments. These procedures,
available only on NonStop II systems, are as follows:

ALLOCATESEGMENT allocates an extended memory segment for use by
the calling process

DEALLOCATESEGMENT
deallocates an extended memory segment
DEFINEPOOL designates a portion of a user”s stack or an
extended segment for use as a buffer pool
GETPOOL cbtains a block of memeory from a buffer pool
PUTPOOL returns a block of memory to a buffer pool
USESEGMENT supplies the segment ID of an extended memory

segment so that the calling process may use
the segment

Several privileged procedures are also provided for advanced memory
management. These procedures are described in section 8.2.

SEGMENTED MEMORY (NonStop II systems only)

The normal environment for code execution in the processor is a
process. Besides a current register state, each process on the
NonStop II system has a segment (possibly shared) for its code space.
This segment is lcaded into MAP[2,0:63] when the process runs.

(For a definition of the MAPs, see the NonStop II System Description
Manual.) It is allocated by the operating system, and is one of four
possible code spaces. It is addressable data as logical segment #2,
and if the process is currently executing in this code space, as
logical segment #3 as well. If the process is executing in user mode,
the segment is read-only.

MEMORY MANAGEMENT PROCEDURES
Segmented Memory (NonStop II systems only)

In addition, each process may have a library segment (possibly
shared) , which is loaded intoc MAP[4,0:63] when the process runs. If
necessary, this segment is allocated by the operating system.

A process”s data space is a unique segment that is loaded into
MAP[0,0:63] when the process runs. This segment is allocated
automatically by the operating system. It is addressable either in
the usual way as the process”s data stack, or as his logical segment
$#0. The absolute segment number is kept in the PCB. There is one
segment of this type per process.

In addition, a process may also have an extended data space in one or
more segments (possibly shared). If so, the base and limit for this
address space is set when the process is active. A non-privileged
user can use only one data segment at a time, since only one logical
extended address can be bounds checked and translated into an
absolute extended address. This means that the non-privileged user
cannot transfer data directly from one of these segments to another.
If such a transfer is required, he must move the data into his data
stack, put the required segment in use, and move the data. Note,
however, that these segments can be larger than 128K bytes.

The rest of the MAP contains the extended address space cache, the
system data space, the two system code spaces, and i/o buffers that
are randomly allocated by i/o processes.

This process environment can be used in several ways:

l. Extended user spaces can be provided by defining one or more
segments, then allowing the user to access them by setting the
segment bounds and limit register to define that space when the
process is executing in user mode. This allows a user to have
far more than 128K bytes of addressable data space. A user
process can have several of these spaces, but an explicit

switch must be done between them.

2. The file system contreol blocks and buffers can be placed in a
segment (or part of a segment). When the file system is
running, the segment base and limit registers can be set to
this space. The file system runs in privileged mode (so that it
can access the message system), but all its memory references
can be checked to see that they are within either the user”’s
stack or the control block/buffer segment. By assigning a
process a set of whole pages, the system can protect
individual processes from each other. Bus transfers are made
to and from this buffer segment.

3. I/0 processes can run with their own data space for such items
as OCB”“s and FCB”’s. They can set the segment bounds to point
to the pages of the "i/o space" that they have been assigned.
By assigning a process a set of whole pages, the system can
protect individual processes from each other. Bus transfers
are made to and from either the segment space or the process’s
data space, as required by the process.

8.1-2

MEMORY MANAGEMENT PROCEDURES
Segmented Memory (NonStop II systems only)

The following procedures are related to segmented memory:

ALLOCATESEGMENT allocates an extended memory segment for use by
the calling process

DEALLOCATESEGMENT deallocates an extended memory segment

USESEGMENT supplies the segment ID of an extended memory
segment so that the calling process may use the
segment

SPACE MANAGEMENT WITHIN A SEGMENT

In addition to the segmented memory procedures, the GUARDIAN
operating system on the NonStop II system provides a procedure
allowing a process to designate a portion of its stack or a
portion of an extra segment for a buffer pool. Once the pool is
set up, the process may alloccate and free variable-size buffers
from the pool by calling system procedures.

Most programs in the system use private pools which are in

their own segments. However, two pocols are defined for shared
access by privileged callers. They are SYSPOOL, which controls
all free space in the system data space, and MAPPOOL, which
controls free space that is mapped intc maps 6 through 14. When
space is allocated or returned to these pools,; the procedures
use MUTEXON/OFF to provide mutual exclusion to the peool data
structures. Any data structure errors in either of these pools
results in a processor halt.

The following procedures are related to memory pccl management:

DEFINEPOOL designates a portion of a user”s stack or an
extra segment for use as a buffer pool

GETPOOL obtains a bleock of memory from a buffer pocl

PUTPOOL returns a bleock of memory te a buffer pool

MEMORY MANAGEMENT PROCEDURES
ALLOCATESEGMENT Procedure (NonStop II systems only)

The ALLOCATESEGMENT procedure allcocates an extended memory segment for

use by the calling process. This procedure is available only on
NonStop II systems.

The call to the ALLOCATESEGMENT procedure is:

<status> := ALLOCATESEGMENT (<segment id>
; <segment size>
, <filename>
y <pin>)

where

<status>, INT,

is returned a status word having one of the following
values:

0 nc error

1-999 file system error related to the CREATE or
the OPEN of the swap file (see <filename>
parameter)

-1 illegal <segment id>

-2 illegal <segment size>

-3 bounds violation on <filename>

-4 illegal combination of options

-5 unable to allocate segment space

-6 unable to allcocate page table space

=7 security violation on attempt to share segment
-8 <pin> does not exist

-9 <pin> does not have the segment allocated

<segment id>, INT,

is the number by which the process wishes to refer to the
segment. Segment ID”s in the range of:

0-1023 may be specified by user processes
1024-2047 are reserved for Tandem-supplied software
2048-4095 may be used only by privileged processes

No process may supply a segment ID greater than
4095. Segment ID 2048 is reserved for the process file

segment (PFS), and segment ID”s 3072 through 4095 are
assumed to be i/c segments.

MEMORY MANAGEMENT PROCEDURES
ALLOCATESEGMENT Procedure (NonStop II systems only)

<segment size>, INT:32,

if present, is the number of bytes that the segment must
hold. This value must be greater than zero and less than
$777777777D. If this parameter is not supplied, then the
<pin> parameter must be supplied.

<filename>, INT:ref:12,

if present, is the name of a "swap file" to be associated
with the segment. If the file exists, all data in the
file through the end-of-file is used as initial

data for the segment. 1If the file does not exist, it

is created, with a file size equal to the segment size.
When the process terminates, any data still in memory

is written back out to the file. If the parameter is

not specified, or a blank terminated volume is supplied,
a temporary file is created for the segment on either

the program file”s volume or the specified volume,
respectively. The procedure assures that all extents for
the file have been allocated.

If a temporary file name is specified in the call to
ALLOCATESEGMENT, the system will simply open the file and
not attempt to create it. When the segment is deallocated,
the swapfile will be purged automatically.

<pin>, INT,

if present, designates that the segment specified by
<segment id> is to be shared with the process specified

by <pin>. 1In order for this to occur, the processes

must share the same access ID, or this process”s access ID
must be the group manager for the other”s access ID, or
this process” access ID must be the super ID.

examples:

status := ALLOCATESEGMENT (segment”id, seg”size, swap”file);
! standard call to create a user segment;

! "swap“file" parameter may be omitted

status := ALLOCATESEGMENT (segment”id,,, pin):
! call to share the segment "segment™id"
! with the process "pin"

MEMORY MANAGEMENT PROCEDURES
DEALLOCATESEGMENT Procedure (NonStop II systems only)

The DEALLOCATESEGMENT procedure deallocates an extended memory segment
when it is no longer needed by the calling process. This procedure is
available only on NonStop II systems.

The call to the DEALLOCATESEGMENT procedure is:

CALL DEALLOCATESEGMENT (<segment id> , <flags>)

where
<segment id>, INT,

is the segment number of the segment, as specified in
the call to ALLOCATESEGMENT that created it.

<flags>, INT,
if present, has the form:

<0:14> must be zero (0).

<15> =1 indicates that dirty pages in memory are
not to be copied to the swap file
(see ALLOCATESEGMENT procedure).
=0 indicates that dirty pages in memory are
to be copied to the swap file.

If omitted, this parameter defaults to zero.
example:

CALL DEALLOCATESEGMENT (segment”id);

MEMORY MANAGEMENT PROCEDURES
DEFINEPOOL Procedure (NonStop II systems only)

The DEFINEPOOL procedure designates a portion of a user”s stack or an
extended segment for use as a buffer pocl. This procedure is
available only on NonStop II systems.

The call to the DEFINEPOOL procedure is:

<status> := DEFINEPOOL (<pcel head> , <pool> , <pocl size>)

where

<status>, INT,

is returned a status word having one of the following
values:

no error

bounds error on <pocl head>
bounds error on <pool>

invalid <pool size>

<pcol head> and <pcol> overlap

> W= o

<pool head>, INT:ref:EXT:19,

is a pointer to the memory space, within an allocated
segment, to be used as the pcol header.

<pool>, INT:ref:EXT,

is a pointer to the memory space to be used for the pcol.

<pccl size>, INT:32,
is the size of the pool in bytes. This number must

be a multiple of four bytes, and cannot be less than
32 or greater than %10000000D.

example:

status := DEFINEPOOL (pool”head, pcol, 2048);

MEMORY MANAGEMENT PROCEDURES
GETPOOL Procedure (NonStop II systems only)

The GETPOOL procedure obtains a block of memory from a buffer pool.
This procedure is available only on NonStop II systems.

The call to the GETPOOL procedure is:

<address > := GETPOOL (<pool head> , <block size>)

where
<address>, INT:32,

is returned the address of the memory block obtained if
the operation was successful, or -1D if an error occurred
or if <block size> was zero.

<pocl head>, INT:ref:EXT:19,

is a pointer to a pocl head previously defined by
a call to DEFINEPOOL.

<block size>, INT:32,

is the size, in bytes, of the memory to be obtained from
the pool. This number cannot be greater than %377770D.
To check data structures without getting any memcory from
the pool, <block size> may be set to zero.

condition code settings:

< (CCL) 1indicates that <block size> was out of range, or
that the data structures were invalid; -1D is
returned.

= (CCE) indicates that the operation was successful;
extended address of block returned if <block size>
greater than zero, or -1D returned if <block size>
equal to zero.

> (CCG) indicates that insufficient memory was available;
-1D is returned.

examples:
returns 128 bytes

- 1
: !
: ! checks data
1 gtructures

buf”ptr := GETPOOL (pool“head, 128)
dummy “var := GETPOOL (pool”head, 0)

CONSIDERATIONS

@ A process that has destroyed data structures may get a bounds
viclation trap on a call to GETPOOL or PUTPOOL.

8.1-8

MEMORY MANAGEMENT PROCEDURES
PUTPOOL Procedure (NonStop II systems only)

The PUTPOOL procedure returns a block of memery to a buffer pocl.
This procedure is available only on NonStop II systems.

The call tc the PUTPOOL procedure is:

CALL PUTPOOL (<poocl head> , <address>)

where
<pcol head>, INT:ref:EXT:19,

is a pointer to the poecl head of the peel from which
the block of memory was obtained.

<address>, .EXT

is the address of the block to be returned to the pool.

condition code settings:

< (CCL) 1indicates that the data structures were invalid.
= (CCE) indicates that the operation was successful.
> (CCG) 1is not returned by PUTPOOL.

exXample:

CALL PUTPOOL (pcocl”head, buf’ptr);

CONSIDERATIONS

@ A process that has destroyed data structures may get a bounds
violaticon trap on a call to GETPOOL or PUTPOOL.

MEMORY MANAGEMENT PROCEDURES
USESEGMENT Procedure (NonStop II systems only)

The USESEGMENT procedure supplies the segment ID of an extended
memory segment so that the calling process may use the segment.
This procedure is available only on NonStop II systems.

The call to the USESEGMENT procedure is:

<0ld segment id> := USESEGMENT (<segment id> , <pin>)

where
<cld segment id>, INT,

is returned the segment ID of the previously used segment,
if any; otherwise, -1.

<segment id>, INT,

if present, is the segment ID of the segment to be used,
or -1 if no segment is to be used. If this parameter is
not supplied, the current segment remains unchanged.

<pin>, INT,

if present, is the process number of another process
whose segment is to be shared by the calling process.
This parameter may be specified only by privileged
callers.

condition code settings:

< (CCL) 1indicates that <segment id> is not allocated, or
that <pin> or an absolute segment was supplied
by a non-privileged caller.

= (CCE) indicates that the operation was successful.

> (CCG) 1is not returned by USESEGMENT.

examples:

0ld"seg”id := USESEGMENT (new"seg”id); ! change segments
segment”id := USESEGMENT; ! get current segment ID
segment”id := USESEGMENT (-1); ! de-select extended segments

CONSIDERATIONS

® Because segment relocation is done, the first byte of any extended
segment has the address %2000000D.

8.1-10

MEMORY MANAGEMENT PROCEDURES
Advanced Memory Management

The GUARDIAN operating system provides several procedures for
advanced memory management: one procedure for NonStop systems, and
two procedures for NonStop II systems. To call these procedures,

a program must be executing in privileged mode.

The procedures are:

LOCKDATA (NonStop systems only)

permits a process to make a portion of its data area
main-memory resident and, optionally, causes the
pages to be entered into the system data map

LOCKMEMORY (NonStop II systems only)

permits a process te lock arbitrary buffers in
arbitrary memory segments, both data and code

UNLOCKMEMORY (NonStop II systems only)

permits a process to unlock arbitrary buffers in
arbitrary memory segments, both data and code

Note: Locking code in a NonStop or NonStop II system can be
accomplished only for procedures that have been assigned
the RESIDENT attribute.

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (NonStop systems only)

The LOCKDATA procedure is used to make a block of data in the
application process data area main-memory resident and, optionally,
causes the pages to be entered into the system data map as redquired
for resident buffering. A process calling LOCKDATA must be executing
in privileged mode: otherwise, an instruction failure trap will occur.
This procedure is available only on NonStop systems; for NonStop II
systems, see the LOCKMEMORY and UNLOCKMEMORY procedures.

The call to the LOCKDATA procedure is:

l <state> := { LOCKDATA (<address> , <count> , <sys map>)
CALL

where
<state>, INT,

is either 1, indicating that the data was locked, or O,
indicating that the call to LOCKDATA failed.

<address>, INT:value,

is the 'G'[0] relative address of the first word in the data
area to be made resident. Note that this is a value
parameter and, therefore, should be passed in the form:

@<variable>.
<count>, INT:value,

is the number of words in the block to be made resident
(starting with <address>).

<sys map>, INT:value,

indicates whether or not the block of data should be
assigned to system data map entries:

0 = do not assign to system map entries
1 = assign to system map entries
example:

IF NOT LOCKDATA (@buffer,256,1) THEN ...

CONSIDERATIONS

® Once a data area is made main-memory resident, it remains resident
until the process is deleted.

8.2-2

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (NonStop systems only)

Physical pages are made resident from the location indicated by
<address> to the location indicated by <address> plus <count> minus
one.

If too many pages are made resident, no memory space will be
available for virtual memory. "No memory available" traps may
occur .

Assigning entries to the system data map is used when specifying
resident buffers for a file.

A process can place only one block of memory in the system map.

If LOCKDATA is called and <sys map> = 1 is specified, a "No memory
available" trap will occur if no system map entries are available.

Space for assignment of system data map pages is obtained from
system data map entries not used by the operating system. The
maximum number of system data map entries available for assignment
via LOCKDATA is therefore configuration and processor module
dependent.

The system data map entries available for this purpose begin
following the last page used by the operating system in the lower
32K of the system data area, and end with the first page in the
upper 32K used by the operating system in the system data area.
(SYSGEN makes assignments in the lower 32K starting at address 0
and working upward; assignments in the upper 32K are made starting
at address %177777 - the highest address - and working downward).

The number of pages available in a given processor module is
computed by using the "SYSTEM ADDRESS SPACE USED" entry on the
SYSGEN listing for that processsor as follows:

1. Take the <1 limit> address shown on the SYSGEN listing and
round it up to the nearest page boundary, then divide that
value by the page size in words (i.e., 1024):

<base page> := (<1 1limit> + 1024) / 1024

2. Take the <u base> address shown on the SYSGEN listing and
divide that value by the page size in words:

<lim page> := <u base> / 1024

3. Subtract the <basepage> value from the <lim page> value to
obtain the number of available pages.

<num pages> := <lim page> - <base page>
For example, the number of system data pages available for

assignment in a process module having the following "SYSTEM
ADDRESS SPACE USED" values displayed is

802_3

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (NonStop systems only)

VIRTUAL SYSTEM DATA: 2 K
SYSTEM ADDRESS SPACE USED: %000000-%061777 %133463-%177777

<1 1imit> <u base>

<base page> is (%061777 + %2000) / %2000 %31 (25)

<lim page> 1is %133463 / %2000

%55 (45)
<num pages> is %55 - %31 = %24 (20)

8-2_4

MEMORY MANAGEMENT PROCEDURES
LOCKMEMORY Procedure (NonStop II systems only)

The LOCKMEMORY procedure permits a process to lock arbitrary buffers
in arbitrary memory segments, both data and code. This procedure is

available only on NonStop II systems; f£or NonStop systems, see the
LOCKDATA procedure.

The call to the LOCKMEMORY procedure is:

<status> := LOCKMEMORY (<address>

, <parameterl>
; <parameter2>)

where
<status>, INT,

is returned a status word having one of the following
values:

0 no error -- all pades were present initially;
storage locked.
1l one or more pages were absent and have been
brought in; storage locked.
2 waiting for memory; no storage locked, or
not all storage locked.
-1 no storage available, or timed out waiting for
memery; no storage locked.
-2 bounds viclation, illegal timeout value, or
missing parameter; no storage locked.

<address>, STRING:ref:EXT,

is the extended address of the block to be locked down.
<byte count>, INT(32) :value,

is the number of bytes to be locked.
<timecutvalue>, INT(32):value,

specifies the time period, in .0l-second units, that the

procedure is to wait for memory. This value must be
zero or greater; zero specifies no waiting.

8.2-5

MEMORY MANAGEMENT PROCEDURES
LOCKMEMORY Procedure (NonStop II systems only)

<parameterl>, INT,

if present, identifies the timeout message read from
SRECEIVE.

<parameter2>, INT(32):value,

if present, identifies the timeout message read from
SRECEIVE (same purpose as <parameterl>).

examples:

status := LOCKMEMORY (address, byte”count, 1000);

! lock, waiting up to 10 seconds for memory
status := LOCKMEMORY (address, byte”count, 1000,

parml, parm2);

! lock, and continue processing while waiting

! for memory

CONSIDERATIONS

e If the <timeoutvalue> parameter is zero, memory will be allocated
as long as any memory is available. If the <timeoutvalue>
parameter is nonzero, however, memory will be allocated only if all
the required amount of memory is available; otherwise, it will
wait, and may eventually time out.

e If either <parameterl> or <parameter2>, or both, are supplied and
not all the requested memory is immediately available, LOCKMEMORY
lets the process resume and returns a <status> value of 2 (waiting
for memory); at the end of the specified time period, the procedure
signals the completion or failure of the lock request on $RECEIVE.
If neither of the two parameters is supplied, a <status> value of
-1 is returned after timeout, and a memory lock failure message is
sent to $RECEIVE. The memory lock completion and memory lock
failure messages have the following form:

<sysmsg> = -23 for completion

-24 for failure

parameterl supplied to LOCKMEMORY
(if none supplied, 0)

parameter2 supplied to LOCKMEMORY
(if none supplied, O0OD)

<sysmsg>[1]

<sysmsg>[2] FOR 2

e If the lock is delayed because of lack of available memory, the
procedure allocates two Time List Elements (TLE”s); one is added
to the time list, the other to the lockwait list. Whenever a
page gets unlocked and there is a TLE on the lockwait list, the
memory manager is awakened with a certain event. The memory

8.2"6

MEMORY MANAGEMENT PROCEDURES
LOCKMEMORY Procedure (NonStop II systems only)

manager then, under mutual exclusion, deletes the TLE from the
time list and proceeds with the lock. 1If the memory manager
fails again, it stores back the remaining byte count and the
current address, and adds the TLE to the time list again with
the remaining time value. Then the memory manager proceeds the
same way on the next unlock.

If the TLE on the time list times out, the time list interrupt
handler unlocks already locked pages, releases the TLE from the
lockwait list, and queues the TLE from the time list on the
SRECEIVE queue for the process. A memory lock failure message
is then read from $RECEIVE. 1If, however, encugh memory becomes
available during the time period and the memory manager succeeds
with the lock request, a memery lock completion message is read
from SRECEIVE. 1In either case, the READ (or AWAITIO) completes
with a CCG and error #6.

Another way for privileged users to lock and unlock memory is

to alleccate a resident segment using the ALLOCATESEGMENT procedure,
define a pool in it with DEFINEPOOL, and use GETPOOL and PUTPOOL.
GETPOOL and PUTPOOL automatically lock and unlock storage.

(The ALLOCATESEGMENT, DEFINEPOOL, GETPOOL, and PUTPOOL procedures
are described in sectiocn 8.1.)

8-2_7

MEMORY MANAGEMENT PROCEDURES
UNLOCKMEMORY Procedure (NonStop II systems only)

The UNLOCKMEMORY procedure permits a process to unlock arbitrary
buffers in arbitrary memory segments, both data and code. This
procedure is available only on NonStop II systems; for NonStop
systems, see the LOCKDATA procedure.

The call tc the UNLOCKMEMORY procedure is:

CALL UNLOCKMEMORY (<address> , <byte count>)

where
<address>, STRING:ref:EXT,
is the extended address of the block to be unlocked.
<byte count>, INT(32):value,
is the number of bytes to be unlocked.

example:

CALL UNLOCKMEMORY (address, byte”count);

SECTION 9

SEQUENTIAL I/O PROCEDURES

The sequential i/c procedures are a standardized set of procedures for
performing common input and output operations. These operations
include reading and writing IN and OUT files, and handling BREAK from
a terminal. The sequential i/o procedures are intended primarily for
use by Tandem subsystem and user utility programs. Programs using

these procedures can treat different file types in a consistent and
predictable manner.

Some characteristics of the sequential i/o procedures are:
e All file types are accessed in a uniform manner.

- File access characteristics, such as access mode, exclusion

modes, and record size, are selected according tc device type
and the intended access.

- The sequential i/o procedures” default characteristics are
set to facilitate their most general use.

® Error recovery is automatic. All fatal errors cause the display
of a comprehensive error message, all files to close, and the
process to abort. The automatic error handling and/or the display

of error messages may be turned off. This allows the program te do
the error handling.

e The characteristics of sequential i/o operations can be altered at
open time with the OPEN"FILE procedure. This is alsc possible
before or after the open time with the SET"FILE procedure. Some
optional characteristics are:

- Record blocking/deblocking

- Duplicative file capability, where data read from one file is
automatically echoed to another file

— An error reporting file where all error messages are directed.
When a particular file is not specified, the error reporting
file is the home terminal.

SEQUENTIAL I/0 PROCEDURES
Introduction

The sequential i/o procedures can be used with the INITIALIZER
procedure to make run-time changes. File transfer characteristics,
such as record length, can be changed using the Command Interpreter
ASSIGN command. (See "Interface with INITIALIZER and ASSIGN
Messages".)

The sequential i/o procedures retain information about the files
in file control blocks. There is one File Control Block (FCB)

for each open file, plus one common File Control Block which is
linked to the other FCBs. (See "FCB Structure".)

The sequential i/o procedures and their functions are:

CHECK “BREAK checks whether the BREAK key was typed

CHECK"FILE retrieves file characteristics

CLOSE"FILE closes a file

GIVE"BREAK disables the BREAK key

OPEN"FILE opens a file for access by the sequential i/o
procedures

READ"FILE reads from a file

SET"FILE sets or alters file characteristics

TAKE"BREAK enables the BREAK key

WAIT FILE waits for the completion of an ocutstanding i/c
cperation

WRITE"FILE writes to a file

The sequential i/o procedures alsc contain a set of defines and
literals that:

Allocate control block space (see "OPEN"FILE").
Specify open characteristics (see "OPEN"FILE").
Set file transfer characteristics (see "SET"FILE").

Check file transfer characteristics (see "CHECK"FILE").

Note that in the description of the procedure parameters, the
commercial "at" symbol "@" is used to indicate the address of an
object, not the object itself. For example, when specifying a
file name to the SET"FILE procedure, the file name parameter
should be passed as follows:

SEQUENTIAL I/0 PROCEDURES
Introduction

CALL SET"FILE (in"file , ASSIGN"FILENAME , @buf);
where
@buf is the address of the array containing the

name of the file to be opened.

SOURCE FILES

The source file named $SYSTEM.SYSTEM.GPLDEFS is used with the
sequential i/o procedures. It provides the TAL defines for allocating
control block space, for assigning open characteristics to the file,
and for altering and checking the file transfer characteristics. The
TAL literals for the sequential i/c procedures” error numbers are also
included. This file must be referenced in the program”s glcbal area
before any internal or external procedure declarations, or within a
procedure before any subprocedure declarations.

SEQUENTIAL I/O PROCEDURES
CHECK "BREAK Procedure

The CHECK"BREAK procedure tests whether the BREAK key has been typed
since the last CHECK"BREAK.

The call tc the CHECK"BREAK procedure is:

S

<state> := CHECK"BREAK (<common FCB>
<file FCB>

<state>, INT,

indicates whether or not the BREAK key has been typed.
Values returned in <state> are:

1
0

BREAK key typed and BREAK is enabled.
BREAK key not typed or BREAK is disabled.

<common FCB> or <file FCB>, INT:ref,

identifies the file to be checked for BREAK. <common FCB>
is allowed for convenience.

example:

CALL TAKE"BREAK (out”"file):
WHILE NOT (break := CHECK"BREAK (out”file)) DO
BEGIN

CALL WRITE"FILE (out”file , buffer , count):
END;

CALL GIVE"BREAK (out”file);

CONSIDERATIONS

e If CR/LF on BREAK is enabled, the default case, a carriage
return/line feed sequence is executed on the terminal where
BREAK is typed.

® More information is available in "Terminals" subsection of
section 2 under "Break Feature".

SEQUENTIAL I/O PROCEDURES
CHECK"FILE Procedure

The CHECK"FILE procedure checks the file characteristics.

The call to the CHECK"FILE procedure is:

<retval> := CHECK"FILE (I <common fcb> } , <operation>)
<file fcb>

where
<retval>, INT,
is the value returned for the requested operation.
<common fcb> or <file fcb>, INT:ref,

identifies which file is checked. A common FCB can be
used for certain types of checks; a common FCB must be
used for the checks FILE"BREAKHIT, FILE"ERRORFILE,

and FILE"TRACEBACK. Specifying an improper FCB causes
an error indication.

<operation>, INT:value,

specifies which file characteristic is checked. The
<operation>s and their associated <retval>s are:

<operation> = FILE"ABORT"XFERERR, (file must be open)
<retval> := <bit wvalue>

returns: 0 if the process is not to abort upon
detection of a fatal error in the file.
1 if the process is to abort.

<operation> = FILE"ASSIGNMASK1,
<retval> := <high-order word of ASSIGN fieldmask>

returns the high-order word of the ASSIGN message
field mask in the FCB. This value generally has

meaning only after being set by the INITIALIZER
procedure.

<operation> = FILE"ASSIGNMASK2,
<retval> := <low-order word of ASSIGN fieldmask>

returns the low-order word of the ASSIGN message
field mask in the FCB. This value generally has
meaning only after being set by the INITIALIZER
procedure.

9-5

SEQUENTIAL I/0O PROCEDURES
CHECK"FILE Procedure

<operation> = FILE"BLOCKBUFLEN,
<retval> := <block buffer length>

returns a count of the number of bytes used for blocking.

<operation> = FILE"BREAKHIT,
<retval> := <state of the break hit bit>

returns: 0 if the break hit bit is equal to zero in
the FCB.
1 if the break hit bit is equal to one in the
FCB.

The break hit bit is an internal indicator normally
used only by the sequential i/o procedures.

When using the break handling procedures, do not use
FILE"BREAKHIT to determine if the BREAK key has been

typed. 1Instead, the CHECK"BREAK procedure must be
called.

<operation> = FILE"BWDLINKFCB,
<retval> := <backward link pointer>

returns the address of the FCB pointed to by the backward
link pointer within the FCB. This indicates the
linked-to FCB”s that need to be checkpointed after an
OPEN"FILE or CLOSE"FILE.

<operation> = FILE"CHECKSUM, (file must be open)
<retval> := <checksum word>

returns the value of the checksum word in the FCB.

<operation> = FILE"CREATED, (file must be open)
<retval> := <state of the created bit>

returns: 0 if a file was not created by OPEN"FILE.
1 if a file was created by OPEN"FILE.

<operation> = FILE"COUNTXFERRED, (file must be open)
<retval> := <count transferred>

returns a count of the number of bytes transferred in the
latest physical I/0 operation.

—

9-6

SEQUENTIAL I/O PROCEDURES
CHECK"FILE Procedure

<operation> = FILE"CRLF"BREAK,
<retval> := <state of cr/1f break bit>
returns: 0
to be issued to the terminal upon break
detection.
1 4if this sequence is to be issued.
<operation> = FILE"DUPFILE,
<retval> := @<dupfile fcb>

returns the word address of the
zero is returned if there is no

FILE"ERROR,
<error>

<operation>
<retval>

.

returns the error number of the
occurred within the file.

<operation> FILEAERRORFILE,
<retval> := @<error file fcb>

returns the word address within
error file. A zero is returned

FILE"ERROR"ADDR,
@<error>

<operation>
<retval>

.

returns the word address within
code is stored.

<operation> = FILE"FILEINFO (file must be open)
<retval> := <file info>
<file info>.<0:3> = file type: 0 = unstructured
1 = relative
2 = entry-sedquenced
3 = key-sequenced
4 = edit
8 = odd-unstructured
.<4:9> = device type
.<10:15> = device subtype

The device type and
"DEVICEINFO Procedure"

if no carriage return/line feed sequence is

device subtype are described in the
subsection of sec.
0-3 are described in the ENSCRIBE Programming Manual.

(file must be open)

(file must be open)
duplicate file FCB. A
duplicate file.

(file must be open)

latest error that

the FCB cf the reporting
if there is none.

the FCB of where the error

2. PFile types

—_—

9-7

SEQUENTIAL I/O PROCEDURES
CHECK "FILE Procedure

<operation> = FILE"FILENAME"ADDR,
<retval> := @<filename>

returns the word address within the FCB of the physical
file name.

<operation> = FILE"FNUM, (file must be open)
<retval> := <file number>

returns the file number.

<operation> = FILE"FNUM"ADDR,
<retval> := @<file number>

returns the word address within the PCB of the file
number. If the file is not open, the file number is -1.

<operation> = FILE"FWDLINKFCB,
<retval> := <forward-link-pointer>

returns the address of the FCB pointed to by the forward
link pointer within the FCB. This value indicates the
linked-to FCB's that need to be checkpointed after an
OPEN"FILE or CLOSE"FILE.

<operation> = FILE"LOGICALFILENAME ADDR
<retval> := @<logical file name>

returns the word address within the FCB of the logical
file name. The logical file name is encoded as follows:

byte numbers

(0] [1] [8]

<len><logical file name>

Tleni is the length of the logical file name in bytes
0:7;.

<operation> = FILE"LOGIOOUT, (file must be open)
<retval> := <state of the logioout bit>

returns: O to indicate there is no logical i/o
outstanding.
1l if a logical read is outstanding.
2 if a logical write is outstanding.

<operation> = FILE"OPENACCESS

<retval> := <open access>
returns the open access for the file. See SET"FILE for
the format.

9-8

SEQUENTIAL I/0 PROCEDURES
CHECK"FILE Procedure

<operation> = FILE"OPENEXCLUSION

<retval> := <open exclusion>
returns the open exclusion for the file. See SET"FILE
for the format.

<operation> = FILE"PHYSIOOUT, (file must be open)
<retval> := <state of the physioout bit>

returns: 0 to indicate there is no outstanding physical
i/0 operation.
1 if a physical i/o operation is outstanding.

<operation> = FILE " PRIEXT,
<retval> := <primary extent size>

returns the file's primary extent size in padgdes.

<operation> = FILE"PRINT ERR"MSG, (file must be open)
<retval> := <state of print errmsg bit>

returns: 0 if no error message is to be printed upon
detection of a fatal error in the file.
1l if an error message is to be printed.

<operation> = FILE"PROMPT, (file must be open)
<retval> := <interactive prompt character>

returns the interactive prompt character for the file
in <9:15>.

<operation> = FILE"RCVEOF, (file must be open)
<retval> := <state of rcveof bit>

returns: 0 if the user does not get an end-of-file
(EOF) indication, when the last process [pair]
having this process open, closes it.
1 if the user does get an EOF indication when
this process closes.

<operation> = FILE"RCVOPENCNT, (file must be open)
<retval> := <$SRECEIVE opener count>

returns a count of current openers of this process {o0:2}.
At any given moment openers are limited to a single
process [pair].

<operation> = FILE"RCVUSEROPENREPLY, (file must be open)
<retval> := <state of the rcv-user-open-reply bit>

returns: 0 if the sequential i/o procedures are to
reply to the open messages (SRECEIVE file).
1l if the user is to reply to the open messages.

I

9-9

SEQUENTIAL I/O PROCEDURES
CHECK"FILE Procedure

<operation> = FILE"READ"TRIM, (file must be open)
<retval> := <state of the read trim bit>

returns: 0 to indicate the trailing blanks are not
trimmed off the data read from this file.
1 if the trailing blanks are trimmed.

<operation> = FILE"RECORDLEN,
<retval> := <record length>

returns the logical record length.

<operation> = FILE"SECEXT,
<retval> := <secondary extent size>

returns the file”s secondary extent size in pages.

<operation> = FILE"SEQNUM"ADDR
<retval> := @<sequence number>

returns the word address within the FCB of an INT (32)
sequence number. This is the line number of the last
record of an edit file. PFor a non-edit file, this is the
sequence number of the last record multiplied by 1000.

<operation> = FILE"SYSTEMMESSAGES, (file must be open)
<retval> := <system message mask>

returns a mask word indicating which system messages the
user handles directly. See SET"FILE for the format.

A zero indicates that the sequential i/o procedures
handle all system messages. Note that this operation
cannot check some of the newer system messages; for these,
use FILE"SYSTEMMESSAGESMANY.

<operation> = FILE"SYSTEMMESSAGESMANY,
(file must be open)
<retval> := @<system message mask words>

returns a four-word mask indicating which system messages
the user handles directly. See SET"FILE for the format.
All zeros indicates that the sequential i/o procedures
handle all system messages.

<operation> = FILE"TRACEBACK,
<retval> := <state of traceback bit>

returns: 0 if the P-relative address should not be
appended to all SIO error messages.
1 if the P-relative address should be
appended to all SIO error messages.

9-10

SEQUENTIAL I/O PROCEDURES
CHECK"FILE Procedure

<operation> = FILE"USERFLAG,
<retval> := <user flag>

returns the user flag word. (See SET"FILE procedure,
SET"USERFLAG cperation.)

<operation> = FILE"USERFLAG"ADDR
<retval> := @<user flag>

returns the word address within the FCB of the user
flag word.

<operation> = FILE"WRITE"FOLD, (file must be open)
<retval> := <state of the write-fold bit>

returns: 0 if records longer than the logical record
length are truncated.
1l if long records are folded.

<operation> = FILE"WRITE"PAD, (file must be open)
<retval> := <state of write-pad bit>

returns: 0 if a record shorter than the logical record
length is not padded with trailing blanks
before it is written to the file.
1 if a short record is padded with trailing
blanks.

<operation> = FILE"WRITE"TRIM, (file must be open)
<retval> := <state of the write-trim bit>

returns: 0 if trailing blanks are not trimmed from
data written tco the file.
1l if trailing blanks are trimmed.

examples:

INT .infile"name;
@infile®name := CHECK"FILE (infile , FILE"FILENAME"ADDR) ;

INT .infnum;
@infnum := CHECK"FILE (infile , FILE"FNUM"ADDR);

IF (error := CHECK"FILE (infile , FILE"ERROR)) THEN..

CONSIDERATIONS

e During the execution of this procedure, the detection of any
error causes the display of an error message, and the process
is aborted.

SEQUENTIAL I/O PROCEDURES
CLOSE"FILE Procedure

The CLOSE"FILE procedure is used to close a file.

The call to the CLOSE"FILE procedure is:

f l 1

CALL CLOSE"FILE ({ <common fcb> l
1 <error> := i 1 <file fcb>

, <tape disposition>)

where

<error>, INT,

case, the file is closed.

If the abort-on-error mode, the default, is in effect,
the only possible value for <error> is zero.

<common fcb>, INT:ref,

identifies all files to be closed. If the break
for any file is currently enabled, it is disabled.

<file fcb>, INT:ref,

identifies the file to be closed. If the break for
the file is currentlv enabled, it is disabled.

<tape disposition>, INT:value,
specifies mag tape disposition,
where
<tape disposition>.<13:15> denotes:
rewind, unload, don“t wait for completion.

rewind, leave online, wait for completicn.
do not rewind, leave online.

= WO
wowouwunn

example:

CALL CLOSE"FILE (common”fcb);
CALL CLOSE"FILE (rcv'file);

is either a file management or a sequential i/c procedure
error number indicating the outcome of the close. 1In any

rewind, take offline, don“t wait for completion.
rewind, leave online, don”“t wait for completion.

9-12

SEQUENTIAL I/O PROCEDURES
CLOSE"FILE Procedure

CONSIDERATIONS

Edit files or files that are open with write access and blocking
capability must be closed with the CLOSE"FILE procedure (or a WRITE
with count-1) or the data may be lost.

If break was taken, CLOSE"FILE gives break.
For tapes with write access, SIO writes two EOF marks (control 2).

CLOSE"FILE completes all outstanding nowait i/o on files that are
to be closed.

If the file is $RECEIVE and the user is not handling close messages
SIO will wait for a message from each opener and reply with either
error 45 if readonly access, or error 1 if readwrite access until
there are no more openers (each opener has closed the process by
calling CLOSE"FILE). See also $RECEIVE handling - CLOSE FILE.

9-13

SEQUENTIAL I/O PROCEDURES
GIVE"BREAK Procedure

The GIVE"BREAK procedure returns BREAK to the previous owner (the
process that had BREAK enabled before the last call to TAKE BREAK).

The call to the GIVE"BREAK procedure is:

{ CALL GIVE"BREAK (<common fcb>)
<error> = | ———m——————— - <file fcb> -
where

<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the operation.

<common £fcb>, INT:ref, or
<file fcb>, INT:ref,
identifies the file returning BREAK to previous owner.

<common fcb> is allowed for convenience. If BREAK is not
enabled, this call is ignored.

example:

CALL TAKE"BREAK (out”file);
WHILE NOT (break := CHECK"BREAK (out”file)) DO
BEGIN

CALL WRITE"FILE (out"file , buffer , count):
END;

CALL GIVE"BREAK (out”file);

SEQUENTIAL I/O PROCEDURES
OPEN"FILE Procedure

The OPEN"FILE procedure permits access to a file using the other
sequential i/o procedures.

The call to the OPEN"FILE procedure is:

{ caLL } OPEN"FILE (<common fcb> , <file fcb>
{ <error> := } —mmmmmmme o e -
; <block buffer>
r <block buffer length>
, <flags>
r <flags mask>
, <max record length>
s <prompt char>
; <error file fcb>)

where
<error>, INT,

is a file management or sequential i/o procedure error
number indicating the outcome of the operation.

If the abort-on-open-error mede is in effect, the only
possible value of <error> is zero.

<common fcb>, INT:ref,

is an array of FCBSIZE words for use by the sequential i/c
procedures. Only one common FCB is used per process.

This means the same data block is passed to all OPEN"FILE
calls:. The first word of the common FCB must be initialized
to zero before the first OPEN"FILE call fcllowing a process
startup.

<file fcb>, INT:ref,

is an array of FCBSIZE words for use by the sequential i/c
procedures. The file FCB uniquely identifies this file

to the other sequential i/o procedures. The file FCB

must be initialized with the name of the file to be opened
before the OPEN"FILE call is made.

See "Initializing the File FCB" following the description
of the FCB structure.

SEQUENTIAL I/O PROCEDURES
OPEN"FILE Procedure

<block buffer>, INT:ref,

(optional) is an array used for record blocking and
deblocking. No blocking is performed if <block buffer> or
<block buffer length> is omitted, or if the <block buffer
length> is insufficient according to the record length for
the file, or if read/write access is indicated.

Blocking is performed when this parameter is supplied,

the block buffer is of sufficient length, as indicated
by the <block buffer length> parameter, and blocking is

appropriate for the device.

The block buffer must be located within “G” [0:32767] of
the data area.

<block buffer length>, INT:value,

if present, indicates the length, in bytes, of the block
buffer. This length must be able to contain at least one
logical record. For an edit file, the minimum length on
read is 144 bytes; on write, the minimum length is 1024
bytes.

<flags>, INT(32):value,

if present, is used in conjunction with the <flags mask>

parameter to set file transfer characteristics. If omitted,
all positions are treated as zerc. The bit fielde in

-_-——_a

<flags> are defined in appendix D. These literals may be
combined using signed addition, since bit 0 is not used.

ABORT " OPENERR,

abort on open error, defaults to on. If on, and a
fatal error occurs during the OPEN"FILE, all files
are closed and the process abends. If off, the

file system or sequential i/o procedure error number
is returned to the caller.

ABORT "XFERERR,

abort on data transfer error, defaults to on. If on,
and a fatal error occurs during a data transfer
operation, like a call to any sequential i/c procedure
except OPEN"FILE, all files are closed and the process
abends. If off, the file system or the sequential i/o
procedure error number is returned to the caller.

——

9-16

SEQUENTIAL I/O PROCEDURES
OPEN"FILE Procedure

AUTO"CREATE,

auto create, defaults to on. If on, and open access

is "write", a file is created, provided one is not
already there. 1If write access is not given and the
file does not exist, error 1l is returned. 1If no file
code has been assigned, or if the file code is 101, and
a block buffer of at least 1024 bytes is provided, an
edit file is created. If there is not a buffer of
sufficient size and no new file code is specified, then
a file code of 0 is used. The default extent sizes are
4 pages for the primary extent and 16 pages for the
secondary extent.

AUTO"TOF,

auto top-of-form, defaults to on. If on, and the file
is open with write access and is a line printer or
process, a page eject is issued to the file within the
OPEN"FILE procedure.

BLOCKED,

non-disc blocking, defaults to off. A block buffer of
sufficient length must also be specified.

CRLF"BREAK,

carriage return/line feed (cr/1f) on BREAK, defaults
to on. If on and BREAK is enabled, a cr/1f
is written to the terminal when BREAK is typed.

MUSTBENEW,

file must be new, defaults to off. This applies only
if AUTO"CREATE is specified. If the file already exists,
error 10 is returned.

NOWAIT,

no-wait i/o, defaults to off (wait i/o). If on,
no-wait i/o is in effect. If NOWAIT is specified in
the open flags of OPEN"FILE, then the no-wait depth
is 1. It is not possible to use a no-wait depth of
greater than 1 using SIO procedures.

PRINT"ERR"MSG,

print error message, defaults to on. If on, and a
fatal error occurs, an error message is displayed
on the error file. This is the home terminal unless
otherwise specified.

SEQUENTIAL I/0 PROCEDURES
OPEN"FILE Procedure

PURGE"DATA,

purge data, defaults to off. If on, and open access is
"write", the data is purged from the file after the

open. If off, the data is appended to the existing
data.

READ"TRIM,

read trailing blank trim, defaults to on. If on,
the <count read> parameter does not account for
trailing blanks.

VAR"FORMAT,

variable length records, defaults to off, or fixed-
length records. If on, the maximum record length for
variable length records is 254 bytes.

WRITE"FOLD,

write feold, defaults to on. If on, writes that
exceed the record length cause multiple logical
records to be written. If off, writes that exceed
the record length are truncated to record-length
bytes; no error message or warning is given.

WRITE"PAD,

write blank pad, defaults to on for disc fixed
length records and off for all other files. 1If on,
writes of less than record-length bytes, including
the last record if WRITE"FOLD is in effect, are

padded with trailing blanks to f£ill out the logical
record.

WRITE"TRIM,

write trailing blank trim, defaults to on. 1If on,

trailing blanks are trimmed from the output record
before being written to the file.

9-18

SEQUENTIAL I/O PROCEDURES
OPEN"FILE Procedure

<flags mask>, INT(32):value,

if-present, specifies which bits of the flag field are
used to alter the file transfer characteristics. The
characteristic to be altered is indicated by entering a
one in the bit position corresponding to the <flags>
parameter. A zerc indicates the default setting is used.
When omitted, all positions are treated as zeros.

<max record length>, INT:value,

if present, specifies the maximum record length for records
within this file. 1If omitted, the maximum record length is
132. The open is aborted with an SIOERR"INVALIDRECLENGTH,
error 520, if the file”s record length exceeds the maximum
record length and <max record length> is not zero. 1If

<max record length> is zero, then any record length is
permitted.

<prompt char>, INT:value,

if present, is used to set the interactive prompt character
for reading from terminals or processes. When not supplied,
the prompt defaults to "?". The prompt character is limited
to seven bits, <9:15>.

<error file FCB>, INT:ref,

if present, specifies a file where error messades are
displayed for all files. Only one error reporting file is
allowed per process. The file specified in the latest open
is the one used. Omitting_ this parameter does not alter the
current error reporting file setting.

The error reporting file is used for reporting errors when

possible. If this file cannot be used or the error is with
the error reporting file, the default error reporting file

is used. This is the home terminal.

If the error reporting file is not open when needed, it is
opened only for the duration of the message printing then
closed. Note that the error file FCB must be initialized.
See "Initializing the File FCB".

9-19

SEQUENTIAL I/O PROCEDURES
OPEN"FILE Procedure

CONSIDERATIONS

If AUTO"TOF is on, a top-of-form control operation is performed
to the file when the file being opened is a process or a line
printer and write or read/write access is specified.

e If the file is an edit file or if blocking is specified, either
read or write access must be specified for the open to succeed.
Read/write access is not permitted.

® When using OPEN"FILE to access a temporary disc file, AUTO"CREATE
must be disabled; otherwise the OPEN"FILE call results in a file
system error 13.

e All files opened with the OPEN"FILE procedure are opened with a
sync depth of one. One is the only possible sync depth; no other
can be set.

® SIO procedures append data to the file if access is write only and
PURGE"DATA is off (default).

Example:

LITERAL prompt= ">", !prompt character
buffer”"size = 144; Iminimum edit file buffer size
INT error,

.common”fcb [0:FCBSIZE-1] := 0,

.in"file [0:FPCBSIZE-1] := O,

.in"filename [0:11] := ["SVOLUME SUBVOL FILENAME" 1,
11:

.buffer [O:buffer”size >>

INT(32) flags := 0D,
flags“mask := ABORT"OPENERR; !return control on error

CALL SET"FILE (in"file , INIT"FILEFCB);
CALL SET"FILE (in"file , ASSIGN"FILENAME, @in"filename);
IF (error := OPEN"FILE (common”fcb ,
in“file ,
buffer ,
buffer”size ,
flags ,
flags"mask ,
prompt)) THEN
BEGIN

handle open error here

t!j S g

ND;

9-20

SEQUENTIAL I/0 PROCEDURES
READ"FILE Procedure

The READ"FILE procedure is used to read a file sequentially. The file
must be open with read or read/write access.

The call to the READ"FILE procedure is:

1 CALL 1 READ"FILE (<file fcb> , <buffer> , <count read>
K@rror> = | ————m—m—emm = mmem s = s - e
r <prompt count>
, <max read count>
;, <no wait>)

where
<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the read.

If abort-on-error mode is in effect, the only possible
values for <error> are:

0 = no error

1 = end-of-file

6 = system message (only if user requested system
messages, by SET"SYSTEMMESSAGES or
SET"SYSTEMMESSAGESMANY)

111 = operation aborted because of BREAK (if BREAK is
enabled)

If <no wait> is not zerco, and if abort-on-error is in
effect, the only possible value for <error> is zero.

<file fcb>, INT:ref,
identifies the file to be read.
<buffer>, INT:ref,

is where the data is returned. The buffer must be
located within “G” [0:32767] process data area.

9-21

SEQUENTIAL I/0O PROCEDURES
READ"FILE Procedure

<count read>, INT:ref,

if present, is the count of the number of bytes returned to
<buffer>. If <no wait> is not zero, then this parameter
has no meaning and can be omitted. The count is then
obtained in the call to WAIT'FILE. If <no wait> is zero,
the <count read> parameter is required.

<prompt count>, INT:value,

if present, is a count of the number of bytes in <buffer>,
starting with element zero, to be used as an interactive
prompt for terminals or interprocess files. If omitted,
the interactive prompt character defined in OPEN"FILE is
used.

<max read count>, INT:value,

if present, specifies the maximum number of bytes to be
returned to <buffer>. If omitted or if it exceeds the

file“s lecgical record length, the logical record length
is used for this file.

<no wait>, INT:value,

if present, indicates whether or not to wait for the i/o

operation to complete in this call. If omitted or zero,

then "wait" is indicated. 1If not zerco, the i/¢ operation
leted in a c2ll toc WAIT'FILE,

ne+ hea ~Amn
N - A o A L=

m
I W w A g

example:

WHILE NOT (error := READ"FILE (in"file , buffer ,
count)) DO
BEGIN

END:;

CONSIDERATIONS

e If the file is a terminal or process, a WRITEREAD operation is
performed using the interactive prompt character or <prompt count>
character from <buffer>.

9-22

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

The SET"FILE procedure alters file characteristics and checks the
cld value of those characteristics being altered.

The call to the SET"FILE procedure is:

CALL SET"FILE (i <commen fcb> l , <operation>
<@rror> = | ————=——- - <file fcb> - e, ————
; <new value>
, <old value>)
where

<error>, INT,

is a file system or sequential i/c procedure error
number indicating the outcome of the SET"FILE.

If abort-on-error mode is in effect, the only possible
value for <error> is zero.

<common fcb>, INT:ref,

identifies those files whose characteristics are to be
altered. The common FCB can be used for certain
operations; it must be used for the operations
SET"BREAKHIT, SET ERRORFILE, and SET"TRACEBACK. If an
improper FCB is specified, an error is indicated.

<file fcb>, INT:ref,

identifies the file whose characteristics are to be altered.
If an improper FCB is specified, an error is indicated.

<operation>, INT:value,

specifies the file characteristic to be altered. See "List
of SET"FILE Operations".

<new value>, INT:value,

specifies a new value for the specified <operation>. This

may be optional, depending on the operation desired.
—_—

9-23

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

<old value>, INT:ref,

returned.

LIST OF SET"FILE OPERATIONS

be integer addresses.

to initialize the File Control Blocks.

example:

<operation> =
<new value> =
<0ld wvalue> :

ASSIGN"LOGICALFILENAME
@
= <logical file name> FOR 4 words

specifies the logical name of the file to be opened.
<logical file name> must be encoded as follows:

is a variable in which the current value for the specified
<operation> is returned. This can vary from 1 word to 12

words, and is useful in saving this value for reset later.
If <o0ld value> is omitted, the current value is not

This is a list of the file characteristics which can be altered
by the SET"FILE procedure. All addresses passed are assumed to

<operation> = ASSIGN"BLOCKBUFLEN (or, ASSIGN"BLOCKLENGTH)

<new value> = <new block length> (optional; file must be closed)

<old value> := <block length> (optional)
specifies the block length (in bytes) for the file.

<operation> = ASSIGN"FILECODE

<new value> = <new file code> (optional; file must be closed)

<0ld value> := <file code> (optional)
specifies the file code for the file.

<operation> = ASSIGN"FILENAME :

<new value> = @<file name> (optional; file must be closed)

<old value> := <file name> FOR 12 words {optional)
specifies the physical name of the file to be opened. This

operation is not used when the INITIALIZER procedure is called

CALL SET"FILE (in"file , ASSIGN"FILENAME , @in"“filename);

<logical file name> (optional; file must be closed)

(optional)

The

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

byte numbers

(01 [1] [8]

<len><logical file name>

<len> is the length of the logical file name {0:7}.

<operation> = ASSIGN"OPENACCESS
<new value> = <new open access> (optional; file must be closed)
<old value> := <open access> (optional)

specifies the open access for the file. The following literals
are provided for <open access>:

READWRITE"ACCESS (0)
READ"ACCESS (1)
WRITE"ACCESS (2)

Even if READ"ACCESS is specified, SIO actually opens the file
with READWRITE"ACCESS to facilitate interactive i/o.

<operation> = ASSIGN"OPENEXCLUSION
<new value> = <new open exclusion> (optional; file must be closed)
<o0ld value> := <open exclusion> (optional)

specifies the open exclusion for the file. The following
literals are provided for <open exclusion>:

SHARE (0)

EXCLUSIVE (1)

PROTECTED (3)
<operation> = ASSIGN"PRIEXT (or, ASSIGN"PRIMARYEXTENTSIZE)
<new value> = <new pri ext size> (optional; file must be closed)
<0ld value> := <pri ext size> (optional)

specifies the primary extent size (in units of 2048-byte blocks)
for the file.

<operation> = ASSIGN"RECORDLEN (or, ASSIGN"RECORDLENGTH)
<new value> = <new record length> (optional; file must be closed)
<old value> := <record length> (optional)

specifies the logical record length (in bytes) for the file.
ASSIGN"RECORDLENGTH gives the default read or write count.
For defaults, see step 6 under "Initializing the File FCB."

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

<operation> = ASSIGN"SECEXT (or, ASSIGN"SECONDARYEXTENTSIZE)
<new value> = <new sec ext size> (optional; file must be closed)
<old value> := <sec ext size> (optional)

specifies the secondary extent size (in units of 2048-byte
blocks) for the file.

<operation>
<new value>
<old wvalue>

INIT"FILEFCB (file must be closed)
must be omitted

must be omitted

nu

specifies that the file FCB be initialized. This operation
is not used when the INITIALIZER procedure is called to
initialize the File Control Blocks.

example:

CALL SET"FILE (common”fcb , INIT"FILEFCB);
CALL SET"FILE (in"file , INIT"FILEFCB);

<operation> = SET"ABORT"XFERERR (file must be open)
<new value> = <new state> (optional)
<ecld value> := <state> (optional)

Sets/clears abort on transfer error for the file. If on, and a
fatal error occurs during a data transfer operation, such as a
call to any sequential i/c procedure except OPEN"FILE, all files
are closed and the process abends. If off, the file management
or sequential i/o procedure error number is returned to the

caller.
<operation> = SET"BREAKHIT
<new value> = <new state> (opticnal)
<0ld value> := <state> (optiocnal)

Sets/clears break-hit for the file. This is used only if the
user is handling BREAK independently of the sequential i/o
procedures, or if the user has requested BREAK system messages
via SET"SYSTEMMESSAGES or SET"SYSTEMMESSAGESMANY.

<operation> = SET"CHECKSUM
<new value> = <new checksum word>
<old value> := <checksum word in fcb>

Sets/clears the checksum word in the FCB. This is useful after

modifying an FCB directly (i.e., without using the sequential
i/o procedures).

9-26

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

<operation> = SET"COUNTXFERRED (file must be open)
<operation> = <new count> (optional)
<operation> := <count> (optional)

Sets the physical i/o count (in bytes) transferred for the file.
This is used only if no-wait i/o is in effect and the user is
making the call to AWAITIO for the file. This is the <count
transferred> parameter value returned from AWAITIO.

<operation> = SET"CRLF"BREAK (file must be open)
<new value> = <new state> (optional)
<0ld value> := <state> (optional)

Sets/clears carriage return/line feed on BREAK for the file.

If on, a cr/1f is executed on the terminal when the BREAK
key is typed.

<operation> = SET"DUPFILE (file must be open)
<new value> = @<new dup file fcb> (optional)
<old value> := @<dup file fcb> (optional)

specifies a duplicative file for the file. This is a file

where data read from <file fcb> is printed. Defaults to no
duplicative file.

example:

CALL SET"FILE (in"file, SET"DUPFILE, @out”file);

<operation>
<new value>
<old value>

SET"EDITREAD"REPOSITION
must be omitted
must be omitted

specifies that the following READ"FILE is to begin at the position

set in the sequential block buffer (second through fourth words).
example:

CALL SET"FILE (EDIT"FCB, SET"EDITREAD"REPOSITION) ;

<operation> = SET"ERROR (file must be open)
<new value> = <new error> (optional)
<o0ld value> := <error> (optional)

Sets file system error code value for the file. This is used

only if no-wait i/o is in effect and the user makes the call to
AWAITIO for the file. This is the <error> parameter value
returned from FILEINFO.

<operation> = SET"ERRORFILE
<new value> = @<new error file fcb> (optional)
<old value> := @<error file fcb> (optional)

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

Sets error reporting file for all files. Defaults to home
terminal. If the error reporting file is not open when needed
by the sequential i/o procedures, it is opened for the
duration of the message printing, then closed.

<operation> = SET"OPENERSPID (file must be open)
<new value> = @<openers pid> (optional)
<0ld value> := <openers pid> FOR 4 words (optional)

Sets the allowable openers <process id> for $RECEIVE file. This
is used to restrict the openers of this process to a specified
process. A typical example is using the sequential i/o
procedures to read the startup message.

Note:

If "open message" = 1 is specified to SET"SYSTEMMESSAGES
or SET"SYSTEMMESSAGESMANY, the setting of SET"OPENERSPID
has no meaning.

<operation> = SET"PHYSIOOUT (file must be open)
<new value> = <new state> (optional)
<0ld value> := <state> (optional)

Sets/clears physical i/o outstanding for the file specified by
<file fcb>. This is used only if no-wait i/o is in effect and
the user makes the call to AWAITIO for the file.

<operation> = SET"PRINT "ERR"MSG (file must be open)
<new value> = <new state> (optional)
<o0ld value> := <state> (optional)

Sets/clears print error message for the file. If on and a fatal
e€rror occurs, an error messade is displayed on the error
file. This is the home terminal unless otherwise specified.

<operation> = SET " PROMPT (file must be open)
<new value> = <new prompt char> (optional)
<0ld value> := <prompt char> (optional)

Sets interactive prompt for the file. See the OPEN"FILE
procedure.

<operation> = SET RCVEOF (file must be open)
<new value> = <new state> (optional)
<0ld value> := <state> (optional)

Sets return EOF on process close for SRECEIVE file. This causes
an end-of-file indication to be returned from READ"FILE when the
receive open count goes from one to zero; the last close message
is received.

—

9-28

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

The setting for return EOF has no meaning if the user
is monitoring open and close messages.

If the file is opened with read-only access, the setting
defaults toe on for return EOF.

<operation> = SET"RCVOPENCNT (file must be open)
<new value> = <new receive open count> (optional)
<old value> := <receive open count> (opticnal)

Sets receive open count for the SRECEIVE file. This operation
is intended to clear the count of openers when an open already
accepted by the sequential i/o procedures is subsequently
rejected by the user. See "SET RCVUSEROPENREPLY".

<operation> = SET"RCVUSEROPENREPLY (file must be open)
<new value> = <new state> (opticnal)
<old value> := <state> (opticnal)

Sets user-will-reply for the $RECEIVE file. This is

used if the sequential i/o procedures are to maintain the
opener”s directory and, therefore, limit opens to a single
process [pair] while keeping the option of rejecting opens.

If <state> is one, <error> of 6 is returned from a call to
READ"FILE when an open message is received and is the only
current open by a process [pair]. If an open is attempted by
a process and an open is currently in effect, the open attempt
is rejected by the sequential i/o procedures; no return is
made from READ"FILE due to the rejected open attempt.

If <state> is zero, a return from READ"FILE is made only when
data is received.

If "open message" = 1 is specified to SET"SYSTEMMESSAGES
or SET"SYSTEMMESSAGESMANY, the setting of SET"RCVUSEROPENREPLY
has no meaning.

An <error> of 6 is returned from READ"FILE if an open
message is accepted by the sequential i/o procedures.

<operation> = SET"READ"TRIM (file must be open)
<new value> = <new state> (optional)
<old value> := <state> (opticnal)

Sets/clears read-trailing-blank-trim for the file. If on, the
<count read> parameter does not account for trailing blanks.
—

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

<operation> = SET"SYSTEMMESSAGES (file must be open)
<new value> = <new sys-msg mask> (optional)
<0ld value> := <sys-msg mask> (optional)

Sets system message reception for the $RECEIVE file. Setting

a bit in the <sys-msg mask> indicates that the corresponding
message is to be passed back to the user. Default action is for
the sequential i/o procedures to handle all system messages.

where

<sys-msg-mask>.<0> BREAK message

.<1> = unused

.<2> = CPU Down message
.<3> = CPU Up message
.<4> = unused

.<5> = STOP message

.<6> = ABEND message
.<7> = unused

.<8> = MONITORNET message
.<9> = unused
.<10> = OPEN message
.<11> = CLOSE messade
.<12> = CONTROL message
.<13> = SETMODE message
.<14> = RESETSYNC message
.<15> = unused

The user replies to the system messages designated by this
operation by using WRITE"FILE. If no WRITE"FILE is encountered
before the next READ"FILE, a <reply error code> = 0 is made
automatically. Note that this operation cannot set some of the
newer system messages; for these, use SET " SYSTEMMESSAGESMANY.

<operation> = SET”SYSTEMMESSAGESMANY (file must be open)
<new value> = @<new sys-msg mask words> (optional)
<0ld value> := <sys-msg mask words> (optional)

Sets system message reception for the $SRECEIVE file. <sys-msg
mask words> is a four-word mask. Setting a bit in the <sys-msg
mask words> indicates that the corresponding message is to be
passed back to the user. Default action is for the sequential
i/o procedures to handle all system messages.

| —

9-30

SEQUENTIAL I/0 PROCEDURES
SET"FILE Procedure

where

<sys-msg-mask>[0].<0> = unused
<1> = unused
<2> = CPU Down message
<3> = CPU Up message
<4> = unused
<5> = STOP message
<6> = ABEND message
<7> = unused
<8> = MONITORNET message
<9> = unused

<10> = SETTIME message
(NonStop II systems only)

<11> = Power On message
(NonStop II systems only)
<12> = NEWPROCESSNOWAIT message
(NonStop II systems only)
<13> = unused
<14> = unused
<15> = unused
<sys-msg-mask>[1l].<0> = unused
<1> = unused
<2> = unused
<3> = unused
<4> = BREAK message
<5> = unused
<6> = Time Signal message

(NonStop II systems only)

<7> = Memory Lock Completion message

(NonStop II systems conly)
<8> = Memory Lock Failure message

(NonStop II systems only)

<9> = unused
<10> = unused
<11> = unused
<12> = unused
<13> = unused
<14> = OPEN message
<15> = CLOSE message

SEQUENTIAL I/O PROCEDURES
SET"FILE Procedure

<sys-msg-mask>[2].<0>

<1>
<2>
<3>
<4:15>
<sys-msg-mask>[3]
<operation> SET"TRACEBACK

<new value> = <new state>
<0ld value> := <o0ld state>

<operation> SET"USERFLAG

<new value>

<operation> =
<new value> = <new state>
<0l1d wvalue> := <gtate>

=R S Ry

is given.

<operation> = SET"WRITE " PAD
<new value> = <new state>
<0ld value> := <state>

<operation> =
<new value> = <new state>
<old value> := <state>

<new user flag>
<0ld value> := <user flag in fcb>

SET"WRITE “FOLD

Sets/clears write-fold for the file.
the record length cause multiple logical records to be
written. If off, writes exceeding the record length are
truncated to record-length bytes; no error message or warning

SET"WRITE"TRIM

CONTROL message
SETMODE message
RESETSYNC message
CONTROLBUF message

unused

all bits unused

Sets/clears the traceback feature. When trac

the sequential i/o facility appends the caller”s P-relative
address to all error messages.

Sets user flag for the file. The user flag i
value in the FCB which can be manipulated by the user to
maintain information about calls to that file.

Sets/clears write-blank-pad for the file. 1If
less than record-length bytes, including the last record if
WRITE"FOLD is in effect, are padded with trailing blanks to
fill out the logical record.

eback is active,

(optional)
(optional)

s a one-word

(file must be open)
(optional)
(optional)

If on, writes exceeding

(file must be open)
(optional)
(optional)

on, writes of

(file must be open)
(optional)
(optional)

Sets/clears write-trailing-blank-trim for the file. 1If on,

trailing blanks are trimmed from the output record before
being written to the file.

9-32

SEQUENTIAL I/O PROCEDURES
TAKE"BREAK Procedure

The TAKE"BREAK procedure enables BREAK monitoring by a file.

The call to the TAKE"BREAK procedure is:

{ CALL TAKE"BREAK (<file fcb>)
<error> :=

where
<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the operation.

<file fcb>, INT:ref,

identifies the file for which BREAK is to be enabled.
If the file is not a terminal or if BREAK is already
enabled for this file, the call is ignored.

example:

CALL TAKE"BREAK (out”file);

WHILE NOT (break := CHECK"BREAK (out”file)) DO
BEGIN

CALL WRITE"FILE (out”file , buffer , count);
END;

CALL GIVE"BREAK (out”"file):

9-33

SEQUENTIAL I/O PROCEDURES
WAIT"FILE Procedure

The WAIT"FILE procedure is used to wait or check for the completion
of an outstanding i/o operation.

The call te the WAIT"FILE procedure is:

<error> := WAIT"FILE (<file fcb> , <count read> , <time limit>)

where
<error>, INT,

If abort-on-error mode is in effect, the only possible
values for <error> are:

0 = no error
1 = end-of-file
6 = system message, only if user has asked for system
messages via SET"SYSTEMMESSAGES or
SET"SYSTEMMESSAGESMANY
40 = operation timed out, only if <time limit> wvalue

is supplied and is not -1D

111 = operation aborted because of BREAK, if BREAK
is enabled

532 = operation restarted due to retry
<file fcb>, INT:ref,

identifies the file for which there is an outstanding
i/c operation.

<count read>, INT:ref,

if present, is the count of the number of bytes returned due
to the requested read operation. The value returned to the

parameter has no meaning when waiting for a write operation

to complete.

<time limit>, INT(32):value,
if present, indicates whether the caller waits for

completion or checks for completion. If omitted, the time
limit is set to -1D.

SEQUENTIAL I/O PROCEDURES
WAIT FILE Procedure

If <time limit> is not 0D, then a wait for completion is
indicated. The time limit then specifies the maximum time,
in .0l-second units, that the caller waits for a completion.
A time limit value of -1D indicates a willingness to wait
forever.

If <time limit> is 0D, then a check for completion is
indicated. WAIT"FILE immediately returns to the caller
regardless of whether there is a completion. If no
completion cccurs, the i/o operaticn is still cutstanding;
an <error> 40 and an "operation timed out" message is
returned.

If <time limit> is OD and <error> is 40, there is no
completion. Therefore, READ"FILE or WRITE"FILE cannot be
called for the file until the operation completes by
WAIT FILE. One method of determining if the operation
completes is by the CHECK"FILE operation "FILE"LOGIOOUT".
See "Checking File Transfer Characteristics".

example 1 - wait for completiocon:

CALL READ"FILE (in"file , buffer ,,,, 1);

DO error := WAIT'FILE (in"file , count)
UNTIL error <> SIOERR"IORESTARTED;

example 2 - check for completion:

IF NOT CHECK"FILE (recv”file , FILE"LOGIOOUT) THEN
CALL READ"FILE (recv”file , recv”buf ,,,, 1);
DO error := WAIT"FILE (recv'file , recv'count , 0D)

UNTIL error <> SIOERRAIORESTARTED;

SEQUENTIAL I/O PROCEDURES
WRITE"FILE Procedure

The WRITE"FILE procedure writes a file sequentially. The file must
be open with write or read/write access.

The call to the WRITE"FILE procedure is:

f CALL
<error> :=

where

<error>,

effect,
0 =
111 =

<error>

<buffer>,

} WRITE FILE (<file fcb> , <buffer> , <write count>

; <reply error code>
, <forms controcl code>
;, < no wait>)

INT,

is a file system or sequential i/o error indicating the
outcome of the write.

If abort-on-error mode, the default case, is in

the only possible values for <error> are:
no error

operation aborted because of BREAK, if BREAK
is enabled.

If <no wait> is not zero, the only possible value for

is zero. when abort-on-error is in effect.

<file fcb>, INT:ref,

identifies the file to which data is to be written.

INT:ref,

is the data to be written. <buffer> must be located
within *

G”[0:32767] the process data area.

<write count>, INT:value,

is the count of the number of bytes of <buffer> to be
written.
the block buffer associated with the file FCB passed. For
edit files, flushing the buffer also updates the edit
directory on disc.

A <write count> value of -1 causes SIO to flush

SEQUENTIAL I/O PROCEDURES
WRITE"FILE Procedure

<reply error code>, INT:value,

(for SRECEIVE file only) if present, is a file management

error to be returned to the requesting process by REPLY.
If omitted, zerc is replied.

<forms control code>, INT:value,

(opticnal) indicates a forms control operation to be
performed prior to executing the actual write when the file
is a process or a line printer. <forms control> corresponds
to <parameter> of the file management CONTROL procedure for
<operation> equal tc 1. WNo forms control is performed if
<forms contrel> is omitted, if it is -1, or if the file is
not a process or a line printer.

<no wait>, INT:value,

if present, indicates whether to wait in this call for the
i/o to complete. If omitted or zerc, then "wait" is

indicated. If <no wait> is not zero, the i/oc must be
completed in a call to WAIT FILE.

example:

CALL WRITE"FILE (out”file , buffer , count);

SEQUENTIAL I/0O PROCEDURES
Errors

ERRORS

A literal is associated with each of the sequential i/o procedures
errors. These messages apply to coding errors and are considered
fatal. The one exception is "no-wait i/o restarted", error
SIOERR"IORESTARTED.

The sequential i/o procedure message numbers, messages, and their
associated meanings are:

512 SIOERR"INVALIDPARAM

SIO procedure contains invalid parameter (all procedures). Correct
parameter in error.

513 SIOERR"MISSINGFILENAME
SIO procedure is missing a file name (open error). Specify file
name in procedure call.

514 SIOERR"DEVNOTSUPPORTED

SI0 procedures do not support specified device type (open error).
Change device type.

515 SIOERR"INVALIDACCESS
Access mode is not compatible with device type (open error). This
error occurs if program opens an edit file with read or write access
or with blocking specified. Change device type or access mode.

516 SIO"INVALIDBUFADDR

Buffer address is not within “G"[0:32767] of data area (open error).
Move buffer into lower memory.

517 SIOERR™INVALIDFILECODE

File code specified in ASSIGN command does not match file code of
file. Change file name or file code in ASSIGN command.

518 SIOERR"BUFTOOSMALL
Specified buffer is too small (cpen error). For reading an edit
file, allocate at least 144 bytes of buffer space. For writing an
edit file, allocate at least 1024 bytes of buffer space. For
blocking, allocate at least same number of bytes for buffer space as
for logical record length. If error persists after increasing
buffer space, directory of edit file is in error. Edit the file;
editor usually can correct directory error.

519 SIOERR"INVALIDBLKLENGTH
ASSIGN block length is greater than block buffer length. Correct
ASSIGN command or use larger buffer.

9-38

SEQUENTIAL I/O PROCEDURES
Errors

520 SIOERR”INVALIDRECLENGTH
Specified record length is either zero or greater than <max record
length> specified in OPEN"FILE; or record length for SRECEIVE file
is less than 14; or record length is greater than 254 and procedure
specifies variable-length records (open error). Correct the record
length.

521 SIOERR"INVALIDEDITFILE
An edit file is invalid (open error). Ensure that correct file is
specified.

522 SIOERR"FILEALREADYOPEN
Program used SET"FILE for a file that should be closed or used
OPEN"FILE for a file that is already open. Either close file or
correct procedure call (for example, change parameters to permit
operation when file is open).

523 SIOERR"EDITREADERR
An edit read error occurred (open or read error).

524 SIOERR"FILENOTOPEN
Specified file is not open (check, read, set, write, or wait error).
Either open file or correct procedure call (for example, change
parameters to permit operation when file is closed).

525 SIOERR"ACCESSVIOLATION

Specified access mode is not compatible with requested operation
(read or write error). Change operation or access mode.

526 SIOERR"NOSTACKSPACE
Program requires temporary buffer, but stack has insufficient space.
Increase run-time memory size if it is less than 32K; otherwise,
move one or more non-string arrays to upper memory.

527 SIOERR"BLOCKINGREQD

Program attempted a write fold or write pad without a block buffer
(write error). Supply block buffer.

528 SIOERR"EDITDIROVERFLOW
Overflow occurred in internal directory of an edit file (write
error). The Edit file directory size exceeded the buffer block
size declared for i/o to that file.

529 SIOERRTINVALIDEDITWRITE
Program attempted to write to an edit file after writing internal
directory (write error).

530 SIOERR"INVALIDRECVWRITE
Program read SRECEIVE file, but did not follow read with write to
SRECEIVE (write error). Add missing write or delete extra read.

SEQUENTIAL I/O PROCEDURES
Errors

531 SIOERR"CANTOPENRECV
SIO procedure cannct open $RECEIVE for break monitoring. User did
not open $RECEIVE with OPEN"FILE procedure (CHECK"BREAK error).
Open S$RECEIVE with OPEN"FILE to do break monitoring while using
SRECEIVE.

532 SICERRTICRESTARTED
No-wait i/oc restarted. This message is a warning, not an error.
Call WAIT"FILE again to continue waiting.

533 SIOERR™INTERNAL
An internal error occurred (wait error).

534 SIOERR"CHECKSUMCOM
SI0 procedure encountered error while performing checksum on common
FCB (all procedures). Check program for pointer errors.

535 SIOERR"CHECKSUM
SIO procedure encountered error while performing checksum on file
FCB (all procedures). Check program for pointer errors.

SEQUENTIAL I/O PROCEDURES
FCB Structure

FCB STRUCTURE

File characteristics and procedure call information are kept in a File
Contrel Block (FCB) within the user”s data space. An FCB is
associated with the opening of a file, and is passed to each
sequential i/o procedure to identify that file. Additionally, there
is one common FCB for each process located within the user”s data
space. The common FCB contains infeormation common to all files, such
as a pointer to the error reporting file.

The common FCB is initialized during the first call tc OPEN"FILE
following process creation. This is indicated to OPEN"FILE when
the first word of the commen FCB is set to zerc prior to calling
OPEN"FILE for the first time.

An FCB is initialized prior te calling OPEN"FILE by invoking the
define INIT"FILEFCB, or by declaring the FCB using the define
ALLOCATE"FCB. The name of the file to be opened must also be put
into the FCB by the define ASSIGN"FILENAME.

The FCB”“s can be located athhere within the user”s data space. The
common and file FCB”s are linked together forwards and backwards as
shown in figure 9-1.

. } COMMON FCB
> LINK Po—
.) FILE FCB
> LINK -—
.) FILE FCB

B
I

. } FILE FCB

Figure 9-1. FCB Linking

SEQUENTIAL I/0 PROCEDURES
Initializing the File FCB

Initializing the File FCB

The file FCB must be allocated and initialized before the OPEN"FILE
procedure is called to open a file. The SET"FILE procedure provides
these facilities, as explained in the following items.
The first three items listed - FCBSIZE, INIT"FILEFCB, and
ASSIGN"FILENAME - are not used when the INITIALIZER procedure is
called to initialize the file control blocks. See the INITIALIZER
procedure.
1. The size in words of an FCB is provided as a literal,

FCBSIZE (currently 60)

example:

INT .infile [0:FCBSIZE-1 1;

2. 1Initialize the FCB using the SET"FILE procedure. This step is

required.

CALL SET"FILE (<file fcb> , INIT"FILEFCB)

example:

CALL SET"FILE (infile , INIT"FILEFCB)

3. Specify the name of the file to open. This step is required.

CALL SET"FILE (<file fcb> , ASSIGN"FILENAME , <file name addr>)

example:

CALL SET"FILE (in"file, ASSIGN"FILENAME , @in"filename);

4., Specify the access mode for this open. This step is optional.

CALL SET"FILE (<file fcb> , ASSIGN"OPENACCESS , <open access>)

The following literals are provided for <open access> :

READWRITE "ACCESS (0)
READ"ACCESS (1)
WRITE"ACCESS (2)

9-42

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

If omitted, the access mode for the device being opened defaults
to the following:

Device Access
Operator Write
Process Read/Write
SRECEIVE Read/Write
Disc Read/Write
Terminal Read/Write
Printer Write

Mag Tape Read/Write
Card Reader Read

example:

CALL SET"FILE (in"file , ASSIGN"OPENACCESS , READ"ACCESS);

Specify exclusion for this open. This step is optional.

CALL SET"FILE (<file fcb> , ASSIGN"OPENEXCLUSION ,

The following literals are provided for <open exclusion> :

SHARE (0)
EXCLUSIVE (1)
PROTECTED (3)

If omitted, the exclusion mode applied to the open defaults to the
following:

Access Exclusion Mode

Read if terminal then share, else protected

Write if terminal then share, else exclusive

Read/Write if terminal then share, else exclusive
example:

CALL SET"FILE (in"file , ASSIGN"OPENEXCLUSION , EXCLUSIVE);

Specify the logical record length. This step is optional.

The <record length> is given in bytes.

9-43

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

If omitted, <record length> defaults according to the device as

follows:

Device Logical Record Length
Operator 132 bytes

Process 132 bytes

SRECEIVE 132 bytes
Unstructured Disc 132 bytes

Structured Disc record length defined at creation
Terminal 132 bytes

Printer 132 bytes

Mag Tape 132 bytes

Card Reader 132 bytes

7. Set the file code. This step is cptional and has two meanings:
1) if AUTO"CREATE is on, the file code specifies the type of file
to be created. 2) implies the file code must match the file code
specified for the open to succeed.

CALL SET"FILE (<file fcb> , ASSIGN"FILECODE , <file code>)

8. Set the primary extent size. This step is optional, and has
meaning only if AUTO"CREATE is on.

CALL SET"FILE (<file fcb> , ASSIGN"PRIMARYEXTENTSIZE ,

<primary extent size> is given in pages (2048-byte units).

9. Set the secondary extent size. This step is optional, and
has meaning only if AUTO"CREATE is on.

CALL SET"FILE (<file fcb> , ASSIGN"SECONDARYEXTENTSIZE ,

<secondary extent size> is given in pages, 2048-byte units.

9-44

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

10. Set the file”’s physical bleck length. This step is optional.

The physical block length is the number of bytes transferred
between the file and the process in a single i/o operation. If
<block length> is specified, blocking is alsc specified. A
physical block is composed of <block length> divided by <record
length> logical records. When <block length> is not exactly
divisible by <record length>, the portion of that block following
the last logical record is filled with blanks.

Note that the specified form of blocking differs from the type

of blocking performed when no <block length> is specified. 1In the
unspecified form, there is nc indication of a physical block size;
the records are contiguous on the medium.

CALL SET"FILE (<file fcb> , ASSIGN"BLOCKLENGTH , <block length>)

—— . ————————— o - — ————— - - ——————— ——— ——— — ———— i ————— —— o —————

<block length> is given in bytes.

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES

The sequential i/o procedures and the INITIALIZER procedure can

be used in conjunction with or separately from each other. File
transfer characteristics, such as record length, can be altered at
run time using Command Interpreter ASSIGN commands. See the
INITIALIZER procedure, section 4.

The INITIALIZER procedure reads the startup message and, optionally,
the assign and param messages, from $RECEIVE. The INITIALIZER
procedure can prepare global tables of a predefined structure and
properly initialize FCB”s with the information read from the startup
and assign messages.

To use the INITIALIZER, an array called a Run-Unit Control Block

must be declared. Each file to be prepared by the INITIALIZER must be
initialized with a default physical file name and, optionally, with a
logical file name before invoking the INITIALIZER.

The INITIALIZER reads the startup message, then requests the assign
messages. For each assign message, the FCB”s are searched for

a logical file name which matches the logical file name contained in
the assign message. If a match is found, the information from the
assign message is put into the FCB. See section 11, "Command
Interpreter/ Application Interface", for a description of the ASSIGN
command.

The INITIALIZER also substitutes the real file names for default
physical file names in the FCB”s. This function provides the
capability to define the IN and OUT files of the startup message as
physical files and to define the home terminal as a physical file.

After invoking the INITIALIZER, the sequential i/o OPEN"FILE procedure
is called once for each file to be opened.

INITIALIZER-RELATED DEFINES

Two defines are provided for allocating Run-Unit Control Block
Space (CBS) and for allocating FCB space. These defines are:

1. Allocate Run-Unit Control Block and Common FCB (data declaration).

ALLOCATE"CBS (<run-unit control block> , <common fcb> ,
<numfiles>);

where
<run-unit control block>

is the name to be given to the run-unit control block; this
name is passed to the INITIALIZER procedure.

9-46

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

<common fcb>

is the name to be given to the common FCB; this name is
passed to the OPEN"FILE procedure.

<numfiles>
is the number cof FCB“s to be prepared by the INITIALIZER
procedure. The INITIALIZER begins with the first FCB
following ALLOCATE"CBS.
example:
ALLOCATE"CBS (rucb , commfcb , 2);
2. Allocate FCB (data declaration).

Note: The PCB allocation defines must immediately follow the
ALLOCATE"CBS define. No intervening variables are allowed.

ALLOCATE"FCB (<file fcb> , <default physical file name>)
where
<file fcb>

is the name to be given the FCB. The name references the
file in other sequential i/o procedure calls.

<default physical file name>, literal STRING,
is the name of the file to be opened. This can be an
internal form of a file name or one of the following,
and must be in upper case as shown.
byte numbers
(0] [8] [16] [24]
n #IN n

This means substitute the INFILE name of the startup
message for this name.

n # OUT n

This means substitute the OUTFILE name of the startup
message for this name.

" #TERM "

This means substitute the home terminal name for this
name.

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

" # TEMP n

This means substitute a name appropriate for creating
a temporary file for this name.

This means substitute a name appropriate for creating
a temporary file for this name.

If the $<volume name> or <subvol name> is omitted, the
corresponding default name from the startup message is
substituted for the disc file names.

example:
ALLOCATE"FCB (in"file , " #IN ")
ALLOCATE"FCB (out”file , " $0OUT ")

The following SET"FILE operation, ASSIGN"LOGICALFILENAME, is used
with the INITIALIZER. The logical file name is the means by which
the INITIALIZER matches an assign message tc a physical file.

CALL SET"FILE (<file fcb> , ASSIGN"LOGICALFILENAME ,

INT:ref
references the file to be assigned a logical file name.
@<logical file name>, INT:value,
is the word address of an array containing the logical file
name. A logical file name consists of a maximum of seven

alphanumeric characters, the first of which must be an
alphabetic character.

<logical file name> must be encoded as follows:
byte numbers

[0] [1] (8]
<len><logical file name>

<len> is the length of the logical file name.
By convention, the logical file name of the input file of
the startup message should be named "INPUT"; the leogical

file name of the ocutput file of the startup message should
be named "OUTPUT".

9-48

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

example:

INT .buf [0:11];

STRING .sbuf := @buf “<<” 1;

sbuf “:=" [5, "INPUT"];

CALL SET"FILE (in"file , ASSIGN"LOGICALFILENAME , @buf);
sbuf “:=" [6, "OUTPUT"];

CALL SET"FILE (out”file , ASSIGN"LOGICALFILENAME , @buf);

Figure 9-2 shows the file assignment in relation to when the
INITIALIZER is invoked. File characteristics can be set by the
INITIALIZER with the ASSIGN command, or with programmatic calls
to the SET"FILE procedure.

CALL(S) TO SET FILE CALL(S) TO SET FILE
BEFORE CALLING AFTER CALLING
INITIALIZER INITIALIZER
OPENFILE OPENFILE
HIGHEST [ASSIGN COMMAND] [SETFILE]
[SETFILE] [ASSIGN COMMAND 1]
LOWEST DEFAULT SETTING DEFAULT SETTING

Figure 9-2. Precedence of Setting File Characteristics

CONSIDERATIONS

If run-time changes to file transfer characteristics are not
allowed then do not assign a logical file name to the file.

In some cases it is undesirable to have the INITIALIZER assign
a physical file name for the <default physical file name>. For
example, when it is not desirable to default the file name, but
instead to force the use of an ASSIGN command to specify a
physical file for the lcogical file, then declare the FCB as

9-49

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

follows (the FCB must be adjacent to other FCB”s searched by the
INITIALIZER):

INT .<file fcb> [O:FCBSIZE - 1 1;

In the executable part of the program, before calling the
INITIALIZER, initialize the FCB:

CALL SET"FILE (<file fcb> , INIT"FILEFCB);

Assign a logical file name, and any other open attributes desired,
before calling the INITIALIZER:

CALL SET"FILE (<file fcb> , ASSIGN"LOGICALFILENAME , @name);
CALL INITIALIZER (..);

CALL OPEN"FILE (<common fcb> , <file fcb> , ...):

14

If the user neglects to ASSIGN a physical file to the logical
file, the open fails with an error number 513,
SIOERR"MISSINGFILENAME, "file name not supplied".

USAGE EXAMPLE

The following shows the use of the INITIALIZER and sequential i/o

procedures for opening the IN and OUT files of a typical Tandem
subsystem program.

If the IN and OUT files are the same file and either is a terminal
or a process, only the IN file is opened. The address of the in"file
FCB is put into the pointer to the ocut”file FCB.

The open access is assigned after the INITIALIZER is called. This
overrides the open access specified in an ASSIGN command.

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

Set up the control blocks for the INITIALIZER with supplied
Defines.
Initialize Run Unit Control Block and common FCB.
rucb ~ Array holding Run Unit Control Block.
commfcb - Array for the common File Control Block.

S Gms Gmw e G

ALLOCATE"CBS (rucb, commfcb, 2);

! Initialize in file FCB.
! in"file - Array for FCB of the in file.

ALLOCATE"FCB (in"file, * $IN ")

! Initialize out file FCB.
! out”file - Array for FCB of the out file.

SEQUENTIAL I/O PROCEDURES

Interface with INITIALIZER and Assign Messages

ALLOCATE"FCB (out”file, "

LITERAL
process = 0,
terminal = 6,
inblklen = 4096,
outblklen = 4096,
rec”len = 255;
INT .inblkbuf [O:inblklen/2 - 1 1,

INT

.outblkbuf [O:outblklen/2 - 1],

.infname,

.outfname,
device”type,
phys”rec”len,

interactive;

.buf [0:11 1;

STRING

?NOLIST,

.sbuf := @buf “<<” 1;

?2LIST

PROC main”proc MAIN;
BEGIN

G

int .buffer [O:rec”len/2 - 1 1,

count := rec”len;

Beginning of program execution.

Set up
sbuf “:=" [5, "INPUT"];
CALL
sbuf “:=" [6, "OUTPUT"];
CALL

CALL INITIALIZER(rucb);

S Pt gy Gm 4P g e

G e V= few Gem Gmm fm s C=® G G

SOURCE $SYSTEM.SYSTEM.EXTDECS

S 0t s fem

$our "oy

Process device type.

Terminal device type.

Length of block buffer for in

file.

Length of block buffer for out
file.

Maximum record length to read

or write.

In file”s buffer for blocking.
Out file”s buffer for blocking.
In file”s file name.

Out file”s file name.

Device type (see DEVICEINFO
procedure, sec. 2).

Physical record length of
device.

Indicates if in and out file
are interactive, implying use
read/write access.

Holds logical file names.

String corresponding to buf.

Buffer for i/o with a single
record.

Number of bytes read in or
written out.

in and out files using startup message from RUN command.
SET"FILE(in"“file, ASSIGN"LOGICALFILENAME, @buf);

SET"FILE(out”file, ASSIGN"LOGICALFILENAME, @buf);

get physical file names for in and out files.

@infname
@outfname

:= CHECK"FILE(in"file,
:= CHECK"FILE(out”file, FILE"FILENAME"ADDR) ;

FILE"FILENAME " ADDR);

Determine type of access for in file.

9-51

SEQUENTIAL I/0 PROCEDURES
Interface with INITIALIZER and Assign Messages

CALL DEVICEINFO (infname, device”type, phys”rec”len);
interactive :=
IF (device"type.<4:9> terminal OR
device " type.<4:9> process)
AND infname = outfname FOR 12
THEN 1 ELSE O0;

CALL SET"FILE(in"file, ASSIGN"OPENACCESS,
IF interactive THEN READWRITE“ACCESS
(ELSE READ"ACCESS);

! Open in file.

CALL OPEN"FILE(commfcb, in"file, inblkbuf
,inblklen,,,,, ocut™file);
IF interactive THEN ! Make in and out files the same;
! no need to
@out”file := @in"file ! open out file.
ELSE ! Open out file.
BEGIN
CALL SET"FILE(out”"file, ASSIGN"OPENACCESS, WRITE"ACCESS);
CALL OPEN"FILE(commfcb, out”file, outblkbuf, ocutblklen);

non-interactive use, so echo reads to cut file.

CALL SET"FILE(in"file, SET"DUPFILE, @out”file);
END;

Main processing loop.

! WHILE not EOF process the record.
WHILE (READ"FILE(in"file, buffer, count)) <> 1 DO
BEGIN

Process record read in, and format a record for ocutput.

G Gt g fum

CALL WRITE"FILE(out”file, buffer, count);
END;

CALL CLOSE"FILE(commfcb): ! close all files
END; ! of main”proc

To change the record length of the input file, the following ASSIGN
command can be entered before the program is run:

ASSIGN INPUT,,REC 80

9-52

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messagdes

To change the file code of the output file, the following ASSIGN
command can be entered before the program is run:

ASSIGN OUTPUT,,CODE 9876

SUMMARY

The following are the steps involved to use the INITIALIZER with the
sequential i/o procedures:

° Allocate the CBS and FCB, and assign the default physical file
names using ALLOCATE"CBS and ALLOCATE"FCB's.

® Assign a logical file name using the SET"FILE operation,
ASSIGN"LOGICALFILENAME.

o If ASSIGN command characteristics are to override program
calls to SET"FILE, invoke assignment defines.

° Invoke the INITIALIZER to read the startup, assign, and param
messages and prepare the file FCB's.

® If programmatic calls to SET"FILE are to override ASSIGN command
characteristics, invoke assignment defines.

@ Open the files with calls to OPEN"FILE.

9-53

SEQUENTIAL I/O PROCEDURES
Usage Example Without INITIALIZER Procedure

USAGE EXAMPLE WITHOUT INITIALIZER PROCEDURE

The following example shows the use of the sequential i/o procedures

for the IN and OUT files of a typical Tandem subsystem program when
the INITIALIZER procedure is not used.

?SOURCE $SYSTEM.SYSTEM.GPLDEFS (...)
INT interactive,
error,
.common”fcb [0:FCBSIZE-1] :
.rcv’file [0:FCBSIZE-1],

0,

.in"file [0:PCBSIZE-1],
.out”file [0:FCBSIZE-1],
.buffer [0:991,
mompid [0:3],
devtype,
junk;

LITERAL
process = 0,
terminal = 6,
in”blkbuflen = 1024,
out”blkbuflen = 1024;

INT .in"blkbuf [0:in"blkbuflen/2 - 1],
.out”"blkbuf [0:out”blkbuflen/2 - 1];

SOURCE $SYSTEM.SYSTEM.EXTDECS (...)

?
!
! read the startup message.
1
{ - open $RECEIVE.

1

CALL SET"FILE (rcv”file , INIT"FILEFCB);

buffer “:=" "SRECEIVE " & buffer [4] FOR 7;

! file name.

CALL SET"FILE (rcv”file , ASSIGN"FILENAME , @buffer);

! number of bytes to read.

CALL SET"FILE (rcv"file , ASSIGN"RECORDLENGTH , 200);

CALL OPEN"FILE (common”"fcb , rcv”file ,,, nowait , nowait);

- get mom“s process ID.

— s G Gus Gemn

- first, see if I”m named.

CALL GETCRTPID (MYPID , buffer);
IF buffer.<0:1> = 2 THEN

! not named.

CALL MOM (mompid);
ELSE

9-54

SEQUENTIAL I/O PROCEDURES
Usage Example Without INITIALIZER Procedure

BEGIN
! named.
CALL LOOKUPPROCESSNAME (buffer);
mompid “:=" buffer [5] FOR 4;
END;
! - allow startup message from mom only.

CALL SET"FILE (rcv”"file , SET"OPENERSPID , @mompid);
1

DO
BEGIN
CALL READ"FILE (rcv”file , buffer ,,,, 1);
DO error := WAIT'FILE (rcv'file , length , 3000D)
UNTIL error <> SIOERR"IORESTARTED;
END
UNTIL buffer = -1; ! startup messagde read.

! - close SRECEIVE.

CALL CLOSE"FILE (rcv”file);
1

1

1

see if program is being run interactively.

CALL DEVICEINFO (buffer [9] , devtype , junk);
interactive :=
IF (devtype.<4:9> = terminal OR
devtype.<4:9> = process) AND
buffer [9 1] = buffer [21] for 12 THEN 1
ELSE 0;

CALL SET"FILE (in"file , INIT"FILEFCB);
CALL SET"FILE (in"file , ASSIGN"FILENAME , @buffer [9]);
CALL SET"FILE (in"file , ASSIGN"OPENACCESS ,
IF interactive THEN READWRITE"ACCESS
ELSE READ"ACCESS);
CALL OPEN"FILE (common”fcb , in”"file , in"blkbuf , in"blkbuflen
rrrer out”file);

IF interactive THEN
! use in file as out file.
Qout”file := @in"file
ELSE
BEGIN
CALL SET"FILE (out”file , INIT"FILEFCB):;
CALL SET"FILE (out”file , ASSIGN"FILENAME , @buffer [21])
CALL SET"FILE (out”"file , ASSIGN"OPENACCESS , WRITE"ACCESS)
CALL OPEN"FILE (common”fcb , out”file , out”blkbuf ,
out“blkbuflen);
! set duplicative file.
CALL SET"FILE (in"file , SET"DUPFILE , Qout”file);
END;

.
’
.
4

SEQUENTIAL I/O PROCEDURES
NO"ERROR Procedure

Error handling and retries are implemented within the sequential
i/o procedure environment by the NO"ERROR procedure. NO"ERROR is
called internally by the sequential i/o procedures. If the file
is opened by OPEN"FILE, then the NO"ERROR procedure can be called
directly for the file system procedures.

The call to the NO"ERROR procedure is:

i CALL] NO"ERROR (<state> , <file fcb> ,
<no retry> :=
<good error list> , <retryable>)

where

<no retry>, INT,

indicates whether or not the i/o operation should be
retried. Values of <no retry> are:

0
<>0

operation should be retried.
operation should not be retried.

If <no retry> is not zero, one of the following
is indicated:

<state> is not zero.

ne error occurred; error is zero.

error is a good error number on the list.

fatal error occurred and abort-on-error mode is off.
error is a break error and BREAK is enabled for
<file fcb>.

<state>, INT:value,

if non-zero, indicates the operation is to be considered
successful. The file error and retry count variables are
set to zero, with <no retry> returned as non-zero.
Typically, either of two values is passed in this position:

= CCE for example, immediately following a file system
call. If equal is true, the operation is
successful. This eliminates a call to FILEINFO
by NO“ERROR.

0 forces NO®ERROR to first check the error value
in the FCB. 1If the FCB error is zero, NO"ERROR
calls FILEINFO for the file.

9-56

SEQUENTIAL I/0O PROCEDURES
NO“ERROR Procedure

<file fcb>, INT:ref,
identifies the file to be checked.
<good error list>, INT:ref,
is a list of error numbers; if one of the numbers matches

the current error, <no retry> is returned as non-zero
(no retry). The format of <good error list>, in words, is

0

word]
1]

[
word |

word E n]

<retryable>, INT:value,

is used to determine whether certain path errors should be
retried. If <retryable> is not zero, errors in the

range of {120, 190, 202:231} cause retry according

te the device type as follows:

Device

Operator
Process
SRECEIVE
Disc
Terminal
Printer

Mag Tape
Card Reader

If the path error is either of {200:201}, a retry indication
is given in all cases following the first attempt.

example:

INT goed”error [0:1 1 := [1, 11]; ! nonexistent record.

CALL SET"FILE (out”file, SET"ERROR, 0)
DO CALL READUPDATE (out”fnum, buffer , count)
UNTIL NO"ERROR (= , out”file , good”error , 0);

number of error numbers in list {0:n}
good error number

goed error number.

Retry Indication

yes

n.a.

n.a.

(opened with sync depth of 1, so n.a.)
yes

yes

no

no

SEQUENTIAL I/0 PROCEDURES
NO"ERROR Procedure

ERROR HANDLING BY NO"ERROR

BErrors are handled as follows:

if <state> then
begin
fcb®error := 0
retrycount := 0;
return no-retry indication
end;

~e

if not fcb”error then
CALL FILEINFO (fcb”fnum , fcb™error);

fcb”error Disposition

0 return no-retry indication
1,6 READ"FILE: return no-retry indication
7 WRITE"FILE: return no-retry indication
<good”error> return ne-retry indication

100:102 prompt then
if "S[TOP]" then fatal
else return retry indication

110:111 if device = breakdevice then
begin
breakflush := 1;
if (breakhit :=
checkbreak
begin
check Sreceive for break message.
if break message then
breaktyped := 1
else
if breakflush then
begin
take break
delay 2 sec
end
return breaktyped.
end) then return no-retry indication.

end
delay 2 sec
return retry indication
end
112 begin

delay 2 sec

return retry indication
end

9-58

SEQUENTIAL I/O PROCEDURES
NO“ERROR Procedure

200:201 if (retrycount := retrycount + 1) > 1 then
goto fatal
else return retry indicatien.
120, 190 if not retryable or
202:231 (retrycount := retrycount + 1) > 1 then
goto fatal
else
if device <> mag tape and

device <> card reader then
return retry indication
else
goto fatal

cother fatal:
if print error then
print an error message;
if abort then
begin
call close”file (common”fcb);
call abend;
end;
return no-retry indication;

The retry count is used to determine the number of times an operation
is consecutively retried for a maximum of two retries. The count
is cleared when a no-retry is indicated.

SEQUENTIAL I/O PROCEDURES
$SRECEIVE Handling

SRECEIVE HANDLING

Within the environment of the sequential i/o procedures, the SRECEIVE
file has two functions:

® To check for break messages
) To transfer data between processes

Within the sequential i/o procedures, these functions can be performed
concurrently. It may be desirable to manage the S$SRECEIVE file
independently of the sequential i/o procedures, and to monitor break
using the sequential i/o procedures. Therefore, the SET"FILE

operation SET"BREAKHIT enables the user”s $RECEIVE handler to pass
the break information into the sequential i/o procedure environment.
The FCB internal structure is shown in Appendix E.

SRECEIVE Data Transfer Protocol

RS = RECEIVE"STATE: 0 = NEED READUPDATE, 1 = NEED REPLY.
ROC = RECEIVE"OPENER"COUNT.
OPEN"FILE

RS := ROC := 0;
READ"FILE (file must be open with read or read/write access)

if system message then
begin
RS := 1
if user wants to process this message then
return 1;
replycode := 0
if cpu down message then
begin
if cpu = opener”s cpu then
{ delete process from opener”s directory }
end
else
if break"message then
begin
breakhit := 1
end
else
if open"message then
begin
if nowait depth > 1 then replycode := 2
else
if ROC = 2 then
replycode := 12
else

9-60

SEQUENTIAL I/O PROCEDURES
SRECEIVE Handling

if primary open then
begin
if not primary pid or
opener = primary pid then
begin
add primary pid to opener directory
ROC := ROC + 1
end
else replycode := 12
end
else
if backup open and
(pid in message = primary openers pid or
not primary pid) then
begin
if primary pid then
add backup pid to opener directory
else
! treat as primary open.

add primary pid to opener directory
ROC := ROC + 1

end
else replycode := 12
end
else
if close message then
begin
if pid = primary pid then
begin
primary pid := backup pid
delete backup pid from opener directory
end
else

if pid = backup pid then
delete backup pid from opener directory
if not (ROC := ROC - 1) and
rcveof then
error :=1
end.

if open message and
user wants to reply

and not replycode then return 1

else
begin
REPLY (replycode)
RS := 0
end

return if error = 1 then 0 else 1
end) then return.

9-61

SEQUENTIAL I/0 PROCEDURES
SRECEIVE Handling

if RS then REPLY (no text, REPLYERROR = 0); RS := 0;

r

Note: REPLY is skipped if READ"FILE immediately follows
open.

READUPDATE (text); RS :=1
error := 0;

.
I

WRITE"FILE (file must be open with write or read/write access)

if not RS then ! invalid operation

error := SIOERR"INVALIDRCVWRITE
RETURN;

REPLY (text, reply code); RS := 0;
error := 0;
CLOSE"FILE

replycode := IF access = write THEN 1 ELSE 45
if not RS then READUPDATE (no text); RS :=
REPLY (no text, replycode); RS := 0;

READUPDATE/REPLY until close message; RS := 0;
Note: To determine whether the data returned from READ"FILE

is listing text or command prompt text call the file system
RECEIVEINFO procedure.

9-62

NO-WAIT I/O

SEQUENTIAL I/0O PROCEDURES
No-Wait I/O

If NOWAIT is specified at open time, the file is opened with a no-wait

i/o depth of one.

is determined on a call by call basis.
completed by a call to WAIT"FILE.

Whether an individual operation is to be waited for <«—
No-wait operations are

If it is desirable to wait for any file, the user can call AWAITIO

before calling WAIT"FILE.

Depending on whether blocking is

performed, a physical i/o operation may not always take place with a

logical i/o operation.

Therefore, the CHECK"FILE operation

FILE"PHYSIOOUT is used to determine if an i/o operation is

outstanding.

The SET"FILE operations SET"PHYSIOOUT, SET"ERROR, and

SET"COUNTXFERRED are provided to condition the FCB if the i/o is

completed.

for the file state information to be updated.

Example:
INT .in"fnum;

@in"fnum :

error := 0

WHILE 1 DO
BEGIN

IF error <> SIOERR"IORESTARTED THEN
CALL READ"FILE (in"file , buffer ,

fnum := -1;

The user must call WAIT"FILE following the call to AWAITIO

= CHECK"FILE (in"file , FILE"FNUM);
;

; r 1); ! no wait.

CALL AWAITIO (fnum ,, countread ,, 3000D);

IF fnum = in"fnum THEN

BEGIN

CALL FILEINFO (in”fnum

! set i/o done.

CALL SET"FILE (in"file

! set count read.

CALL SET"FILE (in"file

1 set error code.

CALL SET"FILE (in"file

IF (error :=

14

error);

SET"PHYSIOOUT , 0);

SET"COUNTXFERRED , countread);

SET"ERROR , error);

WAIT"FILE (in"“file , in"file”countread)) <>
SIOERR"IORESTARTED THEN

BEGIN ! completed.

U G 0 G

EN
END
ELSE

.
14

END; ! WHILE 1 LOOP.

process read.

-

SEQUENTIAL I/O PROCEDURES

No-Wait

SUMMARY

I1/0

OF FCB ATTRIBUTES

The following table summarizes the operations of SET FILE
and CHECK"FILE. They are listed alphabetically by their

SET"FILE name and by their CHECK"FILE name.

The following symbols are used:

FCB

>0

State

Q

9-64

FCB must be that of a file (not common FCB).

FCB must be the common FCB.

FCB must be that of the file SRECEIVE.

FCB can be that of a file or common FCB (Any FCB).

File must be open.
File must be closed.
File can be open or closed (Any state).

These attributes have default values assigned by
OPEN"FILE unless specified differently in the OPEN"FILE
flags or by a later SET"FILE operation.

When a file is closed these attributes are cleared.

If the FCB is reopened, these attributes have default
values assigned by OPEN"FILE unless specified
differently in the OPEN"FILE flags or by a SET"FILE
operation.

The parameter pascsed to SETFILE ic the address of the
array, i.e . @file"name instead of file"name. The value

returned by CHECK"FILE is the address of the item.

SEQUENTIAL I/0 PROCEDURES
No-Wait I/O

S R S
t e t A
F as Fad
Cte SET"FILE ctd CHECK"FILE
Bet| = =—————— Berf = | —————————-
C - | Assign”blockbuflen A |File"blockbuflen
c - filecode A filecode
C filename A * filename"addr
C logicalfilename A * logicalfilename "~addr
C - openaccess A openaccess
Cc - openexclusion A openexclusion
Cc - priext A priext
C + recordlen A recordlen
c - secext A secext
C Init"filefcb [1]
o + Set"abort”"xfererr o File"abort”xfererr
caA breakhit C A breakhit
A A checksum A A checksum
o + countxferred o) countxferred
o + crlf’break o crlf”break
o + dupfile o * dupfile
o - error o error
ca errorfile CA* errorfile
o - logioout o logioout
R o openerspid C A * openerspid”addr
o - physioout o} physioout
o+ print®err”msg o print®err”msg
o + prompt o] prompt
o + read”trim o read”trim
R o rcveof R o rcveof
R o rcvopencnt R o rcvopencnt
R o rcvuseropenreply R o rcvuseropenreply
R o systemmessages R o systemmessages
R o systemmessagemany | R o * systemmessagemany
caA traceback Cc A traceback
A userflag A userflag
o + write”fold o write”fold
o + write”pad o write”pad
o + write®trim o writetrim
- A |File"assignmaskl [2]
- A assignmask2
- Ao * bwdlinkfcb
+ o created
A * error " addr
+ o fileinfo
- o} fnum
A * fnum”~addr
- Ao * fwdlinkfcb
A * segnum”addr
A * userflag”addr

[1]
[2]

Init"filefcb should not be used for initializing the common”fcb.
All assigns except filename are lost after a close”file.

9-65

SECTION 10

FORMATTER

The GUARDIAN operating system formatter provides the capability to
format data on output and to convert data on input with a minimum of
programming effort. The formatter consists of two procedures,

which are called from user programs.

The formatter procedures are:
FORMATCONVERT converts an external format tc internal form
for presentation to the FORMATDATA procedure.

FORMATDATA performs conversion between internal and

external representation of data as specified

by a format, or performs conversion of data
using the list-directed rules.

The decimal arithmetic package is required to use the formatter.

The floating-point arithmetic package is needed when using the "D",

"E", and "G" edit descriptors for output or when fleocating-point
variables are used.

10-1

FORMATTER
FORMATCONVERT Procedure

The FORMATCONVERT procedure ¢onverts an external format to internal
form for presentation to the FORMATDATA procedure.

The call to the FORMATCONVERT procedure is:

<status> := FORMATCONVERT (<iformat>
CALL } mmmmmmmmmme e m o

where

<status>, INT,

is a value indicating the outcome of FORMATCONVERT:

If > 0, indicates successful conversicon. The value
is the number of bytes in the converted
format (<iformat>).

If = 0, indicates <iformatlen> was insufficient to
hold the entire converted format.

If < 0, indicates an error in the format. The value
is the negated byte location in the input
string at which the error was detected.

The first byte of <eformat> is numbered 1.

<iformat>, STRING:ref,

is an array in which the converted format is to be
stored. The contents of this array must be passed to
the FORMATDATA procedure as an integer parameter, but
FORMATCONVERT redquires it to be byte-addressable
G-relative storage. Thus <iformat> must be aligned on
a word boundary, or the contents of <iformat> must be
moved to a word-aligned area when it is to be passed to
FORMATDATA. (The area passed to FORMATDATA need not be
in byte-addressable storage.)

10-2

FORMATTER
FORMATCONVERT Procedure

<iformatlen>, INT,

is the length, in bytes, of the <iformat> array. If

the converted format is longer than <iformatlen>, the
conversion is terminated and a <status> value <= 0 is
returned.

<eformat>, STRING:ref,

is the format string in external (ASCII) form.
<eformatlen>, INT,

is the length, in bytes, of the <eformat> string.
<scales>, INT:ref,

is an integer array. FORMATCONVERT processes the format
from left to right, placing the scale factor (the number
of digits that are to appear to the right of the decimal
point) specified or implied by each repeatable edit
descriptor into the next available element of <scales>,
until the last repeatable edit descriptor has been
converted or the maximum specified by <scalecount> is
reached, whichever occurs first.

<scalecount>, INT:ref,
On call, the number of occurrences of the <scales> array.

On return, <scalecount> contains the actual number of
repeatable edit descriptors converted.

If the number of repeatable edit descriptors present is
greater than the number entered here, FORMATCONVERT stops
storing scale factors when the <scalecount> maximum is
reached, but continues to process the remaining edit
descriptors and continues incrementing <scalecount>.

<gconversion>, INT,
Specifies the type of conversicon to be done:

0 = Check validity of format only. No data is stored
inteo <iformat>. The scale information is stored
in the <scale> array.

10-3

FORMATTER
FORMATCONVERT Procedure

1l = Produce compact conversion, ignoring medifiers and
decorations. The resulting format redquires little
storage space, but the execution time is twice as
long as version 2 (below).

2 = Produce expanded form with modifiers and decorations.
This requires additional storage space, but the
execution time is half that of version 1 (above).

The size required is approximately 10 times
<eformatlen>.

Note: The <scales> parameter infermation was included to provide
information needed by the ENFORM product. It is not of interest
to most users of FORMATCONVERT. A variable initialized to zero
should be supplied for <scales> and <scalecount> if this
information is not of interest.

10-4

FORMATTER
FORMATDATA Prcocedure

The FORMATDATA procedure performs conversion between internal and
external representations of data, as specified by a format or the
list-directed conversion rules.

The call to the FORMATDATA procedure is:

<error> := } FORMATDATA (<buffer>
CALL =} = e e

where
<error>, INT,
indicates the outcome of the call.
0 = Successful operation

Errors: 267 Buffer overflow

268 = No buffer

270 = Format loopback

271 = Edit item mismatch

272 = Illegal input character
273 = Bad format

274 = Numeric overflow

<buffer>, STRING:ref,

is a buffer or a series of contiguous buffers where the
formatted output data is to be placed, or where the input
data is found. The length, in bytes, of <buffer> must

be at least <bufferlen> times <bufferoccurs>.

10-5

FORMATTER
FORMATDATA Procedure

<bufferlen>, INT,

is the length, in bytes, of each buffer in the <buffer>
array.

<bufferoccurs>, INT,
is the number of buffers in <buffer>.
<length>, INT:ref,

is an array that must have at least as many elements

as there are buffers in the <buffer> array on output.
FORMATDATA stores the highest referenced character
position in each buffer in the corresponding <length>
element. If a buffer is not accessed, -1 is stored for
that buffer, and for all succeeding ones. If a buffer
is skipped, (for example, due to consecutive buffer
advance descriptors in the format), 0 is stored.

There are no values stored into the <length> parameter
during input operaticen.

<iformat>, INT:ref,

is an integer array containing the internal format
(as constructed by FORMATCONVERT) .

<variablelist>, TNT:ref.,

is a 4- or 5-word entry for each array or variable. It
consists of the following items:

WORD CONTENTS
[0] dataptr
(1] datatype
[2] databytes
[3] dataoccurs
[4] nullptr (OPTIONAL)

<dataptr> is the address of the array or variable (byte
address for types 0, 1, 12-15, and 17; word address
for other types).

10-6

FORMATTER
FORMATDATA Procedure

<datatype> is the type and scale factor of the element:

bits <8:15> 0 = String
1 = Numeric string (unsigned)
2 = Integer (16) signed
3 = Integer (1l6) unsigned
4 = Integer(32) signed
5 = Integer (32) unsigned
6 = Integer (64) signed
7 = not used
8 = Real(32)
9 = Complex(32*2)
10 = Real (64)
11 = Complex (64*2)
12 = Numeric string, sign trailing,
embedded
13 = Numeric string, sign trailing,
separate
14 = Numeric string, sign leading,
embedded
15 = Numeric string, sign leading,
separate
16 = not used
17 = Logical*1l (1 byte)
18 = not used
19 = Logical*2 (INT(16))
20 = not used
21 = Logical*4 (INT(32))

Note: Data types 7 through 11 require floating-point
firmware.

bits <0:7> Scale factor moves the position cof the
implied decimal peint by adjusting the
internal representation of the expression.
Scale factor is the number of pesitions
that the implied decimal pcoint is to be
moved to the left (factor > 0) or to the
right (factor <= 0) of the least
significant digit. This value must be
0 for data types 0, 17, 19, and 21.

<databytes> is the size of the variable or array element
in bytes, used to determine the size of strings and
address spacing.

<dataoccurs> is the number of elements in the array
(supply 1 for undimensicned variables).

10-7

FORMATTER
FORMATDATA Procedure

<nullptr> 1If <> 0, is the byte address of the null value.
If = 0, no null value for this variable.
<variablelistlength>, INT,

is the number of <variablelist> entries passed in this
call.

<flags>, INT:value,

<15:15>

Input:

If 0, FORMATDATA performs cutput operations.
If 1, FORMATDATA performs input operaticns.

<04:04>

Null value passed:

If 0, each <variablelist> item is a 4-word
group.

If 1, each <variablelist> item is a 5-word
group.

<03:03> P-Relative (<iformat> array):

If 0, the <iformat> array is G-relative.
If 1, the <iformat> array is P-relative.

List-directed (refer to "List-Directed
Formatting” at the end of this section):

<02:02>

If 0, apply the format-directed operation.
If 1, apply the list-directed operation.

10-8

FORMATTER
FORMATDATA Procedure

Errors

267 BUFFER OVERFLOW

FORMATDATA required access to a character before start of buffer or
outside buffer toc interpret an edit descriptor.

268 NO BUFFER

FORMATDATA required new buffer, but current buffer was the last one
supplied. Correct format or increase buffer space.

270 FORMAT LOOPBACK
When FORMATDATA reached end of a format which contained no
repeatable edit descriptors, data items remained to be processed.
This error would cause an infinite loop if not detected. Include

repeatable edit descriptors in the format, or reduce number of data
items.

271 EDIT ITEM MISMATCH

In format-directed operation, edit descriptor was matched to data
element of incompatible type. (For example, "G" edit descriptor
was associated with string data element on cutput, or any edit
descriptor except "A" was associated with string data element on
input.) In list-directed input, numeric data element was repeated
using r*c form, and some data element after first element to which
this form applied was a string-type element. Correct format, or
correct data list to include missing items or delete extra ones.

272 ILLEGAL INPUT CHARACTER

Numeric input field contained character that was inappropriate for
corresponding edit descripter. For example, non-numeric character
was entered in field being interpreted according tc "I" edit
descriptor. Correct format or data list.

273 BAD FORMAT

Format containing edit descriptor that is valid for output, but not

for input, was used for input. For example, I5.5 is invalid for
input. Correct the format.

274 NUMERIC OVERFLOW

Numeric value was too small or too large to place in corresponding
data element. Change format or correct numerical calculations.

10-9

FORMATTER
Example

EXAMPLE

This example shows how to use the Formatter procedures for some
simple ocutput editing. It illustrates the setup for the variable
list and the use of the <length> values returned from FORMATDATA.

PROC EXAMPLE MAIN;
BEGIN

THIS STRUCTURE DEFINES THE 4-WORD FORM OF VARIABLE LIST ENTRY
(THE ONE WITHOUT THE NULL VALUE POINTER FIELD).

STRUCT VLE"REF (*);
BEGIN
INT ELE"PTR ;
STRING ELE"SCALE, ELE"TYPE
INT & ELE"LEN, ELE"OCCURS
END

~e wo

THIS DEFINE PROVIDES ONE WAY TO INITIALIZE THE FIELDS OF A
VARIABLE LIST ENTRY. THE SCALE, TYPE, LENGTH, AND OCCURS VALUES
MUST BE CONSTANTS TO BE ABLE TO USE IT.

oo g fum G gum

DEFINE VLE"INIT (ENT, V, SCALE, TYPE, LEN, OCCURS) =

BEGIN

ENT “:=" [0, SCALE “<<” 8 “+° TYPE, LEN, OCCURS] ;
ENT.ELE"PTR := @V ;

END #;

THIS STRUCTURE DEFINES A BUFFER TO MAKE IT EASIER TO CREATE
AN ARRAY OF BUFFERS.

LITERAL BUF"LEN = 100 ;

STRUCT BUF"REF (*) ;
BEGIN
STRING BYTES [0:BUF"LEN-1] ;
END ;

THE EXAMPLE FORMAT IN EXTERNAL (ASCII) FORM.

LITERAL EFORMATLEN = 60 ;
STRING .EFORMAT [0:EFORMATLEN] :=
"20X, “SAMPLE ouTPUT” // 15,2X,F10.3,5(2X,I2),5X,A" ;

STORAGE FOR THE INTERNAL FORM OF THE FORMAT.

LITERAL IFORMATLEN = 200 ;

14

INT .WFORMAT [0:IFORMATLEN/2] ;
STRING .IFORMAT := @WFORMAT “<<” 1 ;

’

10-10

e g O

Gt 4= g G g g

P e i

FORMATTER
Example

ARRAY OF BUFFERS AND OF THE LENGTH USED IN EACH.
LITERAL NUM"BUFS = 5 ;

STRUCT .BUFFERS (BUF"REF) [0:NUM"BUFS-11 ;

INT .BUF"LENS [0:NUM"BUFS-1] ;

VARIABLE LIST ARRAY.

STRUCT .VLIST (VLE"REF) [0:3] ;

’

DATA FOR THE EXAMPLE.

INT INT"16 := 7 ;

FIXED(2) QUAD := -437.57F ;

INT(32) .INT"32"ARRAY [0:4] := [1p, 1D, 2D, 3D, 5D] ;
STRING .CHARS [0:10] := "DEMO STRING" ;

MISCELLANEOUS DATA.

INT .FILENAME [0:11] ;
INT FILENO ;

INT SCALES, ERROR, I ;
INITIALIZATION

CALL MYTERM (FILENAME) ;
CALL OPEN (FILENAME, FILENO) ;

CONVERT THE FORMAT TO INTERNAL FORM.
NOTE THE WAY TO IGNORE THE SCALE INFORMATION.

SCALES
ERROR :

.
1

0
FORMATCONVERT (IFORMAT, IFORMATLEN, EFORMAT, EFORMATLEN,
SCALES, SCALES, 1) ;
IF ERROR <= 0 THEN BEGIN
! HERE IF ERROR IN FORMAT
END ;

SET UP THE VARIABLE LIST ENTRIES, BOTH BY USING THE DEFINE
AND BY SEPARATE STORES INTO THE ITEM FIELDS.
VLETINIT (VLIST[O0], INT"1l6, 0, 2, 2, 1) ;
! SCALE 0, TYPE 2, LEN 2 BYTES, 1 OCCURRENCE
VLE"INIT (VLIST[1l], QUAD, 2, 6, 8, 1) ;
! SCALE 2, TYPE 6, LEN 8 BYTES, 1 OCCURRENCE

10-11

FORMATTER

Example
VLIST[2] .ELE"PTR := @INT"32"ARRAY ; ! VARIABLE ADDRESS
VLIST[2] .ELE"SCALE := 0 ; ! SCALE 0
VLIST[2] .ELE"TYPE 2= 4 ! TYPE 4
VLIST[2] .ELE"LEN = 4 ! LENGTH 4 BYTES
VLIST[2] .ELE"OCCURS := 5 ; ! 5 OCCURRENCES

LE"INIT (VLIST[3], CHARS, 0, 0, 11, 1) ;

14

! SCALE 0, TYPE 0, LEN 11 BYTES, 1 OCCURRENCE

EDIT THE DATA INTO THE BUFFERS.

G tme e

ERROR := FORMATDATA (BUFFERS, BUF"LEN, NUM"BUFS, BUF"LENS, WFORMAT,
VLIST, 4, 0) ;
IF ERROR <> 0 THEN BEGIN

! HERE IF ERROR IN DATA CONVERSION
END ;

WRITE THE BUFFERS USED TO THE TERMINAL.

I :=20 ;
WHILE I <= NUM"BUFS AND BUF"LENS[I] >= 0 DO BEGIN
ALL WRITE (FILENO, BUFFERS[I], BUF"LENSI[I]) ;
:= I +1;
ND

.
r

H-HOQ U

THE OUTPUT PRODUCED IS THE THREE LINES SHOWN BELOW.
THE | CHARACTER IS USED TO SHOW THE BUFFER LIMITS INDICATED
IN THE BUF"LENS ARRAY:

| SAMPLE OUTPUT |

g 7 -437.570 1 1 2 3 5 DEMO STRING]

G g gem e Bem fem gme fm G

CALL STOP ;

END ; ! EXAMPLE

10-12

FORMATTER
Format-Directed Formatting

FORMAT-DIRECTED FORMATTING

The principal parameters to the Formatter are a list of "data
elements", an array of buffers, and a "format".

The format is a list of "edit descriptors", separated by commas, which
are translated into internal form by FORMATCONVERT for presentation to
FORMATDATA. Edit descriptors may opticnally be preceded by one or
more "modifiers" and/or "decorations", enclosed in brackets ([]), that
specify additional field formatting. The FORMATCONVERT procedure

converts the external data into an internal form for presentation to
the FORMATDATA procedure.

The FORMATDATA procedure matches each data element with its associated
edit descriptor, which specifies how it is to be displayed for ocutput
or how the buffer contents are to be interpreted for input.

FORMATDATA proceeds through the list, from left to right, of edit
descriptors in the order in which they were presented. If an edit
descriptor is a "non-repeatable" item, FORMATDATA processes it
directly; if an edit descriptor is a "repeatable" item, FORMATDATA
obtains the next data element from the data list and performs the data
conversion specified by the edit descripteor. This processing
continues until the data list is exhausted.

Exceptions to the left-to-right processing are the repeat factor and
format loopback. Any edit descriptor, or groups of edit descriptors
enclosed in parentheses, can be applied repeatedly to a number of data
values by a positive-integer "repeat factor" preceding the descriptor
or group. If the end of the format is reached with unprocessed data
elements remaining, "format loopback" selects a portion of the format
which is to be interpreted again.

The <variablelist> defines a sequence of variables or arrays which are

to be processed by the FORMATDATA procedure. Each variable or element
of an array in the <variablelist> is referred tc as a "data element".

10-13

FORMATTER
Format Characteristics

Format Characteristics

A "format" directs the operation of the FORMATDATA procedure”s editing
between the internal representation and external representation of
data.

The form of a format is:

Edit descriptors are of two types: those that specify the
conversion of data values (repeatable) and those that do

not (non-repeatable). The effect of repeatable edit descriptors
can be altered through the use of modifiers or dececrations,
which are enclosed in brackets ([]) preceding the edit
descriptors to which they refer. Within a format, all edit
descriptors except buffer contrel descriptors must be separated
by commas. Buffer control descriptors have the dual function of
edit descriptors and format separators, and need not be set off
by commas.

1 fmt-item l [separator fmt-item]
format: [1 . . .
b-separator [[separator] b-separator]
{ non-repeatable-edit-descriptor)
fmt-item:
field-group

field-group: [repeat] [mods] { group-spec }

group-spec:

1 repeatable~edit-descriptor 1
" (“ format ") n

repeat: an unsigned, non-zero integer
modifier

mods: “[" ;e e . nyw
decoration

10-14

FORMATTER
Format Characteristics

separator: {171 :1
b-separator: { / | : }
non-repeatable repeatable
edit descriptors edit descriptors modifiers decorations
BN SP A G BN oC P
BZ SS D I BZ RJ M A
H T E L FL SS Z feeo F
string TL F M LJ N P
P TR o
S X
Some sample formats:
I5,F10.2
" NAME EXTENSION",//, (A20,3X,14)

FORMATDATA matches each data element with its associated edit
descriptor, which specifies how it is to be displayed for output
or how the buffer contents are to be interpreted for input.
FORMATDATA proceeds through the list (from left to right) of edit
descriptors in the order in which they were presented:

1. If an edit descriptor is a repeatable item, FORMATDATA obtains
the next data element from the data list and performs the data
conversion specified by the edit descriptor.

2. If an edit descriptor is a non-repeatable item, FORMATDATA
processes it directly.

This processing continues until the data list is exhausted. If there

are any data list items, there must be at least one repeatable edit
descripter in the format.

The interpretation of the format terminates if any of these conditions
are met:

1. FORMATDATA encounters a repeatable edit descriptor in
the format and there are no remaining data elements.

2. FORMATDATA reaches the end of the format and there are no
remaining data elements.

10-15

FORMATTER
Format Characteristics

3. FORMATDATA encounters a colon edit descriptor in the format and
there are no remaining data elements.

A format is interpreted from left to right with the following
exceptions:

1. If a field group contains a repeat factor, then the group
specifications are processed the number of times indicated by
the repeat factor before continuing with the following
specifications.

2. 1If FORMATDATA reaches the end of the format and data elements
remain, format lcoopback occurs. Format loopback performs the
following steps:

a. The current buffer is terminated.
b. A new buffer is obtained.

c. The format is examined backwards (from right to left).
If a right parenthesis which is not part of a string or
Hollerith descriptor is encountered, the matching left
parenthesis is found, and the format interpretation
resumes at the left parenthesis. If a repeat factor
precedes this left parenthesis, processing resumes at
the repeat factor. If the beginning of the format is
reached and no right parenthesis is found, the format
interpretation resumes at the beginning.

d. Reverse examination of the format position has no effect
on the scale facter (set by P}, the sign control (set by
5,8P, or 8S), or the blank control (set by BN or BZ).
The condition in effect at the end of the format
continues until altered by one of the controlling edit

descriptors.

10-16

FORMATTER
Edit Descriptor