
GUARDIAN
Operating System
Programming

·Manual
Volume 2

II

P/N 82337 AOO

GUARDIAN (TM) OPERATING SYSTEM

PROGRAMMING MANUAL

Volume 2

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014

April 1982
Printed in U.S.A.

The GUARDIAN Operating System Programming Manual was published in
October 1981 as a two-volume manual with part number 82096 AOO for
each volume. The 82096 AOO version was the first edition to include
both Nonstop and Nonstop II information in one publication.

The April 1982 version revises the 82096 AOO version. With this
revision, the two volumes have been given separate part numbers;
volume I is now 82336 AOO, and volume II is now 82337 AOO. Users
of this publication should obtain both volumes.

Information has been added on the following new devices:

5106 Tri-Density Tape Subsystem
4116 540MB Winchester Disc Drive
4110/4111 128MB Winchester Disc Drives
5513/5514 Band Line Printers
5520 Serial Matrix Printer
6530 Multi-page Terminal

Copyright (c) 1982 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, Nonstop, AXCESS, DYNABUS, ENABLE, ENCOMPASS, ENFORM, ENSCRIBE,
ENVISION, ENVOY, EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual describes the interface between user programs and the
GUARDIAN operating system on the Tandem Nonstop and Nonstop II
systems.

Specifically, the manual discusses:

• calling the procedures provided by the GUARDIAN operating
system for file management, process control, general utility,
and checkpointing

• using traps and trap handling

• using the features provided for security of files and processes

• performing advanced memory management on Nonstop systems
and managing extended data segments on Nonstop II systems

• using the sequential i/o procedures and the i/o formatter

• interfacing between application programs and the GUARDIAN
command interpreter

This manual is for systems and applications programmers with
special needs to call operating system procedures from their
programs. Familiarity with the Tandem Transaction Application
Language (TAL) or some other programming language, such as
FORTRAN or COBOL, is recommended. Before using this manual,
it is suggested that users read:

• Introduction to Tandem Computer Systems for a general overview of
the system

• GUARDIAN Operating System Command Language and Utilities Manual,
sections 1 and 2, for information about logging on to the system
and running programs in general

The "advanced" subsections in sections 2, 5, and 8 discuss
advanced features and require a knowledge of the system hardware
registers, machine instructions, and/or operating modes.

iii

Because of its size, this manual is bound as two volumes.
Volume 1 covers:

• Introduction
• File System
• Process Control

Volume 2 covers:

• Utility Procedures
• Checkpointing Facility
• Traps
• Security System
• Memory Management Procedures
• Sequential I/O Procedures
• Formatter
• COMINT/Application Interface
• Nonstop Programming Example
• Appendices

To simplify cross-referencing and indexing, the two volumes are
section-numbered as if they were one book; i.e., volume 2 begins with
section 4. Each volume contains a complete table of contents and
index for both volumes, so that the reader can easily find the
information he needs.

Information that applies only to Nonstop systems (not to Nonstop II
systems) and information that applies only to Nonstop II systems is
clearly marked as such -- for instance, by a page header or figure
title stating "(Nonstop systems only)" or by a sentence at the start
of a paragraph beginning "On Nonstop II systems, •.. ". Material not
so marked applies to both types of system.

For more information regarding the Tandem Nonstop and Nonstop II
systems, refer to the manuals listed below.

For Nonstop systems only:

• Non Stop System Description Manual

• • Nonstop System Operations Manual

• Nonstop System Management Manual

• GUARDIAN Operating System Messages Manual (Nonstop systems)

• DEBUG Reference Manual (Nonstop systems)

iv

For Nonstop II systems only:

• Nonstop II System Description Manual

• Nonstop II System Operations Manual

• Nonstop II System Management Manual

• GUARDIAN Operating System Messages Manual (Nonstop II systems)

• DEBUG Reference Manual (Nonstop II systems)

For both systems:

• GUARDIAN Operating System Command Language and Utilities Manual

• Transaction Application Language Reference Manual

• ENSCRIBE Programming Manual

• EXPAND Users Manual

• ENVOY Byte-Oriented Protocols Reference Manual

• ENVOYACP Bit-Oriented Protocols Reference Manual

• AXCESS Data Communications Programming Manual

e SORT/MERGE Users Guide

• Spooler/PERUSE users Guide

• Spooler System Management Guide

• UPDATE/XREF Manual

For a combined index to subjects covered in Tandem technical manuals,
identifying the manual and page number for each reference, refer to
the following publications:

• Master Index (Nonstop systems)

• Master Index (Nonstop II systems)

For a complete list of technical manuals and manual part numbers for
Tandem Nonstop systems and Tandem Nonstop II systems, refer to the
following publication:

• Technical Communications Library

v

CONTENTS

Volume 1

SECTION 1. INTRODUCTION
Process Control •••.•.

TO THE GUARDIAN OPERATING

Process Structure •.
Process Pairs •••.••
Process Control Functions ••

File System •••..••••
Utility Procedures ••
System Messages ••••

SYSTEM ••

Checkpointing Facility (Fault-Tolerant
Traps and Trap Handling ••

Programming)

Security •••••••••.•••
Command Interpreter.
Debug Facility •••••••
External Declarations for Operating System Procedures •.

SECTION 2. FILE SYSTEM •.
INTRODUCTION ••

Files •.•••••
Disc Files •••
Non-Disc Devices.
Processes {Interprocess

Console •• Operator
File Access .•.

Disc Files ••
Terminals.
Processes.

Communication)

Access Coordination Among Multiple Accessors ••
Locking •..••••••••••••••.

Wait/No-wait I/o •••.••••••••
File System Implementation.

File and I/O System Structure.
File System Procedure Execution •.
File Open .•••••
File Transfers ••
Buffering ••.••••
File Close .••••••
Automatic Path Error Recovery for Disc Files.
Mirror Volumes•••...••.••.•••.••..•••.••

•• 1-1
.1-5

. .1- 7
.1-8

. .1-9
• .• 1-10

.1-13

.1-13
• •• 1-14
.• 1-16
.1-17
.1-18

• .1-18
.1-18

.2.1-1
. • 2 .1-1
.2.1-1

• • 2 .1-1
.2.1-3

• .• 2.1-4
.2.1-7
.2.1-7

• •• 2.1-8
.2.1-10
.2.1-10

. • 2 .1-11
.2.1-12

• •• 2 .1-13
.2.1-16

..2.1-16
.2.1-21
.2.1-21
.2.1-24
.2.1-26

..2.1-27
• ••• 2.1-28

•• 2.1-34

vii

Error Indication •••
Error Recovery.

FILE NAMES ••.••••••
Disc File Names ••

Volume Name.
Subvol Name ...
Disc File Name.
Temporary File Name ••
Examples •••••••••••••

Device Names •••••••••••
Logical Device Numbers ••
$RECEIVE •••
Process ID.

Timestamp Form ••
Process Name Form.
Obtaining a Process ID •••
Examples ••••••••••
$0

Network File Names •••••
Process ID, Network Form ••

FILE SYSTEM PROCEDURES ••
Characteristics •••••••

For Procedure usage by Device Type ••

viii

completion ••••••••••••••••
<file number> Parameters ••
<tag> Parameters •••
<buffer> Parameter ••
<transfer count> Parameter
Condition Codes ••••••••••••
Errors
Access Mode and Security Checking for Disc

AWAITIO Procedure (all files) •••
CANCEL Procedure (all files) ••••
CANCELREQ Procedure (all files)
CLOSE Procedure (all files) •••.•••••
CONTROL Procedure (all files) ••
CONTROLBUF Procedure (all files)
CREATE Procedure (disc files) ••••
DEVICEINFO Procedure (all files)
EDITREAD Procedure (edit-type files)
EDITREADINIT Procedure (edit-type files)
FILEERROR Procedure (all files) ••••
FILEINFO Procedure (all files) ••••••
FNAMECOLLAPSE Procedure (all files)
FNAMECOMPARE Procedure (all files) .•
FNAMEEXPAND Procedure (all files) •••
GETDEVNAME Procedure (disc files and non-disc
GETSYSTEMNAME Procedure .•.•.•••••..•••.
LASTRECEIVE Procedure ($RECEIVE file)
LOCATESYSTEM Procedure ••••.•••••
LOCKFILE Procedure (disc files)
MONITORNET Procedure ••.•••••.•••

Files.

•• 2.1-35
.2.1-37

.2.2-1

.2.2-2
• •• 2.2-2
• •• 2.2-2
..2.2-2
..2.2-2

• •• 2.2-3
.2.2-3

..2.2-3
. •• 2.2-3

.2.2-4
. •• 2.2-4
..2.2-4
.2.2-5
.2.2-6

• ••• 2.2-6
..2.2-7
•• 2.2-8

. 2 . 3-1
• •• 2.3-3

. • 2. 3-3
• • 2. 3-4
..2.3-4
..2.3-5

. 2. 3-5
. ••• 2.3-5

•• 2.3-6
• •• 2.3-6
..2.3-6

. 2. 3-7
..2.3-11
•• 2.3-12

•••••••• 2.3-13
..2.3-15

• ••• 2.3-20
..2.3-23
•• 2.3-26
•• 2.3-30
•• 2.3-34
•• 2.3-36
..2.3-39
..2.3-43

• •• 2.3-45
.2.3-48

devices) ..2.3-52
•• 2.3-54
•. 2.3-55

••• 2.3-57
. ... 2.3-58

.......... 2.3-61

MONITORNEW Procedure (Nonstop II systems only) •••••••••.•••• 2.3-62
NEXTFILENAME Procedure (disc files) ••••••••••••••••••••••••• 2.3-63
OPEN Procedure (all files) •.••••••••••.••••••••••••••.••..•• 2.3-65
POSITION Procedure (disc files) •••••••••••••••••••••..•••••• 2.3-73
PURGE Procedure (disc files) ••••••••.••••.•••••••••••••.•••• 2.3-75
READ Procedure (all files) ••••.•••••.•••••.•••..••••••••.••. 2.3-76
READUPDATE Procedure (disc and $RECEIVE files) ••••••••.••••• 2.3-79
RECEIVEINFO Procedure ($RECEIVE file) ••••••••••••••••••••••• 2.3-82
REFRESH Procedure (disc files) •••••••••••••••.•.•••••••••••• 2. 3-85
REMOTEPROCESSORSTATUS Procedure ••••..••.••••••••••••.••••••• 2.3-86
RENAME Procedure (disc files) ••••••••••••.••••.•.••••••••••• 2.3-88
REPLY Procedure ($RECEIVE file) •••••••••••••.•••.•••••••.••• 2.3-89
REPOSITION Procedure (disc files) ••••••.•.••••••.••••••••••. 2.3-91
SAVEPOSITION Procedure (disc files) ••••••••••••••.•••.•••••• 2.3-92
SETMODE Procedure (all files) •••••••••••••••••••••••.••••••• 2.3-93
SETMODENOWAIT (all files) •.••••.•••••••.••.•••••••••.•••.••. 2.3-95
SETMODE Functions Table (all files) ••••••••••••••••••••••••• 2.3-97
UNLOCKFILE Procedure (disc files) •••••••••••••••••••••••••• 2.3-107
WRITE Procedure (all files) ••••••••••••••••••••••••••..•••• 2. 3-108
WRITEREAD Procedure (terminal and process files) ••••••••.•• 2.3-110
WRITEUPDATE Procedure (disc and magnetic tape files) ••••••• 2.3-112

FILE SYSTEM ERRORS AND ERROR RECOVERY ..••.••••••••••••••••••••• 2.4-1
Error List 2. 4-2
Error Recovery .•••••••••.••••.•••••••••••••••••••••••••••••• 2.4-29

Device .. 2.4-29

No-Wait I/O ••••••••••••••...•••••••••••••••••••••••••••••• 2. 4-32
File System Error Messages on the Operator Console •••••••••• 2.4-32

TERMINALS: CONVERSATIONAL MODE/PAGE MODE ••••••••••••••••.•••••• 2.5-1
General Characteristics of Terminals ••••••••••••.••.••••••••• 2.5-1
Summary of Applicable Procedures •••••••.••••••••••••••••••••• 2.5-3
Accessing Terminals •••••••••••••••••••••••••••••••.•••••••••• 2. 5-4

Transfer Termination when Reading •••••••••••••••••••••••••• 2.5-5
Transfer Modes ••.•••••.••••••••••.••••••••••••••••••••••••••• 2.5-6

Conversational Mode ••••.••.•••••.••••••.••••••••••••••••••• 2.5-8
Page Mode•............................•...... 2. 5-16

Transparency Mode (Interrupt Character Checking Disabled) ••• 2.5-22
Checksum Processing (Read Termination on ETX Character) •••.• 2.5-22
Echo 2. 5-22
Timeouts .. 2. 5-23
Modems • •••.••••••• 2. 5-23
Break Feature ••••••••.••••••••••••••.•••••••••••••.••••••••• 2.5-25

BREAK System Message •••••••••••.•••••••••••••••••••••••••• 2.5-26
Using BREAK (Single Process per Terminal) ••••••••••••••••• 2.5-26
Using BREAK (More than One Process per Terminal) .••••••••• 2.5-28
Break Mode ••...•..•••••........••••••.•••••••••••••.•••••• 2.5-29

Error Recovery •••••.••••••••••••.••••••.•••••••••••••••••••• 2. 5-34
Operation Timed Out (Error 40) •••••••••••••••••••••••••••• 2. 5-34
BREAK (Errors 110 and 111) ••••••••••••••••.••••.•••••••••• 2.5-34
Preempted by Operator Message (Error 112) ••••••••••••••••• 2.5-35
Modem Error (Error 140) ••••••••••••••••••••••••••••••••••• 2.5-36

ix

x

Path Error (Errors 200-255) .••.•••.•.•••••.••••••••
Configuration Parameters ••.••.•••••••••••••.•••.•••.
Summary of Terminal CONTROL and SETMODE Operations.

LINE PRINTERS••••••••.•••.••.••..••••.•
General Characteristics of Line Printers ••
Summary of Applicable Procedures ••
Accessing Line Printers ••••••.••••
Forms Control .••••.•••••.••••••••.
Programming Considerations for the Model 5508 Printer ••

Programming Form Length and Vertical Tab Stops .••••
Using a Model 5508 Printer Over a Phone Line •••••••••

Programming Considerations for the Model 5520 Printer ••
Programmatic Differences Between Model 5520 and 5508 ••
Using DAVFu ••••••••.••
Loading DAVFu •••••.•••
Underline Capability •••••••
Condensed and Expanded Print ••
Error Conditions for the Model 5520 ••
Data Parity Error Recovery •••••••••.
Device Power On Error ••••••••••••••••

Using a Model 5508 or 5520 Printer Over a Phone Line.
Error Recovery .••

Not Ready •.••••
Path Errors •.

Summary of Printer CONTROL and SETMODE Operations.

MAGNETIC TAPES • ••••••••••••••••••••••••••••••••••
General Characteristics of Magnetic
Summary of Applicable Procedures ••
Accessing Tape Units ••.
Tape Concepts ,

BOT and EQT Markers ••
Files •••.•••••••••••
Records •••••••••••••••

Tape Files ••

Programming Considerations for the 5106 Tri-Density Tape
Subs ys tern •••••••••••••••••••
Downloading the Microcode •••••••.
Download Operation •••.••••••••••••
Invalid or Missing Microcode Files ••
Controller Downloading Errors ••
Selecting Tape Density ••••••••
Controller Self-Test Failure.

Error Recovery •••••••••••••••••
Path Errors •••••••••••••••••••

Summary of Magnetic Tape CONTROL Operations ••
Seven-Track Magnetic Tape Conversion Modes ••

ASCIIBCD ••••
BINARY3TQ4.
BINARY2T03 ••
BINARYlTOl.
Selecting the Conversion Mode ••

Selecting Short Write Mode .•..••.

.2.5-36
. •• 2.5-36
..2.5-37

..2.6-1
.. • 2 .. 6-1
e e 2" 6-2
..2.6-2
..2.6-3
..2.6-5
.2.6-5

• ••• 2.6-6
..2.6-6
.2.6-6
.2.6-7

..2.6-8

.2.6-10
..2.6-11
.2.6-12
.2.6-13
.2.6-14
.2.6-14

•• 2.6-15
..2.6-16
.2.6-16
.2.6-17

• • 2. 7-1
• .2. 7-1
..2.7-3
•• 2.7-3
.2.7-4
.2.7-5
.2.7-5

• ••• 2.7-6

..2.7-11
•• 2.7-11
.2.7-11

• ••• 2.7-12
•••• 2.7-13

..2.7-13

..2.7-13
.2.7-14

• ••. 2.7-16
• •• 2.7-17
..2.7-18
.2.7-19

..2.7-21

..2.7-22
• ••• 2.7-23

.2.7-23
.. 2.7-24

CARD READERS • •••••••••••••••••••••••••••••••
General Characteristics of Card Readers ••
Summary of Applicable Procedures ••.
Read Modes ••••••••••••••
Accessing a Card Reader.
Error Recovery •••

Not Ready .•••
Motion Check.
Read Check .••
Invalid Hollerith.
Path Errors ••••••.•

•• 2. 8-1
.2.8-1

• •• 2.8-1
. 2 . 8- 2

..2.8-4
• • 2. 8-5
.2.8-5

..2.8-6
• •• 2.8-7

• ••• 2.8-7
. 2. 8- 7

INTERPROCESS COMMUNICATION •••••••••••••••••••••••••••••• ..2.9-1
General Characteristics of Interprocess Communication ••
Summary of Applicable Procedures.

•••••• 2.9-1
..2.9-4

Communication ...••.
Synchronization ••

$RECEIVE FILE.
No-Wait I/O ••

. ••••• 2.9-5
.2.9-6

• •• 2.9-7
••• 2.9-7

OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF
Messages ••••••..•

Communication Type .•
Process Files ••.•••••
Sync ID for Duplicate Request Detection ••.
Interprocess Communication Example •.
System Messages ••
Error Recovery ••

OPERATOR CONSOLE ••••.••••••••••..•.••.•.•

•• 2.9-8
..2.9-9

. 2 . 9- 9
..2.9-12

• ••• 2.9-19
..2.9-25
..2.9-31

..2.10-1
General
Summary
Writing
Console

Characteristics of the Operator
of Applicable Procedures •.

Console • .2.10-1

a Message ••.•.••
Message Format ••

Error Recovery ..••••••••
Console Logging to an Application Process.

FILE SYSTEM ADVANCED FEATURES ••
Reserved Link Control Blocks .•

RESERVELCBS Procedure ••••.••
Resident Buffering (Nonstop systems

SECTION 3. PROCESS CONTROL.
INTRODUCTION •.•••••.••

Process Definition.
Process States.

Creation .•.
Execution •.
Deletion.

ID ••••• • • • • • • Process
Creator .••••
Process Pairs ••

only)

Named Processes (Process-Pair
Primary Process.

Directory)

Backup Process ...

.............. 2.10-2
•••••• 2.10-2

• ••• 2.10-3
. 2.10-3

• ••• 2.10-3

• •••••• 2.11-1
• ••••.•• 2.11-1

.2.11-3
• .2.11-5

.3.1-1

.3.1-1

.3.1-1
• •••• 3.1-5

.3.1-5
• •••• 3.1-6

..3.1-7

..3.1-8
•• 3.1-9

• ••• 3.1-10
•••• 3.1-12

.3.1-12

.3.1-12

xi

Operation of the PPD ••.••..•.•
Ancestor Process •.••...••..•••
Example Operation of the PPD.
Procedures •.•..•••.••.•

Horne Terminal .••••••..•••
Elapsed Timeout (Nonstop II systems

PROCESS CONTROL PROCEDURES •••
ABEND Procedure •••••••••••.
ACTIVATEPROCESS Procedure ••
ALTERPRIORITY Procedure.
CANCELTIMEOUT Procedure
CONVERTPROCESSNAME
CREATEPROCESSNAME
CREATEREMOTENAME Procedure ••

(Non Stop
Procedure ••.

Procedure ••

DELAY Procedure •••••••
GETCRTPID Procedure •••

II

GETPPDENTRY Procedure ••••••••
GETREMOTECRTPID Procedure ••
LOOKUPPROCESSNAME Procedure ••••••••
MOM Procedure •••
MYPID Procedure ••
MYSYSTEMNUMBER Procedure.
MYTERM Procedure ••.••.

only)

systems only)

.3.1-12
. •• 3.1-13

. .3.1-16
.3.1-17

.• 3.1-18
• •• 3.1-19

•• 3.2-1
• ••• 3.2-3

..3.2-4

..3.2-5

..3.2-6
•• 3.2-7

••••• 3.2-8
••• 3.2-10

• ••• 3.2-11
..3.2-12
.3.2-13

• •• 3.2-15
..3.2-16

• •• 3.2-18
• •• 3.2-20

.3.2-21
• •• 3.2-22

. 3.2-23
(Nonstop II systems only) •••••••• 3.2-28

NEWPROCESSNOWAIT •••••••••••••••••• 3.2-32

NEWPROCESS Procedure.
NEWPROCESSNOWAIT Procedure
Errors for NEWPROCESS and
PRIORITY Procedure •••••
PROCESSINFO Procedure •••••
PROGRAMFILENAME Procedure ..
SETLOOPTIMER Procedure •...•...
SETMYTERM Procedure •.
SETSTOP Procedure ••••••
SIGNALTIMEOUT Procedure (Nonstop II
STEPMOM Procedure ••
STOP Procedure •••.
SUSPENDPROCESS Procedure.

systems only)

CREATING AND COMMUNICATING WITH A NEW PROCESS ••
Example ••••••••••

EXECUTION PRIORITY •••••
General Information ••
Suggested Priority Values •.
Example ••••••••••••••••••••

Volume 2

SECTION 4. UTILITY PROCEDURES ••
CONTIME Procedure.
DEBUG Procedure ••••
FIXSTRING Procedure ••
HEAPSORT Procedure •••

xii

•••••••• 3.2-34
. .• 3.2-35
• •• 3.2-38

.3.2-39
..3.2-42
.3.2-43

•• 3.2-44
••• 3.2-46

.3.2-48
• •• 3.2-49

• • 3. 3-1
• ••• 3.3-1

• ••• 3.4-1
• ••••• 3.4-1

. • 3. 4-1
••• 3.4-2

.4-1

.4-2

.4-3

.4-4
••••• 4-11

INITIALIZER Procedure ••
LASTADDR Procedure •••
NUMIN Procedure ••••
NUMOUT Procedure •••••
SHIFTSTRING Procedure ••
TIME Procedure ••.•••
TIMESTAMP Procedure ••
TOSVERSION Procedure.

SECTION 5. CHECKPOINTING FACILITY .••.•••
INTRODUCTION ••••••••••••••••••••••••••••

overview of Checkpointing Procedures •••
Overview of Nonstop Programs.
overview of Checkpointing.

Data
Data
Sync

Stack •••.
Buffers.
Blocks •••

CHECKPOINTING PROCEDURES •••
CHECKCLOSE Procedure •.•
CHECKMONITOR Procedure ••
CHECKOPEN Procedure •••
CHECKPOINT Procedure ••
CHECKPOINTMANY Procedure.
CHECKSWITCH Procedure.
GETSYNCINFO Procedure (disc files)
MONITORCPUS Procedure.
PROCESSORSTATUS Procedure.
RESETSYNC Procedure (disc files) ••••••
SETSYNCINFO Procedure (disc files)

USING THE CHECKPOINTING FACILITY ••
Nonstop Program Structure •••••••

Process Startup for Named Process Pairs.
Process Startup for Non-Named Process Pairs.
Main Processing Loop ••••••••••

File Open ••••••••••••••
Checkpointing •••••••••••

Guidelines for Checkpointing ••
Example of Where Checkpoints Should Occur.
Checkpointing Multiple Disc Updates ••
Considerations for No-wait I/O.
Action for CHECKPOINT Failure ••

System Messages •••••••
Recommended Action ••

Takeover by Backup •••
Opening a File During Processing •.
Creation of a Descendant Process (Pair)

ADVANCED CHECKPOINTING •••••••.•••••
Backup Open ••••.•••••••••••••.•••
File Synchronization Information ••

.4-13

.4-17

.4-18

.4-21
•• 4-23

• ••• 4-24
•• 4-25
.4-26

. 5.1-1
• • 5 .1-1

• ••• 5.1-1
•• 5.1-2

• ••• 5.1-4
• •• 5 .1- 5

.......... 5 .1- 5
••• 5.1-5

••• 5.2-1
• •••• 5.2-3

..5.2-5
. 5.2-9

•• 5.2-12
..5.2-14
.5.2-17

.•• 5.2-18
•• 5.2-19
..5.2-21
..5.2-22
..5.2-23

•• 5.3-1
• • 5. 3-1

• •••• 5.3-1
.5.3-9

• •••••• 5.3-13
..5.3-13
..5.3-14
..5.3-15
..5.3-17
.5.3-21

..5.3-21
.5.3-21

• ••• 5.3-22
.5.3-23

• ••••• 5.3-25
••••••• 5.3-27

. 5.3-28

.5.4-1
• •• 5.4-1
••• 5. 4-2

xiii

SECTION 6. TRAPS AND
Traps ••••
Trap Handling.
ARMTRAP Procedure •••
Example .••••..••.•

TRAP HANDLING •.

SECTION 7. SECURITY
INTRODUCTION ••••

SYSTEM ..

.6-1
. •. 6-1

.6-3
..6-4
.6-7

oo.,7ol-l
• ••• 7.1-1

• •• 7.1-2 System Users •.
Defining Users ••

Naming Conventions .•
Logging On.

• ••••••••••• 7 .1-3
. ..••....• 7 .1- 4

Passwords •.•.••••
Accessor ID.
Disc File Security ••
Adopting a Program File's Owner ID ••
Licensing •.••••••••.•.•...•..•.•••

. .•• 7.1-4
.7.1-5

. •• 7.1-5
.7.1-6

• •••. 7.1-8
. 7.1-9

Interface to the Security System ••
Command Interpreter Interface.
FUP Interface ••••••

. 7.1-10

Programmatic Interface •••••••
Operational Limitations ••

Network Security •.••••••••
Global Knowledge of User
Remote Passwords.
Process Access •••••
Programmatically Logging

ID's.

On ..

SECURITY SYSTEM PROGRAMMATIC INTERFACE ••
CREATORACCESSID Procedure •••
PROCESSACCESSID Procedure ••
Functions for SETMODE and SETMODENOWAIT
SETSTOP Procedu~e .•••••.•.•
USERIDTOUSERNAME Procedure ••
USERNAMETOUSERID Procedure.
VERIFYUSER Procedure ••••.•••

Procedures

SECTION 8. MEMORY MANAGEMENT PROCEDURES ••..••...••.••
MANAGING EXTENDED SEGMENTS (Nonstop II systems only)

Segmented Memory •••••••••••••••.•••..•••.
Space Management Within a Segment .•.
ALLOCATESEGMENT Procedure ..•
DEALLOCATESEGMENT Procedure.
DEFINEPOOL Procedure ..
GETPOOL Procedure .•••
PUTPOOL Procedure .•.•.

..7.1-10
• •• 7.1-10

.7.1-11
• •••••• 7.1-11

• •• 7.1-14
• ••• 7.1-14

• •• 7.1-15
• ••• 7.1-17

. •• 7.1-17

..7.2-1
.7.2-2

..7.2-3
"7 .. 2-4
.7.2-7

• ••• 7.2-8
..7.2-9
.7.2-10

..8.1-1
. .•• 8.1-1

•• 8 .1-1
. ••• 8.1-3

.. 8.1-4
. •• 8.1-6

• 8 .. 1- 7
.8.1-8
.8.1-9

USESEGMENT Procedure. 8.1-10

ADVANCED MEMORY MANAGEMENT .•••••••••••.•...•.••.•

xiv

LOCKDATA Procedure (Nonstop systems only) ...•.
LOCKMEMORY Procedure (Nonstop II systems only) ..•..
UNLOCKMEMORY Procedure (Nonstop II systems only)

•. 8.2-1
..8.2-2
.• 8. 2-5

. .. 8.2-8

SECTION 9. SEQUENTIAL I/O PROCEDURES .•
CHECKABREAK Procedure •.
CHECKAFILE Procedure.
CLOSEAFILE Procedure •.•••••
GIVEABREAK Procedure.
OPENAFILE Procedure ••
READAFILE Procedure .••••••
SETAFILE Procedure •••
TAKEABREAK Procedure.
WAITAFILE Procedure ••
WRITEAFILE Procedure ••
Errors •••••••••.•••.•••
FCB Structure ••••.••.••

Initializing the File FCB •••••••.
Interface With INITIALIZER and ASSIGN Messages.

INITIALIZER-Related Defines ••
Usage Example •.••.•••.••••••••••••••..•••••

Usage Example Without INITIALIZER Procedure ••
NOAERROR Procedure.
$RECEIVE Handling .•.

$RECEIVE Data Transfer Protocol ••.
No-Wait I/O ••••.••.•••••
Summary of FCB Attributes •••

SECTION 10. FORMATTER ••••
FORMATCONVERT Procedure.
FORMATDATA Procedure.

Errors •••••••••
Example •••.•••..•
Format-Directed Formatting.

Format Characteristics .•
Edit Descriptors •••.••••
Non-Repeatable Edit Descriptors ••

Tabulation Descriptors ••
Literal Descriptors •••••
Scale Factor Descriptor (P)
Optional Plus Descriptors (S,SP,SS)
Blank Descriptors (BN, BZ)
Buffer Control Descriptors (/,

Repeatable Edit Descriptors ••
"A" Edit Descriptor .•
"D" Edit Descriptor •.
"E" Edit Descriptor.
"F" Edit Descriptor.
"G" Edit Descriptor.
"I" Edit Descriptor ••.•••.
"L" Edit Descriptor ••
"M" Edit Descriptor.

Modifiers •.••••••••••.
(BN I

(FL)
Field Blanking Modifiers
Fill Character Modifier
Overflow Character Modifier
Justification Modifiers (LJ,
Symbol Substitution Modifier

BZ)

(OC) ••
RJ).
(SS)

. 9-1
. • 9-4
• . 9-5

• . 9-12
. •.. 9-14
. .•• 9-15

. 9-21
.9-23

. . 9-33
. .••• 9-34

• .•••• 9-36
.......... 9-3 8

. •.•• 9-41
. •. 9-42

. 9-46
.9-46

• • 9-50
.9-54

• . 9-56
.9-60

• •• 9-60
.9-63

. 9-64

• .10-1
•• 10-2
• .10-5

••• 10-9
. •••••.. 10-10

.10-13
. •• 10-14
• •• 10-17
• •• 10-20

. ••••••• 10-20
• ••• 10-21

..10-22
•. 10-23
•. 10-24

.10-24
..10-26
•• 10-26
..10-28

. ••••••• 10-28
.10-31

• .10-32
•• 10-34
• .10-35

• ••••••. 10-37
• •••• 10-40

••• 10-40
.10-40
.10-41

• .10-41
•• 10-42

xv

Decorations••....
List-Directed Formatting.

List-Directed Input ...
List-Directed Output ••

SECTION 11. COMMAND INTERPRETER/APPLICATION INTERFACE.
General Characteristics of the Command Interpreter
File Names

Correspondence of External to Internal File Names •.
Disc File Name Expansion •...•...•.••..•••..
Network File Names ••.•••.•••.••••.•.•••..•••

Passing Run-Time Parameter Information to an
Application Process •.

RUN Command ..•••
Startup Message .•.••••
ASSIGN Command ..

Assign Message ..
PARAM Command •••.

Param Message ...
CLEAR Command ••...•••••
Reading All Parameter Messages ..

Application Process to CI Interprocess Messages.
Wakeup Message ...••.•....•.•..
Display Message •...••.••••..•..••.......•••.••

Application-Supplied CI Monitor
Communication between Command

Logon Message•.•.•.••
Logoff Message •.••••••••.
Process Creation Message.

Process ($CMON) ••
Interpreters and $CMON ••..

SECTION 12. Nonstop PROGRAMMING EXAMPLE ••
INTRODUCTION. e ~ • ~ " • " .. 9 .. " .. e ..

The Nonstop Example Program.
Example Program Structure •••
Request Integrity.
Checkpoints •••...•.

EXAMPLE PROGRAM CODING ...••....•••••

APPENDIX A. PROCEDURE SYNTAX SUMMARY ••

APPENDIX B. FILE SYSTEM ERROR SUMMARY.

APPENDIX c. SYSTEM MESSAGES .•...••••..•...••.•

APPENDIX n. SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS.

.. 10-44

. .10-48
. •. 10-48

. .10-49

• ••. 11-1
.... 11-1

• •. 11-2
• .11-3

. ••. 11-4
.11-9

.• 11-11
• .• 11-12

. .11-14

. • 11-17

.• 11-20
. .• 11-22

. .11-23
• .11-25

. .•• 11-26
.11-28
.11-28

•• 11-28
.11-30

•• 11-30
.• 11-31
. .11-32

. .• 11-32

.12.1-1
. ••• 12.l-l

..12.1-3
..• 12.1-4

• ••. 12.1-6
. .•• 12.1-6

.12.2-1

.A-1

.B-1

.c-1

• .D-1

APPENDIX E. SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT••••.••. E-1

APPENDIX F. ASCII CHARACTER SET ...••.... .F-1

INDEX• . Index-1

xvi

FIGURES

Volume 1

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

GUARDIAN Operating System: Mirror Volumes ••••.•••••••••.••• 1-2
A Primary/Backup Process Pair ••••••••••••••••••••••••••••.•. 1-9
Files 1-11
Checkpointing •••••••••••••••.•••••••••••.•••••••••.•••••••• 1-15
Files Open by a Primary/Backup Process Pair •••••••••••••••• 1-16
Disc File Organization ••••••.•••••••••••••••••••••••••••.• 2.1-2
Communication with a Process via Process ID ••.•••••••••••• 2.1-5
Communication with a Process Pair via Process Name •••••.•• 2.1-6
$RECEIVE File ... 2.1-6
Wait versus No-Wait I/o •••••••••••••••••••••••••••.•••••• 2.1-13
No-Wait I/O (Multiple Concurrent Operations) •••••••.••••• 2.1-15
Hardware I/O Structure •••••••••••.•••••.••••••••••••••••• 2.1-17
Primary and Alternate Communication Paths •••••••••••••••• 2.1-19
File System Procedure Execution •.••••••••••••••.••••••••. 2.1-20
Fi 1 e Open .. 2 . 1- 2 3
File Transfer ••••.••••••••••••••••••••.•••••.•••••••••••• 2 .1-25
Buffering .. 2 .1-26
Mirror Volume .••• 2.1-34
Action of AWAITIO ••.•••••••••••••••••••.••.•••••.•••••••. 2.3-10
File Security Checking •••••••••••••••••.•••.••••••••••••• 2.3-70
File System Path Error Recovery •••••••••••••••••••••••••• 2.4-30
Tr an sf er Modes for Terminals •••••••••••••.. ., •••.•••.•••••• 2. 5- 7
Conversational Mode Interrupt Characters •••.•••.••••••••• 2.5-11
Page Mode Interrupt Characters •••.•••••.••••••••••••...•• 2.5-17
BREAK: Single Process per Terminal ••••••.••••••••••••••• 2.5-28
Break Mode •......•....•..•••..••...••..•....•...••.•..••. 2.5-32
Exclusive Access Using BREAK •••.••••••.•.•.•.••••••••.••• 2.5-34
Column-Binary Read Mode for Cards ••••••••.••••••••.••••••• 2.8-3
Packed-Binary ~ead Mode for Cards •••••••••..•••••.•••..•.• 2.8-4
Link Control Blocks •••••..••••••••••.•..•••••.•.••.•••.•. 2.11-1
Resident Buffering (Nonstop systems only) ••••.•.••.•.•••. 2.11-5
Program versus Process •..••.••••••••.••••••••••••••••.•••. 3.1-2
A Process (Nonstop systems) ••••••••.•.•••••••••••••••••••• 3.1-3
A Process (Nonstop II systems) ..•.••••••••.••••••••••••••• 3.1-4
Process Pairs •..••••••.•.•••.••.•.•••.••.•.••..••.••••••• 3.1-11
Home Terminal •.•••...••.•.•.•••••••••••••••..•..•••••••.. 3 .1-18
Effect of STEPMOM •.••.••.•..•••••••••.••••.•.••••.•••••.. 3.2-47
Execution Priority Example •••.••••••••.••.•••••.••••.••••• 3.4-3

xvii

Volume 2

4-1.
5-1.
5-2.
5-3.
7-1.
7-2.
9-1.
9-2.
11-1.
11-2.
12-1.
12-2.

Last Address . .. 4-17
A Nonstop Program ••••••..••••••.•••••••••••.•..•...••.•••• 5.1-3
Checkpoints and Restart Points ••..•••••.••••.•••••..•••.• 583-14
Backup Open by Backup Process •••••.••••••.••.••.•••.•.•••• 5.4-1
Passing of Accessor ID's ••••••••..•••••.••..•..••••••••.•• 7.1-6
Effect of Adopting a Program File's Owner ID ..•.•.....•..• 7.1-9
FCB Linking .. 9-41
Precedence of Setting File Characteristics •..•••..•.•.•.••• 9-49
File Names ... 11-3
Disc File Names •••••••••.••••.••••••••..••••.•••••.•••••..• 11-5
"Serveobj" Program •.•••.•.••.•..•...•...•••.••.••.•.••.•• 12 .1-3
Request Checkpoint ••••••••.••••.••••••••..•••.•••••••.••• 12 .1-9

TABLES

Volume 1

2-1. CONTROL Operations ••.•••••••••••••••••••••••••••••••••••• 2.3-17
2-2. CONTROLBUF Operations •••••••••...•••.•.••.•..••••••••••.• 2.3-22
2-3. Device Types and Subtypes ••••••••.••••••••.•••••••••••••• 2.3-27
2-4. Exclusion/Access Mode Checking ••••••.•••••••••••••••.•••• 2.3-71
2-5. SETMODE Functions ••••••••••••..•••..••••••••••••••••••••• 2.3-97
2-6. Path Error Recovery for Devices Other than Discs

2-7.
2-8.
2-9.
2-10.

and Processes •••••.••.••••.••••••••.••••••••••••••••••• 2. 4-31
Terminal CONTROL and SETMODE Operations •••••••••••••••••• 2.5-37
Line Printer CONTROL and SETMODE Operations •.•••••••••••• 2.6-17
Magnetic Tape CONTROL Operations ••••••.•••••••••••••••••• 2.7-17
ASCII Equivalents to BCD Character Set •••••••••••••••••.. 2.7-19

Volume 2

5-1.
7-1.
7-2.
7-3.
10-1.
B-1.

xviii

Action of CHECKMONITOR •.••••••••••••••••••••••••••••••••.• 5.2-7
Allowability of File Access ••••••••••..•••••••••.•••••••.• 7.1-8
Operational Restrictions .••••..•.....•.••••••••••••.•...• 7.1-12
SETMODE Functions Related to Security ..•••.••..•.•.••••.•• 7.2-4
Modifiers usable with Edit Descriptors •••••••.•.•••••.••.• 10-43
File System Error Summary ••••••....•..••••.•.•..•••.•....••. B-3

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual.

NOTATION

UPPER-CASE
CHARACTERS

<lower-case
characters>

Brackets

Braces

Ellipses

MEANING

All keywords and reserved words appear in capital
letters. (A keyword is defined as one that, if it
is present at all in the context being described,
must be spelled and positioned in a prescribed way,
or an error will result. A reserved word is one
that can only be used as a keyword.) If a keyword is
optional, it is enclosed in brackets. If a keyword
is required, it is underlined.

All variable entries supplied by the user are
shown in lower-case characters and enclosed in angle
brackets. If an entry is optional, it is enclosed
in brackets. If an entry is required, it is
underlined.

Brackets, [],enclose all optional syntactic
elements. A vertically-aligned group of items
enclosed in brackets represents a list of selections
from which one, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces, { }, represents a list of selections from
which exactly one must be chosen.

An ellipsis (.••) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be
repeated a number of times. An ellipsis following a
pair of braces that contains a series of syntactic
elements preceded by a separator character indicates
that the entire series may be repeated, intact, a
number of times. (NOTE: In coding syntax of this

xix

xx

Colons

Punctuation

System
Procedure
Calls

form, the separator is to be entered before each
repetition, not before the first occurrence of the
item or series.)

A colon (:) between two syntactical entities
signifies a "from •.• through ••. " relationship. For
example, the command CHANGE 1:6 " " specifies
that positions 1 through 6 are to be filled with
spaces.

All punctuation and symbols other than those
described above must be entered precisely as shown.
If any of the above punctuation appears enclosed in
quotation marks, that character is not a syntax
descriptor but a required character, and must
actually be entered.

Calls to operating system procedures are shown in
the following form:

{ CALL
{ <retval>

:= l <procedure name> (<parameters>)

CALL is a TAL CALL statement.

"<retval> :=" indicates that the procedure is a
function procedure (i.e., it returns a value of the
indicated <type> when referenced in an expression) .

<procedure name> is the name of the operating system
procedure.

Required parts of the calling sequence are
underlined. Optional parameters may be omitted, but
placeholder commas ","must be present except for
right-side omitted parameters.

A function procedure's return value is described as
follows:

<retval>, <type>

<type> is INT or INT:32

Note that a function procedure can be called with a
CALL statement. However, the return value will be
lost.

<parameters> are described as follows:

<parameter>,<type> : {ref } [: <num elements>],
{value}

<type> is INT, INT(32), or STRING

"ref" indicates a reference parameter. Note that
if a parameter is a "STRING:ref" parameter, a word­
addressed variable (e.g., INT) can be passed for
that parameter; the TAL compiler will produce
instructions to convert the word address to a byte
address. Note, however, that on Nonstop systems,
an invalid address will result if the word address
is greater than 32767.

<num elements> indicates that the procedure returns
a value of <type> to <parameter> for <num
elements>. An asterisk "*" in this position
indicates that the number of elements returned
varies depending on the number of elements
requested.

"value" indicates a value parameter.

xxi

SECTION 4

UTILITY PROCEDURES

The GUARDIAN operating system provides a number of utility procedures
for use by application programs. These procedures are as follows:

CONTIME

DEBUG

FIXSTRING

HEAP SORT

INITIALIZER

LASTADDR

NUMIN

NUMOUT

SHIFTSTRING

TIME

TIME STAMP

TOSVERSION

takes 48 bits of a time stamp and provides a date
and time in internal machine representation

calls the debug facility

edits a string of characters based on information
supplied in an editing template

sorts an array of equal-size elements in place

reads the startup message and, optionally, the
assign and param messages to prepare global
tables and initialize File Control Blocks (FCB~s)

provides the global (~G~[O] relative) address of
last word in the caller~s data area

converts the ASCII representation of a number into
its binary equivalent

converts the internal machine representation of a
number to its ASCII equivalent

upshifts or downshifts alphabetic characters in a
string

provides the current date and time in internal
machine representation

provides the current value of the processor clock
where this application is running

provides an identifying letter and number indicating
which version of the GUARDIAN operating system is
running

4-1

UTILITY PROCEDURES
CONTIME Procedure

The CONTIME procedure converts a 48-bit timestamp to a date and time
in integer form.

The call to the CONTIME procedure is:

CALL CONTIME <date and time> , <tO> , <tl> , <t2>

where

<date and time>, INT:ref:7,

is an array where CONTIME returns a date and time in the
following form:

<date and time>[O] = year (1975, 1976, . . .)
<date and time> [l] = month (1-12)
<date and time>[2] = day (1-31)
<date and time>[3] = hour (0-23)
<date and time>[4] = minute (0-59)
<date and time>[5] = second (0-59)
<date and time>[6] = .01 sec (0-99)

<tO>, <tl>, <t2>, INT:value,

must correspond to the 48 bits of a timestamp for the
results of CONTIME to have any meaning (<tO> is the most
significant word, <t2> is the least).

example:

CALL CONTIME (time, t[O], t[l], t[2]);

For example, CONTIME can be used to convert the <last mod time>
timestamp into a readable form:

INT lastAt[0:2], dateAtime[0:6];

Then the last modification time is obtained through a call to the
FILEINFO procedure:

CALL FILEINFO(fnum,,,,,,,,1astAt);

Then CONTIME is used to convert the three words in "lastAt" to a date
and time:

Seven words of date and time are returned in "dateAtime".

4-2

UTILITY PROCEDURES
DEBUG Procedure

The debug facility can be invoked directly by calling the DEBUG
procedure.

The call to the DEBUG procedure is:

CALL DEBUG

For a description of the debug facility and instructions for using
it, see the DEBUG Reference Manual for your type of system (Nonstop
system or Nonstop II system) •

4-3

UTILITY PROCEDURES
FIXSTRING Procedure

The FIXSTRING procedure is used to edit a string based on
subcommands provided in a template.

The call to the FIXSTRING procedure is:

4-4

CALL FIXSTRING <template> , <template length>

where

, <data> , <data length>

, <maximum data length>
, <modification status>

<template>, STRING:ref,

is the character string to be used as a modification
template.

<template length>, INT:value,

is the length, in bytes, of the template string.

<data>, STRING:ref,

is the string to be modified; the resulting string is
returned in this parameter.

<data lenqth>, INT:ref,

is the length, in bytes, of the data string. The length of
the modified data string is returned in this parameter.

<maximum data length>, INT:value,

if present, contains the maximum length, in bytes, to which
<data> may be expanded during the call to FIXSTRING. If
omitted, 132 is used for this value.

<modification status>, INT:ref:l,

if present, is returned an integer value as follows:

0 no change was made to <data>.
1 a replacement, insertion, or deletion was performed

on <data> (see "Considerations" below).

UTILITY PROCEDURES
FIXSTRING Procedure

condition code settings:

< (CCL) indicates that one or more of the required parameters
is missing.

= (CCE) indicates that the operation completed successfully.
> (CCG) indicates that an insert or replace would have

caused the <data> string to exceed the <maximum data
length>.

example:

CALL FIXSTRING (template, tempAlen, data, dataAlen,
modAstatus);

IF> THEN ••• ! too long

SUBCOMMANDS

There are three basic subcommands that may be used in <template>:
replacement, insertion, and deletion. In addition, replacement
can be either explicit (a subcommand beginning with "R") or
implicit (a subcommand beginning with any nonblank character other
than "R", "I", or "D"). The form of <template> is

<template>= { <subcommand>// ••• }

<subcommand> =

! R<~eplac7ment s~ring> ! I<1nsert1on string>
D
<replacement string>

replace subcommand
! insert subcommand
! delete subcommand

implicit replacement

A character in <template> is recognized as the beginning of a
subcommand if it is the first nonblank character in <template>,
the first nonblank character following "//", or the first
nonblank character following a "D" subcommand. Otherwise, it
is considered to be part of a previous subcommand.

Note that a subcommand may immediately follow "D" without being
preceded by "//".

If a subcommand begins with "R", "I", or "D", it is recognized
as an explicit command. Otherwise, it is recognized as an
implied replacement.

4-5

UTILITY PROCEDURES
FIXSTRING Procedure

The action of the subcommands is as follows:

R (or r) , for "replace"

replaces characters in <data> with <replacement string> on
a one-for-one basis. Replacement begins with the character
corresponding to "R". The <replacement string> is
terminated by the end of <template> or by a "//" sequence
in <template>. Trailing blanks are considered part of the
replacement string (i.e., are not ignored).

Implied replacement

A subcommand that does not begin with "R", "I", or "D" is
recognized as a <replacement string>. Characters in
<replacement string> replace the corresponding characters
in <data> on a one-for-one basis.

D (or d) , for "delete"

deletes the corresponding character in <data>.

I (or i), for "insert"

inserts a string from <template> into <data> preceding the
character corresponding to the "I". The <insertion string>
is terminated by the end of <template> or by a "//" sequence
in <template>. Trailing blanks are considered part of the
insertion string (i.e., are not ignored).

Examples:

replacement

<data> on entry to FIXSTRING: THIS IS A STRING
<template>: rNEW STRING
<data> on return from FIXSTRING: THIS IS A NEW STRING

implied replacement

<data> on entry to FIXSTRING: THIS IS A STRIMG
<template>: N
<data> on return from FIXSTRING: THIS IS A STRING

4-6

UTILITY PROCEDURES
FIXSTRING Procedure

replacement terminated by "//"

<data> on entry to FIXSTRING:
<template>:
<data> on return from FIXSTRING:

THID IS A BAD OLD STRING
S// rNEW STRING //

THIS IS A NEW STRING

(If the first "//" had been omitted, the "r" would be
considered part of the <replacement string> associated with
the implied replacement that begins with "S", and the
resulting string would be "THIS rNEW STRING". The
second "//" could be omitted, but the four trailing blanks
preceding it are necessary; without them, the resulting
string would be "THIS IS A NEW STRINGRING".)

deletion

<data> on entry to FIXSTRING: THIS IS A LONG STRING
<template>: ddddd
<data> on return from FIXSTRING: THIS IS A STRING

(Note that one of the spaces surrounding "LONG"
was deleted.)

"D" occurring as part of another subcommand

<data> on entry to FIXSTRING: THIS IS XATA
<template>: rD
<data> on return from FIXSTRING: THIS IS DATA

("D" is the <replacement string> associated with "r".)

insertion

<data> on entry to FIXSTRING:
<template>:
<data> on return from FIXSTRING:

THIS IS A STRING
i NEW

THIS IS A NEW STRING

several operations combined in one <template>

<data> on entry to FIXSTRING:
<template>:
<data> on return from FIXSTRING:

THID IS A BAD OLD STRIG
S// ddddrNEW// iN

THIS IS A NEW STRING

4-7

UTILITY PROCEDURES
FIXSTRING Procedure

CONSIDERATIONS

• The <maximum data length> serves to protect data residing past the
end of the <data> string. Therefore, <data> is truncated whenever
<data length> exceeds <maximum data length> during processing by
FIXSTRING.

In particular, <data> is truncated by FIXSTRING if <data length>
temporarily exceeds <maximum data length>, even if <template>
contains delete subcommands that would have resulted in a <data>
string of the correct length.

• If an insertion would cause the length of <data> to exceed <maximum
data length>, the <insertion string> is truncated. Example:

assume <maximum data length> is 6

<data> on entry to FIXSTRING:
<template>:
<data> on return from FIXSTRING:

AB
il234567890

Al234B

• <modification status> is set to 1 if a replacement is performed
that leaves <data> unchanged. For example:

<data> on entry to FIXSTRING:
<template>:
<data on return from FIXSTRING:

THIS IS A STRING
THIS IS A STRING
THIS IS A STRING

<modification status> is set to 1, since a replacement has been
performed by FIXSTRING.

USING FIXSTRING TO IMPLEMENT AN FC COMMAND

FIXSTRING is generally used to implement an FC command in an
interactive process (for example, the debug facility or the GUARDIAN
Command Interpreter) •

An FC command could be implemented in an interactive command
interpreter as follows:

4-8

INT .command[-1:3] := "<
• last~command[0:3],
num,

" : , . command length <= 8 characters
save previous command
length of current command string
length of last command string

STRING .scommand := @command ~<<~ l; ! command addressed as string

INT PROC fc; FORWARD;

UTILITY PROCEDURES
FIXSTRING Procedure

PROC commandAinterpreter;
BEGIN

INT repeat := O; a flag used to determine whether
commandAinterpreter should attempt
to execute a command upon return
fr om "fc"

WHILE 1 DO
BEGIN

the main loop of commandAinterpreter executes
until an "exit" command is encountered.

IF NOT repeat THEN
BEGIN

command ':=' "<"; assume "<" is the prompt character
CALL WRITEREAD(term, command, 1, 8, num);

Displays the prompt character and reads a command,
assuming "term" is the device number of the
terminal.

END;

IF command = "FC" THEN repeat := fc
ELSE

BEGIN identify and execute command,
or print an "illegal command" message.

repeat := 0;
END;

IF num THEN
BEGIN

saveAnum := num;
lastAcommand ':=' command FOR (saveAnum+l)/2;

Saves last command and its length in case next
command is "FC".

END;
END;

END;

INT PROC fc;
BEGIN

main loop
command A interpreter

INT .tempAarray[0:35],
temp Alen;

! array to hold modification template
! length of template

STRING .sAtempAarray := @tempAarray '<<' l;
! tempAarray addressed as string

4-9

UTILITY PROCEDURES
FIXSTRING Procedure

4-10

command[-1] ':=' "< ";
num := save"'num;
command ':=' last"'command FOR (num+l)/2;

DO
BEGIN

CALL WRITE(term, command[-1], num + 2:);
! display "<" followed by the last command.

temp"'array ': =' " • "; ! template prompt
CALL WRITEREAD (term, temp"'array, 2, 72, temp"'len) ;

! display prompt and read template.
IF > OR temp"'len = 2 AND temp"'array = "//" THEN

BEGIN ! restore command
num := save"'num;
command ':=' last"'command FOR (num+l)/2;
RETURN 0;

END;

An EOF or a template consisting of "//" causes "fc" to
return 0, indicating that "command"'interpreter" should
not execute the command, but should prompt for a new
command instead. If the new command is "FC", then the
string to be fixed is the command that was originally
being modified on the previous call to "fc".

CALL FIXSTRING (s"'temp"'array, temp"'len, scommand, num) ;

END

"scommand" now contains the modified command, and "num"
is its length. If "temp"'len" > O, the loop executes
again, displaying the modified command and expecting a
new template. If "temp~len" = O, then a <er> was input
instead of a template. In this case, FIXSTRING leaves
the command unchanged and returns a value of 1,
indicating that command"'interpreter should attempt to
identify and execute the command.

UNTIL NOT temp"'len; loop executes until "temp"'len" = O,
indicating a <er>

RETURN l;

END; ! fc

indicates to the calling procedure that
the command came from "fc" and should be
identified and executed.

UTILITY PROCEDURES
HEAPSORT Procedure

The HEAPSORT procedure is used to sort an array of equal-size elements
in place.

The call to the HEAPSORT procedure is:

CALL HEAPSORT <array> , <num elements> , <size of element>

, <compare proc>

where

<array>, INT:ref,

is an array containing equal-size elements to be sorted.

<num elements>, INT:value,

is the number of elements in <array> to be sorted.

<size of element>, INT:value,

is the size, in words, of each element in <array>.

<compare proc>1 INT PROC,

is an application-supplied function procedure that is called
by HEAPSORT to determine the sorted ordering (ascending or
descending) of the elements in <array>. It must be of the
form:

INT PROC <compare proc> (<element a> , <element b>

INT .<element a> .<element b>

where

the <compare proc> must compare <element a> with
<element b> and return either of the following values:

0 (indicating false) if <element b> should precede
<element a>

1 (indicating true) if <element a> should precede
<element b>

<element a> and <element b> are INT:ref parameters.

4-11

UTILITY PROCEDURES
HEAPSORT Procedure

example:

CALL HEAPSORT(array,numAelements,size,compAproc);

The following example illustrates the use of HEAPSORT.

LITERAL elementAsize = 12;

INT .array[O:ll9],
numAelements;

array to be sorted.

Elements of twelve words each are to be sorted in ascending order.
Therefore the following "compare proc" is written:

INT PROC ascending (a,b);
INT • a, . b;

BEGIN
RETURN IF a < b FOR 12 THEN 1 ELSE O;

END;

Then HEAPSORT is called to sort "array":

.
numAelements := 10;
CALL HEAPSORT(array,numAelements,elementAsize,ascending);

sorts the ten elements in "array" in ascending order.

4-12

UTILITY PROCEDURES
INITIALIZER Procedure

The INITIALIZER is a procedure used to read the startup and
(optionally) assign and param messages sent by the Command
Interpreter. The INITIALIZER procedure optionally prepares tables of
a predefined structure and properly initialized file FCB~s with the
information read from the startup and assign messages.

The call to the INITIALIZER procedure is:

{ <status> := }
{ CALL }

INITIALIZER <rucb>

where

, <passthru>
, <startupproc>
, <paramsproc>
, <assignproc>
, <flags>

<status>, INT,

is either:

0 =

-1 =

This is the primary process (of a potential
process pair} •

This is the backup process, CHECKMONITOR
returned (it received no stack checkpoints
from the primary}, and bit 12 of <flags> was 1.

<rucb>, INT:ref,

is a table which contains pointers to the FCB~s (see
section 9, "Sequential I/O Procedures"}.

<passthru>, INT:ref,

is an array where the <startupproc>, <assignproc>,
and <paramsproc> procedures may pass information back
to the caller of the INITIALIZER.

<startupproc>, <paramsproc>, and <assignproc>

are application-supplied message processing
procedures that are called by the INITIALIZER when
a message of the appropriate type is received.

4-13

UTILITY PROCEDURES
INITIALIZER Procedure

4-14

These procedures must be of the form:

PROC <name> <rucb>, <passthru>, <message>

,<meslen> ,<match> VARIABLE

where

<rucb>, INT:ref,

is described in section 9, "Sequential I/O
Procedures".

<passthru>, INT:ref,

is an array where the procedure may save information
for the caller of the INITIALIZER.

<message>, INT:ref,

is the startup, the param, or one of the assign
message(s) received. The maximum length of a message
is 1028 bytes (including the trailing null
characters) •

<meslen>, INT:value,

is the length, in bytes, of the message.

<match>, INT:value,

is the number of FCB~s whose entire logical file
names match the logical file name in this ASSIGN
message.

If this is not an assign message or if the <rucb>
parameter is not passed, the match count is always
zero.

<flags>, INT,

contains several fields that determine actions to be
taken by the INITIALIZER, as follows:

<flags>.<0:10> =
<flags>.<11> =

must be zero
request assign and param messages?

0 = yes 1 = no

UTILI:ry PROCEDURES
INITIALIZER Procedure

<flags>.<12> = abend if backup takeover occurs before
first primary stack checkpoint?

0 = yes 1 = no

<flags>.<13> = if 1, CALL MONITORNET ·(-1)
<flags>.<14> = if 1, CALL MONITORCPUS (-1)
<flags>.<15> = if 1, CALL ARMTRAP (-1,-1)

The INITIALIZER procedure provides a way of rece1v1ng startup, assign,
and param messages without concern for details of the $RECEIVE
protocol. (See section 11, "COMINT/Application Interface".) The
INITIALIZER obtains messages from $RECEIVE and calls the user-supplied
procedure, passing the messages as a parameter to the procedure.

In addition, if the <rucb> parameter is supplied, the INITIALIZER will
store FCB~s based on the information supplied by the startup and
assign messages. These FCB~s are in the form expected by the
sequential i/o procedures, and may be used with the sequential i/o
procedures without change. If the application does not use the
sequential i/o procedures to access the files, the information
recovered from the assign messages may be obtained from the FCB~s by
using the SETAFILE procedure. See section 9 1 "Sequential I/O
Procedures".

When invoked by the primary of a potential process pair, the
INITIALIZER reads the startup message, then optionally requests assign
and param messages. For each assign message the FCB~s (if <rucb>
is passed) are searched for a logical file name matching the logical
file name contained in the assign message. If a match is found, the
information from the assign message is put into the file~s (or files~)
FCB(s), and the match count is incremented. For proper matching of
names, the "progname" and "filename" fields of the assign message
must be blank-filled.

The INITIALIZER is useful in program startup. It does the following:

In the primary process:

1. Inspects <flags>.<13:15>, and calls the appropriate procedures,
if any.

2. Determines if this is a primary of the process pair.

3. Opens $RECEIVE.

4. Reads the startup sequence from MOM:

a. Stores startup and assign information in <rucb> if an
array was passed.

4-15

UTILITY PROCEDURES
INITIALIZER Procedure

b. Calls procedures if any were passed (optionally, "assign"
and "params" procedures) •

c. Calls ABEND, if the messages that are read from $RECEIVE
are not in the correct order. (The correct order is
the startup message, then the assign messages, then the
par am message.)

d. Rejects messages from anyone other than MOM with reply
code 100 (OPEN messages) or 60 (all others).

Note: If bit 11 of <flags> is O, the INITIALIZER replies to MOM~s
startup message with an error return value of 70. This
requests assign and param messages from MOM. If bit 11 of
<flags> is 1, the INITALIZER replies to the startup message
with an error return value of 0 and no reply text. This
indicates that the process does not wish to receive assign
or param messages. (See section 11, "Command Interpreter/
Application Interface".)

5. Closes $RECEIVE.

6. Performs the following:

a. Substitutes the FCB~s actual file names for default
physical file names.

b. Expands partial file names in the FCBs.

c. Places information into the <rucb> if used.

d. Replaces system names with system numbers.

7. Returns O, indicating primary process.

In the backup process:

1. Inspects <flags>.<13:15> and calls the appropriate procedures,
if any.

2. Determines that this is the backup of the named process pair.

3. Calls CHECKMONITOR. If CHECKMONITOR returns, this indicates
that the primary process failed before it made a stack
checkpoint.

In this case, if <flags>.<12> = 0, the INITIALIZER calls ABEND;
if <flags>.<12> = 1, the INITIALIZER returns -1, indicating
the CHECKMONITOR failed.

Note: Normally CHECKMONITOR does not return; see section 5,
"Checkpointing Facility".

4-16

UTILITY PROCEDURES
LASTADDR Procedure

The LASTADDR (last address) function procedure returns the ~G~[O]
relative address of the last word in the application process~s data
area.

The LASTADDR function is invoked as follows:

<last address> := LASTADDR

where

<last address>, INT,

is the ~G~[O] relative word address of the last word in
the application process~s data area.

example:

highestAaddress := LASTADDR;

The LASTADDR function can be used to determine the number of memory
pages allocated to a running application program:

numApages := LASTADDR.<0:5> + l;

A bit extraction is performed on the six high-order address bits
returned from LASTADDR. One is added to that value (figure 4-1).

DATA
AREA

--

--

G [O]

G [LAST ADDR]

Figure 4-1. Last Address

4-17

UTILITY PROCEDURES
NUMIN Procedure

The NUMIN function procedure converts ASCII representations of
numbers, bases from 2 through 10, to signed integer values.

The NUMIN function is invoked as follows:

{ <next address>
{ CALL

:= l NUMIN <ascii number> , <signed result>

, <base> , <status>

where

4-18

<next address>, INT,

is the 'G'[O] relative string address of the first character
in <ascii number> that was not used in the conversion.

<ascii number>, STRING:ref,

is an array containing the number to be converted to signed
integer form. <ascii number> is of the form:

<number> <nonnumeric>

where "%" means treat the number as an octal value
regardless of the specified <base>.

<signed result>, INT:ref:l,

is a variable where NUMIN returns the result of the
conversion.

<base>, INT:value,

specifies the number base of <ascii number>. Legitimate
values are 2 through 10.

<status>, INT:ref:l,

is a variable where NUMIN returns a number that indicates
the outcome of the conversion. The values for <status>
are:

1 = non-existent number (string does not start with "+",
"-", "%", or numeric

0 = valid conversion
-1 = illegal integer (number cannot be represented in 15

bits} or illegal syntax

UTILITY PROCEDURES
NUMIN Procedure

example:

@nextAaddr := NUMIN(inAbuffer, number, 10, stat);
or

CALL NUMIN(inAbuffer, number, 10, status);

CONSIDERATIONS

• Number conversion stops on the first ASCII numerical character
representing a value greater than <base>-1 or non-numerical ASCII
character.

• Base-10 numerical values must be in the range of {-32768:32767}.
Numerical values in other number bases will be accepted if they can
be represented in 16 bits. Note that the magnitude is computed
first, then the value is possibly negated (e.g., %177777 = -%1).

Examples of NUMIN:

The value of NUMIN can be used to determine the number of characters
converted:

STRING number [0:9] := "12345
INT result, status, .nextAchar

Then NUMIN is invoked:

" . ,

@nextAchar := NUMIN(number , result , 10 , status) ;

After NUMIN executes, the pointer variable "nextAchar" contains
the address of "number[S]" (the sixth element).

Then subtracting

numAconverted := @nextAchar '-' @number;

provides the number of characters used in the conversion (i.e.,
five).

An alternate way of doing the same:

numAconverted := NUMIN(number,result,10,status) @number;

Another example, this time showing a string containing an ASCII
number greater than the base being converted:

STRING number[O:S] := "%19234";

Then NUMIN is invoked:

4-19

UTILITY PROCEDURES
NUMIN Procedure

@nextAchar := NUMIN(nurnber, result, 8, status);

4-20

The only character converted to its octal representation is "l".
At completion, the pointer variable "nextAchar" points to the
character "9".

UTILITY PROCEDURES
NUMOUT Procedure

The NUMOUT procedure converts unsigned integer values to their ASCII
equivalents using any number base from 2 through 10. The result is
returned right-justified in an array, filled with leading zeroes.

The call to the NUMOUT procedure is:

CALL NUMOUT <ascii result> , <unsigned integer> , <base>

, <width>

where

<ascii result>, STRING:ref:*,

is the array where NUMOUT returns the converted value. The
ASCII representation is returned right-justified in <ascii
result> [<width> - l], filled with leading zeros.

<unsigned integer>, INT:value,

is the value to be converted.

<base>, INT:value,

is the number base desired for the resultant conversion.

<width>, INT:value,

is the maximum number of characters permitted in <ascii
result>. Characters may be truncated on the left side.

example:

CALL NUMOUT(outAbuffer, errAnum, 8, 5);

For example, an application wants to convert an INT value to its
base-10 ASCII equivalent:

STRING array[O:S];
INT variable := 2768;
LITERAL base = 10, width = 6;

CALL NUMOUT(array, variable, base, width);

After NUMOUT executes, "array" contains:

4-21

UTILITY PROCEDURES
NUMOUT Procedure

"002768"

Another example, using the same number but converting to base 8:

CALL NUMOUT(array, variable, 8, width);

After NUMOUT executes, "array" contains:

"005320"

A final example, using the same number and converting to base 10 but
with a "width" of 3:

CALL NUMOUT(array, variable, 10, 3);

After NUMOUT executes, "array" contains:

"768"

4-22

The result is truncated to three characters; the three leftmost
characters are lost.

UTILITY PROCEDURES
SHIFTSTRING Procedure

The SHIFTSTRING procedure upshifts or downshifts all alphabetic
characters in a string. Non-alphabetic characters remain unchanged.

The call to the SHIFTSTRING procedure is:

CALL SHIFTSTRING <string> , <count> , <casebit>

where

<string>, STRING:ref,

is the character string to be shifted.

<count>, INT,

is the length of the string in bytes.

<casebit>, INT,

indicates whether to upshift or downshift the string. If
this parameter is even, the procedure upshifts, making all
alphabetic characters upper-case; if it is odd, the procedure
downshifts, making all alphabetic characters lower-case.

example:

CALL SHIFTSTRING (command, commandAlen, 0) ; upshift

4-23

UTILITY PROCEDURES
TIME Procedure

The TIME procedure provides the current date and time in integer form.

The call to the TIME procedure is:

CALL TIME <date and time>

where

<date and time>, INT:ref:7,

is an array where TIME returns the current date and time in
the following form:

<date and time>[O] = year (1978, 1979, . . .)

<date and time> [l] = month (1-12)
<date and time>[2] = day (1-31)
<date and time>[3] = hour (0-23)
<date and time>[4] = minute (0-59)
<date and time>[5] = second (0-59)
<date and time>[6] = .01 sec (0-99)

example:

CALL TIME(timeAarray);

4-24

UTILI 1rY PROCEDURES
TIMESTAMP Procedure

The TIMESTAMP procedure provides the internal form of the CPU interval
clock where the application is running.

The call to the TIMESTAMP procedure is:

CALL TIMESTAMP <interval clock>

where

<interval clock>, INT:r~f:3,

is an array where TIMESTAMP returns the current value of the
interval clock. A processor's interval clock is incremented
every .01 second. <interval clock> is returned in the
following form:

<interval clock>[O] =most significant word

<interval clock>[l]

<interval clock>[2] = least significant word

example:

CALL TIMESTAMP(clock);

4-25

UTILITY PROCEDURES
TOSVERSION Procedure

The TOSVERSION function procedure provides an identifying letter and
number indicating which version of the GUARDIAN operating system is
running.

The TOSVERSION function is invoked as follows:

<version> := TOSVERSION

where

<version>, INT,

4-26

is returned a value of the form

<0:7> upper-case ASCII letter indicating system
level:
"A" = T.O.S.
"B" = GUARDIAN
"C" = GUARDIAN I 1.1
"D" = GUARDIAN / EXPAND
"E" = GUARDIAN / EXPAND / TMF
"K" = GUARDIAN, Nonstop II system

<8:15> revision number of system, in binary

SECTION 5

CHECKPOINTING FACILITY

To aid in the development of Nonstop programs, the checkpointing
facility, which is an integral part of the GUARDIAN operating system,
is provided.

The following topics are covered in this section:

• Overview of Checkpointing Procedures
• Overview of Nonstop Programs
• Overview of Checkpointing

OVERVIEW OF CHECKPOINTING PROCEDURES

The checkpointing facility consists of a set of procedures which are
used to

• Transfer control to the backup in case of failure of the primary
process or its processor module:

CHECKMONITOR (backup process)

• Open and close a process pair's files:

OPEN and CLOSE (primary process)
CHECKOPEN and CHECKCLOSE (primary process)
CHECKMONITOR (backup process)

• Checkpoint a primary's execution state to its backup process:

CHECKPOINT or CHECKPOINTMANY (primary process)
CHECKMONITOR (backup process)

The following types of information are checkpointed:

the primary process's data stack (defines a "restart" point)

individual arrays (e.g, file buffers) in the application
process's data area

5.1-1

CHECKPOINTING FACILITY
Introduction

for disc files, the file~s "synchronization block"

• Transfer control to the backup process so that the system load is
redistributed:

CHECKSWITCH (primary process)
CHECKMONITOR (backup process)

• Monitor the operational state of one or more processor modules:

MONITORCPUS {primary and backup processes)

• Obtain the count and operational states of processor modules:

PROCESSORSTATUS

OVERVIEW OF Nonstop PROGRAMS

The actions of the primary and backup processes of a Nonstop program
are shown in figure 5-1.

5.1-2

CHECKPOINTING FACILITY
Introduction

PRIMARY
PROCESS

read "startup" message

I
OPEN files

I
create backup process

I
CHECKOPEN files

READ entry from terminal

I
READ record from disc

I
update record in memory

I
CHECKPOINT

I
WRITE updated record to disc

I

BACKUP
PROCESS

CHECKMONITOR -

....... ,. .
•

READ •••

READ •••

•
update •••

•
CHECKPOINT ••• ~i------
WRITE

THE BACKUP STAYS IN CHECKMONITOR WHILE THE PRIMARY IS OPERATIONAL.
IF THE PRIMARY FAILS, THE BACKUP LEAVES CHECKMONITOR AND BEGINS
EXECUTING AT THE POINT INDICATED BY THE LAST CALL TO CHECKPOINT BY
THE PRIMARY.

Figure 5-1. A Nonstop Program

Basically, the following actions take place when a Nonstop program
runs:

1. First, the program is given a process name at run time. This
permits the new process (and eventually its backup) to run as a
named process pair and therefore take advantage of facilities of
the Process-Pair Directory (PPD} (see "Process-Pair Directory" in
section 3, "Process Control") • (Note: An alternate, more
primitive method of setting up a Nonstop program is to use two
non-named processes and have each call the STEPMOM procedure
to "adopt" the other.)

2. The new process, which typically is designated the primary
process, reads the startup message from its creator (e.g., a
Command Interpreter).

3. The primary process opens any files required for its execution.

5.1-3

CHECKPOINTING FACILITY
Introduction

4. The primary process then creates the backup process in another
processor module. The backup process is given the same process
name as the primary.

5. The backup process, at the beginning of its execution, calls the
CHECKMONITOR procedure. This is as far as the backup executes
unless a failure of the primary process occurs.

6. The primary process opens the same files for the backup process
via calls to CHECKOPEN. This permits files to be open by the pair
in a manner that permits both members of the pair to have a file
open while retaining the ability to exclude other processes from
accessing a file. For disc files open in this manner, a record or
file lock by the primary is also an equivalent lock by the backup.

7. The primary process then begins executing its main processing
loop. At critical points through the execution loop, typically
before writes to disc files, the primary calls CHECKPOINT to send
part of its environment and pertinent file control information to
the backup process. Typically, a program contains several calls
to CHECKPOINT; each call checkpoints only a portion of the primary
process~s environment. Calls to CHECKPOINT that checkpoint the
data stack define restart points for the backup process.

8. If the primary process fails, the backup begins executing at the
restart point indicated by the latest call to CHECKPOINT that
checkpointed the data stack. The backup process is now considered
to be the primary process.

9. If the reason for the primary process failure was a processor
module failure (i.e., cpu down), the new primary process c=eates
a backup process when the failed processor module is repaired and
brought back online. This new backup process is then ready to
take over if the primary process fails. (This is the normally
recommended procedure; an alternative action is to create a
backup process immediately in another cpu.)

OVERVIEW OF CHECKPOINTING

The following types of information can be checkpointed:

• the process~s data stack

The data stack, in this context, is considered to be the area from
an address specified in the call to CHECKPOINT (usually the address
of the last global variable) through the current top-of-stack
location (i.e., the word pointed to by the current setting of the S
register) • This area contains the local data storage for all
currently active procedures and their stack markers.

• individual blocks cf data in the data area

These are usually file buffers, but may be any data desired.

5.1-4

CHECKPOINTING FACILITY
Introduction

• disc file "sync blocks"

A "sync block" contains control information about the current state
of a disc file (e.g., current value of the file pointers).

When a call to CHECKPOINT is made by the primary process, a message
containing the information to be checkpointed is formatted and sent to
the backup process in the form of an interprocess message. The
message is received and processed by the CHECKMONITOR procedure in the
backup process.

Data Stack

The purpose of checkpointing the data stack is to provide a restart
point for the backup process. This is possible because the stack
markers in the data stack define the executing environment of the
primary process at the time of the call to CHECKPOINT, and because the
primary~s data stack is duplicated in the backup. If the primary
process fails, CHECKMONITOR simply returns through the stack marker
for the latest call to CHECKPOINT. In this manner, the backup begins
executing following the latest call to CHECKPOINT.

Data Buffers

The purpose of checkpointing data buffers is to preserve the state of
the process so that the backup can continue processing. Typically,
data buffer checkpointing occurs just before writing to a disc file;
the data about to be written is checkpointed. Careful selection of
data buffers (and corresponding file sync information, discussed in
the following paragraphs) to checkpoint can increase the efficiency of
a Nonstop program. An example of data buffer checkpointing is an
entry received from a terminal; the data buffer is checkpointed to
minimize the possibility that the operator would have to reenter data.
Note that data buffers residing in the data stack are checkpointed
when the stack is checkpointed.

Sync Blocks

The purpose of checkpointing the sync block is twofold:

1. To ensure that no write operation is duplicated when a backup
takes over from its primary

2. To pass the current values of file pointers to the file system
on the backup side

When a checkpoint of the sync block occurs, the information in the
sync block is passed to the file system by CHECKMONITOR.

5.1-5

CHECKPOINTING FACILITY
Introduction

The reason for preventing duplicate operations is illustrated in the
following sequence:

A primary completes the following write operation successfully, but
fails before a subsequent checkpoint to its backup -

RESTART POINT •(C) CHECKPOINT POSITION AND DATA
I
x POSITION(fl,-lD); ! position to eof
x WRITE(fl,flAbuffer);
I

*** FAILURE OF PRIMARY ***

On the takeover from the primary, the backup reexecutes the
operations just completed by the primary. If the WRITE were
performed as requested, it would duplicate the record, but at the
new end-of-file location.

So that no write operation already performed by the primary will be
duplicated by the backup process, the <sync depth> parameter of OPEN
must be specified as a value greater than zero when opening the file.
For a file open in this manner, a sync ID in the sync block is used
by the file system in the event of a primary process failure to
identify the operation about to be performed by the backup. If the
backup requests an operation already completed by the primary, the
file system, through use of the sync ID, recognizes this condition.
Then, instead of performing the requested operation, the file system
returns the completion status of the operation to the backup (the
completion status was saved by the file system when the primary
performed the operation). However, if the requested operation had not
been performed, it is performed and the completion status is returned
to the backup. The course of action that is taken by the file system
is completely invisible to the backup process.

The file system has the capability to save the completion status of
the latest 15 operations with a file and to relate those completions
with up to 15 operations requested by a backup process upon takeover
from a failed primary process. The maximum number of completion
statuses that the file system is to save is specified in the <sync
depth> parameter to OPEN. The sync depth value is typically the
same as the maximum number of write operations to a file without an
intervening checkpoint of the file~s sync block. In most cases, the
sync depth value is 1. It cannot exceed 15.

5.1-6

CHECKPOINTING FACILITY
Checkpointing Procedures

The checkpointing procedures are:

CHECKCLOSE is called by a primary process to close a file in
its backup process

CHECKMONITOR is called by a backup process to monitor the
operability of its primary process. CHECKMONITOR
performs two functions: 1) it performs the
operations required when CHECKOPEN, CHECKPOINT, or
CHECKCLOSE is called in the primary process, and 2)
it returns control to the appropriate point in the
backup process in the event that a failure of the
primary process or processor occurs or if the
primary calls CHECKSWITCH

CHECKOPEN is called by a primary process to open a file in its
backup process

CHECKPOINT is called by a primary process to checkpoint its
data stack, local file buffers, and/or file
synchronization information to its backup process.
The data stack and any combination of up to 13 data
blocks or file sync blocks can be checkpointed in a
single call

CHECKPOINTMANY has the same function as CHECKPOINT, except that it
allows an unlimited number of data blocks and file
sync blocks to be checkpointed in a single call

CHECKSWITCH is called by a primary process to switch control to
its backup process. A call to CHECKSWITCH is an
implicit call to CHECKMONITOR so that the primary
process becomes the backup process

MONITORCPUS

PROCESSORSTATUS

instructs the GUARDIAN operating system to notify the
caller if the operating state of a designated
processor module changes from an operable to a
non-operable state or from a non-operable to an
operable state

returns a count of the number of processors in the
system and the up-down state of each processor

Note: The following procedures are called implicitly by the
"CHECK" procedures, and therefore are not normally called
explicitly. However, they can be used by application
programmers when writing application-dependent failure
recovery techniques:

GETSYNCINFO is called by a primary process to acquire a disc
file~s sync information so that it can be can be
sent to its backup process

5.2-1

CHECKPOINTING FACILITY
Checkpointing Procedures

RESETSYNC is called by a backup process, following a takeover
from its primary, to clear a disc file's sync
information on the backup side. RESETSYNC is called
prior to reexecuting disc operations when the backup
wants the operation to occur regardless of whether
or not the operation has already been performed by
the primary. RESETSYNC is also called to
resynchronize any open files whose file sync blocks
were not checkpointed after the most recent stack
checkpoint

SETSYNCINFO is called by a backup process, following a takeover
from its primary, to set a disc file's sync
information on the backup side. SETSYNCINFO is
called prior to reexecuting disc operations that may
have just been performed by the primary so that
already-completed operations will not be repeated

CONSIDERATIONS

• If a file is open with no-wait i/o specified, the following calls
are rejected with a file management error 27 if there are any
outstanding (i.e., uncompleted) operations pending:

GET SYNC INFO
RESET SYNC
SETSYNCINFO

• A call to

CHECKCLOSE,
CHECKOPEN,
CHECKPOINT,
CHECKPOINTMANY, or
CHECK SWITCH

causes an interprocess message to be sent to the process indicated
by the "creator process ID" in the caller's Process Control Block.
The creator process ID is automatically set to the process ID of
the backup process .at process creation if the primary/backup
process pair is named. If the process pair is not named, then the
backup process must call the STEPMOM procedure, specifying the
primary process, before the primary process makes a call to one of
these procedures. (The interprocess message is received and
processed by CHECKMONITOR in the backup process.)

5.2-2

CHECKPOINTING FACILITY
CHECKCLOSE Procedure

The CHECKCLOSE procedure is called by a primary process to close a
designated file in its backup process. The backup process must be in
the "monitor" state (i.e., in a call to CHECKMONITOR) for the
CHECKCLOSE to be successful. The call to CHECKCLOSE causes the
CHECKMONITOR procedure in the backup process to call the file
management CLOSE procedure for the designated file.

The call to the CHECKCLOSE procedure is:

CALL CHECKCLOSE <file number> , <tape disposition>

where

<file number>, INT:value,

identifies the file to be closed in the backup process.

<tape disposition>, INT:value,

if present, specifies mag tape disposition:

where

<tape disposition>.<13:15>

0
1
2
3
4

=
=
=
=
=

rewind and unload, don~t wait for completion
rewind, take offline, don~t wait for completion
rewind, leave online, don~t wait for completion
rewind, leave online, wait for completion
don~t rewind, leave online

if omitted, 0 is used.

condition code settings (from the CLOSE in the backup process):

< (CCL) indicates that an invalid file number was supplied
or that the backup process does not exist.

= (CCE) indicates that the CLOSE was successful.
> (CCG) is not returned by CHECKCLOSE.

example:

CALL CHECKCLOSE (tapeAfile, 1) ;

5.2-3

CHECKPOINTING FACILITY
CHECKCLOSE Procedure

CONSIDERATIONS

• The condition code returned from CHECKCLOSE indicates the outcome
of the CLOSE in the backup process.

• See the considerations for "CLOSE" in the "File Management
Procedures" section.

5.2-4

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

The CHECKMONITOR procedure is called by a backup process to monitor
the state of the primary process, and to return control to the
appropriate point in the backup process in the event of a failure of
the primary process.

The call to the CHECKMONITOR procedure is:

{ <status>
{ CALL

where

:= i CHECKMONITOR

<status>, INT,

is returned a status word of the following form:

<0:7> = 2, <8:15> = 0
1
2
3

primary stopped
primary abended
primary's processor failed
primary called CHECKSWITCH

Note: The normal return from a call to CHECKMONITOR is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the
call to CHECKMONITOR only if the primary process has not
checkpointed its stack via a call to CHECKPOINT.

example:

CASE CHECKMONITOR.<8:15> OF
BEGIN

END;

CONSIDERATIONS

• If the process pair is not named (i.e., not in the PPD), the
STEPMOM procedure must be called prior to the call to CHECKMONITOR
and before the primary process makes its first call to CHECKPOINT.

• While CHECKMONITOR executes, its local data area consists of
approximately 500 words starting at

'G' [$MIN (LASTADDR, 32767) - 500]

5.2-5

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

- that is, to 500 words below the last available location in the
application process's data stack. This region is used by
CHECKMONITOR to call other operating system procedures. If the
primary attempts to checkpoint its data area in this region, then
an "illegal parameter" error is returned to the primary process
from CHECKPOINT.

If this failure occurs, then the number of data pages to be
allotted the process should be increased via the "?DATAPAGES" TAL
compiler command. (This method of increasing data area size should
be used, rather than increasing the data area at run time via the
Command Interpreter MEM parameter, to avoid creating a backup with
a different data area size than its primary.)

• The specific action of CHECKMONITOR for an action by the primary
process is given in table 5-1.

5.2-6

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

Table 5-1. Action of CHECKMONITOR

Primary Backup (CHECKMONITOR)

No action

CHECKOPEN

CHECKPOINT

CHECKCLOSE

CHECK SWITCH

Process
Failure

At beginning of CHECKMONITOR execution, the current
state of cpu monitoring for the caller is saved
(i.e., the current MONITORCPUS <cpu mask>), then
MONITORCPUS is called, specifying only the primary's
processor module.

OPEN is called for the designated file.

If all or a portion of the primary's data stack was
checkpointed, the data is moved into the
corresponding location in the backup's data stack.

If a local data buffer was checkpointed by name, the
data is moved into the appropriate location in the
backup's data area.

If file synchronization information was checkpointed,
SETSYNCINFO is called for the designated file.

·CLOSE is called for the designated file.

First CHECKMONITOR calls RESETSYNC for any file whose
synchronization information the primary did not
checkpoint in its preceding call to CHECKPOINT. CPU
monitoring is returned to the state that was in
effect before CHECKMONITOR was called. Control is
then returned to the point in the backup process as
indicated by the latest call to CHECKPOINT in the
primary process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following the
call to CHECKMONITOR.

(STOP or ABEND system message received for primary).
First CHECKMONITOR calls RESETSYNC for any file whose
synchronization information the primary did not
checkpoint in its preceding call to CHECKPOINT. CPU
monitoring is returned to the state that was in
effect before CHECKMONITOR was called. Control is
then returned to the point in the backup process as
indicated by the latest call to CHECKPOINT in the
primary process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following the
call to CHECKMONITOR.

5.2-7

CHECKPOINTING FACILITY
CHECKMONITOR Procedure

Primary

Processor
Failure

5.2-8

Table 5-1. Action of CHECKMONITOR (cont'd)

Backup (CHECKMONITOR)

(Processor Failure system message received for
primary's processor module). First CHECKMONITOR
calls RESETSYNC for any file whose synchronization
information the primary did not checkpoint in its
preceding call to CHECKPOINT. CPU monitoring is
returned to the state that was in effect before
CHECKMONITOR was called. Control is then returned
to the point in the backup process as indicated by
the latest call to CHECKPOINT in the primary
process. If the primary has not previously
checkpointed its stack in a call to CHECKPOINT,
control is returned to the instruction following
the call to CHECKMONITOR.

I
J
l

CHECKPOINTING FACILITY
CHECKOPEN Procedure

The CHECKOPEN procedure is called by a primary process to open a
designated file for its backup process. The file must first be opened
by the primary process. The backup process must be in the "monitor"
state (i.e., in a call to CHECKMONITOR) for the CHECKOPEN to be
successful. The call to CHECKOPEN causes the CHECKMONITOR procedure
in the backup process to call the file management OPEN procedure for
the designated file.

The call to the CHECKOPEN procedure is:

CALL CHECKOPEN <file name> , <file number>

, <flags>

, <sync or receive depth>

, <sequential block buffer>

, <buffer length>

, <back error>

where

the following parameters must be passed the same values as
those passed for the corresponding parameters in the call to
OPEN for this file:

CHECKOPEN parameter corresponding OPEN parameter

<file name>, INT:ref = <file name>

<file number>, INT:value = <file number>

<flags>, INT:value = <flags>

<sync or receive depth>, INT:value = <sync or receive depth>

<sequential block buffer>, INT:ref = <sequential block buffer>

<buffer length>, INT:value = <buffer length>

The following parameter is required:

<back error>, INT:ref:l,

>= 0, is the file management error number reflecting the
call to OPEN in the backup process.

5.2-9

CHECKPOINTING FACILITY
CHECKOPEN Procedure

-1, indicates that the backup process is not running,
or that the checkpoint facility could not communicate
with the backup process.

Condition code settings (from the OPEN in the backup process):

< (CCL) indicates that the OPEN failed. The file management
error number is returned in <back error>.

= (CCE) indicates that the file opened successfully.
> (CCG) indicates that the OPEN was successful, but an

exceptional condition was detected. The file
management error number is returned in <back error>.

example:

CALL OPEN (filename, filenum) ;
IF < THEN ! OPEN failed for primary.

CALL CHECKOPEN (filename, filenum,,,,, error) ;
IF< THEN .•. ! OPEN failed for backup.

CONSIDERATIONS

• The condition code returned from CHECKOPEN indicates the outcome of
the OPEN in the backup process.

• See the considerations for OPEN in the appropriate programming
manual (i.e., GUARDIAN, ENSCRIBE, or ENVOY).

• If an "unable to communicate with backup" error occurs (i.e., <back
error> = -1), this normally indicates either that the backup
process does not exist or that a system resource problem exists. If
a system resource problem is indicated, then either the open
request message to the backup is unduly large or the SHORTPOOL size
in the processor module where the error occurs is too small.

• <back error> = 17 is returned if the file is not open by the
primary process or the parameters supplied to CHECKOPEN do not
match the parameters supplied when the primary process opened the
file.

• If a process file is opened in a no-wait manner (<flag>.<8> = 1),
that file is CHECKOPENed as no-wait. Errors detected in parameter
specification and system data space allocation are returned by
CHECKOPEN in <backerr>, and the operation is considered complete.
If no error is returned in <backerr>, the operation must be
completed by a call to AWAITIO in the primary process. The tag
value returned by AWAITIO is -29D if the <tag> parameter is
specified; the returned count and buffer address are undefined. If

5.2-10

CHECKPOINTING FACILITY
CHECKOPEN Procedure

CCL is returned by AWAITIO, the file has been automatically
checkclosed by the checkpointing facility. For a non-process file,
or a process file that was wait-opened, bit 8 is reset internally
to 0 and ignored. The user can call AWAITIO to complete CHECKOPENs
which he was required to complete for the primary open of the file,
by calling AWAITIO.

5.2-11

CHECKPOINTING FACILITY
CHECKPOINT Procedure

The CHECKPOINT procedure is called by a primary process to send
information pertaining to its current executing state to its backup
process. The purpose of the checkpoint information is to enable the
backup process to recover from a failure of the primary process in an
orderly manner. The backup process must be in the "monitor" state
(i.e., in a call to CHECKMONITOR) for the CHECKPOINT to be successful.

The CHECKPOINT procedure provides for checkpointing the process's data
stack and any combination of up to thirteen separate data blocks and
file synchronization blocks. A data block can be from any location in
the data area (these are usually file buffers that are not
checkpointed as part of the stack).

The call to the CHECKPOINT procedure is:

{ <status>
{ CALL

:= l CHECKPOINT <stack base>

, <buffer l>
, <buffer 2>

, <count l>
, <count 2>

, <buffer 13> , <count 13>

where

5.2-12

<status>, INT,

is returned a status word of the following form:

<0:7> = O, no error
1, no backup or unable to communicate with backup

<8:15> = file management error number
2, takeover from primary, then

<8:15> = 0, primary stopped
1, primary abended
2, primary's processor failed
3, primary called CHECKSWITCH

3, illegal parameter, then
<8:15> = number of parameter in error

(leftmost position = 1)

<stack base>, INT:ref,

if present, checkpoints the process's data stack from <stack
base> through the current top-of-stack location ('S'). A
checkpoint of the data stack defines a restart point for the
backup process.

CHECKPOINTING FACILITY
CHECKPOINT Procedure

<buffer n>, INT:ref,

if present, checkpoints a block of the process's data area
(usually a file buffer) from <buffer n> for the number of
words specified by the corresponding <count n> parameter. If
<buffer n> is omitted, <count n> is treated as a <file
number>, and that file's file synchronization block is
checkpointed.

<count n>, INT:value.

The use of this parameter depends on the presence or absence
of the corresponding <buffer n> parameter:

If <buffer n> is present, then <count n> specifies the
number of words to be checkpointed.

If <buffer n> is absent, then <count n> is the <file
number> of a file whose synchronization block is to be
checkpointed.

example:

@p := O; ! beginning of global area
stat :=CHECKPOINT (p,,fnumAa,,fnumAb);

CONSIDERATIONS

• If an "unable to communicate with backup" error occurs, this
normally indicates either that the backup process does not exist or
that a system resource problem exists. If a system resource problem
is indicated, then either the checkpoint message to the backup is
unduly large or the SHORTPOOL size in the processor module where
the error occurs is too small.

• If an attempt is made to checkpoint the data area in the region
used by CHECKMONITOR in the backup process, then an "illegal
parameter" error is returned. See the "Considerations" for
CHECKMONITOR for the recovery procedure.

• If a file's sync information is checkpointed, the call to the
CHECKPOINT contains an implicit call to GETSYNCINFO for the file.
Therefore, checkpointing of a file's sync information should not be
performed between an i/o completion and a call to FILEINFO for the
file. If file sync information checkpointing is performed,
FILEINFO returns the status of the call to GETSYNCINFO (usually,
<error> = 0).

5.2-13

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

The CHECKPOINTMANY procedure, like the CHECKPOINT procedure, is called
by a primary process to send information pertaining to its current
executing state to its backup process. The CHECKPOINTMANY procedure is
used in place of CHECKPOINT when there are more than 13 pieces of
information to be sent.

The CHECKPOINTMANY procedure provides for checkpointing the process's
data stack and any number of separate data blocks and file
synchronization blocks, limited by system limits on the size of the
resulting message.

The call to the CHECKPOINTMANY procedure is:

{ <status>
{ CALL

:= j CHECKPOINTMANY <stack base>

, <descriptors>

where

5.2-14

<status>, INT,

is returned a status word of the following form:

<0:7> = O, no error
1, no backup or unable to communicate with backup

<8:15> = file management error number
2, takeover from primary, then

<8:15> = O, primary Rtopped
1, primary abended
2, primary's processor failed
3, primary called CHECKSWITCH

3, illegal parameter, then
<8:15> = (see "Considerations" below)

<stack base>, INT:ref,

if present, checkpoints the process's data stack from <stack
base> through the current top-of-stack location ('S'). A
checkpoint of the data stack defines a restart point for the
backup process.

<descriptors>, INT:ref,

if present, is an array which describes the items (data
blocks and/or file synchronization blocks) to be check­
pointed. The first word of the array, <descriptors[O]>, is
a count of the number of items to be checkpointed.
<descriptorsfO]> is in the range {1:32767}. The rest of the

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

array consists of pairs of words, each pair describing one
of the items.

If the first word of the pair is -1, the pair describes a
file synchronization block item for the file whose file
number is in the second word of the pair:

<descriptors pair>[lst] = -1
<descriptors pair>[2nd] = <file number>

Otherwise the pair of words describes a data block to be
checkpointed: the first word is the word address of the data
block, and the second word of the pair is the length, in
words, of the data block:

<descriptors pair>[lst] = <buffer>
<descriptors pair>[2nd] = <count>

The size, in words, of the <descriptors> array must be at
least

1 + 2 * <descriptors[O]>.

example:

desc[O] := 2; count of items
desc[l] := -1; sync item:
desc[2] := fnumAa; file number
desc [3] : = @buffer; data i tern: word address
desc[4] := 512; ! number of words
stat:= CHECKPOINTMANY(stkAbase, desc) ;

this is equivalent to:
! stat :=CHECKPOINT(stkAbase,,fnumAa,buffer,512);

CONSIDERATIONS

• If <status>.<0:7> = 3, then <status>.<8:15> has the following
meaning:

<status>.<8:15> = 1
<status>.<8:15> = n, n > 1

error in <stack base> parameter
error in <descriptor>[n - 2]

Following word O, <descriptor> consists of pairs of words. If the
pair describes a file sync block (first word of pair = -1, second
word= file number) then <descriptor>[n - 2] is the second word
of the pair in the event of an error (such as GETSYNCINFO failed).

5.2-15

CHECKPOINTING FACILITY
CHECKPOINTMANY Procedure

If the pair describes a bqffer (first word = address, second word =
length), then:

If the address, or the address plus the length, results in a
bounds violation, then <descriptor>[n - 2] is the first word
of the pair.

If the pair causes the system to run out of buffer space for the
checkpoint, then <descriptor>[n - 2] is the second word of the
pair.

If the total amount of data to be checkpointed (data + sync
blocks + stack) exceeds 32K bytes, n is set equal to 2 *
descriptor[0].

• If an attempt is made to checkpoint the data area used by
CHECKPOINTMANY for system-oriented stack maintenance, then an
"illegal parameter" error is returned.

• Also see the "Considerations" for "CHECKPOINT".

5.2-16

CHECKPOINTING FACILITY
CHECKSWITCH Procedure

The CHECKSWITCH procedure is called by a primary process to cause the
duties of the process pair to be interchanged. CHECKSWITCH is
intended to be used following the reload of a processor module. The
purpose is to switch the process pair~s work back to the original
primary processor module. CHECKSWITCH causes the current backup to
become the primary process and begin processing from the latest call
to CHECKPOINT. The call to CHECKSWITCH contains an implicit call to
CHECKMONITOR, so that the caller becomes that backup and monitors the
execution state of the new primary. The backup process must be in the
"monitor" state (i.e., in a call to CHECKMONITOR) for the CHECKSWITCH
to be successful.

The call to the CHECKSWITCH procedure is:

{ <status> := }
{ CALL }

CHECK SWITCH

where

<status>, INT,

on return, returns a status word of the following form:

<0:7> = 1, could not communicate with backup, then
<8:15> = file management error number

<0:7> = 2, <8:15> = 0 primary stopped
1 primary abended
2 primary~s processor failed
3 primary called CHECKSWITCH

Note: The normal return from a call to CHECKSWITCH is to the
statement following a call to CHECKPOINT. The return
corresponds to the latest call to CHECKPOINT by the
primary process in which its stack was checkpointed.

The backup process executes the statement following the
call to CHECKSWITCH only if the primary process has not
checkpointed its stack via a call to CHECKPOINT.

example:

stat := CHECKSWITCH;

CONSIDERATIONS

• See the CHECKMONITOR procedure for the action of CHECKSWITCH
following the takeover by the backup process.

5.2-17

CHECKPOINTING FACILITY
GETSYNCINFO Procedure (disc and process files)

Note: Typically, GETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKPOINT.

The GETSYNCINFO procedure is called by the primary process of a
primary/backup process pair before starting a series of write
operations to ~ file open with paired access. GETSYNCINFO returns a
disc file~s synchronization block so that it can be sent to the backup
process in a checkpoint message.

The call to the GETSYNCINFO procedure is:

CALL GETSYNCINFO <file number> , <sync block>

, <sync block size>

where

<file number>, INT:value,

identifies the file whose sync block is to be obtained.

<sync block>, INT:ref:*,

is returned the synchronization block for this file. The
size, in words, of <sync block> is determined as follows:

- for unstructured disc files, size = 4 words
for ENSCRIBE structured files, size, in words, =

7 + (longest alt key len + pri key len + 1) / 2

<sync block size>, INT:ref:l,

is returned the size, in words, of the sync block data.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that GETSYNCINFO was successful.
> (CCG) indicates that the file is not a disc file.

example:

5.2-18

CALL GETSYNCINFO
IF< THEN ...•• ;

f ileAnum, syncAid) ;
error

CHECKPOINTING FACILITY
MONITORCPUS Procedure

The MONITORCPUS procedure instructs the GUARDIAN operating system to
notify the application process if a designated processor module fails
(a failure being indicated to the operating system by the non-receipt
of an operating system "I"'m alive" message) or returns from a failed
to an operable state (i.e., reloaded by means of a Command Interpreter
RELOAD command). The calling application process is notified by a
means of a system message read via the $RECEIVE file.

The call to the MONITORCPUS procedure is:

CALL MONITORCPUS <cpu mask>

where

<cpu mask>, INT:value,

has a bit set to "l"corresponding to each processor module
to be monitored:

<cpu mask>.<0>
<cpu mask>.<l>

= processor module 0
= processor module 1

<cpu mask>.<15> = processor module 15

<cpu mask> = 0 means no notification occurs.

example:

CALL MONITORCPUS (%140000) : cpu's 0 & 1

The system messages associated with MONITORCPUS, in word elements,
are:

• CPU Down message. There are two forms of the CPU Down message:

and

<sysmsg>
<sysmsg>[l]

= - 2
= <cpu>

This form is received if a failure occurs with a processor
module being monitored. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -2
= $<process name>
= -1

5.2-19

CHECKPOINTING FACILITY
MONITORCPUS Procedure

This form is received by an ancestor process when the
indicated process name is deleted from the PPD because of a
processor module failure. This means that the named
process [pair] no longer exists.

• CPU Up message:

<sysmsg>
<sysmsg>[l]

= - 3
= <cpu>

This message is received if a reload occurs with a processor
module being monitored.

5.2-20

CHECKPOINTING FACILITY
PROCESSORSTATUS Procedure

The PROCESSORSTATUS procedure is used to obtain a count of the number
of processor modules in a system and their operational states.

The call to the PROCESSORSTATUS procedure is:

<processor status> := PROCESSORSTATUS

where

<process status>, INT(32),

is returned two words indicating the count and states of
processor modules.

The most significant word is the count of processor modules.

The least significant word is a bit mask indicating the
operational state of each processor module:

<ls word>.<0> = processor module 0
<ls word>.<l> = processor module 1

<ls word>.<15> = processor module 15

A "l" indicates that the corresponding processor module is
up (i.e., operational). A "0" indicates that the
corresponding processor module is down or does not exist.

example:

INT(32) cpuAinfo;
INT numAcpus = cpuAinfo,

cpuAstate = cpuAinfo + l;

cpuAinfo := PROCESSORSTATUS;

5.2-21

CHECKPOINTING FACILITY
RESETSYNC Procedure {disc and process files)

Note: Typically, RESETSYNC is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The RESETSYNC procedure is used by the backup process of a
primary/backup process pair after a failure of the primary process
when a different series of operations will be performed than those of
the primary before its failure. The RESETSYNC procedure clears a
paired access file~s synchronization block so that the operations to
be performed by the backup are not erroneously related to the
operations just completed by the primary process.

RESETSYNC is also called to resynchronize any open files whose file
sync blocks were not checkpointed after the most recent stack
checkpoint.

The call to the RESETSYNC procedure is:

CALL RESETSYNC <file number>

where

<file number>, INT:value,

identifies the file whose synchronization block is to be
cleared.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that RESETSYNC was successful.
> (CCG) indicates that the file is not a disc file.

example:

5.2-22

CALL RESETSYNC
IF< THEN .••.. ; error

CHECKPOINTING FACILITY
SETSYNCINFO Procedure (disc and process files)

Note: Typically, SETSYNCINFO is not called directly by application
programs. Instead, it is called indirectly by CHECKMONITOR.

The SETSYNCINFO procedure is used by the backup process of a
primary/backup process pair after a failure of the primary process.
The SETSYNCINFO procedure passes a paired accessed f ile~s latest
synchronization block (received in a checkpoint message from the
primary) to the file system. Following a call to the SETSYNCINFO
procedure, the backup process can retry the same series of write
operations started by the primary before its failure. (The use of the
synchronization block ensures that operations that may have been
completed by the primary before its failure are not duplicated by the
backup.)

The call to the SETSYNCINFO procedure is:

CALL SETSYNCINFO <file number> , <sync block>

where

<file number>, INT:value,

identifies the file whose synchronization block is being
passed.

<sync block>, INT:ref,

is the latest synchronization block received from the
primary process.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that SETSYNCINFO was successful.
> (CCG) indicates that the file is not a disc file.

example:

CALL SETSYNCINFO
IF< THEN ••••• ;

fileAnum, syncid) ;
! error

5.2-23

CHECKPOINTING FACILITY
Using the Checkpointing Facility

This section describes

• The general structure of a Nonstop program
• Considerations for opening files
• General considerations for checkpointing

Example of where checkpoints should occur
Sync Blocks for disc files
Checkpointing multiple disc updates
Considerations for no-wait i/o

• The action to take when a system message is read
• The action to take when the backup takes over
• How to open a file during processing
• How a process pair should create a descendant process [pair]

Nonstop PROGRAM STRUCTURE

The general structure of a typical Nonstop program is

• a process startup (beginning of program) phase, and

• a main processing loop.

Process Startup for Named Process Pairs

The use of named process pairs for Nonstop programming is considered
to be the usual case. Non-named process pairs are used only in
special cases.

The process startup code is executed by both the primary and backup
processes following their creation.

The general steps involved in process startup are:

1. Save the stack base address for checkpointing.

2. Call ARMTRAP so process will abend if trap occurs.

3. Determine if the process is the primary or backup -

If primary then
begin

4. open $RECEIVE (no-wait) and, optionally, read startup message
5. open files
6. monitor the backup cpu
7. create backup process:

if created then
begin

8. open files in backup process
9. use Awaitio to complete nowait opens in backup process
10. checkpoint environment to backup

end
end

5.3-1

CHECKPOINTING FACILITY
Using the Checkpointing Facility

11. else ! backup ! monitor .the primary.
12. Initiate a read on $RECEIVE to check for backup stopped or

processor up/down messages.

After performing these steps, execute the main processing loop.

1. SAVE THE STACK BASE ADDRESS: This is necessary for subsequent
checkpointing of the data stack. The stack base address should be
kept in a global variable. The stack base address is that of the
first local variable of the main procedure:

INT .stackbase; ! global pointer variable.

PROC m MAIN;
BEGIN

INT .ppdentry[O:S],

base = ~L~ + l;

@stackbase := @base;

first local variable in MAIN.

address equivalence.

saves the address.

2. CALL ARMTRAP: The ARMTRAP procedure should be called to handle
any trap that may occur. The simplest method of using ARMTRAP is

CALL ARMTRAP (0, -1);

This causes the process to abend if a trap occurs.

The process may wish to analyze the reason for the trap. If this is
desired, refer to section 6, "Traps and Trap Handling".

Note: During the program debug phase, it is usually desirable to
omit the call to ARMTRAP. Then, if the process traps, DEBUG
will be called.

3. DETERMINE IF PRIMARY OR BACKUP: One way to determine if a process
is a primary or its backup is to look at its entry in the Process-Pair
Directory (PPD):

INT .ppdentry[O:S];

CALL GETCRTPID (MYPID, ppdentry) ;
CALL LOOKUPPROCESSNAME { ppdentry) ;
IF < THEN CALL ABEND; ! no entry.

This returns the PPD entry for this process. If
LOOKUPPROCESSNAME fails, either the process does not have a
name or the system cannot access the PPD. In either case, a
serious problem exists.

IF NOT ppdentry[4] THEN ! i~m the primary
BEGIN

5.3-2

CHECKPOINTING FACILITY
Using the Checkpointing Facility

The fact that ppdentry[4] (i.e., <cpu,pin 2>) = 0 indicates
that no backup has ever been created. Therefore, this
process must be the primary.

The following actions are taken by the primary process:

4. OPEN $RECEIVE: The $RECEIVE file should be opened with no-wait
i/o specified. No-wait i/o is specified so that a read on $RECEIVE
can be continually outstanding. This is desirable so that the "check
for completion" form of AWAITIO (i.e., <time limit>= OD) can be used
to check for system messages or so that system messages can be read
when waiting for completions on other files.

INT .receive[O:ll] := ["$RECEIVE", 8 * [" "]],
rfnum,

CALL OPEN (receive, rfnum, 1) ;
IF < THEN CALL ABEND;

global
variables.

Next, if a startup message is expected (e.g., Command
Interpreter parameter message), it should be read:

CALL READ (rfnum, buf, count) ;
IF <> THEN CALL ABEND;
CALL AWAITIO (rfnum,, countread);
IF <> THEN CALL ABEND;

At this point, a check should be made to determine if the
message is a valid startup message (i.e., first word of the
message = -1) •

5. OPEN PRIMARY'S FILES: The files to be referenced by the process
should be opened in the primary (see "File Open").

LITERAL

INT

flagsl =
sync"'depthl =
flags2 =
sync"'depth2 =

f lagsn =
sync"'depthn =

.fnamel[O:ll],
fnuml,

.fname2[0:11],
fnum2,

.fnumn[O:ll],
fnumn;

global data declarations. . . . , . . . , . . . , . . . ,

. . . , ,

5.3-3

CHECKPOINTING FACILITY
Using the Checkpointing Facility

CALL OPEN (fnamel, fnuml, flagsl, syncAdepthl) ;
IF< THEN •.•• ! see note.
CALL OPEN (fname2, fnum2, flags2, syncAdepth2) ;
IF< THEN •••. ! see note.

CALL OPEN (fnamen, fnumn, flagsn, syncAdepthn) ;
IF < THEN ! see note.

Note: The action that should be taken if a file open fails (i.e.,
error <> 0) is application-dependent. For example, the primary
could abort itself. Or, if an invalid file name was received
by the process, the terminal operator could be queried for a
valid file name.

6. MONITOR THE BACKUP CPU: The MONITORCPUS procedure should be
called for the backup process's processor module. This is necessary
so that processor module failure/reload system messages will be sent
to the primary process.

INT backuphcpu; ! backup cpu no.

monitor the backup cpu.
CALL MONITORCPUS (%100000 '>>' backupAcpu) ;

7. CREATE THE BACKUP PROCESS: Backup process creation is best
accomplished by writing a procedure which performs the following
functions:

• process creation

• opening of the backup's files

• checkpointing the primary's environment

The reason for including these functions in a procedure is that backup
process creation may be necessary at several points during process
execution. These are: during process startup, after a takeover by a
backup following a failure of its primary, a failure of backup
(ABEND), or a reload of the backup's processor module.

The following is an example of backup process creation:

PROC createbackup;
BEGIN

Create the process:

5.3-4

I NT • pf i 1 e [0 : 11] ,
pname [0: 3] ,
backup"pid[0:3],
error;

CHECKPOINTING FACILITY
using the Checkpointing Facility

CALL PROGRAMFILENAME (pfile) ;

returns the file name of the primary's program file.

CALL GETCRTPID (MYPID, pname) ;

returns the process pair's name.

CALL NEWPRCX:ESS (pfile,, (LASTADDR'>>'lO) '+' 1, backupAcpu,
backupApid, error, pname) ;

creates the process. (For an explanation of the memory
parameter, see the LASTADDR procedure in section 4.)

Open the files in the backup process (see "File Open" for
considerations) :

IF backupApid THEN
BEGIN

it was created.

backupAup := l; ! global variable.

! $RECEIVE file.
CALL CHECKOPEN (receive, rfnum, 1,,,, error) ;
IF<> THEN •.. ! see note.
CALL CHECKOPEN(fnamel,fnuml,flagsl,syncAdepthl,,,error) ;
IF<> THEN ••• ! see note.
CALL CHECKOPEN(fname2,fnum2,flags2,syncAdepth2,,,error) ;
IF<> THEN ••• ! see note.

CALL CHECKOPEN(fnamen,fnumn,flagsn,syncAdepthn,,,error) ;
IF<> THEN .•. ! see note.

Note: The action that a primary should take if a file open in its
backup fails (i.e., error<> 0) is application-dependent. For
example, the primary could stop the backup, then abort itself.
Or, the primary could stop the backup but continue processing
without a backup. If the latter course of action is taken,
however, the primary will receive a process STOP system
message for the backup. Therefore, the primary should contain
logic so that it does not re-create its backup.

Note: When a server is opened in a no-wait manner by a process pair,
the OPEN and the CHECKOPEN must both have been completed
without error by AWAITIO before the sync block is checkpointed.
If this restriction is not obeyed, the CHECKOPEN is rejected
with an error, and a takeover occurs, then the server may not
recognize the backup as a valid opener. In this case,
pending requests may be rejected with an error if retried
without the backup process first opening the file on its own.
When using no-wait opens, the primary process of a pair should
create the backup in the following manner to ensure a valid
takeover:

5.3-5

CHECKPOINTING FACILITY
Using the Checkpointing Facility

1. Create backup using the NEWPROCESS procedure.

2. CHECKOPEN all files.

3. Complete all no-wait CHECKOPENs by calls to AWAITIO.

4. Checkpoint the stack and Sync Blocks.

If the primary process dies, the backup is now ready to
continue processing. Normal processing can continue in
parallel with step 3, which may take a while if one or more
servers responds slowly.

Checkpoint the primary's data area to the backup process (this will
include any startup message). If the data area is large, this may
require multiple calls to CHECKPOINT due to operating system SHORTPOOL
limitations:

CALL CHECKPOINT (, addr, count, •.•) ;

Checkpoint all files' sync information and the data stack in the same
call:

set restart point.
IF (status := CHECKPOINT(stackbase ,, fnuml,, fnum2,, •••

,, fnumn)) THEN

CALL analyzeAcheckpointAstatus (status) ;

"analyzeAcheckpointAstatus" is a procedure wn1cn
takes appropriate action for a checkpoint failure or
takeover by backup. See "Takeover by Backup" for a
description of the "analyzeAcheckpointAstatus"
procedure.

If multiple calls to CHECKPOINT are necessary, the data stack should
be checkpointed last. This checkpoint is then a restart point if the
primary should subsequently fail.

END; ! open files
END; ! of createbackup

11. MONITOR THE PRIMARY: This is the action taken by the process if
it is the backup. First, MONITORCPUS is called for the primary's
processor module (this is done so that the primary's processor module
will continue to be monitored if and when the backup takes over). The
actual monitoring of the primary is accomplished by calling the
CHECKMONITOR procedure:

5.3-6

ELSE ! i'm the backup
BEGIN

CHECKPOINTING FACILITY
Using the Checkpointing Facility

! save the primary's cpu num.
backupAcpu := ppdentry[3].<0:7>;

! monitor the primary cpu.
CALL MONITORCPUS (%100000 '>>' backupAcpu) ;
CALL CHECKMONITOR;
CALL ABEND;

END;

The backup process only returns from the call to CHECKMONITOR
if the primary has not checkpointed its data stack. The
primary checkpoints its stack for the first time at the end of
creation of the backup process.

12. READ $RECEIVE: The primary should keep a read outstanding on
$RECEIVE at all times. This is desirable so that process deletion and
processor failure/reload system messages can be received.

CALL READ (rfnum, rbuf, count) ;

SUMMARY: The following is the example code for process startup:

INT backupAcpu,
• stackbase, ! global pointer variable •
• receive[O:ll] :=["$RECEIVE", 8 * [" "]],
rfnurn,
stopAcount := 0,
backupAup := O;

LITERAL
f lagsl =
syncAdepthl =
f lags2 =
syncAdepth2 =

f lagsn =
syncAdepthn =

INT .fnamel[O:ll],
fnuml,

.fname2[0:11],
fnum2,

.fnumn[O:ll],
fnumn;

PROC m MAIN;
BEGIN

... , . . . , ... , . . . ,

. . . , .
• • • I

global data
declarations •

INT .ppdentry[0:8], first local variable in MAIN.

5.3-7

CHECKPOINTING FACILITY
Using the Checkpointing Facility

.
base = 'L' + l; address equivalence.

@stackbase := @base; save the address.

! abort the process if a trap occurs.
CALL ARJ.~TRAP (0, -1) ;

CALL GETCRTPID (MYPID, ppdentry) ;
CALL LOOKUPPROCESSNAME (ppdentry) ;
IF < THEN CALL ABEND; ! no entry.

IF NOT ppdentry[4] THEN ! i'm the primary
BEGIN

! open $RECEIVE.
CALL OPEN (receive, rfnum, 1) ;
IF < THEN CALL ABEND;

! read the startup message.
CALL READ (rfnum, buf, count) ;
IF <> THEN CALL ABEND;
CALL AWAITIO (rfnum,, countread) ;
IF <> THEN CALL ABEND;

! open the primary's files.
CALL OPEN (fnamel, fnuml, flagsl, syncAdepthl) ;
IF< THEN •••• ! error.
CALL OPEN(fname2,fnum2,flags2,syncAdepth2)
IF< THEN •••• ! error.

CALL OPEN (fnamen, fnumn, flagsn, syncAdepthn) ;
IF< THEN ! error.

! monitor the backup cpu.
CALL MONITORCPUS { %100000 '>>' backupAcpu) ;

! create the backup process.
CALL createbackup (backupAcpu) ;

END
ELSE ! i'm the backup

BEGIN
! save the primary's cpu num.

backupAcpu := ppdentry[3].<0:7>;
! monitor the primary cpu.

CALL MONITORCPUS (%100000 '>>' backupAcpu) ;
CALL CHECKMONITOR;
CALL ABEND;

END;

read $RECEIVE.
CALL READ (rfnum, rbuf, count) ;

! execute the main program loop.
CALL mainAloop;

5.3-8

END:

CHECKPOINTING FACILITY
Using the Checkpointing Facility

The following is the example code in the "createbackup" procedure:

PROC createbackup (backupAcpu):
INT backupAcpu:

BEGIN

INT .pfile[O:ll],
pname [0: 3] ,
backupApid[0:3],
error:

CALL PROGRAMFILENAME (pf ile) :

CALL GETCRTPID (MYPID, pname) :

CALL NEWPROCESS (pfile,,,backupAcpu,backupApid,error,pname);

IF backupApid THEN ! it was created.
BEGIN

backupAup := 1:
CALL CHECKOPEN(receive,rfnum,l,,,,error) ! $RECEIVE file.
IF<> THEN ..• ! error.
CALL CHECKOPEN(fnamel,fnuml,flagsl,syncAdepthl,,,error) :
IF<> THEN ••• ! error.
CALL CHECKOPEN(fname2,fnum2,flags2,syncAdepth2,,,error) :
IF<> THEN ••. ! error.

CALL CHECKOPEN(fnamen,fnumn,flagsn,syncAdepthn,,,error) :
IF <> THEN • • • ! error.

CALL CHECKPOINT (,, fnuml,; fnum2,, •••••• ,, fnumn):
CALL CHECKPOINT (, addr, count, •••) :

IF (status := CHECKPOINT(stackbase)) THEN ! restart point.
CALL analyzeAcheckpointAstatus (status) :

END: ! open files
END; ! of createbackup

Process Startup for Non-Named Process Pairs

The startup for non-named process pairs is nearly identical to that
for named process pairs, except for the following items:

• The determination of primary/backup designation.

• The primary must send a startup message to the backup.

5.3-9

CHECKPOINTING FACILITY
Using the Checkpointing Facility

• The backup must call the STEPMOM procedure for the primary. This
is necessary because the checkpointing facility uses the creator
process ID in the primary~s Process Control Block to determine the
destination of checkpoint messages.

• The startup message must be read via the READUPDATE procedure (and,
therefore, replied to via the REPLY procedure). This is done so
that the primary process will be suspended (and therefore prevented
from checkpointing) until the backup calls the STEPMOM procedure.

Note: There is no "ancestor" relationship between a non-named
process pair and the process initially responsible for their
creation.

In the following list of the general steps involved in process
startup, the differences from the startup process for named
process pairs are indicated by lettered steps:

1. Save the stack base address for checkpointing.

2. Call ARMTRAP, so process will abend if trap occurs.

A. Open $RECEIVE (no-wait, receive depth = 1) and read the startup
message via READUPDATE.

B. Determine if the process is the primary or backup -

If primary then
begin

C. reply to startup message
5. open files
6~ monitor the backup cpu
7. create backup process:

if created then
begin

D. send non-standard startup message to backup
~. open files in backup process
9. checkpoint environment to backup

end
end

E. else ! backup monitor the primary.

12. Initiate a read on $RECEIVE to check for backup stopped or
processor up/down messages.

After performing these steps, execute the main program loop.

A. READ STARTUP MESSAGE: The $RECEIVE file should be opened with
no-wait i/o and <receive depth> >= 1 specified. <receive depth> >= 1
is specified so that the startup message can be read via a call to
READUPDATE, then later replied to via a call to REPLY. This is
necessary so that the backup process, after it reads its startup
message, can cause the primary process to be suspended until it has a
chance to call the STEPMOM procedure on the primary process.

5.3-10

CHECKPOINTING FACILITY
Using the Checkpointing Facility

"]], global INT .receive[O:ll] := ["$RECEIVE", 8 * ["
rfnum, ! variables.

CALL OPEN (receive, rfnum, 1, 1) ;
IF < THEN CALL ABEND;

Next, the startup message (e.g., Command Interpreter parameter
message) is read:

CALL READUPDATE (rfnum, buf, count) ;
IF <> THEN CALL ABEND;
CALL AWAITIO (rfnum,, countread) ;
IF <> THEN CALL ABEND;

The call to READUPDATE causes the sender of the startup
message to be suspended until the message is replied to. At
this point, a check should be made to determine if the
message is a valid startup message (i.e., first word of the
message = -1) •

B. DETERMINE IF PRIMARY OR BACKUP: A recommended way to designate
whether a non-named process is a primary or its backup, is to have the
primary process send a non-standard startup message to the backup
after the backup~s creation. Then, if the new process reads a
standard startup message, it knows that it is the primary; otherwise,
it knows that it is the backup. A recommended form for a non-standard
startup message is

<startup message>[O] = -1
<startup message>[!] = -2

The first word of the startup is the same as the Command Interpreter~s
startup message (this allows the program logic for checking for a
valid startup message to be the same for both the primary and the
backup). The primary/backup designation is made by checking word[l] of
the startup message:

IF buf [1] <> -2 THEN ! i~m the primary
BEGIN

A startup message from the Command Interpreter contains the
"default volume/subvol" names starting in word[l]. Therefore,
word[l].<0:7> ="$"for a standard Command Interpreter
startup message.

C. REPLY TO STARTUP MESSAGE: The primary process must reply to the
startup message via a call to the REPLY procedure:

CALL REPLY;

permits the Command Interpreter to continue executing.

5.3-11

CHECKPOINTING FACILITY
Using the Checkpointing Facility

D. SEND NON-STANDARD STARTUP MESSAGE TO BACKUP: A non-standard
startup message is sent to the backup following the backup~s creation.
The non-standard startup message provides the primary/secondary
designation for the process pair:

IF backupApid THEN ! it was created.
BEGIN

! open a file to the backup process.
CALL OPEN (backupApid, fnum) :
IF<> THEN ••• ! couldn~t open backup. Bad news.

! build non-standard startup message.
bu f [0] : = -1 :
buf [1] : = -2:

! send the startup message.
CALL WRITE (fnum, buf, 4) :
IF <> THEN ! couldn~t write to backup. Bad news.

The primary process is suspended at this point until
the backup process replies to the startup message.

close the file to the backup process
CALL CLOSE (f num) :

backupAup := l:

! open files for backup process.
CALL CHECKOPEN(fnamel,fnuml,flagsl,syncAdepthl,,,error) :
IF<> THEN •.• ! error.

E. MONITOR THE PRIMARY: This is the action taken by the process if
it is the backup. First, STEPMOM is called for the primary process
(this is necessary so that the backup process will receive the
checkpoint messages sent when the primary calls CHECKPOINT). Next,
REPLY is called to reply to the startup message (this allows the
primary to resume execution and make its first call to CHECKPOINT).
Then, MONITORCPUS is called for the primary~s processor module (this
is done so that the primary~s processor module will continue to be
monitored if and when the backup takes over). The actual monitoring
of the primary is accomplished by calling the CHECKMONITOR procedure:

5.3-12

CHECKPOINTING FACILITY
Using the Checkpointing Facility

ELSE ! i'm the backup
BEGIN

CALL MOM (backupApid) ;
CALL STEPMOM (backupApid) ;
IF < THEN CALL ABEND;
CALL REPLY;

! save the primary's cpu num.
backupAcpu := backupApid[3].<0:7>;

! monitor the primary cpu.
CALL MONITORCPUS (%100000 '>>' backupAcpu) i
CALL CHECKMONITOR;
CALL ABEND;

END;

The backup process only returns from the call to CHECKMONITOR
if the primary has not checkpointed its data stack. The
primary checkpoints its stack for the first time at the end of
creation of the backup process.

Main Processing Loop

In addition to normal transaction processing, the main processing loop
must

1. checkpoint at appropriate points

2. check the $RECEIVE file for system messages

3. perform special action when taking over from the primary

FILE OPEN

Files are opened in a primary process via calls to the

OPEN procedure.

For disc files, when automatic path error recovery is desired, the
number of write operations whose outcome the system is to remember is
specified in the <sync depth> parameter to OPEN.

Files are opened in a backup process by its primary process via calls
to the

CHECKOPEN procedure.

The use of CHECKOPEN permits both members of a process pair to have a
file open, while retaining the ability to exclude other processes from
accessing a file. For disc files open in this manner, a record/file
lock by the primary is also an equivalent lock by the backup.

Note that the same parameter values that are passed to OPEN are also
passed to CHECKOPEN; both files must be open with the same <file

5.3-13

CHECKPOINTING FACILITY
Using the Checkpointing Facility

number>, <flags> value, and ~sync depth> value.

For example, in the primary process:

LITERAL
= f lagsl

sync"'depthl =

INT .fnamel[O:ll],
fnuml,
error;

. . . , .
• • • I

open the file for the primary.
CALL OPEN (fnamel, fnuml, flagsl, syncAdepthl) ;
IF<> THEN ••• ! error occurred.

! open the file for the backup.
CALL CHECKOPEN (fnamel, fnuml, flagsl, sync"'depthl,,, error) ;
IF<> THEN ••• ! error occurred.

CHECKPOINT I NG

Checkpoints are used to preserve transaction data and identify a
restart point in the event of a failure. For each checkpoint in a
primary process, there is a corresponding restart point in its backup
process, as shown in figure 5-2.

PRIMARY: BACKUP:

___.... ___....
I I

(1) (checkpoint) , (1) (restart point)

I I
x WRITEREAD terminal x WRITEREAD terminal

I I
(2) (checkpoint)

_,,,
(2) (restart point) ~

I I
x READ disc x READ disc

I I
(3) (checkpoint) _,,

(3) (restart point) ,

I I
x WRITE disc x WRITE disc

I I
x WRITE terminal x WRITE terminal
I I
~ ..-.

Figure 5-2. Checkpoints and Restart Points

5.3-14

CHECKPOINTING FACILITY
Using the Checkpointing Facility

For example, if a primary process fails subsequent to the return from
a call to CHECKPOINT, its backup process will begin executing from
the corresponding call to CHECKPOINT:

PRIMARY BACKUP

CALL CHECKMONITOR;

CALL CHECKPOINT(stk,,fnuma); CALL CHECKPOINT(stk,,fnuma);

CALL WRITE{fnuma, •.•);

a failure of the primary past
this point causes the backup to
begin processing at this point

CALL WRITE(fnuma, •••);

Enough checkpoints must be provided, and each must contain enough
information, so that in the event of the primary's failure, the
backup can take over the process pair's duties while maintaining the
integrity of any data involved in the current transaction.

The amount of checkpointing that must be performed depends on the
degree of recoverability desired. As an extreme example, a primary
process could, after execution of each program statement, send its
entire data area and its current program counter setting. A program
of this type is recoverable after each statement. However, the
amount of system resources needed to perform this type of
checkpointing would be tremendous {a checkpoint following each
statement) •

In practice, however, checkpointing of internal calculations is not
necessary, as they can be performed with virtually no loss of system
throughput. In general, checkpointing is necessary only when data is
being transferred between the internal program environment and a file.
For example, the primary process may checkpoint the data just read
from a terminal so that, if a subsequent failure occurs, the terminal
operator won't have to reenter the data.

Guidelines For Checkpointing

As a general rule, a call to CHECKPOINT should immediately precede:

• Any write to a file (including a WRITEREAD to a terminal)

e A call to CONTROL or SETMODE for a file

To provide a greater degree of recoverability, a call to CHECKPOINT
may immediately follow:

• A read from a terminal.

5.3-15

CHECKPOINTING FACILITY
Using the Checkpointing Facility

l
x READ a record
I
x update it in memory
I

(c) CHECKPOINT(stackbase,buffer,count,,fnum);
I
x WRITE a record
I

The call to CHECKPOINT should checkpoint the following information:

• A value or set of values indicating the program state. This is
usually accomplished by checkpointing the process's data stack.

• If the checkpoint precedes a write to disc file, the file's Sync
Block.

• The file's data buffer. Note that if the data buffer is within the
memory stack area (i.e., from the application-defined stack base
through the address indicated by the current S register setting) ,
the data buffer will be checkpointed when the stack is
checkpointed.

Adherence to the above guidelines assures that an application program
can recover from disc file operations and, in most cases, terminal
operations.

Also, as a general rule, the programmer should strive to keep the
number of checkpoints in a processing loop and the amount of data
checkpointed in a given call to CHECKPOINT to a minimum. An approach
is to checkpoint only a portion of the program state (i.e., some data
buffers and/or data stack) at one time. In this case, however, the
programmer must be careful that any checkpoint which is also a restart
point (i.e, includes the data stack) yields a valid program state.
The programmer must also be careful, when checkpointing a data buffer
without checkpointing the data stack, that the preceding restart point
is still valid (i.e., does not use the new value of the data buffer).
From the above, it should become apparent that proper checkpointing
can be achieved only by careful analysis of the operation being
performed and of the intended checkpoints and their contents.

Note also that i/o to non-disc and non-terminal devices involves very
application-dependent recovery procedures. For example, a report to a
line printer may have to be restarted from the last page, or a
magnetic tape may have to be repositioned.

5.3-16

CHECKPOINTING FACILITY
Using the Checkpointing Facility

Example of Where Checkpoints Should Occur

The following is an example of a simple transaction cycle to update
a record.

The record:

ace tno -l _c_u_r_"'_b_a_1 _ _.___c_r_e_d_i _t_"'_1_i_m_i_t_~
The transaction cycle (without checkpoints):

x

I
x
I
x

I

I
x

I

LJ

WRITEREAD(terminal,bufl,.); ! returns <acctno>
and <amount>.

POSITION (acctfile, acctno);

READUPDATE (acctfile,buf2, ••);

IF (x := cur"'bal + amount) > credit"'limit THEN
abort"'transaction;

cur"'bal := x;

WRITEUPDATE(acctfile, buf2, ••);

WRITE (terminal, buf 1, ••) ; ! result

5.3-17

CHECKPOINTING FACILITY
Using the Checkpointing Facility

The transaction cycle with insufficient checkpoints:

!:di
I I

RESTART POINT CHECKPOINT(stk); ! idle state checkpoint.

x
I

RESTART POINT--+---(2)

I
x

I
x
I
x

I
x
I
x
I
x

WRITEREAD(terminal,bufl,.);

CHECKPOINT(stk,bufl,cnt);

POSITION (acctfile, acctno);

returns <acctno>
and <amount>.
terminal data
checkpoint.

READUPDATE (acctfile, buf2, ••);

IF (x := curAbal + amount) > creditAlimit THEN
abortAtransaction;

curAbal := x;

WRITEUPDATE(acctfile, buf2, ••);

WRITE (terminal, bufl, ••); ! result

In this example, the first checkpoint identifies the program state as
being idle (or waiting from input from the terminal). The actual
checkpoint message consists of only the primary process's data stack.

ThP. second checkooint identifies the oroararn state as "terminal entry
just read". The~checkpoint message c~nsists of two parts:

1. the primary's data stack

2. the data read from the terminal

Here the assumption is that, because the transaction is driven by the
data read from the terminal, this data is ample for the backup to
perform the identical operation. This assumption is incorrect,
however. A problem occurs if a failure occurs just following the
WRITEUPDATE of the "acctfile". This is illustrated in the following
transaction:

WRITEREAD(terminal, bufl, ••) ; returns: "acctno" = "12345",
"amount" = "$10"

(2) checkpoint "12345, $10"

POSITION (acctfile, 123450);

READ (acctfile,buf2, ..);

5.3-18

returns: "acctno"

12345

IF (x := $485 + $10) > $500 THEN

WRITEUPDATE (acctfile,buf2, ••);

writes: "acctno"

CHECKPOINTING FACILITY
Using the Checkpointing Facility

"creditAlimit"

•l.__~_$_4_a_5 __ ~_._~ __ $_5_o_o~----

"creditAlimit"

12345---.~!~ __ $_4_9_5 ____ ...__ ____ $_50_0 ____ ~
****** FAILURE HERE ******

Backup~s restart with latest checkpoint data: "12345, $10"

POSITION (acctfile, 123450);

READ (acctfile,buf2, ••);

returns: "acctno" "creditAlimit"

12345----.j~ ____ $_4_9_5 ____ _._ ____ $_5_o_o __ __,

IF (x := $495 + $10) > $500 THEN •••

Here the test fails because the update to the disc completed
successfully and the "curAbal" has already been updated. The
terminal operator is given an indication that "acctno" 12345 has
attempted to exceed its credit limit; therefore the purchase is
refused. However, account 12345~s balance reflects that a
purchase was made.

5.3-19

CHECKPOINTING FACILITY
Using the Checkpointing Facility

The transaction cycle with sufficient checkpointing:

P,i
I J

RESTART POINT

I
RESTART POINT--- (2)

I
x
I
x

I
x

I
x
I

RESTART POINT--- (3)

I
x

I
x

CHECKPOINT(stk); ! idle state checkpoint

WRITEREAD(terminal,bufl,.);

CHECKPOINT(stk,bufl,cnt);

POSITION (acctfile, acctno);

returns <acctno>
and <amount>.
terminal data
checkpoint.

READUPDATE (acctfile, buf2, .•);

IF (x := curAbal + amount) > creditAlimit THEN
abortAtransaction;

curAbal := x;

CHECKPOINT(stk,buf2,cnt,,acctfile);
! updated record
! checkpoint.

WRITEUPDATE (acctfile, buf2, •.);

WRITE (terminal, bufl, ••); ! result.

The additional third checkpoint, (3), identifies the program state as
"preparing to write an updated disc record to the diRc"- The
checkpoint consists of three parts:

1. the primary process's stack

2. the disc file's sync information

3. the updated record

If the primary process fails between checkpoints 1 and 2, the backup
process reissues the WRITEREAD to the terminal. If the primary
process fails between checkpoints 2 and 3, the backup uses the
terminal entry and continues the processing of the transaction. If
the primary process fails subsequent to checkpoint 3, the backup uses
the latest checkpointing information to reexecute the write to disc.

Note that checkpoint (2) and its associated restart point could be
omitted. If this were done, a failure between checkpoints (2) and
(3) would require the operator to reenter the transaction.

5.3-20

Checkpointing Multiple Disc Updates

CHECKPOINTING FACILITY
Using the Checkpointing Facility

When performing a series of updates to one or more disc files, the
checkpoint for those updates can be performed at one point in the
program. The result is less system usage than that required for
several checkpoints.

The program should be structured so that the series of writes needed
to update a file are performed in a group. For each file to be
checkpointed in this manner, the <sync depth> parameter value of OPEN
is specified as the maximum number of calls to WRITE for the file that
are made between checkpoints for the file. Then, when a file is about
to updated by performing <sync depth> writes to the file, the file's
"sync block" and the data buffers about to be written to the file are
checkpointed. In any case, care must be taken to ensure the integrity
of any data referenced.

Considerations for No-Wait I/O

When taking over from a failure of the primary, any no-wait operations
initiated, but not completed by the primary before its failure, must
be reinitiated by the backup.

For example:

CALL READ rfnum, rbuffer, count) ; no-wait.

CALL WRITE (fnuml, buffer, count); no-wait.

CALL CHECKPOINT (stackbase) ;

fnum := -1;
CALL AWAITIO (fnum, .•); ! wait on any completion.

If a failure occurs, the backup begins executing following the
call to CHECKPOINT. However, there will be no outstanding i/o
operations.

A solution may be to checkpoint before the i/o operations are
initiated. However, in the case of $RECEIVE, because the process may
wish to have a read continually outstanding, this may not be possible.
For $RECEIVE, the read can be reinitiated when the backup takes over.

Action for CHECKPOINT Failure

If an "unable to communicate with backup" error occurs when
checkpointing (CHECKPOINT.<0:7> = 1 on return), the primary process
should stop the backup process. The primary process should then
create a new backup process when the STOP system message (i.e., # -5)
is received (see "System Message, Recommended Action"). If the
checkpoint failure persists, the failure should be noted accordingly,

5.3-21

CHECKPOINTING FACILITY
Using the Checkpointing Facility

and the primary should stop the creation attempts. (See the
"analyzeAcheckpointAstatus" example procedure under the heading
"Takeover by Backup" in this section.)

Note: A checkpoint failure of this type normally indicates a system
resource problem. Either the application process checkpoints
are unduly large, or the SHORTPOOL size in the processor module
where the failure occurs is too small.

SYSTEM MESSAGES

The following system messages are related to recovery from process and
processor module failures. Their formats, in word elements, are

• CPU Down Message. There are two forms of the CPU Down message:

and

<sysmsg>
<sysmsg>[l]

= - 2
= <cpu>

This form is received if a failure occurs with a processor
module being monitored. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -2
= $<process name>
= -1

This form is received by an ancestor process when the
indicated process name is deleted from the PPD because of a
processor module failure. This means that the named
process [pair] no longer exists.

Note: Following a takeover by a backup process because of a
processor module failure, the backup process, if it is an
ancestor process, can expect to receive the second form of
the CPU Down message. This message is received when a
descendant process [pair] of the backup no longer exists
because of the failure. Note that one of these messages
will be received for each descendant process [pair] of the
backup that disappears because of the processor module
failure.

• CPU Up Message

<sysmsg>
<sysmsg>[l]

= - 3
= <cpu>

This message is received if a reload occurs with a processor
module being monitored.

5.3-22

CHECKPOINTING FACILITY
Using the Checkpointing Facility

• Process Normal Deletion (STOP) Message

This message is received if a process deletion is due to a call to
the process control STOP procedure.

There are two forms of the STOP message:

<sysmsg>
<sysmsg>[l] FOR 4

- - 5
= process ID of deleted process,

This form is received by a deleted process's creator if the
deleted process was not named, or by one member of a process
pair when the other member is deleted.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -5
= $<process name> of deleted process [pair]
= -1

This form is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

• Process Abnormal Deletion (ABEND) Message

This message is received if the deletion is due to a call to the
process control ABEND procedure, or because the deleted process
encountered a trap condition and was aborted by the operating
system.

There are two forms of the ABEND message:

<sysmsg>
<sysmsg>[l] FOR 4

- - 6
= process ID of deleted process

This form is received by a deleted process's creator if the
deleted process was not named, or by one member of a process
pair when the other member is deleted.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -6
= $<process name> of deleted process [pair]
= -1

This form is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

Recommended Action

The following is the recommended action when the above messages are
received:

5.3-23

CHECKPOINTING FACILITY
Using the Checkpointing Facility

msg # action by primary

-2, cpu down: Ignore it. An exception to this is if the
second form of the cpu down message is
received; the "ancestor" process may desire
to recreate the failed process [pair].

-3, cpu up: Create the backup, etc.

-5, backup stopped: This shouldn~t happen, but if it does, create
the backup.

-6, backup abended: Create the backup, etc.

other message #: Take application-dependent action.

Note: For system messages #5 and #6, the program should assure that
the primary process does not loop continuously because of
continually failing backup process.

Following a read of a system message, a read on the $RECEIVE file
should be initiated.

The following is an example procedure which analyzes system messages
and takes appropriate action:

PROC analyzeAsystemAmessage;

BEGIN

5.3-24

CASE $ABS
BEGIN

rbuf) OF

" u.
1.

BEGIN 2 = cpu down.
backupAup := O;

END;
BEGIN ! 3 = cpu up.

stopAcount := O; ! this must be checkpointed.
CALL createAbackup { backupAcpu) ;

END; ! 3.
; ! 4.
BEGIN ! 5 = backup stopped.

backupAup := O;
stopAcount := stopAcount + l;
CALL createAbackup { backupAcpu) ;

END; ! 5.
BEGIN ! 6 = backup abended.

backupAup := O;
stopAcount := stopAcount + l;
CALL createAbackup (backupAcpu) ;

END; ! 6.
OTHERWISE ! other system message.

BEGIN

CHECKPOINTING FACILITY
Using the Checkpointing Facility

END;
END; ! case of system message.
issue a read to $RECEIVE.

CALL READ (rfnum, rbuf, count) ;
END; ! analyzeAsystemAmessage.

Note the "stopAcount" variable. "stopAcount" is used to
detect repeated backup process failures that are not due to
processor module failures. Note also that the variable is
cleared when a CPU Up message is received. Nonstop programs
should include such a variable to ensure that the primary
process does not loop, continually recreating its backup. If
"stopAcount" reaches a count of 10, then the problem should be
noted (e.g., a console message should be logged), and no
further attempt at creation should occur until the problem is
corrected.

TAKEOVER BY BACKUP

The following is the recommended action by the backup when it takes
over from the primary. The action taken is dependent on the reason
for the takeover:

If return is from CHECKMONITOR, call ABEND (primary~s stack has
not been checkpointed) .

If return is from CHECKPOINT, then:

reason (CHECKPOINT.<8:15>) action

0, primary stopped: Call STOP.

1, primary abended: Create backup, open its files,
etc.

2, primary cpu down: None (this will be taken care of
when a subsequent CPU Up system
message is received) .

3, primary called CHECKSWITCH: None.

any except 0: Issue a read on $RECEIVE.

The following example procedure analyzes the value returned from
CHECKPOINT and takes appropriate action:

5.3-25

CHECKPOINTING FACILITY
Using the Checkpointing Facility

PROC analyzeAcheckpointAstatus (status) ;
INT ?tatus; ! return value of CHECKPOINT.

BEGIN
INT .backupApid[0:3];

IF backupAup THEN ! analyzeAit.
CASE status.<0:7> OF

BEGIN
; ! 0 = good checkpoint.
BEGIN ! 1 = checkpoint failure.

! find out if backup is still running.
CALL MOM { backupApid) ;
CALL GETCRTPID (backupApid[3], backupApid);
IF = THEN ! backup still running.

BEGIN
! stop the backup.
CALL STOP { backupApid) ;
backupAup := O;

END;
END; ! 1.
BEGIN ! 2 = takeover from primary.

CASE status.<8:15> OF
BEGIN

! 0 = primary stopped.
CALL STOP;
! 1 = primary abended.
BEGIN r

backupAup := O;
stopAcount := stopAcount + l;
CALL createAbackup (backupAcpu) ;

END;
! 2 = cpu down.
backupAup := O;
! 3 = primary called CHECKSWITCH.
;

END; ! case of status. <8: 15>.
issue a read to $RECEIVE.

CALL READ (rfnum, rbuf, count) ;
END; ! 2.
BEGIN ! 3 = bad parameter to CHECKPOINT

CALL DEBUG;
END; ! 3.

END; ! case of status.<0:7>.
END; ! analyzeAcheckpointAstatus.

5.3-26

See the "analyzeAsystemAmessage" procedure in "System Message,
Recommended Action", for an explanation of the "stopAcount"
variable.

CHECKPOINTING FACILITY
Using the Checkpointing Facility

OPENING A FILE DURING PROCESSING

The possibility exists, when files are opened after process startup,
that a failure could occur during the file open. This could result in
the backup process opening the same file twice. The following is a
recommended procedure for opening a file during processing:

INT PROC fileopen {filename, fnum, flags, syncdepth);
INT .filename, .fnum, flags, syncdepth;

BEGIN
INT error := l;

WHILE error DO
BEGIN

CALL OPEN { filename, fnum, flags, syncdepth) ;
IF <> THEN

BEGIN
CALL FILEINFO { fnum, error) ;
RETURN error;

END;

At this point, the file is open in the primary.

IF { status := CHECKPOINT { stackbase , fnum , 1)) THEN
CALL analyzeAcheckpointAerror { status) ;

CALL FILEINFO { fnum, error) ;

END;

If this is executed because of a takeover from the
primary, error 16 {"file number has not been opened") is
returned from the call to file info. This will result
in the "WHILE error" loop being reexecuted.

IF backupAup THEN
BEGIN ! open the file in the backup.

CALL CHECKOPEN{ filename,fnum,flags,syncdepth,,,error) ;
IF < THEN

END;

BEGIN ! backup exists, but could not open the file.
CALL CLOSE { fnum) ;
RETURN error;

END;

RETURN O; ! successful open by primary and backup if it exists.
END; ! fileopen.

5.3-27

CHECKPOINTING FACILITY
Using the Checkpointing Facility

CREATION OF A DESCENDANT PROCESS (PAIR)

Like opening files during processing, the possibility exists during
creation of a descendant process or process pair that a failure could
occur. This could result in the backup process creating a process
already created by the primary. The following is a recommended method
for descendant process creation:

CALL CREATEPROCESSNAME (pname) ;

The system generates a unique process name.

IF (status := CHECKPOINT(stackbase,pname,4)) THEN
CALL analyzeAcheckpointAstatus (status) ;

CALL NEWPROCESS (progfile,,, cpu, descApid, error, pname);
IF error > 1 THEN

IF error.<0:7> <> 8 process name error.
AND error.<8:15> <> 10 can't communicate with sys men! THEN
BEGIN ! unable to create the process due to resource problem

! or coding error.

END;
ELSE

The following is necessary only if the backup needs the actual
<cpu,pin> of the descendant process:

5.3-28

BEGIN ! duplicate name error, caused by takeover by backup.
ppdentry ':=' pname FOR 3;
CALL LOOKUPPROCESSNAME(buf)
IF< THEN ••• ! process no longer exists.

! save descendant's process ID.
descApid ':=' pname FOR 4;

! determine actual <cpu,pin> of descendant.
IF ppdentry[3].<0:7> <> cpu THEN

END;

IF ppdentry[4].<0:7> = cpu AND ppdentry[4] <> 0 THEN
descApid[3] := ppdentry[4]

ELSE ••• ! the process no longer exists in the cpu.

CHECKPOINTING FACILITY
Advanced Checkpointing

This section is intended for application programmers who do not wish
to use the checkpointing facility, but want instead to write their own
checkpointing routines.

The following topics are discussed in this section:

• Backup Open

• File Synchronization Information

BACKUP OPEN

"Backup open" is a form of file open that permits a file to be open
concurrently by both the primary and backup of a process pair
regardless of the exclusion mode set by the primary process (except
that access and exclusion modes must be the same for both the primary
and the backup process, and file security is still enforced). This is
accomplished by passing two parameters to OPEN: the process ID of
the primary process which already has the file open, and the file
number that was returned to the primary when it opened the file.
After this form of OPEN, the primary and backup share access to the
file such that in the case of disc files, when one process locks
the file, the file becomes locked on behalf of both. (See figure
5-3.)

PRIMARY PROCESS: BACKUP PROCESS:

CALL OPEN (fname,prifnum)
•
•

create"' backup
• CALL MOM (pri"'pid)
• • . ,... ,... . ,... ,...

send msg (fname,pri fnum) __; read msg (fname, pri fnum)
•
•
•
•
•
•
•

CALL OPEN
•

(fname, back"'fnum, .. ,
prifnum, prf pid)

NOTE: create"'backup IS A DUMMY FUNCTION TO SIMULATE CREATION OF A
BACKUP PROCESS BY THE PRIMARY PROCESS. "MOM" IS A PROCESS
CONTROL PROCEDURE THAT RETURNS THE process ID OF A
PROCESS'S CREATOR. send""msg AND read""msg ARE DUMMY
FUNCTIONS TO SIMULATE SENDING AND RECEIVING INTERPROCESS
MESSAGES.

Figure 5-3. Backup Open by Backup Process

5.4-1

CHECKPOINTING FACILITY
Advanced Checkpointing

FILE SYNCHRONIZATION INFORMATION

File synchronization information is used by the system to determine if
an operation by a backup process after a failure of its primary
process is a new operation or a retry of an operation just performed
by the primary.

The use of the sync information is accomplished in three parts:

1. Sync Depth

The number of nonretryable operations that the file system is to
"remember" is specified in the <sync depth> parameter to the OPEN
procedure. This, normally, is the number of write operations that
a primary process performs to a file between checkpoint messages
to its backup.

An example of opening a file and specifying a synchronization
depth of one:

CALL OPEN (fname, fnum, ,1);

If opened by the backup process of a process pair, the primary
file number and process ID must also be specified.

2. GETSYNCINFO Procedure

When a primary application process is about to update a file by
performing "synchronization depth" writes to the file, it first
calls the GETSYNCINFO procedure, which returns "sync information"
for the file. This information (which, incidentally, is never
explicitly referenced by the application process) is then passed,
along with the data to be written, in a checkpoint message to the
backup application process. The primary process then performs the
write operations, and upon completion informs its backup.

3. SETSYNCINFO Procedure

If the primary application process fails, the backup process is
notified by the operating system. Before attempting error
recovery, the backup calls SETSYNCINFO with the sync information
received in the latest checkpoint message. This synchronizes the
retry operations that the backup is about to perform with any
writes that the primary was able to complete before it failed. The
backup then retries each write in the series (in the same order as
the primary). If any operation was completed successfully by the
primary, it is not performed by the file system; instead, just the
completion status is returned to the backup process.

For example, in the following sequence of file system operations, a
call to GETSYNCINFO precedes the file operations and a call to
SETSYNCINFO precedes the restart point:

5.4-2

TAKEOVER
BY BACKUP

x SETSYNCINFO (fl, sync); x

L I
(c)

RESTART POINT I
x

I

x
I

*** FAILURE OF
I

(c)

CHECKPOINTING FACILITY
Advanced Checkpointing

GETSYNCINFO(fl,sync);

checkpoint sync block, position,
and data.

POSITION(fl,-lD); ! position to eof.
WRITE(fl,flAbuffer,count);

PRIMARY ***
completion checkpoint

In this case, the write by the primary completed successfully, and
the write by the backup when it takes over is ignored. The backup
receives the completion status that the primary received prior to
the primary's failure.

Another procedure, RESETSYNC, is provided for cases where, after a
failure, the backup process wishes to execute its error recovery by
performing different operations than those of the primary, or where
the backup process does not have a current synchronization block and
the operations performed by the primary are not known. In either
case, it is undesirable to have the file system mistakenly relate an
operation performed by the backup to a different operation which was
performed by the primary. By calling RESETSYNC after taking over for
the failed primary process, the backup process ensures that this does
not occur.

A call to RESETSYNC causes a RESETSYNC system message (system message
-34) to be sent to the paired-access process file referenced in the
call, indicating that the sync ID for that file has been reset to
zero. Upon receipt of this message (receipt of RESETSYNC messages
must be enabled by setting OPEN <flags>.<l> = 1 when opening the
file), a server process using the sync ID mechanism should clear its
local copy of the sync ID value.

5.4-3

SECTION 6

TRAPS AND TRAP HANDLING

TRAPS

Certain critical error conditions occurring during process execution
prevent the normal execution of a process. The errors, which are for
the most part unrecoverable, cause traps to operating system trap
handlers. The conditions are:

trap no. descri}2tion

0 = illegal address reference
1 = instruction failure
2 = arithmetic overflow
3 = stack overflow
4 = process loop timer timeout

11 { %13) = memory manager read error
12 { %14) = no memory available
13 {%15) = uncorrectable memory error
14 { %16) = map parity error {Nonstop systems only)

• Illegal Address Reference - an address was specified that was not
within either the virtual code area or the virtual data area
allocated to the the process. Virtual code area allocation is
determined by the size of the program~s code area. By default,
virtual data area allocation is determined by the TAL compiler to
be equal to the number of memory pages needed for the program~s
global storage plus one memory page for the program~s data stack.
The size of the virtual data area can be increased via the
?DATAPAGES command of the TAL compiler, the MEM parameter of the
Command Interpreter RUN command, or the <memory pages> parameter of
the NEWPROCESS procedure.

• Instruction Failure - an attempt was made to execute a code word
that is not an instruction; an attempt was made by a non-
pr i vileged process to execute a privileged instruction; or on
Nonstop II systems, an illegal extended address reference was made.

• Arithmetic Overflow - the Environment Register "overflow" bit,
ENV.<10>, is a "l" and the Environment Register "traps enabled"
bit, ENV.<8>, is a "l". The overflow bit is set to "l" by the

6-1

TRAPS AND TRAP HANDLING
Introduction

hardware if the result of a signed arithmetic operation could not
be represented with the number of bits available for the particular
data type. Arithmetic overflow also occurs if a divide with a
divisor of zero is attempted. Note that the overflow bit in the
ENV register is not automatically cleared. If the application
process is to recover from the overflow condition, it must
specifically clear the ENV register overflow bit (otherwise,
another overflow trap will occur) •

The "traps enabled" bit of the ENV register is set to "l", by
default, when a new process is created. If the process does not
want a trap to occur when an overflow condition occurs, then the
process must clear the traps enabled bit. This can be accomplished
by executing the following TAL statements:

STACK 7; CODE (SETE) ;

sets the Register Stack Pointer, ENV.<13:15>, to seven (7);
clears ENV.<8:12>. ENV.<0:7> are not affected.

• Stack Overflow - an attempt was made to execute a procedure or
subprocedure whose {sub)local data area extends into the upper 32K
of the data area. Stack overflow also occurs, when calling an
operating system procedure, if there is not enough remaining
virtual data space for the procedure to execute {the procedure does
not execute) . The amount of virtual data space available is the
lesser of 'G'[32,767] and the upper bound of the process's virtual
data area (i.e., number of data pages specified when the process
was created). Operating system procedures require approximately
350 words of user data stack space to execute.

• Process loop timer timeout - occurs only if the process has enabled
"process loop timing" by making a call to the SETLOOPTIMER process
control procedure. This trap indicates that the new time limit
specified in the latest call to SETLOOPTIMER has expired.

• Memory Manager Disc Read Error - indicates that a hard (i.e.,
(unrecoverable) read error occurred while attempting to bring a
page in from virtual memory.

• No Memory Available - indicates that a page fault occurred but no
physical memory page is available for overlay.

• Uncorrectable Memory Error - indicates that an uncorrectable memory
error was detected.

• Map Parity Error (Nonstop systems only) - indicates that a parity
error was detected by the memory map hardware when a memory
reference was made.

6-2

TRAPS AND TRAP HANDLING
Introduction

TRAP HANDLING

Generally, the first five trap conditions are caused by coding errors
in the application program. The last four errors indicate a hardware
failure or, in the case of "no memory available", a configuration
problem; these are beyond the control of the application program.

If a trap condition is detected, one of three courses of action is
taken:

1. If a process has previously made a call to the ARMTRAP procedure,
control is transferred to the process's own trap handling
mechanism.

2. If the process has not provided its own trap handler, the DEBUG
procedure is called for the application process by the operating
system.

3. If a trap has occurred and another trap occurs before the process
can call ARMTRAP again, the process is deleted, and the creator of
the process is sent a message indicating that an abnormal deletion
occurred.

On Nonstop systems, if DEBUG is entered because of a trap, the reason
can be found in the current 'S'[-1:0] locations (use the DEBUG command
"D S-1, 2") :

's'[-1] =trap number
's'[O] = S register setting at the time of the trap

On Nonstop II systems, DEBUG automatically displays the trap number;
it is not available in the S register.

On both types of system, the P, ENV, and L register settings at the
time of the trap can be determined by displaying the register contents
(use the DEBUG command "D"). On Nonstop II systems, the S register
contents are also displayed. On Nonstop systems, if the trap occurred
while code in the system map was being executed, the process's stack
is cut back until the first user stack marker is found. In this case,
the value found in 's'[O] is %177777.

Note: On Nonstop systems, if DEBUG is entered because of a trap,
DEBUG sets the S register to

$MIN (LASTADDR,32767) - 400

- that is, to 400 words below the last available location in
the application process's data stack. The region from the S
register setting to the last available location is used by
DEBUG to call other operating system procedures. If the
process's L register pointed into this region at the time of
the trap, then referencing L-relative locations with DEBUG
produces meaningless results.

6-3

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

The ARMTRAP procedure is used to specify an entry point into the
application program where execution is to begin if a trap occurs. A
number representing the type of trap, as well as a stack marker of the
environment where the error occurred, is passed to the application
process.

The call to the ARMTRAP procedure is:

6-4

CALL ARMTRAP <trap label> , <trap address>

where

<trap label>, INT:value,

is a label (non-zero P register value) to initially arm the
trap mechanism. The label identifies a statement in the
program where control is to be transferred if a trap occurs.

is zero (0) to rearm the trap mechanism after a trap has
occurred and to cause the process to be re-launched. If
this is specified, the process's registers at the time of
the re-launch are set to the values indicated by the
following 'L' relative locations:

'L'[-3] = new value for s register
'L' [-2] = new value for p register
'L'[-1] = new value for ENV register
'L'[O] = new value for L register
'T'f11

1.J L.l.J = new value for RO
'L'[2] = new value for Rl
'L'[3] = new value for R2
'L'[4] = new value for R3
'L'[S] = new value for R4
'L'[6] = new value for RS
'L'[7] = new value for R6
'L'[8] = new value for R7

<trap address>, INT:value,

is an address specifying the local data area for the
application process's trap handler. This also indicates
where the trap number and stack marker at the time of the
trap are to be passed to the application process. After a
trap occurs, 's' and 'L' are set to <trap address> plus 5,
and the five words starting at <trap address> plus 1 are
(given relative to the new 'L' setting) :

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

'L'[-4] is the trap number: 0 =illegal address reference
1 = instruction failure

'L'[-3]

'L'[-2]
'L' [-1]
'L'

2 = arithmetic overflow
3 = stack overflow
4 = process loop timer timeout

11 = memory manager read error
12 = no memory available
13 = uncorrectable memory error
14 = map parity error

(Nonstop systems only)

is the value of 's' at the time of the trap; it
is %177777 if the trap occurred while executing
in the system code map
is the value of 'p' at the time of the trap
is the value of 'ENV' at the time of the trap
is the value of 'L' at the time of the trap

If <trap address> is passed as a value < 0, then any trap
will result in the process being stopped with an abnormal
deletion indication (i.e., ABEND message).

example:

CALL ARMTRAP @trap, @trapAaddr) ;

CONSIDERATIONS

• If the trap handler is to call any operating system procedures, at
least 350 words must be available between the trap address value
specified to ARMTRAP and the last word in the application's data
area or 'G'[32767], whichever is less.

• The trap handler data area should not be located below the memory
stack pointer, since the area below the stack pointer may be used
internally by the operating system before ARMTRAP is called. Some
programs which do so may operate correctly on Nonstop systems but
fail on Nonstop II systems.

• Any local variables in the application program's trap handling
procedure must be declared relative to the L register by using base
address equivalencing. Base address equivalencing relative to the
L register is of the form

<type> { [.] <name> = 'L' [{ + I - } <word offset>] } ••.

where

<type> is the data type of the variable <name>.

6-5

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

<word offset> specifies a positive or negative offset from
the L register where the variable exists.

Note that variables declared in this form cannot be initialized.

The trap handling procedure must contain a statement that
explicitly allocates storage for any locally declared variables
(see the next item).

• The Register Stack registers (i.e., R0-R7) upon entry to the
application process's trap handler contain the values that they had
at the time of the trap. To save these values, the first statement
of the trap handler must be

CODE(PUSH %777)

which will save the Register Stack contents. Local storage may
then be allocated by adding the appropriate value to 's' via a
statement of the form

CODE (ADDS <num locals>

where <num locals> is a LITERAL defining the number of words of
local storage needed.

• The value for the P register at the time of the trap depends
upon the trap condition:

trap

0
1
2
3
4

11
12
13

where

p register

I
I
I + 1
?
I
I
I
?

I = the address of the instruction being executed at the
time of the trap.

? = undefined.

• The <trap label> must be in the same procedure as the call to
ARMTRAP.

• If the application process's trap handler procedure is entered
because of a trap, an exit from the procedure must be via a call to
ARMTRAP with <trap label> specified as "0". The procedure must not
exit through the stack marker at the current L register location

6-6

(this would result in an invalid S register setting following the
exit} •

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

• If the trap handler is entered because of an overflow trap and the
application process intends to continue processing, then the
overflow bit in the ENV register value in ~L~[-1] of the trap
handler must be set to zero before the trap mechanism is rearmed.
Otherwise, another overflow trap will occur immediately.

• If ~L~[-3] (value of ~s~ at time of trap) is %177777, the trap
handler should not re-arm traps without first changing ~L~[-3] to
a more appropriate value. Otherwise, G[O] through G[lO] of the
application~s data stack will be overwritten.

EXAMPLE

The following is an example of an application procedure that displays
the current value of the P register when an arithmetic overflow trap
occurs. Following an arithmetic overflow trap, the trap mechanism is
re-armed, and the application process continues processing. If any
other trap occurs, the procedure calls the DEBUG procedure.

The example trap handler procedure is:

PROC overflowtrap;
BEGIN

INT regs = ~L~+l,
wbuf = ~L~+9,
preg = ~L~-2,

ereg = ~L~-1

trapnum = ~L~-4;
DEFINE overflow = <10>#;
STRING sbuf = wbuf;
LITERAL locals = 15;

! arm the trap.

R0-R7 saved here.
buffer for terminal i/o.
P register at time of trap.
ENV register at time of trap.
trap number.
overflow bit in ENV register.
string overlay for i/o buffer.
of words of local storage.

CALL ARMTRAP(@trap, $LMIN (LASTADDR, %77777) - 400);
RETURN;

! enter here on a trap
trap:

CODE (PUSH %777; ADDS locals);

saves R0-R7 and allocates local storage.

IF trapnum <> 2 THEN CALL DEBUG;

calls DEBUG if the trap is not an overflow condition.

sbuf ~:=~ "ARITHMETIC OVERFLOW AT %";
CALL NUMOUT(sbbuf[24], preg, 8, 6);
CALL WRITE(homeAterm, wbuf, 30);
IF <> THEN ..•

formats and prints the message on the home terminal.

6-7

TRAPS AND TRAP HANDLING
ARMTRAP Procedure

ereg.overflow := O; ! clear overflow.
CALL ARMTRAP { 0, $LMIN (LASTADDR, %77777) -400) ;

END;

the overflow bit must be cleared before the old values of
the registers are restored.

At the beginning of the program, the procedure is called:

CALL overflowtrap;

From this point on, any arithmetic overflows are logged on the home
terminal. For example, the following statement would cause the trap
handler to be entered:

I := I/J;

if the current value of J was zero.

6-8

SECTION 7

SECURITY SYSTEM

This section discusses the following topics:

• General Characteristics of the Security System
• System Users
• Defining Users
• Logging on
• Passwords
• Accessor ID
• Disc File Security
• Licensing
• Interface to the Security System
• Network Security

GENERAL CHARACTERISTICS

The GUARDIAN security system is designed to fulfill four objectives:

• To prevent inadvertent purging or overwriting of files

• To prevent unauthorized access to sensitive data files

• To prevent unauthorized interference with running programs
(processes)

• To provide a means of controlling intersystem accesses between
network nodes

However, the security system is designed so as not to interfere with
application design in systems where security is not desired.

Additional security may be provided by the application program. Some
examples of application program security checks are:

• Limitation of capability at a terminal

It is not necessary to have a GUARDIAN Command Interpreter running
at an application terminal. Therefore, the application program has
control over what the terminal operator sees, and can limit the
functions that he or she can perform.

7.1-1

SECURITY SYSTEM
Introduction

• Physical security

Programs that alter, or produce reports of, sensitive data may
include routines that check the terminal from which they are run.
This allows the application to restrict the running of the program
to a specific terminal that is physically secure (for example, in a
locked room for which there is only one key) •

• Special devices

These include authorization terminals such as badge readers,
fingerprint readers, and so on.

SYSTEM USERS

Persons who have access to the system are called users. In general,
there are four classes of users, with the following capabilities:

• Standard User

A standard user is allowed to perform standard operations such as
creating and purging disc files, running programs, displaying the
system status, and so on. However, a standard user is limited as
to the processes he or she can stop or debug.

• Group Manager

A group manager user is allowed to add and delete users within
the group, and to log on as any member of that group, as well as
performing the standard user operations.

• System Operator

A system operator user is allowed to reload processor modules, set
the system time-of-day clock, and alter the operating state of the
interprocessor buses, in addition to performing the standard user
operations.

• Super ID

The super ID user has total freedom to perform any operation in the
system. This includes debugging privileged programs, accessing any
file, logging on as any user without knowing the user's password,
adding new user groups to the security system, running privileged
programs that have not been licensed (see "Licensing"), and so on.

Additionally, for systems where security is not desired, all standard
users can log on under the same standard user name. In a system like
this, all users have equal access to all files in the system. Such a
system must still have a super ID user, however, and perhaps a system
operator user, so that their functions can be performed. Another
alternative is for all users to access the system as the super ID.

7.1-2

SECURITY SYSTEM
Introduction

DEFINING USERS

System users are defined to the system through the Command Interpreter
ADDUSER command. For each user, a user name and a corresponding
user ID must be specified:

ADDUSER <group name>.<user name> , <group id> , <user id>
\ I \ I

user name user ID

The combination of <group name>.<user name> is referred to generically
as a user name; similarly, the combination of <group id>,<user id> is
referred to generically as a user ID.

Specifically, the form of a user name is:

<group name>.<user name>

<group name> identifies an individual as a member of a group
(a department, for example).

<user name> identifies the individual within the group.

The form of a user ID, as a single numeric entity, is:

bits 0 through 7 = <group id>
bits 8 through 15 = <user id>

(in the range of 0 through 255)
(in the range of 0 through 255)

Assignment of user names and user ID~s is entirely at the discretion
of system management. Note, however, that a direct correspondence
exists between <group name> and <group id>. This means that all users
having the same <group id> must have the same <group name>. For
example, a system may have the following groups defined:

<group name>

ADMIN
MANUFACT
MARKETNG

SUPER

<group id>

1
2
3

255

As many as 256 groups, with up to 256 users each, are possible.

The following group ID~s and user ID~s have special significance:

255 , 255 = Super ID (who is also a system operator and a group
manager)

255 ,<255 = System operator

<255 255 = Group manager

0 0 = Null user

7.1-3

SECURITY SYSTEM
Introduction

Only the super ID can define new groups. The super ID can define new
users in any group. A group manager can define new users within his
or her group only.

Execution of the ADDUSER command causes the new user~s name and
accessor ID to be entered into a file named $SYSTEM.SYSTEM.USERID.
The Command Interpreter searches this file when the user logs on to
relate the user name supplied in the LOGON command with a user ID,
which is used internally in place of the user name. Note that only
processes running as the super ID user are allowed access to this
file (if it remains correctly secured}.

As an example, assume the group ADMIN has previously been defined with
a group ID of 1. To define a new user designated as ADMIN.BILL,
with a user ID of 2 (which must be presently unassigned in group 1),
the following ADDUSER command would be used:

ADDUSER ADMIN.BILL,1,2

This would cause the following entry to be made in the USERID file:

ADDUSER ADMIN.BILL,1,2
USERID FILE

USER NAME USER ID

ADMIN ANN 1,1
ADMIN BILL 1,2

ADM IN MANAGER 1,255

Naming Conventions

The following user names are conventionally given to the super ID
user, the system operator user, and the null user.

user Class

super ID
system operator
null

LOGGING ON

User Name

SUPER.SUPER
SUPER.OPERATOR
NULL.NULL

Before a user can gain access to the system, he or she must log on.
Logging on is accomplished by supplying the previously-defined user
name to the system by means of the Command Interpreter LOGON command.
For example, for a user defined as ADMIN.BILL to log on to the system,
the following LOGON command would be given:

LOGON ADMIN.BILL

7.1-4

SECURITY SYSTEM
Introduction

PASSWORDS

User names can be protected by passwords to prevent unauthorized
individuals from accessing the system. A user defines his or her
password by means of the Command Interpreter PASSWORD command. For
example, the user ADMIN.FRED wants to specify a password. First, a
LOGON command is executed to make ADMIN.FRED the current user:

LOGON ADMIN.FRED

Next, a PASSWORD command is executed and a password is specified:

PASSWORD KEEPOUT!

Whenever ADMIN.FRED logs on in the future, he must supply the password
KEEPOUT! as part of the LOGON command.

LOGON ADMIN.FRED,KEEPOUT!

Executing a PASSWORD command without specifying a password removes the
password protection from the current user.

ACCESSOR ID

Two accessor ID's are associated with a process: the creator accessor
ID and the process accessor ID. The creator accessor ID identifies
the user who initiated the creation of the process. The process
accessor ID is normally the same as the creator accessor ID; however,
it is the same as the process owner's user ID if file adoption has
been specified for the related program file.

The security system uses the process accessor ID when determining if
file access should be allowed (see "File Security"). In addition, the
process accessor ID is used to determine whether certain restricted
operations (STOP, DEBUG, and STEPMOM) can be performed by users other
than a process's creator and the super ID. Users who are allowed to
perform these operations are:

• The super ID

• A user process with a process accessor ID that is the same as
that of the target process's creator

• A user process with a process accessor ID equal to the target
process's accessor ID (this includes the caller to STEPMOM)

When a process is created, the operating system passes the process
accessor ID to the descendant process. This ID becomes the creator
accessor ID of the new process. The process accessor ID of the new
process can come from either of two sources: from the process accessor
ID of its creator (this is the usual case; see figure 7-1) or from
the owner ID of the process's program file (for special file security
applications; see "Adopting a Program File's Owner ID").

7.1-5

SECURITY SYSTEM
Introduction

(C1) PROCESS ACCESSOR ID = 8, 10

(P2) CREATOR ACCESSOR ID = 8, 10
PROCESS ACCESSOR ID = 8, 10

(P3) CREATOR ACCESSOR ID = 8, 10

PROCESS ACCESSOR ID = 8, 10

(P1) CREATOR ACCESSOR ID = 8,10

PROCESS ACCESSOR ID = 8, 10

Figure 7-1. Passing of Accessor !D's

A process can obtain its creator accessor ID and process accessor ID
via the CREATORACCESSID and PROCESSACCESSID procedures, respectively.

DISC FILE SECURITY

Each disc file has an owner, who is the user who created the file. A
file's owner is identified by an owner ID, which is the same as the
creating user's accessor ID.

Four types of access are allowed for a file: Read, Write, Execute
(run), and Purge. For each type of access, the file's owner can
specify the level of security that is to be enforced. Seven levels
of security are available:

7
6

5

4
2
1

0

7.1-6

=
=

=

=
=
=

=

local super ID only
member of owner's user class -- i.e., owner (local or remote);
group ID and user ID match those of file's owner
member of owner's community -- i.e., member of owner's group
(local or remote); group ID matches that of file's owner
any user (local or remote)
owner (local); group ID and user ID match those of file's owner
member of owner's group (local); group ID matches that of
file's owner
any user (local)

SECURITY SYSTEM
Introduction

When a disc file is created, it is assigned the owner's current
default security (controlled by the Command Interpreter DEFAULT and
VOLUME commands). The security for a file may be changed via the file
management SETMODE or SETMODENCMAIT procedure, or via the File Utility
Program SECURE command. The following codes for security levels are
used by the DEFAULT, VOLUME, and FUP SECURE commands:

II - II = local super ID only
llU" = member of owner's user class -- i.e. , owner (local or remote)
"C II = member of owner's community -- i.e. , member of owner's group

(local or remote)
"N11 = any user (local or remote)
II O" = owner (local)
"G II = member of owner's group (local)
II A" = any user (local)

When file opening is attempted, the local/remote attribute and the
process accessor ID are used to determine the accessor's security
level. If the opener is the local super ID, the security check is
bypassed. Otherwise, the security level is determined in two steps:

1. The file's owner ID is compared with the opener's process
accessor ID:

a. If the opener is the file's owner, or the group manager
(<group ID> is the same in both Io's and <user ID> of the
process accessor ID = 255), the security level is 2.

b. If the opener is not the owner, but is a member of the owner's
group (<group ID> of both Io's are equal), the accessor's
security level is 1.

c. If the opener is any other user, the accessor's security
level is 0.

2. If a remote process is making the access, 4 is added to the
accessor's security level.

The security system then compares the accessor's security level with
the file security level that has been specified for the requested
access (read, write, execute, or purge). Table 7-1 shows the allowed
accesses.

7.1-7

SECURITY SYSTEM
Introduction

Table 7-1. Aliowability of File Access

FILE SECURITY LEVEL

7 6 5 4 2 1 0

7 y y y y y y y

6 - y y y - - -

5 - - y y - - -
ACCESSOR ... S

SECURITY 4 - - - y - - -
LEVEL

2 - y y y y y y

1 - - y y - y y

0 - - - y - - y

For example, assume that a file owned by ADMIN.BILL has been secured
by the FUP command

SECURE BILLFILE, "AGNU"

which specifies that any local user can read from the file, only local
members of the ADMIN group can write to the file~ any network user can
execute the file, and only the owner can purge it. ADMIN.ANN, if she
were operating via the network from a remote system, could do nothing
more than execute the file, but if she were logged on locally she
could also gain read or write access.

The Command Interpreter ... s DEFAULT command allows a user to specify the
default file security for all files created by the user. This allows
protection for new files to be applied automatically.

Adopting a Program File ... s Owner ID

This feature of the security system allows the owner of a program
file {or the super ID) to specify that the process accessor ID of
any process created from that program file is to be the same as the
program file ... s owner ID instead of the creating process ... s process
accessor ID. {See figure 7-2.) This adoption affects the files that
the new process can access, and the "restricted" operations that can
be performed on or by the process. Adoption is specified via the
SETMODE and SETMODENCMAIT procedures and the File Utility Program
SECURE command.

7.1-8

PROGRAM Fl LE
FOR PROCESS P1
OWNER ID = 1, 112

THIS PROGRAM Fl LE SECURITY
HAS BEEN SET TO "USE OWNER
ID AS PROCESS ACCESSOR ID"

SECURITY SYSTEM
Introduction

(C1) PROCESS ACCESSOR ID = 8, 10

(P1) CREATOR ACCESSOR ID = 8,10
PROCESS ACCESSOR ID = 1,112

(P2) CREATOR ACCESSOR ID = 1,112
PROCESS ACCESSOR ID = 1,112

Figure 7-2. Effect of Adopting a Program File's Owner ID

This feature, along with the ability to change the ID of a file's
owner, enables the application programmer to create files that are
accessible only to certain programs.

For example, a record in an employee file may contain the employee's
name, address, and salary, among other items of information. If
normal file security were used, either the file or the program that
accesses the file could be restricted to particular users. However,
it may be desirable for all users to have file access for obtaining
name and address data, but not the employee's salary. This could be
done by having a program that accesses the file and returns the names
and addresses only. The program file's owner ID and the data file's
owner ID are the same; the program file's security permits any user to
run it; the data file's security permits reading and writing by the
owner only. When the query program is run, the new process's accessor
ID is set to that of the program file owner's. Thus, although the
program may be run by any user, it still provides controlled access
to the data file.

LICENSING

If a program contains privileged procedures (procedures having the
attributes CALLABLE or PRIV), it must be licensed before it can be
run in the system (unless run by the super ID) • Licensing can be
performed only by the super ID via the File Utility Program LICENSE
command.

Programs running in the privileged mode have total freedom to access
operating system tables and to execute privileged instructions and
procedures, so it is possible for such programs to circumvent the file
security checks and thereby gain access to any file. However, some
privileged programs are needed in the system (for example, the Command

7.1-9

SECURITY SYSTEM
Introduction

Interpreter). Through licensing, the installation may run privileged
programs that it has authorized, but users can not run unauthorized
privileged programs.

NorE: If a licensed file is opened with write access or read/write
access, the file becomes unlicensed.

INTERFACE TO THE SECURITY SYSTEM

User interface to the security system can be established through any
of three means:

• Through the Command Interpreter

• Through the File Utility Program (FUP)

• Through system procedure calls in user programs

Command Interpreter Interface

The following Command Interpreter commands provide the user interface
to the Security System:

ADDUSER command (super ID and group manager only)
DEFAULT command
DELUSER comroand (super ID and group manager only)
LOGOFF command
LOOON command
PASSWORD command
REMOI'EPASSWORD command
USERS command
VOLUME command

These commands are described in the "Command Interpreter" section of
the GUARDIAN aperating System Command Language and Utilities Manual.

FUP Interface

The following FUP commands provide the user interface to the Security
System:

GIVE command
LICENSE command (super ID only)
REVOKE command
SECURE command

These commands are described in the "File Utility Program" section of
the GUARDIAN g;>erating System Command Language and Utilities Manual.

7.1-10

Programmatic Interface

SECURITY SYSTEM
Introduction

The following procedures provide interface between user programs and
the Security System:

• Security System Procedures:

CREATORACCESSID
PROCESSACCESSID
USERIDTOUSERNAME
USERNAMETOUSERID
VERIFYUSER

• File System Procedures:

SETMODE
SETMODENOOAIT

• Process Control Procedure:

SETSTOP

Security interfacing with these procedures is described in sec. 7.2.

g;>erational Limitations

The security system limits the operations a given user is eligible to
perform, based on the classification of the user (see table 7-2).

7.1-11

SECURITY SYSTEM
Introduction

Table 7-2. Operational Restrictions

Classification Eligibility

Super ID User
Group Manager
Standard User

Command Interpreter

ADDUSER

DEBUG

DEFAULT

DELUSER

Defines new user to security system.

Defines new group/user to security system.

Debugs unprivileged process run by current user.

Debugs any process, including privileged ones.

Sets current user's default volume and subvolume
names and default security.

Deletes user from security system.

Deletes group from security system.

PASSWORD Sets current user's Lcx;ON password.

PAUSE Allows <cpu,pin> form for designated process if
both processes have same process accessor ID.

RUN

STOP

USERS

VOLUME

7.1-12

Allows <cpu,pin> form in any case.

Starts a program.

Starts an unlicensed privileged program.

Stops process run by current user (creator) , or
that has same process accessor ID as current
user, or that has stop mode of 0.

Stops any process.

Lists attributes of current user.

Lists attributes of all users in current group.

Lists attributes of all users in all groups.

Changes current user's current default volume
and subvolume names and default security for
this logon session only.

x x

x

x x x

x

x x x

x x

x

x x x

x x x

x x x

x

x x x

x

x x x

x x x

x x x

xx XI

I I I I

Classification

Super ID User
Grou_E._ Manager
Standard user

File Utility Program

SECURITY SYSTEM
Introduction

Eligibility

GIVE Changes ownership of file owned by current user. x x x

Changes ownership of any file. x

INFO Lists a file's characteristics. x x x

LICENSE Permits privileged program to be run by users x
other than super ID.

REVOKE Unlicenses privileged program. x

SECURE Sets file security of file owned by current user. x x x

Sets disc file security of any file. x

File System Procedures

CREATE Creates a file with default security. x x x

OPEN Opens a file if security check is passed. x x x

Opens any file. x

SETMODE and SETMODENCMAIT

Changes security of file owned by current user. x x x

Changes security of any file. x

Security System Procedures

CREATORACCESSID

Obtains process's creator accessor ID. x x x

PROCESS ACCESS ID

Obtains process's process accessor ID. x x x

7.1-13

SECURITY SYSTEM
Introduction

Classification Eligibility

SuEer ID User
Group Manager I
Standard User

Process Control Procedures

STEPMCJ.1 Changes creator process ID for designated process x x
if both processes have same process accessor ID.

Changes creator process ID for designated
process regardless of process access or ID""s.

STOP Stops process started by creator, or that has x x
same process accessor ID as creator, or that
has stop mode of 0.

Stops any process.

I
I

x

x

x

x

NarE: In the preceding descriptions, the "current user" is the process
that invokes a command or procedure. The eligibility to perform
operations is determined by checking the process accessor ID of
that process.

NETWORK SECURITY

A user at system X wishing to access a file (disc file, device, or
process) residing on system Y must satisfy each of the following three
requirements:

• The user on system X must also be a user on system Y.

• The user on system X must know the correct remote password for
accessing files on system Y.

• The user on system X must have the authority to access a disc file
on system Y (explained previously under "File Security").

Global Knowledge of User ID""s

Each user is known to the computer by a user name, such as ADMIN.BILL,
and a user ID, such as 1,2. A user can access files on a system only
if his user name and user ID are known to that specific system. So if
ADMIN.BILL, whose user ID is 1,2, wishes to access a file on a remote
system, that system must also have a user named ADMIN.BILL whose user
ID is 1,2.

7.1-14

SECURITY SYSTEM
Introduction

Remote Passwords

Once the user ID~s of network users have been added to each node of
the network, a system of remote passwords is used to specify whether
remote access is permitted.

Each user ID has associated with it a set of remote passwords. One,
specified with the command

REMorEPASSWORD \<my system name> , <allow-access password>

designates the password required for a remote user to access this
system. The others, specified by

REMorEPASSWORD \<remote system name> , <request-access password>

define passwords used on attempts to access a remote system; the
attempt is successful if the request-access password matches the
allow-access password previously specified by the remote user.

Both types of passwords consist of up to 8 nonblank characters.
Control characters are allowed, and lower-case characters are not
upshifted.

Consider two systems, named \A and \B, in a network. At each system,
a user named ADMIN.BILL, with user ID 1,2, has been defined.

At system \A, a user enters the commands:

LOGON ADMIN.BILL
REMorEPASSWORD \A, SHAZAM

ADMIN.BILL~s allow-access password is SHAZAM. In the future, any
user who logs on at a remote system as ADMIN.BILL must specify SHAZAM
as his request-access password to be able to access system \A. For
example, at system \B, a user enters:

LOGON ADMIN.BILL
REMorEPASSWORD \A, SHAZAM

This user now has remote access to system \A as ADMIN.BILL, and may
now perform such operations as creating processes and accessing
certain disc files.

A remote password, once defined, remains in effect until modified by a
subsequent REMorEPASSWORD command. ADMIN.BILL may log off and then
log on again without having to respecify his remote passwords.

ADMIN.BILL, logged on at system \B, does not have quite the same
status at \A as the ADMIN.BILL at \A. ADMIN.BILL at \B is a remote
accessor of \A; consequently, he cannot access disc files on \A that
are secured for local access only.

7.1-15

SECURITY SYSTEM
Introduction

However, ADMIN.BILL at \A has no access at all to system \B. For
ADMIN.BILL to gain access to \B, an allow-access password must be
de-fined for ADMIN.BILL at \B, matched by a request-access password
at \A. For example, at \B:

L<:X;ON ADMIN.BILL
REMOI'EPASSWORD \B, aardvark

and at \A:

L<:X;ON ADMIN.BILL
REMOTEPASSWORD \B, aardvark

Now ADMIN.BILL at system \A can access system \B.

The following considerations apply to remote passwords:

• As shown previously, the absence of an allow-access password
prevents remote access as that user. Thus, if MARKETNG.SUE does
not supply an allow-access password, no remote user with the same
user ID can access MARKETNG.SUE~s system.

• The command

REMOTEPASSWORD \<system name>

removes any previously designated password (either for the local
system or a remote one) • The command

REMOTEPASSWORD

removes all remote passwords.

• A request-access password can be issued before the corresponding
allow-access password. Remote access is permitted as soon as both
remote passwords have been defined (provided they match) •

• Remote passwords are independent of local passwords. In the
preceding example, ADMIN.BILL could issue the command

PASSWORD <local password>

at either system to prevent unauthorized persons from logging on
as ADMIN.BILL.

7.1-16

SECURITY SYSTEM
Introduction

Process Access

Several security considerations relate to remote processes:

• With respect to a given system, each process in the network is
either "local" or "remote." The following rules state that:

A process is remote if it is running in a remote system.

A process is remote if its creator is in a remote system.

A process is remote if its creator is remote.

By the last two rules, even a process that is running in a given
system may be remote with respect to that system. These rules
prevent a remote process from creating another process to access
a file whose security specifies local access only.

• A remote process cannot suspend or activate a local process. A
remote process cannot stop a local process, unless the stop mode
of the local process is 0 (anyone may stop it).

• A remote process cannot put a local process into DEBUG.

Programmatically Logging On

A process that is remote with respect to the system in which it is
running can become local. For example, a user on system \A can become
local in respect to system \B by starting a Command Interpreter in \B
and logging on. The creator of the CI in \B is the user's CI in \A.
According to the preceding rules, the CI in \B is remote with respect
to \B, but the user's L(X;ON command causes that CI to become local
with respect to \B. So the concept of local and remote users becomes
equivalent to that of local and remote processes: A user is local (or
remote) with respect to a given system if his Command Interpreter is
local (or remote) with respect to that system. A process can make
itself local with respect to the system in which it is running by
programmatically logging on to that system. This is done by calling
the VERIFYUSER procedure, which verifies a user's password and
optionally allows a process to make the user's ID its own, thereby
becoming local with respect to the system in which it is running.

7.1-17

SECURITY SYSTEM
Programmatic Interface

The following procedures provide the interface between user programs
and the security system:

• Security System Procedures

CREATORACCESSID
PROCESSACCESSID
USERIDTOUSERNAME
USERNAMETOUSERID
VERIFYUSER

• File System Procedures

SETMODE
SETMODENOWAIT

• Process Control Procedure

SETS TOP

7.2-1

SECURITY SYSTEM
CREATORACCESSID Procedure

The CREATORACCESSID procedure is used to obtain the accessor ID of the
process that created the calling process.

The call to the CREATORACCESSID procedure is:

<accessor id> := CREATORACCESSID

where

<accessor id>, INT,

is returned the accessor ID of the caller~s creator. It is
returned in the form

<accessor id>.<0:7> = group ID
<accessor id>.<8:15> = user ID

example:

creatorid := CREATORACCESSID;

CONSIDERATIONS

• The accessor ID returned from CREATORACCESSID is that of the
calling process~s actual creator, which is not necessarily
the same as that returned from a call to the MOM procedure.

7.2-2

SECURITY SYSTEM
PROCESSACCESSID Procedure

The PROCESSACCESSID procedure is used to obtain the accessor ID of the
the calling process.

The call to the PROCESSACCESSID procedure is:

<accessor id> := PROCESSACCESSID

where

<accessor id>, INT,

is returned the accessor ID of the caller. It is returned
in the form

<accessor id>.<0:7> = group ID
<accessor id>.<8:15> = user ID

example:

myaccessorid := PROCESSACCESSID;

CONSIDERATIONS

• For a given process, the accessor ID returned from the
PROCESSACCESSID procedure is normally the ,same as that returned
from the CREATORACCESSID procedure. The only time that the
accessor ID's may differ is when a program file is run for which
"set accessor ID to program file's owner ID" has been specified.
In that case, the accessor ID returned by PROCESSACCESSID is
the same as that of the program file's owner.

7.2-3

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

The SETMODE and SETMODENOWAIT procedures can be used in a program
to set and/or obtain a file's security and owner ID.

Note: Only a file's owner or the super ID is allowed to set file
security or change the owner ID.

The SETMODE functions related to security are given in table 7-3.

Table 7-3. SETMODE Functions Related to Security

<function>

1 = set disc file security:

<parameter l>

.<O> = 1, for program files only. Set accessor's ID to
program file's ID when program file is run .

. <l>, clearonpurge file attribute; if set, clear data in
the file before purging file directory .

. <4:6>, ID allowed for read .

. <7:9>, ID allowed for write .

• <10:12>, ID allowed for execute •

• <13:15>, ID allowed for purges

For each of the fields from .<4:6> through .<13.15>,
the value may be any one of the following:

0 = any user (local)
1 = member of owner's group (local)
2 = owner (local)
4 = any user (local or remote)
5 = member of owner's community i.e., member of

owner's group (local or remote)
6 = member of owner's user class -- i.e.,

owner (local or remote)
7 = super ID only (local)

<parameter 2> is not used.

2 = set disc file owner ID:

7.2-4

<parameter l>.<0:7> = group ID
.<8:15> = user ID

<parameter 2> is not used.

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

Some examples:

First, to change a file's security setting:

LITERAL security = %0222;

CALL SETMODE (fnum, 1, security) ;
IF < THEN • • • ;

sets the file's security to

read = any
write = owner
execute = owner
purge = owner

Second, to specify that the file's owner ID should be used as the
process's accessor ID when the program file is run:

LITERAL progAsec = %102202;

CALL SETMODE (pfnum, 1, progAsec) ;
IF < THEN • • • ;

sets the file's security to

set accessor ID to owner's ID when file is run
read = owner
write = owner
execute = any
purge = owner

Third, to change the file's owner ID:

ownerAid.<0:7> := newAgroupAid;
ownerAid.<8:15> := newAuserAid;
CALL SETMODE (fnum, 2, ownerAid) ;
IF < THEN • . • ;

sets the file's owner ID to the value specified in "ownerAid".

7.2-5

SECURITY SYSTEM
Functions for SETMODE and SETMODENOWAIT Procedures

Fourth, to obtain the file~s current security setting:

INT filesec;

CALL SETMODE { fnum, 1,,, filesec) ;
IF< THEN •.• ;

returns the file~s current security settings in "filesec".

Finally, to obtain the file~s owner ID:

CALL SETMODE { fnum, 2,,, ownerAid) ;
IF < THEN • • • ;

returns the file~s owner ID in "ownerAid".

7.2-6

SECURITY SYSTEM
SETSTOP Procedure

The SETSTOP procedure permits a process to protect itself from being
deleted by any process but itself or its creator.

The call to the SETSTOP procedure is:

where

<last stop mode>, INT,

is returned either the preceding value of <stop mode>,
or -1 if an illegal mode was specified.

<stop mode>, INT:value,

specifies a new stop mode. The modes are:

0 = stoppable by any process

1 = stoppable only by

• the super ID
• a process whose process accessor ID = this process~s

creator
• a process whose process accessor ID = this process~s

accessor ID (this includes the caller to STEPMOM)

2 = unstoppable (privileged users only)

example:

lastAmode := SETSTOP(newAmode) ;

CONSIDERATIONS

• The default stop mode when a process is created is 1.

• If a process~s stop mode is 1 and a STOP is issued to it by a
process without the authority to stop it, the process does not
stop; it is deleted, however, if and when the stop mode is
changed back to 0.

7.2-7

SECURITY SYSTEM
USERIDTOUSERNAME Procedure

The USERIDTOUSERNAME procedure returns the user name, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user ID.

The call to the USERIDTOUSERNAME procedure is:

CALL USERIDTOUSERNAME <id name>

where

<id name>, INT:ref :8,

on the call, contains the user ID to be converted to a user
name. The user ID is passed in the form:

<id name>.<0:7>
<id name>.<8:15>

= group ID {0:255}
= user ID {0:255}

on the return, contains the user name associated with the
specified user ID in the form:

<id name> FOR 4 = group name, blank filled
<id name>[3] FOR 4 = user name, blank filled

condition code settings:

< (CCL) indicates that <id name> is out of bounds, or that
an i/o error occurred with the $SYSTEM.SYSTEM.USERID
file.

= (CCE) indicates that the designated user name was returned.
> (CCG) indicates that the specified user ID is not defined.

example:

7.2-8

idAname.<0:7> := groupAid;
idAname.<8:15> := userAid;
CALL USERIDTOUSERNAME (idAname) ;
IF<> THEN ••• ;

SECURITY SYSTEM
USERNAMETOUSERID Procedure

The USERNAMETOUSERID procedure returns the user ID, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user name.

The call to the USERNAMETOUSERID procedure is:

CALL USERNAMETOUSERID <name id>

where

<name id>, INT:ref:l,

on the call, contains the user name to be converted to a
user ID. The user name is passed in the form:

<name id> FOR 4 = group name, blank filled
<name id>[3] FOR 4 = user name, blank filled

on the return, contains the user ID associated with the
specified user name in the form:

<name id>.<0:7>
<name id>.<8:15>

condition code settings:

= group ID {0:255}
= user ID {0:255}

< (CCL) indicates that <name id> is out of bounds, or that
an i/o error occurred with the $SYSTEM.SYSTEM.USERIDS
file.

= (CCE) indicates that the designated user ID was returned.
> (CCG) indicates that the specified user name is not

defined.

example:

nameAid ':=' groupAname FOR 4;
nameAid[3] ':=' userAname FOR 4;
CALL USERIDTOUSERNAME (nameAid) i
IF<> THEN •.• ;

7.2-9

SECURITY SYSTEM
VERIFYUSER Procedure

The VERIFYUSER procedure verifies, and optionally logs on, a user.

The call to the VERIFYUSER procedure is:

CALL VERIFYUSER <user name or id>

, <logon>, <default>, <default length>

where

7.2-10

<user name or id>, INT:ref:l2,

is an array containing either the name or user ID of the
user to be verified or logged on, as follows:

or

<user name or id>[0:3] =group name, blank filled
<user name or id>[4:7] = user name, blank filled

<user name or id>[0].<0:7> =group ID
<user name or id>[0].<8:15> =user ID
<user name or id>[l:7] = zeros (ASCII nulls)

In either case,

<user name or id>[8:11] =password, if supplied,
blank filled

<logon>, INT:value,

if present, has the following meaning:

0 : verify user, but do not log on
<> 0 : verify user and log on

if omitted, a value of 0 is understood.

SECURITY SYSTEM
VERIFYUSER Procedure

<default>, INT:ref:l8,

if present, is returned information regarding the user
specified in <user name or id>:

<default>[0:3] =group name, blank filled
<default>[4:7] = user name, blank filled
<default>[8].<0:7> =group ID
<default>[8].<8:15> =user ID
<default>[9:12] =default volume, blank filled
<default>[l3:16] = default subvolume, blank filled
<default>[l7] =default file security, as follows:

<default>[l7].<4:6> = read

l
0 = "A" 4 = "N"

<default>[l7].<7:9> = write 1 = "G" 5 = "C"
<default>[l7] .<10:12> = execute 2 = "O" 6 = "U"
<default>[l7].<13:15> = purge 7 = " "

<default length>, INT,

is the length, in bytes, of the <default> array; it must
be given if <default> is given. This number should always
be specified as 36; in the future, new fields may be added
to <default>, requiring <default length> to become larger.

condition code settings:

< (CCL) indicates that a buffer is out of bounds, or that an
i/o error occurred on the user ID file.

= (CCE) indicates a successful verification and/or logon.
> (CCG) indicates that there is no such user, or that the

password is invalid.

example:

user := 3 '<<' 8 + 17;
user[l] ':=' 0 & user[l] FOR 6;
user[8] ':='password FOR 8;

user ID 3,17
all zeros

logon := l; ! log this user on
CALL VERIFYUSER(user, logon, default, 36) ;
IF< THEN ••• ! buffer or i/o error
ELSE IF> THEN .•. ! no such user, or bad password
ELSE •.. ! successful

7.2-11

SECURITY SYSTEM
VERIFYUSER Procedure

CONSIDERATIONS

• Following a successful logon via this procedure, a process is
considered to be local with respect to the system on which it
is running.

• A process that passes an invalid password to VERIFYUSER for the
third time is suspended for 60 seconds.

7.2-12

SECTION 8

MEMORY MANAGEMENT PROCEDURES

The GUARDIAN operating system provides six basic procedures for the
management of memory in extended segments. These procedures,
available only on Nonstop II systems, are as follows:

ALLOCATESEGMENT

DEALLOCATESEGMENT

DEFINEPOOL

GETPOOL

PUT POOL

USESEGMENT

allocates an extended memory segment for use by
the calling process

deallocates an extended memory segment

designates a portion of a user's stack or an
extended segment for use as a buff er pool

obtains a block of memory from a buffer pool

returns a block of memory to a buffer pool

supplies the segment ID of an extended memory
segment so that the calling process may use
the segment

Several privileged procedures are also provided for advanced memory
management. These procedures are described in section 8.2.

SEGMENTED MEMORY (Nonstop II systems only)

The normal environment for code execution in the processor is a
process. Besides a current register state, each process on the
Nonstop II system has a segment (possibly shared) for its code space.
This segment is loaded into MAP[2,0:63] when the process runs.
(For a definition of the MAPs, see the Nonstop II System Description
Manual.) It is allocated by the operating system, and is one of four
possible code spaces. It is addressable data as logical segment #2,
and if the process is currently executing in this code space, as
logical segment #3 as well. If the process is executing in user mode,
the segment is read-only.

8.1-1

MEMORY MANAGEMENT PROCEDURES
Segmented Memory (Nonstop II systems only)

In addition, each process may have a library segment (possibly
shared), which is loaded into MAP[4,0:63] when the process runs. If
necessary, this segment is allocated by the operating system.

A process's data space is a unique segment that is loaded into
MAP[0,0:63] when the process runs. This segment is allocated
automatically by the operating system. It is addressable either in
the usual way as the process's data stack, or as his logical segment
iO. The absolute segment number is kept in the PCB. There is one
segment of this type per process.

In addition, a process may also have an extended data space in one or
more segments (possibly shared). If so, the base and limit for this
address space is set when the process is active. A non-privileged
user can use only one data segment at a time, since only one logical
extended address can be bounds checked and translated into an
absolute extended address. This means that the non-privileged user
cannot transfer data directly from one of these segments to another.
If such a transfer is required, he must move the data into his data
stack, put the required segment in use, and move the data. Note,
however, that these segments can be larger than 128K bytes.

The rest of the MAP contains the extended address space cache, the
system data space, the two system code spaces, and i/o buffers that
are randomly allocated by i/o processes.

This process environment can be used in several ways:

1. Extended user spaces can be provided by defining one or more
segments, then allowing the user to access them by setting the
segment bounds and limit register to define that space when rhP
process is executing in user mode. This allows a user to have
far more than 128K bytes of addressable data space. A user
process can have several of these spaces, but an explicit
switch must be done between them.

2. The file system control blocks and buffers can be placed in a
segment (or part of a segment) • When the file system is
running, the segment base and limit registers can be set to
this space. The file system runs in privileged mode (so that it
can access the message system), but all its memory references
can be checked to see that they are within either the user's
stack or the control block/buffer segment. By assigning a
process a set of whole pages, the system can protect
individual processes from each other. Bus transfers are made
to and from this buffer segment.

3. I/O processes can run with their own data space for such items
as OCB's and FCB's. They can set the segment bounds to point
to the pages of the "i/o space" that they have been assigned.
By assigning a process a set of whole pages, the system can
protect individual processes from each other. Bus transfers
are made to and from either the segment space or the process~s
data space, as required by the process.

8.1-2

MEMORY MANAGEMENT PROCEDURES
Segmented Memory (Nonstop II systems only)

The following procedures are related to segmented memory:

ALLOCATESEGMENT allocates an extended memory segment for use by
the calling process

DEALLOCATESEGMENT deallocates an extended memory segment

USESEGMENT supplies the segment ID of an extended memory
segment so that the calling process may use the
segment

SPACE MANAGEMENT WITHIN A SEGMENT

In addition to the segmented memory procedures, the GUARDIAN
operating system on the Nonstop II system provides a procedure
allowing a process to designate a portion of its stack or a
portion of an extra segment for a buffer pool. Once the pool is
set up, the process may allocate and free variable-size buffers
from the pool by calling system procedures.

Most programs in the system use private pools which are in
their own segments. However, two pools are defined for shared
access by privileged callers. They are SYSPOOL, which controls
all free space in the system data space, and MAPPOOL, which
controls free space that is mapped into maps 6 through 14. When
space is allocated or returned to these pools, the procedures
use MUTEXON/OFF to provide mutual exclusion to the pool data
structures. Any data structure errors in either of these pools
results in a processor halt.

The following procedures are related to memory pool management:

DEFINE POOL designates a portion of a user's stack or an
extra segment for use as a buffer pool

GET POOL obtains a block of memory from a buffer pool

PUT POOL returns a block of memory to a buffer pool

8.1-3

MEMORY MANAGEMENT PROCEDURES
ALLOCATESEGMENT Procedure (Nonstop II systems only)

The ALLOCATESEG~ENT procedure allocates an extended memory segment for
use by the calling process. This procedure is available only on
Nonstop II systems.

The call to the ALLOCATESEGMENT procedure is:

<status> := ALLOCATESEGMENT <segment id>

, <segment size>
, <filename>
, <pin>)

where

8.1-4

<status>, INT,

is returned a status word having one of the following
values:

0
1-999

-1
-2
-3
-4
-5
-6
-7
-8
-9

no error
file system error related to the CREATE or
the OPEN of the swap file (see <filename>
parameter)
illegal <segment id>
illegal <segment size>
bounds violation on <filename>
illegal combination of options
unable to allocate segment space
unable to allocate page table space
security violation on attempt to share segment
<pin> does not exist
<pin> does not have the segment allocated

<segment id>, INT,

is the number by which the process wishes to refer to the
segment. Segment ID~s in the range of:

0-1023
1024-2047
2048-4095

may be specified by user processes
are reserved for Tandem-supplied software
may be used only by privileged processes

No process may supply a segment ID greater than
4095. Segment ID 2048 is reserved for the process file
segment (PFS) , and segment ID~s 3072 through 4095 are
assumed to be i/o segments.

MEMORY MANAGEMENT PROCEDURES
ALLOCATESEGMENT Procedure (Nonstop II systems only)

<segment size>, INT:32,

if present, is the number of bytes that the segment must
hold. This value must be greater than zero and less than
%777777777D. If this parameter is not supplied, then the
<pin> parameter must be supplied.

<filename>, INT:ref:l2,

if present, is the name of a "swap file" to be associated
with the segment. If the file exists, all data in the
file through the end-of-file is used as initial
data for the segment. If the file does not exist, it
is created, with a file size equal to the segment size.
When the process terminates, any data still in memory
is written back out to the file. If the parameter is
not specified, or a blank terminated volume is supplied,
a temporary file is created for the segment on either
the program file's volume or the specified volume,
respectively. The procedure assures that all extents for
the file have been allocated.

If a temporary file name is specified in the call to
ALLOCATESEGMENT, the system will simply open the file and
not attempt to create it. When the segment is deallocated,
the swapfile will be purged automatically.

<pin>, INT,

if present, designates that the segment specified by
<segment id> is to be shared with the process specified
by <pin>. In order for this to occur, the processes
must share the same access ID, or this process's access ID
must be the group manager for the other's access ID, or
this process' access ID must be the super ID.

examples:

status:= ALLOCATESEGMENT (segmentAid, segAsize, swapAfile);
! standard call to create a user segment;

"swapAfile" parameter may be omitted

status := ALLOCATESEGMENT { segmentAid,,, pin) ;
! call to share the segment "segmentAid"

with the process "pin"

8.1-5

MEMORY MANAGEMENT PROCEDURES
DEALLOCATESEGMENT Procedure (Nonstop II systems only)

The DEALLOCATESEGMENT procedure deallocates an extended memory segment
when it is no longer needed by the calling process. This procedure is
available only on Nonstop II systems.

The call to the DEALLOCATESEGMENT procedure is:

CALL DEALLOCATESEGMENT <segment id> , <flags>

where

<segment id>, INT,

is the segment number of the segment, as specified in
the call to ALLOCATESEGMENT that created it.

<flags>, INT,

if present, has the form:

<0:14>
<15>

must be zero (0) •
=l indicates that dirty pages in memory are

not to be copied to the swap file
(see ALLOCATESEGMENT procedure) •

=O indicates that dirty pages in memory are
to be copied to the swap file.

If omitted, this parameter defaults to zero.

example:

CALL DEALLOCATESEGMENT (segmentAid) ;

8.1-6

MEMORY MANAGEMENT PROCEDURES
DEFINEPOOL Procedure (Nonstop II systems only)

The DEFINEPOOL procedure designates a portion of a user~s stack or an
extended segment for use as a buffer pool. This procedure is
available only on Nonstop II systems.

The call to the DEFINEPOOL procedure is:

<status> := DEFINEPOOL <pool head> , <pool> , <pool size>

where

<status>, INT,

is returned a status word having one of the following
values:

0 no error
1 bounds error on <pool head>
2 bounds error on <pool>
3 invalid <pool size>
4 <pool head> and <pool> overlap

<pool head>, INT:ref:EXT:l9,

is a pointer to the memory space, within an allocated
segment, to be used as the pool header.

<pool>, INT:ref:EXT,

is a pointer to the memory space to be used for the pool.

<pool size>, INT:32,

is the size of the pool in bytes. This number must
be a multiple of four bytes, and cannot be less than
32 or greater than %100000000.

example:

status := DEFINEPOOL (pool Ahead, pool, 2048) ;

8.1-7

MEMORY MANAGEMENT PROCEDURES
GETPOOL Procedure (Nonstop II systems only)

The GETPOOL procedure obtains a block of memory from a buffer pool.
This procedure is available only on Nonstop II systems.

The call to the GETPOOL procedure is:

<address > := GETPOOL <pool head> , <block size>

where

<address>, INT:32,

is returned the address of the memory block obtained if
the operation was successful, or -lo if an error occurred
or if <block size> was zero.

<pool head>, INT:ref:EXT:l9,

is a pointer to a pool head previously defined by
a call to DEFINEPOOL.

<block size>, INT:32,

is the size, in bytes, of the memory to be obtained from
the pool. This number cannot be greater than %3777700.
To check data structures without getting any memory from
the pool, <block size> may be set to zero.

condition code settings:

< (CCL) indicates that <block size> was out of range, or
that the data structures were invalid: -lo is
returned.

= (CCE) indicates that the operation was successful:
extended address of block returned if <block size>
greater than zero, or -lo returned if <block size>
equal to zero.

> (CCG) indicates that insufficient memory was available:
-lo is returned.

examples:

bufAptr := GETPOOL (pool Ahead, 128) :
dummyAvar := GETPOOL (pool Ahead, 0) :

CONSIDERATIONS

returns 128 bytes
checks data

structures
\

• A process that has destroyed data structures may get a bounds
violation trap on a call to GETPOOL or PUTPOOL.

8.1-8

MEMORY MANAGEMENT PROCEDURES
PUTPOOL Procedure (Nonstop II systems only)

The PUTPOOL procedure returns a block of memory to a buffer pool.
This procedure is available only on Nonstop II systems.

The call to the PUTPOOL procedure is:

CALL PUTPOOL <pool head> , <address>

where

<pool head>, INT:ref:EXT:l9,

is a pointer to the pool head of the pool from which
the block of memory was obtained.

<address>, .EXT

is the address of the block to be returned to the pool.

condition code settings:

< (CCL)
= (CCE)
> (CCG)

example:

indicates that the data structures were invalid.
indicates that the operation was successful.
is not returned by PUTPOOL.

CALL PUTPOOL (pool Ahead, bufAptr) ;

CONSIDERATIONS

• A process that has destroyed data structures may get a bounds
violation trap on a call to GETPOOL or PUTPOOL.

8.1-9

MEMORY MANAGEMENT PROCEDURES
USESEGMENT Procedure (Nonstop II systems only)

The USESEGMENT procedure supplies the segment ID of an extended
memory segment so that the calling process may use the segment.
This procedure is available only on Nonstop II systems.

The call to the USESEGMENT procedure is:

<old segment id> := USESEGMENT (<segment id> , <pin>)

where

<old segment id>, INT,

is returned the segment ID of the previously used segment,
if any: otherwise, -1.

<segment id>, INT,

if present, is the segment ID of the segment to be used,
or -1 if no segment is to be used. If this parameter is
not supplied, the current segment remains unchanged.

<pin>, INT,

if present, is the process number of another process
whose segment is to be shared by the calling process.
This parameter may be specified only by privileged
callers.

condition code settings:

< (CCL)

= (CCE)
> (CCG)

indicates that <segment id> is not allocated, or
that <pin> or an absolute segment was supplied
by a non-privileged caller.
indicates that the operation was successful.
is not returned by USESEGMENT.

examples:

oldAsegAid := USESEGMENT (newAsegAid) : ! change segments
segmentAid := USESEGMENT: ! get current segment ID
segmentAid := USESEGMENT (-1) : ! de-select extended segments

CONSIDERATIONS

• Because segment relocation is done, the first byte of any extended
segment has the address %2000000De

8.1-10

MEMORY MANAGEMENT PROCEDURES
Advanced Memory Management

The GUARDIAN operating system provides several procedures for
advanced memory management: one procedure for Nonstop systems, and
two procedures for Nonstop II systems. To call these procedures,
a program must be executing in privileged mode.

The procedures are:

LOCKDATA (Nonstop systems only)

permits a process to make a portion of its data area
main-memory resident and, optionally, causes the
pages to be entered into the system data map

LOCKMEMORY (Nonstop II systems only)

permits a process to lock arbitrary buffers in
arbitrary memory segments, both data and code

UNLOCKMEMORY (Nonstop II systems only)

permits a process to unlock arbitrary buffers in
arbitrary memory segments, both data and code

Note: Locking code in a Nonstop or Nonstop II system can be
accomplished only for procedures that have been assigned
the RESIDENT attribute.

8.2-1

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (Nonstop systems only)

The LOCKDATA procedure is used to make a block of data in the
application process data area main-memory resident and, optionally,
causes the pages to be entered into the system data map as required
for resident buffering. A process calling LOCKDATA must be executing
in privileged mode; otherwise, an instruction failure trap will occur.
This procedure is available only on Nonstop systems; for Nonstop II
systems, see the LOCKMEMORY and UNLOCKMEMORY procedures.

The call to the LOCKDATA procedure is:

{ <state>
{ CALL

:= 1 LOCKDATA <address> , <count> , <sys map>

where

<state>, INT,

is either 1, indicating that the data was locked, or 0,
indicating that the call to LOCKDATA failed.

<address>, INT:value,

is the 'G' [0] relative address of the first word in the data
area to be made resident. Note that this is a value
parameter and, therefore, should be passed in the form:
@<variable>.

<count>, INT:value,

is the number of words in the block to be made resident
(starting with <address>).

<sys map>, INT:value,

indicates whether or not the block of data should be
assigned to system data map entries:

0 = do not assign to system map entries
1 = assign to system map entries

example:

IF NOT LOCKDATA (@buffer,256,1) THEN ...

CONSIDERATIONS

• Once a data area is made main-memory resident, it remains resident
until the process is deleted.

8.2-2

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (Nonstop systems only)

• Physical pages are made resident from the location indicated by
<address> to the location indicated by <address> plus <count> minus
one.

• If too many pages are made resident, no memory space will be
available for virtual memory. "No memory available" traps may
occur.

• Assigning entries to the system data map is used when specifying
resident buffers for a file.

• A process can place only one block of memory in the system map.

• If LOCKDATA is called and <sys map> = 1 is specified, a "No memory
available" trap will occur if no system map entries are available.

• Space for assignment of system data map pages is obtained from
system data map entries not used by the operating system. The
maximum number of system data map entries available for assignment
via LOCKDATA is therefore configuration and processor module
dependent.

The system data map entries available for this purpose begin
following the last page used by the operating system in the lower
32K of the system data area, and end with the first page in the
upper 32K used by the operating system in the system data area.
(SYSGEN makes assignments in the lower 32K starting at address 0
and working upward; assignments in the upper 32K are made starting
at address %177777 - the highest address - and working downward).

The number of pages available in a given processor module is
computed by using the "SYSTEM ADDRESS SPACE USED" entry on the
SYSGEN listing for that processsor as follows:

1. Take the <l limit> address shown on the SYSGEN listing and
round it up to the nearest page boundary, then divide that
value by the page size in words (i.e., 1024):

<base page> := (<l limit> + 1024) / 1024

2. Take the <u base> address shown on the SYSGEN listing and
divide that value by the page size in words:

<lim page> := <u base> / 1024

3. Subtract the <basepage> value from the <lim page> value to
obtain the number of available pages.

<num pages> := <lim page> - <base page>

For example, the number of system data pages available for
assignment in a process module having the following "SYSTEM
ADDRESS SPACE USED" values displayed is

8.2-3

MEMORY MANAGEMENT PROCEDURES
LOCKDATA Procedure (Nonstop systems only)

VIRTUAL SYSTEM DATA: 2 K
SYSTEM ADDRESS SPACE USED: %000000-%061777 %133463-%177777

t t
<l limit> <u base>

<base page> is (%061777 + %2000) / %2000 = %31 (25)

<lim page> is %133463 / %2000

<num pages> is %55 - %31 = %24 (20)

8.2-4

= %55 (45)

MEMORY MANAGEMENT PROCEDURES
LOCKMEMORY Procedure (Nonstop II systems only)

The LOCKMEMORY procedure permits a process to lock arbitrary buffers
in arbitrary memory segments, both data and code. This procedure is
available only on Nonstop II systems; for Nonstop systems, see the
LOCKDATA procedure.

The call to the LOCKMEMORY procedure is:

<status> := LOCKMEMORY <address>

where

, <byte count>

, <timeoutvalue>

, <parameter!>
, <parameter2>

<status>, INT,

is returned a status word having one of the following
values:

0 no error -- all pages were present initially;
storage locked.

1 one or more pages were absent and have been
brought in; storage locked.

2 waiting for memory; no storage locked, or
not all storage locked.

-1 no storage available, or timed out waiting for
memory; no storage locked.

-2 bounds violation, illegal timeout value, or
missing parameter; no storage locked.

<address>, STRING:ref:EXT,

is the extended address of the block to be locked down.

<byte count>, INT(32) :value,

is the number of bytes to be locked.

<timeoutvalue>, INT(32) :value,

specifies the time period, in .01-second units, that the
procedure is to wait for memory. This value must be
zero or greater; zero specifies no waiting.

8.2-5

MEMORY MANAGEMENT PRCX::EDURES
LCX::KMEMORY Procedure (Nonstop II systems only)

<parameterl>, INT,

if present, identifies the timeout message read from
$RECEIVE.

<parameter2>, INT(32) :value,

if present, identifies the timeout message read from
$RECEIVE (same purpose as <parameterl>) .

examples:

status := LCX::KMEMORY (address, byteAcount, 1000);
! lock, waiting up to 10 seconds for memory

status := LCX::KMEMORY (address, byteAcount, 1000,
parml, parm2) ;
! lock, and continue processing while waiting
! for memory

CONSIDERATIONS

• If the <timeoutvalue> parameter is zero, memory will be allocated
as long as any memory is available. If the <timeoutvalue>
parameter is nonzero, however, memory will be allocated only if all
the required amount of memory is available; otherwise, it will
wait, and may eventually time out.

• If either <parameterl> or <parameter2>, or both, are supplied and
not all the requested memory is immediately available, LCX::KMEMORY
lets the process resume and returns a <status> value of 2 (waiting
for memory); at the end of the specified time period, the procedure
signals the completion or failure of the lock request on $RECEIVE.
If neither of the two parameters is supplied, a <status> value of
-1 is returned after timeout, and a memory lock failure message is
sent to $RECEIVE. The memory lock completion and memory lock
failure messages have the following form:

<sysmsg> = -23 for completion
-24 for failure

<sysmsg>[l] = parameterl supplied to LCX::KMEMORY
(if none supplied, 0)

<sysmsg>[2] FOR 2 = parameter2 supplied to LCX::KMEMORY
(if none supplied, OD)

• If the lock is delayed because of lack of available memory, the
procedure allocates two Time List Elements (TLE's) ; one is added
to the time list, the other to the lockwait list. Whenever a
page gets unlocked and there is a TLE on the lockwait list, the
memory manager is awakened with a certain event. The memory

8.2-6

MEMORY MANAGEMENT PROCEDURES
LOCKMEMORY Procedure (Nonstop II systems only)

manager then, under mutual exclusion, deletes the TLE from the
time list and proceeds with the lock. If the memory manager
fails again, it stores back the remaining byte count and the
current address, and adds the TLE to the time list again with
the remaining time value. Then the memory manager proceeds the
same way on the next unlock.

• If the TLE on the time list times out, the time list interrupt
handler unlocks already locked pages, releases the TLE from the
lockwait list, and queues the TLE from the time list on the
$RECEIVE queue for the process. A memory lock failure message
is then read from $RECEIVE. If, however, enough memory becomes
available during the time period and the memory manager succeeds
with the lock request, a memory lock completion message is read
from $RECEIVE. In either case, the READ (or AWAITIO) completes
with a CCG and error #6.

• Another way for privileged users to lock and unlock memory is
to allocate a resident segment using the ALLOCATESEGMENT procedure,
define a pool in it with DEFINEPOOL, and use GETPOOL and PUTPOOL.
GETPOOL and PUTPOOL automatically lock and unlock storage.
(The ALLOCATESEGMENT, DEFINEPOOL, GETPOOL, and PUTPOOL procedures
are described in section 8.1.)

8.2-7

MEMORY MANAGEMENT PROCEDURES
UNLOCKMEMORY Procedure (Nonstop II systems only)

The UNLOCKMEMORY procedure permits a process to unlock arbitrary
buffers in arbitrary memory segments, both data and code. This
procedure is available only on Nonstop II systems; for Nonstop
systems, see the LOCKDATA procedure.

The call to the UNLOCKMEMORY procedure is:

CALL UNLOCKMEMORY <address> , <byte count>

where

<address>, STRING:ref:EXT,

is the extended address of the block to be unlocked.

<byte count>, INT(32) :value,

is the number of bytes to be unlocked.

example:

CALL UNLOCKMEMORY (address, byteAcount) ;

8.2-8

SECTION 9

SEQUENTIAL I/O PROCEDURES

The sequential i/o procedures are a standardized set of procedures for
performing common input and output operations. These operations
include reading and writing IN and OUT files, and handling BREAK from
a terminal. The sequential i/o procedures are intended primarily for
use by Tandem subsystem and user utility programs. Programs using
these procedures can treat different file types in a consistent and
predictable manner.

Some characteristics of the sequential i/o procedures are:

• All file types are accessed in a uniform manner.

File access characteristics, such as access mode, exclusion
modes, and record size, are selected according to device type
and the intended access.

The sequential i/o procedures' default characteristic~ are
set to facilitate their most general use.

• Error recovery is automatic. All fatal errors cause the display
of a comprehensive error message, all files to close, and the
process to abort. The automatic error handling and/or the display
of error messages may be turned off. This allows the program to do
the error handling.

• The characteristics of sequential i/o operations can be altered at
open time with the OPENAFILE procedure. This is also possible
before or after the open time with the SETAFILE procedure. Some
optional characteristics are:

Record blocking/deblocking

Duplicative file capability, where data read from one file is
automatically echoed to another file

An error reporting file where all error messages are directed.
When a particular file is not specified, the error reporting
file is the home terminal.

9-1

SEQUENTIAL I/O PROCEDURES
Introduction

• The sequential i/o procedures can be used with the INITIALIZER
procedure to make run-time changes. File transfer characteristics,
such as record length, can be changed using the Command Interpreter
ASSIGN command. (See "Interface with INITIALIZER and ASSIGN
Messages".)

• The sequential i/o procedures retain information about the files
in file control blocks. There is one File Control Block (FCB)
for each open file, plus one common File Control Block which is
linked to the other FCBs. (See "FCB Structure".)

The sequential i/o procedures and their functions are:

CHECK A BREAK

CHECK AF ILE

READ AF ILE

SETA FILE

checks whether the BREAK key was typed

retrieves file characteristics

closes a file

disables the BREAK key

opens a file for access by the sequential i/o
procedures

reads from a file

sets or alters file characteristics

enables the BREAK key

waits for the completion of an outstanding i/o
operation

writes to a file

The sequential i/o procedures also contain a set of defines and
literals that:

• Allocate control block space (see "OPENAFILE").

• Specify open characteristics (see "OPENAFILE") •

• Set file transfer characteristics (see "SETAFILE").

• Check file transfer characteristics (see "CHECKAFILE").

Note that in the description of the procedure parameters, the
commercial "at" symbol "@" is used to indicate the address of an
object, not the object itself. For example, when specifying a
file name to the SETAFILE procedure, the file name parameter
should be passed as follows:

9-2

SEQUENTIAL I/O PROCEDURES
Introduction

CALL SETAFILE (inAfile , ASSIGNAFILENAME , @buf) ;

where

SOURCE FILES

@buf is the address of the array containing the
name of the file to be opened.

The source file named $SYSTEM.SYSTEM.GPLDEFS is used with the
sequential i/o procedures. It provides the TAL defines for allocating
control block space, for assigning open characteristics to the file,
and for altering and checking the file transfer characteristics. The
TAL literals for the sequential i/o procedures~ error numbers are also
included. This file must be referenced in the program~s global area
before any internal or external procedure declarations, or within a
procedure before any subprocedure declarations.

9-3

SEQUENTIAL I/O PROCEDURES
CHECKABREAK Procedure

The CHECKABREAK procedure tests whether the BREAK key has been typed
since the last CHECKABREAK.

The call to the CHECKABREAK procedure is:

<state> { <common FCB> }
{ <file FCB> }

where

<state>, INT,

indicates whether or not the BREAK key has been typed.
Values returned in <state> are:

1 = BREAK key typed and BREAK is enabled.
0 = BREAK key not typed or BREAK is disabled.

<common FCB> or <file FCB>, INT:ref,

identifies the file to be checked for BREAK. <common FCB>
is allowed for convenience.

example:

CALL TAKEABREAK (outAfile) ;
WHILE NOT (break := CHECKABREAK (outAfile)) DO

BEGIN

CALL WRITEAFILE (outAfile , buffer , count) ;
END;

CONSIDERATIONS

• If CR/LF on BREAK is enabled, the default case, a carriage
return/line feed sequence is executed on the terminal where
BREAK is typed.

• More information is available in "Terminals" subsection of
section 2 under "Break Feature".

9-4

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

The CHECKAFILE procedure checks the file characteristics.

The call to the CHECKAFILE procedure is:

<retval> { <common fcb>
{ <file fcb>

where

<retval>, INT,

is the value returned for the requested operation.

<common fcb> or <file fcb>, INT:ref,

identifies which file is checked. A common FCB can be
used for certain types of checks; a common FCB must be
used for the checks FILEABREAKHIT, FILEAERRORFIL~
and FILEATRACEBACK. Specifying an improper FCB causes
an error indication.

<operation>, INT:value,

specifies which file characteristic is checked. The
<operation>s and their associated <retval>s are:

<operation> = FILEAABORTAXFERERR,
<retval> := <bit value>

(file must be open)

returns: 0 if the process is not to abort upon
detection of a fatal error in the file.

1 if the process is to abort.

<operation> = FILEAASSIGNMASKl,
<retval> := <high-order word of ASSIGN fieldmask>

returns the high-order word of the ASSIGN message
field mask in the FCB. This value generally has
meaning only after being set by the INITIALIZER
procedure.

<operation> = FILEAASSIGNMASK2,
<retval> := <low-order word of ASSIGN fieldmask>

returns the low-order word of the ASSIGN message
field mask in the FCB. This value generally has
meaning only after being set by the INITIALIZER
procedure.

9-5

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

9-6

<operation> = FILEABLOCKBUFLEN,
<retval> := <block buffer length>

returns a count of the number of bytes used for blocking.

<operation> = FILEABREAKHIT,
<retval> := <state of the break hit bit>

returns: 0 if the break hit bit is equal to zero in
the FCB.

1 if the break hit bit is equal to one in the
FCB.

The break hit bit is an internal indicator normally
used only by the sequential i/o procedures.

When using the break handling procedures, do not use
FILEABREAKHIT to determine if the BREAK key has been
typed. Instead, the CHECKABREAK procedure must be
called.

<operation> = FILEABWDLINKFCB,
<retval> := <backward link pointer>

returns the address of the FCB pointed to by the backward
link pointer within the FCB. This indicates the
linked-to FCB's that need to be checkpointed after an
OPENAFILE or CLOSEAFILE.

<operation> = FILEACHECKSUM,
<retval> := <checksum word>

{file must be open)

returns the value of the checksum word in the FCB.

<operation> = FILEACREATED, (file must be open)
<retval> := <state of the created bit>

returns: 0
1

if a file was not created by OPENAFILE.
if a file was created by OPENAFILE.

<operation> = FILEACOUNTXFERRED,
<retval> := <count transferred>

(file must be open)

returns a count of the number of bytes transferred in the
latest physical I/O operation.

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

<operation> = FILEACRLFABREAK, (file must be open)
<retval> := <state of cr/lf break bit>

returns: 0 if no carriage return/line feed sequence is
to be issued to the terminal upon break
detection.

1 if this sequence is to be issued.

<operation> = FILEADUPFILE,
<retval> := @<dupfile fcb>

(file must be open)

returns the word address of the duplicate file FCB. A
zero is returned if there is no duplicate file.

<operation> = FILEAERROR,
<retval> := <error>

(file must be open)

returns the error number of the latest error that
occurred within the file.

<operation> = FILEAERRORFILE,
<retval> := @<error file fcb>

returns the word address within the FCB of the reporting
error file. A zero is returned if t~ere is none.

<operation> = FILEAERRORAADDR,
<retval> := @<error>

returns the word address within the FCB of where the error
code is stored.

<operation> = FILEAFILEINFO (file must be open)
<retval> := <file info>

<file info>.<0:3> = file type: 0 = unstructured
1 = relative

.<4:9>

.<10:15>

2 = entry-sequenced
3 = key-sequenced
4 = edit
8 = odd-unstructured

= device type
= device subtype

The device type and device subtype are described in the
"DEVICEINFO Procedure" subsection of sec. 2. File types
0-3 are described in the ENSCRIBE Programming Manual.

9-7

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

9-8

<operation> = FILEAFILENAMEAADDR,
<retval> := @<filename>

returns the word address within the FCB of the physical
file name.

<operation> = FILEAFNUM,
<retval> := <file number>

returns the file number.

<operation> = FILEAFNUMAADDR,
<retval> := @<file number>

(file must be open)

returns the word address within the FCB of the file
number. If the file is not open, the file number is -1.

<operation> = FILEAFWDLINKFCB,
<retval> := <forward-link-pointer>

returns the address of the FCB pointed to by the forward
link pointer within the FCB. This value indicates the
linked-to FCB's that need to be checkpointed after an
OPENAFILE or CLOSEAFILE.

<operation> = FILEALOGICALFILENAMEAADDR
<retval> := @<logical file name>

returns the word address within the FCB of the logical
file name~ The logical file name is encoded as follows:

byte numbers

[0] [l] [8]
<len><logical file name>

<len> is the length of the logical file name in bytes
{0:7}.

<operation> = FILEALOGIOOUT, (file must be open)
<retval> := <state of the logioout bit>

returns: 0 to indicate there is no logical i/o
outstanding.

1 if a logical read is outstanding.
2 if a logical write is outstanding.

<operation> = FILEAOPENACCESS
<retval> := <open access>

returns the open access for the file. See SETAFILE for
the format.

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

<operation> = FILEAOPENEXCLUSION
<retval> := <open exclusion>

returns the open exclusion for the file. See SETAFILE
for the format.

<operation> = FILEAPHYSIOOUT, (file must be open)
<retval> := <state of the physioout bit>

returns: 0 to indicate there is no outstanding physical
i/o operation.

1 if a physical i/o operation is outstanding.

<operation> = FILEAPRIEXT,
<retval> := <primary extent size>

returns the file's primary extent size in pages.

<operation> = FILEAPRINTAERRAMSG, (file must be open)
<retval> := <state of print errmsg bit>

returns: 0 if no error message is to be printed upon
detection of a fatal error in the file.

1 if an error message is to be printed.

<operation> = FILEAPROMPT, (file must be open)
<retval> := <interactive prompt character>

returns the inter a e-t-i-ve---pt-Ompt---eh a r a c te r -f--Or----t--he-----f-il-e­
i n <9:15>.

<operation> = FILEARCVEOF,
<retval> := <state of rcveof bit>

(file must be open)

returns: 0 if the user does not get an end-of-file
(EOF) indication, when the last process [pair]
having this process open, closes it.

1 if the user does get an EOF indication when
this process closes.

<operation> = FILEARCVOPENCNT, (file must be open)
<retval> := <$RECEIVE opener count>

returns a count of current openers of this process {0:2}.
At any given moment openers are limited to a single
process [pair].

<operation> = FILEARCVUSEROPENREPLY, (file must be open)
<retval> := <state of the rev-user-open-reply bit>

returns: 0 if the sequential i/o procedures are to
reply to the open messages ($RECEIVE file).

1 if the user is to reply to the open messages.

9-9

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

9-10

<operation> = FILEAREADATRIM, (file must be open)
<retval> := <state of the read trim bit>

returns: 0 to indicate the trailing blanks are not
trimmed off the data read from this file.

1 if the trailing blanks are trimmed.

<operation> = FILEARECORDLEN,
<retval> := <record length>

returns the logical record length.

<operation> = FILEASECEXT,
<retval> := <secondary extent size>

returns the file's secondary extent size in pages.

<operation> = FILEASEQNUMAADDR
<retval> := @<sequence number>

returns the word address within the FCB of an INT (32)
sequence number. This is the line number of the last
record of an edit file. For a non-edit file, this is the
sequence number of the last record multiplied by 1000.

<operation> = FILEASYSTEMMESSAGES,
<retval> := <system message mask>

(file must be open)

returns a mask word indicating which system messages the
user handles directly. See SETAFILE for the format.
A zero indicates that the sequential i/o procedures
handle all system messages. Note that this operation
cannot check some of the newer system messages: for these,
use FILEASYSTEMMESSAGESMANY.

<operation> = FILEASYSTEMMESSAGESMANY,
(file must be open)

<retval> := @<system message mask words>

returns a four-word mask indicating which system messages
the user handles directly. See SETAFILE for the format.
All zeros indicates that the sequential i/o procedures
handle all system messages.

<operation> = FILEATRACEBACK,
<retval> := <state of traceback bit>

returns: 0 if the P-relative address should not be
appended to all SIO error messages.

1 if the P-relative address should be
appended to all SIO error messages.

SEQUENTIAL I/O PROCEDURES
CHECKAFILE Procedure

<operation> = FILEAUSERFLAG,
<retval> := <user flag>

returns the user flag word. (See SETAFILE procedure,
SETAUSERFLAG operation.)

<operation> = FILEAUSERFLAGAADDR
<retval> := @<user flag>

returns the word address within the FCB of the user
flag word.

<operation> = FILEAWRITEAFOLD, (file must be open)
<retval> := <state of the write-fold bit>

returns: 0 if records longer than the logical record
length are truncated.

1 if long records are folded.

<operation> = FILEAWRITEAPAD, (file must be open)
<retval> := <state of write-pad bit>

returns: 0 if a record shorter than the logical record
length is not padded with trailing blanks
before it is written to the file.

1 if a short record is padded with trailing
blanks.

<operation> = FILEAWRITEATRIM, (file must be open)
<retval> := <state of the write-trim bit>

returns: 0 if trailing blanks are not trimmed from
data written to the file.

1 if trailing blanks are trimmed.

examples:

INT .infileAname;
@infileAname := CHECKAFILE (infile , FILEAFILENAMEAADDR);

INT .infnum;
@infnum := CHECKAFILE (infile , FILEAFNUMAADDR);

IF {error := CHECKAFILE (infile , FILEAERROR)) THEN ••

CONSIDERATIONS

• During the execution of this procedure, the detection of any
error causes the display of an error message, and the process
is aborted.

9-11

SEQUENTIAL I/O PROCEDURES
CLOSEAFILE Procedure

The CLOSEAFILE procedure is used to close a file.

The call to the CLOSEAFILE procedure is:

{ CALL - l <common fcb> }
<file fcb> J 1 <error>

, <tape disposition>

where

<error>, INT,

is either a file management or a sequential i/o procedure
error number indicating the outcome of the close. In any
case, the file is closed.

If the abort-on-error mode, the default, is in effect,
the only possible value for <error> is zero.

<common fcb>, INT:ref,

identifies all files to be closed. If the break
for any file is currently enabled, it is disabled.

<file fcb>, INT:ref,

identifies the file to be closed. If the break for
the file is curr~ntly enabled: it is disabled.

<tape disposition>, INT:value,

specifies mag tape disposition,

where

<tape disposition>.<13:15> denotes:

0
1
2
3
4

=
=
=
=
=

rewind, unload, don~t wait for completion.
rewind, take offline, don~t wait for completion.
rewind, leave online, don~t wait for completion.
rewind, leave online, wait for completion.
do not rewind, leave online.

example:

9-12

CALL CLOSEAFILE
CALL CLOSEAFILE

commonAfcb) ;
rcvAfile) ;

CONSIDERATIONS

SEQUENTIAL I/O PROCEDURES
CLOSEAFILE Procedure

• Edit files or files that are open with write access and blocking
capability must be closed with the CLOSEAFILE procedure (or a WRITE
with count-1) or the data may be lost.

• If break was taken, CLOSEAFILE gives break.

• For tapes with write access, SIO writes two EOF marks (control 2).

• CLOSEAFILE completes all outstanding nowait i/o on files that are
to be closed.

• If the file is $RECEIVE and the user is not handling close messages
SIO will wait for a message from each opener and reply with either
error 45 if readonly access, or error 1 if readwrite access until
there are no more openers (each opener has closed the process by
calling CLOSEAFILE) • See also $RECEIVE handling - CLOSE FILE.

9-13

SEQUENTIAL I/O PROCEDURES
GIVEABREAK Procedure

The GIVEABREAK procedure returns BREAK to the previous owner (the
process that had BREAK enabled before the last call to TAKEAEREAK) .

The call to the GIVEABREAK procedure is:

GIVE A BREAK { <common fcb> }
{ <file fcb> }

where

<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the operation.

<common fcb>, INT:ref, or

<file fcb>, INT:ref,

identifies the file returning BREAK to previous owner.
<common fcb> is allowed for convenience. If BREAK is not
enabled, this call is ignored.

example:

9-14

CALL TAKEABREAK (outAfile);
WHILE NOT (break := CHECKABREAK (outAfile)) DO

BEGIN

CALL WRITEAFILE (outAf ile , buffer , count) ;
END;

CALL GIVEABREAK (outAfile);

SEQUENTIAL I/O PROCEDURES
OPENAFILE Procedure

The OPENAFILE procedure permits access to a file using the other
sequential i/o procedures.

The call to the OPENAFILE procedure is:

{ CALL }
:= }

OPENAFILE <common fcb> , <file fcb>
{ <error>

where

, <block buffer>
, <block buffer length>
, <flags>
, <flags mask>
, <max record length>
, <prompt char>
, <error file fcb>

<error>, INT,

is a file management or sequential i/o procedure error
number indicating the outcome of the operation.

If the abort-on-open-error mode is in effect, the only
possible value of <error> is zero.

<common fcb>, INT:ref,

is an array of FCBSIZE words for use by the sequential i/o
procedures. Only one common FCB is used per process.
This means the same data block is passed to all OPENAFILE
calls• The first word of the common FCB must be initialized
to zero before the first OPENAFILE call following a process
startup.

<file fcb>, INT:ref,

is an array of FCBSIZE words for use by the sequential i/o
procedures. The file FCB uniquely identifies this file
to the other sequential i/o procedures. The file FCB
must be initialized with the name of the file to be opened
before the OPENAFILE call is made.

See "Initializing the File FCB" following the description
of the FCB structure.

9-15

SEQUENTIAL I/O PROCEDURES
OPENAFILE Procedure

9-16

<block buffer>, INT:ref,

{optional) is an array used for record blocking and
deblocking. No blocking is performed if <block buffer> or
<block buffer length> is omitted, or if the <block buffer
length> is insufficient according to the record length for
the file, or if read/write access is indicated.

Blocking is performed when this parameter is supplied,
the block buffer is of sufficient length, as indicated
by the <block buffer length> parameter, and blocking is
appropriate for the device.

The block buffer must be located within 'G' [0:32767] of
the data area.

<block buffer length>, INT:value,

if present, indicates the length, in bytes, of the block
buffer. This length must be able to contain at least one
logical record. For an edit file, the minimum length on
read is 144 bytes; on write, the minimum length is 1024
bytes.

<flags>, INT{32) :value,

if present, is used in conjunction with the <flags mask>
parameter to set file transfer characteristics. If omitted,
all positions are treated as zero. The bit fields in
<flags> are defined in appendix D. These literals may be
combined using signed addition, since bit 0 is not used.

abort on open error, defaults to on. If on, and a
fatal error occurs during the OPENAFILE, all files
are closed and the process abends. If off, the
file system or sequential i/o procedure error number
is returned to the caller.

abort on data transfer error, defaults to on. If on,
and a fatal error occurs during a data transfer
operation, like a call to any sequential i/o procedure
except OPENAFILE, all files are closed and the process
abends. If off, the file system or the sequential i/o
procedure error number is returned to the caller.

SEQUENTIAL I/O PROCEDURES
OPENAFILE Procedure

auto create, defaults to on. If on, and open access
is "write", a file is created, provided one is not
already there. If write access is not given and the
file does not exist, error 11 is returned. If no file
code has been assigned, or if the file code is 101, and
a block buffer of at least 1024 bytes is provided, an
edit file is created. If there is not a buffer of
sufficient size and no new file code is specified, then
a file code of 0 is used. The default extent sizes are
4 pages for the primary extent and 16 pages for the
secondary extent.

auto top-of-form, defaults to on. If on, and the file
is open with write access and is a line printer or
process, a page eject is issued to the file within the
OPENAFILE procedure.

BLOCKED,

non-disc blocking, defaults to off. A block buffer of
sufficient length must also be specified.

carriage return/line feed (cr/lf) on BREAK, defaults
to on. If on and BREAK is enabled, a cr/lf
is written to the terminal when BREAK is typed.

MUSTBENEW,

file must be new, defaults to off. This applies only
if AUTOACREATE is specified. If the file already exists,
error 10 is returned.

NOWAIT,

no-wait i/o, defaults to off (wait i/o). If on,
no-wait i/o is in effect. If NOWAIT is specified in
the open flags of OPENAFILE, then the no-wait depth
is 1. It is not possible to use a no-wait depth of
greater than 1 using SIO procedures.

PRINTAERRAMSG,

print error message, defaults to on. If on, and a
fatal error occurs, an error message is displayed
on the error file. This is the home terminal unless
otherwise specified.

9-17

SEQUENTIAL I/O PROCEDURES
OPENAFILE Procedure

~,- "'
~ J

9-18

purge data, defaults to off. If on, and open access is
"write", the data is purged from the file after the
open. If off, the data is appended to the existing
data.

read trailing blank trim, defaults to on. If on,
the <count read> parameter does not account for
trailing blanks.

VARAFORMAT,

variable length records, defaults to off, or fixed­
length records. If on, the maximum record length for
variable length records is 254 bytes.

WRITEAFOLD,

write fold, defaults to on. If on, writes that
exceed the record length cause multiple logical
records to be written. If off, writes that exceed
the record length are truncated to record-length
bytes; no error message or warning is given.

write blank pad, defaults to on for disc fixed
length records and off for all other files. If on,
writes of less than record-length bytes, including
the last record if WRITEAFOLD is in effect, are
padded with trailing blanks to fill out the logical
record.

write trailing blank trim, defaults to on. If on,
trailing blanks are trimmed from the output record
before being written to the file.

SEQUENTIAL I/O PROCEDURES
OPENAFILE Procedure

<flags mask>, INT(32) :value,

if ·present, specifies which bits of the flag field are
used to alter the file transfer characteristics. The
characteristic to be altered is indicated by entering a
one in the bit position corresponding to the <flags>
parameter. A zero indicates the default setting is used.
When omitted, all positions are treated as zeros.

<max record length>, INT:value,

if present, specifies the maximum record length for records
within this file. If omitted, the maximum record length is
132. The open is aborted with an SIOERRAINVALIDRECLENGTH,
error 520, if the file~s record length exceeds the maximum
record length and <max record length> is not zero. If
<max record length> is zero, then any record length is
permitted.

<prompt char>, INT:value,

if present, is used to set the interactive prompt character
for reading from terminals or processes. When not supplied,
the prompt defaults to "?". The prompt character is limited
to seven bits, <9:15>.

<error file FCB>, INT:ref,

if present, specifies a file where error messages are
displayed for all files. Only one error reporting file is
allowed per process. The file specified in the latest open
is the one used. Omitting this parameter does not alter the
current error·reporting file setting.

The error reporting file is used for reporting errors when
possible. If this file cannot be used or the error is with
the error reporting file, the default error reporting file
is used. This is the home terminal.

If the error reporting file is not open when needed, it is
opened only for the duration of the message printing then
closed. Note that the error file FCB must be initialized.
See "Initializing the File FCB".

9-19

SEQUENTIAL I/0 PROCEDURES
OPENAFILE Procedure

CONSIDERATIONS

• If AUTOATOF is on, a top-of-form control operation is performed
to the file when the file being opened is a process or a line
printer and write or read/write access is specified.

• If the file is an edit file or if blocking is specified, either
read or write access must be specified for the open to succeed.
Read/write access is not permitted.

• When using OPENAFILE to access a temporary disc file, AUTOACREATE
must be disabled; otherwise the OPENAFILE call results in a file
system error 13.

• All files opened with the OPENAFILE procedure are opened with a
sync depth of one. One is the only possible sync depth; no other
can be set.

• SIO procedures append data to the file if access is write only and
PURGE"'DATA is off (default).

Example:

LITERAL prompt= ">",
bufferAsize = 144;

!prompt character
!minimum edit file buffer size

INT error,
.common"'fcb [O:FCBSIZE-1] := 0,
• in"'file [0 :FCBSIZE-1] := 0,
.in"'filename [0:11] := ["$VOLUME SUBVOL FILENAME"] ,
.buffer [O:buffer"'size >> 1]:

INT(32) flags := OD,
flags"'mask := ABORT"'OPENERR; !return control on error

CALL SET"'FILE (in"'f ile
CALL SET"'FILE (in"'f ile
IF (error := OPEN"'FILE

BEGIN

, INIT"'FILEFCB);
, ASSIGN"'FILENAME, @in"'filename);

(common"'fcb ,
in"'file ,
buffer ,
buffer"'size ,
flags ,
f lags"'mask ,
prompt)) THEN

! handle open error here
!
END;

9-20

SEQUENTIAL I/O PROCEDURES
READAFILE Procedure

The READAFILE procedure is used to read a file sequentially. The file
must be open with read or read/write access.

The call to the READAFILE procedure is:

{ CALL
:= l READAFILE <file fcb> , <buffer> , <count read>

{ <error>

where

, <prompt count>
, <max read count>
, <no wait>)

<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the read.

If abort-on-error mode is in effect, the only possible
values for <error> are:

0 = no error

l = end-of-file

6 = system message (only if user requested system
messages, by SETASYSTEMMESSAGES or
SETASYSTEMMESSAGESMANY}

111 = operation aborted because of BREAK (if BREAK is
enabled}

If <no wait> is not zero, and if abort-on-error is in
effect, the only possible value for <error> is zero.

<file fcb>, INT:ref,

identifies the file to be read.

<buffer>, INT:ref,

is where the data is returned. The buffer must be
located within 'G' [0:32767] process data area.

9-21

SEQUENTIAL I/O PROCEDURES
READAFILE Procedure

<count read>, INT:ref,

if present, is the count of the number of bytes returned to
<buffer>. If <no wait> is not zero, then this parameter
has no meaning and can be omitted. The count is then
obtained in the call to WAITAFILE. If <no wait> is zero,
the <count read> parameter is required.

<prompt count>, INT:value,

if present, is a count of the number of bytes in <buffer>,
starting with element zero, to be used as an interactive
prompt for terminals or interprocess files. If omitted,
the interactive prompt character defined in OPENAFILE is
used.

<max read count>, INT:value,

if present, specifies the maximum number of bytes to be
returned to <buffer>. If omitted or if it exceeds the
file's logical record length, the logical record length
is used for this file.

<no wait>, INT:value,

if present, indicates whether or not to wait for the i/o
operation to complete in this call. If omitted or zero,
then "wait" is indicated. If not zero, the i/o operation
must be completed in a call tc WAITAFILE.

example:

WHILE NOT (error := READAFILE (inAfile , buffer ,
count)) DO

BEGIN

END;

CONSIDERATIONS

• If the file is a terminal or process, a WRITEREAD operation is
performed using the interactive prompt character or <prompt count>
character from <buffer>.

9-22

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

The SETAFILE procedure alters file characteristics and checks the
old value of those characteristics being altered.

The call to the SETAFILE procedure is:

{ CALL { <common fcb> }
{ <file fcb> }

, <operation>
{ <error>

where

, <new value>
, <old value>

<error>, INT,

is a file system or sequential i/o procedure error
number indicating the outcome of the SETAFILE.

If abort-on-error mode is in effect, the only possible
value for <error> is zero.

<common fcb>, INT:ref,

identifies those files whose characteristics are to be
altered. The common FCB can be used for certain
operations; it must be used for the operations
SETABREAKHIT, SETxERRORFILE, and SETATRACEBACK. If an
improper FCB is specified, an error is indicated.

<file fcb>, INT:ref,

identifies the file whose characteristics are to be altered.
If an improper FCB is specified, an error is indicated.

<operation>, INT:value,

specifies the file characteristic to be altered. See "List
of SETAFILE Operations".

<new value>, INT:value,

specifies a new value for the specified <operation>. This
may be optional, depending on the operation desired.

9-23

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

<old value>, INT:ref,

is a variable in which the current value for the specified
<operation> is returned. This can vary from 1 word to 12
words, and is useful in saving this value for reset later.
If <old value> is omitted, the current value is not
returned.

LIST OF SETAFILE OPERATIONS

This is a list of the file characteristics which can be altered
by the SETAFILE procedure. All addresses passed are assumed to
be integer addresses.

<operation> = ASSIGNABLOCKBUFLEN (or, ASSIGNABLOCKLENGTH)
<new value> = <new block length> (optional; file must be closed)
<old value> := <block length> (optional)

specifies the block length (in bytes) for the file.

<operation> = ASSIGNAFILECODE
<new value> = <new file code>
<old value> := <file code>

(optional; file must be closed)
(optional)

specifies the file code for the file.

<operation> = ASSIGNAFILENAME
<new value> = @<file name> (optional; file must be closed)
<old value> := <file name> FOR 12 words (optional)

specifies the physical name of the file to be opened. This
operation is not used when the INITIALIZER procedure is called
to initialize the File Control Blocks.

example:

CALL SETAFILE (inAfile, ASSIGNAFILENAME, @inAfilename);

<operation> = ASSIGNALOGICALFILENAME
<new value> = @<logical file name> (optional; file must be closed)
<old value> := <logical file name> FOR 4 words (optional)

9-24

specifies the logical name of the file to be opened. The
<logical file name> must be encoded as follows:

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

byte numbers

[0] [l] [8]
<len><logical file name>

<len> is the length of the logical file name {0:7}.

<operation> = ASSIGNAOPENACCESS
<new value> = <new open access>
<old value> := <open access>

(optional; file must be closed)
(optional)

specifies the open access for the file. The following literals
are provided for <open access>:

READWRITEAACCESS (0)
READAACCESS (1)
WRITEAACCESS (2)

Even if READAACCESS is specified, SIO actually opens the file
with READWRITEAACCESS to facilitate interactive i/o.

<operation> = ASSIGNAOPENEXCLUSION
<new value> = <new open exclusion> (optional; file must be closed)
<old value> := <open exclusion> (optional)

specifies the open exclusion for the file. The following
literals are provided for <open exclusion>:

SHARE "(0)
EXCLUSIVE (1)
PROTECTED (3)

<operation> = ASSIGNAPRIEXT (or, ASSIGNAPRIMARYEXTENTSIZE)
<new value> = <new pri ext size> (optional; file must be closed)
<old value> := <pri ext size> (optional)

specifies the primary extent size (in units of 2048-byte blocks)
for the file.

<operation> = ASSIGNARECORDLEN (or, ASSIGNARECORDLENGTH)
<new value> = <new record length> (optional; file must be closed)
<old value> := <record length> (optional)

specifies the logical record length (in bytes) for the file.
ASSIGNARECORDLENGTH gives the default read or write count.
For defaults, see step 6 under "Initializing the File FCB."

9-25

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

<operation> = ASSIGNASECEXT (or, ASSIGNASECONDARYEXTENTSIZE)
<new value> = <new sec ext size> (optional; file must be closed)
<old value> := <sec ext size> (optional)

specifies the secondary extent size (in units of 2048=byte
blocks) for the file.

<operation> = INITAFILEFCB
<new value> = must be omitted
<old value> = must be omitted

(file must be closed)

specifies that the file FCB be initialized. This operation
is not used when the INITIALIZER procedure is called to
initialize the File Control Blocks.

example:

CALL SETAFILE
CALL SETAFILE

commonAfcb , INITAFILEFCB) ;
inAf ile , INITAFILEFCB) ;

<operation> = SETAABORTAXFERERR
<new value> = <new state>

(file must be open)
(optional)
(optional) <old value> := <state>

Sets/clears abort on transfer error for the file. If on, and a
fatal error occurs during a data transfer operation, such as a
call to any sequential i/o procedure except OPENAFILE, all files
are closed and the process abends. If off, the file management
or sequential i/o procedure error number is returned to the
caller.

<operation> = SETABREAKHIT
<new value> = <new state>
<old value> := <state>

(optional)
(optional)

Sets/clears break-hit for the file. This is used only if the
user is handling BREAK independently of the sequential i/o
procedures, or if the user has requested BREAK system messages
via SETASYSTEMMESSAGES or SETASYSTEMMESSAGESMANY.

<operation> = SETACHECKSUM
<new value> = <new checksum word>
<old value> := <checksum word in fcb>

9-26

Sets/clears the checksum word in the FCB. This is useful after
modifying an FCB directly (i.e., without using the sequential
i/o procedures) .

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

<operation> = SETACOUNTXFERRED
<operation> = <new count>
<operation> := <count>

(file must be open)
(optional)
(optional)

Sets the physical i/o count (in bytes) transferred for the file.
This is used only if no-wait i/o is in effect and the user is
making the call to AWAITIO for the file. This is the <count
transferred> parameter value returned from AWAITIO.

<operation> = SETACRLFABREAK
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

Sets/clears carriage return/line feed on BREAK for the file.
If on, a cr/lf is executed on the terminal when the BREAK
key is typed.

<operation> = SETADUPFILE
<new value> = @<new dup file fcb>
<old value> := @<dup file fcb>

specifies a duplicative file for the file.
where data read from <file fcb> is printed.
duplicative file.

example:

<operation> = SETAEDITREADAREPOSITION
<new value> = must be omitted
<old value> = must be omitted

(file must be open)
(optional)
(optional)

This is a file
Defaults to no

specifies that the following READAFILE is to begin at the position
set in the sequential block buffer (second through fourth words) .

example:

<operation> = SETAERROR
<new value> = <new error>
<old value> := <error>

(file must be open)
(optional)
(optional)

Sets file system error code value for the file. This is used
only if no-wait i/o is in effect and the user makes the call to
AWAITIO for the file. This is the <error> parameter value
returned from FILEINFO.

<operation> = SETAERRORFILE
<new value> = @<new error file fcb>
<old value> := @<error file fcb>

(optional)
(optional)

9-27

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

Sets error reporting file for all files. Defaults to home
terminal. If the error reporting file is not open when needed
by the sequential i/o procedures, it is opened for the
duration of the message printing, then closed.

<operation> = SETAOPENERSPID
<new value> = @<openers pid>

(file must be open)
(optional)
(optional) <old value> := <openers pid> FOR 4 words

Sets the allowable openers <process id> for $RECEIVE file. This
is used to restrict the openers of this process to a specified
process. A typical example is using the sequential i/o
procedures to read the startup message.

Note:
If "open message" = 1 is specified to SETASYSTEMMESSAGES
or SETASYSTEMMESSAGESMANY, the setting of SETAOPENERSPID
has no meaning.

<operation> = SETAPHYSIOOUT
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
{optional)

Sets/clears physical i/o outstanding for the file specified by
<file fcb>. This is used only if no-wait i/o is in effect and
the user makes the call to AWAITIO for the file.

<operation> = SETAPRINTAERRAMSG
<new value> = <new state>

(file must be open)
{optional)
(optional) <old value> := <state>

Sets/clears print error message for the file. If on and a fatal
error occurs, an error message is displayed on the error
file. This is the home terminal unless otherwise specified.

<operation> = SETAPROMPT
<new value> = <new prompt char>
<old value> := <prompt char>

Sets interactive prompt for the file.
procedure.

<operation> = SETARCVEOF
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

See the OPENAFILE

(file must be open)
(optional)
(optional)

Sets return EOF on process close for $RECEIVE file. This causes
an end-of-file indication to be returned from READAFILE when the
receive open count goes from one to zero; the last close message
is received.

9-28

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

The setting for return EOF has no meaning if the user
is monitoring open and close messages.

If the file is opened with read-only access, the setting
defaults to on for return EOF.

<operation> = SETARCVOPENCNT
<new value> = <new receive open count>
<old value> := <receive open count>

(file must be open)
(optional)
(optional)

Sets receive open count for the $RECEIVE file. This operation
is intended to clear the count of openers when an open already
accepted by the sequential i/o procedures is subsequently
rejected by the user. See "SETARCVUSEROPENREPLY".

<operation> = SETARCVUSEROPENREPLY
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

Sets user-will-reply for the $RECEIVE file. This is
used if the sequential i/o procedures are to maintain the
opener~s directory and, therefore, limit opens to a single
process [pair] while keeping the option of rejecting opens.

If <state> is one, <error> of 6 is returned from a call to
READAFILE when an open message is received and is the only
current open by a process [pair]. If an open is attempted by
a process and an open is currently in effect, the open attempt
is rejected by the sequential i/o procedures; no return is
made from READAFILE due to the rejected open attempt.

If <state> is zero, a return from READAFILE is made only when
data is received.

If "open message" = 1 is specified to SETASYSTEMMESSAGES
or SETASYSTEMMESSAGESMANY, the setting of SETARCVUSEROPENREPLY
has no meaning.

An <error> of 6 is returned from READAFILE if an open
message is accepted by the sequential i/o procedures.

<operation> = SETAREADATRIM
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

Sets/clears read-trailing-blank-trim for the file. If on, the
<count read> parameter does not account for trailing blanks.

9-29

SEQUENTIAL I/0 PROCEDURES
SETAFILE Procedure

<operation> = SETASYSTEMMESSAGES
<new value> = <new sys-msg mask>
<old value> := <sys-msg mask>

(file must be open)
(optional)
(optional)

Sets system message reception for the $RECEIVE file. Setting
a bit in the <sys-msg mask> indicates that the corresponding
message is to be passed back to the user. Default action is for
the sequential i/o procedures to handle all system messages.

where

<sys-msg-mask>.<O> = BREAK message

.<l> = unused

.<2> = CPU Down message

.<3> = CPU Up message

.<4> = unused

.<5> = STOP message

.<6> = ABEND message

.<7> = unused

.<8> = MONITORNET message

.<9> = unused

.<10> = OPEN message

.<11> = CLOSE message

.<12> = CONTROL message

.<13> = SETMODE message

.<14> = RESETSYNC message

.<15> = unused

The user replies to the system messages designated by this
operation by using WRITEAFILE. If no WRITEAFILE is encountered
before the next READAFILE, a <reply error code> = 0 is made
automatically. Note that this operation cannot set some of the
newer system messages: for these, use SETASYSTEMMESSAGESMANY.

<operation> = SETASYSTEMMESSAGESMANY
<new value> = @<new sys-msg mask words>
<old value> := <sys-msg mask words>

(file must be open)
(optional)
(optional)

9-30

Sets system message reception for the $RECEIVE file. <sys-msg
mask words> is a four-word mask. Setting a bit in the <sys-msg
mask words> indicates that the corresponding message is to be
passed back to the user. Default action is for the sequential
i/o procedures to handle all system messages.

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

where

<sys-msg-mask>[0].<0> =unused

<l> = unused
<2> = CPU Down message
<3> = CPU Up message

<4> = unused
<5> = STOP message
<6> = ABEND message

<7> = unused
<8> = MONITORNET message
<9> = unused

<10> = SETTIME message
(Non Stop

<11> = Power On message
(Nonstop

II

II
<12> = NEWPROCESSNOWAIT message

(Nonstop II
<13> = unused
<14> = unused
<15> = unused

<sys-msg-mask>[l].<0> = unused

<l> = unused
<2> = unused
<3> = unused

<4> = BREAK message
<5> = unused
<6> = Time Signal message

(Nonstop II

systems

systems

systems

systems

<7> = Memory Lock Completion message
(Non Stop II systems

<8> = Memory Lock Failure message
(Nonstop II systems

<9> = unused

<10> = unused
<11> = unused
<12> = unused

<13> = unused
<14> = OPEN message
<15> = CLOSE message

only)

only)

only)

only)

only)

only)

9-31

SEQUENTIAL I/O PROCEDURES
SETAFILE Procedure

<sys-msg-mask>[2].<0> = CONTROL message

<l> = SETMODE message
<2> = RESETSYNC message
<3> = CONTROLBUF message

<4:15> = unused

<sys-msg-mask>[3] = all bits unused

<operation> = SETATRACEBACK
<new value> = <new state>
<old value> := <old state>

Sets/clears the traceback feature. When traceback is active,
the sequential i/o facility appends the caller~s P-relative
address to all error messages.

<operation> = SETAUSERFLAG
<new value> = <new user flag>
<old value> := <user flag in fcb>

(optional)
(optional)

Sets user flag for the file. The user flag is a one-word
value in the FCB which can be manipulated by the user to
maintain information about calls to that file.

<operation> = SETAWRITEAFOLD
<new value> = <new state>
<cld value> := <state~

(file must be open)
(optional)
(optional)

Sets/clears write-fold for the file. If on, writes exceeding
the record length cause multiple logical records to be
written. If off, writes exceeding the record length are
truncated to record-length bytes; no error message or warning
is given.

<operation> = SETAWRITEAPAD
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

Sets/clears write-blank-pad for the file. If on, writes of
less than record-length bytes, including the last record if
WRITEAFOLD is in effect, are padded with trailing blanks to
fill out the logical record.

<operation> = SETAWRITEATRIM
<new value> = <new state>
<old value> := <state>

(file must be open)
(optional)
(optional)

9-32

Set~/clears write-trailing-blank-trim for the file. If on,
trailing blanks are trimmed from the output record before
being written to the file.

SEQUENTIAL I/O PROCEDURES
TAKEABREAK Procedure

The TAKEABREAK procedure enables BREAK monitoring by a file.

The call to the TAKEABREAK procedure is:

{ CALL TAKEABREAK <file fcb>
<error> := 1 ---------- - ---------- -
where

<error>, INT,

is a file system or sequential i/o procedure error
indicating the outcome of the operation.

<file fcb>, INT:ref,

identifies the file for which BREAK is to be enabled.
If the file is not a terminal or if BREAK is already
enabled for this file, the call is ignored.

example:

CALL TAKEABREAK (outAfile);
WHILE NOT (break := CHECKABREAK (outAfile)) DO

BEGIN

CALL WRITEAFILE (outAf ile , buffer , count) ;
END;

9-33

SEQUENTIAL I/O PROCEDURES
WAITAFILE Procedure

The WAITAFILE procedure is used to wait or check for the completion
of an outstanding i/o operation.

The call to the WAITAFILE procedure is:

<error> := WAITAFILE <file fcb> , <count read> , <time limit>

where

9-34

<error>, INT,

If abort-on-error mode is in effect, the only possible
values for <error> are:

0 = no error

1 = end-of-file

6 = system message, only if user has asked for system
messages via SETASYSTEMMESSAGES or
SETASYSTEMMESSAGESMANY

40 = operation timed out, only if <time limit> value
is supplied and is not -lo

111 = operation aborted because of BREAK, if BREAK
is enabled

532 = operation restarted due to retry

<file fcb>, INT:ref,

identifies the file for which there is an outstanding
i/o operation.

<count read>, INT:ref,

if present, is the count of the number of bytes returned due
to the requested read operation. The value returned to the
parameter has no meaning when waiting for a write operation
to complete.

<time limit>, INT(32) :value,

if present, indicates whether the caller waits for
completion or checks for completion. If omitted, the time
limit is set to -lo.

SEQUENTIAL I/O PROCEDURES
WAITAFILE Procedure

If <time limit> is not OD, then a wait for completion is
indicated. The time limit then specifies the maximum time,
in .01-second units, that the caller waits for a completion.
A time limit value of -lD indicates a willingness to wait
forever.

If <time limit> is OD, then a check for completion is
indicated. WAITAFILE immediately returns to the caller
regardless of whether there is a completion. If no
completipn occurs, the i/o operation is still outstanding;
an <error> 40 and an "operation timed out" message is
returned.

If <time limit> is OD and <error> is 40, there is no
completion. Therefore, READAFILE or WRITEAFILE cannot be
called for the file until the operation completes by
WAITAFILE. One method of determining if the operation
completes is by the CHECKAFILE operation "FILEALOGIOOUT".
See "Checking File Transfer Characteristics".

example 1 - wait for completion:

CALL READAFILE (inAfile , buffer ,,,, 1) ;

DO error := WAITAFILE (inAfile , count
UNTIL error <> SIOERRAIORESTARTED;

example 2 - check for completion:

IF NOT CHECKAFILE (recvAfile , FILEALOGIOOUT) THEN
CALL READAFILE (recvAfile , recvAbuf ,,,, 1);

DO error := WAITAFILE (recvAfile , recvAcount , OD)
UNTIL error <> SIOERRAIORESTARTED;

9-35

SEQUENTIAL I/O PROCEDURES
WRITEAFILE Procedure

The WRITEAFILE procedure writes a file sequentially. The file must
be open with write or read/write access.

The call to the WRITEAFILE procedure is:

{ CALL
== I WRITEAFILE <file fcb> , <buffer> , <write count>

{ <error>
, <reply error code>
, <forms control code>
, < no wait>)

where

9-36

<error>, INT,

is a file system or sequential i/o error indicating the
outcome of the write.

If abort-on-error mode, the default case, is in
effect, the only possible values for <error> are:

0 = no error

111 = operation aborted because of BREAK, if BREAK
is enabled.

If <no wait> is not zero, the only possible value for
<error> is zero~ when abort-on-error is in effect.

<file fcb>, INT:ref,

identifies the file to which data is to be written.

<buffer>, INT:ref,

is the data to be written. <buffer> must be located
within ~G~[0:32767] the process data area.

<write count>, INT:value,

is the count of the number of bytes of <buffer> to be
written. A <write count> value of -1 causes SIO to flush
the block buffer associated with the file FCB passed. For
edit files, flushing the buffer also updates the edit
directory on disc.

SEQUENTIAL I/O PROCEDURES
WRITEAFILE Procedure

<reply error code>, INT:value,

(for $RECEIVE file only) if present, is a file management
error to be returned to the requesting process by REPLY.
If omitted, zero is replied.

<forms control code>, INT:value,

(optional) indicates a forms control operation to be
performed prior to executing the actual write when the file
is a process or a line printer. <forms control> corresponds
to <parameter> of the file management CONTROL procedure for
<operation> equal to 1. No forms control is performed if
<forms control> is omitted, if it is -1, or if the file is
not a process or a line printer.

<no wait>, INT:value,

if present, indicates whether to wait in this call for the
i/o to complete. If omitted or zero, then "wait" is
indicated. If <no wait> is not zero, the i/o must be
completed in a call to WAITAFILE.

example:

CALL WRITEAFILE (outAf ile , buffer , count) ;

9-37

SEQUENTIAL I/O PROCEDURES
Errors

ERRORS

A literal is associated with each of the sequential i/o procedures
errors. These messages apply to coding errors and are considered
fatal. The one exception is "no-wait i/o restarted", error
SIOERRAIORESTARTED.

The sequential i/o procedure message numbers, messages, and their
associated meanings are:

512 SIOERRAINVALIDPARAM
SIO procedure contains invalid parameter (all procedures). Correct
parameter in error.

513 SIOERRAMISSINGFILENAME
SIO procedure is missing a file name (open error). Specify file
name in procedure call.

514 SIOERRADEVNOTSUPPORTED
SIO procedures do not support specified device type (open error).
Change device type.

515 SIOERRAINVALIDACCESS
Access mode is not compatible with device type (open error). This
error occurs if program opens an edit file with read or write access
or with blocking specified. Change device type or access mode.

516 SIOAINVALIDBUFADDR
Buffer address is not within ~G~[0:32767] of data area (open error).
Move buffer into lower memory.

517 SIOERRAINVALIDFILECODE
File code specified in ASSIGN command does not match file code of
file. Change file name or file code in ASSIGN command.

518 SIOERRABUFTOOSMALL
Specified buffer is too small (open error). For reading an edit
file, allocate at least 144 bytes of buffer space. For writing an
edit file, allocate at least 1024 bytes of buffer space. For
blocking, allocate at least same number of bytes for buffer space as
for logical record length. If error persists after increasing
buffer space, directory of edit file is in error. Edit the file;
editor usually can correct directory error.

519 SIOERRAINVALIDBLKLENGTH
ASSIGN block length is greater than block buffer length. Correct
ASSIGN command or use larger buffer.

9-38

SEQUENTIAL I/O PROCEDURES
Errors

520 SIOERRAINVALIDRECLENGTH
Specified record length is either zero or greater than <max record
length> specified in OPENAFILE; or record length for $RECEIVE file
is less than 14; or record length is greater than 254 and procedure
specifies variable-length records (open error). Correct the record
length.

521 SIOERRAINVALIDEDITFILE
An edit file is invalid (open error). Ensure that correct file is
specified.

522 SIOERRAFILEALREADYOPEN
Program used SETAFILE for a file that should be closed or used
OPENAFILE for a file that is already open. Either close file or
correct procedure call (for example, change parameters to permit
operation when file is open) •

523 SIOERRAEDITREADERR
An edit read error occurred (open or read error).

524 SIOERRAFILENOTOPEN
Specified file is not open (check, read, set, write, or wait error).
Either open file or correct procedure call (for example, change
parameters to permit operation when file is closed).

525 SIOERRAACCESSVIOLATION
Specified access mode is not compatible with requested operation
(read or write error). Change operation or access mode.

526 SIOERRANOSTACKSPACE
Program requires temporary buffer, but stack has insufficient space.
Increase run-time memory size if it is less than 32K; otherwise,
move one or more non-string arrays to upper memory.

527 SIOERRABLOCKINGREQD
Program attempted a write fold or write pad without a block buffer
(write error). Supply block buffer.

528 SIOERRAEDITDIROVERFLOW
Overflow occurred in internal directory of an edit file (write
error). The Edit file directory size exceeded the buffer block
size declared for i/o to that file.

529 SIOERRAINVALIDEDITWRITE
Program attempted to write to an edit file after writing internal
directory (write error).

530 SIOERRAINVALIDRECVWRITE
Program read $RECEIVE file, but did not follow read with write to
$RECEIVE (write error). Add missing write or delete extra read.

9-39

SEQUENTIAL I/O PROCEDURES
Errors

531 SIOERRACANTOPENRECV
SIO procedure cannot open $RECEIVE for break monitoring. User did
not open $RECEIVE with OPENAFILE procedure (CHECKABREAK error).
Open $RECEIVE with OPENAFILE to do break monitoring while using
$RECEIVE.

532 SIOERRAIORESTARTED
No-wait i/o restarted. This message is a warning, not an error.
Call WAITAFILE again to continue waiting.

533 SIOERRAINTERNAL
An internal error occurred (wait error).

534 SIOERRACHECKSUMCOM
SIO procedure encountered error while performing checksum on common
FCB (all procedures). Check program for pointer errors.

535 SIOERRACHECKSUM
SIO procedure encountered error while performing checksum on file
FCB (all procedures). Check program for pointer errors.

9-40

SEQUENTIAL I/O PROCEDURES
FCB Structure

FCB STRUCTURE

File characteristics and procedure call information are kept in a File
Control Block (FCB) within the user's data space. An FCB is
associated with the opening of a file, and is passed to each
sequential i/o procedure to identify that file. Additionally, there
is one common FCB for each process located within the user's data
space. The common FCB contains information common to all files, such
as a pointer to the error reporting file.

The common FCB is initialized during the first call to OPENAFILE
following process creation. This is indicated to OPENAFILE when
the first word of the common FCB is set to zero prior to calling
OPENAFILE for the first time.

An FCB is initialized prior to calling OPENAFILE by invoking the
define INITAFILEFCB, or by declaring the FCB using the define
ALLOCATEAFCB. The name of the file to be opened must also be put
into the FCB by the ~-<=fine ASSIGNAFILENAME.

. .

The FCB's can be located anywhere within the user's data space. The
common and file FCB's are linked together forwards and backwards as
shown in figure 9-1.

LINK

COMMON FCB
•

LINK

• FILE FCB

LINK

1 • FILE FCB •

•
• •
• •

LINK

• FILE FCB
•

Figure 9-1. FCB Linking

9-41

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

Initializing the File FCB

The file FCB must be allocated and initialized before the OPENAFILE
procedure is called to open a file. The SETAFILE procedure provides
these facilities, as explained in the following items.

The first three items listed - FCBSIZE, INITAFILEFCB, and
ASSIGNAFILENAME - are not used when the INITIALIZER procedure is
called to initialize the file control blocks. See the INITIALIZER
procedure.

1. The size in words of an FCB is provided as a literal,

FCBSIZE (currently 60)

example:

INT .infile [O:FCBSIZE-1];

2. Initialize the FCB using the SETAFILE procedure. This step is
required.

<file fcb> , INITAFILEFCB

example:

CALL SETAFILE (inf ile , INITAFILEFCB)

3. Specify the name of the file to open. This step is required.

<file fcb> , ASSIGNAFILENAME , <file name addr>

example:

4. Specify the access mode for this open. This step is optional.

CALL SETAFILE (<file fcb> , ASSIGNAOPENACCESS , <open access>

The following literals are provided for <open access> :

READWRITEAACCESS (0)
READAACCESS (1)
WRITEAACCESS (2)

9-42

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

If omitted, the access mode for the device being opened defaults
to the following:

Device

Operator
Process
$RECEIVE
Disc
Terminal
Printer
Mag Tape
Card Reader

example:

Access

Write
Read/Write
Read/Write
Read/Write
Read/Write
Write
Read/Write
Read

5. Specify exclusion for this open. This step is optional.

<file fcb> , ASSIGNAOPENEXCLUSION ,

<open exclusion>)

The following literals are provided for <open exclusion>

SHARE { 0)
EXCLUSIVE {l)
PROTECTED {3)

If omitted, the exclusion mode applied to the open defaults to the
following:

Access

Read
Write
Read/Write

example:

Exclusion Mode

if terminal then share, else protected
if terminal then share, else exclusive
if terminal then share, else exclusive

CALL SETAFILE (inAf ile , ASSIGNAOPENEXCLUSION , EXCLUSIVE) ;

6. Specify the logical record length. This step is optional.

<file fcb> , ASSIGNARECORDLENGTH ,

<record length>

The <record length> is given in bytes.

9-43

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

If omitted, <record length> defaults according to the device as
follows:

Device

Operator
Process
$RECEIVE
Unstructured Disc
Structured Disc
Terminal
Printer
Mag Tape
Card Reader

Logical Record Length

132 bytes
132 bytes
132 bytes
132 bytes
record length defined at creation
132 bytes
132 bytes
132 bytes
132 bytes

7. Set the file code. This step is optional and has two meanings:
1) if AUTOACREATE is on, the file code specifies the type of file
to be created. 2) implies the file code must match the file code
specified for the open to succeed.

CALL SETAFILE <file fcb> , ASSIGNAFILECODE , <file code>

8. Set the primary extent size. This step is optional, and has
meaning only if AUTOACREATE is on.

CALL SETAFILE <file fcb> , ASSIGNAPRIMARYEXTENTSIZE ,

<primary extent size>

<primary extent size> is given in pages (2048-byte units).

9. Set the secondary extent size. This step is optional, and
has meaning only if AUTOACREATE is on.

CALL SETAFILE <file fcb> ' ASSIGNASECONDARYEXTENTSIZE '

<secondary extent size>

<secondary extent size> is given in pages, 2048-byte units.

9-44

SEQUENTIAL I/O PROCEDURES
Initializing the File FCB

10. Set the file~s physical block length. This step is optional.
The physical block length is the number of bytes transferred
between the file and the process in a single i/o operation. If
<block length> is specified, blocking is also specified. A
physical block is composed of <block length> divided by <record
length> logical records. When <block length> is not exactly
divisible by <record length>, the portion of that block following
the last logical record is filled with blanks.

Note that the specified form of blocking differs from the type
of blocking performed when no <block length> is specified. In the
unspecified form, there is no indication of a physical block size;
the records are contiguous on the medium.

CALL SETAFILE (<file fcb> , ASSIGNABLOCKLENGTH , <block length>

<block length> is given in bytes.

9-45

SEQUENTIAL I/0 PROCEDURES
Interface with INITIALIZER and Assign Messages

INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES

The sequential i/o procedures and the INITIALIZER procedure can
be used in conjunction with or separately from each other. File
transfer characteristics, such as record length, can be altered at
run time using Command Interpreter ASSIGN commands. See the
INITIALIZER procedure, section 4.

The INITIALIZER procedure reads the startup message and, optionally,
the assign and param messages, from $RECEIVE. The INITIALIZER
procedure can prepare global tables of a predefined structure and
properly initialize FCB~s with the information read from the startup
and assign messages.

To use the INITIALIZER, an array called a Run-Unit Control Block
must be declared. Each file to be prepared by the INITIALIZER must be
initialized with a default physical file name and, optionally, with a
logical file name before invoking the INITIALIZER.

The INITIALIZER reads the startup message, then requests the assign
messages. For each assign message, the FCB~s are searched for
a logical file name which matches the logical file name contained in
the assign message. If a match is found, the information from the
assign message is put into the FCB. See section 11, "Command
Interpreter/ Application Interface", for a description of the ASSIGN
command.

The INITIALIZER also substitutes the real file names for default
physical file names in the FCB~s. This function provides the
capability to define the IN and OUT files of the startup message as
physical files and to define the home terminal as a physical file.

After invoking the INITIALIZER, the sequential i/o OPENAFILE procedure
is called once for each file to be opened.

INITIALIZER-RELATED DEFINES

Two defines are provided for allocating Run-Unit Control Block
Space (CBS) and for allocating FCB space. ·These defines are:

1. Allocate Run-Unit Control Block and Common FCB (data declaration).

9-46

ALLOCATEACBS { <run-unit control block> , <common fcb> ,
<numf iles>) ;

where

<run-unit control block>

is the name to be given to the run-unit control block; this
name is passed to the INITIALIZER procedure.

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

<common fcb>

is the name to be given to the common FCB; this name is
passed to the OPENAFILE procedure.

<numf iles>

is the number of FCB~s to be prepared by the INITIALIZER
procedure. The INITIALIZER begins with the first FCB
following ALLOCATEACBS.

example:

rucb , commfcb , 2) ;

2. Allocate FCB (data declaration).

Note: The FCB allocation defines must immediately follow the
ALLOCATEACBS define. No intervening variables are allowed.

ALLOCATEAFCB (<file fcb> , <default physical file name>)

where

<file fcb>

is the name to be given the FCB. The name references the
file in other sequential i/o procedure calls.

<default physical file name>, literal STRING,

is the name of the file to be opened. This can be an
internal form of a file name or one of the following,
and must be in upper case as shown.

byte numbers

[0] [8] [16] [24]

n #IN n

This means substitute the INFILE name of the startup
message for this name.

"

"

#OUT "

This means substitute the OUTFILE name of the startup
message for this name.

#TERM "

This means substitute the home terminal name for this
name.

9-47

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

"

"

#TEMP "
This means substitute a name appropriate for creating
a temporary file for this name.

"

This means substitute a name appropriate for creating
a temporary file for this name.

If the $<volume name> or <subvol name> is omitted, the
corresponding default name from the startup message is
substituted for the disc file names.

example:

ALLOCATE"FCB
ALLOCATE"FCB

in"f ile
out"file

"
"

#IN
#OUT

") ;
") ;

The following SET"FILE operation, ASSIGN"LOGICALFILENAME, is used
with the INITIALIZER. The logical file name is the means by which
the INITIALIZER matches an assign message to a physical file.

CALL SET"FILE <file fcb> , ASSIGN"LOGICALFILENAME ,

@<logical file name>

where

9-48

<file Tl\1'1'1 • r of!
... ••,. • ... '-" - I

references the file to be assigned a logical file name.

@<logical file name>, INT:value,

is the word address of an array containing the logical file
name. A logical file name consists of a maximum of seven
alphanumeric characters, the first of which must be an
alphabetic character.

<logical file name> must be encoded as follows:

byte numbers

[0] [l] [8]
<len><logical file name>

<len> is the length of the logical file name.

By convention, the logical file name of the input file of
the startup message should be named "INPUT"; the logical
file name of the output file of the startup message should
be named "OUTPUT".

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

example:

INT .buf [0:11];
STRING .sbuf := @buf '<<' l;
sbuf ': =' [5, "INPUT"] ;
CALL SETAFILE (inAfile , ASSIGNALOGICALFILENAME , @buf) ;
sbuf ':=' [6, "OUTPUT"];
CALL SETAFILE (outAf ile , ASSIGNALOGICALFILENAME , @buf) ;

Figure 9-2 shows the file assignment in relation to when the
INITIALIZER is invoked. File characteristics can be set by the
INITIALIZER with the ASSIGN command, or with programmatic calls
to the SETAFILE procedure.

CALL(S) TO SET FILE CALL(S) TO SET FILE
BEFORE CALLING AFTER CALLING
INITIALIZER INITIALIZER

OPEN"'FILE OPENFILE

t t
HIGHEST [ASSIGN COMMAND] [SET,..FILE]

t t
l SETFILE] [ASSIGN COMMAND]

t f
LOWEST DEFAULT SETTING DEFAULT SETTING

Figure 9-2. Precedence of Setting File Characteristics

CONSIDERATIONS

• If run-time changes to file transfer characteristics are not
allowed then do not assign a logical file name to the file.

• In some cases it is undesirable to have the INITIALIZER assign
a physical file name for the <default physical file name>. For
example, when it is not desirable to default the file name, but
instead to force the use of an ASSIGN command to specify a
physical file for the logical file, then declare the FCB as

9-49

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

follows (the FCB must be adjacent to other FCB's searched by the
INITIALIZER) :

INT .<file fcb> [O:FCBSIZE - 1];

In the executable part of the program, before calling the
INITIALIZER, initialize the FCB:

CALL SETAFILE (<file fcb> , INITAFILEFCB) ;

Assign a logical file name, and any other open attributes desired,
before calling the INITIALIZER:

CALL SETAFILE (<file fcb> , ASSIGNALOGICALFILENAME , @name) ;

CALL INITIALIZER (••);

CALL OPENAFILE (<common fcb> , <file fcb> , •••) ;

If the user neglects to ASSIGN a physical file to the logical
file, the open fails with an error number 513,
SIOERRAMISSINGFILENAME, "file name not supplied".

USAGE EXAMPLE

The following shows the use of the INITIALIZER and sequential i/o
procedures for opening the IN and OUT files of a typical Tandem
subsystem program.

If the IN and OUT files are the same file and either is a terminal
or a process, only the IN file is opened. The address of the inAfile
FCB is put into the pointer to the outAf ile FCB.

The open access is assigned after the INITIALIZER is called. This
overrides the open access specified in an ASSIGN command.

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS
?LIST

Set up the control blocks for the INITIALIZER with supplied
Defines.
Initialize Run Unit Control Block and common FCB.

- Array holding Run Unit Control Block. rucb
commfcb - Array for the common File Control Block.

ALLOCATEACBS (rucb, commfcb, 2) ;

Initialize in file FCB.
inAfile - Array for FCB of the in file.

ii #IN ii) ;

Initialize out file FCB.
outAfile - Array for FCB of the out file.

9-50

ALLOCATE""FCB

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

out""file, " #OUT II) i

LITERAL
process = 0,
terminal = 6,
inblklen = 4096,

outblklen = 4096,

rec""len = 255;

INT • inblkbuf [O:inblklen/2 - 1],
• outblkbuf [O:outblklen/2 - 1],!
• infname, !
• outfname, !
device"'type,

phys""rec""len,

interactive;

Process device type.
Terminal device type.
Length of block buffer for in
file.
Length of block buffer for out
file.
Maximum record length to read
or write.

In file's buffer for blocking •
Out file's buffer for blocking •
In file's file name •
Out file's file name •
Device type (see DEVICEINFO
procedure, sec. 2).
Physical record length of
device.
Indicates if in and out file
are interactive, implying use
read/write access.

INT .buf [0:11];
STRING

Holds logical file names.

.sbuf := @buf '<<' l; String corresponding to buf &

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS
?LIST

PROC main""proc MAIN;
BEGIN

int .buffer [O:rec""len/2 - 1], Buffer for i/o with a single
record.

count := rec""len;

Beginning of program execution.

Number of bytes read in or
written out.

Set up in and out files using startup message from RUN command.
sbuf ':=' [5, "INPUT"] ;
CALL SET""FILE(in""file, ASSIGN""LOGICALFILENAME, @buf) ;
sbuf ': =' [6, "OUTPUT"] ;
CALL SET""FILE(out""file, ASSIGN""LOGICALFILENAME, @buf) ;
CALL INITIALIZER(rucb) ;

get physical file names for in and out files.

@infname := CHECK""FILE(in""file, FILE""FILENAME""ADDR) ;
@outfname := CHECK""FILE(out""file, FILE""FILENAME""ADDR) ;

Determine type of access for in file.

9-51

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

CALL DEVICEINFO (infname, deviceAtype, physArecAlen) ;
interactive :=

IF (deviceAtype.<4:9> = terminal OR
deviceAtype.<4:9> = process)

AND infname = outfname FOR 12
THEN 1 ELSE O;

CALL SETAFILE(inAfile, ASSIGNAOPENACCESS,

Open in file.

IF interactive THEN READWRITEAACCESS
ELSE READAACCESS) i

CALL OPENAFILE(commfcb, inAfile, inblkbuf
,inblklen,,,,, outAfile);

IF interactive THEN Make in and out files the same;
no need to

@outAfile := @inAfile
ELSE

open out file.
Open out file.

BEGIN
CALL SETAFILE(outAfile, ASSIGNAOPENACCESS, WRITEAACCESS);
CALL OPENAFILE(commfcb, outAfile, outblkbuf, outblklen) ;

non-interactive use, so echo reads to out file.

CALL SETAFILE(inAfile, SETADUPFILE, @outAfile) ;
END;

Main processing loop.

WHILE not EOF process the record.

WHILE (READAFILE(inAfile, buffer, count)) <> 1 DO
BEGIN

Process record read in, and format a record for output.

CALL WRITEAFILE(outAfile, buffer, count) ;
END;

CALL CLOSEAFILE(commfcb) ; close all files

END;

To change the record length of the input file, the following ASSIGN
command can be entered before the program is run:

ASSIGN INPUT,,REC 80

9-52

SEQUENTIAL I/O PROCEDURES
Interface with INITIALIZER and Assign Messages

To change the file code of the output file, the following ASSIGN
command can be entered before the program is run:

ASSIGN OUTPUT,,CODE 9876

SUMMARY

The following are the steps involved to use the INITIALIZER with the
sequential i/o procedures:

• Allocate the CBS and FCB, and assign the default physical file
names using ALLOCATEACBS and ALLOCATEAFCB's.

• Assign a logical file name using the SETAFILE operation,
ASSIGNALOGICALFILENAME.

• If ASSIGN command characteristics are to override program
calls to SETAFILE, invoke assignment defines.

• Invoke the INITIALIZER to read the startup, assign, and param
messages and prepare the file FCB's.

• If programmatic calls to SETAFILE are to override ASSIGN command
characteristics, invoke assignment defines.

• Open the files with calls to OPENAFILE.

9-53

SEQUENTIAL I/O PROCEDURES
Usage Example Without INITIALIZER Procedure

USAGE EXAMPLE WITHOUT INITIALIZER PROCEDURE

The following example shows the use of the sequential i/o procedures
for the IN and OUT files of a typical Tandem subsystem program when
the INITIALIZER procedure is not used.

?SOURCE $SYSTEM.SYSTEM.GPLDEFS
INT interactive,

. . .)

error,
.common"fcb
.rcv"file
.in"file
.out"file
.buffer

[0 :FCBSIZE-1] := 0,
[O:FCBSIZE-1],
[O:FCBSIZE-1],
[O:FCBSIZE-1],
[0:99],

mompid
devtype,
junk;

[0:3],

LITERAL
process =
terminal =
in"blkbuf len =
out"blkbuflen =

0,
6,

1024,
1024;

INT .in"blkbuf [O:in"blkbuflen/2 - l],
.out"blkbuf [O:out"blkbuflen/2 - l];

?SOURCE $SYSTEM.SYSTEM.EXTDECS (•••

read the startup message.

- open $RECEIVE.

CALL SET"FILE (rcv"f ile , INIT"FILEFCB) ;
buffer "": ="" "$RECEIVE " & buffer [4] FOR 7;
! file name.
CALL SET"FILE (rcv"f ile , ASSIGN"FILENAME , @buffer) ;
! number of bytes to read.
CALL SET"FILE (rcv"f ile , ASSIGN"RECORDLENGTH , 200) ;
CALL OPEN"FILE (common"fcb , rcv"file ,,, nowait , nowait);

- get mom""s process ID.

- first, see if I""m named.

CALL GETCRTPID (MYPID , buffer) ;
IF buffer.<0:1> = 2 THEN

! not named.
CALL MOM (mompid) ;

ELSE

9-54

SEQUENTIAL I/O PROCEDURES
Usage Example Without INITIALIZER Procedure

BEGIN
! named.
CALL LOOKUPPROCESSNAME (buffer) ;
mompid ':='buffer [5] FOR 4;

END;
- allow startup message from mom only.

CALL SETAFILE (rcvAf ile , SETAOPENERSPID , @mompid) ;

DO
BEGIN

CALL READAFILE (rcvAfile, buffer ,,,, 1);
DO error := WAITAFILE (rcvAfile , length , 3000D
UNTIL error <> SIOERRAIORESTARTED;

END
UNTIL buffer = -1; ! startup message read.

! - close $RECEIVE.
CALL CLOSEAFILE (rcvAf ile) ;
!
! see if program is being run interactively.
!
CALL DEVICEINFO (buffer [9] , devtype , junk) ;
interactive :=

IF (devtype.<4:9> = terminal OR
devtype.<4:9> = process) AND
buffer [9] = buffer [21] for 12 THEN 1

ELSE O;

CALL SETAFILE (inAfile , INITAFILEFCB) ;
CALL SETAFILE (inAfile , ASSIGNAFILENAME , @buffer 9]) ;
CALL SETAFILE (inAfile , ASSIGNAOPENACCESS ,

IF interactive THEN READWRITEAACCESS
ELSE READAACCESS);

CALL OPENAFILE (commonAfcb , inAf ile , inAblkbuf , inAblkbuflen
,,,,, outAfile) ;

IF interactive THEN
! use in file as out file.
@outAfile := @inAfile

ELSE
BEGIN

CALL SETAFILE (outAf ile , INITAFILEFCB) ;
CALL SETAFILE (outAfile , ASSIGNAFILENAME , @buffer [21]) ;
CALL SETAFILE (outAf ile , ASSIGNAOPENACCESS , WRITEAACCESS) ;
CALL OPENAFILE (commonAfcb , outAfile , outAblkbuf ,

outAblkbuflen) ;
! set duplicative file.
CALL SETAFILE (inAfile, SETADUPFILE, @outAfile);

END;

9-55

SEQUENTIAL I/O PROCEDURES
NOAERROR Procedure

Error handling and retries are implemented within the sequential
i/o procedure environment by the NOAERROR procedure. NOAERROR is
called internally by the sequential i/o procedures. If the file
is opened by OPENAFILE, then the NOAERROR procedure can be called
directly for the file system procedures.

The call to the NOAERROR procedure is:

{ CALL
:= l NOAERROR <state> , <file fcb> ,

{ <no retry>
<good error list> , <retryable>

where

9-56

<no retry>, INT,

indicates whether or not the i/o operation should be
retried. Values of <no retry> are:

0 = operation should be retried.
<>0 = operation should not be retried.

If <no retry> is not zero, one of the following
is indicated:

• <state> is not zero.
• no error occurred; error is zero.
• error is a good error number on the list.
• fatal error occurred and abort-on-error mode is off.
• error is a break error and BREAK is enabled for

<file fcb>.

<state>, INT:value,

if non-zero, indicates the operation is to be considered
successful. The file error and retry count variables are
set to zero, with <no retry> returned as non-zero.
Typically, either of two values is passed in this position:

= CCE

0

for example, immediately following a file system
call. If equal is true, the operation is
successful. This eliminates a call to FILEINFO
by NOAERROR.

forces NOAERROR to first check the error value
in the FCB. If the FCB error is zero, NOAERROR
calls FILEINFO for the file.

SEQUENTIAL I/O PROCEDURES
NOAERROR Procedure

<file fcb>, INT:ref,

identifies the file to be checked.

<good error list>, INT:ref,

is a list of error numbers; if one of the numbers matches
the current error, <no retry> is returned as non-zero
(no retry). The format of <good error list>, in words, is

word [0] = number of error numbers in list {O:n}
word [1] = good error number

word n] =good error number.

<retryable>, INT:value,

is used to determine whether certain path errors should be
retried. If <retryable> is not zero, errors in the
range of {120, 190, 202:231} cause retry according
to the device type as follows:

Device

Operator
Process
$RECEIVE
Disc
Terminal
Printer
Mag Tape
Card Reader

Retry Indication

yes
n.a.
n.a.
(opened with sync depth of 1, son.a.)
yes
yes
no
no

If the path error is either of {200:201}, a retry indication
is given in all cases following the first attempt.

example:

INT goodAerror [0:1] := [1, 11] ; ! nonexistent record.

CALL SETAFILE (outAfile, SETAERROR, 0)
DO CALL READUPDATE (outAfnum, buffer ' count)
UNTIL NOAERROR (= , outAfile , goodAerror , 0) ;

9-57

SEQUENTIAL I/O PROCEDURES
NOAERROR Procedure

ERROR HANDLING BY NOAERROR

Errors are handled as follows:

if <state> then
begin

fcbAerror := 0;
retrycount := O;
return no-retry indication

end;

if not fcbAerror then
CALL FILEINFO (fcbAfnum ' fcbAerror) ;

0
1,6
7
<goodAerror>

100:102

110:111

112

9-58

Disposition

return no-retry indication
READAFILE: return no-retry indication
WRITEAFILE: return no-retry indication
return no-retry indication

prompt then
if "S[TOP]" then fatal
else return retry indication

if device = breakdevice then
begin

breakflush := l;
if (breakhit :=

checkbreak
begin

check $receive for break messagee
if break message then

breaktyped := 1
else
if breakflush then
begin

take break
delay 2 sec

end
return breaktyped.

end) then return no-retry indication.
end

delay 2 sec
return retry indication

end

begin
delay 2 sec
return retry indication

end

200:201

120, 190
202:231

other

SEQUENTIAL I/O PROCEDURES
NOAERROR Procedure

if (retrycount := retrycount + 1) > 1 then
goto fatal

else return retry indication.

if not retryable or
(retrycount := retrycount + 1) > 1 then
goto fatal

else
if device <> mag tape and

device <> card reader then
return retry indication

else
goto fatal

fatal:
if print error then

print an error message;
if abort then

begin
call closeAf ile (commonAfcb) ;
call abend;

end;
return no-retry indication;

The retry count is used to determine the number of times an operation
is consecutively retried for a maximum of two retries. The count
is cleared when a no-retry is indicated.

9-59

SEQUENTIAL I/O PROCEDURES
$RECEIVE Handling

$RECEIVE HANDLING

Within the environment of the sequential i/o procedures, the $RECEIVE
file has two functions:

• To check for break messages

• To transfer data between processes

Within the sequential i/o procedures, these functions can be performed
concurrently. It may be desirable to manage the $RECEIVE file
independently of the sequential i/o procedures, and to monitor break
using the sequential i/o procedures. Therefore, the SETAFILE
operation SETABREAKHIT enables the user's $RECEIVE handler to pass
the break information into the sequential i/o procedure environment.

The FCB internal structure is shown in Appendix E.

$RECEIVE Data Transfer Protocol

RS = RECEIVEASTATE: 0 =NEED READUPDATE, 1 =NEED REPLY.
ROC = RECEIVEAOPENERACOUNT.

OPENAFILE
RS := ROC := O;

READAFILE (file must be open with read or read/write access)

9-60

if system message then
begin

RS := 1
if user wants to process this message then

return l;
replycode := 0
if cpu down message then

begin
if cpu = opener's cpu then

{ delete process from opener's directory }
end

else
if breakAmessage then

begin
breakhit := 1

end
else
if openAmessage then

begin
if nowait depth > 1 then replycode := 2
else
if ROC = 2 then

replycode := 12
else

SEQUENTIAL I/O PROCEDURES
$RECEIVE Handling

if primary open then
begin

if not primary pid or
opener = primary pid then

begin
add primary pid to opener directory
ROC := ROC + 1

end
else replycode := 12

end
else
if backup open and

(pid in message = primary openers pid or
not primary pid) then

begin
if primary pid then

add backup pid to opener directory
else

! treat as primary open.
add primary pid to opener directory

ROC := ROC + 1
end

else replycode := 12
end

else
if close message then

begin
if pid = primary pid then

begin
primary pid := backup pid
delete backup pid from opener directory

end
else
if pid = backup pid then

delete backup pid from opener directory
if not (ROC := ROC - 1) and

rcveof then
error := 1

end.

if open message and
user wants to reply
and not replycode then return 1

else
begin

REPLY (replycode)
RS := 0

end

return if error = 1 then 0 else 1
end) then return.

9-61

SEQUENTIAL I/O PROCEDURES
$RECEIVE Handling

if RS then REPLY (no text, REPLYERROR = 0) ; RS := 0;

Note: REPLY is skipped if READAFILE immediately follows
open.

READUPDATE (text) ; RS := l;
error :; O;

WRITEAFILE (file must be open with write or read/write access)

if not RS then ! invalid operation
error := SIOERRAINVALIDRCVWRITE
RETURN;

REPLY (text, reply code) ; RS := 0;
error := O;

replycode := IF access = write THEN 1 ELSE 45;
if not RS then READUPDATE (no text}; RS := l;
REPLY (no text, replycode) ; RS := O;

READUPDATE/REPLY until close message; RS := 0;

Note: To determine whether the data returned from READAFILE

9-62

is listing text or command prompt text call the file system
RECEIVEINFO procedure.

SEQUENTIAL I/O PROCEDURES
No-Wait I/O

NO-WAIT I/O

If NOWAIT is specified at open time, the file is opened with a no-wait
i/o depth of one. Whether an individual operation is to be waited for -To­

is determined on a call by call basis. No-wait operations are
completed by a call to WAITAFILE.

If it is desirable to wait for any file, the user can call AWAITIO
before calling WAITAFILE. Depending on whether blocking is
performed, a physical i/o operation may not always take place with a
logical i/o operation. Therefore, the CHECKAFILE operation
FILEAPHYSIOOUT is used to determine if an i/o operation is
outstanding. The SETAFILE operations SETAPHYSIOOUT, SETAERROR, and
SETACOUNTXFERRED are provided to condition the FCB if the i/o is
completed. The user must call WAITAFILE following the call to AWAITIO
for the file state information to be updated.

Example:

@inAfnum := CHECKAFILE (inAf ile , FILEAFNUM) ;
error := O;
WHILE 1 DO

BEGIN
IF error <> SIOERRAIORESTARTED THEN

CALL READAFILE (inAfile, buffer , , , 1);

fnum := -1;
CALL AWAITIO (fnum ,, countread ,, 3000D);
IF fnum = inAfnum THEN

BEGIN
CALL FILEINFO (inAfnum ' error) ;
! set i/o done.
CALL SETAFILE (inAfile, SETAPHYSIOOUT, 0);
! set count read.

no wait.

CALL SETAFILE (inAfile, SETACOUNTXFERRED, countread);
! set error code.
CALL SETAFILE (inAfile, SETAERROR ·'error);
IF (error :=

END
ELSE

WAITAFILE (inAfile , inAfileAcountread)) <>
SIOERRAIORESTARTED THEN

BEGIN ! completed.
!
! process read.

END;

END; ! WHILE 1 LOOP.

9-63

SEQUENTIAL I/O PROCEDURES
No-Wait I/O

SUMMARY OF FCB ATTRIBUTES

The following table summarizes the operations of SETAFILE
and CHECKAFILE. They are listed alphabetically by their
SETAFILE name and by their CHECKAFILE name.

The following symbols are used:

FCB
FCB must be that of a file (not common FCB} •

C FCB must be the common FCB.
R FCB must be that of the file $RECEIVE.
A FCB can be that of a·file or common FCB (Any FCB}.

State
o File must be open.
C File must be closed.
A File can be open or closed (Any state).

Reset
+ : These attributes have default values assigned by

OPENAFILE unless specified differently in the OPENAFILE
flags or by a later SETAFILE operation.

- : When a file is closed these attributes are cleared.
If the FCB is reopened, these attributes have default
values assigned by OPENAFILE unless specified
differently in the OPENAFILE flags or by a SETAFILE
operation.

Addr

9-64

* The parameter passed to SETAFILE is the address of the
array, i.e . @fileAname instead of fileAname. The value
returned by CHECKAFILE is the address of the item.

S R
t e

F a s
C t e
B e t

c -
c -
c
c
c -
c -
c -
c +
c -
c
0 +

C A
A A

0 +
0 +
0 +
0 -

C A
0 -

Ro
0 -
0 +
0 +
0 +

R o
Ro
Ro
Ro
Ro
C A

A

0 +
0 +
0 +

+

+

SET"'FILE

Assign"'blockbuflen
f ilecode
filename
logicalf ilename
openaccess
openexclusion
priext
recordlen
secext

Init"'filefcb [l]
Set"'abort"'xfererr

breakhit
checksum
countxferred
crlf"'break
dupf ile
error
error file
logioout
openerspid
physioout
print"'err"'msg
prompt
read"'trim
rcveof
rcvopencnt
rcvuseropenreply
systemmessages
systemmessagemany
traceback
user flag
write"'fold
write"'pad
write~trim

F
c
B

s
t
a
t
e

A
A

A
d
d
r

A *
A *
A
A
A
A
A

0

CA
A A

0

0

0 *
0

c A *
0

c A *
0

0

0

0

R 0

Ro
Ro
R 0

R 0 *
c A

A
0

0

0

A
A

A 0 *
0

A *
0

0

A *
A 0 *

A *
A *

SEQUENTIAL I/O PROCEDURES

CHECK"'FILE

File"'blockbuf len
f ilecode

No-Wait I/O

f ilename"'addr
logicalf ilename"'addr
openaccess
openexclusion
priext
recordlen
sec ext

File"'abort"'xfererr
breakhit
checksum
countxferred
crlf"'break
dupf ile
error
errorf ile
logioout
openerspid"'addr
physioout
print"'err"'msg
prompt
read"'trim
rcveof
rcvopencnt
rcvuseropenreply
systemmessages
systemmessagemany
traceback
user flag
write"'fold
write"'pad
write"'trim

File"'assignmaskl [2]
assignmask2
bwdlinkfcb
created
error"'addr
f ileinfo
fnum
fnum"'addr
fwdlinkfcb
seqnum"'addr
userflag"'addr

[l] Init"'filefcb should not be used for initializing the common"'fcb.
[2] All assigns except filename are lost after a close"'file.

9-65

SECTION 10

FORMATTER

The GUARDIAN operating system formatter provides the capability to
format data on output and to convert data on input with a minimum of
programming effort. The formatter consists of two procedures,
which are called from user programs.

The formatter procedures are:

FORMATCONVERT

FORMATDATA

converts an external format to internal form
for presentation to the FORMATDATA procedure.

performs conversion between internal and
external representation of data as specified
by a format, or performs conversion of data
using the list-directed rules.

The decimal arithmetic package is required to use the formatter.

The floating-point arithmetic package is needed when using the "D",
"E", and "G" edit descriptors for output or when floating-point
variables are used.

10-1

FORMATTER
FORMATCONVERT Procedure

The FORMATCONVERT procedure converts an external format to internal
form for presentation to the FORMATDATA procedure.

The call to the FORMATCONVERT procedure is:

{ <status> := }}
{ CALL

FORMATCONVERT <iformat>

, <iformatlen>

, <eformat>

, <eformatlen>

, <scales>

, <scalecount>

, <conversion>

where

10-2

<status>, INT,

is a value indicating the outcome of FORMATCONVERT:

If > 0, indicates successful conversion. The value
is the number of bytes in the converted
format (<iformat>}.

If = 0, indicates <iformatlen> was insufficient to
hold the entire converted format.

If < 0, indicates an error in the format. The value
is the negated byte location in the input
string at which the error was detected.
The first byte of <eformat> is numbered 1.

<iformat>, STRING:ref,

is an array in which the converted format is to be
stored. The contents of this array must be passed to
the FORMATDATA procedure as an integer parameter, but
FORMATCONVERT requires it to be byte-addressable
G-relative storage. Thus <iformat> must be aligned on
a word boundary, or the contents of <iformat> must be
moved to a word-aligned area when it is to be passed to
FORMATDATA. (The area passed to FORMATDATA need not be
in byte-addressable storage.}

FORMATTER
FORMATCONVERT Procedure

<iformatlen>, INT,

is the length, in bytes, of the <iformat> array. If
the converted format is longer than <iformatlen>, the
conversion is terminated and a <status> value <= 0 is
returned.

<eformat>, STRING:ref,

is the format string in external (ASCII) form.

<eformatlen>, INT,

is the length, in bytes, of the <eformat> string.

<scales>, INT:ref,

is an integer array. FORMATCONVERT processes the format
from left to right, placing the scale factor (the number
of digits that are to appear to the right of the decimal
point) specified or implied by each repeatable edit
descriptor into the next available element of <scales>,
until the last repeatable edit descriptor has been
converted or the maximum specified by <scalecount> is
reached, whichever occurs first.

<scalecount>, INT:ref,

On call, the number of occurrences of the <scales> array.

On return, <scalecount> contains the actual number of
repeatable edit descriptors converted.

If the number of repeatable edit descriptors present is
greater than the number entered here, FORMATCONVERT stops
storing scale factors when the <scalecount> maximum is
reached, but continues to process the remaining edit
descriptors and continues incrementing <scalecount>.

<conversion>, INT,

Specifies the type of conversion to be done:

0 = Check validity of format only. No data is stored
into <iformat>. The scale information is stored
in the <scale> array.

10-3

FORMATTER
FORMATCONVERT Procedure

1 = Produce compact conversion, ignoring modifiers and
decorations. The resulting format requires little
storage space, but the execution time is twice as
long as version 2 (below) •

2 = Produce expanded form with modifiers and decorations.
This requires additional storage space, but the
execution time is half that of version 1 (above) •
The size required is approximately 10 times
<eformatlen>.

Note: The <scales> parameter information was included to provide
information needed by the ENFORM product. It is not of interest
to most users of FORMATCONVERT. A variable initialized to zero
should be supplied for <scales> and <scalecount> if this
information is not of interest.

10-4

FORMATTER
FORMATDATA Procedure

The FORMATDATA procedure performs conversion between internal and
external representations of data, as specified by a format or the
list-directed conversion rules.

The call to the FORMATDATA procedure is:

{ <error>
{ CALL

:= 1 FORMATDATA <buffer>

, <bufferlen>

, <bufferoccurs>

, <length>

, <iformat>

, <variablelist>

, <variablelistlength>

, <flags>

where

<error>, INT,

indicates the outcome of the call.

0 = Successful operation

Errors: 267 = Buffer overflow
268 = No buffer
270 = Format loopback
271 = Edit item mismatch
272 = Illegal input character
273 = Bad format
274 = Numeric overflow

<buffer>, STRING:ref,

is a buffer or a series of contiguous buffers where the
formatted output data is to be placed, or where the input
data is found. The length, in bytes, of <buffer> must
be at least <bufferlen> times <bufferoccurs>.

10-5

FORMATTER
FORMATDATA Procedure

10-6

<bufferlen>, INT,

is the length, in bytes, of each buffer in the <buffer>
array.

<bufferoccurs>, INT,

is the number of buffers in <buffer>.

<length>, INT:ref,

is an array that must have at least as many elements
as there are buffers in the <buffer> array on output.
FORMATDATA stores the highest referenced character
position in each buffer in the corresponding <length>
element. If a buffer is not accessed, -1 is stored for
that buffer, and for all succeeding ones. If a buffer
is skipped, (for example, due to consecutive buffer
advance descriptors in the format), 0 is stored.

There are no values stored into the <length> parameter
during input operation.

<iformat>, INT:ref,

is an integer array containing the internal format
(as constructed by FORMATCONVERT) .

is a 4- or 5-word entry for each array or variable. It
consists of the following items:

WORD CONTENTS

[0] dataptr

[1] data type

[2] data bytes

[3] dataoccurs

[4] nullptr (OPTIONAL)

<dataptr> is the address of the array or variable (byte
address for types O, 1, 12-15, and 17; word address
for other types) .

FORMATTER
FORMATDATA Procedure

<datatype> is the type and scale factor of the element:

bits <8:15> 0 = String
1 = Numeric string (unsigned)
2 = Integer(l6) signed
3 = Integer(l6) unsigned
4 = Integer(32) signed
5 = Integer (32) unsigned
6 = Integer(64) signed
7 = not used
8 = Real (32)
9 = Complex(32*2)

10 = Real (64)
11 = Complex(64*2)
12 = Numeric string, sign trailing,

embedded
13 = Numeric string, sign trailing,

separate
14 = Numeric string, sign leading,

embedded
15 = Numeric string, sign leading,

separate
16 = not used
17 = Logical*! (1 byte)
18 = not used
19 = Logical*2 (INT (16))
20 = not used
21 = Logical*4 (INT (32))

Note: Data types 7 through 11 require floating-point
firmware.

bits <0:7> Scale factor moves the position of the
implied decimal point by adjusting the
internal representation of the expression.
Scale factor is the number of positions
that the implied decimal point is to be
moved to the left (factor > 0) or to the
right (factor <= 0) of the least
significant digit. This value must be
0 for data types 0, 17, 19, and 21.

<databytes> is the size of the variable or array element
in bytes, used to determine the size of strings and
address spacing.

<dataoccurs> is the number of elements in the array
(supply 1 for undimensioned variables).

10-7

FORMATTER
FORMATDATA Procedure

10-8

<nullptr> If <> 0, is the byte address of the null value.
If = 0, no null value for this variable.

<variablelistlength>, INT,

is the number of <variablelist> entries passed in this
call.

<flags>, INT:value,

<15:15> = Input:

If 0, FORMATDATA performs output operations.
If 1, FORMATDATA performs input operations.

<04:04> = Null value passed:

If 0, each <variablelist> item is a 4-word
group.

If 1, each <variablelist> item is a 5-word
group.

<03:03> = P-Relative (<iformat> array):

If 0, the <iformat> array is G-relative.
If 1, the <iformat> array is P-relative.

<02:02> = List-directed (refer to "List-Directed
Formatting" at the end of this section) :

If 0, apply the format-directed operation.
If 1, apply the list-directed operation.

Errors

267 BUFFER OVERFLOW

FORMATTER
FORMATDATA Procedure

FORMATDATA required access to a character before start of buffer or
outside buffer to interpret an edit descriptor.

268 NO BUFFER
FORMATDATA required new buffer, but current buffer was the last one
supplied. Correct format or increase buffer space.

270 FORMAT LOOPBACK
When FORMATDATA reached end of a format which contained no
repeatable edit descriptors, data items remained to be processed.
This error would cause an infinite loop if not detected. Include
repeatable edit descriptors in the format, or reduce number of data
items.

271 EDIT ITEM MISMATCH
In format-directed operation, edit descriptor was matched to data
element of incompatible type. (For example, "G" edit descriptor
was associated with string data element on output, or any edit
descriptor except "A" was associated with string data element on
input.) In list-directed input, numeric data element was repeated
using r*c form, and some data element after first element to which
this form applied was a string-type element. Correct format, or
correct data list to include missing items or delete extra ones.

272 ILLEGAL INPUT CHARACTER
Numeric input field contained character that was inappropriate for
corresponding edit descriptor. For example, non-numeric character
was entered in field being interpreted according to "I" edit
descriptor. Correct format or data list.

273 BAD FORMAT
Format containing edit descriptor that is valid for output, but not
for input, was used for input. For example, I5.5 is invalid for
input. Correct the format.

274 NUMERIC OVERFLOW
Numeric value was too small or too large to place in corresponding
data element. Change format or correct numerical calculations.

10-9

FORMATTER
Example

EXAMPLE

This example shows how to use the Formatter procedures for some
simple output editing. It illustrates the setup for the variable
list and the use of the <length> values returned from FORMATDATA.

PROC EXAMPLE MAIN;
BEGIN

THIS STRUCTURE DEFINES THE 4-WORD FORM OF VARIABLE LIST ENTRY
(THE ONE WITHOUT THE NULL VALUE POINTER FIELD) .

STRUCT VLEAREF (*);
BEGIN
INT ELEAPTR ;
STRING ELEASCALE, ELEATYPE
INT ELEALEN, ELEAOCCURS
END ;

THIS DEFINE PROVIDES ONE WAY TO INITIALIZE THE FIELDS OF A
VARIABLE LIST ENTRY. THE SCALE, TYPE, LENGTH, AND OCCURS VALUES
MUST BE CONSTANTS TO BE ABLE TO USE IT.

DEFINE VLEAINIT (ENT, V, SCALE, TYPE, LEN, OCCURS) =
BEGIN
ENT ':=' [0, SCALE '<<' 8 '+' TYPE, LEN, OCCURS]
ENT.ELEAPTR := @V ;
END #;

THIS STRUCTURE DEFINES A BUFFER TO MAKE IT EASIER TO CREATE
AN ARRAY OF BUFFERS.

LITERAL BUFALEN = 100
STRUCT BUFAREF (*) ;

BEGIN
STRING BYTES [O:BUFALEN-1]
END ;

THE EXAMPLE FORMAT IN EXTERNAL (ASCII) FORM.

LITERAL EFORMATLEN = 60 ;
STRING .EFORMAT [O:EFORMATLEN] :=

"20X,'SAMPLE OUTPUT' // I5,2X,Fl0.3,5(2X,I2) ,SX,A"

STORAGE FOR THE INTERNAL FORM OF THE FORMAT.

LITERAL IFORMATLEN = 200 ;
INT .WFORMAT [O:IFORMATLEN/2] ;
STRING .!FORMAT := @WFORMAT '<<' 1

10-10

ARRAY OF BUFFERS AND OF THE LENGTH USED IN EACH.

LITERAL NUMABUFS = 5 ;
STRUCT .BUFFERS (BUFAREF) [O:NUMABUFS-1]
INT .BUFALENS [O:NUMABUFS-1]

VARIABLE LIST ARRAY.

STRUCT .VLIST (VLEAREF) [0:3]

DATA FOR THE EXAMPLE.

INT INTA16 := 7 ;
FIXED(2) QUAD := -437.57F ;
INT(32) .INTA32AARRAY [0:4] := [lD, lD, 2D, 3D, SD]
STRING .CHARS [0:10] := "DEMO STRING" ;

MISCELLANEOUS DATA.

INT .FILENAME [0:11]
INT FILENO ;
INT SCALES, ERROR, I ;

INITIALIZATION

CALL MYTERM (FILENAME) ;
CALL OPEN (FILENAME, FILENO)

CONVERT THE FORMAT TO INTERNAL FORM.
NOTE THE WAY TO IGNORE THE SCALE INFORMATION.

SCALES := 0 ;

FORMATTER
Example

ERROR := FORMATCONVERT (!FORMAT, IFORMATLEN, EFORMAT, EFORMATLEN,
SCALES, SCALES, 1) ;

IF ERROR <= 0 THEN BEGIN
HERE IF ERROR IN FORMAT

END ;

SET UP THE VARIABLE LIST ENTRIES, BOTH BY USING THE DEFINE
AND BY SEPARATE STORES INTO THE ITEM FIELDS.

VLEAINIT (VLIST[O], INTA16, 0, 2, 2, 1) ;
! SCALE O, TYPE 2, LEN 2 BYTES, 1 OCCURRENCE

VLEAINIT (VLIST[l], QUAD, 2, 6, 8, 1) ;
! SCALE 2, TYPE 6, LEN 8 BYTES, 1 OCCURRENCE

10-11

FORMATTER
Example

VLIST[2].ELEAPTR := @INTA32AARRAY
VLIST[2].ELEASCALE := 0
VLIST[2] .ELEATYPE := 4
VLIST[2].ELEALEN := 4
VLIST[2].ELEAOCCURS := 5

VLEAINIT (VLIST[3], CHARS, 0, O, 11, 1) ;

VARIABLE ADDRESS
SCALE 0
TYPE 4
LENGTH 4 BYTES
5 OCCURRENCES

! SCALE a, TYPE a, LEN 11 BYTES, 1 OCCURRENCE

EDIT THE DATA INTO THE BUFFERS.

ERROR := FORMATDATA (BUFFERS, BUFALEN, NUMABUFS, BUFALENS, WFORMAT,
VL IS T , 4 , 0) ;

IF ERROR <> 0 THEN BEGIN
HERE IF ERROR IN DATA CONVERSION

END

WRITE THE BUFFERS USED TO THE TERMINAL.

I : = 0 ;
WHILE I <= NuMABuFs AND BUFALENS[Il >= a Do BEGIN

CALL WRITE (FILENO, BUFFERS[!], BUFALENS[I])
I := I + 1
END ;

THE OUTPUT PRODUCED IS THE THREE LINES SHOWN BELOW.
THE I CHARACTER IS USED TO SHOW THE BUFFER LIMITS INDICATED
IN THE BUFALENS ARRAY:

I 1

I 7

CALL STOP

END ;

10-12

-437.570

EXAMPLE

SAMPLE OUTPUT!

1 1 2 3 5 DEMO STRING!

FORMAT-DIRECTED FORMATTING

FORMATTER
Format-Directed Formatting

The principal parameters to the Formatter are a list of "data
elements", an array of buffers, and a "format".

The format is a list of "edit descriptors", separated by commas, which
are translated into internal form by FORMATCONVERT for presentation to
FORMATDATA. Edit descriptors may optionally be preceded by one or
more "modifiers" and/or "decorations", enclosed in brackets ([]), that
specify additional field formatting. The FORMATCONVERT procedure
converts the external data into an internal form for presentation to
the FORMATDATA procedure.

The FORMATDATA procedure matches each data element with its associated
edit descriptor, which specifies how it is to be displayed for output
or how the buffer contents are to be interpreted for input.
FORMATDATA proceeds through the list, from left to right, of edit
descriptors in the order in which they were presented. If an edit
descriptor is a "non-repeatable" item, FORMATDATA processes it
directly; if an edit descriptor is a "repeatable" item, FORMATDATA
obtains the next data element from the data list and performs the data
conversion specified by the edit descriptor. This processing
continues until the data list is exhausted.

Exceptions to the left-to-right processing are the repeat factor and
format loopback. Any edit descriptor, or groups of edit descriptors
enclosed in parentheses, can be applied repeatedly to a number of data
values by a positive-integer "repeat factor" preceding the descriptor
or group. If the end of the format is reached with unprocessed data
elements remaining, "format loopback" selects a portion of the format
which is to be interpreted again.

The <variablelist> defines a sequence of variables or arrays which are
to be processed by the FORMATDATA procedure. Each variable or element
of an array in the <variablelist> is referred to as a "data element".

10-13

FORMATTER
Format Characteristics

Format Characteristics

A "format" directs the operation of the FORMATDATA procedure.-s editing
between the internal representation and external representation of
data ..

The form of a format is:

Edit descriptors are of two types: those that specify the
conversion of data values (repeatable) and those that do
not (non-repeatable). The effect of repeatable edit descriptors
can be altered through the use of modifiers or decorations,
which are enclosed in brackets ([]) preceding the edit
descriptors to which they refer. Within a format, all edit
descriptors except buffer control descriptors must be separated
by commas. Buffer control descriptors have the dual function of
edit descriptors and format separators, and need not be set off
by commas.

format:
t

fmt-item

}
[separator fmt-item]
[]

b-separator [[separator] b-separator]

l non-repeatable-edit-descriptor l field-group
fmt-item:

field-group: [repeat] [mods] { group-spec }

group-spec:
} repeatable-edit-descriptor {

{
11

(" format ") " f

repeat: an unsigned, non-zero integer

mods: II [II

} modifier {

{ decoration f '
II] II

10-14

FORMATTER
Format Characteristics

separator: { I }

b-separator: { I }

non-repeatable
edit descriptors

repeatable
edit descriptors modifiers decorations

BN
BZ
H
string
p
s

SP
SS
T
TL
TR
x

A
D
E
F

G
I
L
M

BN
BZ
FL
LJ

OC
RJ
SS

Some sample formats:

I5,Fl0.2

" NAME EXTENSION 11 ,//,(A20,3X,I4)

3 (" ITEM ACTIVITY",lOX) ,//,3(M<99-9999>,5X,[BZ]I6,1X,10X)

FORMATDATA matches each data element with its associated edit
descriptor, which specifies how it is to be displayed for output
or how the buffer contents are to be interpreted for input.
FORMATDATA proceeds through the list (from left to right) of edit
descriptors in the order in which they were presented:

1. If an edit descriptor is a repeatable item, FORMATDATA obtains
the next data element from the data list and performs the data
conversion specified by the edit descriptor.

2. If an edit descriptor is a non-repeatable item, FORMATDATA
processes it directly.

This processing continues until the data list is exhausted. If there
are any data list items, there must be at least one repeatable edit
descriptor in the format.

The interpretation of the format terminates if any of these conditions
are met:

1. FORMATDATA encounters a repeatable edit descriptor in
the format and there are no remaining data elements.

2. FORMATDATA reaches the end of the format and there are no
remaining data elements.

10-15

FORMATTER
Format Characteristics

3. FORMATDATA encounters a colon edit descriptor in the format and
there are no remaining data elements.

A format is interpreted from left to right with the following
exceptions:

1. If a field group contains a repeat factor, then the group
specifications are processed the number of times indicated by
the repeat factor before continuing with the following
specifications.

2. If FORMATDATA reaches the end of the format and data elements
remain, format loopback occurs. Format loopback performs the
following steps:

10-16

a. The current buffer is terminated.

b. A new buffer is obtained.

c. The format is examined backwards (from right to left).
If a right parenthesis which is not part of a string or
Hollerith descriptor is encountered, the matching left
parenthesis is found, and the format interpretation
resumes at the left parenthesis. If a repeat factor
precedes this left parenthesis, processing resumes at
the repeat factor. If the beginning of the format is
reached and no right parenthesis is found, the format
interpretation resumes at the beginning.

d. Reverse examination of the format position has no effect
on the scale factor {set by P}, the sign control {set by
S,SP, or SS), or the blank control (set by BN or BZ).
The condition in effect at the end of the format
continues until altered by one of the controlling edit
descriptors.

FORMATTER
Edit Descriptors

EDIT DESCRIPTORS

Edit descriptors are of two types: those that specify the conversion
of data values (repeatable) , and those that do not (non-repeatable) •
The effect of repeatable edit descriptors can be altered through the
use of modifiers or decorations, which are enclosed in brackets ([])
preceding the edit descriptors to which they refer. Within a format,
all edit descriptors except buffer control descriptors must be
separated by commas. Buffer control descriptors have the dual
function of edit descriptors and format separators, and need not be
set off by commas.

Summary of Non-Repeatable Edit Descriptors

The edit descriptors that are not associated with data items are
of six subtypes:

• Tabulation

1. Tn - Tab absolute to "nth" character position
2. TRn - Tab right
3. TLn - Tab left
4. nX - Tab right (same as TR)

• Literals

1. Alphanumeric string enclosed in apostrophes (~) or quotation
marks (")

2. Hollerith descriptor (nH followed by "n" characters)

• Scale factor specification

1. P - Implied decimal point in a number

• Optional plus control

These descriptors provide control of the appearance of an
optional plus sign for output formatting. They have no effect
on input.

1. S - Do not supply a plus
2. SP - Supply a plus
3. SS - Do not supply a plus

• Blank interpretation control

1. BN Blanks ignored (unless entire field is blank)
2. BZ - Blanks treated as zeros

• Buffer control

1. I - Terminate the current buffer, and then obtain a new one
2. - Terminate formatting if no data elements remain

10-17

FORMATTER
Edit Descriptors

Summary of Repeatable Edit Descriptors

Repeatable edit descriptors direct the Formatter to obtain the next
data list element and perform a conversion between internal and
external representation. They may be preceded by modifiers or
decorations which may alter the interpretation of the basic edit
descriptor. Modifiers and decorations apply only to output conversion.
They are allowed but ignored for input.

The repeatable edit descriptors are:

1. A - Alphanumeric (ASCII)
2. D,E - Exponential form
3. F - Fixed form
4. G - General (E or F format depending on magnitude of data}
5. I - Integer
6. L - Logical
7. M - Mask formatting

Summary of Modifiers

Modifiers are codes that are used to alter the results of the
formatting prescribed by the edit descriptors to which they are
attached. They are:

1. BN, BZ - Field blanking (if null, or zero)
2. FL - Fill character specification
3. LJ, RJ - Left and right justification
4. oc - Overflow character modifier
5. SS - Symbol substitution

Note: Table 10-1 in the "Modifiers" section displays which modifiers
may be used in combination with what edit descriptor.

Summary of Decorations

Decorations specify alphanumeric strings that can be added to a field
either before basic formatting is begun or after it is finished. A
decoration consists of one or more codes that specify the condition(s)
under which the string is to be added (based on the value of the data
element or the occurrence overflow of the external field) :

1. M - Minus
2. N - Null
3. 0 - Overflow
4. p - Plus
5. z - Zero

followed by a code that describes the position of the special editing:

10-18

FORMATTER
Edit Descriptors

1. A (absolute) - at a specific character position within the field
2. F (floating) - at the position the basic formatting finished
3. P (prior) - at the position the basic formatting would have

started

followed by the character string that is to be included in the field
if the stated conditions are met.

10-19

FORMATTER
Non-Repeatable Edit Descriptors

NON-REPEATABLE EDIT DESCRIPTORS

The following descriptions show the form, function, and requirements
for each of the non-repeatable edit descriptors.

Tabulation Descriptors

The tabulation descriptors specify the position at which the next
character is transmitted to or from the buffer. This allows portions
of a buffer to be processed in an order other than strictly left to
right, and permits processing of the same portion of a buffer more
than once.

The forms of the tabulation descriptors are:

Tn TLn TRn nx

where "n" is an unsigned integer constant.

Each of these edit descriptors alters the current position but has no
other effect.

"Tn" indicates that the transmission of the next character to or
from a buffer is to occur at the "n"th character position. The first
character of the buffer is numbered 1.

"TLn" indicates that the transmission of the next character to or
from the buffer is to occur "n" positions to the left of the current
position.

"TRn" indicates that the transmission of the next character to or
from the buffer is to occur "n" positions to the right of the
current position.

"nX" indicates that the transmission of the next character to or
from the buffer is to occur "n" positions to the right of the
current position.

The current position may be moved beyond the limits of the current
buffer (that is, become less than or equal to zero, or greater than
<bufferlen>) without an error resulting, provided that no attempt
is made by a subsequent edit descriptor to transmit data to or from a
position outside the current buffer.

Tab descriptors may not be used to advance to later buffers nor to
return to previous ones.

10-20

FORMATTER
Non-Repeatable Edit Descriptors

Examples:

Data List Values

No tabs

x

TL

TR

T

100
-1000.49F

"HELLO"

Format

I3,El2.4,A5

I3,El2.4,1X,A5

I3,El2.4,TL3,A5

I3,El2.4,TR5,A5

I3,El2.4,T3,A5

100
/\ /\

100
/\ /\

100
/\ /\

100
/\ /\

Results

0.1000E+04HELLO
/\ /\

0.1000E+04 HELLO
/\ /\

O.lOOOEHELLO
/\

0.1000E+04
/\

/\

HELLO
/\

10HELL01000E+04
/\ /\ /\ /\

Note: The "/\" marker is used to denote the boundaries of the
output field.

Literal Descriptors

Literal descriptors are alphanumeric strings in either of the forms:

de c c
1 2 3

where

c d
n

OR nHc c c
1 2 3

c
n

d = either an apostrophe (') or a quotation mark ("): the
same character must be used for both the opening and
closing delimiters.

c = any ASCII character.

n = an unsigned nonzero integer constant specifying the
number of characters in the string: "n" may not exceed
255.

10-21

FORMATTER
Non-Repeatable Edit Descriptors

On input, a literal descriptor is treated as "nX".

A literal edit descriptor causes the specified character string to be
inserted in the current buffer beginning at the current position. It
advances the current position "n" characters.

In a quoted literal form, if the character string to be represented
contains the same character that is used as the delimiter, two
consecutive characters are used to distinguish the data character from
the delimiter.

For example,

To represent: can't use: 'can' 't' or "can't"

"can't" '"can' 't"' or """can't"""

In the Hollerith constant form, the number of characters in the
string (including blanks) must be exactly equal to the number
preceding the letter "H". There are no delimiter characters, so the
characters are supplied exactly as they should appear in the buffer.

For example,

To represent: can't Use: 5Hcan't

Scale Factor Descriptor (P)

The form of a scale factor descriptor is:

nP

n =an optionally signed integer in the range of -128 to +127.

The value of the scale factor is zero at the beginning of execution
of the FORMATDATA procedure. Any scale factor specification remains
in effect until a subsequent scale specification is processed. The
scale factor applies to the "D", "E", "F", and "G" edit descriptors,
affecting them in the following manner:

1. On input, with "D", "E", "F", and "G" edit descriptors (provided
no exponent exists in the external field), the scale factor effect
is that the externally represented number equals the internally
represented number multiplied by lO**n.

2. On input, with "D", "E", "F", and "G" edit descriptors, the scale
factor has no effect if there is an exponent in the external
field.

10-22

FORMATTER
Non-Repeatable Edit Descriptors

3. On output, with "D" and "E" edit descriptors, the mantissa of the
quantity to be produced is multiplied by lO**n and the exponent is
reduced by n.

4. On output, with the "F" edit descriptor, the scale factor effect
is that the externally represented number equals the internally
represented number multiplied by lO**n.

5. On output, with the "G" edit descriptor, the effect of the scale
factor is suspended unless the magnitude of the datum to be
processed is outside the range that permits the use of an "F" edit
descriptor. If the use of the "E" edit descriptor is required,
the scale factor has the same effect as with the "E" output
processing.

Optional Plus Descriptors (S, SP, SS)

Optional plus descriptors may be used to control whether optional plus
characters appear in numeric output fields. In the absence of explicit
control, the formatter does not produce any optional plus characters.

The forms of the optional plus descriptors are:

s SP SS

These descriptors have no effect upon input.

If the "S" descriptor is encountered in the format, the formatter
does not produce a plus in any subsequent position that normally
contains an optional plus.

If the "SP" descriptor is encountered in the format, the formatter
produces a plus in any subsequent position that normally contains
an optional plus.

The "SS" descriptor is the same as "S" (above) •

An optional plus is any plus except those appearing in an exponent.

10-23

FORMATTER
Non-Repeatable Edit Descriptors

Blank Descriptors (BN, BZ)

The blank descriptors have the following form:

BN BZ

These descriptors have no effect on output.

The "BN" and "BZ" descriptors may be used to specify the
interpretation of blanks, other than leading blanks, in numeric input
fields. At the beginning of execution of the FORMATDATA procedure,
non-leading blank characters are ignored.

If a "BZ" descriptor is encountered in a format, all non-leading blank
characters in succeeding numeric input fields are treated as zeros.

If a "BN" descriptor is encountered in a format, all blank characters
in succeeding numeric input fields are ignored. The effect of
ignoring blanks is to treat the input field as if all blanks had been
removed, the remaining portion of the field right-justified, and the
blanks reinserted as leading blanks. However, a field of all blanks
has the value zero.

The "BN" and "BZ" descriptors affect the "D", "E", "F", "G", and "I"
edit descriptors only.

Buffer Control Descriptors (/, :)

There are two edit descriptors used for buffer control:

/ = indicates the end of data list item transfer on the current
buffer and obtains the next buffer. The current position is
moved to 1 in preparation for processing the next buffer.

= indicates termination of the formatting provided there are
no remaining data elements.

• To clarify, the operation of the slash (/) is as follows for any
positive integer n:

1. If n consecutive slashes appear at the end of a format, this
causes n buffers to be skipped.

2. If n consecutive slashes appear within the format, this causes
n-1 buffers to be skipped.

10-24

FORMATTER
Non-Repeatable Edit Descriptors

• The colon (:) is used to conditionally terminate the formatting.
If there are additional data list items, the colon has no effect.
The colon can be of use when data items are preceded by labels, as
in the following example:

10(' NUMBER ',Il,:/)

This group of edit descriptors is preceded by a repeat factor that
specifies the formatting of ten data items, each one to be preceded
by the label NUMBER. If there are fewer than ten data items in the
data list, formatting terminates immediately after the last value is
processed. If the colon were not present, formatting would continue
until the "I" edit descriptor was encountered for the fourth time.
This means the fourth label would be added before the formatting was
terminated.

For example:

Data Items:

1
2
3

Format:

With colon

lO('NUMBER ',Il,:/)

Results:

NUMBER 1
NUMBER 2
NUMBER 3

Without colon

lO('NUMBER ',Il,/)

NUMBER 1
NUMBER 2
NUMBER 3
NUMBER I

Note: The 'I' character is used to denote the boundaries of the
output field.

10-25

FORMATTER
Repeatable Edit Descriptors

REPEATABLE EDIT DESCRIPTORS

The following descriptions give the form, function, and requirements
for each of the edit descriptors that specify formatting of data
fields. The following edit descriptors may be preceded by an unsigned
integer repeat factor to specify identical formatting for a number of
values in the data list.

The following descriptions of the operation of repeatable edit
descriptors apply when no decorations or modifiers are present.

"A" Edit Descriptor

This edit descriptor is used to move characters between the buffer
and the data element without conversion. This is normally used with
ASCII data.

The "A" edit descriptor has one of the following forms:

Aw OR A

where

w = an unsigned integer constant that specifies the width,
in characters, of the field and may not exceed 255.
The field processed is the next "w" characters starting
at the current position.

If "w" is not present, the field width is equal to
the actual number of bytes in the associated data element.

After the field is processed, the current position is
advanced by "w" characters.

On output, the operation of the "A" edit descriptor is as follows:

1. The number of characters specified by "w", or the number of
characters in the data element, whichever is less, is moved to
the external field. The transfer starts at the left character
of both the data element and the external field unless an "RJ"
modifier is affecting the descriptor, in which case the
transferring of characters begins with the right character of
each.

2. If "w" is less than the number of characters in the data
element, the field overflow condition is set.

10-26

FORMATTER
Repeatable Edit Descriptors

3. If "w" is greater than the number of characters in the data
element, the remaining characters in the external field are
filled with spaces (unless another fill character is specified
by the "FL" modifier).

It is not mandatory that the data element be of type character.
For example, an INTEGER(l6) element containing the octal value %015536
corresponds to the ASCII characters "ESC" and "A", which can be output
to an ADM-2 terminal using an A2 descriptor to control a blinking
field on the screen.

Examples:

Format Data Value External Field

A ... WORD ... WORDI
A4 ... WORD ... WORD
A3 ... WORD ... WORI (overflow set)

[RJ]A3 ... WORD ... ORD (overflow set)
AS ... WORD ... WORD I

[RJ]AS ... WORD ... WORD
A %044111 HI I

Notes: In the last example, the data value was stored in a 2-byte
INTEGER.

The "I" character is used to denote the boundaries of the
output field.

On input, the operation of the "Aw" edit descriptor is as follows:

1. The number of characters specified by "w", or the number of
characters contained in the data element, whichever is less,
is moved from the external field to the data element. The
transfer begins at the left character of both the data element
and the external field.

2. If "w" is less than the number of characters in the data
element, the remaining characters in the field are truncated.

3. If "w" is greater than the number of characters contained in
the data element, the remaining characters of the data element
are filled with spaces.

10-27

FORMATTER
Repeatable Edit Descriptors

Examples:

External Field

I
HELLO I
HELLO
HELLO I I HELLO I

Format

AS
A3
A6
AS

Data Item Length

S characters
3 characters
6 characters
6 characters

Data Element Value

'HELLO""
""HEL""
'HELLO ...
'HELLO ...

Note: The "I" character is used to denote the boundaries of the
input field.

"D" Edit Descriptor

The exponential edit descriptor is used to display or interpret data
in floating-point form, usually used when data values have extremely
large or extremely small magnitude.

The "D" edit descriptor is of the form:

ow.a

This descriptor is identical to the "Ew.d" descriptor.

Note: This edit descriptor is used in the same manner as the "E" edit
descriptor (below).

To use the "D" edit descriptor for output, floating-point
firmware is required.

"E" Edit Descriptor

The exponential edit descriptor is used to display or interpret data
in floating-point form. It is usually used when data values have
extremely large or extremely small magnitude.

10-28

FORMATTER
Repeatable Edit Descriptors

The "E" edit descriptor has one of the following forms:

Ew.d OR Ew.dEe

where

w = an unsigned integer constant that defines the total
field width (including the exponent) and may not exceed
255. The field processed is the "w" characters starting
at the current position. After the field is processed,
the current position is advanced by "w" characters.

d = an unsigned integer constant that defines the number of
digits that are to appear to the right of the decimal
point in the external field.

e = an unsigned integer constant that defines the number of
digits in the exponent. If "Ew.d" is used, "e" takes the
value 2.

The input field consists of an optional sign, followed by a string of
digits optionally containing a decimal point. A decimal point
appearing in the input field overrides the portion of the descriptor
that specifies the decimal point location. However,if the decimal
point is omitted, the rightmost "d" digits of the string, with leading
zeroes assumed if necessary, are interpreted as the fractional part of
the value represented. The string of digits may be of any length.
Those beyond the limit of precision of the internal representation
are ignored. The basic form may be followed by an exponent in one of
the following forms:

1. Signed integer constant.

2. "E" followed by zero or more blanks, followed by an optionally
signed integer constant.

3. "D" followed by zero or more blanks, followed by an optionally
signed integer constant.

An exponent containing a "D" is processed identically to an exponent
containing an "E".

10-29

FORMATTER
Repeatable Edit Descriptors

On output, the field (for a scale factor of zero) appears in the
following form:

where

[O] .n n
1 2

n n ••• n
1 2 d

E

e e ••• e
1 2 e

n
d

e e ••• e
1 2 e

indicates an optional plus or a minus.

are the "d" most significant digits of the value
of the datum after rounding.

signals the start of the decimal exponent.

indicates that a plus or minus is required.

are the "e" most significant digits of the
exponent.

The sign in the exponent is always di~played. If the exponent is
zero, a plus sign is used.

If the datum is negative, the minus sign is always displayed. If
the datum is positive (or zero), the display of the plus sign is
dependent on the last optional plus descriptor processed.

The zero preceding the decimal point is normally displayed, but may
be omitted to prevent field overflow.

Decimal normalization is controlled by the scale factor established
by the most recently interpreted "nP" edit descriptor. If -d < n < 0,
the output value has lnl leading zeroes, and (d-lnl> significant -
digits follow the decimal point; if 0 < n < d+2, the output value has
n significant digits to the left of the decimal point and d-n+l digits
to the right. If the number of characters produced exceeds the field
width or if an exponent exceeds its specified length using the
"Ew.dEe" field descriptor, the entire field of width "w" is filled
with asterisks. However, if the field width is not exceeded when
optional characters are omitted, the field is displayed without the
optional characters.

Because all characters in the output field are included in the field
width, "w" must be large enough to accommodate the exponent, the
decimal point, and all digits and the algebraic sign of the base
number.

10-30

FORMATTER
Repeatable Edit Descriptors

Examples of output:

Format

El2.3
El2.3
El2.3
El2.6El

Data Value

8.76543 x 10
-0.55555
123.4567

3.14159

Result

0.877E-05
-0.556E+OO

0.123E+03
0.314159E+l

Note: The "I" character is used to denote the boundaries of the
output field.

To use the "E" edit descriptor for output, floating-point
firmware is required.

Examples of input:

External Field

0.100E+03
100.05

12345

Format

El2.3
El2.5
El2.3

Data Element Value

100
100.05

12.345

Note: The "I" character is used to denote the boundaries of the
output field.

"F" Edit Descriptor

The fixed-format edit descriptor is used to display or interpret data
in fixed point form.

The "F" edit descriptor has the following forms:

Fw.d OR Fw.d.m

where

w = an unsigned integer constant that defines the total
field width and may not exceed 255. The field processed
is the "w" characters starting at the current position.
After the field is processed, the current position is
advanced by "w" characters.

d = an unsigned integer constant that defines the number of
digits that are to appear to the right of the decimal
point in the external field.

10-31

FORMATTER
Repeatable Edit Descriptors

m = an unsigned integer constant that defines the number of
digits that must be present to the left of the decimal
point on input.

On input, the "Fw.d" edit descriptor is the same as the "Ew.d" edit
descriptor.

The output field consists of blanks if necessary, followed by a
minus if the internal value is negative or an optional plus otherwise,
followed by a string of digits that contains a decimal point and
represents the magnitude of the internal value, as modified by the
established scale factor and rounded to the "d" fractional digits.
If the magnitude of the value in the output field is less than one,
there are no leading zeros except for an optional zero immediately
to the left of the decimal point. The optional zero must appear if
there would otherwise be no digits in the output field. If the
"Fw.d.m" form is used, leading zeroes are supplied if needed to
satisfy the requirement of m digits to the left of the decimal point.

Examples:

Format

Fl0.4
Fl0.4

Fl0.4.3

Data Value

123.4567
0.000123

-4.56789

Result

123.4567
0.0001

-004.5679

Note: The "I" character is used to denote the boundaries of the
output field.

"G" Edit Descriptor

The general format edit descriptor can be used in place of either
the "E" or the "F" edit descriptor, since it has a combination of the
capabilities of both.

10-32

FORMATTER
Repeatable Edit Descriptors

The "G" edit descriptor has either of the forms:

Gw.d OR Gw.dEe

where

w = an unsigned integer constant that defines the total
field width and may not exceed 255. The field
processed is the "w" characters starting at the current
position. After the field is processed, the current
position is advanced by "w" characters.

d = an unsigned integer constant that defines the number of
significant digits that are to appear in the external
field.

e = an unsigned integer constant that defines the number of
digits in the exponent, if one is present.

On input, the "G" edit descriptor is the same as the "E" edit
descriptor.

The method of representation in the output field depends on the
magnitude of the datum being processed, as follows:

Magnitude of Data

Not Less Than

0.1
1.0

10.0

10 ** (d-2)
10 ** (d-1)

lo ** d

Less Than

0.1
1.0

10.0
100.0

10 ** (d-1)
10 ** d

Equivalent Conversion
Effected

Ew.d or Ew.dEe
F (w-n) • d, n ("" "")
F(w-n). (d-1) ,n("" "")
F (w-n). (d-2) ,n ("" "")

F (w-n} .1, n ("" ""}
F (w-n} • 0, n (... "")

Ew.d or Ew.dEe

The value of n is 4 for "Gw.d" format and (e+2} for "Gw.dEe" format.
The "n("" "")"used ·in the above example indicates nth number of blanks.
If the "F" form is chosen, then the scale factor is ignored. The
following comparison between "F" formatting and "G" formatting is
given by way of illustration:

10-33

FORMATTER
Repeatable Edit Descriptors

Value

.01234567

.12345678
1.23456789

12.34567890
123.45678900

1234.'56789000
12345.67890000

123456.78900000
1234567.89000000

"F"
Fl3.6 Conversion

0.0123461
0.1234571
1.234568

12.345679
123.456789

1234.567890
12345.678900

123456.789000

"G"
Gl3.6 Conversion

0.123457E-Oll
0.123457 !
i. 23457 I
12.3457
123.457
1234.57
12345.7
123457.

0.123457E+07

When an overflow condition occurs in a numeric field, the field is
filled with asterisks (in the absence of any specification to the
contrary by an overflow decoration), as shown above.

Note: The "I" character is used to denote the boundaries of the
output field.

To use the "G" edit descriptor for output, floating-point
firmware is required.

"I" Edit Descriptor

The integef. edit descriptor is used to display or interpret
data values in an integer form.

The "I" edit descriptor has.the following forms:

Iw OR Iw.m

where

10-34

w = an unsigned integer constant that defines the total
width of the field and may not exceed 255. The field
processed is the "w" characters starting at the current
position. After the field is processed, the current
position is advanced by "w" characters.

m = an unsigned integer constant that defines the number of
digits that must be present in the field on output.

FORMATTER
Repeatable Edit Descriptors

On output, the external field consists of zero or more leading blanks
(followed by a minus if the value of the internal datum is negative,
or an optional plus otherwise), followed by the magnitude of the
internal value in the form of an unsigned integer constant without
leading zeroes. An integer constant always consists of at least one
digit. The output from an "Iw.m" edit descriptor is the same as the
above, except that the unsigned integer constant consists of at least
"m" digits and, if necessary, has leading zeroes. The value of "m"
must not exceed the value of "w". If "m" is zero and the internal
datum is zero, the output field consists only of blank characters,
regardless of the sign control in effect.

Examples:

Format

!7
!7.2
!7.6
!7.6

Data Value

100
-1

100
-1

Result

100
-01

000100
-000001

Note: The "I" character is used to denote the boundaries of the
output field.

On input, an "Iw.m" edit descriptor is treated identically to an "Iw"
edit descriptor. The edit descriptors "Iw" and "Iw.m" indicate that
the field to be edited occupies "w" positions. In the input field,
the character string must be in the form of an optionally signed
integer constant, except for the interpretation of blanks. Leading
blanks on input are not significant, and the interpretation of any
other blanks is determined by blank control descriptors ("BN" and
"BZ").

Examples:

External Field

100
-01

1
1

1 2
1 2

Format

!7
!7
!7

BZ,!7
BZ,!7
BN,!7

Data Element Value

100
-1

1
1000
10200
12

Note: The "I" character is used to denote the boundaries of the
output field.

"L" Edit Descriptor

The logical edit descriptor is used to display or interpret data
in logical form.

10-35

FORMATTER
Repeatable Edit Descriptors

The "L" edit descriptor has the form:

Lw

where

w = an unsigned integer constant that
the field and may not exceed 255.
is the "w" characters starting at
After the field is processed, the
advanced by "w" characters.

defines the width of
The field processed

the current position.
current position is

On output, the "L" edit descriptor causes the associated data element
to be evaluated in a logical context, and a single character is
inserted right-justified in the output field. If the data value is
null, the character is blank. If the data value is zero, the
character is "F": for all other cases, the character is "T".

Examples:

Format

L2
L2
L2

Data Value

-1
15769

0

Result

T
T
F

Note= The "I" ~h~r~~~~r is used to denote the boundaries of the I _. ____ _..._ ---

OUtpUt field.

For input, the input field consists of optional blanks, optionally
followed by a decimal point, followed by a "T" for true (logical
value -1) or "F" for false (logical value 0). The "T" or "F" may be
followed by additional characters in the field. The logical constants
.TRUE. and .FALSE. are acceptable input forms.

Examples:

External Field

Tl
F

.TRUE.
.FALSE.
TUGBOAT
FARLEY

Format

L7
L7
L7
L7
L7
L7

Data Element Value

-1
0

-1
0

-1
0

Note: The "I" character is used to denote the boundaries of the
output field.

10-36

"M" Edit Descriptor

FORMATTER
Repeatable Edit Descriptors

The mask formatting edit descriptor edits either alphanumeric or
numeric data according to an editing pattern or mask. Special
characters within the mask indicate where digits in the data are to
be displayed; other characters are duplicated in the output field as
they appear in the mask.

The "M" edit descriptor has the form:

M<mask>

where

<mask> = a character string enclosed in a pair of apostrophes
('), a pair of quotation marks ("), or less-than and
greater-than symbols (<>). The string supplied must
not exceed 255.

The "M" edit descriptor is not allowed for input.

Characters in a mask that have special functions are:

Z - digit selector

9 - digit selector

V - decimal alignment character

- decimal alignment character

The field width "w" is determined by the total number of characters,
including spaces but excluding V's, between the mask delimiters. The
field processed is the "w" characters starting at the current
position. After the field is processed, the current position is
advanced by "w" characters.

Except for the decimal point alignment character, "V", each character
in the mask either defines a character position in the field or is
directly inserted in the field.

The "M" edit descriptor causes numeric data elements to be rounded
to the number of positions specified by the mask. String data
elements are processed directly. Each digit or character of a data
element is transferred to the result field in the next available
character position that corresponds to a digit selector in the mask.
If the digit selector is a "9", it causes the corresponding data digit
to be transferred to the output field. The digit selector "Z" causes
a nonzero, or embedded zero, digit to be transferred to the field, but
inserts blanks in place of leading or trailing zeroes.

10-37

FORMATTER
Repeatable Edit Descriptors

Character positions must be allocated, by "Z" digit selectors, within
the mask to provide for the inclusion of any minus signs or decoration
character strings.

A decimal point in the mask can be used for decimal point alignment of
the external field. The letter "V" can also be used for this purpose.
If a "V" is present in the mask, the decimal point is located at the
"V", and the position occupied by the "V" is deleted. If no "V" is
present, the decimal point is located at the rightmost occurrence of
the decimal point character (usually "."). If neither a "V" nor a
decimal point character is present, the decimal point is assumed to be
to the right of the rightmost character of the entire mask.

Although leading and trailing text in a mask is always transferred to
the result field, text embedded between digit selectors is transferred
only if the corresponding digits to the right and left are
transferred.

For example, a value that is intended to represent a date can be
formatted with an "M" field descriptor as follows:

Format Data Value Result

M"99/99/99" 103179 ll0/31/791

The following is a comparison of the effects of using the "9" and "Z"
as digit selectors. The minus sign in the preceding examples is the
symbol that is automatically displayed for negative values in the
absence of any specification to the contrary by a decoration. As
shown in the preceding examples, a decimal point in the mask can be
used for radix point alignment of the external field.

Format Data Values Result

3M<Z99.99> -27.40, 12, 0 -27.40 12.00 00.00
/\ /\ /\

3M<ZZ9.99> -27.40, 12, 0 -27.40 12.00 0.00
/\ /\ /\

3M<ZZZ.99> -27.40, 12, 0 -27.40 12.00 00
/\ /\ /\

Note: The "/\" marker is used to denote the boundaries of the
output field.

10-38

FORMATTER
Repeatable Edit Descriptors

In the example below, a comma specified as mask text was not
displayed.

Format Data Value Result

M""Z,ZZ9.99"" 32.009 32.0ll

Note: The "!"character is used to denote the boundaries of the
output field.

Compare the different treatment of the embedded commas in the
following examples.

Data Values: 298738472, 389487.987, 666, 0.35

Format One: M<$ ZZZ,ZZZ,ZZ9 AND NO CENTS>

Format Two: M<$ 999,999,999 AND NO CENTS>

Format One

$ 298,738,472 AND NO CENTS
$ 389,488 AND NO CENTS
$ 666 AND NO CENTS
$ 0 AND NO CENTS

Format Two

$ 298,738,472 AND NO CENTS
$ 000,389,488 AND NO CENTS
$ 000,000,666 AND NO CENTS
$ 000,000,000 AND NO CENTS

The "M" edit descriptor can be useful in producing visually effective
reports, by formatting values into patterns that are meaningful in
terms of the data they represent. For example, assume that four
arrays contain the following data:

Amount
Date
District
Telephone

:= 9758 21573 15532
:= 031777 091779 090579
:= ""WEST"",""MIDWEST"",""SOUTH""
:= 2135296800,2162296270,4047298400

The following format can then be used to output the data as a table
whose entries are in familiar forms. Assuming the elements are
presented to the formatter in the order: the first elements of each
array, followed by the second elements of each array, etc:

Using this format:

M<$ZZ,ZZ9>,M< Z9/Z9/99>,3X,A8,M<

the result would be:

$ 9,758
$21,573
$15,532

3/17/77
9/17/79
9/ 5/79

WEST
MIDWEST
SOUTH

(999) 999-9999>

(213) 529-6800
(216) 229-6270
(404) 729-8400

10-39

FORMATTER
Modifiers

MODIFIERS

Modifiers are used to alter the normal effect of edit descriptors.
Modifiers immediately precede the edit descriptor to which they apply.
If modifiers immediately precede the left parenthesis of a group, the
modifiers apply to each repeatable edit descriptor within the group.
They are enclosed in brackets; and if more than one is present, they
are separated by commas.

Note: Modifiers are effective only on output. If they are supplied
for input, they have no effect.

Field Blanking Modifiers

There are two modifiers for blanking fields:

BN = blank field if null.

BZ = blank field if equal to zero.

Although most edit descriptors cause a minimum number of characters
to be output, a field blanking modifier causes the entire field to
be filled with spaces if the specified condition is met. The null
value is the value addressed by the <nullptr> in the <variablelist>
entry for the current data element.

Fill Character Modifier

When an alphanumeric data element contains fewer characters than the
field width specified by an "Aw" edit descriptor, when leading and/or
trailing zero suppression is performed, or when embedded text in an
"M" edit descriptor is not output because its neighboring digits are
not, a "fill character" is inserted in each appropriate character
position in the output field. The fill character is normally a space,
but the fill character modifier can be used to specify any other
character for this purpose.

The fill character modifier has the form:

FL <char>

where

10-40

<char> =any single character, enclosed in quotation marks
or apostrophes.

FORMATTER
Modifiers

The following are examples of fill character replacement:

Format

[FL'.'] AlO
[RJ,FL">"]AlO

[FL"*"]M<$ZZ,ZZ9.99>

Data Value

'THEN'
'HERE'
127.39

Result

THEN .•••••
>>>>>>HERE
$***127.39

Note: The "I" character is used to denote the boundaries of the
output field.

Overflow Character Modifier

The overflow condition occurs if there are more characters to be
placed into a field than there are positions provided by the edit
descriptors. In the absence of any modifier or decoration to the
contrary, if an overflow condition occurs in a numeric field, the
field is filled with asterisks (*). This applies to the "D", "E",
"F", "G", "I", and "M" edit descriptors. The "OC" modifier can be
used to substitute any other character for the asterisk as the
overflow indicator character.

The "OC" modifier has the form:

OC <char>

where

<char> =any single character, enclosed in quotation marks
or apostrophes.

For example, the modifier [OC '!'] causes the output field to be
filled with exclamation marks, instead of asterisks, if an overflow
occurs.

Format Data Value -Results

[OC'!']I2 100 I 1 1 I
Note: The "I" character is used to denote the boundaries of the

output field.

Justification Modifiers

The "A" edit descriptor normally displays the data left-justified in
its field.

10-41

FORMATTER
Modifiers

The justification modifiers are:

LJ - Left justify (normal)

RJ - Right jqstify {data is displayed right-justified)

The "RJ" and "LJ" modifiers are used with the "A" edit descriptor
only.

Symbol Substitution Modifier

The symbol substitution modifier permits the user to replace certain
standard symbols used by the formatter with symbols of his choice.
It can be used with the "M" edit descriptor to free the special
characters "9", "V", ".", and "Z" for use as text characters in the
mask. It can also be used with the "D", "E", "F", and "G" edit
descriptors to alter the standard characters they insert in the result
field.

The symbol substitution modifier has the form:

SS <symprs>

where

<symprs> = one or more pairs of symbols enclosed in
quotation marks or apostrophes. The first
symbol in each pair is one of those in the
following table; the second is the symbol
that is to temporarily replace it.

The following formatting symbols can be altered by the "SS" modifier:

Symbol Function

9 Digit selector ("M" format)

z Digit selector, zero suppression ("M" format)

v Decimal alignment character ("M" format)

Decimal point ("D", "E", "F", "G", and "M" format)

10-42

FORMATTER
Modifiers

The following examples show how the "SS" modifier can be used to
permit decimal values to be displayed as clock times, to follow
European conventions (where a comma is used as the decimal point and
periods are used as digit group separators), or to alter the function
of the digit selectors in the "M" edit descriptor. When using the
symbol substitution with a mask format, to obtain the function of one
special character which is being altered by the symbol substitution,
use the new character of the pair. With all other formats, the old
character of the pair is used.

Examples:

Data Value

12.45

12.45

12345.67

103179

Format

[SS II • : "] F6. 2

[SS".:"]M<ZZZ:99>

css--., --1FlO.2

[SS<9X>]M<XX/XX/19XX>

Result

12:451

12:451

12345,671

ll0/31/19791

Note: The "I" character is used to denote the boundaries of the
output field.

Table 10-1 indicates which modifiers may be used with which edit
descriptors. ("Y" stands for "yes, the combination is permitted".)

Table 10-1. Modifiers Usable with Edit Descriptors

EDIT DESCRIPTORS

A E,D F G I L M

BZ,BN y y y y y y y

M LJ,RJ y
0
D
I oc y y y y y y
F
I
E FL y y y y y y

R
s

SS y

I
y

I
y y

10-43

FORMATTER
Decorations

DECORATIONS

A decoration specifies a character string that may be added to the
result field, the conditions under which the string is to be added,
the location at which the string is to be added, and whether it is to
be added before normal formatting is done or after it is completed.

Multiple decorations, separated by commas, may apply to the same edit
descriptor. Decorations are enclosed in brackets (together with any
modifiers) and immediately precede the edit descriptor to which they
apply. If modifiers immediately precede the left parenthesis of a
group, the modifiers apply to each repeatable edit descriptor within
the group.

When a field is processed, the floating decorations appear in the same
order, left to right. If an edit descriptor within a group already
has some decorations, the decorations that are applied to the
group function as if they were placed to the right of the decorations
already present.

A decoration has the form:

!M~ZI ... { t { ~ l <string> OR
M
N
p
z
0

••• An <string>

where

10-44

Character 1 = Field condition specifier: M Minus
N - Null
O - Overflow
P - Plus
z - Zero

Character 2 = String location specifier: A Absolute
F - Floating
P ·- Prior

n = an unsigned nonzero integer constant that
specifies the actual character position within
the field at which the string is to begin.

<string> = any character string enclosed in quotation
marks or apostrophes.

FORMATTER
Decorations

Note: Only location type "An" can be used in combination with the
"O" condition.

Conditions

The condition specifier states that the string is to be added to the
field if its value is minus, zero, positive, or null, or if a field
overflow has occurred. A null condition takes precedence over
negative, positive, and zero conditions; the overflow test is done
after those for the other conditions, and therefore precedence is not
significant. Alphanumeric data elements are considered to be positive
or null only.

A decoration may have more than one condition specifier. If multiple
condition specifiers are entered, an "or" condition is understood.
For example, "ZPA2~+~ " specifies that the string is to be inserted
in the field if the data value is equal to or greater than zero.

Locations

The location specifier indicates where the string is to be
added to the field.

The "A" specifier states that the string is to begin in absolute
position "n" within the field. The leftmost position of the field
is position 1.

The "F" specifier states that, once the number of data characters in
the field has been established, the string is to occupy the position
or positions immediately to the left (for right-justified fields) of
the leftmost data character. This is reversed for left-justified
elements.

The "P" specifier states that, prior to normal formatting, the string
is to be inserted in the rightmost (for right-justified fields) end
of the field; data characters are shifted to the left an appropriate
number of positions. This is reversed for left-justified fields.

Processing

Decoration processing is as follows:

1. The data element is determined to have a negative, positive,
zero, or null value; a null condition takes precedence over the
other attributes.

2. If a "P" location decoration has been specified and its
condition is satisfied, its string is inserted in the field.

3. Normal formatting is performed.

10-45

FORMATTER
Decorations

4. If "A" or "F" decorations have been specified and their
conditions met, they are applied.

5. If an attempt has been made to transfer more characters to the
field than can be accommodated (in step 2, 3, or 4), the
overflow condition is set. If an overflow decoration has been
specified, it is applied.

Note: Only location type "An" can be used with the "O" condition.

Examples:

Format Data Value Result

[MF'<',MP'>',zpp' ']Fl2.2
[MF'<',MP'>',zpp' ']Fl2.2

[MAl'CR',MPF'$']Fl2.2
[MAl'CR',MPF'$']Fl2.2

[0Al<**OVERFLOW**>]Fl2.2

1000.00
-1000.00

1000.00
-100.00

1000000.00
10000000.00

1,000.00
<1,000.00>

$1,000.00
CR $100.00
1,000,000.00
OVERFLOW [0Al<**OVERFLOW**>]Fl2.2

Note: The "I" character is used to denote the boundaries of the
output field.

10-46

The following decorations are automatically applied to any
numeric edit descriptor ("D", "E", "F",~"G", "I", or "M")
for which no decoration has been specified:

MF'-'
OAl'*** *' (The number of asterisks is equal to the

number of characters in the field width.)

However, if any decoration with a condition code relating to
the sign of the data is specified, the automatic "MF'-'"
decoration no longer applies: if negative-value indication is
desired, the user must supply the appropriate decoration. If
any decoration with a condition code relating to overflow is
specified, the automatic "OAl'***···*'" decoration no longer
applies.

FORMATTER
Decorations

As an example of how decorations apply to a group of edit descriptors,
the following formats give the same results:

Format

[MF_.._ ...] (Fl0.2, [MZF ... ** ...]Fl0.2)

[MF_..- ...]Fl0.2,[MZF ... ** ... ,MF ... _ ...]Fl0.2

Using the format above:

Data Values Results

0,0 0.00 **0.00
/\ /\ /\

1,1 1.00 1.00
/\ /\ /\

-1,-1 -1.00 **-1. 00
/\ /\ /\

Note: The "/\" marker is used to denote the boundaries of the
output field.

10-47

FORMATTER
List-Directed Formatting

LIST-DIRECTED FORMATTING

List-directed formatting provides the data conversion capabilities of
the formatter without requiring the specification of a format. The
FORMATDATA procedure determines the details of the data conversion,
based on the types of the data elements. This is particularly
convenient for input, because the list-directed formatting rules
provide for free format input of data values rather than requiring
data to be supplied in fixed fields. There are fewer advantages to
using list-directed formatting for output, because the output data is
not necessarily arranged in a convenient readable form.

The characters in one or more list-directed buffers constitute a
sequence of "data list items" and "value separators". Each value is
either a constant, a null value, or one of the forms:

r*c r*

where

r is an unsigned, nonzero, integer constant.

r*c form is equivalent to "r" successive appearances of the
constant "c".

r* form is equivalent to "r" successive null values.

Neither of these forms may contain embedded blanks, except
where permitted with the constant "c".

List-Directed Input

All input forms which are acceptable to FORMATDATA when directed by
a format are acceptable for list-directed input, with the following
exceptions:

1. When the data element is a complex variable, the input form
consists of a left parenthesis followed by an ordered pair of
numeric input fields separated by a comma, and followed by a
right parenthesis.

2. When the data element is a logical variable, the input form must
not include either slashes or commas among the optional characters
for the "L" editing.

3. When the data element is a character variable, the input form
consists of a string of characters enclosed in apostrophes.
The characters blank, comma, and slash may appear in the string
of characters.

10-48

FORMATTER
List-Directed Formatting

4. A null value is specified by having no characters other than
blanks between successive value separators, no characters
preceding the first value separator in the first buffer, or the
r* form. A null value has no effect on the value of the
corresponding data element. The input list item retains its
previous value. A single null value must represent an entire
complex constant (not just part of it).

If a slash value separator is encountered during the processing of a
buffer, data conversion is terminated. If there are additional
elements in the data list, the effect is as if null values had been
supplied for them.

On input, a value separator is one of the following:

1. A comma or slash optionally preceded or optionally followed by one
or more contiguous blanks (except within a character constant).

2. One or more contiguous blanks between two constants or following
the last constant (except embedded blanks surrounding the real or
imaginary part of a complex constant).

3. The end of the buffer (except within a character constant).

List-Directed Output

Output forms that are produced by list-directed output are the same
as that required for input with the following exceptions:

1. The end of a buffer may occur between the comma and the imaginary
part of a complex constant only if the entire constant is as long
as, or longer than, an entire buffer. The only embedded blanks
permitted within a complex constant are between the comma and the
end of a buffer, and one blank at the beginning of the next
buffer.

2. Character values are displayed without apostrophes.

3. If two or more successive values in an output record produced
have identical values, the FORMATDATA procedure produces a
repeated constant of the form "r*c" instead of the sequence of
identical values.

4. Slashes, as value separators, and null values are not produced
by list-directed output.

For output, the value separator is a single blank. A value separator
is not produced between or adjacent to character values.

10-49

SECTION 11

COMMAND INTERPRETER/APPLICATION INTERFACE

The following topics are covered in this section:

• General Characteristics of the Command Interpreter
• File Names

External Form
File Name Expansion
Default Volume and Subvol Names

• How Parameter Information is Passed to an Application Process
RUN Command

Startup Parameter Message
ASSIGN Command

Logical File Assignment Messages
PARAM Command

Param Messages
• Application Process to CI Interprocess Messages

Display Message
Wakeup Message

• Application-supplied CI Monitor Process
LOGON/LOGOFF Message
RUN Command Message

GENERAL CHARACTERISTICS OF THE COMMAND INTERPRETER

The Command Interpreter provides a direct interface between system
users (people) and the GUARDIAN operating system. Users at on-line
terminals interact with the Command Interpreter by typing in commands.
If a command is given to run a program, then the program begins
executing. If a command is given to perform some specific operation,
the necessary system functions are executed. The Command Interpreter,
in the latter case, then asks the user for another command (by
displaying a colon ":" on the terminal).

Some functions that the Command Interpreter performs are:

• List disc file names

• Create, rename, and purge disc files

11-1

CGiMAND INTERPRETER/APPLICATION INTERFACE
General Characteristics

• Set default disc volume and subvol names and default security

• Run and pass parameters to processes

• Put a process into the debug state

• Stop process execution

Most of these functions do not directly affect application program
design. The programmer, however, must be aware of how the Command
Interpreter passes parameters to application processes and how the
default volume and subvol names are used. (For a user description of
all Command Interpreter functions, see the GUARDIAN aperating System
Command Language and Utilities Manual).

An additional consideration is that the Command Interpreter makes use
of the BREAK feature on the home terminal. Because of this, any
application process that is run via the Command Interpreter and also
uses BREAK on the home terminal, must do so in a proper manner. See
"Using BREAK (more than one process per terminal)" in the
conversational/page mode terminal part of the "File Management"
section in this manual.

For a discussion of default security, see section 7, "Security
System".

FILE NAMES

Many Command Interpreter commands require that a file name be
specified. A file name can be that of a disc device, non-disc device,
or named process. The file name of a non-disc device is represented
to the Command Interpreter in the same form as the file system~s
internal representation; that is:

$<device name> or

$<logical device number>

Like the internal representation of a disc file name, the form
accepted by the Command Interpreter for a disc file consists of three
parts: a volume name, a subvol name, and a disc file name. However,
unlike the fixed-field representation of the internal form (where each
part of a file name must begin in a specific position), disc file
names are represented to the Command Interpreter (as well as to all
other Tandem-supplied programs) with the three parts separated by
periods "." and concatenated into a contiguous string:

$<volume name>.<subvol name>.<disc file name>

example:

$STORE1.~CCTRCV.SORTFILE

11-2

CGiMAND INTERPRETER/APPLICATION INTERFACE
File Names

A name of a process is similar to a disc file name in that it can
consist of three parts with each part separated from the other by a
period. Unlike a disc file name, however, only the left-hand part is
required. This yields a process name of the following form:

$<process name>[.#<lst qualif name>[.<2nd qualif name>]]

Note that only the <process name> has meaning to the file system (it
indicates the particular process [pair] being opened). The qualifier
names have no particular meaning to the file system (they are,
however, checked for being of the proper format). Instead, their
meaning must be interpreted by the process being opened.

Correspondence of External to Internal File Names

The correspondence of the external form of file names to the internal
form is shown in figure 11-1.

POSSIBLE
EXTERNAL
FORMS

word

POSSIBLE
INTERNAL

FORMS

[O]

$name1

$name1 [. [#name2] [.name3]]

[$name1.] [name2.] name3

$name1 .#name2

[4] [8]

$name1
$name1 #name2
$name1 #name2 name3
$name1 name2 name3

Figure 11-1. File Names

DEVICE

PROCESS

DISC

TEMP DISC

DEVICE/PROCESS

PROCESS/TEMP DISC
PROCESS
DISC

When the external form of a file name is entered as a parameter to a
command (e.g., the IN parameter of the Command Interpreter RUN
command), it is converted to the internal form as shown above. For
example, in the case of the IN parameter <file name>, the <file name>
is converted from the external form to the internal form (and expanded
if necessary) and sent to the application process in an interprocess
"startup" message.

11-3

COMMAND INTERPRETER/APPLICATION INTERFACE
File Names

Disc File Name Expansion

As an operating convenience, the Command Interpreter accepts,
where a file name is a parameter to a command, disc file names of the
following forms (see figure 11-2) :

• <disc file name>
• <subvol name>.<disc file name>
• $<volume name>.<disc file name>
• $<volume name>.<subvol name>.<disc file name>
• <temporary file name>
• $<volume name>.<temporary file name>
• Network file names (see EXPAND User~s Manual)

When a partial file name is supplied, the internal representation of
the file name is expanded into a full three-part file name. This is
accomplished as follows: There is a "default volume name" and a
"default subvol name" associated with each Command Interpreter. A
partial name is expanded by merging the default volume and/or subvol
names into the omitted part(s) of the partial file name. As a
minimum, a partial file name must consist of a <disc file name>.
Partial file names are expanded into full file names according to the
following rules:

1. If the <volume name> is omitted from the external file name, the
<default volume name> is used in its place.

2. If the <subvol name> is omitted from the external file name, the
<default subvol name> is used in its place.

11-4

COMMAND INTERPRETER/APPLICATION INTERFACE
File Names

I $DVOL DSUBVOL DEFAULT FILE NAME

I
name r:::= I name $DVO L.DSU BVO L.name --

I I I
$vol.name c=-, subvol name = $DVOL.subvol.name

I I
$vol.name $vol I I name $vol. DSU BVO L.name ---

$vol.subvol.name I $vol subvol name $vol.subvol.name

I c= ---I #0001 #0001 NOT USED $DVOL.#0001 --
I I

$vol.#0001 $vol #0001 NOT USED $vol.#0001

Figure 11-2. Disc File Names

HOW THE DEFAULT FILE NAMES ARE ESTABLISHED. Application-predefined
default file names are automatically established for a given user at
logon time (i.e., when the Command Interpreter LOGON command is
given) • The application-predefined names are referred to as the
"logon default setting". Each user's logon default setting is kept in
the USERID file (the USERID file contains the names of all users
defined for the system) .

The default file names established for a user at logon time are
referred to as the "current default setting". The current default
setting is kept by the Command Interpreter and used for file name
expansion.

The first time a new user logs on, the user's logon default setting is

"$SYSTEM.NOSUBVOL"

For example, the first time the user "admin.bill" logs on after he has
been established as a system user, the following takes place:

11-5

COMMAND INTERPRETER/APPLICATION INTERFACE
File Names

USERID FILE

USER NAME LOGON DEFAULT SETTING

:LOGON admin.bill

ADMIN
ADMIN

•
•
•

ADMIN

ANN $SYSTEM
BILL $SYSTEM

MANAGER $VOL1

CURRENT DEFAULT SETTING (in CI)

I $SYSTEM I NOSUBVOL

NOSUBVOL
NOSUBVOL

MGR

l

The Command Interpreter reads the USERID file entry for
"ADMIN.BILL". The logon default setting, "$SYSTEM.NOSUBVOL" is
used to establish the Command Interpreter's current default
setting.

Following LOGON, a user can, via the DEFAULT command, change the
default names to be in effect for future logons. The DEFAULT command
has three forms:

DEFAULT $<default volume name>.<default subvol name>

sets new logon defaults for both volume and subvol names.

DEFAULT $<default volume name>

sets a new logon default name for the volume name; the logon
default subvol name is unchanged.

DEFAULT <default subvol name>

sets a new logon default name for the subvol name; the logon
default volume name is unchanged.

For example:

11-6

COMMAND INTERPRETER/APPLICATION INTERFACE
File Names

:DEFAULT $voll.accts~~~~~~~~~~~~~~~--.

USERID FILE 1
USER NAME LOGON DEFAULT SETTING

I

II ADMIN BILL $VOL1 ACCTS

The Command Interpreter changes the logon default entry in
USERID file to "$VOL1.ACCTS". Note that the Command
Interpreter's current default setting is unaffected by the
DEFAULT command]· the new logon default setting is not used
the next logon.

:LOGON admin.bill

CURRENT DEFAULT SETTING {in CI}

$VOL1 ACCTS

:EDIT myfile

the

until

I

r­
L

-+­
l myf ile = $VOL1.ACCTS.MYFILE

T9601B04 EDIT (780113}
CURRENT FILE IS $VOL1.ACCTS.MYFILE

*

*E

To change the "current default setting" following a logon {without
affecting the "logon default setting"}, the VOLUME Command is used.
The VOLUME command has three forms which are equivalent to those of
the DEFAULT command:

VOLUME $<default volume name>.<default subvol name>
VOLUME $<default volume name>
VOLUME <default subvol name>

For example, for the user "admin.bill" who has the current default
setting

$VOL1.ACCT

wants to change the current default setting "$voll.bill" without
affecting the logon default settings. Therefore, the following VOLUME
command is entered:

11-7

COMMAND INTERPRETER/APPLICATION INTERFACE
File Names

:VOLUME bill~---------------.!

.___$_v_o_L_l~+---B_I_L_L __ _,, . CURRENT DEFAULT SETTING

:EDIT myfile I
r----t-
L ___ 1_

T9601B04 EDIT (780113)
CURRENT FILE IS $VOL1.BILL.MYFILE

*

I

I myfile = $VOL1.BILL.MYFILE

The use of default names has the effect of automatically placing all
files for a particular user on the desired volume and assigning the
desired subvol name. This has the effect of keeping the files of
various users separated.

Note: The default volume and subvol names are sent to the application
process as part of the Command Interpreter startup message.

11-8

CCMMAND INTERPRETER/APPLICATION INTERFACE
File Names

Network File Names

For the purpose of providing access to files on remote systems in a
network, any file name can be qualified by a system name. (System
names, and networks in general, are discussed in detail in the
EXPAND User~s Manual).

A system name consists of a back slash, "\", followed by up to seven
alphanumeric characters, the first of which must be alphabetic. Any
file name can be preceded by a system name.

The external form of a network file name is:

\<system name>.<external file name>

where

<external file name>

is the external form of any legal file name. Note that the
length of a device or process name used with a system name
contains one character less than usual: device names have
at most six alphanumerics, and process names have at most
four alphanumerics.

examples:

\newyork.$system.system.myfile

\remote.$xyz process

fully qualified
disc file name

\detroit.#1234 ! temporary disc file name

DEFAULT SYSTEM. Each Command Interpreter running on a system in a
network has associated with it a default system that is used in file
name expansion. When a user logs on, the default system is always the
system on which the user~s Command Interpreter is running. The
default system can be changed via the Command Interpreter SYSTEM
command.

11-9

CCMMAND INTERPRETER/APPLICATION INTERFACE
File Names

EXPANSION OF NETWORK FILE NAMES. File names presented in external
form to a Command Interpreter (or any other Tandem subsystem, such as
the Editor or FUP) running on a system in a network are expanded using
the default volume, subvolume, and system names. Some examples,
assuming that the current user~s defaults are as follows:

default volume:
default subvolume:
default system:

$rnyvol
mysubvol
\cal if

this file name presented
to Command Interpreter

myf ile
\newyork.myfile
$proc

is expanded to

\calif .$myvol.mysubvol.myfile
\newyork.$myvol.mysubvol.myfile
\calif .$proc

CORRESPONDENCE OF INTERNAL TO EXTERNAL NETWORK FILE NAMES. When
transforming an external file name to an internal one, the system
replaces the system name with the corresponding system number.
External network file names supplied as IN or OUT files in a RUN
command are converted to internal form by the Command Interpreter.
Thus an application process that reads its startup message and opens
its IN file need not do anything different when remote files are
involved.

11-10

CCMMAND INTERPRETER/APPLICATION INTERFACE
Passing Parameter Information to an Application

PASSING RUN-TIME PARAMETER INFORMATION TO AN APPLICATION PROCESS

Application-dependent parameter information can be specified prior to
and at the same time as the command is given to run a program. This
information is sent to the new process in the form of one or more
interprocess messages.

There are five Command Interpreter commands that can affect the
parameter information to ~,;c,_~};}~!:· Th~y .~.re.: ~'"'1 t p--J)!.J : .. '!?. r~·.:.;

1. The VOLUME command./s.pecifies the default volume and subvolume
names::~·~~-~i'<l-defaul t securfl:Y' to be passed to the new process.

2. The RUN command specifies the IN and OUT files and optional
parameter string to be passed to the new process.

The default volume and subvol names, the IN and OUT file names,
and the optional parameter string are passed to the application
process in the startup message.

3. The ASSIGN command is used to make logical file assignments for
programs written in such languages as COBOL or FORTRAN. A logical
file assignment equates a Tandem file name with a "logical" file
of a program and, optionally, assigns file characteristics to that
file. For each ASSIGN in effect when a program is run, one
"assign" message containing the assignment parameters is sent,
at the option of the new process. This follows the transmission of
any startup message.

4. The PARAM command is used to associate an ASCII value with a
parameter name. This command is typically used by languages such
as COBOL or FORTRAN to give initial values to program variables.
If any PARAMs are in effect when a program is run, a "param"
message containing the parameter names and values is sent, at the
option of the new process. This follows the transmission of any
assign message(s).

5. The CLEAR command is used to clear ASSIGN and PARAM settings.

Note: If a process opens the $RECEIVE file and specifies that it
wishes to receive OPEN, CONTROL, SETMODE, and CLOSE system
messages, the first message it receives will be an OPEN
message. This will be followed by the parameter message(s),
then followed by a CLOSE message (the OPEN and CLOSE messages
are caused by the Command Interpreter opening and closing the
file to the new process}.

11-11

COMMAND INTERPRETER/APPLICATION INTERFACE
RUN Command

RUN Command

The RUN command is used to run programs. The program's input and
output files, processor module, execution priority, number of data
pages, and process name can optionally be specified.

There are two forms of the RUN command: implicit and explicit. The
implicit form is assumed by the Command Interpreter if a command is
input that it does not recognize. The explicit form is used when the
command RUN[D] is entered.

The form of the RUN command is:

[RUN(D]] <file name> [I <parameters>/] [<parameter string>]

where

RUN[D]

omitting "RUN" is an implicit RUN command. The Command
Interpreter attempts to run a program located in
$SYSTEM.SYSTEM.<file name>.

including "RUN" or "RUND" (debug) is an explicit RUN
command. A partial <file name> is expanded as previously
described.

<parameters> are

11-12

IN [<filename>

is the new process's input file. <file name> is expanded
and sent to the new process in the parameter message. If
"IN <file name>" is omitted, the file name of the Command
Interpreter's IN file is sent (usually, this is the
logical device number of the home terminal). If "IN" is
included but <file name> is omitted, blanks are sent as
the name of the input file.

OUT [<filename>]

is the new process's output file. <file name> is expanded
and sent to the new process in the parameter message. If
"OUT <file name>" is omitted, the file name of the Command
Interpreter's OUT file is sent (usually, this is the
<logical device number> of the home terminal) • If "OUT"
is included but <file name> is omitted, blanks are sent
as the name of the output file.

COMMAND INTERPRETER/APPLICATION INTERFACE
RUN Command

NAME [<process name>]

is the symbolic name to be assigned to the new process.
If this parameter is omitted, the process is unnamed. If
"NAME" is included but <process name> is omitted, the
system generates a name for the new process. The
process's name is entered into the Process-Pair Directory
(PPD) .

CPU <cpu num>

{0:15}, is the processor module where the new process is
to execute. If omitted, the same processor module as the
Command Interpreter's is assigned.

PRI <priority>

{1:199}, is the execution priority of the new processo If
omitted, a priority of one less than the Command
Interpreter's is assigned. If a value greater than 199 is
specified, the process is run at priority 199.

MEM <num pages>

{1:64}, is the maximum number of virtual data pages to be
allocated the new process. If omitted or less than the
number assigned at compilation time, the compilation value
is used.

NOWAIT

if specified, means that the Command Interpreter does not
pause (i.e., suspend itself) when the program is run.
Instead, it returns with a command input prompt as soon as
the new process reads its startup message. Normally
this keyword is not specified (if NOWAIT is not specified,
the Command Interpreter pauses when a program is run).

TERM <terminal name>

specifies the terminal to be used for the new process's
home terminal. If omitted, the Command Interpreter's home
terminal is used.

<parameter string>

is sent to the new process in the startup parameter
message. Leading blanks are ignored.

11-13

COMMAND INTERPRETER/APPLICATION INTERFACE
RUN Command

example:

:VOLUME $storel.acctrcv
:RUN xnstp /IN infile,OUT outfile,NAME/ 1,10,byte,descending

! runs "$storel.acctrcv.xnstp"

Startup Message

The startup message is sent to the new process immediately following
the successful creation of the new process. The startup message is
read by the process via its $RECEIVE file.

The form of the startup parameter message is:

STRUCT ciAstartup;
BEGIN

INT msgcode;
STRUCT default;

BEGIN
INT volume [0:3],

subvol [0:3];
END;

STRUCT infile;
BEGIN

INT volume [0:3],
subvol [0:3 1,
dname

END;
STRUCT outfile;

BEGIN
INT volume

subvol
dname

END;

0:3];

[0:3] '
[0: 3] '
[0:3] ;

STRING param [O:n-1];
END; ! ciAstartupAmsg.

!

word
[0] -1.

[l] $<default volume name>.
<default subvol name>.

[9] IN parameter <file name> of RUN
command.

[21] OUT parameter <file name> of RUN
command.

[33] <parameter string> of RUN
command (if any) that was
entered by operator. This is in
either of the following forms:

<parameter string><null>[<null>]

or

! <null><null>

<n> = (<count read> - 66) I 2

The maximum length possible for a startup message is 596 bytes
(including the trailing null characters).

11-14

CG1MAND INTERPRETER/APPLICATION INTERFACE
Startup Message

Note: The parameter message length is always an even number. If
necessary, the Command Interpreter pads the <parameter
string> with an additional null.

The following is an example showing an application process reading its
startup message.

First, the following VOLUME command is entered:

:VOLUME $storel.acctrcv

Then the following RUN command is given:

:RUN xnstp/IN infile, OUT outfile, NAME/ 1,10,byte,descending

Note: The parameter "NAME" without a corresponding <process
name> causes the system to create a name for the new
process. The name is entered into the PPD if the
process is created successfully.

The Command Interpreter forms a message to be sent to the new process
from the IN parameter information, the OUT parameter information, and
the application-dependent parameter string. The message contains the
following information:

word[O] = - 1 means start-up message.
word[l] = "$STORE1 n $<default volume name>.
word[S] = "ACCTRCV " ! <default subvol name>.
word[9] = "$STORE1 ACCTRCV INFILE II ! IN param <file name>.
word [21] = "$STORE1 ACCTRCV OUTFILE " OUT param <file name>.
word[33] = "1,10,byte,descending" <parameter string>.
word[43] = <null><null> null terminator(s).

The Command Interpreter then attempts to run the program indicated by
the expanded form of "xnstp" - $storel.acctrcv.xnstp. If the new
process is created, it is sent its startup parameter message.

The first action the "xnstp" program performs is to open and read the
$RECEIVE file:

INT .receive[O:ll] :=["$RECEIVE", 8 * [" "]],
recv"'fnum,
in"'fnum,
out"'fnum,
num,

.buffer[0:99],
num"'read,

.creator ~O: 3],

.lastpid[0:3];

STRING .parms[0:39],
.sbuffer := @buffer ~<<~ l;

data declarations

11-15

COMMAND INTERPRETER/APPLICATION INTERFACE
Startup Message

CALL OPEN(receive, recvAfnum);

CALL READ(recvAfnum, buffer, 200, numAread);

The application program then ensures that the incoming message is the
startup message:

IF buffer <> -1 THEN CALL ABEND;

The application process opens its input and output files using the
information passed in the parameter message:

CALL OPEN(buffer[9],inAfnum);

opens "$storel acctrcv infile"

CALL OPEN(buffer[21], outAfnum);

opens "$storel acctrcv outfile"

then saves the <parameter string> information:

num := nurnAread - 66; ! length of parameter string in bytes.
IF num <= 40 THEN ! parameter string will fit. move it in.

parms ~:=~ sbuffer[66] FOR num
ELSE ! parameter string too long.

11-16

COMMAND INTERPRETER/APPLICATION INTERFACE
ASSIGN Command

ASSIGN Command

The ASSIGN command is used to make or display logical file assignments
for programs written in such languages as COBOL and FORTRAN. A
logical file assignment equates a Tandem file name (as described under
"File Names" in the "File Management System" section of this manual)
with a file in a program and, optionally, assigns characteristics to
that file.

The form of the ASSIGN command is:

ASSIGN

where

<logical unit> [, [<Tandem file name>

{ , <create-open spec> } •••]]]

<logical unit>

is the name to be assigned a file attribute. <logical unit>
is of the form

{ <program unit> } .] <logical file>
{ *

<program unit> and <logical file> consist of one to
thirty-one alphanumeric, caret "~", or hyphen "-" characters.

The exact meaning of <program unit>, the literal *, and
<logical file> depends on the application (e.g., the COBOL
or FORTRAN object program). In general, <program unit>, if
present, is the name of the program unit (as given in the
source program itself) to which the file name assignment is
to apply; *, if present, means apply the assignment to all
program units in the object program file being run; and
<logical file> is the name of the file as given in the
source program (for FORTRAN, commonly FTnnn, where nnn is
the unit number). <program unit> and <logical file> have
no meaning for FORTRAN. For details on FORTRAN or COBOL
application treatment of ASSIGNS and PARAMs, see the
appropriate language manual. TAL programmers must access
assign and param messages explicitly.

If <logical unit> is omitted, the Command Interpreter
displays the assigned values for all assignments currently
in effect.

11-17

COMMAND INTERPRETER/APPLICATION INTERFACE
ASSIGN Command

<Tandem file name>

11-18

is a file name in the external form. A partial file name
is not expanded. However, the application process can
expand the file name using the default information passed
in the startup message.

If <Tandem file name> is omitted and <create spec> is
omitted, the current assignment value for <logical unit> is
displayed.

If <Tandem file name> is omitted but <create spec> is
supplied, blanks are passed in the <Tandem file name>
field of the assign message.

<create-open spec>

are one or more file creation or open attributes.
<create-open spec> is of the form:

<extent spec>
CODE <file code>
<exclusion spec>
<access spec>
REC <record size>
BLOCK <block size>

<extent spec> is

<pri extent size> [)] } { EXT
{ EXT <pri extent size] , <sec extent size>) }

<exclusion spec> is

1
EXCLUSIVE l
SHARED
PROTECTED

<access spec>

{

I-0 }
INPUT
OUTPUT

<record size>, <block size>, and <extent size> are
integers in the range of {0:65535}.

COMMAND INTERPRETER/APPLICATION INTERFACE
ASSIGN Command

examples:

! assign Tandem file name and creation attributes (COBOL file).
ASSIGN print-file, myfile, EXT 16, CODE 9999, EXCLUSIVE, OUTPUT
! assign Tandem file name and creation attributes (FORTRAN file).
ASSIGN FT002, datafile, INPUT, EXCLUSIVE
! assign create-open attributes to the default file.
ASSIGN print-file,,SHARED
! display the assigned attributes of a designated logical file.
ASSIGN print-file
! display the assigned attributes of all logical files.
ASSIGN

CONSIDERATIONS

• A maximum of 15 assignments can be in effect at one time. This
number can be increased by increasing the Command Interpreter~s
default data space of 8 pages. Increasing the Command
Interpreter~s data space requires the use of the MEM option
when the Command Interpreter is run:

:COMINT / ••• ,MEM 9 1 9 9 ./

The command just shown starts a new Command Interpreter with 9,
rather than 8, data pages.

• Notice that the Command Interpreter only stores the values assigned
by this command and sends the values to requesting processes, at
process startup time, in the form of assign messages. This command
does not create files; the interpretation of the assigned values
must be made by application programs.

• The Command Interpreter creates an assign message for each ASSIGN
in effect. A new process must request its assign messages (if any)
following receipt of the startup message. The COBOL and FORTRAN
compilers provide the code for this function. TAL programs that
use assigns must provide their own code for handling assign
messages.

• To delete existing assigns, use the CLEAR command.

11-19

COMMAND INTERPRETER/APPLICATION INTERFACE
ASSIGN Command

Assign Message

One assign message is optionally sent to the new process for each
assignment in effect at the time of the creation of the new process.
Assign messages are sent immediately following the startup message if
the process does either one of the following:

• replies to the startup message with an error return value of
REPLY = 70. The Command Interpreter then sends both assign and
param messages.

• replies to the startup message with an error return value
of 0, but with a reply of one to four bytes, and bit 0 of
the first byte of the reply is set to 1. The Command Interpreter
also sends param messages if bit 1 of the first byte of the
reply is set to 1.

11-20

COMMAND INTERPRETER/APPLICATION INTERFACE
ASSIGN Command

The form of the assign message is:

STRUCT ciAassign;
BEGIN

INT msgAcode;

STRUCT logicalunit;
BEGIN

STRING prognamelen,
progname[0:30],
filenamelen,
filename[0:30];

END;

INT(32) fieldmask;

STRUCT tandemfilename;
BEGIN

INT volume [0:3],
subvol [0: 3] ,
dfile [0:3] ;

END;
createspec

INT primaryextent,
secondaryextent,
filecode,
exclusionspec,

accessspec,

recordsize,
blocksize;

END;

assign message.

[0] -2

PARAMETERS TO ASSIGN COMMAND.

[l] length in bytes of name {0:31}
{ <program unit> I * }<blanks>

[17] length in bytes of name {0:31}
<logical f ile><blanks>

[33] bit mask to indicate which of
the following fields were
supplied (1 = supplied) :
.<O> = <Tandem file name>
.<l> = <pri extent size>
.<2> = <sec extent size>
.<3> = <file code>
.<4> = <exclusion size>
.<5> = <access spec>
.<6> = <record size>
.<7> = <block size>

[35] <Tandem file name>

[47] <pri extent size>.
[48] <sec extent size>.
[49] <file code>.
[50] %00 if SHARED, corre-

%20 if EXCLUSIVE, spends
%60 if PROTECTED. to flag

[51] %0000 if I-0, param of
%2000 if INPUT, OPEN.
%4000 if OUTPUT.

[52] <record size>.
[53] <block size>.

The length of this message is 108 bytes.

11-21

COMMAND INTERPRETER/APPLICATION INTERFACE
PARAM Command

PARAM Command

The PARAM command is used to assign a string value to a parameter
name, or to display such assignments. As a specific example, the
PARAM command is used to pass status switch settings to COBOL
programs. However, this command is available for use with other
languages as well.

The form of the PARAM command is:

PARAM [{ <parameter name> <parameter value> } , •••]

where

11-22

<parameter name>

is the name to be assigned a <parameter value>. <parameter
name> consists of one to thirty-one alphanumeric, caret "A"
or hyphen "-" characters.

<parameter value>

is the value to be assigned to <parameter name>. <parameter
value> may have either of the following forms:

{ <character string> }
{ "<character string>" }

If the first form is used, the string cannot contain any
embedded commas ","; leading and trailing blanks are not
significant (i.e., are not included as part of the <parameter
value>}.

If the second form is used, all characters, including
leading and trailing blanks between the quotation marks,
are significant (i.e., they are included as part of the
<parameter value>}. An embedded quotation mark is
represented by a pair of quotation marks "".

If { <parameter name> <parameter value> } is omitted, the
assigned values for all parameters currently in effect are
displayed.

COMMAND INTERPRETER/APPLICATION INTERFACE
PARAM Command

examples:

! assign a value to two parameters in a COBOL program.
PARAM SWITCH-1 ON, DEBUG ON
! assign a value to a parameter in a FORTRAN program.
PARAM BACKUPCPU 3
! assign a value to a parameter.
PARAM string 11 a string with an embedded quote 1111 11

! display the assigned values for all parameters.
PARAM

CONSIDERATIONS

• Notice that the Command Interpreter only stores the values
assigned by the PARAM command and sends the values to requesting
processes, at process startup time, in the form of param messages.
The interpretation of the assigned values must be made by the
application program.

• The Command Interpreter~s internal storage for params is 1024
bytes. Therefore, the maximum number of params that can be in
effect is limited by this value. Each param uses

2 + <parameter name length> + <parameter value length>

bytes.

• To delete existing params, use the CLEAR command.

Param Message

A param message is optionally sent to the new process if any
parameters are in effect at the time of the creation of the new
process. The param message is sent immediately following any
assign message(s) if the process does either one of the following:

• replies to the startup message with an error return value of
REPLY = 70. The Command Interpreter then sends both assign and
param messages.

• replies to the startup message with an error return value
of 0, but with a reply of one to four bytes, and bit 1 of
the first byte of the reply is set to 1. The Command Interpreter
also sends assign messages if bit 0 of the first byte of the
reply is set to 1.

11-23

CCMMAND INTERPRETER/APPLICATION INTERFACE
PARAM Command

The form of the param message is:

The

STRUCT ci"'param;
BEGIN

INT msg"'code,
numparams;

STRING parameters [0:1023];
END;

param message.

[O] -3
[l] number of parameters

included in this message.
[2] beginning of parameters.

The field "parameters" in the above message format is comprised of
"numparams" records of the form (offsets are given in bytes):

<param>[O] = length "n", in bytes, of <parameter name>
<par am> [l] FOR n = <parameter name>
<param>[n+l] = length "v", in bytes, of <parameter value>
<param>[n+2] FOR v = <parameter value>

maximum length of this message is 1028 bytes.

11-24

COMMAND INTERPRETER/APPLICATION INTERFACE
CLEAR Command

CLEAR Command

The CLEAR command is used to clear references set by the ASSIGN and
PARAM commands.

The form of the CLEAR command is:

ASSIGN <logical unit> }
CLEAR 1

ALL [{ ASSIGN I PARAM }] }

PARAM <parameter name> }

where

ALL

means clear all currently assigned ASSIGN and PARAM
references.

ALL ASSIGN

means clear all currently assigned ASSIGN references.

ALL PARAM

means clear all currently assigned PARAM references.

ASSIGN <logical unit>

means clear the reference to <logical unit>.

PARAM <parameter name>

means clear the reference to <parameter name>.

examples:

! clear all assigns and params.
CLEAR ALL
! clear all assigns.
CLEAR ALL ASSIGN
! clear assignment for "print-file".
CLEAR ASSIGN print-file
! clear parameter "SWITCH-1".
CLEAR PARAM SWITCH-1

11-25

COMMAND INTERPRETER/APPLICATION INTERFACE
Reading All Parameter Messages

Reading All Parameter Messages

If it is desired to read all parameter messages, the following must be
taken into consideration:

1. To indicate to the Command Interpreter that all current parameter
information is desired, the application process must reply to the
startup message. Therefore, the startup message must be read
via a call to READUPDATE so that a subsequent reply can be made.
This means that the $RECEIVE file must be opened with

OPEN <receive depth> >= 1

2. The Command Interpreter indicates the end of the series of
parameter messages by closing its file to the application process.
Therefore, the application process must open the $RECEIVE file
with

OPEN <flags>.<l> = 1

so that it will receive OPEN and CLOSE system messages.

The application process receives the following sequence of messages
when reading all parameter messages:

1. OPEN system message (message code = -30)

2. Startup message (message code = -1)

Application process must reply with REPLY <error return> = 70.

3. Zero or more assign messages (message code = -2)

4. Zero or one param message (message code = -3)

5. CLOSE system message (message code = -31)

The general sequence to read the parameter messages is shown in the
following example:

11-26

COMMAND INTERPRETER/APPLICATION INTERFACE
Reading All Parameter Messages

PROC readAparameterAmessages;
BEGIN

INT .rcvAfname 0:11] := ["$RECEIVE", 8 * [" "]] ,
rcvAfnum,

.rcvAbuf 0:514]
cntAread,
replyAcode := 70;

LITERAL
rcvAf lags
rcv"depth
rcv"cnt
close"msg

! open $RECEIVE.

= %40000,
= 1,
= 1030,
= -31;

OPEN-CLOSE messages.
READUPDATE-REPLY.

CLOSE message code.

CALL OPEN (rcvAfname, fcv"fnum, rcvAflags, rcv"depth);
IF<> THEN ••• ;
! read open message.
CALL READUPDATE { rcv"fnum , rcvAbuf , rcvAcnt , cnt"read) ;
WHILE rcv"buf <> close"msg DO

BEGIN
CASE $ABS (rcv"buf) OF

BEGIN
0

-1 BEGIN ! startup message.

process startup message.

END;
-2 BEGIN ! assign message.

process assign message.

END;
-3 BEGIN ! param message.

process param message.

END;
OTHERWISE;

END;
CALL REPLY (,,,, replyAcode } ;
CALL READUPDATE (rcvAfnum, rcv"buf, rcv"cnt, cntAread);

END; ! while not close"msg.
close $RECEIVE.

CALL REPLY (,,,,0); ! reply to close"msg.
CALL CLOSE { rcvAfnum) ;

END; ! read"parameter"messages.

11-27

COMMAND INTERPRETER/APPLICATION INTERFACE
Application Process to CI Interprocess Messages

APPLICATION PROCESS TO CI INTERPROCESS MESSAGES

There are two messages which the Command Interpreter accepts from
application processes:

• The "wakeup" message (message code = -20)

• The "display" message (message code = -21)

An interprocess message is sent to a particular Command Interpreter by
opening a process file to that Command Interpreter, then writing the
message via the WRITE procedure (see "Interprocess Communication" in
the "File Management" section) •

Wakeup Message

The wakeup message, when received by a Command Interpreter, causes
that Command Interpreter, if it is currently in the pause state, to
return from the paused state to the command input mode (i.e., "wake
up").

If the Command Interpreter is not in the pause state (i.e., it is
prompting for a command or executing a command other than RUN} , a
wakeup message is ignored.

The form of the wakeup message is:

STRUCT wakeup~msg;
BEGIN

INT msgcode: -20
END;

The length of this message is two (2} bytes.

The intended use of this message is to allow a process that is a
descendant of a Command Interpreter, but not a direct descendant, to
wake up that Command Interpreter. A typical case is with a non-named
process pair: the backup process calls STEPMOM with the primary
process the object of the call (so that the backup will know if the
primary fails}; the call to STEPMOM cancels the primary process's
relationship with the Command Interpreter. The primary process, just
prior to stopping, sends a wakeup message to the Command Interpreter.

Display Message

The display message, when received by a Command Interpreter, causes
the Command Interpreter to display the text contained in the message.
The text is displayed just prior to the next time the Command
Interpreter prompts for a command (i.e., issues a":").

11-28

COMMAND INTERPRETER/APPLICATION INTERFACE
Application Process to CI Interprocess Messages

A Command Interpreter has the capability to store one 132-byte display
message until it is able to display the message text. If the Command
Interpreter is currently storing a display message when another
display message is sent to it, the second display message is rejected
with an <error> 12 indication (file in use}.

The form of the display message is:

STRUCT displayAmsg;
BEGIN

INT msgcode;
STRING text [O:n-1];

END;

-21
n <= 132.

The length of this message is (2 + display text length} bytes. Note
that the length of the text portion is implied in the write count
used to send this message.

11-29

COMMAND INTERPRETER/APPLICATION INTERFACE
Application-Supplied $CMON

APPLICATION-SUPPLIED CI MONITOR PROCESS ($CMON)

The purpose of the application-defined CI Monitor Process is to allow
application-dependent control of

• logons and logoff s

• running of programs

To provide this control, the Command Interpreter attempts to open
a process file to a process named $CMON each time a LOGON command is
executed. If the open is successful (i.e., a $CMON process exists),
the Command Interpreter notifies the $CMON process each time a
LOGON, LOGOFF, or implicit or explicit RUN command is given (this
notification is made in the form of an interprocess message) :

(Cil) (CI2) (CI3) • • • (Cin) COMMAND INTERPRETERS

($CMON) CI MONITOR PROCESS (SERVER)

The relationship between all Command Interpreters in the system and
the $CMON process is that of requesters and server, respectively.
(See "Interprocess Communication" in the "File Management" section.)

The $CMON process reads the notification messages via its $RECEIVE
file. The $CMON process must then reply to each message by rejecting
the command (in which case the command will not be executed),
accepting the command (the command will be executed "as is"), or in
the case of the RUN command, modifying the command by specifying a
different program file, a different processor module for execution,
and/or a different execution priority.

This control is implemented via several interprocess messages to the
$CMON process and several possible replies which the $CMON process
may make to the requesting Command Interpreter in response. Note that
the $CMON process must call the REPLY procedure to make its responses.
Therefore, its $RECEIVE file must be open with a receive depth >= 1,
and the notification messages must be read via calls to READUPDATE.

Communication between Command Interpreters and $CMON

The interprocess messages from a Command Interpreter to the $CMON
process are:

• Logan Message

11-30

• Legoff Message

COMMAND INTERPRETER/APPLICATION INTERFACE
Application-Supplied $CMON

• Process Creation Message (i.e., RUN command)

All messages are sent to $CMON by Command Interpreters on a no-wait
basis. If a message cannot be sent or if $CMON does not reply, the
Command Interpreter closes the process file to $CMON and proceeds
to execute the command, as the $CMON process does not exist.

If a non-super ID user presses the BREAK key while a message is
outstanding to $CMON, the message is cancelled and the command is
aborted. If a super ID user presses the break key while a message is
outstanding, the message is cancelled and the command is executed.

If the Command Interpreter encounters an i/o error when communicating
with $CMON, it closes its file to $CMON and no longer attempts
communication. The Command Interpreter reopens $CMON (and again
attempts communication) when the next logon occurs.

LOGON MESSAGE: This message is sent to the $CMON process when a
LOGON command is entered and the user name is checked for validity.

The form of the logon message is:

STRUCT logonAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0:11],
cioutfile[0:11];

[0] -50
[l] user ID of user logging on.
[2] execution priority if CI.
[3] name of CI's <command file>.

[15] name of CI's <list file>.

The length of this message is 54 bytes.

The form of the reply to the logon message is:

STRUCT logonAreply;
BEGIN

INT replycode;

STRING
replytext [0:131];

END;

[0] 0 = allow logon.
1 = disallow logon.

[l] optional message to be printed.

The length of this message is (2 + reply text length) bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If reply count = 2, no text is displayed.

11-31

COMMAND INTERPRETER/APPLICATION INTERFACE
Application-Supplied $CMON

LOGOFF MESSAGE: This message is sent to the $CMON process when a
LOGOFF command is entered.

The form of the logoff message is:

STRUCT logoffAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0:11],
cioutfile[0:11];

[0] -51
[l] userid of user logging off.
[2] execution priority if CI.
[3] name of CI~s <command file>.

[15] name of CI~s <list file>.

The length of this message is 54 bytes.

The form of the reply to the logoff message is:

STRUCT logoffAreply;
BEGIN

INT replycode;
STRING

replytext 0:131];
END;

[0] 0 or 1.

[l] optional message to be printed.

The length of this message is (2 + reply text length) bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If reply count = 2, no text is displayed.

PROCESS CREATION MESSAGE! This message is sent to the $CMON process
when an implicit or explicit RUN command is entered.

The form of this message is:

STRUCT processcreationAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0:11],
cioutfile[0:11],
progname [0:11],
priority,

processor;

[O] -52.
[l] user ID of user logging on.
[2] execution priority if CI.
[3] name of CI~s <command file>.

[15] name of CI~s <list file>.
[27] expanded program file name.
[39] <priority> of RUN command if

supplied; otherwise -1.
[40] <processor module> of RUN

command if supplied;
otherwise, -1.

The length of this message is 82 bytes.

11-32

COMMAND INTERPRETER/APPLICATION INTERFACE
Application-Supplied $CMON

The $CMON process may reply in either of two ways. The first causes a
process creation to be attempted. This form of reply is:

STRUCT processcreationAreply;
BEGIN

INT replycode,
progname [0:11],

priority,

END;

[O] 0 = create the process.
[l] expanded name of program file

to be run.
[13] execution priority of new

process or -1. If -1, then the
CI~s priority minus -1 is used.

[14] processor module where new
process is to run or -1.
If -1, then the CI~s
processor is used.

The values returned in this reply are those used for the process
creation attempt. Any process creation errors are seen by the
Command Interpreter user (no notification is made to $CMON) •

The second form of reply is used to disallow the process creation.
This form of reply is:

STRUCT processcreationAreply;
BEGIN

INT replycode;
STRING

replytext 0:131];
END;

[0] l = disallow process creation&

[l] optional message to be printed.

The length of this message is (2 + reply text length) bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If reply count = 2, no text is displayed.

11-33

SECTION 12

Nonstop PROGRAMMING EXAMPLE

This section presents an example of Nonstop programming technique.
The example program is a Nonstop server process.

A "server" process is an application process that accepts a request
from a "requester" process, fulfills the request, then returns a reply
(usually consisting of a data message or an error indication) to the
requester:

------REQUEST---------
(REQUESTOR) (SERVER)

---------REPLY---------

Typically, a server process can accept requests from multiple
requester processes:

(Rl)

(R2)

(RN)

Server processes are used in instances where

(SERVER)

• it is desired to modularize the application by function.

• several application programs need to execute complex, but similar
functions. In this case, a server process can perform these
functions on behalf of the requester processes. This eliminates
the need for each program to contain large amounts of similar
coding.

• it is desired that each terminal in an application be controlled by
a separate process, and several terminals (i.e., processes) must
access the same set of disc files, but it is undesirable for each
process to have the disc files open. In this case, a server

12.1-1

Nonstop PROGRAMMING EXAMPLE
Introduction

process performs all the disc operations, and therefore is the only
process with the disc files open. The terminal requester processes
perform disc operations by sending requests to the server process
using interprocess communication methods. This method of disc file
handling can also be used to reduce or eliminate the need for file
locking.

• a custom interface to a non-standard i/o device is needed. In this
case, the server process translates normal file system WRITE or
WRITEREAD requests into the specific file system requests needed to
control the device. An example of this is a server process that
interfaces, via ENVOY protocols, to a data communications line;
requests are made to the server as though communicating with a
conversational mode terminal (i.e., via WRITEREAD), and the server
translates the request into the WRITEs, READs, and CONTROLS needed
to control the line.

The example presented here is a server process that accesses a data
base (i.e., disc file} on behalf of several requester processes (i.e.,
terminals}. As such, the example program is a culmination of the
programming techniques discussed in section 2.9, "Interprocess
Communication", and section 5.3, "Using the Checkpointing Facility".

12.1-2

Nonstop PROGRAMMING EXAMPLE
Introduction

THE Nonstop EXAMPLE PROGRAM

The example program (figure 12-1) is called "serveobj", and its source
program is called "servesrc". It executes as a process pair in two
processor modules. One process of the pair is the primary process;
it performs the requested operations. The other process of the pair
is the backup process; it monitors the operational state of the
primary. If the primary server process becomes inoperable, the backup
process takes over and performs the server function.

--~~~~~~~~--' /

PROCESSOR
MODULE J MESSAGES L ///;ROCESS

PROCESSOR
MODULE

ACTION OF PRIMARY

r A REQUEST MESSAGE
IS READ FROM A
REQUESTOR

IF REQUEST IS
"NONRETRYABLE," THE
CURRENT STA TE IS
CHECKPOINTED

THE REQUESTED
DISC OPERATION IS
PERFORMED

THE REQUEST IS
REPLIED TO (DATA
MAY BE RETURNED TO
REQUESTOR)

/
/

/

Figure 12-1. "Serveobj" Program

12.1-3

Nonstop PROGRAMMING EXAMPLE
Introduction

When the "servesrc" program is initially run (e.g., by a Command
Interpreter RUN command), it is given the process name "$SERVE"
(requester processes access the server by this name) • The first
process created assumes the role of the primary process. The primary
process, after successfully opening its files, creates the backup
process, then opens the backup's files. The backup process, as soon
as it determines that it is the backup, begins monitoring the primary
process.

The function of the primary process is to read a request message,
perform the action indicated by the request, then return the outcome
of the request - an error code and/or data - in a reply message to the
requester. The requests that the server processes are

• insert: Insert the supplied record into the data base •

• delete: Delete the supplied record from the data base.

• query: Return the record from the data base as indicated by the
supplied key value.

• next: Return the next record from the data base as indicated by
the supplied key value.

Example Program Structure

The example program consists of the following procedures:

• "serve"

This is the main procedure. It is where the primary/backup
determination is made. If the process is the primary, the startup
message is read, the data base file is opened, the backup is
created, and the main processing loop is called~ If the process is
the backup, the CHECKMONITOR procedure is called.

• "execute"

This is the execution loop of the server process. It waits on the
$RECEIVE file for incoming messages. If a user request message is
received, the "processAuserArequest" procedure is called. If a
system message is received, the "analyzeAsystemAmessage" procedure
is called.

This procedure interprets the user request, checks for duplicate
requests, checkpoints in some cases, calls the appropriate
"primitive" to process the user request, and saves the outcome of
the operation for the requester. The user request primitives are

12.1-4

"queryArequest": get the record from the data base as indicated
by the supplied key value.

"insertArequest": insert the supplied record into the data
base.

Nonstop PROGRAMMING EXAMPLE
Introduction

"delete"'request": delete the record from the data base as
indicated by the supplied key value.

"next"'record"'request": get the next record from the data base
as indicated by the supplied key value.

This procedure interprets system messages and takes appropriate
action. This involves creating a backup process in some cases, and
adding and deleting requesters from the "requester process
directory".

The "requester process directory" is a table of all processes (and
their backups) currently accessing the server. This is maintained
so that the server can ensure that the proper reply is made to a
requester in the event of a requester or server failure (see
"Request Integrity"). There are four "primitives" used to perform
directory operations. They are:

"lookuppid": look up a requester in the directory (called when
a user request message is received).

"addpid": add a requester to the directory (called when an
OPEN system message is received).

"delpid": delete a requester from the directory (called when a
CLOSE system message is received) •

"delallpids": delete all requesters from the directory that are
associated with a given cpu (called if a cpu failure occurs).

• "analyze"'checkpoint"'status"

This procedure is called when a nonzero return is made from the
CHECKPOINT procedure. This usually occurs only when the backup
takes over. This procedure analyzes the reason for the takeover
and takes appropriate action.

• "create"'backup"

This procedure performs the backup process creation function. It
is called at the start of primary execution, called when the
primary detects a failure of the backup and the backup processor
module is operable, and called on a takeover by the backup when the
primary process failed because of an ABEND condition (e.g., a
trap). Following a successful creation of the backup process, the
files are opened for the backup, and the current state of the
primary process is checkpointed.

These two procedures perform the file open functions for the
primary process and the backup process, respectively.

12.1-5

Nonstop PROGRAMMING EXAMPLE
Introduction

This procedure is called at the beginning of the primary process~s
execution to open the $RECEIVE file, read the startup message, and
save the file name of the data base disc file.

Request Integrity

For the purpose of preventing erroneous results being returned to a
requester if a failure of a requester or the server occurs, requests
are classified by the server as being either retryable or
nonretryable. The "retryable" requests are those which do not alter
the data base, and therefore can be reexecuted indefinitely with the
same results. The retryable requests are "query" and "next". The
"nonretryable" requests, conversely, alter the data base and would
return different results if reexecuted (e.g., the first insert of a
given record is successful, but the second insert of the same record
results in a "record already exists" error) • The nonretryable
requests are "insert" and "delete".

Each request message contains a sync ID. The sync ID is used by the
server process to detect duplicate requests for nonretryable
operations (i.e., "insert" or "delete") from a given requester process
(duplicate requests are caused by a failure of a requester process) •
The value of the sync ID is incremented by the requester with each
request. When a new request is received, and the request is
nonretryable, the server saves the value of the sync ID (these are
saved for each given requester). If the sync ID in a request does not
match the saved sync ID for the requester, then the request is a new
request. In this case~ the requested operation is performed, the
results are returned to the requester, and the error code which was
returned to the requester (to indicate the outcome of the operation)
is saved by the server process for the requester. (Note that, because
the server only saves the sync ID~s associated with nonretryable
requests, the sync ID associated with a retryable request will always
indicate a new request. Therefore, duplicate retryable requests will
be reexecuted by the server) • If the sync ID in a request message
matches the saved sync ID, then the request is a duplicate request for
a nonretryable operation. The server does not reexecute the
operation. Rather, it returns the completion status that it saved for
that requester.

Checkpoints

There are three types of checkpoints in the example program:

• initial checkpoint
• request checkpoint
• process requester directory checkpoint

12.1-6

Nonstop PROGRAMMING EXAMPLE
Introduction

INITIAL CHECKPOINT: The initial checkpoint is made to the backup
process, in the "createAbackup" procedure", following the successful
creation of the backup and the opening of its files. The checkpoint
includes the entire data area from ~G~[S] through the top-of-stack
location, and includes the "sync block" for the data base file (the
variable "backupAcpu" is not checkpointed). At this point, the backup
process~s data area is an exact copy of the primary process~s data
area.

REQUEST CHECKPOINT (figure 12-2): Each time through its main
processing loop in the "processAuserArequest" procedure, if the
current request is nonretryable, the primary checkpoints the outcome
of the preceding nonretryable request and the state of the current
request to the backup. This is accomplished via a call to the
CHECKPOINT procedure. The purpose of the checkpoint is to keep the
backup informed as to the current state of the primary and to define a
restart point for the backup in the event that the primary fails.

In the example program, the goal was to keep the number of checkpoints
and the amount of data checkpointed to a minimum. It is important to
note that the checkpoint is made only if the current request is
nonretryable, and that this one checkpoint per processing loop is
ample for all failure recovery. The data checkpointed is:

• the data stack. This is kept small by the use of global data
buffers.

• the data base file sync block
• the sync ID, by requester, of the current request
• the data record
• the error return value, by requester, of the preceding nonretryable

request

Any time a failure of the server primary occurs, the backup takes over
from the latest checkpoint (which is for the latest nonretryable
operation) and reexecutes the latest nonretryable operation. (Note
that this generates the result value for the latest nonretryable
operation. The backup now has the correct values for any nonretryable
operation which had been performed by the primary.) If the failure
occurs between the call to READUPDATE and the call to CHECKPOINT, the
backup is reexecuting an operation already replied to. If the failure
occurs between the call to CHECKPOINT and the call to REPLY, the
backup completes the operation associated with the current request.
In either case, the use of the "sync block" by the file system ensures
that the request is not duplicated. Note also that the backup
executes the call to REPLY at the end of the processing loop. This
call is rejected, because there is no outstanding request on the
backup side at this time (the rejection is ignored) •

If the primary server process was in the midst of processing a request
when a failure occurred, the backup server process receives the same
request when it takes over. If the primary had not reached the
checkpoint for the current operation, then the backup has the value of
the preceding nonretryable sync ID. The backup sees the request as a

12.1-7

Nonstop PROGRAMMING EXAMPLE
Introduction

new request and processes it. If the primary was processing a
nonretryable request and had reached the checkpoint for the current
operation, then the current sync ID was checkpointed (and, in fact,
the backup completed the operation on its takeover). The backup sees
this request as a duplicate request and returns the saved error code
for the completed operation.

12.1-8

0

0

REQUEST CHECKPOINT

ANY FAILURE WILL
RESULT IN A DUPLICATE
REQUEST

A FAILURE IN THIS AREA
RESULTS IN THE BACKUP
REEXECUTING THE PRECEDING
NONRETRYABLE REQUEST

A FAILURE IN THIS AREA
RESULTS IN THE BACKUP
REEXECUTING THE CURRENT
NONRETRYABLE REQUEST

Nonstop PROGRAMMING EXAMPLE
Introduction

READUPDATE: A REQUEST

IS THIS A DUPLICATE, NONRETRYABLE REQUEST?

y N

'---~~---~~~~~~~~~~~~---1)
INSERT OR DELETE QUERY OR NEXT-RECORD
REQUEST REQUEST
(NONRETRYABLE) (RETRY ABLE)

CHECKPOINT
- SYNC ID & DATA

FOR CURRENT REQ.
- SYNC BLOCK FOR

DATA BASE FILE.
-LAST REPLY TO

PRECEDING NON­
RETRYABLE REQ.

INSERT (WRITE) OR
DELETE (WRITEU PD ATE)
RECORD

REPLY TO REQUEST

READ REQUESTED
RECORD

- FOR ALL REQUEST TYPES, AN ERROR CODE IS RETURNED.
- FOR QUERY AND NEXT-RECORD REQUESTS, A DATA RECORD IS RETURNED.

- FOR QUERY AND NEXT-RECORD REQUESTS, A DATA
RECORD IS RETURNED.

THE FIRST TIME THIS REPLY IS EXECUTED FOLLOWING
A SERVER PRIMARY FAILURE, IT WILL FAIL.
FOLLOWING THIS, A DUPLICATE REQUEST WILL BE
RECEIVED, THE REPLY WILL BE MADE, AND IT WILL
SUCCEED.

Figure 12-2. Request Checkpoint

12.1-9

Nonstop PROGRAMMING EXAMPLE
Introduction

PROCESS REQUESTOR DIRECTORY CHECKPOINT: This checkpoint is made,
following the processing of a system message, in the
"analyzeAsystemAmessage" procedure. It checkpoints the entire
requester process directory and the entire sync count table. This
point was chosen for the directory checkpoint because directory
changes may occur when system messages are received. (Note that a
directory change is also made in the "analyzeAcheckpointAstatus"
procedure if the takeover was because of a processor module failure.
However, a checkpoint at this point would be useless.)

12.1-10

I-'
N .
N
I
I-'

PAGE l $BOOKS1.M096B01.SERVESRC [l)

TAL - T9200D03 - (01JUL81) Source language: TAL - Target machine: Tandem Nonstop System
Default options: On (LIST,CODE,MAP,WARN,LMAP) - Off (ICODE,INNERLIST) Date - Time : 2/23/82 - 13:43:07

l.
2.
3.
4.
5.
6.
7.

10.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0
000000 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Nonstop Programming Example
for GUARDIAN Programming Manual
P/N 82096 (TNS and TNS/II)

Server Program

?NO LIST

?LMAP*

This program is run by the following RUN command:

RUN serveobj / IN <data base file> , NAME $SERVE /

where

<data base file> is the file name of the disc file to ba accessed.

$SERVE is the name used by requestors to access this process.

process Nonstop state.
INT backup"cpu,

backup"pid [0: 3) ,
stop"count := 0,
backup"up := 0,

. stack"base;

files
INT recv"fnum,

db"fnum,
db"fname [0:11];

LITERAL open"msgs
protected
no"wait
recv"flags
recv"sync"depth
db" flags
db"sync"depth

! data base format.

backup cpu number. **NOT CHECKPOINTED.
process id of backup process. ** NOT CHECKPOINTED.
to detect looping backup delete-creates
true if backup is running .
beginning of data stack for checkpointing.

$RECEIVE file number.
data base file number.
data base file name.

%40000,
%40,
1,
open"msgs + no"wait,
1,
protected,
l;

LITERAL db"rec"len = 256,
db"rec"key"off = 0,
db"rec"key"len = 24;

request message format.

word
[OJ [l] [2:message"size-3]
[sync J [request type J [-------------------- record

z
0
::J
(/)
rt

ti:I 0
>< "O
SlJ s "'O
"O~
I-' 0
<D Ci)

"'O~
8~
lQ H
HZ
SlJ Ci)
s

ti:I
() :><

&~
I-'· "'O
::J t-t

lQ ti:I

.......
N .
N
I

N

PAGE.2

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83 ..
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103 ..
104.
105.
106.
107.
108.
109.
110.
111.
112"
113.

$BOOKS1.M096B01.SERVESRC [l] Nonstop Example Server Process

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000203 0 0
000203 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000404 0 0
000424 0 0
000424 0 0
000444 0 0
000444 0 0
000646 0 0
000646 0 0
000646 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
00076-7 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0
000767 0 0

sync = sync id (incremented by requester on each request) •
used to detect duplicate nonretryable requests.

request type.

0
1
2
3

record.

insert request
delete request.
query request.
next record request.

(nonretryable)
(nonretryable)
(retryable)
(retryable)

on request = record to bE? inserted, deleted, or obtained.
on return for query or next = record from data base.

LITERAL
sync
request"type
record
message"len
message"size

0,
1,
2,
db"rec"len + 4,
messagE! "len / 2;

global buffers.
INT .recv"buf[0 : message"size J,

recv"cnt,
receive buffer.
receive count .
scratch buffer. . buf [0 : db"rec"len / 2 J;

LITERAL

INT

max"reqstrs = 16; maximum number of requestors allowed.

! directory entry no. of previous requester of nonretryable operation.
old"requestor,
! sync id for latest requeEtor of nonretryable operation.

.sync"count [l : max"reqstrs J := max"reqstrs * [0 l,
! reply error code for eacr requester.

.reply"error [1 : max"reqstrs J,
! reply for current request.

~reply"buf [0 : message"size - l J;

requester process directory.
INT .pids[5:max"reqstrs * 5 + 5] := (max"reqstrs * 5) * [0] ;

[O] [3 J [4 J

[~~~~~~I--t--~-r -1--- ---
- -i--- ---_

entry #1

entry #2

entry #3

entry #max"reqstrs.

entry"no[0:2]
entry"no[3]

<process name> or <creation time stamp>
<cpu,pin> of primary process

2/23/82 13:

ti::IZ
>< 0
SlJ ::s
::I CJ)
'U rt"
...... 0
(I) 'U

"ti "ti
l"1 :::0
00 "° Cl
~ $!
=~
() H
oz
0.. Cl
I-'·
::s ti::! "° :><:
~
"ti
tot
ti::!

1--'
r-v .
r-v
I
w

PAGE 3

114.
115.
116.

$BOOKS1.M096B01.SERVESRC [l] Nonstop Example Server Process

000767 0 0 ! entryAno(4]
000767 0 0
000767 0 0 ?NOLIST

= <cpu,pin> of backup process, if any, or zero

2/23/82 13:

z
0
:::J
(/l
rt

l:rj 0
>< '"O
SlJ s "U

~eg
<D Gl

8i
lQ H
rt z
ni Gl s

l:rj
() :><:

&~
..... "U
:::J t'i
lQ l:rj

.,_..
tv .
tv
I

.a:::..

PAGE 4

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190 ..
191.
192.
193.
194.
195.
196.
197.
198.
199 ..
200.
201 ..
202"
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.

$BOOKS1.M096B01.SERVESRC [l] SERVE: read"start"up"message Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 l 0
000000 l 0
000000 l l
000000 l l
000000 l l
000000 1 l
000011 1 1
000023 l l
000027 1 l
000027 1 l
000027 1 l
000037 1 1
000050 l l
000057 1 l
000057 l l
000057 l l
000067 1 1
000100 l 1
000107 l l
000107 l l
000107 l l
000114 l 1
000114 l 1
000114 l l
000124 l l
000135 1 l
000144 l 1

this procedure opens the $RECEIVE file for the primary process and reads
the start-up message. Note that the receipt of the start-up message
involves reading three interprocess messages:

1. OPEN "system" message.
2. CI start-up message (not a "system" message)
3. CLOSE "system" message.

PROC read"start"up"message;

BEGIN
INT .recv"buf[0:33];

! open $RECEIVE.
recv"buf ':=' ["$RECEIVE", El * [" " 11;
CALL OPEN (recv"buf, recv"fnum, recv"flags, recv"sync"depth) ;
IF <> THEN CALL ABEND;

! read open message.
CALL READ (recv"fnum, recv'buf, 14) ;
CALL AWAITIO (recv"fnum,,,, 3000D);
IF <= OR recv"buf <> -30 THEN CALL ABEND;

! read start"up message.
CALL READ (recv"fnum, recv~buf, 66) ;
CALL AWAITIO (recv"fnum,,,, 3000D);
IF <> OR recv"buf <> -1 THEN CALL ABEND;

! save data"base file name.
db"fname ':=' recv"buf[9] FOR 12;

! read close message.
CALL READ (recv"fnum, recv"buf, 14) ;
CALL AWAITIO (recv"fnum,,,, 3000D);
IF <= OR recv"buf <> -31 THEN CALL ABEND;

END; ! read"start"up"message.

2/23/82 13:

RECV"BUF Variable INT L+OOl Indirect

00000 070402 024700 002042 170401 000025 020137 000200 100014 00010 026047 170401 070010 005100 004001 100001 024733 002
00030 170401 100016 024722 002003 100034 024700 027000 070
00050 016003 1404~1 001742 012003 000002 024711 027000 040

00020 100360 024700 027000 012003 000002 024711 027000 040010
00040 024700 002003 100000 005013 004270 100021 024722 027000
00060 170401 100102 024722 002003 100034 024700 027000 070010 00070 024700 002003 100000 005013 004270 100021 024722 027
00100 015003 140401 001777 012003 000002 024711 027000 070012 00110 103011 173401 100014 026007 040010 170401 100016 024
00120 002003 100034 024700 027000 070010 024700 002003 100000 00130 005013 004270 100021 024722 027000 016003 140401 001
00140 012003 000002 024711 027000 125003 000141 022122 042503 00150 042511 053105 020040 020040 020040 020040 020040 020
00160 020040 020040

trjZ
XO
OJ ::s s (fl

"O rt'
i-io
<D "O

ltj ltj
l'1 :::0
00
lQ G')

~~
=~
OH oz
0.. G')
.......
::s l:rj
lQ ~

~
ltj
t-t
l:rj

I-'
N .
N
I
Ul

PAGE 5

214.
215.
216.
217.
218.
219.
220.
221.
222.
223.

$BOOKS1.M096B01.SERVESRC [l] SERVE: File Open Procedures

000000 0 0 ! this procedure opens the data base file for
000000 0 0
000000 0 0 PROC openAprimarysAfiles;
000000 1 0
000000 1 0 BEGIN
000000 1 1
000000 1 1 ! open data base file.
000000 1 1 CALL OPEN (dbAfname, dbAfnum, dbAflags,
000011 1 1 IF <> THEN CALL ABEND;
000015 1 1 END; ! openAprimarysAfiles.

2/23/82 13:

the primary process.

dbAsyncAdepth) ;

00000 070012 070011 100040 100001 024733 002004 100360 024700 00010 027000 012003 000002 024711 027000 125003

224. 000000 0 0
225. 000000 0 0
226. 000000 0 0
227. 000000 0 0
228. 000000 1 0
229. 000000 1 0
230. 000000 1 1
231. 000000 1 1
232. 000000 1 1
233. 000000 1 1
234. 000000 1 l
235. 000011 1 1
236. 000011 1 l
237. 000024 1 1
238. 000031 1 1
239. 000031 1 1
240. 000031 1 1
241. 000031 1 1
242. 000043 1 1
243. 000050 1 1

! this procedure opens the $RECEIVE and data base files for the backup
! process.

PROC openAbackupsAfiles;

BEGIN
INT .buf[O:ll],

back"error;

! open $RECEIVE.
buf ':=' ["$RECEIVE", 8 * [" "]];
CALL CHECKOPEN (buf, recvAfnum, recvAflags, recvAsyncAdepth,,,

back"error) ;
IF <> THEN CALL STOP (backupApid) ;

! open data base file.
CALL CHECKOPEN (dbAfname, db"fnum, dbAflags, dbAsyncAdepth,,,

back"error) ;
IF <> THEN CALL STOP (backup"pid) ;

END; ! open"backupsAfiles.

BACK"ERROR Variable
Variable

INT
INT

L+002
L+OOl

Direct
Indirect BUF

00000
00020
00040
00060

070403 024700 002015 170401 000025 020043 000200 100014
024766 100171 024700 027000 012004 070001 100001 024711
100171 024700 027000 012004 070001 100001 024711 027000
020040 020040 020040 020040 020040 020040

00010 026047 170401 040010 005100 004001 100001 000002 070
00030 027000 070012 040011 100040 100001 000002 070402 024
00050 125003 000045 022122 042503 042511 053105 020040 020

z
0
::1
00
("'t

t:i:j 0
>< I'd
SlJ s ltj
I'd~
1-'0
Cl) G1

;ri
l.O H
l'1 z
n> G1 s

t,tj
() :><!

&~
...... ltj
::1 t-t

l.O t:i:j

I-'
(\.) .
(\.)

I
0\

PAGE 6

245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260 ..
261.
262.
263"
264.
265.
266 ..
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.

$BOOKS1.M096B01.SERVESRC [l] SERVE: create"bc:1ckup Procedure 2/23/82

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000012 1 1
000012 1 1
000012 1 1
000015 1 1
000015 1 1
000021 1 1
000021 1 1
000033 1 1
000035 1 1
000035 1 2
000037 1 2
000040 1 2
000040 1 2
000040 1 2
000053 1 2
000056 1 2
000056 1 1

this procedure creates the backup process. The steps involved are:

- create backup.
- open its files.
- checkpoint current state.

PROC create"backup (backup"cpu) ;
INT backup"cpu;

BEGIN
INT .pfile [O: 11],

pname [0 : 3] ,
error,
status,

.globals := 5; base fer initial checkpoint = 'G' [5].
and "backup"pid" not checkpointed.

"backup"cpu"

! check for looping creates.
IF stop"count > 5 THEN CALL DEBUG;

! get program's file name.
CALL PROGRAMFILENAME (pfile) ;
! get process's name.
CALL GETCRTPID (MYPID, pna~e) ;
! create the backup process.
CALL NEWPROCESS (pfile,,, tackup"cpu, backup"pid, error, pname) ;
IF backup"pid THEN ! it was created.

BEGIN
backup"up := l;
CALL open"backups"files;

! checkpoint global area through top-of-stack and sync block.
IF (status := CHECKPOINT (globals, ,db"fnum)) THEN

CALL analyze"checkpoint"status (status) ;
END;

END; ! of create"backup

*** CHECKPOINT ***

13:

BACKUP"CPU Variable INT L-003 Direct
Direct
Indirect
Indirect
Direct
Direct

ERROR
GLOBALS
PF ILE
PNAME
STATUS

00000
00020
00040

Variable INT L+006
Variable INT L+OlO
Variable INT L+OOl
Variable INT L+002
Variable INT L+007

070411 024700 002006 100005 024700 002014 040005 001005
027000 170401 000002 040703 070001 070406 024755 070402
170410 100000 040011 024722 002030 005005 100000 024711

00010 016001 027000 170401 024700 027000 027000 070402 024
00030 100117 024711 027000 040001 014421 100001 044006 027
00050 027000 034407 014403 040407 024700 027000 125004

1:1:1 z
XO
SlJ ::J
::I (J)
tU rt
1-'0
CD tU

"d "d
1-1 ~
00
lQ G'l

~~
9~
(') H
oz °' G'l I-'·
::J 1:1:1

l.Q :><:
:t:it
3:
"d
t-t
1:1:1

......,
N .
N
I

....J

PAGE 7

282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.

STATUS

$BOOKS1.M096B01.SERVESRC [l] SERVE: analyzeAcheckpointAstatus Procedure

000000 0
000000 0
000000 0
000000 0
000000 1
000000 1
000000 1
000000 1
000000 1
000002 1
000005 1
000005 1
000005 1
000005 1
000005 1
000005 1
000011 1
000012 1
000012 1
000012 1
000016 1
000020 1
000020 1
000021 1
000021 1
000021 1
000024 1
000024 1
000024 1
000024 1
000027 1
000030 1
000030 1
000030 1
000032 1
000034 1
000037 1
000040 1
000040 1
000040 1
000042 1
000045 1
000046 1
000046 1
000046 1
000046 1
000053 1
000054 1
000054 1
000054 1
000055 1
000056 1
000056 1
000063 1

0
0
0
0
0
0
0
1
1
1
1
2
2
2
3
3
3
3
4
4
4
4
3
2
2
3
3
4
4
5
5
4
4
5
5
5
5
4
4
5
5
5
4
4
4
4
3
2
2
3
3
2
2
1

! this procedure is used to analyze and take appropriate action for a
! non-zero return from the CHECKPOINT procedure.

PROC analyzeAcheckpointAstatus (status);
INT status; ! return value of CHECKPOINT.

BEGIN

IF backupAup THEN ! analyzeAit.
CASE status.<0:7> OF

BEGIN
0 ! : ! good checkpoint.

1 ! BEGIN ! checkpoint failure.
! find out if backup is still running.
CALL GETCRTPID (backupApid[3]' backupApid) ;
IF = THEN ! backup still running.

BEGIN
! stop the backup.
CALL STOP (backupApid) ;
backupAup := O;

END;
END; ! 1.

2 ! BEGIN ! takeover from primary.
CASE status.<8:15> OF

BEGIN

2-0 ! BEGIN ! primary stopped, so stop myself.
CALL STOP;

END;

2-1 ! BEGIN ! primary abended, so create a backup for me.
back~pAup := O; A
stop count := stop count + l;
CALL createAbackup (backupAcpu) ;

END;

2-2 ! BEGIN ! primary cpu down, note it.
backupAup := O;
CALL delallpids (backupAcpu) ;

END;

2-3 ! ! primary called CHECKSWITCH.
,

END; ! case of status.<8:15>.
END; ! 2.

3 ! BEGIN ! bad parameter to CHECKPOINT
CALL DEBUG;

END; ! 3.

END; ! case of status.<0:7>.
END; ! analyzeAcheckpointAstatus.

Variable INT L-003 Direct

2/23/82 13:

z
0
::l
en
rt

t.t.1 0
x "O
SlJ s ltj
"O !;P
......, 0
(I) G)

ltj ~
8~
lO H
HZ
DJ G)
s

t.t.1 () :x:
&~
...... ltj
::l t-1
lO t.t.1

j-..J
I.\.) .
I.\.)

I
CX>

PAGE 8

00000
00020
00040
00060

$BOOKS1.M096B01. SEB.VESRC [l] SERVE: analyze'\:heckpoint "status Procedure 2/23/82 13:

040006 014461 040703 030110 010451 040004 07000L 024711
010442 040703 006377 010422 000002 024711 027000 010423
100000 044006 040000 024700 027000 010405 000030 177755
177725 177740 177772 125004

00010 027000 015006 070001 100001 024711 027000 100000 044
00030 100000 044006 100001 074005 040000 024700 027000 010
00050 177760 177767 000001 010407 027000 010405 000030 000

tr.1Z
XO
DJ ::J
::i (Jl
t'(j cT
j-..J 0
(I) t'(j

I'd I'd
l"1 ~
00

lQ G)

ii
OH oz
Qi G)
I-'·
::J tr.1

lQ :><:
>
3:
I'd
t'-1
tr.1

......
N .
N
I
\0

PAGE 9

337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.

COMP"LEN
ENTRY"NO
PIO

$BOOKS1.M096B01.SERVESRC [l] SERVE: lookuppid Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000013 1 1
000020 1 1
000031 1 1
000034 1 1
000034 1 1
000036 1 1

This procedure searches the requestor process directory by a process id
for an entry number.

return values:
0 = pid not in directory.

>0 = entry no of pid in directory.

INT PROC lookuppid(pid);
INT .pid;

BEGIN
INT entry"no := 0, ! entry"no in local pid directory.

comp"len; ! compare length for pid matching.

comp"len := IF pid.<0:7> = "$" THEN ! process name ! 3 ELSE 4;
WHILE (entry"no := entry"no + 1) <= max"reqstrs DO

IF pid = pids[entry"no * 5] FOR comp"len THEN ! found it.
RETURN entry"no;

RETURN O; ! not found.
END; ! lookuppid.

Var able
Var able
Var able

INT
INT
INT

L+002
L+OOl
L-003

Direct
Direct
Indirect

2/23/82 13:

00000 100000 024700 002001 140703 030110 001044 015002 100003
00020 170703 040401 100005 000212 000117 173035 040402 026207

00010 010401 100004 044402 040401 104001 034401 001020 011
00030 015002 040401 125004 010757 100000 125004

z
0
::J
en
rt

tx:iO
>< "O
Sll
El ltj
"O~
1-10
(() G)

ltj ~
8~
lO H
t; z
Sll G)
El

tXl () :x:
0 >
~ ;3:
I-'· ltj
::s t-t
"° tXl

~
N

N
I
~
0

PAGE 10

359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.

$BOOKS1.M096B01.SERVESRC [l] SERVE: addpid Pi~ocedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000004 1 1
000004 1 1
000017 1 1
000017 1 2
000017 1 2
000017 1 2
000042 1 2
000044 1 2
000044 1 1
000045 1 1
000045 1 2
000052 1 2
000052 1 3
000062 1 3
000065 1 3
000065 1 2
000065 1 1
000067 1 1

This procedure adds a process id to the requester process directory.

return values.
0 =directory full, "pid" not added to directory.

>0 = "pid" added, entry no of "pid" in directory.

INT PROC addpid(pid);
INT .pid;

BEGIN
INT entryAno, ! entryAno in local pid directory.

zero[0:3] := [4 * [0]]; ! for lookup of empty directory slot.

IF (entryAno := lookuppid(pid)) THEN ! already in directory.
BEGIN

! check for duplicate open.
IF pids[entryAno * 5 + 3] <>pd[3 J AND

pids[entryAno * 5 + 4] <> p d [3 l THEN ! first open by
pids[entryAno * 5 + 4] : = p d [3 l; ! backup.

END
ELSE ! not in directory. First open by "pid"

BEGIN
IF (entryAno := lookuppij(zero)) THEN ! look for empty slot.

BEGIN
pids[entryAno * 5] ':=' pid FOR 4;
syncAcount[entryAno] := -1; ! initialize requestor idAcount.

END;
END;

RETURN entryAno;
END; ! addpid.

this re,:urns zero if no room in directory.

2/23/82 13:

ENTRYANO Variable
Variable
Variable

INT
INT
INT

L+OOl
L-003
L+002

Direct
Indirect
Direct

PIO
:rnRO

00000
00020
00040
00060

000000 000000 000000 000000 002005 070402 000025 003771
100005 000212 104003 000117 143035 102003 142703 000215
000215 012002 142703 145035 010420 070402 024700 027000
100004 026007 032401 100777 146032 040401 125004

00010 100004 026047 170703 024700 027000 034401 014426 040
00030 012013 040401 100005 000212 104004 000115 141035 142
00050 034401 014413 040401 100005 000212 000117 173035 170

ti.1Z
~ 0
PJ :;:::J s (/)

'"O rt
~o
([) '"O

l'O l'O
H~
00

l..Q Gl

~~
s~
() H
oz
Qi Gl
I-'·
:;:::J ti.1

l..Q :><

~
l'O
L"
ti.1

........
N .
N
I

........
........

PAGE 11

390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.

$BOOKS1.M096B01.SERVESRC [l] SERVE: delpid Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 l 0
000000 l 0
000000 l 0
000000 l l
000000 l l
000000 l l
000006 l l
000015 l l
000015 l 2
000027 l 2
000027 l 2
000031 l 2
000031 l 2
000040 l 2
000040 l l
000041 l l
000053 l l

! This procedure deletes a process id from the requestor process
! directory.

PROC delpid(pid):
INT . pid: ! "pid" to be deleted.

BEGIN
INT entryAno: ! entryAno in local pid directory.

IF (entryAno := lookuppid(pid)) THEN ! delete it.
IF pids[entryAno * 5 + 4] THEN ! was open by process-pair.

BEGIN
IF pids[entryAno * 5 + 3] = pid[3] THEN ! close by primary.

! replace primary entryAno with backup.
pids [entryAno * 5 + 3] : = pids [entryAno * 5 + 4] :

! clear backup entryAno.
pids [entryAno * 5 + 4] := 0:

END
ELSE ! was open by one process.

pids [entryAno * 5] ':=' [O,O,O,O]:
END; ! delpid.

2/23/82 13:

ENTRYANO Variable
Variable

INT
INT

L+OOl
L-003

Direct
Indirect PID

00000
00020
00040
00060

002001 170703 024700 027000 034401 014445 040401 100005
104003 000116 142035 101003 141703 000215 015002 143035
010412 040401 100005 000212 000117 173035 000025 020004
000000

00010 000212 104004 000117 143035 014424 040401 100005 000
00030 146035 040401 100005 000212 104004 000117 100000 147
00050 000200 100004 026047 125004 000006 000000 000000 000

z
0 ::s
(/)

rt
ti:I 0
>< "O
01 s tU
"O ::ti a
Cl) G1

8i
l.OH
l"1 z
01 G1 s

ti:I
() :><

&~
..... tU
::s t'1

l.Q ti:I

t-.J
N .
N
I

t-.J
N

PAGE 12

412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.

CPU

$BOOKS1.M096B01.SERVESRC [l] SERVE: delallpids Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 l l
000000 l l
000000 l l
000000 l l
000010 l l
000010 l 2
000010 l 2
000010 l 2
000010 l 2
000024 l 2
000024 l 2
000030 l 2
000031 l 2
000031 l 2
000031 l 2
000045 l 2
000045 l 2
000047 l 2
000050 l l

this procedure is called if 2 cpu failure message is received. It
deletes all references in th~ requester process directory to the
failed cpu. This may cause ~ntire entries to be deleted.

PROC delallpids(cpu);
INT cpu; ! processor module number of pids to be deleted.

BEGIN
INT entry"no := 0,

temp;
! ent:y"no in local pid directory.

WHILE (entry"no := entry"no + 1) <= max"reqstrs DO
BEGIN ! check each entry'no.

! check for match with entry"no's primary cpu.
IF pids[entry"no * 5 ·~ 3] AND

pids[entry"no * 5 + 3] .<0:7> = cpu THEN ! primary down
! delete primary process and maybe the entire entry"no.
CALL delpid (pids [entry"no * 5])

ELSE
! check for match with entry"no's backup cpu.
IF pids[entry"no * 5 + 4] AND

END;

pids[entry"no * 5 ~ 4] .<0:7> = cpu THEN ! backup down.
! clear the backup entry"no.
pids [entry"no * 5 + 4] := O;

END; ! delallpids.

2/23/82 13:

ENTRY"No
Variable
Variable
Variable

INT
INT
INT

L-003
L+OOl
L+002

Direct
Direct
Direct TEMP

00000
00020
00040

100000 024700 002001 040401 104001 034401 001020 011040
030110 040703 000215 015005 107775 173035 024700 027000
143035 030110 040703 000215 015002 100000 1470:15 010733

00010 040401 100005 000212 104003 000117 143035 014412 143
00030 010416 040401 100005 000212 104004 000117 143035 014
00050 125004

t:r.jZ
>< 0
SlJ ::s s CJ)

"O rt"
t-.J 0
<D "O

"U "U
I"'(~
00
lO G')

~~
s~
()H
oz
Q, G')
::s t:r.j
lO :><:

~
"U
t:-t
t:r.j

j--1
l'V .
l'V
I

j--1
w

PAGE 13

440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.

$BOOKS1.M096B01.SERVESRC [l] SERVE: analyzeAsystemAmessage Procedure

000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000007 1 1
000007 1 2
000007 1 2
000007 1 2
000007 1 2
000007 1 3
000007 1 3
000007 1 3
000013 1 3
000022 1 3
000023 1 2
000023 1 2
000023 1 3
000030 1 3
000030 1 4
000030 1 4
000032 1 4
000035 1 4
000035 1 3
000036 1 2
000036 1 2
000036 1 2
000036 1 2
000036 1 3
000040 1 3
000042 1 3
000045 1 3
000046 1 2
000046 1 2
000046 1 3
000050 1 3
000052 1 3
000055 1 3
000056 1 2
000056 1 2
000056 1 2
000056 1 2
000056 1 3
000056 1 3
000063 1 3
000063 1 3
000066 1 3
000066 1 3
000072 1 3
000074 1 3

! this procedure analyzes and takes appropriate action for system messages.

PROC analyzeAsystemAmessage
INT .recvAbuf,

recvAbuf, recvAcnt, pid) ;

recvAcnt,
.pid;

BEGIN

0
1

INT replyAerror := 0,
status;

CASE $ABS (recvAbuf) OF
BEGIN

2 ! BEGIN ! cpu down.

3

4

! delete any references in the requestor process
! directory to the cpu that failed.
CALL delallpids (recvAbuf(l]) ;
IF recvAbuf[l] = backupAcpu THEN backupAup := O;

END;

BEGIN ! cpu up.
IF recvAbuf(l]

BEGIN
backupAcpu THEN

! clear stop count.
stopAcount := O;

backup cpu came up.

CALL createAbackup (backupAcpu) ;
END;

END;

5 ! BEGIN ! backup stopped.
back~pAup := O; A
stop count := stop count + l;
CALL createAbackup (backupAcpu) ;

END;

6 ! BEGIN ! backup abended.

7-29!

30 !

back~pAup := O; A
stop count := stop count + l;
CALL createAbackup (backupAcpu) ;

END;

.
ff I I I I I I I I I I I I I I I I I 11 I I

BEGIN ! OPEN system message.
! check for no-wait i/o depth > 1.
IF recvAbuf[1 l .<12:15> > 1 THEN

replyAerror := 28 ! return illegal no-wait depth error.
ELSE
! try to add opener to directory.
IF NOT addpid (pid) THEN

replyAerror := 12; ! return file in use error.
END;

2/23/82 13:

z
0
~
(/)
rt

tzjQ
X'"d
Sll s "U
'"d~
1--10
CD G"l

;ri
lO H
HZ
Sll (j) s

tzj
(j :><:

&~
I-'· "U
~ t'1

lO tzj

j-1 ti:l z
t\,.) >< 0 .

PAGE 14 $BOOKS1.M096B01.SERVESRC [l] SERVE: analyze"system"message Procedure 2/23/82 13: SlJ ::s
t\,.) s en
I "O rt"
j-1

497. 000075 1 2
1-80

ii:. (1) "O
498. 000075 1 2 ! 31 ! BEGIN ! CLOSE system message.
499. 000075 1 3 ! delete closer from requestor process directory. "ti "ti
500. 000075 1 3 CALL delpid (pid) i t1 ~
501. 000100 1 3 END; 00
502. 000101 1 2 l.Q G1
503. 000101 1 2 OTHERWISE reply"error := 2; ! return invalid operation error. ~~ 504. 000103 1 2 END; ! system message case.
505. 000154 1 1 9~
506. 000154 1 1 IF (status := CHECKPOINT I stack"base, ! *** CHECKPOINT *** ! ()H 507. 000154 1 1 pids [5) , max"reqstrs * 5 + 5, oz
5013. 000154 1 1 sync"count [1] , max"reqstrs, O.,G')
509. 000154 1 1 stop"count, 1,
510. 000154 1 1 reply" error [old"requestor 1, 1, ::s ti:l
511. 000154 1 1 ,db"fnum)) THEN l.Q :><
512. 000204 1 1 CALL analyze"checkpoint''status (status) ;):ii
513. 000207 1 1 l:
514. 000207 1 1 ! reply to system message. "ti
515. 000207 1 1 CALL REPLY (,, ,, reply"error); t1
516. 000214 1 1 END; ! analyze"system"message. ti:l

PIO Variable INT L-003 Indirect
RECV"'BUF Variable INT L-005 Indirect
REcv·'cNT Variable INT L-004 Direct
REPLY"ERROR Variable INT L+OOl Direct
STATUS Variable INT L+002 Direct

00000 100000 024700 002001 140705 013001 000214 0104~5 103001 00010 143705 024700 027000 103001 143705 040000 000215 015
00020 100000 044006 010531 103001 143705 040000 000215 015005 00030 100000 044005 040000 024700 027000 010516 100000 044
00040 100001 074005 040000 024700 027000 010506 1000(0 044006 00050 100001 074005 040000 024700 027000 010476 103001 143
00060 006017 001001 016003 100034 044401 010406 170703 024700 00070 027000 015402 100014 044401 010457 170703 024700 027
00100 010453 100002 044401 010450 100037 000205 0110C2 000100 00110 010401 100040 000030 000041 000040 177672 177705 000
00120 177716 177725 000032 000031 000030 000027 0000~6 000025 00130 000024 000023 000022 000021 000020 000017 000016 000
00140 000014 000013 000012 000011 000010 000007 OOOOC6 000005 00150 000004 177705 177723 177726 170007 103005 173035 100
00160 102001 172032 100020 070005 024755 100001 031031 071401 00170 100001 100000 040011 024744 002020 005007 004375 100
00200 024711 027000 034402 014403 040402 024700 0270CO 002004 00210 040401 100001 024711 027000 125006

j-1
N .
N
I
j-1

U1

PAGE 15

518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.

ERROR
REC
RESULT
RESULTALEN

$BOOKS1.M096B01.SERVESRC [l) SERVE: queryArequest Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000003 1 1
000013 1 1
000024 1 1
000033 1 1
000035 1 1

this procedure searces the data base for the record associated with
a key value.

return values.
0 =record found, record in "result".

>0 = file management error.

INT PROC queryArequest (rec, result, resultAlen) ;

INT .rec,

BEGIN

. result,

.resultAlen;

INT error;

resultAlen := O;

key value.
record of key •
length of record of key.

CALL KEYPOSITION (dbAfnum, rec,,,2) ;
CALL READUPDATE (dbAfnum, result, dbArecAlen, resultAlen) ;
CALL FILEINFO (dbAfnum, error) ;
RETURN error;

END; ! queryArequest.

Variable
Variable
Variable
Variable

INT
INT
INT
INT

L+OOl
L-005
L-004
L-003

Direct
Indirect
Indirect
Indirect

2/23/82 13:

00000 002001 100000 144703 040011 170705 030001 000002 100002
00020 024755 100036 024700 027000 040011 070401 024711 002013

00010 100031 024755 027000 040011 170704 005001 170703 000
00030 005030 024700 027000 040401 125006

z
0
:J
(/)
rt

t:x.1 0
~ 'U
PJ a l'tJ
'U !;U
j-1 0
Cl) (j)

8i
l.Q H
t'1 z
OJ (j)
a

t:x.1
() :><:

&~
I-'· l'tJ
:J t-t

l.Q t:x.1

.......
N .
N
I

.......

°'

PAGE 16

541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.

E:RROR
REC

$BOOKS1 .M096B01. SERVES RC [l) SERVE: insert '·r·~quest Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000011 1 1
000020 1 1
000022 1 1

this procedure adds a record to the data base.

return values.

0 = record "rec" added.
>0 = file management error.

INT PROC insert"request (rec) :
INT .rec: ! record to be added.

BEGIN

INT error:

! insert the record.
CALL WRITE (db"fnum, rec, db"rec"len) :
CALL FILEINFO (db"fnum, error) :
RETURN error:

END: ! insert"request.

Variable
Variable

INT
INT

L+OOl
L-003

Direct
Indirect

2/23/82 13:

00000 002001 040011 170703 005001 024722 002003 1000311 024700
00020 040401 125004

00010 027000 040011 070401 024711 002013 005030 024700 027

t:i:IZ
>< 0
n> ::J s en
tO r1"
....... 0
Cl) tO

"d "d
""":::0
00
lO G)

~~
s~
()H
oz
0.. G)
I-'·
::J t:i:I
lO :><

~
"d
t-t
t:i:I

......
N .
N
I

......
-.....]

PAGE 17

561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.

ERROR
REC

$BOOKS1.M096B01.SERVESRC [l] SERVE: deleteArequest Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000011 1 1
000021 1 1
000030 1 1
000032 1 1

! this procedure deletes a record from the data base file.
!
! return values.
!
! 0 = record "rec" deleted.
! >O = file management error.

INT PROC deleteArequest (rec) ;
INT .rec; ! key of record to be deleted.

BEGIN
INT error;

! delete the record.
CALL KEYPOSITION (dbAfnum, rec) ;
CALL WRITEUPDATE (dbAfnum, rec, 0) ;
CALL FILEINFO (dbAfnum, error) ;
RETURN error;

END; ! deleteArequest.

Variable
Variable

INT
INT

L+OOl
L-003

Direct
Indirect

2/23/82 13:

00000 002001 040011 170703 030001 024711 002003 100030 024700
00020 027000 040011 070401 024711 002013 005030 024700 027000

00010 027000 040011 170703 100000 024722 002003 100034 024
00030 040401 125004

z
0
::l
CJ)
("I"

trJ 0
x 'U

°' a l"d
'U :::0 a
<D G'l

l"d s;
8~
I.OH
l"1 z
°' G'l a

trJ
() :><
0):ii
0.. ~
I-'· l"d
::l t"1

l.Q trJ

~
I\.) .
I\.)

I
~
co

PAGE 18

581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612
613.

ERROR
REC
RESUL'r

$BOOKS1.M096B01.SERYESRC (l] SERVE: next"rec~rd"request Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000004 1 1
000010 1 1
000010 1 1
000020 1 1
000031 1 1
000040 1 1

000042 1 1

this procedure returns the nex:t record in the data base file.

calling values.

rec = O, return first record in file.
rec = record, return next £ecord in file.

return values.

0 =first/next record returned in "result".
>O =file management error.

INT PROC next"record"request (i:ec, result, result"len) ;
INT .rec, ! key of record for positioning.

.result, ! next record.

.result"len; ! length of next record.

BEGIN

INT error;

STRING
.srec :=@rec '<<' l;

! increment key value past current value.
srec [db"rec"key"off + db"i:ec"key"len - 1] : =

srec [db"rec"key"off + db"rec"key"len - 1] '+' 1;

CALL KEYPOSITION (db"fnum, rec) ;
CALL READ (db"fnum, result, db"rec"len, result"len) ;
CALL FILEINFO (db"fnum, error) ;
RETURN er~or; "

END; ! next record request.

Variable INT L+OOl
Variable INT L-005
Variable INT L-004

2/23/82 13:

RESUL'r"LEN Variable INT L-003

Direct
Indirect
Indirect
Indirect
Indirect SREC

00000
00020
00040

Variable STRINC: L+002

002001 170705 030001 024700 103027 153402 003001 157402
040011 170704 005001 170703 000002 024755 100036 024700
040401 125006

00010 040011 170705 030001 024711 002003 100030 024700 027
00030 027000 040011 070401 024711 002013 005030 024700 027

1:1.1 z
>< 0
SlJ ::s s (/)

"'d rt
~o
(1) "'d

t·c:Po
l"1 :::ti

~8

~i
() 1-1
oz
OJ G1
I-'·
::s 1:1.1 "° :>< > :s:

"ti
t-1
1:1.1

1--'
N .
N
I

1--'
\0

PAGE 19

615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670 .
671.

$BOOKSl.M096B01.SERVESRC [l] SERVE: processAuserArequest Procedure

! this procedure is used to process a request.

PROC processAuserArequest { recvAbuf, recvAcnt, pid);
INT .recvAbuf,

recvAcnt,
.pid; ! process id of requester.

BEGIN
INT status,

requester,
replyAlen := O;

directory entry no. of current requester.
reply length for current request.

get requester number of current requester.
IF NOT { requester := lookuppid { pid)) THEN I invalid requester.

BEGIN
CALL REPLY (,,,, 60); ! return "device has been downed" error.
RETURN;

END;

! check for duplicate request.
IF recvAbuf [sync] <> syncAcount[requester] THEN ! not duplicate, nonretryable.

BEGIN

2/23/82 13:

000000 0 0
000000 0 0
000000 0 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 0
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000000 1 1
000010 1 1
000010 1 2
000015 1 2
000016 1 2
000016 1 1
000016 1 1
000016 1 1
000023 1 1
000023 1 2
000023 1 2
000027 1 2
000027 1 3
000027 1 3
000031 1 3
000031 1 3
000031 1 3
000031 1 3
000031 1 3
000031 1 3
000060 1 3
000063 1 3
000063 1 3
000063 1 3
000065 1 3
000065 1 2
000065 1 2
000065 1 2
000071 1 2
000071 1 2
000071 1 2
000074 1 2
000074 1 3
000074 1 3
000074 1 3
000103 1 3
000103 1 3
000103 1 3
000112 1 3
000112 1 3
000112 1 3
000112 1 3
000123 1 3
000123 1 3

IF recvAbuf [requestAtype] <= 1 THEN ! non~etryable, so checkpoint current state to backup.
BEGIN

! save sync count of current requester.
syncAcount [requester] : = recvAbuf;

IF (status := CHECKPOINT (stackAbase, ! *** CHECKPOINT ***
,dbAfnum,
syncAcount [requester] , 1,
replyAerror [oldArequestor] , 1,
recvAbuf, (recvAcnt + 1) I 2)) THEN

CALL analyzeAcheckpointAstatus (status) ;

! save requester number of current requester for a subsequent checkpoint.
oldArequestor := requester;

END; ! of checkpoint.

! save requestAtype.
replyAbuf ':=' recvAbuf FOR 2;

! process the data base request.
CASE recvAbuf [requestAtype] OF

BEGIN

! "insert" request.
replyAerror [requester ·= insertArequest recvAbuf record) ;

! "delete" request.
replyAerror [requester ·= deleteArequest (recvAbuf [record]);

! "query" request.
replyAerror [requester] :=

queryArequest (recvAbuf [record] , replyAbuf [record] , replyAlen) ;

"next entry" request.

z
0
~
(/)
rt

l:rj 0
x 'U
nt s t'd
'U ~
1--' 0
(I) Ci)

8i
\.OH
'""z nt Ci) s

l:rj
0 :><:
0 !))!
0.. ::s:
~- ltj
~ t-t "° l:rj

1--'
t-...> .
t-...>
I

t-...>
0

PAGE 20

672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.

PIO

$BOOKS1.M096B01. SERVESRC [l] SERVE: process"user"request Procedure 2/23/82

000123 1 3
000123 1 3
000134 1 3
000134 1 3
000137 1 3
000154 1 2
000154 1 1
000154 1 1
000154 1 1
000165 1 1
000165 1 1

END;

reply"error [requentor l : =
next"record"request (recv"buf

OTHERWISE reply"error [requestor
END;

return the reply to the requester.

record] , reply"buf [record] , reply"len) ;

::= 29; ! bad param.

CALL REPLY (reply"buf, repJy"len + 4, , , reply"error [requester]) ;

END; ! process"user"request.

Indirect

13:

RECV"BUF
Variable
Variable
Variable
Variable
Variable
Variable

INT
INT
INT
INT
INT
INT

L-003
L-005
L-004
L+003
L+002
L+OOl

Indirect
RECV"CNT Direct
REPLY"LEN Direct
REQUESTOR Direct
STATUS Direct

00000 002002 100000 024700 170703 024700 027000 03440 015406 00010 002004 100074 100001 024711 027000 125006 140705 033
00020 143032 000215 012131 102001 142705 001001 01103 140705 00030 147032 170007 100000 040011 173032 100001 024744 031
00040 171033 100001 170705 040704 104001 100002 00021 024733 00050 002022 005005 004374 100000 024711 027000 034401 014
00060 040401 024700 027000 040402 044031 170034 17070 100002 00070 026007 103001 143705 010444 103002 173705 024700 027
00100 033402 147033 010451 103002 173705 024700 02700 033402 00110 147033 010442 103002 173705 173034 070403 024722 027
00120 033402 147033 010431 103002 173705 173034 07040 024722 00130 027000 033402 147033 010420 033402 100035 147033 010
00140 100003 000205 011002 000100 010401 100004 00003 177725 00150 177733 177741 177751 177761 170034 040403 104004 000
00160 033402 143033 100031 024755 027000 125006

tx:IZ
>< 0
llJ ::s s (/)
'U rt"
1--' 0
<D 'U

'"O '"O
l"'1 :::0 oo

lO G)

ii
OH oz
~G)
::s tx:I
lO :><:

~
'"O
1:-1
tx:I

1--1
N .
N
I
N
1--1

PAGE 21

684.
685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
705.
706.
707.
708.
709.
710.

PID
STATUS

$BOOKS1.M096B01.SERVESRC [l] SERVE: execute Procedure

000000 0 0
000000 0 0
000000 0 0
000000 0 0
000000 l 0
000000 l l
000000 l l
000000 l l
000000 l l
000000 l l
000000 l l
000003 l l
000003 l 2
000003 1 2
000003 1 2
000014 l 2
000024 1 2
000025 l 2
000025 l 3
000032 l 3
000037 1 3
000041 1 3
000046 1 3
000047 l 3
000054 l 3
000054 l 2
000055 1 l

! this is the main execution loop of the server process. The server waits
! for incoming requests or system messages.

PROC execute;
BEGIN

INT .pid [0: 3],
system"message,
status;

requestor <process id>.

WHILE l DO
BEGIN

loop on requests.

! read $RECEIVE file.
CALL READUPDATE (recv"fnum, recv"buf, message"len) ;
CALL AWAITIO (recv"fnum,, recv"cnt) ;
IF >= THEN ! read a message.

BEGIN
system"message := >; ! save system message condition.
CALL LASTRECEIVE (pid) ;
IF system"message THEN

CALL analyze"system"message (recv"buf, recv"cnt, pid
ELSE

CALL process"user"request (recv"buf, recv"cnt, pid) ;
END; ! read a message.

END; ! loop on requests.
END; ! execute.

Var able INT L+OOl
Var able INT L+003

2/23/82 13:

SYSTEM"MESSAGE Var able INT L+002

Indirect
Direct
Direct

00000
00020
00040

070404 024700 002006 040010 170026 005001 004004 024722
002003 100024 024700 027000 014027 016002 100777 010401
014406 170026 040027 170401 024722 027000 010405 170026

00010 002003 100034 024700 027000 070010 100000 070027 024
00030 100000 044402 170401 100000 100002 024722 027000 040
00050 040027 170401 024722 027000 010726 125003

z
0
:::s
CJ)
rt

t:Ij 0
~"O
PJ s ltj
"O~
1--1 0
<D G)

8i
l..Q H
r(z
SlJ G) s

t:Ij
() :><:
o~

°'~ I-'· ltj
:::s t-t

l..O t:Ij

I-' t,rjZ
N >< 0 .

PAGE 22 $BOOKS1.M096B01.SERVESRC [l] SERVE: MAIN Procedure 2/23/82 13:
Sl1 ::s

N 3 en
I "O rt

N
this is the "main".

1-'0
N 712. 000000 0 0 ! This is where the primary/backup determination is ([) "O

713. 000000 0 0 ! made.
714. 000000 0 0 tU tU
715. 000000 0 0 PROC serve MAIN; l"1 ~
716. 000000 1 0 00
717. 000000 1 0 BEGIN lO G)
718. 000000 1 1 ~~ 719. 000000 1 1 INT base = 'L' + 1,
720. 000000 1 1 .ppdentry[0:8]; 3~
721. 000000 1 1 OH
722. 000000 1 1 ! save stack"base for checkpointing. oz
723. 000000 1 1 @stack"base := @base; Q,G)
724. 000005 1 1
725. 000005 1 1 CALL ARMTRAP (0 I -1) ; ::s t,rj
726. 000011 1 1 lO :><:
727. 000011 1 1 ! get process name. ~ 728. 000011 1 1 CALL GETCRTP ID (MYPID, ppdentry) ;
729. 000015 1 1 CALL LOOKUPPROCESSNAME (ppclentry) ; tU
730. 000020 1 1 IF < THEN CALL ABEND; ! not named. t"i
731. 000024 1 1 t,rj

732. 000024 1 1 ! calculate backup cpu numbE·r. cpu's are paired 0-1, 2-3, 4-5, . ..
733. 000024 1 1 backup"cpu := MYPID.<0:7>;
734. 000027 1 1 backup"cpu.<15> :=NOT backup"cpu.<15>;
735. 000040 1 1
736. 000040 1 1 ! monitor all cpus.
737. 000040 1 1 CALL MONITORCPUS (-1) ;
738. 000043 1 1
739. 000043 1 1 IF NOT ppdentry(4] THEN ! int the primary.
740. 000046 1 1 BEGIN
741. 000046 1 2 CALL read"start"up"message;
742. 000047 1 2 CALL open"primarys"files;
743. 000050 l 2 CALL create"backup (backup"cpu) ;
744. 000053 1 2 CALL execute;
745. 000054 1 2 END
746. 000054 1 1 ELSE ! int the backup.
747. 000055 1 1 BEGIN
748. 000055 1 2 ! wait for failure
749. 000055 1 2 CALL CHECKMONITOR;
750. 000057 1 2 CALL ABEND;
751. 000062 1 2 END;
752. 000062 1 1 END; ! serve.

BASE Variable INT L+OOl Direct
PPDENTRY Variable INT L+OOl Indirect

00000 070402 024700 002011 070401 044007 100000 10077i 024711 00010 027000 027000 170401 024711 027000 170401 024700 027
00020 013003 000002 024711 027000 027000 030110 044000 040000 00030 006001 015402 100777 010401 100000 100001 070000 000
00040 100777 024700 027000 103004 143401 015407 027000 027000 00050 040000 024700 027000 027000 010405 027000 000107 000
00060 024711 027000 000002 024711 127000

PAGE 23 $BOOKS1.M096B01.SERVESRC [l] GLOBAL MAP 2/23/82 13:

ABEND Proc
ADDPID Proc INT
ANALYZE"CHECKPOINT"STATUS Proc
ANALYZE"SYSTEM"MESSAGE Proc
ARM TRAP Proc
AWAIT IO Proc
BACKUP"CPU Variable INT G+OOO Direct
BACKUP"PID Variable INT G+OOl Direct
BACKUP"UP Variable INT G+006 Direct
BUF Variable INT G+030 Indirect
CHECKMONITOR Proc INT
CHECK OPEN Proc
CHECKPOINT Proc INT
CREATE"BACKUP Proc
DB"FLAGS Literal %000040
DB"FNAME Variable INT G+012 Direct
DB"FNUM Variable INT G+Oll Direct
DB"REC"KEY"LEN Literal %000030
DB"REC"KEY"OFF Literal %000000
DB"REC"LEN Literal %000400
DB"SYNC"DEPTH Literal %000001
DEBUG Proc
DELALLPIDS Proc
DELETE"REQUEST Proc INT
DELP ID Proc
EXECUTE Proc
FILE INFO Proc
GETCRTPID Proc
INSERT" REQUEST Proc INT
KEYPOSITION Proc
LASTRECEIVE Proc
LOOK UPP ID Proc INT
LOOKUPPROCESSNAME Proc
MAX"REQSTRS Literal %000020 z
MESSAGE"LEN Literal %000404 0
MESSAGE" SIZE Literal %000202 ::l
MOM Proc Ul
MONITORCPUS Proc rt
MYPID Proc INT tzjQ

NEWPROCESS Proc >< '"O
NEXT"RECORD"REQUEST Proc INT OJ
NO"WAIT Literal %000001 s "'O
OLD"REQUESTOR Variable INT G+031 Direct '"O~

OPEN Proc 1-'0
OPEN"BACKUPS"FILES Proc

(I) G)

OPEN"MSGS Literal %040000 "'O ~
OPEN"PRIMARYS"FILES Proc

8~ PIDS Variable INT G+035 Indirect
PROCESS"USER"REQUEST Proc lO H
PROGRAMFILENAME Proc HZ
PROTECTED Literal %000040 OJ G)
QUERY"REQUEST Proc INT s

I-' READ Proc tzj
N READ UPDATE Proc () :><: . READ"START"UP"MESSAGE Proc &~ N RECORD Literal %000002
I "'O

N ::l t"1
w lO tzj

I-' trj z
N >< 0 . S.l1 ::l
N PAGE 24 $BOOKS1.M096B01.SERVESRC [l] GLOBJl.L MAP 2/23/82 13: s Ul
I "O rt'
N 1-'0
~ RECV"BUF Variable INT G+026 Indirect (1) "O

RECV"CNT Variable INT G+027 Direct
RECV"FLAGS Literal %040001 '"d '"d
RECV"FNUM Variable INT G+OlO Direct l"1 ~
RECV"SYNC"DEPTH Literal %000001 00

\.Q G'l REPLY Proc

~~ REPLY"BUF Variable INT G+034 Indirect
REPLY"ERROR Variable INT G+033 Indirect

s~ REQUEST"TYPE Literal %000001
SERVE Proc OH
STACK"BASE Variable INT G+007 Indirect oz
STOP Proc 0.. G'l
STOP"COUNT Variable INT G+OOS Direct
SYNC Literal %000000 ::l trj
SYNC''COUNT Variable INT G+032 Indirect \.Q ::<
WRITE Proc ~ WRITE UPDATE Proc

'"d
t:-t
trj

j-1
N .
N
I

N
U1

PAGE 25 $BOOKS1.M096B01.SERVESRC [l]

PEP BASE LIMIT ENTRY ATTRIBUTES

002 000512 000600 000516
003 000370 000453 000370
004 000733 001147 000733
005 000311 000367 000311
006 000662 000732 000662
007 001227 001260 001227
010 000601 000661 000601
011 001511 001566 001511
012 001205 001226 001205
013 000454 000511 000454
014 001261 001322 001261
015 000223 000310 000223
016 000205 000222 000205
017 001323 001510 001323
020 001150 001204 001150
021 000023 000204 000023
022 001567 001653 001567 M

LOAD MAP

NAME

ADDPID
ANALYZEACHECKPOINTASTATUS
ANALYZEASYSTEMAMESSAGE
CREATE A BACKUP
DELALLPIDS
DELETE A REQUEST
DELP ID
EXECUTE
INSERTAREQUEST
LOOK UPP ID
NEXTARECORDAREQUEST
OPENABACKUPSAFILES
OPENAPRIMARYSAFILES
PROCESSAUSERAREQUEST
QUERYAREQUEST
READASTARTAUPAMESSAGE
SERVE

2/23/82 13:

z
0
::s
(J)
rt

l:J:j 0
x 'U
PJ s trj
'U :::0
j-1 0
<D G)

8i
lQ H

I""'(z
PJ G)
s

l:J:j
() :><

&~
I-'· trj
::s t-t
lQ l:J:j

..... trj z
N x 0 . OJ ::J
N PAGE 26 $BOOKS1.M096B01.SERVESRC [l] LOAD MAP 2/23/82 13: a (/)
I "O rt'

N 0

°' PEP BASE LIMIT ENTRY ATTRIBUTES NAME Cl) "O

021 000023 000204 000023 REAOASTARTAUPAMESSAGE I'd I'd

"""'~ 016 000205 000222 000205 OPENAPRIMARYSAFILES 00 015 000223 000310 000223 OPENABACKUPS"FILES lO G)
005 000311 000367 000311 CREATE ft BACKUP

~~ 003 000370 000453 000370 ANALYZEACHECKPOINTASTATUS
013 000454 000511 000454 LOOKUPPID =~ 002 000512 000600 000516 ADDPID
010 000601 000661 000601 DELP ID ()H
006 000662 000732 000662 DELALLPIDS oz
004 000733 00114 7 000733 ANALYZEASYS'I'EM"MESSAGE 0.. G)
020 001150 001204 001150 QUERY ft REQUEST I-'·

012 001205 001226 001205 INSERT" REQUEST ::J trj
lO :><: 007 001227 001260 001227 DELETE"REQUEST))I

014 001261 001322 001261 NEXT"RECORDAREQUEST 3: 017 001323 001510 001323 PROCESS"USERAREQUEST I'd
011 001511 001566 001511 EXECUTE t-t
022 001567 001653 001567 M SERVE trj

I-'
r:v .
r:v
I

r:v
.....J

Object file name is $BOOKS1.M096B01.serveobj
This object file will run on either a TNS or a TNS/II
Number of errors = 0
Number of warnings = 0
Primary global storage=30
Secondary global storage=503
Code size=921
Data area size=2 pages
Code area size=l pages
Maximum symbol table space available = 24892, used = 1298
Maximum extended symbol table space available = O, used = 0
Number of source lines=2142
Elapsed time - 00:00:39

z
0
~
en
rt

l:rj 0
:>< '"d

°' s ttj
'"d~
1-'0
Cl> G1

8i
lQ H
l"1 z
°' G1 s

l:rj
() :><:

&~
...... ttj
~ t'i

lQ l:rj

APPENDIX A

PROCEDURE SYNTAX SUMMARY

The list on the following pages gives the calling syntax of the
GUARDIAN operating system procedures and related Tandem software
procedures callable by user programs. For each procedure, a reference
is given to the manual or manuals that explain how to use it.

Procedures available only on Nonstop systems are marked "(I only)".
Procedures available only on Nonstop II systems are marked
"(II only)".

CALL ABEND

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL ACTIVATEPROCESS 1 <process id> L

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

<status> := ALLOCATESEGMENT 1 <segment id>
, <segment size>
, <file name>
, <pin> L

(II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Programming Manual.

A-1

APPENDIX A: PROCEDURE SYNTAX SUMMARY

A-2

CALL ALTERPRIORITY i <process id> L <priority> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL ARMTRAP i <trap label> L <trap address> l

See "Traps" section of the GUARDIAN Operating System
Programming Manual.

CALL AWAITIO i <file number>
, <buffer address>
, <count transferred>
, <tag>
, <time limit> l

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual, the ENSCRIBE Programming
Manual, the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

! INT:function ! BLINKASCREEN i @<screen name>
L <buffer>
L <field name>
L <blink> l_

See "Entry Procedures" section of ENTRY Screen Formatter
Operating and Programming Manual.

CALL CANCEL i <file number> l_

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual, the ENSCRIBE Programming
Manual, the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL CANCELREQ i <file number> , <tag> l

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual, the ENSCRIBE Programming
Manual, or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL CANCELTIMEOUT i <tleaddress> l_

See "Process Control" section of the GUARDIAN Operating
System Programming Manual.

(II only}

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL CHANGELIST i <file number> ..!.. <function> L <parameter>)

See "File System Procedures" section of the ENVOY Byte-
Oriented Protocols Reference Manual or the ENVOYACP Bit-Oriented
Protocols Reference Manual.

<state> := CHECKABREAK i { <common fcb> } l
{ <file fcb> }

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL CHECKCLOSE i <file number>
, <tape disposition> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

<retval> := CHECKAFILE i { <common fcb> } L <operation> l
{ <file fcb> }

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

{ <status> := } CHECKMONITOR
{ CALL }

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

CALL CHECKOPEN i <file name>
..!.. <file number>
..!.. <flags>
..!.. <sync or receive depth>
..!.. <sequential block buffer>
..!.. <buff er length>
L <back error> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

A-3

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ <status>
{ CALL

:= l CHECKPOINT l <stack base>
, <buff er l>
, <count l>
, <buff er 2>
, <count 2>

, <buffer 13>
, <count 13> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

{ <status> := } CHECKPOINTMANY 1 <stack base>
{ CALL } , <descriptors> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

! INT:function ! CHECKASCREEN (@<screen name>
.!... SCREEN
.!... <buffer>
L <check procedure> l

See "Entry Procedures" section of ENTRY Screen Formatter
Operating and Programming Manual.

A-4

{ <status> := } CHECKSWITCH
t CALL I

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

CALL CLOSE l <file number>
, <tape disposition> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

{ CALL l CLOSEAFILE l { <common f cb> }
{ <error> := { <file fcb> }

, <tape disposition> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL CONTIME l <date and time>
.!.. <tO>
' <tl>
~ <t2> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL CONTROL (<file number> .!.. <operation>
.!.. <parameter>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL CONTROLBUF l <file number> , <operation>
.!.. <buffer>· , <count>
, <count transferred>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL CONVERTPROCESSNAME l <process name> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND users Manual.

CALL CREATE l <file name>
, <primary extent size>
, <file code>
, <secondary extent size>
, <file type>
, <record length>
, <data block length>
, <key-sequenced params>
, <alternate key params>
, <partition params> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

A-5

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL CREATEPROCESSNAME i <process name> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL CREATEREMOTENAME i <name> L <system number> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND Users Manual.

<accessor id> := CREATORACCESSID

See "Security System" section of the GUARDIAN Operating System
Programming Manual.

CALL DEALLOCATESEGMENT i <segment id> , <flags> l (II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL DEBUG

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL DEFINELIST i <file number> , <address list>
, <address size> , <num entries>

A-6

~<polling count>-L <polling type> l

See "File System Procedures" section of the ENVOY Byte-
Oriented Protocols Reference Manual or the ENVOYACP Bit-Oriented
Protocols Reference Manual.

<status> := DEFINEPOOL i <pool head> L <pool> L <pool size>)
(II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL DELAY i <ti.me period> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL DEVICEINFO (<file name>
, <device type>

L <physical record length> L

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual, the ENSCRIBE Programming
Manual, the ENVOY Byte-Oriented Protocols Reference Manual,
the ENVOYACP Bit-Oriented Protocols Reference Manual, or the
AXCESS Data Communications Programming Manual.

<status> := EDITREAD (<edit control block> , <buffer>
L <buffer length> L <sequence number> L

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

<status> := EDITREADINIT l <edit control block> L <file number>
L <buff er length> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL ENFORMFINISH l <ctlblock> L
See the ENFORM Reference Manual.

l <count> := } ENFORMRECEIVE (<ctlblock> L <buffer> L
CALL }

See the ENFORM Reference Manual.

CALL ENFORMSTART l <ctlblock>
L <compiled physical filename>
L <buff er length>
L <error number>
, <restart flag>
, <param list>
, <assign list>
, <process name>
, <cpu>
, <priority>
, <timeout> l_

See the ENFORM Reference Manual.

A-7

APPENDIX A: PROCEDURE SYNTAX SUMMARY

A-8

INT:function EXPANDASCREEN i @<screen name> , SCREEN
, <buff er> -
~ <rewrite form> l

See ''Entry Proceduresn section of ENTRY Screen Formatter
Operating and Programming Manual.

<status> := FILEERROR i <file number> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL FILEINFO i <file number>
, <error>
, <file name>
, <logical device number>
, <device type>
, <extent size>
, <end-of-file location>
, <next-record pointer>
, <last mod time>
, <file code>
, <secondary extent size>
, <current-record pointer>
, <open flags> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL FILERECINFO i <file number>
, <current key specifier>
, <current key value>
, <current key length>
, <current primary key value>
, <current primary key length>
, <partition in error>
, <specifier of key in error>
, <file type>
, <logical record length>
, <block length>
, <key-sequenced params>
, <alternate key params>
, <partition params> l

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL FIXSTRING (<template> , <template length>
L <data> , <data length>
, <maximum data length>
, <modification status> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

! INT:function ! FL~SCREEN J <field name> l

See ENTRY Screen Formatter Operating and Programming Manual.

{ <length> := l FNAMECOLLAPSE J <internal name>
{ CALL L <external name> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual, or
see the EXPAND users Manual.

{ <status> := l FNAMECOMPARE J <file name l> L
{ CALL

<file name 2>)

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual, or
see the EXPAND Users Manual.

{ <length> := l FNAMEEXPAND J <external file name>
{ CALL , <internal file name>

~ <default names> L

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual, or
see the EXPAND users Manual.

{ <status>
{ CALL

:= l FORMATCONVERT J <iformat>
L <iformatlen>
.!... <eformat>
.!... <eformatlen>
L <scales>
.!... <scalecount>
L <conversion> l

See "Formatter" section of the GUARDIAN Operating System
Programming Manual.

A-9

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ <error>
{ CALL

:= I FORMATDATA l <buffer>
.!... <bufferlen>
.!... <bufferoccurs>
.!... <length>
L <iformat>
.!... <variablelist>
.!... <variablelistlength>
.!... <flags> l_

See "Formatter" section of the GUARDIAN Operating System
Programming Manual.

CALL GETCRTPID l <cpu, pin>
~ <process id>)

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

<status> := GETDEVNAME l <logical device no>
, <device name>
~ <system number> l_

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

<address> := GETPOOL (<pool head> , <block size> (II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL GETPPDENTRY l <entry number> , <system number>
.!... <PPD entry> I

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND users Manual.

CALL GETREMOTECRTPID l <pid> .!... <process id> .!... <system number> l_

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND users Manual.

A-10

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL GETSYNCINFO l <file number>
, <sync block>
~ <sync block size> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

{ <ldev> := } GETSYSTEMNAME l <system number> L <system name> l
{ CALL }

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, or see the EXPAND users Manual.
Manual.

CALL GIVE~BREAK l { <common fcb> } l
{ <file fcb> }

See "Sequential I/O Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL HALTPOLL l <file number> l

See "File System Procedures" section of the ENVOY Byte- Oriented
Protocols Reference Manual or the ENVOYACP Bit-Oriented Protocols
Reference Manual.

CALL HEAPSORT l <array> , <num elements> L <size of element>
L <compare proc> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

{ <status>
{ CALL

:= 1 INITIALIZER J <rucb>
, <passthru>
, <startupproc>
, <paramsproc>
, <assignproc>
, <flags>

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

A-11

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL KEYPOSITION J <file number>
.!. <key value>
, <key specifier>
, <length word>
, <positioning mode> l

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

<last address> := LASTADDR

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL LASTRECEIVE J <process id>
, <message tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual.

{ <ldev> := } LOCATESYSTEM J <system number> , <system name> l
{ CALL }

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, or see the EXPAND users Manual.

! <state> := l LOCKDATA J <address>
CALL .!. <count>

.L <sys map> l

See "Advanced Memory Management" section of the GUARDIAN
Operating System Programming Manual.

CALL LOCKFILE i <file number>
, <tag> l

(I only)

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

A-12

APPENDIX A: PROCEDURE SYNTAX SUMMARY

<status> := LOCKMEMORY l <address> (II only}
..!.. <byte count>
..!.. <timeoutvalue>
, <parameterl>
, <parameter2> l

See "Advanced Memory Management" section of the GUARDIAN
Operating System Programming Manual.

CALL LOCKREC l <file number>
, <tag> l

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

CALL LOOKUPPROCESSNAME l <ppd entry> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL MOM l <process id> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL MONITORCPUS l <cpu mask> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

CALL MONITORNET l <enable> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, or see the EXPAND Users Manual.

CALL MONITORNEW l <enable> l (II only}

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual.

A-13

APPENDIX A: PROCEDURE SYNTAX SUMMARY

<my cpu,pin> := MYPID

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

<system number> := MYSYSTEMNUMBER

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND users Manual.

CALL MYTERM l <file name> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND Users Manual.

CALL NEWPROCESS (<filenames>
, <priority>
, <memory pages>
, <processor>
, <process id>
, <error>
, <name>

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL NEWPROCESSNOWAIT (<filenames>
, <priority>
, <memory pages>
, <processor>
, <process id>
, <error>
, <name>

(II only)

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

<error> := NEXTFILENAME l <file name> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

A-14

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ CALL } NOAERROR i <state> L <file fcb>
{ <no retry> := } L <good error list> L <retryable> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

{ <next address>
{ CALL

:= } NUMIN i <asc11 number>
} L <signed result>

L <base>
L <status> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL NUMOUT i <ascii result>
L <unsigned integer>
L <base>
L <width> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL OPEN (<file name> ----
L <file number>
, <flags>
, <sync or receive depth>

<primary file number> , <primary process id>
, <sequential block buff er> , <buffer length> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

{ CALL j OPENAFILE i <common fcb> , <file fcb>
{ <error> := , <block buffer>

, <block buff er length>
, <flags>
, <flags mask>
, <max record length>
, <prompt char>
, <error file fcb> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

A-15

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL POSITION l <file number>
L <record specifier> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

INT:function POSITIONASCREEN 1 @<screen name>
L SCREEN
L <buffer>
L <field name> l

See "Entry Procedures" section of ENTRY Screen Formatter
Operating and Programming Manual.

<error code> := PRINTCOMPLETE { <file number to Supervisor>
- L <print control buffer> l

See "Print Processes" section of the Spooler System Management
Guide.

<error code> := PRINTINFO l <job buffer> , <copies remaining>
, <current page>, <current line>
, <lines printed> l

See "Print Processes" section of the Spooler System Management
Guide.

<error code> := PRINTINIT l <file number to Supervisor>
L <print control buffer> l

See "Print Processes" section of the Spooler System Management
Guide.

<error code> := PRINTREAD l <job buffer>
, <data line> , <read count>
~ <count read>-, <page number> l

See "Print Processes" section of the Spooler System Management
Guide.

A-16

APPENDIX A: PROCEDURE SYNTAX SUMMARY

<error code> := PRINTREADCOMMAND i <print control buffer>
, <control number> , <device>
, <dev flags> , <dev param>
, <dev width> , <skip num>
, <data file> , <job number>
, <location> , <form name>
, <report name> , <pagesize> l

See "Print Processes" section of the Spooler System Management
Guide.

<error code> := PRINTSTART i <job buffer>
, <print control buffer>
~ <data file number> l

See "Print Processes" section of the Spooler System Management
Guide.

<error code> := PRINTSTATUS i <file number to Supervisor>
L <print control buffer>
L <message type> L <device>
, <error> , <num copies>
, <page> , <line>
, <lines printed> l

See "Print Processes" section of the Spooler System Management
Guide.

<last priority> := PRIORITY (<priority> }

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

<accessor id> := PROCESSACCESSID

See "Security System" section of the GUARDIAN Operating System
Programming Manual.

A-17

APPENDIX A:

{ <error>
{ CALL

PROCEDURE SYNTAX SUMMARY

:= } PROCESSINFO l <cpu,pin>
} , <process id>

<creator accessor id>
, <process accessor id>
, <priority>
, <program file name>
, <home terminal>
, <system number>
, <search mode> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND Users Manual.

<processor status> := PROCESSORSTATUS

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual, or see the EXPAND Users Manual.

CALL PROGRAMFILENAME l <program file> L
See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL PURGE l <file name> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL PUTPOOL i <pool head> ~ <address> L (II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL READ l <file number>
L <buffer>
L <read count>
, <count read>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

A-18

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ CALL
{ <error>

} READAFILE l <file fcb> L <buffer> L
:= } , <prompt count>

, <max read count>
, <no wait> l_

<count read>

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL READLOCK (<file number>
- <buffer> L ___ _

L <read count>
, <count read>
, <tag> l_

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

CALL READUPDATE l <file number>
L <buffer>
L <read count>
, <count read>
, <tag> l_

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL READUPDATELOCK l <file number>
L <buffer>
L <read count>
, <count read>
, <tag> l_

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

CALL RECEIVEINFO l <process id>
, <message tag>
, <sync id>
, <file number>
, <read count> l_

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual.

A-19

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ <error> := j REFRESH (<volume name>
{ CALL

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

<status> := REMOTEPROCESSORSTATUS i <system number> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, or see the EXPAND users Manual.

CALL RENAME i <file number>
..!... <new name> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL REPLY (<buffer>
, <write count>
, <count written>
, <message tag>
, <error return>

See "File System Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL REPOSITION i <file number>
/~~~~~~~-~~~ hi~~v' \ L '.t''""Y..I.. ~..1.. £.L..1..L.L';J,..L'-J'-'''' 1-

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL RESERVELCBS i <no. receive lcbs>
..!... <no. send lcbs> l

See "File System Advanced Features" section of the GUARDIAN
Operating System Programming Manual.

CALL RESETSYNC i <file number> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

A-20

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL SAVEPOSITION i <file number>
, <positioning block>
~ <positioning block size> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

{ CALL } SET~FILE 1 { <common fcb> } ~ <operation>
{ <error> := } { <file fcb> } , <new value>

<old value> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL SETLOOPTIMER i <new time limit> , <old time limit>)

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL SETMODE i <file number> , <function>
, <parameter l> , <parameter 2>
, <last params> l

See the "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL SETMODENOWAIT 1 <file number> , <function>
, <parameter l> , <parameter 2>
, <last params>
, <tag> l

See the "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

CALL SETMYTERM i <terminal name> l

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

A-21

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL SETPARAM i <file number>
.L <function>
, <param array>
, <count>
, <last param array>
, <last count> l

See "Fundamental Programming Concepts" section of the AXCESS
Data Communications Programming Manual, volume 1.

{ <last stop mode> := j SETSTOP i <stop mode> L
{ CALL

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL SETSYNCINFO i <file number> .L <sync block> l

See "Checkpointing Facility" section of the GUARDIAN Operating
System Programming Manual.

CALL SHIFTSTRING i <string> .L <count> .L <casebit> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL SIGNALTIMEOUT i <timeoutvalue>
, <parameterl>
, <parameter2>
, <tleaddress> l

(II only)

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

{ <num chars> := j SORTERROR i <ctlblock> .L <buffer> l
{ CALL

See "Programmatic Mode" section of the SORT/MERGE users Guide.

{ <dword error> := } SORTERRORDETAIL i <ctlblock> l
{ CALL }

See "Programmatic Mode" section of the SORT/MERGE users Guide.

A-22

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ <error> := }
{ CALL }

SORTMERGEFINISH i <ctlblock>
, <abort>

See "Programmatic Mode" section
{ <error> := } SORTMERGERECEIVE
{ CALL }

, <spare l>
, <spare 2> l_

of the SORT/MERGE Users Guide.
(<ctlblock>

- .!.. <buffer>
.!... <length>
, <spare l>
, <spare 2> l_

See "Programmatic Mode" section of the SORT/MERGE Users Guide.

{ <error> := } SORTMERGESEND
{ CALL }

(<ctlblock>
- .!.. <buffer>

.!.. <length>
, <stream id>
, <spare l>
, <spare 2> l_

See "Programmatic Mode" section of the SORT/MERGE Users Guide.

{ <error> := } SORTMERGESTART
{ CALL }

(<ctlblock>
- .L <key block>

, <number merge files>
, <number sort files>
, <in file name>
, <in file exclusion mode>
, <in file count>
, <in file length>
, <format>
, <out file name>
, <out file exclusion mode>
, <out file type>
, <flags>
, <errnum>
, <errproc>
, <scratch file name>
, <scratch block>
, <process start>
, <max record length>
, <collate sequence table>
, <spare l>
, <spare 2>
, <spare 3>
, <spare 4>
, <spare 5> l_

See "Programmatic Mode" section of the SORT/MERGE Users Guide.

A-23

APPENDIX A: PROCEDURE SYNTAX SUMMARY

{ <error> := }
{ CALL }

SORTMERGESTATISTICS i <ctlblock>
, <length>
, <statistics>

<spare l>
<spare 2> l.

See "Programmatic Mode" section of the SORT/MERGE users Guide.

<error code> := SPOOLCONTROL i <level 3 buffer>
L <operation>
, <parameter>
-~ <bytes written to buffer> l

See "Spooler Interface Procedures" section of the Spooler/
PERUSE users Guide.

<error code> := SPOOLCONTROLBUF i <level 3 buffer>
L <operation>
L <buffer>
L <count>
, <bytes written to buffer> l

See "Spooler Interface Procedures" section of the Spooler/
PERUSE Users Guide.

A-24

APPENDIX A: PROCEDURE SYNTAX SUMMARY

<error code> := SPOOLEND i <level 3 buffer> , <flags> L
See "Spooler Interface Procedures" section of the Spooler/
PERUSE Users Guide.

<error code> := SPOOLERCOMMAND (<file num to Supervisor>
L <keyword code>
L <keyword parameter>
L <subcommand code>
, <subcommand parameter>

See "Spooler Utility Procedures" section of the Spooler System
Management Guide.

<error code> := SPOOLEREQUEST i <supervisor file num>
L <job number> L <message> l

See "Spooler Utility Procedures" section of the Spooler System
Management Guide.

<error code> := SPOOLERSTATUS i <supervisor file num>
, <keyword code> , <scan type>
~ <status buffer>- l

See "Spooler Utility Procedures" section of the Spooler System
Management Guide.

<error code> := SPOOLJOBNUM (<file number to collector>
L <job number> l

See "Spooler Interface Procedures" section of the Spooler/Peruse
Users Guide.

<error code> := SPOOLSETMODE i <level 3 buffer>
L <function>
, <parameter l>
, <parameter 2>
, <bytes written to buffer> l

See "Spooler Interface Procedures" section of the Spooler/
PERUSE Users Guide.

A-25

APPENDIX A: PR~EDURE SYNTAX SUMMARY

<error code> := SPOOLSTART i <file number to collector>
, <level 3 buffer>
, <location>

<form name>
, <report name>
, <number of copies>
, <page size>
, <flags> l_

See "Spooler Interface Procedures" section of the Spooler/
PERUSE Users Guide.

<error code> := SPOOLWRITE (<level 3 buffer>
- L ~rint line>

, <write count>
~ <bytes written to buffer> l_

See "Spooler Interface Procedures" section of the Spooler/
PERUSE users Guide.

CALL STEPMCM i <process id> L

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CA~L STOP (<process id>)

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL SUSPENDPRCXESS i <process id> L

See "Process Control" section of the GUARDIAN Operating System
Programming Manual.

CALL TAKE~BREAK i <file fcb> L
See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL TIME i <date and time> l_

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

A-26

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL TIMESTAMP i <interval clock> l

See "Utility Procedures" section of the GUARDIAN Operating
System Programming Manual.

<version> := TOSVERSION

See •cutili ty Procedures" section of the GUARDIAN Operating
System Programming Manual.

CALL UNLOCKFILE i <file number>
I <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL UNLOCKMEMORY i <address> L <byte count> l (II only)

See "Advanced Memory Management" section of the GUARDIAN
Operating System Programming Manual.

CALL UNLOCKREC i <file number>
I <tag> l

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

CALL USERIDTOUSERNAME 1 <id name> L
See "Security System" section of the GUARDIAN Operating System
Programming Manual.

CALL USERNAMETOUSERID i <name id> l

See "Security System" section of the GUARDIAN Operating System
Programming Manual.

A-27

APPENDIX A: PROCEDURE SYNTAX SUMMARY

<old segment id> := USESEGMENT (<segment id> , <pin>)
(II only)

See "Memory Management Procedures" section of the GUARDIAN
Operating System Progranu~ing Manual.

CALL VERIFYUSER i <user name or id>
, <logon> , <default> , <default length> l

See "Security System" section of the GUARDIAN Operating System
Programming Manual, or see the EXPAND Users Manual.

<error> := WAITAFILE i <file fcb> , <count read> , <time limit> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

CALL WRITE l <file number>
.L <buffer>
.L <write count>
, <count written>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENSCRIBE Programming Manual,
the ENVOY Byte-Oriented Protocols Reference Manual,
or the ENVOYACP Bit-Oriented Protocols Reference Manual.

{ CALL } WRITEAFILE l <file fcb> , <buffer> , <write count>
{ <error> := } , <reply error code> -

, <forms control code>
, <no wait> l

See "Sequential I/O Procedures" section of the GUARDIAN
Operating System Programming Manual.

A-28

APPENDIX A: PROCEDURE SYNTAX SUMMARY

CALL WRITEREAD 1 <file number>
.!... <buffer>
.!... <write count>
.!... <read count>
, <count read>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual, the ENVOY Byte-Oriented Protocols
Reference Manual, or the ENVOYACP Bit-Oriented Protocols
Reference Manual.

CALL WRITEUPDATE 1 <file number>
1- <buffer>
1- <write count>
, <count written>
, <tag> l

See "File System Procedures" section of the GUARDIAN Operating
System Programming Manual or the ENSCRIBE Programming Manual.

CALL WRITEUPDATEUNLOCK (<file number>
- .!... <buffer>

.!... <write count>
, <count written>
, <tag> l

See "File System Procedures" section of the ENSCRIBE
Programming Manual.

A-29

APPENDIX B

FILE SYSTEM ERROR SUMMARY

The table on the following pages provides a quick reference to
GUARDIAN file system system errors. For each error, the following
information is given:

1. Error number in decimal

2. Error number in octal (in parentheses: the % symbol denotes an
octal number)

3. Brief explanation of meaning

4. Device types (kinds of files) for which the errors may occur, as
returned by the DEVICEINFO procedure.

The device type numbers in the table correspond to device types as
follows:

device type

0
1
2
3
4
5
6

7
8
9

10
11
12
20-23
26
59
60
61

= Process (process ID)
= Operator console ($0)
= $RECEIVE
= Disc
= Magnetic tape
= Line printer
= Terminal: conversational or page mode

(AXCESS !TI protocol)
= ENVOY data communication line
= Card reader
= AXCESS process-to-process interface (X25AM)
= AXCESS 3271 CRT mode interface (AM3270, TR3271)
= ENVOYACP data communication line
= Tandem to IBM Link (TIL)
= Transaction Monitoring Facility (TMF)
= Tandem HyperLink (THL)
= AXCESS data communication line (AM6520)
= AXCESS data communication line (AM3270, TR3271)
= AXCESS data communication line (X25AM)

B-1

APPENDIX B: FILE SYSTEM ERROR SUMMARY

62 = EXPAND Network Control Process (NCP)
63 = EXPAND line handler

If a device type number includes a dot (.), the digits to the left of
the dot are the device type, and the digits to the right of the dot
are the device subtype. Device subtypes are listed in table 2-3
(in the "File System Procedures" section, under the DEVICEINFO
procedure).

Note: Unless otherwise specified, all information in the table
applies to both Nonstop systems and Nonstop II systems. "I
only" means the information applies only to Nonstop systems:
"II only" means it applies only to Nonstop II systems.

For more complete information on these errors, including state of the
system and suggested corrective action, refer to section 2.4, "File
System Errors".

B-2

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY

Error
Number

Description

CONDITION CODE = (CCE) : NO ERROR

0 operation successful

CONDITION CODE > (CCG) : WARNINGS

1

2

3

4

5

6

7

8 (%10)

CONDITION

10 (%12)

11 (%13)

12 (%14)

13 (%15)

14 (%16)

15 (%17)

end-of-file or end of medium

operation not allowed on this type file

failure to open or purge a partition

failure to open an alternate key file

failure to provide sequential buffering
(I only)

system message received

process not accepting CONTROL, SETMODE,
or RESETSYNC messages

operation successful (examine MCW for
additional status)

CODE < (CCL) : ERRORS

file or record already exists

file not in directory or record not in
file

file in use

illegal filename specification

device does not exist

RENAME attempted to another volume

Device
Type

any

3,4,6,8

any

3

3

3

2

0

11.40,11.42

3

3

any except
2

any

any except
1 and 2

3

B-3

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

16 (%20)

17 (%21)

18 (%22)

19 (%23)

20 (%24)

21 (%25)

22 (%26)

23 (%27)

24 (%30)

25 (%31)

26 (%32)

27 (%33)

28 (%34)

29 (%35)

B-4

Description Device
Type

file number has not been opened any

attempted CHECKOPEN when file not open any
by primary, CHECKOPEN parameters do
not match those of primary open, or
primary process not alive

referenced system does not exist any

no more devices in logical device table any except
1 and 2

attempted network access by process any except
with five-character name or seven- 2
character home terminal name

illegal count specified any except
2

application parameter or buffer address any
out of bounds

disc address out of bounds 3

privileged mode required for this any
operation

AWAITIO or CANCEL attempted on wait file any

AWAITIO, CANCEL, or CONTROL 22 attempted any
on a file with no outstanding requests

wait operation attempted when outstanding any
requests pending

number of outstanding no-wait operations any
exceed OPEN specification, or attempt to
open disc file or $RECEIVE with maximum
number of concurrent operations greater
than 1

missing parameter any

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

30 (%36)

31 (%37)

32 (%40)

33 (%41)

34 (%42)

35 (%43)

36 (%44)

37 (%45)

38 (%46)

40 (%50)

41 (%51)

Description

unable to obtain main memory space for a
link control block

unable to obtain SHORTPOOL space for a
file system buffer area (I only):
unable to obtain file system buffer
space (II only)

unable to obtain main memory space for
a control block (I only): unable to
obtain storage pool space (SYSPOOL)
(II only): or INFO procedure called
with <file number> = -1 but no file was
open (both systems)

i/o process unable to obtain IOPOOL
space for i/o buffer, or count too
large for dedicated i/o buffer (I
only) ; i/o process unable to obtain
i/o segment space (II only)

read from unstructured disc spans
too many sectors

unable to obtain file system control
block (II only)

unable to obtain i/o process control
block (II only)

unable to obtain physical memory
(II only)

unable to obtain physical memory for
i/o (II only)

operation attempted on wrong type of
system

operation timed out

checksum error on file synchronization
block

Device
Type

any except
2

any

any

any except
2

3

any

any except
2

any

any except
2

any except
2

any

3

B-5

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

42 (%52)

43 (%53)

44 (%54)

45 (%55)

46 (%56)

47 (%57)

48 (%60)

49 (%61)

50 (%62)

51 (%63)

52 {%64}

53 (%65)

54 (%66)

55 (%67)

56 (%70)

57 (%71)

58 (%72)

59 (%73)

60 (%74)

B-6

Description

attempt to read from unallocated extent

unable to obtain disc space for extent

directory is full

file is full

invalid key specified

key not consistent with file data

security violation, or remote password
illegal or does not exist

access violation

directory error

directory is bad

error in disc free space table

file system internal error

i/o error in disc free space table

i/o error in directory

i/o error on volume label

disc free space table is full

disc free space table is bad

file is bad

volume on which this file resides has
been removed, device has been downed,
or process has failed since the file
was opened

Device
Type

3

3

3

3

3

3

3

any except
2

3

3

3

3

3

3

3

3

3

3

any except
1 and 2

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

61 (%75)

62 (%76)

63 (%77)

64 (%100}

65 (%101}

66 (%102}

70 (%106)

71 (%107}

72 (%110)

73 (%111}

74 (%112)

75 (%113}

76 (%114}

77 (%115)

78 (%116}

79 (%117}

Description

no more file opens permitted on this
volume

volume has been mounted, but mount order
has not been given

volume has been mounted and mount is in
progress (waiting for mount interrupt}

volume has been mounted and mount is in
progress

only special requests permitted

device has been downed by operator, or
hard failure occurred on controller

continue file operation

duplicate record

access to secondary partition not
permitted

file or record locked

READUPDATE called for $RECEIVE and
number of messages queued exceeds
receive depth, REPLY called with an
invalid message tag, or REPLY called
with no message outstanding

requesting process has no current
process TRANSID

transaction is in the process of ending

a TMF system file has the wrong file
code

TRANSID is invalid or obsolete

attempt made by TRANSID to update or
delete a record it has not previously
locked

Device
Type

3

3

3

3

3

any except
2

0, 3

3

3

3

2

3

3 or none

3

3 or none

3

B-7

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

B-8

80 (%120)

81 (%121)

82 (%122)

83 (%123)

84 (%124)

87 (%127)

88 (%130)

89 (%131)

90 (%132)

91 (%133)

92 (%134)

93 (%135)

94 (%136)

97 (%141)

98 (%142)

Description

invalid operation attempted on audited
file or non-audited disc volume

attempted operation invalid for TRANSID
that has no-wait i/o outstanding on a
disc or process file

TMF is not running

process has initiated more concurrent
transactions than can be handled

TMF is not configured

waiting on a READ request and did not
get it

a CONTROL READ is pending; new READ
invalid

remote device has no buffer available

TRANSID aborted because its parent
process died

Internal software error

TRANSID aborted because path to remote
node is down

TRANSID aborted because it spanned too
many audit files

TRANSID aborted by operator command

TRANSID was aborted

Transaction Monitor Process's Network
Active Transactions table is full

Device
Type

3

2 or none

0, 3, or
none

none

0, 3, or
none

10

10

10

3 or none

4.2

3 or none

3 or none

3 or none

3 or none

0, 3, or
none

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERRO~ SUMMARY (cont'd)

Error
Number

99 (%143)

100 (%144)

101 {%145)

102 (%146)

103 {%147)

104 (%150)

105 (%151)

110 (%156)

111 (%157)

112 (%160)

120 (%170)

121 {%171)

122 {%172)

123 (%173)

124 (%174)

130 (%202)

Description

attempt to use microcode option that is
not installed

device not ready

no write ring

paper out or bail not properly closed

disc not ready due to power failure

no response from device

VFU error

only break access permitted

operation aborted because of break

READ or WRITEREAD preempted by operator
message

too many user console messages

data parity error

data overrun error

request aborted due to possible data
loss caused by reset of circuit

subdevice busy

line reset is in progress

illegal address to disc

Device
Type

any except
2

any except
2

4

5

3

5.4

5.4

6, 61

6, 61

6

1

any except
2

any except
2

6' 9'
11, 61

5' 6' 10

6' 10'
59' 60

3

B-9

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

131 (%203)

132 (%204)

133 (%205)

134 (%206)

135 (%207)

136 (%210)

137 (%211)

138 (%212)

139 (%213)

140 (%214)

145 (%221)

146 (%222)

147 (%223)

150 (%226)

151 (%227)

152 (%230)

153 (%231)

154 (%232)

155 (%233)

B-10

Description

write check error from disc

seek incomplete from disc

access not ready on disc

address compare error on disc

write protect violation with disc

unit ownership error (dual-port disc)

controller buffer parity error

interrupt overrun

controller error

modem error, or modern or link
disconnected

card reader motion check error

card reader read check error

invalid Hollerith code read

end-of-tape marker detected

runaway tape detected

unusual end -- unit went offline

tape drive power on

BOT detected during backspace files or
backspace records

only nine-track tape permitted

Device
Type

3.0, 3.1

3.0, 3.1

3.0, 3.1

3

3

3

any except
2

any except
2

any except
2

6, 7, 10,
11, 12, 59,
60, 61, 63

8

8

8

4

4

4, 11

4

4

4

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

156 (%234)

157 (%235)

158 (%236)

160 (%240)

161 (%241)

162 (%242)

163 (%243)

164 (%244)

165 (%245)

166 (%246)

167 (%247)

Description

TIL protocol violation detected

i/o process internal error

invalid function requested for HyperLink

request is invalid for line state

more than 7 reads or 7 writes issued

impossible event occurred for line state

operation timed out

EQT received

power at auto-call unit is off

disconnect received

data line is occupied (busy)

RV! received

data line not occupied after setting
call request

ENQ received

auto-call unit failed to set "present
next digit"

EQT received on line bid/select

"data set status" not set after dialing
all digits

Device
Type

12

any except
2

26

6, 7,
10, 11

11

7, 10, 11

7, 10, 11

7.0-7.3,7.8

7 .. 56, 11

7.0, 7.1,
10, 11, 61

7.56, 11

7.0 - 7.3

7.56, 11

7.0, 7.1,
7.3, 7.9

7.56, 11

7.0, 7.1,
7.3, 7.8

7.56, 11

B-11

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

168 (%250)

169 (%251)

170 (%252)

171 (%253)

172 (%254)

173 (%255)

174 (%256)

175 (%257)

176 (%260)

177 (%261)

B-12

Description

NAK received on line bid/select

auto-call unit failed to clear "present
next digit" after "digit present" was
set

WACK received on line bid/select

auto-call unit set "abandon call and
retry"

station disabled or station not defined

no ID sequence received during circuit
assurance mode

invalid MCW entry number on WRITE

no response received on bid/poll/select

reolv not orooer for orotocol

maximum allowable NAKs received
(transmission error)

invalid MCW on WRITE

WACK received after select

aborted transmitted frame

incorrect alternating ACK received

command reject

poll sequence ended with no responder

text overrun

Device
Type

7.0, 7.1,
7.3, 7.8

7.56, 11

7.0,7.1,7.3

7.56, 11

11

7.0, 7.1

11.40

7, 10,
11, 61

6i 7i
10, 11

6, 7,
10

11

7.2, 7.3

11

7.0 - 7.3

11

7.3, 7.8,
7.9, 11. 40

7, 10, 11

I

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

178 (%262)

179 (%263)

180 (%264)

181 (%265)

190 (%276)

191 (%277)

192 (%300)

193 (%301)

200 (%310)

201 (%311)

210 (%322)

211 (%323)

212 (%324)

213 (%325)

Description

no address list specified

application buffer is incorrect

control request pending or autopoll
active

unknown device status received

status receipt currently enabled for
subdevice

invalid status received from device

device power on

device is being exercised

invalid or missing microcode files

device is owned by alternate port

current path to the device is down

attempt was made to write to a
nonexistent process

Device
Type

7.2, 7.3,
7.8, 7.9,
11.40, 61

10, 61

11. 40

6.6 - 6.10,
5.3, 5.4,

10

10

any except
2

5

3 - 6

4.2

any except
2

any except
0 and 2

0

device ownership changed during operation any except
2

failure of cpu performing this operation any

EIO instruction failure (I only) any except
2

channel data parity error any except
2

B-13

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

214 (%326)

215 (%327)

216 (%330)

217 (%331)

218 (%332)

219 (%333)

220 (%334)

221 (%335)

222 (%336)

223 (%337)

224 (%340)

225 (%341)

226 (%342)

B-14

I

Description

channel timeout

i/o attempted to absent memory page

map parity error during this i/o (I
only) ; or memory access breakpoint
during this i/o (II only)

memory parity error during this i/o

interrupt timeout

illegal device reconnection

protect violation

channel pad-in violation (I only);
I controller
I

handshake violation
(I I only)

bad channel status from EIO instruction

bad channel status from IIO instruction

controller error (I only)

no unit or multiple units assigned to
same unit number

controller busy error (I only)

Device
Type

any except
2

any except
2

any except
2

any except
2

any except
2

I
any except

2
I

I
any except

I

2

any except
I 2
I

any except
2

any except
2

any except
2

any ~xcept
2

any except
2

APPENDIX B: FILE SYSTEM ERROR SUMMARY

FILE SYSTEM ERROR SUMMARY (cont'd)

Error
Number

230 (%346)

231 (%347)

240 (%350)

241 (%351)

248 (%370)

249 (%371)

250 (%372)

251 (%373)

300-511

Description Device
Type

cpu power on during this operation any except
2

controller power on during this operation any except
2

network line handler error; operation any except
not started 2

network error; operation not started any except
2

network line handler process failed any except
while this request was outstanding 2

network failure occurred while this any except
request was outstanding 2

all paths to the system are down any except
2

network protocol error occurred any except
2

reserved for use by application processes

B-15

APPENDIX C

SYSTEM MESSAGES

The following messages from the operating system may be sent to an
application process through the $RECEIVE file.

The first word of a system message always has a value less than zero.
Also, the completion of a read associated with a system message
returns a condition code of CCG (greater than) and error 6 from
FILEINFO.

Note: Like all interprocess messages, system messages read via calls
to the READUPDATE procedure must be replied to in a
corresponding call to REPLY. If the application process is
performing message queueing, LASTRECEIVE or RECEIVEINFO must
also be called immediately following completion of the
READUPDATE, and the message tag must be passed back to the
REPLY procedure.

The system messages and their formats, in word elements, are as
follows:

• CPU Down Message. There are two forms of the CPU Down message:

and

<sysmsg>
<sysmsg>[l]

= -2
= cpu

This form is received if a failure occurs with a processor
module being monitored. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -2
= $<process name>
= -1

This form is received by an ancestor process when the
indicated process name is deleted from the PPD because of a
processor module failure. This means that the named
process [pair] no longer exists.

C-1

APPENDIX C: SYSTEM MESSAGES

• CPU Up Message

<sysmsg>
<sysmsg>[l]

= -3
= cpu

This message is received when a processor module being monitored
is reloaded.

• Process Normal Deletion {STOP) Message

This message is received if a process deletion is due to a call to
the process control STOP procedure.

There are two forms of the STOP message:

<sysmsg>
<sysmsg>[l] FOR 4

= -5
= process ID of deleted process

This form is received by a deleted process's creator if the
deleted process was not named or by one member of a process
pair when the other member is deleted.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -5
= $<process name> of deleted process [pair]
= -1

This form is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

• Process Abnormal Deletion {ABEND) Message

This message is received if the deletion is due to a call to the
process control ABEND procedure or because the deleted process
encountered a trap condition and was aborted by the operating
system.

There are two forms of the ABEND message:

C-2

<sysmsg>
<sysmsg>[l] FOR 4

= -6
= process ID of deleted process

This form is received by a deleted process's creator if the
deleted process was not named or by one member of a process
pair when the other member is deleted.

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= -6
= $<process name> of deleted process [pair]
= -1

This form is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

APPENDIX C: SYSTEM MESSAGES

• Change in Status of Network Nodes

<sysmsg>
<sysmsg>[l].<0:7>
<sysmsg>[l].<8:15>
<sysmsg>[2]
<sysmsg>[3]

= -8
= system number
= number of cpu~s
= current processor status bitmask
= previous processor status bitmask

This message is received if the process is running on a system that
is part of a network, and has enabled receipt of remote status
change messages by passing "l" as a parameter to the MONITORNET
procedure.

• SETTIME Message (Nonstop II systems only)

<sysmsg>
<sysmsg> [l]

= -10
= cpu

This message is received if the interval clock of "cpu" has been
reset by the system manager or operator, provided the process has
enabled receipt of new messages by a call to MONITORNEW.

• Power On Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]

= -11
= cpu

This message is received if the indicated processor had a POWER
OFF, then a POWER ON condition, provided the process has enabled
receipt of new messages by a call to MONITORNEW.

• NEWPROCESSNOWAIT Completion Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]
<sysmsg>[2] FOR 2
<sysmsg>[4] FOR 4

=
=
=
=

-12
error
tag
process ID

This message is received by a process when a call to the
NEWPROCESSNOWAIT procedure is completed.

• BREAK Received from Terminal

<sysmsg>
<sysmsg>[l]

<sysmsg>[2]

= - 20
= logical device number, in binary, of

device where break was typed
= system number, in binary, of logical

device number

This message is received by a process if it has specified break
monitoring (through a call to SETMODE or SETMODENOWAIT) and
and BREAK is typed on a terminal being monitored.

C-3

APPENDIX C: SYSTEM MESSAGES

• Time Signal Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -22
= <parameter!> supplied to SIGNALTIMEOUT

(if none supplied, 0)
= <parameter2> supplied to SIGNALTIMEOUT

(if none supplied, OD}

This message is received if a timer set by a call to SIGNALTIMEOUT
has timed out.

• Memory Lock Completion Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -23
= <parameter!> supplied to LOCKMEMORY

(if none supplied, 0)
= <parameter2> supplied to LOCKMEMORY

(if none supplied, OD)

This message is received if a call to LOCKMEMORY waited for memory,
but completed successfully before the specified time limit was
reached.

• Memory Lock Failure Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]

<sysmsg>[2] FOR 2

= -24
= <parameter!> supplied to LOCKMEMORY

(if none supplied, 0)
= <parameter2> supplied to LOCKMEMORY

(if none supplied, OD}

This message is received if a call to LOCKMEMORY waited for memory
and timed out without completing the lock.

Receipt of the following five system messages (OPEN, CLOSE, CONTROL,
SETMODE, and RESETSYNC) is possible only if the process has opened its
$RECEIVE file with <flags>.<l> = 1:

• Process OPEN Message

<sysmsg>
<sysmsg>[l]
<sysmsg> [2]

<sysmsg>[3] FOR 4

<sysmsg>[7]

<sysmsg>[8]
<sysmsg>[9] FOR 4

<sysmsg>[l3j FOR 4

C-4

=
=
=

=

=

=
=

=

-30
<flags> parameter to caller~s OPEN
<sync or receive depth> parameter to
caller~s OPEN
0 if normal open, process ID of primary
process if an open by a backup process
0 if normal open, file number of file if
an open by a backup process
process accessor ID of opener
optional 1st qualif name of named
process or blanks
optional 2nd qualif name of named
process or blanks

APPENDIX C: SYSTEM MESSAGES

This message is received by a process when it is opened by another
process. The process ID of the opener can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO.

Note: This message is also received if the open is by the backup
process of a process pair. Therefore, a process can expect
two of these messages when being opened by a process pair.

• Process CLOSE Message

<sysmsg> = -31

This message is received by a process when it is closed by another
process. The process ID of the closer can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO.

Note: This message is also received if the close is by the backup
pzocess of a process pair. Therefore, a process can expect
two of these messages when being closed by a process pair.

• Process CONTROL Message

= -32 <sysmsg>
<sysmsg>[l]
<sysmsg>[2]

= <operation> parameter to caller's CONTROL
= <parameter> parameter to caller's CONTROL

This message is received when another process calls the CONTROL
procedure referencing the receiver process file. The process ID
of the caller to CONTROL can be obtained in a subsequent call to
LASTRECEIVE or RECEIVEINFO.

• Process SETMODE Message

= -33 <sysmsg>
<sysmsg>[l] = <function> parameter to caller's SETMODE

or SETMODENOWAIT
<sysmsg>[2]

<sysmsg>[3]

= <parameter l> parameter to caller's
SETMODE or SETMODENOWAIT

= <parameter 2> parameter to caller's
SETMODE or SETMODENOWAIT

This message is received when another process calls the SETMODE
or SETMODENOWAIT procedure referencing the receiver process file.
The process ID of the caller to SETMODE or SETMODENOWAIT can be
obtained in a subsequent call to LASTRECEIVE or RECEIVEINFO.

• Process RESETSYNC Message

<sysmsg> = -34

This message is received when a process calls the RESETSYNC
procedure referencing the receiver process file (note that a call
to the CHECKPOINT procedure may contain an implicit call to
RESETSYNC). This means that the sync ID value for that file has

C-5

APPENDIX C: SYSTEM MESSAGES

been reset to zero. Therefore, a server process using the sync ID
mechanism should clear its local copy of the sync ID value.

The process ID of the caller to RESETSYNC can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO.

C-6

APPENDIX C: SYSTEM MESSAGES

COMMAND INTERPRETER MESSAGES

The following messages may be received from the Command Interpreter.
These are not system messages; i.e., they do not cause an error 6
indication to be returned.

Startup Message

The startup message is sent to the new process immediately following
the successful creation of the new process. The startup message is
read by the process via its $RECEIVE file.

The form of the startup parameter message is:

STRUCT ciAstartup;
BEGIN

INT msgcode;
STRUCT default;

BEGIN
INT volume

subvol
END;

STRUCT infile;
BEGIN

INT volume
subvol
dname

END;
STRUCT outfile;

BEGIN
INT volume

subvol
dname

END;

0: 3] '
0: 3] ;

[0 : 3] '
[0:3],
[0: 3] ;

[0: 3] '
[0: 3] '
[0:3] ;

STRING param [O:n-1];
END; ! ciAstartupAmsg.

word
[0] -1.

[l] $<default volume name>.
<default subvol name>.

[9] IN parameter <file name> of RUN
command.

[21] OUT parameter <file name> of RUN
command.

[33] <parameter string> of RUN
Command (if any) that was was
entered by operator. This is in
either of the following forms:

<parameter string><null>[<null>]

or

<null><null>

<n> = (<count read> - 66

The maximum length possible for a startup message is 594 bytes
(including the trailing null characters).

Note: The parameter message length is always an even number. If
necessary, the Command Interpreter will pad the parameter
string with an additional null.

C-7

APPENDIX C: SYSTEM MESSAGES

Assign Message

One assign message is optionally sent to the new process for each
assignment in effect at the time of the creation of the new process.
Assign messages are sent immediately following the startup message if
the process does either one of the following:

• replies to the startup message with an error return value of
REPLY = 70. The Command Interpreter then sends both assign and
param messages.

• replies to the startup message with an error return value
of O, but with a reply of one to four bytes, and bit 0 of

C-8

the first byte of the reply is set to 1. The Command Interpreter
also sends param messages if bit 1 of the first byte of the
reply is set to 1.

APPENDIX C: SYSTEM MESSAGES

The form of the assign message is:

The

STRUCT ciAassign; assign message.
BEGIN

INT msgAcode; [O] -2

STRUCT logicalunit;
BEGIN

STRING prognamelen,
progname[0:30],
filenamelen,
filename[0:30];

END;
INT(32) fieldmask;

STRUCT tandemfilename;
BEGIN

INT volume
subvol
df ile

END;
createspec

INT primaryextent,

0: 3] '
0: 3] '
0: 3] ;

secondaryextent,
filecode,
exclusionspec,

accessspec,

recordsize,
blocksize;

END;

PARAMETERS TO ASSIGN COMMAND.

[l] length in bytes of name {0:31}
{ <program unit> I *}<blanks>

[17] length in bytes of name {0:31}
<logical file><blanks>

[33] bit mask to indicate which of
the following fields were
supplied (1 = supplied) :

.<0> = <Tandem file name>

.<l> = <pri extent size>

.<2> = <sec extent size>

.<3> = <file code>

.<4> = <exclusion spec>

.<5> = <access spec>

.<6> = <record size>

.<7> = <block size>

[35] <Tandem file name>

[47] <pri extent size>.
[48] <sec extent size>.
[49] <file code>.
[50] %00 if SHARED, corre-

%20 if EXCLUSIVE, spends
%60 if PROTECTED. to flag

[51] %0000 if I-0, par am of
%2000 if INPUT, OPEN.
%4000 if OUTPUT.

[52] <record size>.
[53] <block size>.

length of this message is 108 bytes.

C-9

APPENDIX C: SYSTEM MESSAGES

Param Message

A param message is optionally sent to the new process if any
parameters are in effect at the time of the creation of the new
process. The param message is sent immediately following any
assign message(s) if the process does either one of the following:

• replies to the startup message with an error return value of
REPLY = 70. The Command Interpreter then sends both assign and
param messages.

• replies to the startup message with an error return value of 0, but
with a reply of one to four bytes, and bit 1 of the first byte of
the reply is set to 1. The Command Interpreter also sends assign
messages if bit 0 of the first byte of the reply is set to 1.

The form of the param message is:

STRUCT ci"'param;
BEGIN

INT msg"'code,
numparams;

STRING parameters [0:1023];
END;

param message.

[0] -3
[l] number of parameters

included in this message.
[2] beginning of parameters.

The field "parameters" in the above message format is comprised of
"numparams" records of the form (offsets are given in bytes) :

<param>[O]
<par am> [l] FOR n

= length "n", in bytes, of <parameter name>
= <parameter name>

<param>[n+l] =length "v", in bytes, of <parameter value>
<param>[n+2] FOR v = <parameter value>

The maximum length of this message is 1028 bytes.

Wakeup Message

The wakeup message, when received by a Command Interpreter, causes
that Command Interpreter, if it is currently in the pause state, to
return from the paused state to the command input mode (i.e., "wake
up") •

If the Command Interpreter is not in the pause state (i.e., it is
prompting for a command or executing a command other the RUN) , a
wakeup message will be ignored.

C-10

APPENDIX C: SYSTEM MESSAGES

The form of the wakeup message is:

STRUCT wakeupAmsg;
BEGIN

INT msgcode; -20
END;

The length of this message is two (2) bytes.

Display Message

The display message, when received by a Command Interpreter, causes
the Command Interpreter to display the text contained in the message.
The text is displayed just prior to the next time that the Command
Interpreter prompts for a command (i.e., issues a":").

A Command Interpreter has the capability store one 132-byte display
message until it is able to display the message text. If the Command
Interpreter is currently storing a display message when another
display message is sent to it, the second another display message will
be rejected with an error 12 indication (file in use).

The form of the display message is

STRUCT displayAmsg;
BEGIN

INT msgcode;
STRING text [O:n-1];

END;

-21
n <= 132.

The length of this message is 2 + display text length in bytes. Note
that the length of the text portion is implied in the write count
used to send this message.

Logon Message

This message is sent to the $CMON process if it exists when a LOGON
command is entered and the user name is checked for validity.

The form of the logon message is:

STRUCT logonAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0:11],
cioutfile[0:11] ;

[0] -50
[l] user ID of user logging on
[2] execution priority if CI
[3] name of CI~s command file

[15] name of CI~s list file

The length of this message is 54 bytes.

C-11

APPENDIX C: SYSTEM MESSAGES

The form of the reply to the logon message is:

STRUCT logonAreply;
BEGIN

INT replycode; [0] 0 = allow logon.
1 = disallow logon.

STRING
replytext [0:131] ; [l] optional message to be printed.

END;

The length of this message is 2 + reply text length in bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If <reply count> = 2, no text will be displayed.

Legoff Message

This message is sent to the $CMON process if it exists when a LOGOFF
command is entered.

The form of the logoff message is:

STRUCT logoffAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0 :11] ,
cioutfile[0:11];

[0] -51
[l] user ID of user logging off
[2] execution priority if CI
[3] name of CI~s command file

[15] name of CI~s list file

The length of this message is 54 bytes~

The form of the reply to the logoff message is:

STRUCT logoffAreply;
BEGIN

INT replycode;
STRING

replytext 0:131];
END;

[0] 0 or 1.

[l] optional message to be printed

The length of this message is 2 + reply text length in bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If <reply count> = 2, no text will be displayed.

C-12

APPENDIX C: SYSTEM MESSAGES

Process Creation Message

This message is sent to the $CMON process if it exists when an
implicit or explicit RUN command is entered.

The form of this message is:

STRUCT processcreationAmsg;
BEGIN

INT msgcode,
user id,
cipri,

END;

ciinfile [0:11],
cioutfile[0:11],
progname [0:11],
priority,

processor;

[0] -52.
[l] user ID of user logging on
[2] execution priority if CI
[3] name of CI's command file

[15] name of CI's list file
[27] expanded program file name
[39] <priority> of RUN command if

supplied; otherwise -1
[40] <processor module> of RUN

command if supplied; otherwise
-1

The length of this message is 82 bytes.

The $CMON process may reply in either of two ways. The first causes a
process creation to be attempted. This form of reply is:

STRUCT processcreationAreply;
BEGIN

INT replycode, [0]
progname [0:11], [l]

!
priority, ! [13]

processor; [14]

END;

0 = create the process.
expanded name of program file
to be run.
execution priority of new
process or -1. If -1 then the
CI's priority minus -1 is used.
processor module where new
process is to run or -1. If -1
then the CI's processor is
used.

The values returned in this reply are those used for the process
creation attempt. Any process creation errors will be seen by the
Command Interpreter user (no notification will be made to $CMON).

C-13

APPENDIX C: SYSTEM MESSAGES

The second form of reply is used to disallow the process creation.
This form of reply is:

STRUCT processcreationAreply;
BEGIN

INT replycode;
STRING

replytext 0:131];
END;

[O] 1 = disallow process creation.

[l] optional message to be printed.

The length of this message is 2 + reply text length in bytes. Note
that the length of the reply text is implied in the reply count used
when making a reply. If <reply count> = 2, no text will be displayed.

C-14

APPENDIX D

SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS

The following is the $SYSTEM.SYSTEM.GPLDEFS source file for the
sequential i/o procedures described in section 9.

?PAGE "T9600D00 - SIO PROCEDURES - DEFINITIONS"

! FCB SIZE IN WORDS.

LITERAL
FCBSIZE = 60;

DECLARE RUCB , PUCB, AND CCNMON FCB.

DEFINE
ALLOCATEACBS (RUCBANAME , CCNMONAFCBANAME , NUMAFILES =

INT .RUCBANAME [0:65] :=
RUCB PART.

[62 , 1 , 27 * [0] , 62 , 32 * [0] ,
! PUCB PART.

4 , NUMAFILES , 4 + FCBSIZE] ;
INT .CCMMONAFCBANAME [O:FCBSIZE - 1] :=

[FCBSIZE * [0]] #;

DECLARE FCB.

DEFINE
ALLOCATEAFCB (FCBANAME , PHYSAFILENAME) =

INT .FCBANAME [O:FCBSIZE - 1] :=
[FCBSIZE , %000061 , -1 , %100000 , 0 , PHYSAFILENAME,

(FCB SI Z E - 1 7) * [0]] # ;

OPEN ACCESS.

LITERAL
READWRITEAACCESS = 0,
READAACCESS = 1,
WRITEAACCESS = 2;

OPEN EXCLUSION.

D-1

APPENDIX D: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS

LITERAL
SHARE = 0,
EXCLUSIVE = 1,
PRDrECTED = 3;

OPEN"FILE FLAGS v 111111
0123456789012345

1111111111222222222233
DEFINE

ABORT" OPENERR
ABORT"XFERERR
PRINT"ERR"MSG
AUTO" CREATE
MUSTBENEW
PURGE"DATA
AUTO"TOF
NGVAIT
BLOCKED
VAR"FORMAT
READ"TRIM
WRITE"TRIM
WRITE"FOLD
WRITE" PAD
CRLF"BREAK

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

!4567890123456789012345678901
%B0000000000000000000000000001D#,
%B0000000000000000000000000010D#,
%B0000000000000000000000000100D#,
%B0000000000000000000000001000D#,
%B0000000000000000000000010000D#,
%B0000000000000000000000100000D#,
%B0000000000000000000001000000D#,
%B0000000000000000000010000000D#,
%B0000000000000000000100000000D#,
%B0000000000000000001000000000D#,
%B0000000000000000010000000000D#,
%B0000000000000000100000000000D#,
%B0000000000000001000000000000D#,
%B0000000000000010000000000000D#,
%B0000000000000100000000000000D#;

SET"FILE OPERATIONS.

LITERAL
INIT"FILEFCB = 0,

D-2

!
ASSIGN"FILENAME =
ASSIGNALOGICALFILENAME =
ASSIGN"OPENACCESS =
ASSIGN"OPENEXCLUSION =
ASSIGN"RECORDLENGTH =
ASSIGN"RECORDLEN =
ASSIGN"FILECODE =
ASSIGN"PRIMARYEXTENTSIZE =
ASSIGN"PRIEXT =
ASSIGN"SECONDARYEXTENTSIZE =
ASSIGN"SECEXT =
ASSIGN"BLOCKLENGTH =
ASSIGN"BLOCKBUFLEN =

1,
2,
3,
4,
5,
ASSIGN"RECORDLENGTH,
6,
7,
ASSIGN"PRIMARYEXTENTSIZE,
8,
ASSIGN"SECONDARYEXTENTSIZE,
9,
ASSIGN"BLOCKLENGTH,

SET"DUPFILE
SET"SYSTEMMESSAGES
SET"OPENERSPID
SET"RCVUSEROPENREPLY
SET"RCVOPENCNT
SET"RCVEOF

= 10,
= 11,
= 12,
= 13,
= 14,
= 15,

SET"'USERFLAG
SET"ABORT"XFERERR
SET"PRINT"ERR"MSG
SET"READ"TRIM

= 16,
= 17,
= 18,
= 19,

APPENDIX D: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS

SET"'WRITE"'TRIM = 20,
SET"'WRITE"'FOLD = 21,
SET"'WRITE"'PAD = 22,
SET"'CRLF"'BREAK = 23,
SET"' PROMPT = 24,
SET"'ERRORFILE = 25,
SET"'PHYSIOOUT = 26,
SET"'L<XH OOUT = 27,
SET"'COUNTXFERRED = 28,
SET"'ERROR = 29,
SET"'BREAKHIT = 30,
SET"'TRACEBACK = 31,
!
SET"'EDITREAD"'REPOSITION = 32,
!
FILE"'FILENAME"'ADDR = 33,
FILE"'LOGICALFILENAME"'ADDR = 34,
FILE"'FNUM"'ADDR = 35,
FILE"'ERROR"'ADDR = 36,
FILE"'USERFLAG"'ADDR = 37,
FILE"'SEQNUM"'ADDR = 38,
FILE"'FILEINFO = 39,
FILE"'CREATED = 40,
FILE"'FNUM = 41,
FILE"'SEQNUM = 42,
FILE"'ASSIGNMASKl = 43,
FILE"'ASSIGNMASK2 = 44,
FILE"'FWDLINKFCB = 45,
FILE"'BWDLINKFCB = 46,
!
SET"' CHECKSUM = 47,
!
FILE"'OPENERSPID"'ADDR = 48,

SET"'SYSTEMMESSAGESMANY = 49,
!
MAX"'OPERATION = 49,

FILE"'FILENAME = ASSIGN"'FILENAME + 256,
FILE"'LOGICALFILENAME = ASSIGN"'LOGICALFILENAME + 256,
FILE"'OPENACCESS = ASSIGN"'OPENACCESS + 256,
FILE"'OPENEXCLUSION = ASSIGN"'OPENEXCLUSION + 256,
FILE"'RECORDLEN = ASSIGN"'RECORDLENGTH + 256,
FILE"'FILECODE = ASSIGN"'FILECODE + 256,
FILE"'PRIEXT = ASSIGN"'PRIMARYEXTENTSIZE + 256,
FILE"'SECEXT = ASSIGN"'SECONDARYEXTENTSIZE + 256,
FILE"'BL~KBUFLEN = ASSIGN"'BL~KLENGTH + 256,
FILE"'DUPFILE = SET"'DUPFILE + 256,
FILE"'SYSTEMMESSAGES = SET"'SYSTEMMESSAGES + 256,
FILE"' OPENERSPID = SET"' OPENERSPID + 256,
FILE"'RCVUSEROPENREPLY = SET"'RCVUSEROPENREPLY + 256,
FILE"'RCVOPENCNT = SET"'RCVOPENCNT + 256,
FILE"'RCVEOF = SET"'RCVEOF + 256,
FILE"'USERFLAG = SET"'USERFLAG + 256,

D-3

APPENDIX D: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS

FILEAABORTAXFERERR
FILEAPRINTAERRAMSG
FILEAREADATRIM
FILEAWRITEATRIM
FILEAWRITEAFOLD
FILEAWRITEAPAD
FILEACRLFABREAK
FI LEA PROMPT
FILEAERRORFILE
FILEAPHYSIOOUT
FILEALOGIOOUT
FILEACOUNTXFERRED
FILEAERROR
FILEABREAKHIT
FILEATRACEBACK
FILEACHECKSUM
FILEASYSTEMMESSAGESMANY

SIO PROCEDURE ERRORS.

LITERAL
SIOERRAINVALIDPARAM
SIOERRAMISSINGFILENAME
SIOERRADEVNarsuPPORTED
SIOERRAINVALIDACCESS

SIOERRAINVALIDBUFADDR
SIOERRAINVALIDFILECODE

SIOERRABUFTOOSMALL

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

= 512,
= 513,
= 514,
= 515,

= 516,
= 517,

= 518,

SIOERRAINVALIDBLKLENGTH = 519,

SIOERRAINVALIDRECLENGTH = 520,

SIOERRAINVALIDEDITFILE = 521,
SIOERRAFILEALREADYOPEN = 522,

SIOERRAEDITREADERR = 523,
SIOERRAFILENGrOPEN = 524,
SIOERRAACCESSVIOLATION = 525,

SIOERRANOSTACKSPACE = 526,

SIOERRABLOCKINGREQD = 527,

SIOERRAEDITDIROVERFLCM = 528,
SIOERRAINVALIDEDITWRITE = 529,

D-4

SETAABORTAXFERERR
SETAPRINTAERRAMSG
SETAREADATRIM
SETAWRITEATRIM
SETAWRITEAFOLD
SETAWRITEAPAD
SETACRLFABREAK
SETA PROMPT
SETAERRORFILE
SETAPHYSIOOUT
SETALOGIOOUT
SETACOUNTXFERRED
SETA ERROR
SETABREAKHIT
SETA TRACEBACK
SETACHECKSUM
SETASYSTEMMESSAGESMANY

parameter is invalid.
! file name not supplied.

device not supported.

+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256,
+ 256;

access mode incompatible with
device.
buffer address not in lower 32k.
file code of file does not match
assigned file code.
buffer too small for edit write
(i.e., less than 1024 bytes) or
buffer not sufficient for record
length.
assign block length > block
buffer length.
record length = 0, record
length > maxrecordlength of
OPENAFILE, record length for
$RECEIVE file < 14, or record
length > 254 and variable
records specified.
edit file is invalid.
OPENAFILE called for file
already open.
edit read error.
file not open.
access not in effect for
requested operation.
insufficient stack space for
temporary buffer allocation.
block buffer required for
no-wait fold or pad.
edit write directory overflow.
write attempted after directory

APPENDIX D: SOURCE FOR $SYSTEM.SYSTEM.GPLDEFS

has been written.
SIOERRAINVALIDRECVWRITE = 530, write to $RECEIVE does not

follow read.
SIOERRACANTOPENRECV = 531, can't open $RECEIVE for break

monitoring.
SIOERRAIORESTARTED = 532, no-wait i/o restarted.
SIOERRAINTERNAL = 533, internal error.
SIOERRACHECKSUMCCMM = 534, common FCB checksum error.
SIOERRACHECKSUM = 535; file FCB checksum error.

D-5

APPENDIX E

SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

The following is the internal structure of the File Control Block
(FCB) for the sequential i/o procedures described in section 9.

Note: The FCB is included as a debugging aid only. Tandem Computers,
Incorporated, reserves the right to make changes to the FCB
structure. Therefore, this information must not be used to make
program references to elements within the File Control Block.

File Control Block (FCB) Structure Template.
!
STRUCT FCBATMPL (*) ;

BEGIN
INT SIZE,

NAMEOFFSET,
FNUM;

create/open options group.

INT· OPTI ONSl,
OPTIONS2,
FILENAME [0:11],

! create options.

FCODE,
PRIEXT,
SECEXT,

RECLEN,
BLKBUFLEN,
!

open options.

OPENEXCLUSION,

(0) size of FCB in words.
(1) word offset to name.
(2) GUARDIAN file number,

-1 = closed.

(3) assign options.
(4) assign options.
(5) Tandem file name.

(17) file code.
(18) primary extent size in pages.
(19) secondary extent size in

pages.
(20) logical record length.
(21) block length from ASSIGN,

block buffer length
following OPENAFILE.

(22) exclusion bits to OPEN.

E-1

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

E-2

OPENACCESS;

initializer group.

INT PUCBAPOINTER,
SAMEFILELINK;

beginning of sic groups.

INT FWDLINK,
BWDLINK,
ADDR,
CCMMONFCBADDR,
ERROR;

file FCB section.

INT DEVINFO,

OPENFLAGSl,

OPENFLAGS2,
XFERCNTLl,

XFERCNTL2,

DUPFCBADDR;

INT (32)
LINENO;

Data Transfer/Blocking

INT BLKBUFADDR,
BLKXFERCNT,

BLKREADCNT =
BLKXFERCNT,

BLKWRITECNT =
BLKXFERCNT,

BLKCNTXFERRED,

BLKCNTREAD =
BLKCNTXFERRED,

BLKCNTWRITTEN =
BLKCNTXFERRED,

BLKNEXTREC,

(23) access bits to OPEN.

(24) not used by SIO procedures.
(25) not used by SIO procedures.

(26) forward link.
(27) backward link.
(28) address of this FCB.
(29) address of common FCB.
(30) last error.

(31) file type, dev type, dev
subtype.

(32) access mode, flags parameters
to OPEN AF& ILE.

(33) flags parameters to OPENAFILE.
(34) iotype, sysbuflen, interactive

prompt.
(35) physioout, logioout, write

flush, retry count, edit write
control.

(36) FCB address of file where data
read from this file is to be
written.

(37) line number from edit read or
ordinal record count scaled by
1000.

Group.

(39) word address of block buffer.
(40) number of bytes to be

transferred between device and
target buffer.

(40) number of bytes to be read
from device to target buffer.

(40) number of bytes to be written
from target buffer to device.

I (41) number of bytes transferred
between device and target
buffer.

(41) number of bytes read into
target buffer.

(41) number of bytes written from
target buffer.

(4 2) (byte address) While blocking/
deblocking this is the address

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

USRBUFADDR,
USRWRCNT,

USRRDCNT,

TFOLDLEN,

USRCNTRD =
TFOLDLEN,

PHYSXFERCNT,

PHYSIOCNTXFERRED,

PHYSIOCNTRD =
PHYSIOCNTXFERRED,

PHYSIOCNTWR =
PHYSIOCNTXFERRED;

INT USERFLAG =
PUCBAPOINTER;

initializer group.

INT L(X;ICALFILENAME [0:3];

common FCB section.

Break Group.

INT BRKFCBADDR =
DEVINFO,

BRKMSG =
OPENFLAGSl,

BRKCNTL =
XFERCNTLl,

BRKLASTCMNER =
XFERCNTL2;

$RECEIVE Group.

of the next record pointer in
the block buffer.

(43) byte address of user buffer.
(44) <write count> parameter of

WRITEAFILE, <prompt count>
parameter of READAFILE.

(45) <max read count> parameter of
READAFILE.

(46) terminal write fold length
(= physical record length) •

(46) number of bytes read into user
buffer.

(47) transfer count value passed to
file system in SIOAPIO.

(48) count transferred value
returned from file system
procedure.

(48) count read value returned from
file system.

(48) count written value returned
from file system.

(24) flag word to be set by user.

(49) logical file name of this file
to INITIALIZER.

(31) FCB of file owning BREAK.

(32:33) BREAK message buffer.

(34) break control.

(35) BREAK last owner.

DUPFCBADDR skipped; was system messages mask.

INT RCVCNTL =
LINENO,

PRIMARYPID [-1:-1] =
LINENO,

BACKUPPID =
BLKNEXTREC,

(37) $RECEIVE control.

(38:41) Primary opener~s
<process id>.

(42:45) Backup opener~s
<process id>.

E-3

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

REPLYCODE =
TFOLDLEN;

Misc Group.

INT CCl1MCNTL =
PHYSXFERCNT,

OPRQSTFCBADDR =
PHYSIOCNTXFERRED,

OPRQSTCOUNT =
Lcx;ICALFILENAME,

ERRFCBADDR [-1:-1]
Lcx;ICALFILENAME;

INT PXCNT,

PRCNT = PXCNT,
PWCNT = PXCNT;

INT SYSMSGSl,
SYSMSGS2,
SYSMSGS3,
SYSMSGS4;

INT SPARE!;

INT CHECKSUM:
!

END; ! FCB"TMPL.

-- BIT FIELDS.

- ASSIGN BITS.

DEFINE

E-4

FILENAMESUPPLD = <0>#,
FCB"FILENAMESUPPLD

PRIEXTSUPPLD = <l>#,
FCB"PRIEXTSUPPLD

SECEXTSUPPLD = <2>#,
FCB"SECEXTSUPPLD

FCODESUPPLD = <3>#,
FCB"'FCODESUPPLD

EXCLUSIONSUPPLD = <4>#,
FCB"EXCLUSIONSUPPLD

=

! (46) $RECEIVE reply error code.

(47)

(48) FCB of file for which operator
console messages are being
displayed. (see NO"ERROR,
prompt) .

(49) Cou~t of number of operator
messages displayed. (see
NO"ERROR, prompt) •

(50) FCB address of file where
errors are to be reported.

(53) Length of partial record
transferred between user
buffer and block buffer.
Partial read record length.
Partial write record length.

(54) System messages to be
(55) passed back to caller.
(56)
(5 7)

(58) Unused FCB word.

(59) Checksum. If <> O~ check.

= FCB.OPTIONSl.FILENAMESUPPLD#,

= FCB.OPTIONSl.PRIEXTSUPPLD#,

= FCB.OPTIONSl.SECEXTSUPPLD#,

= FCB.OPTIONSl.FCODESUPPLD#,

= FCB.OPTIONSl.EXCLUSIONSUPPLD#,

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

ACCESSSUPPLD = <5>i,
FCBAACCESSSUPPLD = FCB.OPTIONSl.ACCESSSUPPLDi,

RRECLENSUPPLD = <6>i,
FCBARRECLENSUPPLD = FCB.OPTIONSl.RRECLENSUPPLDi,

BLOCKLENSUPPLD = <7>i,
FCBABLOCKLENSUPPLD = FCB.OPTIONSl.BLOCKLENSUPPLDi;

- OPEN EXCLUSION (FCBAOPENEXCLUSION}

DEFINE
EXCLUSIONFIELD = <9:ll>i,

FCBAEXCLUSIONFIELD = FCB.OPENEXCLUSION.EXCLUSIONFIELDi;

- OPEN ACCESS (FCBAOPENACCESS}

DEFINE
ACCESSFIELD = <3:5>i,

FCBAACCESSFIELD = FCB.OPENACCESS.ACCESSFIELDi;

- DEVINFO.

DEFINE
FILETYPE = <0:3>i,

FCBAFILETYPE = FCB.DEVINFOoFILETYPE#;
LITERAL

UNSTR = 0,
ESEQ = 1,
REL = 2,
KSEQ = 3,
EDIT = 4,
ODDUNSTR = 8;

DEFINE
STRUCTFILE = <2:3>i, ! <>0 means structured file.

FCBASTRUCTFILE = FCBADEVINFO.STRUCTFILEi;

DEFINE
DEVTYPE = <4:9>i,

FCBADEVTYPE = FCB.DEVINFO.DEVTYPEi;
LITERAL

PROCESS = 0,
OPERATOR = 1,
RECEIVE = 2,
DISC = 3,
MAGTAPE = 4,
PRINTER = 5,
TERMINAL = 6,
DATACCMM = 7,
CARDRDR = 8· ,

DEFINE
DEVSUBTYPE = <10:15>i,

FCBADEVSUBTYPE = FCB.DEVINFO.DEVSUBTYPEi;

E-5

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

OPEN FLAGS. (FCB.OPENFLAGSl

DEFINE
FILECREATED = <O>i, ! new file created.

FCBAFILECREATED = FCB.OPENFLAGSl.FILECREATED#;
DEFINE

ACCESS = <1:3>#, ! access mode.
FCBAACCESS = FCB.OPENFLAGSl.ACCESS#;

LITERAL
READACCESS = 1,
WRITEACCESS = 2,
READWRITEACCESS = 3;

allowable open flags 1 settings.
! 111111

LITERAL !0123456789012345
ALLCMEDAOPENFLAGSl = %B0000111111111111;

! default open flags 1 settings.
111111

LITERAL !0123456789012345
DEFAULTAOPENFLAGSl = %BOOOOOOOOOOOOOOOO;

!
! OPEN FLAGS. (FCB.OPENFLAGS2

DEFINE
ABORTONOPENERROR = <15>#, abend on fatal error during open.

FCBAABORTONOPENERROR = FCB.OPENFLAGS2.ABORTONOPENERROR#;
DEFINE

ABORTONXFERERROR = <14>#, ! abend on fatal error during data
! transfer.

FCBAABORTONXFERERROR = FCB.OPENFLAGS2.ABORTONXFERERRORi;
DEFINE

PRINTERRMSG = <13>#, ! print error message on fatal error.
FCBAPRINTERRMSG = FCB.OPENFLAGS2.PRINTERRMSG#;

DEFINE
AUTOCREATE = <12>#,

! 0 = don~t.
! 1 = do.
FCBAAUTOCREATE

! create a file if write access.

= FCB.OPENFLAGS2.AUTOCREATEi;
DEFINE

FILEMUSTBENEW = <11>#, ! if autocreate = 1, no such file may
! currently exist.

! 0 = old file is allowed.
! 1 = file must be new.
FCBAFILEMUSTBENEW = FCB.OPENFLAGS2.FILEMUSTBENEWi;

DEFINE
WRITEPURGEDATA = <lO>i, ! purge existing data.

! 0 = APPEND.
! 1 = PURGEDATA.
FCBAWRITEPURGEDATA = FCB.OPENFLAGS2.WRITEPURGEDATA#:

DEFINE
AUTorOF = <9>#, ! auto page eject on open for

E-6

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

DEFINE

! 0 = NO
! 1 = YES
FCB"AuTorOF

! printer/process.

= FCB.OPENFLAGS2.AUTorOF#;

NCMAITIO = <8>#, ! open with no-wait depth of 1.
! 0 = WAIT.
! 1 = NO-WAIT.
FCB"NCMAITIO = FCB.OPENFLAGS2.NCMAITIO#;

DEFINE
BLOCKEDIO = <7>#, ! blocked i/o.

! 0 = Nor BLOCKED
! 1 = BLOCKED
FCB"BLOCKEDIO = FCB.OPENFLAGS2.BLOCKEDIO#;

DEFINE
VARFORMAT = <6>#, ! variable length records.

! 0 = FIXED LENGTH
! 1 = VARIABLE LENGTH
FCB"VARFORMAT = FCB.OPENFLAGS2.VARFORMAT#;

DEFINE
READTRIM =

DEFINE

! 0 = NorRIM
! 1 = TRIM
FCB"READTRIM

WRITE TRIM =

DEFINE

! 0 = NorRIM
! 1 = TRIM
FCB"WRITETRIM

WRITEFOLD =
! 0 = TRUNCATE.
! 1 = FOLD.
FCB "WRITEFOLD

DEFINE
WRITEPAD =

FCB"WRITEPAD
DEFINE

<5>#, ! trim trailing blanks.

= FCB.OPENFLAGS2.READTRIM#;

<4>#, ! trim trailing blanks.

= FCB.OPENFLAGS2.WRITETRIM#;

<3>#, ! fold write transfers greater than
write record length bytes into
multiple records.

= FCB.OPENFLAGS2.WRITEFOLD#;

<2>#, ! pad record with trailing blanks.
= FCB.OPENFLAGS2.WRITEPAD#;

CRLFBREAK = <l>#, ! carriage return/line feed on break.
! 0 = NO CRLF ON BREAK.
! 1 = CRLF ON BREAK.
FCB"CRLFBREAK = FCB.OPENFLAGS2.CRLFBREAK#;

allowable open flags 2 settings.
111111

LITERAL !0123456789012345
ALLCMED"OPENFLAGS2 = %Bllllllllllllllll;

!
! default open flags 2 settings.

! 111111
LITERAL !0123456789012345

DEFAULT"OPENFLAGS2 = %B0101110001001111;

! TRANSFER CONTROL (FCB.XFERCNTLl)

E-7

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLCX::K FORMAT

DEFINE
ERRORSET = <0>#,

! ERROR SET INTO FCB VIA SETAFILE.
FCBAERRORSET = FCB.XFERCNTLl.ERRORSET#;

DEFINE
READiorYPE = <1:3>#,

0 = READ
! 1 = READUPDATE/REPLY
! 2 = EDITREAD
! 3 = WRITEREAD
! 7 = INVALID
FCBAREADIDrYPE = FCB.XFERCNTLl.READIDrYPE#;

LITERAL

DEFINE

STANDARDTYPE = O,
RECEIVETYPE = 1,
EDITTYPE = 2,
INTERACTIVETYPE = 3,
INVALIDTYPE = 7;

WRITEiarYPE = <4:6>#,
0 = WRITE

! 1 = READUPDATE/REPLY
! 2 = EDITWRITE
! 7 = INVALID
FCBAWRITEIDrYPE = FCB.XFERCNTLl.WRITEIDrYPE#;

DEFINE
SYSBUFLEN = <7:8>#, ! system buffer length / 1024.

FCBASYSBUFLEN = FCB.XFERCNTLl.SYSBUFLEN#;
DEFINE

PRCMPT = <9:15>#, ! interactive prompt character.
FCBAPROMPT = FCB.XFERCNTLl.PR~PT#;

TRANSFER CONTROL FCB.XFERCNTL2)

DEFINE
PHYSIOOUT

FCBAPHYSIOOUT
READIOOUT

FCB A READ I OOUT
WRITEIOOUT

FCBAWRITEIOOUT
LOGIOOUT =

FCBALOGIOOUT
WRITEFLUSH =

FCBAWRITEFLUSH
RETRY COUNT =

FCB ARETRYCOUNT
NOPARTIALREC

FCBANOPARTIALREC

= <0>#,

=
= <l>#,

=
= <2>#,

=
<1:2>#,

=
<3>#,

=
<4:5>#,

=
= <6>#,

=

! physical (read/write) i/o
! outstanding.
FCB.XFERCNTL2.PHYSIOOUT#,
! logical read i/o outstanding.
FCB.XFERCNTL2.READIOOUT#,
! logical write i/o outstanding.
FCB.XFERCNTL2.WRITEIOOUT#,
! logical i/o outstanding.
FCB.XFERCNTL2.LOGIOOUT#,
! block buffer flush operation in
! progress.
FCB.XFERCNTL2.WRITEFLUSH#,
! i/o retry counter.
FCB.XFERCNTL2.RETRYCOUNT#,
! blocks contain only full records.
FCB.XFERCNTL2.NOPARrIALREC#;

TRANSFER CONTROL (FCB.XFERCNTL2)

E-8

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

-- EDIT READ/WRITE CONTROL

DEFINE
EDDIRWIP

FCB"'EDDIRWIP
EDHALFSECTCNT

= <7>#, ! directory write in progress.
= FCB.XFERCNTL2.EDDIRWIP#,

= <8:11>#, ! number of half sectors written in

FCB"'EDHALFSECTCNT =

! current data page after next
! physical write.
FCB.XFERCNTL2.EDHALFSECTCNT#,

EDDATABUFLEN = <12:15>#, ! edit data buf size ~>>~
! EDDBUFSHIFT (8).

FCB"'EDDATABUFLEN
EDREPOSITION =

= FCB.XFERCNTL2.EDDATABUFLEN#,
<7>#, ! user is repositioning edit file

! (read op) •
FCB "'EDREPOSITI ON = FCB.XFERCNTL2.EDREPOSITION#;

WRITE"'FILE CONTROL OPERATION IN PR(X;RESS (FCB.PHYSXFERCNT

DEFINE
CNTLINPR(X;RESS = <0>#,

FCB"'CNTLINPR(X;RESS = FCB.PHYSXFERCNT.CNTLINPR(X;RESS#,
FORMSCNTLOP = <1:15>#,

FCB"'FORMSCNTLOP = FCB.PHYSXFERCNT.FORMSCNTLOP#;

BREAK CONTROL (COMMFCB.BRKCNTL

DEFINE
BRKLASTMODE = <0>#,

CG1MFCB"'BRKLASTMODE
BRKHIT = <l>#,

CG1MFCB"'BRKHIT
BRKFLUSH = <2>#,

CG1MFCB"'BRKFLUSH
BRKSTOLEN = <3>#,

! last break mode from SETMODE.
= CG1MFCB.BRKCNTL.BRKLASTMODE#,

! BREAK key has been typed but not
! tested.

= CG1MFCB.BRKCNTL.BRKHIT#,
! flush $RECEIVE BREAK message.

= CG1MFCB.BRKCNTL.BRKFLUSH#,

COMMFCB"'BRKSTOLEN =

! BREAK stolen away by another
! process.
CG1MFCB.BRKCNTL.BRKSTOLEN#,

BRKLDN = <8:15>#,
COMMFCB"'BRKLDN =

! logical device number of terminal.
CG1MFCB.BRKCNTL.BRKLDN#,

CG1MFCB"'BRKARMED =
CG1MFCB"'BRKFCBADDR#;

! BREAK is armed.

$RECEIVE CONTROL COMMFCB.RCVCNTL)

DEFINE
RCVDATAOPEN = <0>#,

CCMMFCB"'RCVDATAOPEN =
RCVBRKOPEN = <l>#,

CG1MFCB"'RCVBRKOPEN =
RCVOPENCNT = <2:3>#,

CG1MFCB"'RCVOPENCNT =

! $RECEIVE has been opened for data
! transfer.
CGfMFCB.RCVCNTL.RCVDATAOPEN#,
! $RECEIVE has been opened for BREAK
! message reception.
C<l'1MFCB.RCVCNTL.RCVBRKOPEN#,
! count of OPEN messages received.
C<l'1MFCB.RCVCNTL.RCVOPENCNT#,

E-9

APPENDIX E: SEQUENTIAL I/O FILE CONTROL BLOCK FORMAT

RCVSTATE = <4>#,
! 0 = NEED READUPDATE.
! 1 = NEED REPLY.
CCMMFCBARCVSTATE = CCMMFCB.RCVCNTL.RCVSTATE#,

RCVUSEROPENREPLY = <5>#, user will reply to OPEN messages.
! 0 = SIO REPLIES.
i 1 = USER REPLIES.
CCMMFCBARCVUSEROPENREPLY =

RCVPSUEDOEOF = <6>#,

! 0 = EAT CLOSE MESSAGE.

CCMMFCB.RCVCNTL.RCVUSEROPENREPLY#,
pseudo-EOF. (N/A if user wants
CLOSE messages)

! 1 = TURN LAST CLOSE MESSAGE INTO EOF.
CCMMFCBARCVPSUEDOEOF = CCMMFCB.RCVCNTL.RCVPSUEDOEOF#,

MONCPUMSG = <2:3>#, ! user CPU Up/Down messages.
CCMMFCBAMONCPUMSG = CCMMFCB.SYSMSGSl.MONCPUMSG#,

OPENMSG = <14>#, ! user wants OPEN messages.
CCMMFCBAOPENMSG = CCMMFCB.SYSMSGS2.0PENMSG#,

CLOSEMSG = <15>#, ! user wants CLOSE messages.
CCMMFCBACLOSEMSG = CCMMFCB.SYSMSGS2.CLOSEMSG#;

CCMMON CONTROL (CCMMFCB.CCMMCNTL

DEFINE
CREATEINPROGRESS = <0>#, 1 during call to OPENAFILE while

creating.

E-10

CCMMFCBACREATEINPROGRESS = CCMMFCB.CCMMCNTL.CREATEINPROGRESS#,
OPENINPROGRESS = <l>#, ! 1 during call to OPENAFILE.

CCMMFCBAOPENINPROGRESS = CCMMFCB.CCMMCNTL.OPENINPROGRESS#,
OPTYPE = <0:1>#, ! operation type.

CCMMFCBAOPTYPE = CCMMFCB.CCMMCNTL.OPTYPE#,
DEFAULTERRFILE = <2>#, defines default error reporting

! 0 = home terminal.
! 1 = operator ($0) •
CCMMFCBADEFAULTERRFILE =

TRACEBACK = <3>#,

! file.

CCMMFCB.CCMMCNTL.DEFAULTERRFILE#,
! 1 = trace back to caller's P when
! printing an error message.

CCMMFCBATRACEBACK = CCMMFCB.CCMMCNTL.TRACEBACK#;

APPENDIX F

ASCII CHARACTER SET

The table on the following pages lists the characters in the
ASCII character set, with their meanings and their octal values.

Two octal characters fit into a 16-bit word. Because of shifting,
the octal value of a character depends on whether it is in the
left-hand or the right-hand byte of the word. To determine the
octal value of a word containing two ASCII characters, add the
"left byte" value of the left-hand character to the "right byte"
value of the right-hand character.

For example, the octal value of "AB" is:

040400
+ 000102

040502

("left byte" value of "A")
("right byte" value of "B")

(total)

F-1

APPENDIX F: ASCII CHARACTER SET

1

Character

F-2

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

BS
HT
LF
VT
FF
CR
so
SI

OLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC
FS
GS
RS
us

SP

"
i
$
%
&
~

Octal Value
(left byte)

000000
000400
001000
001400
002000
002400
003000
003400

004000
004400
005000
005400
006000
006400
007000
007400

010000
010400
011000
011400
012000
012400
013000
013400

014000
014400
015000
015400
016000
016400
017000
017400

020000
020400
021000
021400
022000
022400
023000
023400

Octal Value
(right byte)

000000
000001
000002
000003
000004
000005
000006
000007

000010
000011
000012
000013
000014
000015
000016
000017

000020
000021
000022
000023
000024
000025
000026
000027

000030
000031
000032
000033
000034
000035
000036
000037

000040
000041
000042
000043
000044
000045
000046
000047

Meaning

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tabulation
Line feed
Vertical tabulation
Form feed
Carriage return
Shift out
Shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Space
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe

APPENDIX F: ASCII CHARACTER SET

Character Octal Value Octal Value Meaning
(left byte) (right byte)

(024000 000050 Opening parenthesis
) 024400 000051 Closing parenthesis
* 025000 000052 Asterisk
+ 025400 000053 Plus

' 026000 000054 Comma
- 026400 000055 Hyphen (minus) . 027000 000056 Period (decimal point)
I 027400 000057 Right slant

0 030000 000060 Zero
1 030400 000061 One
2 031000 000062 Two
3 031400 000063 Three
4 032000 000064 Four
5 032400 000065 Five
6 033000 000066 Six
7 033400 000067 Seven

8 034000 000070 Eight
9 034400 000071 Nine . 035000 000072 Colon .

i ; 035400 000073 Semicolon
< 036000 000074 Less than
= 036400 000075 Equals
> 037000 000076 Greater than
? 037400 000077 Question mark

@ 040000 000100 Commercial at
A 040400 000101 Upper-case A
B 041000 000102 Upper-case B
c 041400 000103 Upper-case c
D 042000 000104 Upper-case D
E 042400 000105 Upper-case E
F 043000 000106 Upper-case F
G 043400 000107 Upper-case G

H 044000 000110 Upper-case H
I 044400 000111 Upper-case I
J 045000 000112 Upper-case J
K 045400 000113 Upper-case K
L 046000 000114 Upper-case L
M 046400 000115 Upper-case M
N 047000 000116 Upper-case N
0 047400 000117 Upper-case 0

F-3

APPENDIX F: ASCII CHARACTER SET

Character Octal Value Octal Value Meaning
I {left 6yte~ {rignt 6yte)

p 050000 000120 Upper-case p
Q 050400 000121 Upper-case Q
R 051000 000122 Upper-case R
s 051400 000123 Upper-case s
T 052000 000124 Upper-case T
u 052400 000125 Upper-case u
v 053000 000126 Upper-case v
w 053400 000127 Upper-case w

x 054000 000130 Upper-case x
y 054400 000131 Upper-case y
z 055000 000132 Upper-case z
[055400 000133 Opening bracket
\ 056000 000134 Left slant
] 056400 000135 Closing bracket
A 057000 000136 Circumflex

057400 000137 Underscore

... 060000 000140 Grave accent
a 060400 000141 Lower-case a
b 061000 000142 Lower-case b
c 061400 000143 Lower-case c
d 062000 000144 Lower-case d
e 062400 000145 Lower-case e
f 063000 000146 Lower-case f
g 063400 000147 Lower-case g

h 064000 000150 Lower-case h
i 064400 000151 Lower-case i
j 065000 000152 Lower-case j
k 065400 000153 Lower-case k
1 066000 000154 Lower-case 1
m 066400 000155 Lower-case m
n 067000 000156 Lower-case n
0 067400 000157 Lower-case 0

p 070000 000160 Lower-case p
q 070400 000161 Lower-case q
r 071000 000162 Lower-case r
s 071400 000163 Lower-case s
t 072000 000164 Lower-case t
u 072400 000165 Lower-case u
v 073000 000166 Lower-case v
w 073400 000167 Lower-case w

F-4

APPENDIX F: ASCII CHARACTER SET

Character Octal Value Octal Value Meaning
(left byte) (right byte)

x 074000 000170 Lower-case x
y 074400 000171 Lower-case y
z 075000 000172 Lower-case z

1
075400 000173 Opening brace
076000 000174 Vertical line
076400 000175 Closing brace ... 077000 000176 Tilde

DEL 077400 000177 Delete

F-5

INDEX

ABEND procedure 3.2-3
Access Control Block (ACB) 2.1-22
Access coordination 2.1-11
Accessing card readers 2.8-4
Accessing line printers 2.6-2
Accessing tape units 2.7-3
Accessing terminals 2.5-4

termination when reading 2.5-5
ACTIVATEPROCESS procedure 3.2-4
Active state, of a process 3.1-6
ADDUSER command 7.1-10, 7.1-12
Advanced checkpointing 5.4-1
Advanced file system 2.11-1
Advanced memory management 8.2-1
ALLOCATESEGMENT procedure 8.1-4
ALTERPRIORITY procedure 3.2-5
Ancestor process 3.1-13
ARMTRAP procedure 6-4
ASCII character set F-1
ASSIGN command 11-17

assign message 11-20
Attributes summary

FCB 9-64
AUTOANSWER mode for 5508 printer 2.6-6
AWAITIO procedure 2.3-7

Backup process 1-8, 2.9-10, 3.1-12, 5.1-1, 5.3-1
Break feature 2.5-25

break mode 2.5-29
BREAK system message 2.5-26
using BREAK (multiple processes) 2.5-28
using BREAK (single process) 2.5-26

Buffering
i/o system 2.1-26
resident 2.11-5

CANCEL procedure 2.3-11
CANCELREQ procedure 2.3-12
CANCELTIMEOUT procedure 3.2-6

Index-1

INDEX

Card readers 2.8-1
accessing 2.8-4
applicable procedures 2.8-1
characteristics 2.8-1
error recovery 2.8-5
read modes 2.8-2

ASCII 2.8-2
column-binary
packed-binary

2.8-3
2.8-4
5.2-3

5.2-5
CHECKCLOSE procedure
CHECKMONITOR procedure

actions 5.2-7
CHECKOPEN procedure 5.2-9
CHECKPOINT procedure 5.2-12
Checkpointing 5.3-14

action for CHECKPOINT failure 5.3-21
advanced checkpointing 5.4-1

backup open 5.4-1
file synchronization information 5.4-2

considerations for no-wait i/o 5.3-21
creating a descendant process (pair) 5.3-28
guidelines for checkpointing 5.3-15
multiple disc updates 5.3-21
opening a file during processing 5.3-27
system messages 5.3-22
takeover by backup 5.3-25

Checkpointing facility 1-14, 5.1-1
data buffers 5.1-5
data stack 5.1-5
Nonstop overview 5.1-2
sync blocks 5.1-5
using the checkpointing facility 5.3-1

file opening 5.3-13
main processing loop 5.3-13
startup for named process pairs 5.3-1
startup for non-named process pairs 5.3-9

Checkpointing procedures 5.1-1, 5.2-1
CHECKCLOSE 5.2-3
CHECKMONITOR 5.2-5
CHECKOPEN 5.2-9
CHECKPOINT 5.2-12
CHECKPOINTMANY 5.2-14
CHECKSWITCH 5.2-17
GETSYNCINFO 5.2-18
MONITORCPUS 5.2-19
PROCESSORSTATUS 5.2-21
RESETSYNC 5.2-22
SETSYNCINFO 5.2-23

CHECKPOINTMANY procedure 5.2-14
Checksum processing 2.5-22
CHECKSWITCH procedure 5.2-17
CHECKABREAK procedure 9-4

Index-2

CHECKAFILE procedure 9-5
example 9-11
file types 9-7
operations 9-5

CLEAR command 11-25
CLOSE procedure 2.3-13
CLOSEAFILE procedure 9-12
Closing a file 2.1-27
Command Interpreter 1-18, 11-1
Command Interpreter/program interface 11-1
Commands, Command Interpreter

ADDUSER 7.1-10, 7.1-12
ASSIGN 11-17
CLEAR 11-25
DEFAULT 7.1-10, 7.1-12
DELUSER 7.1-10, 7.1-12
LOGOFF 7.1-10
LOGON 7 .1-10
PARAM 11-22
PASSWORD 7.1-10, 7.1-12
REMOTEPASSWORD 7.1-10
RUN 11-12
USERS 7.1-10, 7.1-12
VOLUME 7.1-10, 7.1-12

Commands, FUP
GIVE 7.1-10, 7.1-13
INFO 7.1-10, 7.1-13
LICENSE 7.1-10, 7.1-13
REVOKE 7.1-10, 7.1-13
SECURE 7.1-10, 7.1-13

Communicating with a new process 3.3-1
CONTIME procedure 4-2
CONTROL procedure 2.3-15
CONTROLBUF for 5520 printer 2.6-10
CONTROLBUF procedure 2.3-20
Conversion modes, 7-track tape

ASCIIBCD 2.7-18
BINARYlTOl 2.7-23
BINARY2T03 2.7-22
BINARY3T04 2.7-21
selecting a conversion mode 2.7-23

CONVERTPROCESSNAME procedure 3.2-7
CREATE procedure 2.3-23
CREATEPROCESSNAME procedure 3.2-8
CREATEREMOTENAME procedure 3.2-10
Creating a new process 1-5, 3.1-5, 3.3-1
Creator 1-5, 3.1-9
Creator accessor ID 7.1-5
CREATORACCESSID procedure 7.2-2
CTRLANSWER mode for 5508 printer 2.6-6

DAVFU 2.6-7
DEALLOCATESEGMENT procedure 8.1-6
Debug facility 1-18

INDEX

Index-3

INDEX

DEBUG procedure 4-3
Decorations, formatter

condition specifiers
M, minus 10-44
N, null 10-44
o, overflow 10-44
P, plus 10-44
Z, zero 10-44

location specifiers
A, absolute 10-44
F, floating 10-44
P, prior 10-44

DEFAULT command 7.1-10, 7.1-12
Default security for disc files 7.1-7
Default system 11-9
Default volume and subvolume 11-4
DEFINEPOOL procedure 8.1-7
DELAY procedure 3.2-11
Deleting a process 1-6, 3.1-7
DELUSER command 7.1-10, 7.1-12
Descriptors, formatter

non-repeatable edit descriptors 10-20
repeatable edit descriptors 10-26

Device names 2.2-3, 2.3-52
Device numbers, logical 2.2-3
Device types and subtypes 2.3-27
DEVICEINFO procedure 2.3-26
Disc error recovery

path errors 2.1-28
Disc file security 7.1-6

adopting owner ID 7.1-8
determining access permission 7=1-7

Disc files 2.1-1
Display message 11-28

Echo 2.5-22
Edit descriptors, formatter 10-17

"A", data transfer 10-26
"D", data transfer 10-28
"E", data transfer 10-28
"F", data transfer 10-31
"G", data transfer 10-32
"I", data transfer 10-34
"L", data transfer 10-35
"M", data transfer 10-37
("), quotation marks, literal 10-21
('),apostrophes, literal 10-21
/, buffer control 10-24
:, buffer control 10-24
BN, blank interpretation control 10-24
BZ, blank interpretation control 10-24
H, Hollerith 10-21
P, implied decimal point 10-22
S, optional plus control 10-23

Index-4

SP, optional plus control 10-23
SS, optional plus control 10-23
T, tab absolute 10-20
TL, tab left 10-20
TR, tab right 10-20
x, tab right 10-20

Edit files 2.3-30, 2.3-34
EDITREAD procedure 2.3-30
EDITREADINIT procedure 2.3-34
Elapsed timeout 3.1-19
Error indication 2.1-35, 2.4-1
Error recovery 2.1-37, 2.4-28
Errors

5520 2.6-12
file system 2.4-1, B-1
FORMATDATA procedure 10-9
NEWPROCESS and NEWPROCESSNOWAIT 3.2-32
sequential i/o procedures 9-38

Example Nonstop program 12.1-1
Executing a process 3.1-6
Execution priority 3.1-7, 3.4-1
Extended memory segments 8.1-1

space management within 8.1-3
External declarations 1-18

sequential i/o D-1

FCB Attributes
summary 9-64

File access 2.1-7
disc files 2.1-8
processes 2.1-10
terminals 2.1-10

File Control Block (FCB), in file system 2.1-22
File Control Block (FCB), in sequential

i/o procedures 9-41, E-1
File management procedures

RESERVELCBS 2.11-3
File names 2.2-1, 11-2

$0 2.2-6
$RECEIVE 2.2-3
default volume and subvolume 11-4
device names 2.2-3
disc file names 2.2-2
external form 2.2-1, 11-2
file name expansion 11-4
internal form 2.2-1, 11-2

. logical device numbers 2.2-3
network file names 2.2-7
process ID 2.2-4

network form 2.2-8
obtaining a process ID 2.2-5
process name form 2.2-4
timestamp form 2.2-4

INDEX

Index-5

INDEX

File security checking 2.3-70
disc files 7.1-6

File System 1/10
file system 1/10
File system 1-10, 2.1-1

advanced features 2.11-1
File system errors 2.4-1, B-1

error categories 2.4-1
error recovery 2.4-29

File system implementation 2.1-16
automatic disc path error recovery 2.1-28
buffering 2.1-26
file and i/o system structure 2.1-16
file closing 2.1-27
file opening 2.1-21
file system procedure execution 2.1-21
file transfers 2.1-24
mirror volumes 2.1-34

File system procedures 2.11-1, 2.3-1
<buffer> parameter 2.3-5
<file number> parameters 2.3-4
<tag> parameters 2.3-5
<transfer count> parameter 2.3-5
access mode (disc files) 2.3-6
AWAITIO 2.3-7
CANCEL 2.3-11
CANCELREQ 2.3-12
characteristics 2.3-3
CLOSE 2.3-13
completion 2.3-4
condition codes 2.3-6
CONTROL 2.3-15
CONTROLBUF 2.3-20
CREATE 2.3-23
DEVICEINFO 2.3-26
EDITREAD 2.3-30
EDITREADINIT 2.3-34
errors 2.3-6, 2.4-1
FILEERROR 2.3-36
FILEINFO 2.3-39
FNAMECOLLAPSE 2.3-43
FNAMECOMPARE 2.3-45
FNAMEEXPAND 2.3-48
GETDEVNAME 2.3-52
GETSYSTEMNAME 2.3-54
LASTRECEIVE 2.3-55
LOCATESYSTEM 2.3-57
LOCKFILE 2.3-58
MONITORNET 2.3-61
MONITORNEW 2.3-62
NEXTFILENAME 2.3-63
OPEN 2.3-65
POSITION 2.3-73
PURGE 2.3-75

Index-6

READ 2.3-76
READUPDATE 2.3-79
RECEIVEINFO 2.3-82
REFRESH 2.3-85
REMOTEPROCESSORSTATUS 2.3-86
RENAME 2.3-88
REPLY 2.3-89
REPOSITION 2.3-91
SAVEPOSITION 2.3-92
security checking (disc files) 2.3-6
SETMODE 2.3-93
SETMODENOWAIT 2.3-95
UNLOCKFILE 2.3-107
WRITE 2.3-108
WRITEREAD 2.3-110
WRITEUPDATE 2.3-112

FILEERROR procedure 2.3-36
FILEINFO procedure 2.3-39, 2.4-1
Files 2.1-1

disc files 2.1-1
interprocess communication 2.1-4
non-disc devices 2.1-3
operator console 2.1-7

FIXSTRING procedure 4-4
considerations 4-8
implementing an FC command 4-8
subcommands 4-5

Floating priorities 3.1-7
FNAMECOLLAPSE procedure 2.3-43
FNAMECOMPARE procedure 2.3-45
FNAMEEXPAND procedure 2.3-48

expansion summary 2.3-46
network file names 2.3-49

Format, formatter 10-14
FORMATCONVERT procedure 10-2
FORMATDATA procedure 10-5
Formatter 10-1

format characteristics 10-14
"A" edit descriptor 10-26
"D" edit descriptor 10-28
"E" edit descriptor 10-28
"F" edit descriptor 10-31
"G" edit descriptor 10-32
"I" edit descriptor 10-34
"L" edit descriptor 10-35
"M" edit descriptor 10-37
blank descriptors 10-24
buffer control descriptors 10-24
decorations 10-44
edit descriptors 10-17
field blanking modifiers 10-40
fill character modifier 10-40
justification modifiers 10-41
literal descriptors 10-21

INDEX

Index-7

INDEX

modifiers 10-40
non-repeatable edit descriptors 10-20
optional plus descriptors 10-23
overflow character modifier 10-41
repeatable edit descriptors 10-26
scale factor descriptor 10-22
symbol substitution modifier 10-42
tabulation descriptors 10-20

FORMATCONVERT procedure 10-2
FORMATDATA procedure 10-5
introduction 10-1
list-directed formatting 10-48

input 10-48
output 10-49

GETCRTPID procedure 3.2-12
GETDEVNAME procedure 2.3-52
GETPOOL procedure 8.1-8
GETPPDENTRY procedure 3.2-13
GETREMOTECRTPID procedure 3.2-15
GETSYNCINFO procedure 5.2-18
GETSYSTEMNAME procedure 2.3-54
GIVE command (FUP) 7.1-10, 7.1-13
GIVE~BREAK procedure 9-14
Group manager 7.1-2

HEAPSORT procedure 4-11
Home terminal 1-6, 3.1-18

I/O structure
hardware 2.1-16
software 2.1-18

INFO command (FUP) 7.1-10, 7.1-13
INITIALIZER procedure 4-13, 9-46

backup process 4-16
primary process 4-15

Interface with INITIALIZER and ASSIGNS 9-46
considerations 9-49
INITIALIZER-related defines 9-46
setting file characteristics 9-49
usage example 9-50

Interprocess communication 2.1-4, 2.9-1
$RECEIVE file 2.9-7

communication type 2.9-9
no-wait i/o 2.9-7
system message transfer 2.9-8

applicable procedures 2.9-4
characteristics 2.9-1
communication synchronization 2.9-6
error recovery 2.9-31
example 2.9-19
one-way communication 2.9-5
system messages 2.9-25
two-way communication 2.9-5

Index-8

Introduction to GUARDIAN 1-1

LASTADDR procedure 4-17
LASTRECEIVE procedure 2.3-55
LICENSE command (FUP) 7.1-10, 7.1-13
Licensing 7.1-9
Line printers 2.6-1

accessing 2.6-2
applicable procedures 2.6-2
characteristics 2.6-1
CONTROL operations 2.6-17
CONTROLBUF operations 2.6-18
error recovery 2.6-15
forms control 2.6-3
model 5508 programming considerations 2.6-5
model 5520 condensed print 2.6-11
model 5520 expanded print 2.6-11
model 5520 programming considerations 2.6-6
path error recovery 2.6-16
SETMODE operations 2.6-18
using model 5508 over phone lines 2.6-6/14
using model 5520 over phone lines 2.6-14

Link control blocks (LCB's) 2.11-1
LOCATESYSTEM procedure 2.3-57
LOCKDATA procedure 8.2-2
LOCKFILE procedure 2.3-58
Locking disc files 2.1-12
LOCKMEMORY procedure 8.2-5
Logging on 7.1-4
Logical device numbers 2.2-3
Logical Device Table 2.1-21
LOGOFF command 7.1-10
LOGON command 7.1-10
LOOKUPPROCESSNAME procedure 3.2-16

network use 3.2-17
Loop detection, in a process 3.1-7

Magnetic tapes 2.7-1
accessing 2.7-3
applicable procedures 2.7-3
BOT marker 2.7-5
characteristics 2.7-1
concepts 2.7-4
CONTROL operations 2.7-17
EOT marker 2.7-5
error recovery 2.7-14
files 2.7-5
records 2.7-6
seven-track tape conversion 2.7-18
short write mode 2.7-24

Memory management procedures 8.1-1
advanced 8.2-1
ALLOCATESEGMENT 8.1-4
DEALLOCATESEGMENT 8.1-6

INDEX

Index-9

INDEX

DEFINEPOOL 8.1-7
GETPOOL 8.1-8
LOCKDATA 8.2-2
LOCKMEMORY 8.2-5
PUTPOOL 8.1-9
UNLOCKMEMORY 8.2-8
USESEGMENT 8.1-10

Memory segments, extended 8.1-1
space management within 8.1-3

Message Format
operator console 2.10-3

Mirror volumes 2.1-34
Modems 2.5-23

accessing 5508 line printers over 2.6-6
Modifiers, formatter

BN, blank null 10-40
BZ, blank zero 10-40
FL, fill character 10-40
LJ, left justification 10-42
oc, overflow character 10-41
RJ, right justification 10-42
SS, symbol substitution 10-42

MOM procedure 3.2-18
MONITORCPUS procedure 5.2-19
MONITORNET procedure 2.3-61
MONITORNEW procedure 2.3-62
MYPID procedure 3.2-20
MYSYSTEMNUMBER procedure 3.2-21
MYTERM procedure 3.2-22

Named process pairs 5.3-1
process startup for 5.3-1

Named processes 3.1-12
ancestor process 3.1-13
backup process 3.1-12
operation of the PPD 3.1-12
primary process 3.1-12

Networks, EXPAND
file names 2.2-7, 11-9
process access 7.1-17
programmatically logging on 7.1-17
security 7.1-14

NEWPROCESS procedure 3.2-23
errors 3.2-32

NEWPROCESSNOWAIT procedure 3.2-28
errors 3.2-32

NEXTFILENAME procedure 2.3-63
No-wait CHECKOPEN feature 5.2-10
No~wait i/o 2.1-13

with sequential i/o procedures 9-63
No-wait OPEN feature 2.3-69
Non-named process pairs 5.3-1

process startup for 5.3-9
Non-named processes 3.1-8

Index-10

Non-retryable operations 2.1-28
Nonstop operation 1-1
Nonstop programs 1-8, 2.9-9, 5.1-1, 5.3-1

example 12.1-1
NOAERROR procedure 9-56

error handling 9-58
NUMIN procedure 4-18
NUMOUT procedure 4-21

OPEN procedure 2.3-65
Opening a file 2.1-21

in a Nonstop program 5.3-13
OPENAFILE procedure 9-15

example 9-20
flags 9-16

Operator console 2.1-7
Operator Console 2.10-1
Operator console 2.10-1

applicable procedures 2.10-2
characteristics 2.10-1
error recovery 2.10-3
logging to an application process 2.10-3
message format 2.10-3
writing a message 2.10-2

Operator, system 7.1-2

Paired opening of files 2.9-10 1 5.1-3, 5.3-13
PARAM command 11-22

param message 11-23
Passing parameter information 11-11
PASSWORD command 7.1-10, 7.1-12
Passwords 7.1-5
Path error recovery 2.1-28, 2.4-29

for card readers 2.8-7
for line printers 2.6-16
for magnetic tapes 2.7-16
for operator console 2.10-3
for process files 2.9-31
for terminals 2.5-36

POSITION procedure 2.3-73
Primary process 1-8, 2.9-10, 3.1-12, 5.1-1, 5.3-1
Printers 2.6-1

accessing 2.6-2
applicable procedures 2.6-2
characteristics 2.6-1
CONTROL operations 2.6-17
CONTROLBUF operations 2.6-18
error recovery 2.6-15
forms control 2.6-3
model 5508 programming considerations 2.6-5
model 5520 programming considerations 2.6-6
path error recovery 2.6-16
SETMODE operations 2.6-18
using model 5520 over phone lines 2.6-6, 2.6-11

INDEX

Index-11

INDEX

Priorities, execution 3.1-6, 3.4-1
floating 3.1-7

PRIORITY procedure 3.2-34
Procedures

checkpointing 5.2-1
file system 2.11-1, 2.3-1
formatter 10-1
memory management 8.1-1, 8.2-1
process control 3.2-1
security system 7.2-1
sequential i/o 9-1
syntax summary A-1
trap handling 6-4
utility 4-1

Process 3.1-1
creation 1-5, 3.1-5, 3.3-1
deletion 1-6, 3.1-7
execution 3.1-6
startup for named process pairs 5.3-1
startup for non-named process pairs 5.3-9
states 3.1-5
structure 1-7

Process accessor ID 7.1-5
Process control 1-5, 3.1-1
Process control procedures

ABEND 3.2-3
ACTIVATEPROCESS 3.2-4
ALTERPRIORITY 3.2-5
CANCELTIMEOUT 3.2-6
CONVERTPROCESSNAME 3.2-7
CREATEPROCESSNAME 3.2=8
CREATEREMOTENAME 3.2-10
DELAY 3.2-11
GETCRTPID 3.2-12
GETPPDENTRY 3.2-13
GETREMOTECRTPID 3.2-15
LOOKUPPROCESSNAME 3.2-16
MOM 3.2-18
MYPID 3.2-20
MYSYSTEMNUMBER 3.2-21
MYTERM 3.2-22
NEWPROCESS 3.2-23
NEWPROCESSNOWAIT 3.2-28
PRIORITY 3.2-34
PROCESSINFO 3.2-35
PROGRAMFILENAME 3.2-38
SETLOOPTIMER 3.2-39
SETMYTERM 3.2-42
SETSTOP 3.2-43
SIGNALTIMEOUT 3.2-44
STEPMOM 3.2-46
STOP 3.2-48
SUSPENDPROCESS 3.2-49

Process files 2.9-9

Index-12

Process ID 1-6, 2.2-4, 3.1-8
obtaining a 2.2-5

Process name form of process ID
local 1-6, 2.2-4, 3.1-8
network 1-6, 2.2-4, 3.1-9

Process pairs 1-8, 3.1-10
Process-Pair Directory (PPD) 1-6, 3.1-12
PROCESSACCESSID procedure 7.2-3
PROCESSINFO procedure 3.2-35
Processor failure 1-8, 3.1-14, 5.2-1, 5.3-22
PROCESSORSTATUS procedure 5.2-21
Program 3.1-1
PROGRAMFILENAME procedure 3.2-38
Programmatically logging on 7.1-17
Pseudo-polling for terminals 2.5-19

simulation of 2.5-20
PURGE procedure 2.3-75
PUTPOOL procedure 8.1-9

READ procedure 2.3-76
Reading parameter messages 11-26
READUPDATE procedure 2.3-79
Ready list 3.1-6
Ready state, of a process 3.1-6
READAFILE procedure 9-21
RECEIVEINFO procedure 2.3-82
REFRESH procedure 2.3-85
Remote passwords 7.1-15
REMOTEPASSWORD command 7.1-10
REMOTEPROCESSORSTATUS procedure 2.3-86
RENAME procedure 2.3-88
REPLY procedure 2.3-89
REPOSITION procedure 2.3-91
Requester ID 2.1-28
Requesters 1-7, 2.9-19, 12.1-1
Reserved link control blocks 2.11-1
RESERVELCBS procedure 2.11-3
RESETSYNC procedure 5.2-22
Resident buffering 2.11-5
Retryable operations 2.1-28, 2.4-29
REVOKE command (FUP) 7.1-10, 7.1-13
RUN command 11-12

SAVEPOSITION procedure 2.3-92
SECURE command (FUP) 7.1-10, 7.1-13
Security system 1-17, 7.1-1

accessor !D's 7.1-5
default security for disc files 7.1-7
defining users 7.1-3
disc file security 2.3-69, 7.1-6

INDEX

Index-13

INDEX

interface to 7.1-10, 7.2-1
Command Interpreter 7.1-10
file system procedures 7.1-11, 7.2-4
FUP 7.1-10
process control procedures 7.1-11, 7.2-7
security system procedures 7.1-11, 7.2-2, 7.2-8

levels of security 7.1-6
licensing 7.1-9
local and remote processes 7.1-7
logging on 7.1-4
naming conventions 7.1-4
passwords 7.1-5
procedures 7.2-1

CREATORACCESSID 7.2-2
PROCESSACCESSID 7.2-3
SETMODE 2.3-93, 7.2-4
SETMODENOWAIT 2.3-95, 7.2-4
SETSTOP 3.2-43, 7.2-7
USERIDTOUSERNAME 7.2-8
USERNAMETOUSERID 7.2-9
VERIFYUSER 7.2-10

system users 7.1-2
Segments, extended memory 8.1-1

space management within 8.1-3
Sequential i/o procedures 9-1

CHECKABREAK 9-4
CHECKAFILE 9-5
CLOSEAFILE 9-12
errors 9-38
FCB structure 9-41, E-1
GIVEABREAK 9-14
initializing the file FCB 9-42
interface with INITIALIZER and ASSIGNS 9-46

considerations 9-49
INITIALIZER-related defines 9-46
summary 9-53

NOAERROR 9-56
OPENAFILE 9-15
READAFILE 9-21
SETAFILE 9-23
TAKEABREAK 9-33
usage example

with INITIALIZER and ASSIGN messages 9-50
without INITIALIZER procedure 9-54

WAITAFILE 9-34
WRITEAFILE 9-36

Servers 1-7, 2.9-19, 12.1-1
SETLOOPTIMER procedure 3.2-39
SETMODE functions table 2.3-97
SETMODE procedure 2.3-93

functions 2.3-97
security aspects 7.2-4

Index-14

SETMODENOWAIT procedure 2.3-95
functions 2.3-97
security aspects 7.2-4

SETMYTERM procedure 3.2-42
SETSTOP procedure 3.2-43

security aspects 7.2-7
SETSYNCINFO procedure 5.2-23
SETAFILE procedure 9-23

operations 9-24
Seven-track tape conversion modes

ASCIIBCD 2.7-18
BINARYlTOl 2.7-23
BINARY2T03 2.7-22
BINARY3T04 2.7-21
selecting a conversion mode 2.7-23

SHIFTSTRING procedure 4-23
Short write mode, for magnetic tapes 2.7-24
SIGNALTIMEOUT procedure 3.2-44
Startup message 11-14
STEPMOM procedure 3.2-46
STOP procedure 3.2-48
Super ID 7.1-2
Suspended state, of a process 3.1-6
SUSPENDPROCESS procedure 3.2-49
Sync block 5.1-5
Sync ID 2.1-28, 2.9-12
Syntax summary, of procedures A-1
System messages 1-13, 2.9-25, 3.1-14, 5.3-22, c-1
System name 2.2-8, 2.3-54
System number 2.2-7
System operator 7.1-2

TAKEABREAK procedure 9-33
Tapes 2.7-1

accessing 2.7-3
applicable procedures 2.7-3
BOT marker 2.7-5
characteristics 2.7-1
concepts 2.7-4
CONTROLBUF operations 2.7-18
EQT marker 2.7-5
error recovery 2.7-14
files 2.7-5
records 2.7-6
seven-track tape conversion 2.7-18
short write mode 2.7-24

Terminals 2.5-1
accessing 2.5-4
applicable procedures 2.5-3
characteristics 2.5-1
checksum processing 2.5-22
configuration parameters 2.5-36
CONTROL operations 2.5-37

INDEX

Index-15

INDEX

conversational mode 2.5-8
forms control 2.5-14
interrupt characters 2.5-10
line termination character 2.5-9

echo 2.5-22
error recovery 2.5-34
moderns 2.5-23
page mode 2.5-16

interrupt characters 2.5-16
page termination character 2.5-16
pseudo-polled terminals 2.5-19
simulation of pseudo-polling 2.5-20

SETMODE operations 2.5-37
timeouts 2.5-23
transfer modes 2.5-6
transparency mode 2.5-22

TIME procedure 4-24
Timeout

elapsed time 3.1-19
for no-wait i/o 2.1-14
for process suspension 3.1-7
for terminals 2.5-23
process execution time 3.1-7

Timestamp form of process ID 1-6, 2.2-4, 3.1-8
TIMESTAMP procedure 4-25
TOSVERSION procedure 4-26
Trap handling 1-16, 6-3

ARMTRAP procedure 6-4
Traps 1-16, 6-1
Tri-Density Tape Subsystem

Microcode 2.7-11
Model 5106 2.7-11

UNLOCKFILE procedure 2.3-107
UNLOCKMEMORY procedure 8.2-8
USERIDTOUSERNAME procedure 7.2-8
USERNAMETOUSERID procedure 7.2-9
USERS command 7.1-10, 7.1-12
USESEGMENT procedure 8.1-10
Utility procedures 1-13, 4-1

CONTIME 4-2
DEBUG 4-3
FIXSTRING 4-4
HEAPSORT 4-11
INITIALIZER 4-13
LASTADDR 4-17
NUMIN 4-18
NUMOUT 4-21
SHIFTSTRING 4-23
TIME 4-24
TIMESTAMP 4-25
TOSVERSION 4-26

Index-16

VERIFYUSER procedure 7.2-10
VOLUME command 7.1-10,· 7.1-12

Wait and no-wait i/o 2.1-13
Waiting state, of a process 3.1-6
WAITAFILE procedure 9-34
Wakeup message 11-28
WRITE procedure 2.3-108
WRITEREAD procedure 2.3-110
WRITEUPDATE procedure 2.3-112
WRITEAFILE procedure 9-36

$0 2.10-1, 2.2-6
$CMON

logon message 11-31
process creation message 11-32

$RECEIVE file 2.9-7
communication type 2.9-9
data transfer protocol 9-60
handling by sequential i/o 9-60
no-wait i/o 2.9-7
system message transfer 2.9-8

INDEX

Index-17

FOLD ,.....

FOLD,.....

READER'S COMMENTS

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easily
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s): _____________________________ _

FROM:

Name

Company

Address --------------------------------~

City;State -------------------- Zip

A written response is requested. yes no ?

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U.S.A

POSTAGE WILL BE PAID BY ADDRESSEE

¥~~@)§~
COMPUTE~S

19333 Vallco Parkway
Cupertino, CA U.S.A. 95014
Attn: Technical Communications-Software

STAPLE HERE

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

~FOLD

--C FOLD

