
The
Connection Machine
System

*Lisp Dictionary

Version 5.2
February 1990

Thinking Machines Corporation
Cambridge, Massachusetts

First printing. February 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that m~y appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-I. CM-2. CM. and DataVault are trademarks of Thinking Machines Corporation.
Paris. *Lisp. and CM Fortran are trademarks of Thinking Machines Corporation.
VAX. ULTRIX. and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics. Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks 9f Sun Microsystems. Inc.
UNIX is a trademark of AT&T Bell Laboratories.
CommonLoops is a trademark of Xerox Corporation.

Copyright © 1990 by Thinking Machines Corporation. All rights reserved.

'Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

(
\

\.

Contents

Preface ... xiii
Customer Support .. xvii

Part I *Lisp Overview

Chapter 1 *Lisp Functions and Macros.. 3

1.1 Basic Pvar Operations•...... 3
1.1.1 Pvar Allocation .. 3
1.1.2 Pvar Data 1YJ>e Declaration and Conversion............... 4
1.1.3 Pvar Referencing and Modification....................... 4
1.1.4 Pvar Information....................................... 5

1.2 "'Lisp Function Definition .. 5

1.3 Processor Selection . 6

1.4 Operations on Simple Pvars 6
1.4.1 Boolean Logical Operators.............................. 6
1.4.2 Numeric Pvar Operations 7
1.4.3 Character Pvar Operations 9

1.5 Operations on Aggregate Pvars .•.••••••.•.••.•..........••.•.•••• 10
1.5.1 Array Pvar Operations 10
1.5.2 Structure Pvar Operations . 12

1.6 Processor Addressing Operations . 12
1.6.1 Processor Enumeration, Ranking, and Sorting 12
1.6.2 Send/NEWS Address Operators 13
1.6.3 Address Object Operators . 13

1.7 Inter- and Intra-Processor Communication Operations............... 14
1.7.1 Inter-Pvar Communication Operators. 14
1.7.2 NEWS Communication Operators....................... 14
1.7.3 Front-End Array to Pvar Communication Operators........ 14
1.7.4 Scan and Spread Operators.............................. 15
1.7.5 Segment Set Scanning Operators......................... 15
1.7.6 Global Communication Operators........................ 15

ii *Lisp Dictionary

1.8 VP Set Operations .. 16
1.8.1 VP Set Definition Operators............................. 16
1.8.2 VP Set Geometry Functions 16
1.8.3 Flexible VP Set Allocation Operators. 16
1.8.4 VP Set Deallocation Operators.......................... 17
1.8.5 Current VP Set Operators............................... 17
1.8.6 VP Set Operators...................................... 17

1.9 General Information Operations.................................. 17

1.10 Entertainment Operations. 18

1.11 Connection Machine Initialization Functions 18

Chapter 2 *Lisp Global Variables 19

2.1Predefined Pvars ... 19

2.2 Configuration Variables .. 19

2.3 Initialization List Variables 21

2.4 Configuration Limits. 22
2.4.1 Array Size Limits. 22
2.4.2 Character Attribute Size Limits 22

2.5 Error Checking ... 24

2.6 *Lisp Compiler Code-Walker 25

2.7 Pretty-Printing Defaults. 25

Chapter 3 *Lisp Glossary. 29

3.1 Connection Machine Terminology................................. 29
3.1.1 Machines.. 29
3.1.2 Processors... 30
3.1.3 Fields... 30
3.1.4 Connection Machine Memory 31

3.2 *Lisp Thrminology . 31
3.2.1 Parallel Variables (Pvars) . 31
3.2.2 Processor Addressing 33
3.2.3 Virtual Processor Sets. 34
3.2.4 Important VP Sets. . • . 35

3.3 Background Thrminology ... 36

Contents iii

Chapter 4 *Lisp 'iYpe Declaration 37

4.1 Pvar 'JYpes . 37

4.2 Using Type Declarations ... 39
4.2.1 *Usp Code Walker..................................... 40
4.2.2 *Lisp Declaration Operators . 40
4.2.3 Basic Rules of 'JYpe Declaration . 43

4.3 General Pvars . 49

4.4 Mutable Pvars .. 50

4.5 Mutable General Pvars .. 50

4.6 Rules of *Lisp 'JYpe Declaration and Coercion 52

Part II *Lisp Dictionary
absll•............................ [Function] 61
acos!! .. [Function] 63
acosh!!•..................................... [Function] 65
add-initialization ...•...... [Function] 67
address-nth•................... [Function] 71
address-nth!! ... [Function] 73
address-plus .. [Function] 75
address-plusll•.................................... [Function] 77
address-plus-nth ...•.........................••................ [Function] 79
address-plus-nth II .. [Function] 81
address-rank•.................................... [Function] 83
address-rank!! .. [Function] 85
alias!! .. [Macro] 87
*all ... [Macro] 93
allocate!!•...........•.............•....... [Macro] 97
allocate-processors-for-vp-set [Function] . .. 101
allocate-vp-set-processors [Function] ... 101
allocated-pvar-p .. [Function] . .. 105
alpha-char-p!! .. [Function] ... 107
alphanumericp!! .. [Function] ... 109
amap!! .. [Function] ... 111
*and ... [*Dcfun] ... 113
and!! ..•.................... [Macro] ... 117
*apply .. [Macro] ... 121
aref!! ... [Function] . .. 123
array!! .. [Function] . .. 127
*array-dimension .. [*Defun] ... 129
array-dimension!! ... [Function] ... 131
*array-dimensions•................................. [*Defun] ... 133

iv *Lisp Dictionary

array-dimensionsll ..•..............•.•...........•.............. [Function] ... 135
*array-element-type•..............................• [Function] ... 137
array-in-bounds-pll •........•..•..•....•.•.•................... [Function] ... 139
*array-rank•.•••...................... [*Defun]... 141
array-rankll ... [Function] . .. 143
array-row-maJor-indexll•.•........•...............• [Function] ... 145
array-to-pvar•..........................•• [*Defun] ... 147
array-to-pvar-grid ... [*Defun] ... 151
*array-total-size .•..........................•.................... [*Defun] ... 155
array-total-sizell .. [Function] ... 157
ash I I•.............................•......................... [Function] . .. 159
asinll ... [Function] . .. 161
asinhll•...............•.......•... [Function] ... 163
atan II•............•.............. [Function] . .. 165
atanhll '.'••................ [Function] . .. 167
bitll ... [Function] ... 169
bit-and II ...•.............. [Function] . .. 171
bit-andc1 II•.•................•..................... [Function] ... 173
bit-andc211 ... [Function] ... 175
bit-eqvll•.............................•........ [Function] . .. 177
blt-Iorl!•............................ [Function] . .. 179
bit-nand!! ... [Function] . .. 181
blt-norll•.........•.............................. [Function] . .. 183
bit-not!!•.....•................•.. [Function] . .. 185
bit-orc111•..........•.......................••........... [Function] . .. 187
bit-orc211 ... [Function] ... 189
bit-xorll .. [Function] . .. 191
boolell ...•.................................•......•............. [Function] . " 193
booleanpll•...................................•.... [Function] ... 195
both-case-pl1•............... [Function] ... 197
bytell ... [Function] . .. 199
byte-position!! .. [Function] ... 201
byte-size II•............................. [Function] ... 203
*case ... [Macro] ... 205
casell .. [Macro] ... 209
ceilingl1 .. [Function] ... 211
char=1I ;•..................... [Function] ... 213
char/=1I ... [Function] ... 215
char<1I•....................................... [Function] ... 217
char>11 .. [Function] ... 219
char<=11•.......•................. [Function] 221
char>=!1 .. [Function] ... 223
characterl!•.............................. [Function] . .. 225
characterpll .. [Function] .. , 227
char-bitl! .. [Function] . .. 229
char-bits! I .. [Function] ... 231

Contents v

char-code II ... [Function] ... 233
char-downcase!! .. [Function] ... 235
char-equal! I .. [Function] . .. 237
char-flipcasell .. [Function] ... 239
char-fontll .. [Function] '" 241
char-greaterpl! ... [Function] ... 243
char-intI! ... [Function] ... 245
char-lessp!1 .. [Function] ... 247
char-not-equal!! .. [Function] . .. 249
char-not-greaterp!! ... [Function] ... 251
char-not-Iessp!! .. [Function] ... 253
char-upcase!! .. [Function] ... 255
cis!! .. [Function] ... 257
code-charI! ... [Function] . .. 259
coerce!! .. [Function] ... 261
*cold-boot .. [Macro] ... 267
compare II .. [Function] •.. 273
complex! I ..•.............. [Function] . .. 275
complexp!1 ... [Function] ... 277
*cond .. [Macro] ... 279
cond!! .. [Function] . .. 283
conjugatel! ... [Function] ... 287
copy-seq!! .. [Function] ... 289
cosll .. [Function] ... 291
cosh I! .. [Function] ... 293
count II ... [Function] ... 295
count-ifl! ... [Function] . .. 299
count-if-not!! ... [Function] ... 301
create-geometry .. [Function] . .. 303
create-segment-setl! ... [Function] ... 307
create-vp-set ... [Function] . .. 311
cross-product .. [Function] ... 315
cross-product!! ... [Function] ... 317
cube-from-grid-address .. [Function] ... 319
cube-from-grid-address!! [Function] ... 321
cube-from-vp-grid-address [Function] ... 325
cube-from-vp-grid-address!! [Function] ... 327
*deallocate ... [Function] ... 331
* deallocate-* defvars .. [Function] .. , 333
deallocate-def-vp-sets ... [Function] . .. 335
deallocate-processors-for-vp-set [Function] . .. 337
deallocate-vp-set-processors [Function] . .. 337
deallocate-vp-set ... [Function] ... 341
* decf ... [Macro] . .. 343
* defsetf .. [Macro] . .. 345
* defstruct .. [Macro] .. , 347

vi *Lisp Dictionary

* defun .. [Macro] . .. 355
*defvar ... [Macro] ... 363
def-vp-set .. [Macro] ... 369
delete-initialization .. [Function] . .. 375
deposit-byte!! .. [Function] ... 377
deposit-field!! .. [Function] ... 379
describe-pvar ... [Function] . .. 381
describe-vp-set .. [Function] . .. 383
digit-char!! ... [Function] ... 387
digit-char-p!! ... [Function] ... 389
dlmenslon-address-Iength [Function] . .. 391
dimension-size ... [Function] ... 393
do-for-selected-processors [Macro] ... 395
dot-product .. [Function] ... 397
dot-product!! ... [Function] ... 399
dpb!1 ... [Function] ... 401
dsf-cross-productll .. [*Defun] ... 403
dsf-vector-normal!! .. [*Defun] . .. 405
* ecase .. [Macro] . .. 409
ecasell ... [Macro] ... 413
enumeratell .. [Function] ... 415
eq II . [Function] 419
eql! I .. [Function] . .. 421
equalpll .. [Function] ... 423
evenp!1 ... [Function] ... 425
every! I .. [Function] . .. 427
exp II .. [Function] . .. 429
exptll ... [Function] ... 431
fceilingll .. [Function] ... 433
ffloor!! .. [Function] . .. 435
*flll .. [*Defun] ... 437
find!! ... [Function] ... 439
find-ifll ... [Function] ... 443
find-if-not!! .. [Function] . .. 447
float II ... [Function] ... 451
float-epSilon!! .. [Function] ... 453
float-sign!! ... [Function] . .. 455
floatp!! ... [Function] ... 457
floor!! .. [Function] ... 459
front-end!! ... [Function] ... 461
front-end-pl! .. , [Function] ... 463
froundll .. [Function] ... 465
ftruncate!! .. [Function] . .. 467
*funcall '.' ; .. [Macro] . .. 469
gcd!! ... [Function] . .. 471
graphic-char-pl! .. [Function] ... 473

Contents vii

gray-code-from-integerll [Function] ... 475
grid ... [Function] . .. 477
grid!! ... [Function] ... 479
grid-from-cube-address .. [Function] ... 481
grid-from-cube-addressl! [Function] ... 483
grid-from-vp-cube-address [Function] . .. 487
grid-from-vp-cube-addressll [Function] ... 489
grid-relative!! ... [Function] ... 493
help .. [Function] . .. 495
* if .. [Macro]... 497
if II .. [Macro] ... 501
imagpartl! .. [Function] ... 505
*incf .. [Macro] '" 507
initialize-character .. [Function] . .. 509
int-charl I ... [Function] . .. 513
integer-from-gray-codell [Function] ... 515
*integer-Iength .. [*Defun] ... 517
integer-length II ... [Function] . .. 519
integer-reversel I .. [Function] . .. 521
integerp!! ... [Function] ... 523
isqrtll ... [Function] . .. 525
Icm!! ... [Function] . .. 527
Idb!! ; ... [Function] ... 529
Idb-test!! ... [Function] ... 531
least-negative-float! ! ... [Function] ... 533
least-positive-float! I .. [Function] . .. 535
length!! ... [Function] ... 537
* let ... [Macro] . .. 539
Iet .. [Macro] ... 545
let-vp-set ... [Function] . .. 549
*light .. [*Defun] ... 551
* lisp .. [Function] . .. 553
IIst-of-active-processors .. [Function] . .. 555
load-byte!! .. [Function] ... 557
loap .. [Function] . .. 559
* locally ... [Macro] . .. 561
logl! .. [Function] ... 565
*Iogand .. [*Defun] ... 567
logand!! .. [Function] ... 569
logandc1!! .. [Function] ... 571
logandc2!! .. [Function] ... 573
logbitpl! .. [Function] . .. 575
logcount!! .. [Function] ... 577
logeqv! I .. [Function] . .. 579
*Iogior ... [*Defun] ... 581
logiorl! ... [Function] ... 583

viii *Lisp Dictionary

lognandl! .. [Function] ... 585
log nor II ... [Function] ... 587
lognotll ... [Function] ... 589
logorc111 , [Function] ... 591
logorc211 .. [Function] ... 593
logtestll .. [Function] 595
*Iogxor .. [*Defun]... 597
logxorl! ... [Function] . .. 599
lower-case-pll .. [Function] ... 601
make-array!! .. [Function] . .. 603
make-charI! .. [Function] ... 605
* map ... [Function] . " 607
mask-field I I ..•....... [Function] ... 609
*max .. [*Defun] ... 611
max!! ... [Function] ... 613
*min ... [*Defun] ... 615
min!! ... [Function] ... 617
minuspl! .. [Function] ... 619
modll ... [Function] ... 621
most-negatlve-float!1 ... [Function] •.. 623
most-positive-float!! .. [Function] ... 625
negative-float-epsilon II ... [Function] ... 627
*news ... [*Defunl.· .. 629
newsll .. [Macro] ... 635
news-border!! .. [Macro] ... 641
*news-direction ... [*Defun] ... 645
news-direction!! .. [Macro] ... 649
next-power-of-two->= .. [Function] . .. 653
notll [Function] . .. 655
notany!! .. [Function] . .. 657
notevery!! ... [Function] . .. 659
*nreverse [*Defun] ... 661
nsubstitute!! .. [Function] ... 663
nsubstitute-if!! .. [Function] ... 667
nsubstitute-if-not!! ... [Function] ... 671
null!! ... [Function] ... 675
numberp!! .. [Function] ... 677
oddpll .. [Function] ... 679
off-grid-border-p!! ... [Function] ... 681
off-grid-border-relative-direction-p!! [Function] ... 685
off-grid-border-relative-p!1 [Function] ... 687
off-vp-grid-border-pll .. [Function] ... 691
*or .. [*Defun] ... 695
orl! ... [Macro] . .. 697
phase!1 ... [Function] ... 701
plusp!1 ... [Function] ... 703

Contents ix

position I! ... [Function] . .. 705
position-if I! ... [Function] .. , 709
position-if-not! I .. [Function] . .. 713
power-of-two-p ...•...... [Function] ... 717
ppp ... [Macro] . .. 719
pppll•....................... [Macro] ... 725
ppp-address-object ... [Function] ... 727
ppp-css .. [Macro] . .. 729
pppdbg•.............................. [Macro] ... 731
ppp-struct .. [Function] . .. 733
pref .. [Macro]... 737
pref!1 ... [Macro] ... 741
pretty-print-pvar .. [Macro] . .. 751
pretty-print-pvar-in-currently-selected-set [Macro] ... 755
*processorwise•........................ [*Defun] ... 757
*proclaim ... [Macro] ... 759
* pset ... [Macro] . .. 763
pvar-exponent-Iength•...........•.... [Function] . .. 773
pvar-Iength••.•..•................ [Function] . .. 775
pvar-Iocation••.............•......•....... [Function] . .. 777
pvar-mantissa-Iength•...•............................... [Function] . .. 779
pvar-name .. [Function] . .. 781
pvarp•..•...........•................................... [Function] . .. 783
pvar-plist•..•......................... [Function] . .. 785
pvar-to-array•........................ [*Defun] ... 787
pvar-to-array-grid•......... [*Defun] ... 791
pvar-type ...•... [Function] . .. 795
pvar-vp-set ... [Function] . .. 797
random II•......................•............ [Function] . .. 799
rankll ... [Function] . .. 801
realpartll .. [Function] . .. 807
reducell ...•........ [Function] . .. 809
reduce-and-spread!! .. [Function] ... 813
remll•...................................•..........•...... [Function] ... 817
reversell•.....................................•.. [Function] ... 819
*room ...•.. [Function] ... 821
rot!1 .. [Function] ... 823
round II•.. [Function] . .. 825
row-major-aref!I ... [Function] ... 827
row-major-sideways-arefl! [Function] ... 829
sbit! I ... [Function] . .. 833
scale-float!! .. [Function] ... 835
scanl!•.. [Function] . .. 837
segment-set-end-address [Function] . .. 845
segment-set-end-address!! [Function] ... 847
segment-set-end-bits .. [Function] . .. 849

x *Lisp Dictionary

segment-set-end-bits!l ... [Function] ... 851
segment-set-processor-not-in-any-segment [Function] . .. 853
segment-set-processor-not-in-any-segmentll [Function] . .. 855
segment-set-scanll ... [Function] ... 857
segment-set-start-address [Function] . .. 861
segment-set-start-addressll [Function] ... 863
segment-set-start-bits .. [Function] . .. 865
segment-set-start-bitsll .. [Function] ... 867
selfl! ... [Function] ... 869
self-address!! ... [Function] ... 871
self-address-grid!1 .. [Function] ... 873
* set .. [Macro] . .. 877
*setf .. [Function] ... 881
set-char-bitl! ... [Function] ... 885
set-vp-set .. [Function] . .. 887
set-vp-set-geometry ... [Function] . .. 889
sf-cross-productll .. [Function] ... 891
sf-v+-constantl! .. [Function] ... 893
sf-v--constantll .. [Function] ... 895
sf-v*-constantll .. [Function] ... 897
sf-v/-constantll ... [Function] ... 899
sf-vabsll .. [Function] ... 901
sf-vabs-squaredll ... [Function] ... 903
sf-vector-normalll .. [Function] . .. 905
sideways-arefl! ' .. [Function] . .. 909
*sideways-array ... [Function] ... 913
sideways-array-p ... [Function] . .. 915
signum!! .. [Function] ... 917
sin II .. [Function] . .. 919
sinh!! ... [Function] ... 921
*slicewise .. [*Defun]. .. 923
some!! [Function] ... 925
sortl! ... [Function] ... 927
spreadl! .. [Function] ... 933
sqrtl! ... [Function] ... 937
standard-char-p!! ... [Function] ... 939
string-char-pll .. [Function] ... 941
structurep!! ... [Function] ... 943
subseqll .. [Function] ... 945
substitute!! ... [Function] ... 947
substitute-If!l ... ,. [Function] ... 951
substitute-If-not!! ... [Function] ... 955
*sum .. [*Defun] ... 959
taken-as II .. [Function] ... 961
tan!! .. [Function] .. , 965
tanh I! ... [Function] . .. 967

Contents xi

*trace .. [Macro] ... 969
truncate!! ... [Function] . .. 971
typed-vector!! .. [Function] ... 973
typep!! .. [Function] . .. 975
*undefsetf .. [Function] ... 977
un * defun ... [Function] . .. 979
*unless ... [Function] ... 981
unproclaim ... [Function] . .. 985
*untrace .. [Macro] ... 987
upper-case-pl I ... [Function] . .. 989
vceiling ... [Function] . .. 991
vector! I ... [Function] . .. 993
vector-normal .. [Function] . .. 995
vfloor ... [Function] . .. 997
vp-set-deallocated-p ... [Function] . .. 999
vp-set-dimensions .. [Function] .. 1001
vp-set-rank ... [Function] .. 1003
vp-set-total-size .. [Function] .. 1005
vp-set-vp-ratio ... [Function] .. 1007
vround .. [Function] .. 1009
vscale .. [Function] .. 1011
vscalell ... [Function] .. 1013
vscale-to-unit-vector ... [Function] .. 1015
vscale-to-unit-vector!! .. [Function] .. 1017
*vset-components ... [*Defun] .. 1019
vtruncate ... [Function] .. 1021
v+ .. [Function] .. 1023
v+ II ... [Function] .. 1025
v+-constant ... [Function] .. 1027
v- .. [Function] .. 1029
v-II . .. [Function] .. 1031
v--constant ... [Function] .. 1033
v* .. [Function] .. 1035
v* I! ... [Function] .. 1037
v*-constant ... [Function] .. 1039
vI-constant ... [Function] .. 1041
vabs .. [Function] .. 1043
vabsl! ... [Function] .. 1045
vabs-squared ... [Function] .. 1047
vabs-squaredll .. [Function] .. 1049
*warm-boot .. [Macro] .. 1051
*when .. [Macro] .. 1055
with-css-saved ... [Macro] .. 1059
with-processors-allocated:....for-vp-set [Macro] .. 1063
*with-vp-set .. [Macro] .. 1067
*xor .. [Macro] .. 1071

xii *Lisp Dictionary

xorll .. [Function] .. 1073
zeropll .. [Function] .. 1075
I!•...................................... [Function] .. 1077
=I! .. [Function).. 1081
I=I! ... [Function] .. 1083
<I! ...•.•.•.......•.•.••.•....••....•...•.•..................•... [Function] .. 1085
>!I .. [Function] .. 1087
<=I!••••......•.......•..............•••.•••............... [Function] .. 1089
>=11 ... [Function] .. 1091
+11 .. [Function] .. 1093
-II .. [Function] .. 1095
* I! .. [Function].. 1097
II! .. [Function] .. 1099
1+11 ... [Function] .. 1103
1-11 .. [Function] .. 1105

Preface

Objectives of This Manual

The *Lisp Dictionary is a complete reference source for the essential constructs of the *Lisp
language. It is intended to provide quick access to the definitions of all *Lisp functions, macros,
and global variables. It is not intended to explain the conceptual basics of programming in *Lisp,
although a glossary of important and frequently used terms is included.

Intended Audience

This reference dictionary is intended for readers with a working knowledge of Common Lisp, as
described in Common Lisp: The Language, and a general understanding of the Connection
Machine system. The Connection Machine Front-End Subsystems manual provides useful
background information on the Connection Machine system.

Revision Information

This dictionary is new as of CM System Software Version 5.2. It serves as a supplement to, but
not a replacement for, the existing *Lisp documentation.

The following *Lisp functions are documented for the first time in this dictionary:

abs!1 bitll byte!! byte-size! I byte-position! I
*case case!! cis!1 conjugate!! cosh!!
deallocate-def-vp-sets *decf *defsetf deposit-field! !
dpbll *ecase ecase!! expl! imagpart!1
*incf Idbll Idb-testl! *light loap
*Iogxor logxor!! phase!! ppp-css pvar-name
pvar-plist realpartl! sbitl! sinh!! tanh!!
*undefsetf un*defun unproclaim vp-set-deallocated-p *xor

The following *Lisp functions are obsolete, and are not listed in this dictionary.

dsf-v+!1
dsf-v*!!
*pset-grid
sf-dot-product! !
sf-vscale! !

dsf-v+-constant! !
dsf-v* -constant!!
* pset-grid-relative
sf-v+l!
*sf-vset-components

xiii

dsf-v-!! dsf-v--constant! !
dsf-v/-constantl! dsf-vscale!!
pref-grid scan-grid!!
sf-v-!! sf-v*!!

xiv *Lisp Dictionary

Organization of This Manual

The *Lisp Dictionary is divided into two parts. Part I, ""'Lisp Overview," provides an overview of
the functions, macros, and important global variables of the "'Lisp language, along with a glossa­
ry of essential terminology and a chapter on "'Lisp data types and type declaration. Part n, ""'Lisp
Dictionary," is a complete dictionary of all functions and macros in the "'Lisp language.

Part I. *Lisp Overview
Part I consists of the following chapters:

Chapter 1. *Lisp Functions and Macros
The names of all functions and macros in "'Lisp are listed, grouped by purpose.

Chapter 2. *Lisp Global Variables
All important global variables in "'Lisp are listed and described.

Chapter 3. ·Lisp Glossary
Essential terms and concepts used in the dictionary and in other
documentation are listed and described.

Chapter 4. ·Lisp 'JYpe Declaration
All "'Lisp data types are descnbed, along with information about using
declarations and about data type coercion in "'Lisp.

Part II. ·Lisp Dictionary
Part n is a complete dictionary of the "'Lisp language; containing entries for all "'Lisp
functions and macros.

Related Documents

II The *Lisp Reference Manual Version 5.0.
This reference manual descnbes the essential concepts of the "'Lisp language.

II Supplement to the *Lisp Reference Manual Version 5.0.
This supplement expands and updates The *Lisp Reference Manual.

II Paris Reference Manual Version 5.0.
Paris (for J2[ll.aUel instruction s.et) is the Connection Machine system's instruction set.
The "'Lisp language calls Paris to perform its operations. This volume is a reference
dictionary for Paris.

II Connection Machine Front-End Subsystems.
This volume describes the various front-end computers used with the Connection Ma­
chine system.

Preface xv

II Common Lisp: The Language, by Guy L. Steele Jr. (Burlington, Mass.: Digital Press,
1984).
This book defines the de facto industry standard Common Lisp.

U The Connection Machine, by W. Daniel Hillis (Cambridge, Mass.: MIT Press, 1985).
This book explains the design issues and philosophies that led to the construction of the
Connection Machine computer.

Notation Conventions

Symbol names and code examples in running text appear in bold, as in * cold-boot. Code exam­
ples set off from the main text appear in a typewriter style typeface, as follows:

(pref a 23)

Names that stand for pieces of code (metavariables) appear in italics, as inpvar-expression. In
function or macro definitions, argument names appear in italics. Keywords and argument list
symbols (&optional, &rest, etc.) appear in bold:

pr~f pvar-expression send-address &key :vp-set

Argument names typically indicate the data type(s) accepted for that argument; for example,
argument names containing the term pvar must be parallel variables. The name integer-pvar re­
stricts an argument to a parallel variable with integer values. Functions typically signal an error
when given arguments of an improper type.

The table below summarizes these notation conventions:

Convention Meaning

boldface Symbol names, keywords, and code examples in text.

italics Metavariables and argument names.

typewriter Code examples set off from text.

=> Evaluates to.

==> Expands into (macros, for example).

<=> Are equivalent (produce the same result).

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
resPond to the report.

Th contact Thinking Machines Customer Support:

u.S. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

ames!think!customer-support

(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc­
curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.

xvii

Part I

*Lisp Overview

Chapter 1

*Lisp Functions and Macros

This chapter provides an overview of the functions and macros of *Lisp, organized in
categories of functionally related operations. Only the names of functions are shown;
consult the corresponding entry in the dictionary for argument lists and descriptions.

1.1 Basic Pvar Operations

*Lisp includes basic operations to allocate, access, modify, and deallocate pvars.

1.1.1 Pv~r Allocation

These operations allocate/ deallocate permanent pvars:

* deallocate-* defvars *defvar

These operations allocate/deallocate global pvars:

allocate!! * deallocate

These operations allocate local pvars for the duration of a body of code:

*\et *\et*

3

4 *Lisp Dictionary

This operation returns a temporary pvar with the same value in each processor:

I!

These operations return a temporary pvar of a specific data type:

array!!
typed-vector!!

front-end!!
vector!'

make-array! ,

1.1.2 Pvar Data 'TYpe Declaration and Conversion

These forms are used to declare/undeclare the data type of a pvar:

* locally *proclalm unproclaim

These operations are used to convert pvars from one data type to another:

coerce I! taken-as II

1.1.3 Pvar Referencing and Modification

This operation is used to reference the values of a pvar:

pref

These operations are used to modify the values Of a pvar:

*8et *8etf

These operations are used to define *setf methods for user-defined functions:

*defsetf *undefsetf

This operation is used in passing aggregate pvar elements to user-defined functions, to
prevent copies of those elements from being made:

alias'!

Chapter 1: ""Lisp Functions and Macros

1.1.4 Pvar Information

These predicate operations test the data type of a pvar:

booleanpll
floatpl1
numberpl1
typepl1

eharaeterp! !
front-end-p! !
string-ehar-p!! .

eomplexp!!
integerp!!
strueturep! !

These operations return general information about a pvar:

alloeated-pvar-p
pvar-mantlssa-Iength
pvar-pllst

deseribe-pvar
pvar-name.
pvar-type

pvar-exponent-Iength
pvarp
pvar-vp-set

These operations return Paris-level information about a pvar:

pvar-Iength
pvar-Ioeation

Returns Paris field length of a pvar, in bits.
Returns Paris field-id of a pvar.

These operations are used to print the values contained in a pvar:

ppp
ppp-address-objeet
pppdbg
pretty-prlnt-pvar

ppp!!
ppp-ess
ppp-struet
pretty-print-pvar-in-eurrently-seleeted-set

1.2 *Lisp Function Definition

5

These Common Lisp operations are used to define, call, and trace *Lisp functions:

apply
trace

defun
untraee

funeaU

These *Lisp operations are used to define, call, and trace user-defined *Lisp functions
that must reset the *Lisp stack (see the definition of *defun for more information):

*apply
*traee

*defun
un*defun

*funeall
*untraee

6 *Lisp Dictionary

1.3 Processor Selection

These forms conditionally bind the currently selected set of processors during the
evaluation of their body forms or clauses:

*all
*cond
ecase!1
*unless

*case
condit
*if
*when

case!1
.*ecas8
If!!
with-css-saved

This form iterates over the currently selected set of processors:

do-for-selected-processors

These forms return a list of the send addresses of all active processors:

list-of-active-processors loap

1.4 Operations on Simple Pvars

*Lisp includes specialized operations for simple (boolean, numeric, or character)
pvars.

1.4.1 Boolean Logical Operators

These operations perform logical operations on boolean pvars:

and!1 not!! or!! xorl!

(

\.

/

\

"

/

/

Chapter 1: ·Lisp Functions and Macros 7

1.4.2 Numeric Pvar Operations

*Lisp includes operations that perform mathematical tests and operations on numeric
pvars.

1.4.2.1 Numeric Predicates

evenpll
oddpll

mlnuspl!
plusp!!

1.4.2.2 Relational Operators

=11 <II
1=11 <=11
eqll eql!!

1.4.2.3 Math Operators

+11 -I!
1+11 1-11
com pare II *decf
floor I! gcdl!
Icmll log II
modI! random!!
signum I! sqrt!!

1.4.2.4 Trigonometric Functions

acosll
acoshl!
cos II
cosh!!

asln!1
asinh!!
sin!!
sinh!!

*I!
absll
exp!!
*Incf
max!!
rem!!
truncate!!

null!!
zeropll

>!!
>=!!
equalp!!

atan!!
atanh!!
tan!!
tanh!!

I!!
ceiling! I
exptl!
Isqrtll
min!!
round!!

8

1.4.2.5 Floating-Point Pvar Operators

fceilingll
float-sign! I
scale-float I !

ffloor!1
froundll

1.4.2.6 Floating-Point Pvar Information Functions

float!!
ftruncate! I

*Lisp Dictionary

float-epsilon! I
most-posltlve-floatll

least-positlve-float! I
most-negatlve-float! !

least-negatlve-float! I
negative-float-epsilon I I

1.4.2.7 Complex Pvar Operators

absll
conJugate I I
realpartll

cis!!
Imagpartll

complexl!
phase II

1.4.2.8 Bitwise Integer Operators

ash II
byte-position I I
deposit-byte II
dpbl!
Integer-from-gray-codel I
Integer-reverse I I
Idbll
mask-field II

byte! I
byte-size! !
deposit-field II
gray-code-from-integerll
integer-length! I
load-byte!!
Idb-test!1
rot!!

1.4.2.9 Bitwise Logical Operators

boolell
logandc211
logeqvl!
lognorll
logorc21!

logand!!
lotbitp!!
logior!!
lognot!!
10gtest!1

logandc111
logcount!!
lognand!!
logorc11!
logxorl!

/

/

Chapter 1: *Lisp Functions and Macros

1.4.3 Character Pvar Operations

*Lisp includes operations that construct, test, and compare character pvars.

1.4.3.1 Character Pvar Operators

characterll
char-int!!
digit-char! I

char-downcase! !
char-upcase! !
int-char!!

1.4.3.2 Character Pvar Attribute Opeiators

char-bit I I
char-font! I

char-bits! !
initialize-character

1.4.3.3 Character Pvar Predicates

alpha-char-pll
characterp!!
lower-case-p II
upper-case-pll

alphanumericp! !
digit-char-p! !
standard-char-p! !

1.4.3.4 Character Pvar Comparisons

char=!1
char/=!!
char-equal! I
char-not-equal! !

char<!!
char<=!!
char-greaterp! !
char-not-greaterp! !

char-flipcase! I
code-chari!
make-char! I

char-code!!
set-char-bit! !

both-case-p!!
graphic-char-p! I
string-char-p! I

char>!!
char>=!!
char-Iessp! !
char-not-Iessp! !

9

10 *Lisp Dictionary

1.5 Operations on Aggregate Pvars

*Lisp includes specialized operations for aggregate (array, structure, or front-end)
pvars.

1.5.1 Array Pvar Operations

*Lisp includes operations to create, modify, and test multidimensional array pvars.
Also included are specialized operations for one-dimensional array pvars (vectors).

1.5.1.1 Basic Array Pvar Operations

These operations return a temporary array pvar:

arrayll make-arrayl I

These operations obtain information about an array pvar:

* array-dimension
* array-dimensions
* array-element-type
*array-rank
* array-total-size
array-row-major-indexl!

array-dimensionll
array-dimensionsl!
array-in-bounds-pll
array-rank! !
array-total-size! !
sideways-array-p

These operations access elements of array pvars:

arefll
row-major-sideways-aref! !

row-major-arefl!
sideways-arefl I

These operations map a function over a set of array pvars:

amapll *map

\

/

Chapter 1: *Usp Functions and Macros

These are specialized operations for bit-array pvars:

bit!!
blt-eqvll
blt-notll
sblt!1

bit-andl!
bit-lor I I
bit-orc111

bit-andc1 ! I
blt-nand!1
bit-orc2!!

bit-andc2!1
bit-norll
bit-xor!!

These operations convert arrays to and from a sideways (slicewise) orientation:

* processorwise * sideways-array *slicewise

1.5.1.2 Vector Pvar Operations

These operations return a temporary vector pvar:

typed-vectorll vector! I

These are specialized operations for vector (one-dimensional array) pvars:

cross-productll
v-II
vabs-squared II
*vset-components

dot-product! !
v*1I
vscalell

v+l!
vabs!!
vscale-to-unit-vectorll

These are specialized operations for single-float vector pvars:

sf-v--constant! I

11

sf-cross-product! !
sf-v* -conslantll
sf-vabs-squaredll

sf-v+-constant! !
sf-vi-constant! !
sf-vector-normal! !

sf-vabs!!
sf-vscale-to-unil-vector! !

dsf-cross-productl I dsf-vector-normal!!
dsf-vscale-to-unit-vector! !

These are serial (front-end) equivalents to the parallel vector operators:

dot-product cross-product v+
\

v+-constant v--constant v-
v* v*constanl vi-constant
vabs vabs-squared vceiling
vector-normal vfloor vround
vscale vscale-to-unit-vector vtruncate

12 *Lisp Dictionary

These are specialized operations for sequence pvars:

copy-seq!! count!1 count-ifll
count-if-notll every!! * fill
find II find-if!1 find-if-not! !
length!! notany!! notevery!1
*nreverse nsubstitute! I nsubstitute-if! !
nsubstitute-if-not!! ' position!! position-if! !
positlon-If-not! ! reduce!! reverse!!
some!! subseq!! substitute! !
substitute-if!! substitute-if-not! I

Note that in *Lisp. sequence pvars are defined as one-dimensional array (vector)
pvars.

1.5.2 Structure Pvar Operations

This operation defines a parallel structure type and defines functions that create and
access instances of that parallel structure type:

*defstruct

1.6 Processor Addressing Operations

*Lisp includes operators that provide processor addressing information.

1.6.1 Processor Enumeration, Ranking, and Sorting

This operator enumerates the currently active processors:

enumerate!!

These operators rank and sort values in the currently active processors:

rank!! sortll

\",

/
I

'"

Chapter 1: *Lisp Functions and Macros

1.6.2 Send/NEWS Address Operators

These operators provide access to the send and grid addresses of processors:

cube-from-grid-address
cube-from-vp-grid-address
grid-from-cube-address
grid-from-vp-cube-address
self-address I I

cube-from-grid-addressll
cube-from-vp-grid-address! !
grid-from-cube-address! I
grid-from-vp-cube-address! !
self-address-gridl!

These operations are tests for off-grid processor addresses:

off-grld-border-p II
off-grid-border-relative-p! !

off-grid-border-relatlve-direction-pll
off-vp-grid-border-p! I

1.6.3 Address Object Operators

These operators create and manipulate address objects:

address-nth
address-plus-nth
address-rank
grid
grid-relative I I

address-nth! I
address-plus-nth! !
address-rank! !
grid!1
self!!

13

14 *Lisp Dictionary

1.7 Inter- and Intra-Processor Communication Operations

*Lisp provides operations that transfer values between pvars, exchange values be­
tween different processors, execute scans and reductions across processors, and per­
form global tests.

1.7.1 Inter-Pvar Communication Operators

These operators transfer values between pvars using global routing:

prefll *pset

1.7.2 NEWS Communication Operators

These operators transfer values between pvars using NEWS communication:

* news
* news-direction

news!!
news-direction!!

news-border!!

1.7.3 Front-End Array to Pvar Communication Operators

These operators transfer values between arrays on the front end and pvars on the
Connection Machine:

array-to-pvar
pvar-to-array

array-to-pvar-grid
pvar-to-array-grid

Chapter 1: *Lisp Functions and Macros 15

1.7.4 Scan and Spread Operators

These operators perform scans and reductions, and spread values across processors:

reduce-and-spread! !
spreadl!

scan!!

1.7.5 Segment Set Scanning Operators

These operators create and manipulate segment set objects, and perform segmented
scans:

create-segment-setll segment-set-scan II
segment-set-end-blts segment-set-end-bits! I
segment-set-end-address segment-set-end-address II
segment-set-start-bits segment-set-start-bitsll
segment-set-start-address segment-set-start-address II
segment-set-processor-not-in-any-segment
segment-set-processor-not-in-any-segment! I

1.7.6 Global Communication Operators

These operators perform a global test or function, returning a single front-end value:

*and
*Iogior
*mln
*xor

* integer-length
*Iogxor
*or

*Iogand
*max
*sum

16 *Lisp Dictionary

1.8 VP Set Operations

These operations define, allocate, and deallocate fixed-size and flexible VP sets.

1.8.1 VP Set Definition Operators

This operation is used to define permanent VP sets, both fixed-size and flexible:

def-vp-set

These operations are used to define and allocate temporary, fIXed-size VP sets:

create-vp-set let-vp-set

These operations are math utilities that are useful in defining the size of VP sets:

next-power-of-two->= power-of-two-p

1.8.2 VP Set Geometry Functions

This operation creates geometry objects used in defining VP sets:

create-geometry

1.8.3 Flexible VP Set Allocation Operators

These operations are used to modify the geometry of a flexible VP set:

allocate-vp-set-processors
deallocate-vp-set-processors
set-vp-set-geometry

allocate-processors-for-vp-set
deallocate-processors-for-vp-set
with-processors-allocated-for-vp-set

(
\

Chapter 1: *Lisp Functions and Macros

1.8.4 VP Set Deallocation Operators

These operations are used to deallocate VP sets:

deallocate-def-vp-sets deallocate-vp-set

1.8.5 Current VP Set Operators

These operations are used to select the current VP set:

set-vp-set *with-vp-set

These operators provide information about the dimensions of the current VP set:

dimension-size dimension-ad dress-length

1.8.6 VP Set Operators

These operations are used to obtain information about a VP set:

describe-vp-set
vp-set-dimensions
vp-set-total-size

vp-set-deallocated-p
vp-set-rank
vp-set-vp-ratio

1.9 General Information Operations

This operator provides a limited help function for *Lisp symbols:

help

17

This operator displays the current levels of Connection Machine heap and stack
memory use:

*room

18

1.10 Entertainment Operations

This operator provides access to the front-panel LED's:

* light

*Lisp Dictionary

1.11 Connection Machine Initialization Functions

These operators reinitialize the Connection Machine system:

*cold-boot *warm-boot

These operators add and remove forms from the cold- and warm-boot initialization
lists:

add-Initialization delete-Initialization ,

This operator toggles between the * lisp and user packages in the *Lisp interpreter and
in the *Lisp simulator.

*lisp

,/

(

\

Chapter 2

*Lisp Global Variables

2.1 Predefined Pvars

These are permanent pvars that are predefined by *Lisp as parallel equivalents for the
Common Lisp constants t and nil. It is an error to use either til or nil! I as the destina­
tion for ·set, ·pset, or any other form that modifies its argument.

This is a predefined pvar with the value nil in each processor:

nilll [Constant]

This is a predefined pvar with the value t in each processor:

t!! [Constant]

2.2 Configuration Variables

*Lisp provides a number of configuration-dependent variables with values that are set
by operators such as * cold-boot, set-vp-set, and *with-vp-set. A program that de­
pends only on these configuration variables will run on a Connection Machine system
in any grid configuration and at any VP ratio.

It is an error to access these variables before *cold-boot has been called for the first
time. Also, the user must not modify the values of any of these configuration variables.

19

20 *Lisp Dictionary

* current-em-configuration * [Mlriable]

The value of this variable is a list of integers. The nth element of the list is the size of
the nth dimension in the current machine configuration.

* current-grid-address-Iengths* [Mlriable]

The value of this variable is a list of integers. The nth element of the list defines the
number of bits necessary to hold a grid (NEWS) address coordinate for the nth dimen­
sion of the current VP set.

* current-send-address-Iength * [Mlriable]

The value of this variable is the number of bits needed to hold the send address of a
single processor in the current VP set. The variable *Iog-number-of-processors­
limit* is an obsolete equivalent.

* current-vp-set* [Mlriable]

This variable is always bound to the current VP set. Its value changes whenever the
current VP set changes. It is bound by default to the * default-vp-set *. The operators
set-vp-set and *with-vp-set can be used to change the current VP set.

* default-vp-set * [Mlriable]

The value of this variable is the default VP set, the VP set that is current when no other
VP set is current. If no initial dimensions are specified, the first time *cold-boot is
called, *default-vp-set* is bound to a two-dimensional VP set with a VP ratio of one.

* log-number-of-processors-limit* [Mlriable]

This obsolete variable is equivalent to the variable * current-send-address-Iength *. It
provides the base 2 logarithm of the number of processors attached.

* minimum-size-for-vp-set* [Mlriable]

The value of this variable is the minimum number of virtual processors with which a
VP set may be defined. In the current implementation, this is also the number of
physical processors that is currently attached. The product of the dimensions of any
VP set must be greater than or equal to the value of this variable.

/

\

(

/

Chapter 2: *Lisp Global Variables 21

* number-of-dimensions * [Mlriable]

This variable is always bound to the number of dimensions in the current VP set. Its
value changes whenever the current VP set changes.

number-of-processors-limit [Mlriable]

This variable is always bound to the number of virtual processors in the current VP set.
Its value changes whenever the current VP set changes.

2.3 Initialization List Variables

These variables each contain a set of forms that are executed automatically before and
after each execution of * cold-boot and *warm-boot. The *Lisp functions
add-initialization and delete-initialization are used to add and remove forms from
these lists.

* after-* cold-boot-Inltlalizations * [Mlriable]

The forms in this list are executed immediately following any call to ·cold-boot.

* after-*warm-boot-initlalizatlons * [Mlriable]

The forms in this list are executed immediately following any call to *warm-boot.

* before-· cold-boot-initializatlons· [Mlriable]

The forms in this list are executed immediately prior to any call to • cold-boot

* before-·warm-boot-initializations * [Mlriable]

The forms in this list are executed immediately prior to any call to *warm-boot.

22 *Lisp Dictionary

2.4 Configuration Limits

These constants and variables determine the size limits for specific *Lisp data types.
Other than as documented here, they should not be modified in any way.

2.4.1 Array Size Limits

These constants are implementation-dependent limits on the dimension length, rank,
and total size of array pvars. They should not be modified in any way.

*array-dimenslon-limit [Constant]

This is the upper exclusive bound on the extent of a single array pvar dimension. Each
dimension specified for an array pvar must be less than *array-dimension-limit. The
value of *array-dimension-limit is guaranteed to be greater than or equal to 1024.

*array-rank-limit [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have.
The number of dimensions specified for a *Lisp array pvar must be less than
*array-rank-limit. The value· of *array-rank-limit is guaranteed to be greater than or
equal to 8.

*array-total-size-limlt [Constant]

This is the upper exclusive bound on the product of all the dimensions specified for an
array pvar. The total number of elements a parallel array can have must be less than
*array-total-size-limit. The value of *array-total-size-limit is guaranteed to be greater
than or equal to 1024.

2.4.2 Character Attribute Size Limits

These variables represent user-specified limits on the length and value of the code,
bits, and font attributes of character pvars. These variables may be set to values other
than the defaults by calling the *Lisp function initialize-character. The value of these
variables should not be modified by the user in any other way.

Chapter 2: *Lisp Global Variables 23

Note that if the initialize-character function is used, it must be called immediately
prior to calling * cold-boot, because the values of the attribute variables below are used
in initializing *Lisp and the Connection Machine system.

* char-bits-Iength [fIOriable]

This defines the length in bits of the bits subfield of a pvar character. The default is
4 bits.

* char-bits-limit [fIOriable]

This is the upper exclusive bound restricting the value of the pvar character bits attrib­
ute. The default is 16.

* char-code-Iength [fIOriable]

This defines the length in bits of the code subfield of a pvar character. The default is
8 bits. Pvars of type (pvar string-char) have only a code field and are the same length as
* char-code-Iength.

* char-code-limit [fIOriable]

This is the upper exclusive bound restricting the value of the pvar character code at­
tribute. The default is 256.

* char-font-Iength [fIOriable]

This defines the length in bits of the font subfield of a pvar character. The default is
4 bits.

* char-font-limit [Mlriable]

This is the upper exclusive bound restricting the value of the pvar character font attrib­
ute. The default is 16.

* character-length [fIOriable]

This defines the total length in bits of a pvar of type pvar character. The default is
16 bits.

24 *Lisp Dictionary

* character-limit [Mlriable]

This is the upper exclusive bound restricting the integer value contained by a pvar of
type character.

2.5 Error Checking

These variables control the error-checking measures taken by the *Lisp interpreter
and compiler in evaluating and compiling code. These variables may be freely modi­
fied by the user to contain any of the specified legal values.

interpreter-safety [Mlriable]

This variable determines the amount of run-time error checking performed by the
*Usp interpreter. The value of *interpreter-safety* must be an integer between 0 and
3~ inclusive. The effect of each setting is given below.

o Most run-time error checking disabled.
1 Minimal run-time error checking; for any error signaled~ an error message is

not emitted until the next time a value is read from the eM.
2 Reserved for future expansion~ do not use.
3 maximum run-time error checking; error messages emitted immediately.

* safety * [Mlriable]

This variable determines the amount of error-checking code generated by the *Lisp
compiler. The value of *safety* must be an integer between 0 and 3~ inclusive. The
effect of each setting is given below.

o Low safety. Error conditions are prevented from being signalled.
1 Error conditions are signalled~ but notification of an error does not occur

at the time the error takes place.
2 Identical to a * safety* level of 3 or 1, depending on the value (t or nil) of the

variable * immediate-error-if-Iocation * , modifiable at run time.
3 High safety. Errors signalled immediately~ with detailed error messages.

/

Chapter 2: *Lisp Global Variables 25

* immediate-error-if-Iocation * [variable]

Determines the action taken at run-time by code compiled with a *safety* value of2. If
the value of this variable is t, such code behaves as if compiled with a * safety* value of
3. If the value of this variable is nil, such code behaves as if compiled with a *safety*
value of 1.

*warning-Ievel * [variable]

This variable controls the type of warnings generated by the *Lisp compiler. The value
of *warning-Ievel* must be one of the symbols :high, :normal, or :none. The effect of
each setting is given below.

: high Detailed warnings emitted whenever a section of code is not compiled.
: normal Warnings generated only for invalid arguments and type mismatches.
: none Prevents generation of any warnings.

2.6 *Lisp Compiler Code-Walker

sic: ·use-code-walker* [Hlriable]

This boolean variable controls whether the code-walker portion of the *Lisp compiler
is active. For more information about the code-walker, see the *Lisp Release Notes
Version 5.2. For more information about compiling *Lisp code, see the * Lisp Compiler
Guide Version 5.2

2.7 Pretty-Printing Defaults

These variables provide global defaults for the keyword arguments of all of the pvar
pretty printing operations. Some functions do not include keywords that correspond to
all these global variables; consult the dictionary definition of each printing function for
a list of the keyword defaults used.

26 ·Lisp Dictionary

* ppp-default-mode * [Mlriable)

This variable provides the default for the: mode keyword argument. Its initial value is
:cube. Its other legal value is :grid.

* ppp-default-format * [J.1zriable)

This variable provides the default value for the :format keyword argument. Its initial
value is the string "·s ".

* ppp-default-per-line * [J.1zriable)

This variable provides the default value for the: per-line keyword argument. Its initial
value is nil.

* ppp-default-start * [J.1zriable)

This variable provides the default value for the : start keyword argument. Its initial
value is zero.

* ppp-default-end * [J.1zriable)

This variable provides the default value for the: end keyword argument. Whenever the
current VP set changes and whenever * cold-boot is called, * ppp-default-end * is reset
to the current value of *number-of-processors-limit*.

* ppp-default-titie * [J.1zriable)

This variable provides the default value for the :title keyword argument. Its initial val­
ue is nil, indicating that no title should be printed.

* ppp-default-ordering * [J.1zriab/e)

This variable provides the default value for the :ordering keyword argument. Its initial
value is nil, indicating that no special grid dimension ordering is required.

(
\

Chapter 2: ·Lisp Global Variables 27

* ppp-default-proce88or-Jlst * [Mlriab/e]

This variable provides the default value for the :proces8or-list keyword argument. Its
initial value is nil, indicating that all processors between : start and :end should be dis­
played.

Chapter 3

*Lisp Glossary

This chapter contains a glossary of special terms and concepts used in descriptions of
the *Lisp language.

3.1 Connection Machine Terminology

These are terms directly relating to the Connection Machine and its relationship to the
*Lisp language.

3.1.1 Machines

Connection
Machine

front end

The Connection Machine (CM) consists of a large number of pro­
cessors that operate on data in parallel, linked together by an inter­
nal communications network and controlled by an external front­
end computer.

The external computer system that transmits instructions and data
to the processors of the eM and receives data returned by the pro­
cessors as a result of their operations is called the front end.

29

30 "'Lisp Dictionary

3.1.2 Processors

processors

physical
processors

virtual
processors

active
processors

currently
selected set

3.1.3 Fields

The conceptual entities that operate on data in parallel within the
eM are called processors. Each processor has an associated local
memory, within which data is stored and manipulated. Each pro­
cessor is also connected to all other processors by an internal com­
munications network. The term "processors" can be used to refer
to the physical processors of the eM, but it is most commonly used
to refer to the virtual processors simulated by the machine. This is
the convention observed in this document.

The single-bit processing units within the eM that operate on data
in parallel are called the physical processors of the machine. Each
physical processor simulates the actions of one or more virtual
processors.

The conceptual processing entities simulated by the physical pro­
cessors of the eM are called virtual processors. This simulation is
transparent to the user. No matter how many virtual processors are
simulated, each has its own associated memory and operates inde­
pendently of the others.

Each processor maintains an internal flag that determines whether
it is active, that is, whether or not it executes the instructions it re­
ceives. Only the active processors of the eM execute any given op­
eration.

The set of all currently active eM processors is called the currently
selected set. The currently selected set is changed by using "'Lisp
special forms such as *all, *when, *if, *cond, and *case.

field Data is stored on the eM infields. A field consists of a contiguous
set of bits at the same location in the memory of each processor.

allocation/
deallocation

A field.is created by allocating, or reserving, the same number of
bits. in the memory of each processor. When a field is no longer
needed, it can be deallocated, freeing the memory for use in other
fields.

Chapter 3: *Lisp Glossary 31

value of a field The value of a field in any given processor is simply the value con­
tained in the set of bits allocated for the field in that processor's
memory.

3.1.4 Connection Machine Memory

heap/stack

cold boot

warm boot

Fields are allocated in two areas of memory on the CM known as
the heap and the stack. Fields allocated on the heap are permanent,
and persist until the user explicitly deallocates them. Fields allo­
cated on the stack are temporary, and are automatically deallo­
cated whenever the stack is cleared.

The Connection Machine operation that resets the internal state of
the machine and clears its memory is called a cold boot. All Con­
nection Machine fields are deallocated during a cold boot.

The Connection Machine operation that resets the internal state of
the machine and clears the stack, but does not clear the heap, is
called a warm boot. Fields allocated on the stack are deallocated
during a warm boot.

3.2 *Lisp Terminology

These are terms relating to the data structures and operations of the *Lisp language.

3.2.1 Parallel Variables (Pvars)

parallel variable The *Lisp data structure that represents a collection of values
stored one-per-processor on the CM is called aparallel variable, or
pvar. A pvar consists of a field allocated on the CM and a front-end
data structure that contains the location, length in bits, and data
type of that field.

32

value of a pvar

corresponding
value

scalar value

pvar contents

*Lisp Dictionary

In any given processor, the value of a pvar is simply the value of its
associated field in that processor.

Given two pvars,A and B, for the value of A in any processor there
is a corresponding value of B located in the memory of the same
processor. Operations on pvars typically act by combining the cor­
responding values of two or more pvars.

A front-end data type, such as an integer, a character, or a struc­
ture object, is called a scalar value.

The contents of a pvar is the entire set of scalar values stored in the
field of that pvar.

3.2.1.1 Pvar Classes

There are two main classes of pvars, heap pvars and stack pvars, corresponding to the
twotypes of Connection Machine memory.

heap pvars Heap pvars are relatively permanent, long-term storage locations
for data, with global scope and dynamic extent. Heap pvars are di­
vided into permanent pvars and global pvars.

permanent pvars Permanent pvars are created by the * defvar macro. They are
named global pvars and are automatically reallocated whenever
the CM is cold-booted, unless explicitly deallocated by the user.

global pvars Global pvars are created by the allocate! I function. They are iden­
tical to permanent pvars, with the exception that global pvars are
not reallocated when the CM is cold booted.

stack pvars Stack pvars are temporary storage locations for data, with lexical
scope and dynamic extent. They are automatically deallocated
whenever the stack is cleared. Stack pvars are divided into local
pvars and temporary pvars.

local pvars Local pvars are created by the *Iet and *Iet* macros. They are allo­
cated on the stack as local variables for the duration of a body of
code.

temporary pvars Temporary pvars are returned by most functions and macros in
*Lisp. They are temporary storage locations intended to contain
values only until those values are copied to pvars of one of the

Chapter 3: "'Lisp Glossary 33

above classes. It is an error to attempt to modify any temporary
pvar value.

Heap and stack pvars are divided into three conceptual classes based on the data types
of their values: simple pvars, aggregate pvars, and general pvars. Simple and general
pvars may also be declared as mutable pvars.

simple pvars Simple pvars contain either boolean, numeric, or character values.

aggregate pvars Aggregate pvars contain either arrays, structure objects, or point­
ers to front-end data structures.

general pvars General pvars can contain values of differing data types, with the
exception that general pvars may not contain aggregate data ob­
jects such as arrays or structures. General pvars are not as efficient
as simple or aggregate pvars, because type-checking overhead is
required by their use and because code containing general pvars
cannot be compiled.

mutable pvars Mutable pvars are simple or general pvars that have been declared
to contain values of unspecified bit sizes. "'Lisp code containing
simple mutable pvars cannot be compiled as efficiently as code
containing simple pvars of fixed size.

3.2.2 Processor Addressing

The value of a pvar in any processor may be accessed and modified. To do this, it is
necessary to specify a processor's address within the eM. There are two basic schemes
in "'Lisp for assigning addresses to processors: send addressing and grid addressing.

configuration

send
address

An abstract arrangement of processors that groups them in an
n-dimensional array, such as a line, a plane, or a cube, is called a
configuration. The number of dimensions in a configuration is the
rank of that configuration. The geometry of the current VP set de­
termines the current configuration. Note: the terms grid, machine
configuration, and NEWS grid are sometimes used synonymously
with configuration.

Each processor has a unique send address, roughly corresponding
to the location of the processor within the hardware. Send ad­
dresses range between zero and one less than the total number of

34

grid address

address object

*Lisp Dictionary

processors. (In previous versions of *Lisp, this was referred to as
the cube address of the processor.)

A list of coordinate integers that specify a processor's position in a
given configuration is called that processor's grid address. The
number of coordinates in a grid address must be equal to the rank
of the configuration. For example, the grid address of a processor
in a two-dimensional configuration is a list of two integers.

An address object is a data structure that can be used as a send ad­
dress but that specifies a given processor's grid address. Address
objects are more flexible than grid addresses because they auto­
matically translate grid addresses between different processor
configurations. This flexibility is obtained at the cost of efficiency,
however; address objects are less efficient than other forms of pro­
cessor addressing.

3.2.3 Virtual Processor Sets

geometry A geometry is a description of the size and shape of a particular
configuration of virtual processors. It can be either a list of integers
or a geometry object.

geometry object A geometry object is a front-end data structure that contains a spe­
cified geometry. It is used to define the size and shape of virtual
processor sets.

virtual
processor set

VP set object

VP ratio

A virtual processor set, or VP set, is an arrangement of virtual pro­
cessors in a specified n-dimensional geometry. A VP set can have
pvars associated with it, and values may be transferred between
pvars associated with different VP sets. Only one VP set, known as
the current VP set, may be active at any given time.

A front-end data structure defining the geometry and associated
pvars of a virtual processor set is called a VP set object.

The number of virtual processors simulated by each physical pro­
cessor on the eM for a given VP set is referred to as the virtual pro­
cessor ratio, or VP ratio, of the VP set.

Chapter 3: *Lisp Glossary 35

3.2.3.1 Classes of VP Sets

There are two main classes of VP sets, permanent and temporary. Permanent VP sets
are further divided into fixed-size and flexible VP sets.

permanent
VP set

fixed-size
VP set

flexible
VP set

temporary VP
sets

defined/
instantiated

A permanent l-P set is defined using the def-vp-set operator. Per­
manent VP sets are automatically reallocated whenever the eM is
cold booted, unless the user explicitly de allocates them.

A fixed-size VP set has a specific geometry that does not change.
Once a fixed-size VP set has been defined, it may be used immedi­
ately.

Aflexible VP set is initially defined with no geometry information.
Before a flexible VP set can be used, it must be instantiated, that is,
provided with a temporary geometry definition. The operator
allocate-processors-for-vp-set is used to instantiate flexible VP
sets.

A temporary VP set is defined using either the create-vp-set or the
let-vp-set operator. They are deallocated during a cold boot, as
are their associated pvars. Temporary VP sets are always of fixed
size.

A permanent VP set is defined by the def-vp-set operator. A tem­
porary VP set is defined either by the create-vp-set or the let-vp­
set operator. Fixed-size VP sets may be used immediately, but flex­
ible VP sets must be instantiated, or provided with a temporary ge­
ometry definition, before they can be used.

3.2.4 Important VP Sets

current VP set

current
configuration

At anyone time, there is one active VP set; it is called the current VP
set. Only pvars associated with the current VP set are directly ac­
cessible. Unless otherwise specified, all newly declared pvars are
associated with the current VP set. The variable *current-vp-set*
is always bound to the current VP set.

The rank and size of the current VP set, i.e., the size and shape of
the set of processors currently in use, is often referred to as the cur­
rent configuration of the machine.

36

default VP set

*Lisp Dictionary

When the CM is cold booted for the first time, a default W set is
created. Until some other VP set is created and selected, the de­
fault VP set remains the current VP set and determines the current
configuration of the CM. The variable *default-vp-set* is always
bound to the default VP set.

3.3 Background Terminology

The naming convention for *Lisp operators, along with other useful background infor­
mation, is described here.

" ..

*

parallel
equivalent of

The names of functions and macros that return pvars generally end
with !! (pronounced bang-bang). This suffix is meant to look like
two parallel lines, emphasizing the parallel nature of the returned
value(s). It is recommended that user-defined functions follow this
convention as it improves readability and helps to indicate which
functions return a temporary pvar result that must be copied into a
permanent storage location. A few *Lisp macros with names that
do not end in II, such as *when, *all and *Iet, may also return a
pvar, depending on their arguments.

*Lisp functions that have side effects involving either the accessing
or modification of pvars, but that do not return a pvar result, gener­
ally have names beginning with * (pronounced star). The *Lisp (star
lisp) language gets its name from this convention.

This phrase is used to describe the correspondence between a
*Lisp function and a Common Lisp function that performs a simi­
lar operation. For example, mod!! is the parallel equivalent of
Common Lisp's mod. This means that mod!! performs the same
calculation as mod, but that mod!! takes parallel variables as argu­
ments and performs the mod operation in each active processor.

/

/

Chapter 4

*Lisp lYpe Declaration

This chapter describes the different types of parallel variables, or pvars, available in
*Lisp, discusses type declaration and the rules of type coercion, and explains how to
use type declarations in *Lisp.

4.1 Pvar Types

A pvar is defined by the kind of values that can be stored in it. The following pvar types
are supported in *Lisp:

general

signed-byte
complex
array

front-end

unsigned-byte
character

structure

boolean

defined-float
string-char

For most pvar types, *Lisp provides several equivalent forms that may be used in
declarations. For instance, for almost any valid pvar type specifier (pvar x), x-pvar is
also a valid type specifier.

Each pvar type is listed below with equivalent type forms. Each pair of forms
separated by <=> is equivalent and may be used interchangeably within *proclaim,

declare, and the forms, as well as with the operators coerce!! and taken-as!!.

general

(pvar t) <=> general-pvar

front-end

(pvar front-end) <=> front-end-pvar

37

38 *Lisp Dictionary

boolean

(pvar boolean) <=> boolean-pvar

signed-byte

(pvar (signed-byte width)}

unsigned-byte

<=> (signed-byte-pvar width)
<=> (signed-pvar width)

(pvar (unsigned-byte width» <=> (unsigned-byte-pvar width)
<=> (field-pvar width)

defined-float

(pvar (defined-float significand exponent»

(pvar (defined-float * *» <=> float-pvar

(pvar (defined-float 15 8» <=> (pvar short-float)
<=> short-float-pvar

(pvar (defined-float 23 8» <=> (pvar single-float)
<=> single-float-pvar

(pvar (defined-float 52 11» <=> (pvar double-float)
<=> double-float-pvar

(pvar (defined-float 74 21» <==> (pvar long-float)
<=> long-float-pvar

complex

(pvar (complex (defined-float significand exponent»)

(pvar (complex (defined-float * *») <=> complex-pvar

(pvar (complex (defined-float 15 8»)
<=> (pvar (complex short-float»
<=> short-complex-pvar

(pvar (complex (defined-float 23 8»)
<=> (pvar (complex single-float»
<=> single-complex-pvar

(pvar (complex (defined-float 52 11»)
<=> (pvar (complex double-float»
<=> double-complex-pvar

(pvar (complex (defined-float 74 21»)
<=> (pvar (complex long-float»
<=> long-complex-pvar

/

(

\

Chapter 4: *Lisp Type Declaration 39

character

(pvar character) <=> character-pvar

string-char

(pvar string-char) <=> string-char-pvar

array

(pvar (array element-type dimensions»
<=> (array-pvar element-type dimensions)

(pvar (vector element-type length»
<=> (vector-pvar element-type length)

structure

(pvar structure-name) <=> structure-name-pvar
where structure-name is a parallel structure type that has been defined by
the *Lisp *defstruct operator.

*Lisp also allows mutable pvar types, including general mutable pvars. These pvar
types and the general pvar type are described in separate sections later in this chapter.

4.2 Using Type Declarations

Type declarations are useful for two reasons. First, interpreted code executes faster if
type declarations are provided for all allocated pvars. Second, the *Lisp compiler will
only compile *Lisp code that references pvars that are declared to be of a definite type.
(For this reason, code that uses general or mutable pvars generally will not compile.)

This section provides a basic guide to the methods and use of type declaration in *Lisp.
It includes a description of the operators used for type declaration, along with a set of
guidelines for the use of type declarations in user code. For more information about
type declaration, and further examples, refer to the * Lisp Compiler Guide, Version 5.2.

Remember that a type declaration represents a promise to the compiler that only
values of the declared type will be assigned to a variable or produced by a form that is
declared to be of that type. Type declarations do not cause type coercion; it is an error
for a program to violate a type declaration, and the results of an incorrectly declared
expression are not defined. Also, if a type declaration is changed, all compiled code
that depends on that declaration must be recompiled.

40 "'Lisp Dictionary

4.2.1 *Lisp Code Walker

As of Version 5.2, the *Lisp compiler includes a code walker that permits *Lisp code to
compile more completely. The code walker is an extension of the *Lisp compiler that
"walks" through all the individual forms of a piece of *Lisp code. It records all
declarations it encounters and compiles each *Lisp form it finds.

The code walker can be enabled and disabled by the user. It is disabled by default. To
enable the code walker, set the variable slc::*use-code-walker* to t, or call the
function compiler-options and select the code walker option.

The *Lisp compiler has these additional capabilities when the code walker is enabled:

II *Lisp declarations are recognized in all locations where Common Lisp allows
declaration forms. In particular, the *Lisp compiler recognizes declarations
within defun, let, and let* forms without the need to use the * locally construct.

• All properly declared *Lisp forms compile, not only those within the scope of a
*Lisp macro operator such as * set.

Prior to the addition ofthe code walker, it was necessary to use the *Iocally operator to
provide type declarations for some sections of code. Although use of the code walker
makes this operator generally obsolete, *Iocally may be useful in rare circumstances,
for example to provide declarations for code that is to be compiled with the code walk­
er disabled.

See the Dictionary entry on * locally for more information and for examples of its use.
Refer to Section 4.1, "*Lisp Code Walker," in *Lisp Release Notes, Version 5.2, for a
discussion of the code walker and its effects on the compilation of *Lisp code.

Important: The examples and rules given in the following sections all assume that the
code walker is enabled.

4.2.2 *Lisp Declaration Operators

Three operators are used for type declaration in "'Lisp: the Common Lisp declaration
operators declare and the, and the "'Lisp declaration operator *proclaim. A general
description of the use of each of these operators appears below.

Important: The following examples assume that the *Lisp code walker is enabled.

Chapter 4: *Lisp 1Ype Declaration

The *proclaim operator is used in the following ways:

II 10 declare the data type of a permanent pvar defined by *defvar, as in

(*proclaim '(type (pvar single-float) my-pvar»
(*defvar my-pvar (random!! (!! 1.0»)

41

which declares the permanent pvar my-pvar to be of type (pvar single-float).

II To declare the pvar data type returned by a user-defined *Lisp function, as in

(*proclaim
, (ftype

(function (pvar pvar) (field-pvar 16»
my-pvar-function»

which declares that the pvar returned by the function my-pvar-function is of
type (field-pvar 16).

u To declare the data type of scalar variables and user-defined functions that are
used in a pvar expression (any expression that returns a pvar as its value), as in
the following examples:

(*proclaim
'(type (unsigned-byte 8) *my-limit*»

(*defvar *my-limit* 20)
(*set data-pvar

(+!! (random!! (!! *my-limit*»
(random!! (!! *my-limi t*»»

the global variable *my-limit* used in the two calls to !! is declared to be of
type (unsigned-byte 8).

An example of a function declaration is given by the expressions

(*proclaim '(function die-roll () fixnum»
(defun die-roll () (+ (random 6) (random 6) 2»
(*set dice-pvar (!! (die-roll»)

in which the user-defined function die-roll is declared to return a fixnum result.

Important: Do not use *proclaim to declare the returned values of Common
Lisp functions. Instead, use the Common Lisp the operator as shown in the
section on the below.

42 ·Lisp Dictionary

The Common Lisp declare operator is used in· the following ways:

u Th declare the pvar data type of local pvarscreated by *Iet or *Iet*, as in

(*let «pvar-1 (random!! (!! 1.0»)
(pvar-2 (random!! (!! 10»)

(declare (type single-float-pvar pvar-l»
(declare (type (field-pvar 8) pvar-1»
(pvar-computation pvar-1 pvar-2»

u To declare the data types of arguments to functions defined by defun or
* defun. For example,

(*defun pvar-computation (pvar-l pvar-2)
(declare (type single-float-pvar pvar-l»
(declare (type (field-pvar 8) pvar-2»
(combine-pvars pvar-1 pvar-2»

a Th declare the data types of scalar local and looping variables, as in

(let «limit (+ 2 (random 8»»
(declare (type fixnum limit»
(*let «sum-pvar (!! 0»)

(do « i 0 (+ i 2»)
«>= i limit) sum-pvar)
(declare (type fixnum i»
(*set sum-pvar

(+!! sum-pvar (random!! (!! i»
(random!! (!! limit»»»)

The Common Lisp the operator is used to declare the data type of an expression in
situations not covered by either of the above two operators.

a Th declare the data type returned by a Common Lisp expression, as in

(*set data-pvar
(!! (the (unsigned-byte 32)

(+ normal-limit extra-limit»»

/

Chapter 4: *Lisp Type Declaration 43

• Th make "on the spot" declarations where a single inline declaration is
preferable to a more global, widespread declaration. For example,

(*set data-pvar
(log!! (the double-float-pvar figures-pvar»)

(*set (the (pvar unsigned-byte 16) data-pvar)
(the (pvar (unsigned-byte *»

(if store-three-pvar-p (!! 3) (!! 0»»

Note that it is no less efficient to use * proclaim or declare in place of the wherever this
is possible, i.e., in declaring the data types of pvars and the data types returned by
user-defined *Lisp functions. Readability and maintainability of code can often be
improved by doing so.

4.2.3 Basic Rules of Type Declaration

The following is a set of basic guidelines for the declaration of *Lisp data objects.
These rules describe the data objects that must be declared in order to permit code to
compile, and describe how these objects should be declared. These rules also describe
which data objects should not be declared.

Declaring Pvars

U Declare with *proclaim the data type of permanent pvars defined by *defvar.

D Declare with declare or the the data type of global pvars created by allocate!!
wherever these pvars are used.

D Declare with declare the data type of local pvars defined by *Iet and *Iet*.

II Don't declare the pvar data type of temporary pvars returned by!!.

Declaring Pvar Functions

U Declare with declare the arguments of a user-defined *Lisp function (i.e., a
function defined by either defun or *defun).

n Declare with *proclaim the returned value of a user-defined *Lisp function.

II Don't declare the pvar data type returned by any predefined *Lisp operator.

44 *Lisp Dictionary

Declaring Scalar Expressions

U Declare with *proclaim the data type of any scalar global variable that is used
in a pvar expression.

II Declare with declare the data type of any scalar local variable that is used in a
pvar expression (i.e., a variable defined by let, let * , or the do family of looping
operators).

II Declare with the the data type of any scalar expression other than a variable
(i.e., a call to a Common Lisp function) that is used in a pvar expression.

.. Don't declare the data type of scalar constants used in pvar expressions.

Important: These rules assume that the *Lisp code walker is enabled. For a
description of the code walker, see Section 1.2.1, above.

The next three sections provide examples for each of these rules.

4.2.3.1 Declaring Pvars

II Declare with *proclalm the data type of permanent pvars defined by *defvar.
For example, the expressions

(*proclaim '(type (pvar (unsigned-byte 8» permanent-pvar»
(*defvar permanent-pvar (random!! (!! 255»)

(*proclaim '(type boolean-pvar y-or-n-p-pvar»
(*defvar y-or-n-p-pvar (zerop!! (random!! (!! 2»»

declare permanent-pvar to be of type (pvar (unsigned-byte 8», and
y-or-n-p-pvar to be of type boolean-pvar.

II Declare with declare or the the data type of global pvars created by allocate!!
wherever these pvars are used. For example. in

(setq allocated-pvar
(allocate!! (!! 0.0) nil 'single-float-pvar»

(*set (the single-float-pvar allocated-pvar)
(random!! (!! 10.0»)

(dotimes (i 3)
(*incf data-pvar

(the single-float-pvar allocated-pvar»»

t"
\
"-...

Chapter 4: *Lisp 1jJpe Declaration 45

the the operator is used to declare allocated-pvar to be of type
single-float-pvar.

Another example is

(defvar float-pvars nil)

(dotimes (i 10)
(push (allocate!! (!! 0.0) nil 'single-float-pvar)

float-pvars))

(defun randomize-nth-pvar (n)
(*set (the single-float-pvar (nth n float-pvars»

(random!! (!! 1. 0))))

in which the is used to declare whichever allocated pvar is selected from the
float-pvars list to be of type single-float-pvar.

U Declare with declare the data type of local pvars defined by *Iet and *Iet*.

For example,

(*let «local-pvar (random!! (!! 32»»
(declare (type (unsigned-byte-pvar 8) local-pvar»
(*!! (+!! local-pvar local-pvar) (!! 2»)

(*let* «float-pvar (random!! (!! 5.0»)
(integer-pvar (floor!! float-pvar»)

(declare (type short-float-pvar float-pvar»
(declare (type (field-pvar 6) integer-pvar»
(abs!! (-!! float-pvar integer-pvar»)

II Don't declare the pvar data type of temporary pvars returned by !!.

For example, the following declarations are unnecessary:

;;; These declarations are unnecessary.
(the (unsigned~byte-pvar 5) (!! 3»
(the character-pvar (!! #\e»
(the (array-pvar single-float (3» (!! #(1.0 2.0 3.0»)

46 *Lisp Dictionary

4.2.3.2 Declaring Pvar Functions

II Declare with declare the arguments of a user-defined *Lisp function (i.e., a
function defined by either defun or *defun).

For example, in

(*defun global-range (argument-pvar)
(declare (type (field-pvar 256) argument-pvar»
(- (*max argument-pvar) (*min argument-pvar»)

the argument-pvar to global-range is declared to be of type (field-pvar 256),
and in

(defun zero-pvar-when (test-pvar float-pvar)
(declare (type boolean-pvar test-pvar»
(declare (type double-float-pvar float-pvar»
(if!! test-pvar flo~t-pvar (!! 0.0»)

the test-pvar argument is declared to be of type boolean-pvar, and the
float-pvar argument of type double-float-pvar.

U Declare with *proclaim the returned value of a user-defined *Lisp function.

For example, in

(*proclaim
'(function surface-area!! (pvar pvar)

(pvar single-float»)

the function surface-area!! is declared to return a pvar argument of type
(pvar single-float) while in

(*proclaim
'(ftype (function (pvar) boolean) interesting-float-p»

the function interesting-float-p is declared to return a single argument of type
boolean.

,/

Chapter 4: *Lisp rype Declaration 47

II Don't declare the pvar data type returned by any predefined *Lisp operator.

For example, the following declarations are unnecessary:

;;; These declarations are unnecessary.
(*proclaim ~(function evenp!! (t t) (pvar boolean»)
(*proclaim ~(ftype (function (t) boolean-pvar) evenp! I»~
(*set data-pvar (the single-float-pvar (log!! (!! 3»»

4.2.3.3 Declaring Scalar Expressions

U Declare with *proclaim the data type of any scalar global variable that is used
in a pvar expression.

For example, in

(*proclaim ~(type single-float global-variable»
(defvar global-variable 50)
(*set data-pvar (log!! (!! global-variable»)

the global-variable used to initialize data-pvar is declared to be of type
single-float while in

(*proclaim ~(type character special-char»
(defvar special-char #\Return)
(*if (char=!! char-pvar (!! special-char»

(handle-special-char char-pvar)
(handle-normal-char char-pvar»

the variable special-char is declared to be of type character. Note that the
*proclaim operator must be used instead of Common Lisp's proclaim. Other­
wise, the *Lisp compiler will not have access to these declarations.

II Declare with declare the data type of any scalar local variable that is used in a
pvar expression (i.e., a variable defined by let, Jet *, or the do family of looping
operators). For example, in

(do «i 1 (* i 2»)
«> i 256) data-pvar)

(declare (type fixnum i»
(*incf (data-pvar (!! i»»

the iteration variable i is declared to be of type fixnum.

48

Another example is the expression

(let «maximum-limit 10)
(minimum-limit 2.5»

(declare (type fixnum maximum-limit»
(declare (type single-float minimum-limit»
(*set condition-pvar

(cond! !

*Lisp Dictionary

«>!! highest-reading-pvar (!! maximum-limit»
(front-end-pvar!! 'TOO-HIGH»

«<!! lowest-reading-pvar (!! minimum-limit»
(front-end-pvar!! 'TOO-LOW»

(t!! (front-end-pvar 'WITHIN-LIMITS»»)

in which the local variables maximum-limit and minimum-limit are declared
to be of type fixnum and type single-float, respectively.

Important: Because the iteration variable defined by a call to dotimes is always
of type fixnum, it is unnecessary to use declare to declare the type of this vari­
able. For example,

;;; The declaration in this dotimes call is unnecessary.
(dotimes (i 50) (*incf data-pvar (!! (the fixnum i»»

D Declare with the the data type of any scalar expression other than a variable
(i.e., a call to a Common Lisp function) that is used in a pvar expression.

For example, in

(*proclaim '(type fixnum sum elements»
(*set data-pvar (!! (the short-float (/ sum elements»»

the expression (/ sum elements) is declared to be of type short-float, and in

(*proclaim '(type fixnum total»
(*set data-pvar (+!! (!! (the fixnum (+ total 4»)

(!! (the fixnum (- total 4»»)

the expressions (+ total 4) and (- total 4) are declared to be of type fixnum.

Note that all variables used in these scalar expressions must also be declared,
as shown in this example.

Chapter 4: *Lisp 1jJpe Declaration

II Don't declare the data type of scalar constants used in pvar expressions.

For example, the following declarations are unnecessary.

;;; The declarations in these forms are unnecessary.
(*set pi-pvar (!! (the short-float 3.14159»)
(*set space-char-pvar (!! (the character #\Space»)
(*set array-pvar (!! (the (array fixnum (5»

#(12345»»

4.3 General Pvars

This section describes in more detail the general pvar data type.

(pvar t)

49

A pvar that is declared explicitly as (pvar t) is a general pvar. Before a general pvar is
initialized, it is referred to as void.

General pvars are allowed to contain, in different processors at the same time, data
belonging to any pvar type except the array or structure types.

Whenever a general pvar is used, *Lisp checks to see which data types it contains.
Then, each data type the general pvar contains is checked to verify that it satisfies the
domain requirements of the operation being performed. All this run-time checking
takes time. General pvars therefore offer almost complete generality with a corre­
spondingly severe reduction in run time efficiency.

When data of a particular type is stored in a general pvar, *Lisp ensures that the pa­
rameters for that type are identical across all the values of that type. If an attempt is
made to store pvars of the same type but with divergent parameters into a general pvar,
*Lisp will coerce each pvar into a single type with identical parameters.

For example, when source values of type (defined-float 52 8) are stored in a general
pvar containing values oftype (defined-float 23 11), the source values are copied and
they and all the original values in the destination are coerced into type
(defined-float 52 11).

General pvars can receive data from any pvar that is not of type array or structure.

When data of a particular pvar type is stored in a general pvar, *Lisp applies rules of
type coercion specific to that pvar type.

50 *Li:;p Dictionary

Within a *set form, a general pvar destination is always expanded as necessary to hold
whatever size data is provided by the source. If the source is a general pvar, "set
executes as though it were called once for each type of data contained in the source
general pvar. Thus, given a general pvar source containing boolean, signed-byte, and
complex data, the *set operation effectively performs the following sequence. First,
only the processors containing boolean data are activated. Next, the boolean data is
copied to a boolean pvar. Finally, *set is called with the general destination pvar and
the boolean source pvar. This process is repeated for the signed-byte and complex

data types.

If a *set with a general pvar destination does not have a general pvar source, the *set
operation depends on the type ofthe source pvar, as described under each pvar type in
Section 4.6, "Rules of *Lisp 1Ype Declaration and Coercion," below.

4.4 Mutable Pvars

Pvars may be declared to be mutable, which allows them to contain data of varying size
and type. To declare a pvar as mutable, specify the symbol * in place of one or more
parameters in the type specification of the pvar. For example,

(*let (mutable-signed-pvar)
(declare (type (signed-pvar *) mutable-signed-pvar»
...)

(*proclaim '(type (pvar (defined-float * *»
mutable-float-pvar»

(*defvar mutable-float-pvar)

4.5 Mutable General Pvars

Pvars that are not declared to be of a specific type default to a type known as mutable
general. Before a mutable general pvar is initialized, it is said to be void.

This is the form used within declarations to explicitly declare a mutable general pvar:

(pvar *)

"'- ..

/

Chapter 4: *Lisp Type Declaration Sl

For example, the following forms proclaim random-mutable-pvar to be a mutable gen­
eral pvar and then allocate the pvar random-mutable-pvar.

(*proclaim '(type (pvar *) random-mutable-pvar»
(*defvar random-mutable-pvar)

If a mutable general pvar is void and a pvar of any specific data type is * set into it, then
the mutable general pvar will assume the characteristics of that type, but will retain its
status as a mutable general pvar. Once a mutable general pvar has contained data of
two or more distinct types, however, it loses its mutable quality and becomes an
ordinary general pvar. For example, if a pvar declared to be of type (pvar *) has both
integers and characters stored in it, it becomes a pvar of type (pvar t).

For the purpose of this definition, the following groups of pvar types are considered as
distinct with respect to their effect on a mutable general pvar:

boolean
Signed-byte and unsigned-byte
character and string-char
defined-float
complex

The signed-byte pvar type is considered a super type that subsumes the
unsigned-byte pvar type. Similarly, the character pvar type is considered to subsume
the string-char pvar type. Thus, during a session, a mutable general pvar may hold
both string-char and character data and still retain its status as a mutable general
pvar. Similarly, if a mutable general pvar of type unsigned-byte has signed-byte data
stored in it, it changes into a mutable general pvar of type signed-byte.

This is significant because if a mutable general pvar has held only one distinct type of
data, no tests are performed on the types it contains. Thus, the run-time execution
speed of code using mutable general pvars that have held only one distinct type of data
is much faster than the execution speed of the same code using general pvars.

Given these distinctions in type membership, so long as no data of a different type is
*set into a mutable general pvar, the mutable general pvar will behave exactly as
though it was a mutable pvar of the same type as the data last stored it.

Aggregate (array and structure) pvars are a special case. Aggregate pvars may only be
*set into a mutable general pvar if the mutable general pvar is void. In this case, the
mutable general pvar ceases to be a mutable general pvar and becomes an aggregate
pvar of the same type and size as the source pvar.

52 *Lisp Dictionary

4.6 Rules of *Lisp Type Declaration and Coercion

This section defines the *Lisp rules of type declaration and coercion. For each *Lisp
pvar type listed below, the following questions are answered:

u Can pvars of this type be declared mutable?

II What types of data can be stored into a pvar of this type?

• What type coercions take place if the data is not of the same type as the pvar?

• What happens when data of this type is stored in a general pvar?

In each case, the latter two questions are answered by explaining the type coercions
that occur when * set is used to copy a pvar of one type into a pvar of another type.
Coercions performed by other *Lisp operators (such as coerce!!) behave similarly.

Note that when *set is used to copy values from a source pvar into a destination pvar,
the source pvar is copied and then type converted if necessary. The (possibly
converted) copy of the source pvar is then stored in the destination pvar. No coercion
takes place on the original copy of the source pvar.

(pvar boolean) boolean-pvar

Boolean pvars have no parameters associated with them and are therefore never
mutable.

When boolean values are stored in a general pvar, no type conversion is performed.

Within *set forms, boolean destination pvars can receive data of type boolean only.

A general pvar can be *set into a boolean pvar if and only if all the active data in the
general pvar is boolean.

(pvar front-end)

Front-end pvars have no parameters associated with them and are therefore never mu­
table.

When front-end values are stored in a general pvar, no type conversion is performed.

Within *set forms, front-end destination pvars can receive data of type front-end only.

A general pvar can be*set into a front-end pvar if and only if all the active data in the
general pvar is of type front-end.

/

Chapter 4: *Lisp Type Declaration 53

(pvar string-char) string-char-pvar

Pvars of type string-char have no parameters associated with them and therefore can
never be declared as mutable.

When data of type string-char is put into a general pvar, it is first converted to type
character.

Within *set forms, string-char destination pvars can receive data of type string-char

or type character only. If the source pvar is of the character data type, then the
expression (*and (string-char-p!! source» must return t.

A general pvar can be *set into a string-char pvar if and only if all active data in the
general pvar is of type string-char. That is, (*set destination source) is valid if
destination is a string-char pvar and if (* and (string-char-p!! source» returns t for the
general pvar source.

(pvar character) character-pvar

Character pvars have no parameters associated with them and therefore can never be
declared as mutable.

When character data is put into a general pvar, no type conversion is performed.

Within *set forms, character destination pvars can receive source data of type
string-char or of type character only.

A general pvar can be * set into a character pvar if and only if all the active data in the
general pvar is of type string-char or of type character.

(pvar (unsigned-byte length» (field-pvar length)

Pvars of type unsigned-byte are also known as field pvars. They have one parameter
associated with them, a length in bits. This length may be specified as any positive
integer, or as *. Pvars declared as (pvar (unsigned-byte *» or (field-pvar *) are
mutable. For instance,

{declare (type (field-pvar 16» ubsixteen)

declares an unsigned-byte pvar of exactly 16 bits per processor. On the other hand,

{declare (type (field-pvar *» ub-mut)

declares a mutable unsigned-byte pvar.

54 *Lisp Dictionary

Pvars declared as (pvar (unsigned-byte *» are initially allocated 1 bit per processor.
They can, however, contain unsigned values of any length.

When data of type unsigned-byte is put into a general pvar, it is first converted to an
equivalent quantity of type signed-byte.

Within *set forms, destination pvars oftype unsigned-byte can receive source data of
type unsigned-byte or of type signed-byte only. If the source data is of type
signed-byte, then all the data values must be non-negative; the source data is coerced
to type unsigned-byte before storage is effected. If the destination is of type
(unsigned-byte *), then data of any number of bits is allowed. Otherwise, it must be
possible to represent every active datum in the source using the number of bits
specified for the destination's length.

A general pvar can be ·set into a pvar oftype unsigned-byte if and only if all the active
data in the general pvar satisfies all the constraints detailed in the preceding
paragraph.

(pvar (signed-byte length» (signed-pvar length)

Pvars of type signed-byte have one parameter associated with them, a length in bits.
This length may be specified as any positive integer greater than 1, or as *. Pvars
declared as (pvar (signed-byte *» are mutable. For instance,

(*proclaim '(type (pvar (signed-byte *» s-mut»

proclaims a mutable signed-byte pvar. Mutable signed-byte pvars are initially
allocated 2 bits per processor. They can, however, contain signed values of any length.

If source data of type signed-byte is moved into a general pvar, and if the source data
length is larger than the length of the signed-byte data already contained in the desti­
nation, the signed-byte data already contained in the general pvar destination is sign­
extended to accommodate the increased size.

Within *set forms, signed-byte pvars can receive source data of type unsigned-byte or
of type signed-byte only. If the source data is of type unsigned-byte, it is coerced into
type signed-byte before *set storage takes place. If the destination is of type
(signed-byte *), then source data of any bit length is allowed. Otherwise, it must be
possible to represent every active datum in the source using the same number of bits as
the signed-byte destination.

A general pvar can be *set into a Signed-byte pvar if and only if all the active data in
the general pvar satisfies all the constraints detailed in the preceding paragraph.

./

Chapter 4: *Lisp Type Declaration 55

(pvar (defined-float significand exponent))

Pvars of type defined-float have two parameters associated with them: each defines
the number of bits allocated per processor to store a portion of a floating-point
number. The first parameter specifies the significand length; the second parameter
specifies the exponent length.

The significand length may be any positive integer greater than or equal to 1 and less
than cm:*maximum-significand-Iength*. The exponent length may be any positive
integer greater than or equal to 2 and less than cm: * maximum-exponent-Iength * .

Mutable defined-float pvars are declared using * instead of a value for both sig­
nificand length and exponent length. For example:

(declare (type (pvar (defined-float * *») mut-float)

It is illegal to specify only one of these parameters as *. Mutable floating-point pvars
are initially allocated 23 bits for the significand and 8 for the exponent, in each
processor-with the sign bit, the total length is 32 bits.

When defined-float data is put into a general pvar, floating-point numbers with one
representation may be coerced into floating-point numbers of another representation.
If defined-float data with significand length SL and exponent length EL is copied into a
general pvar containing defined-float data with significand length GSL and exponent
length GEL, both the copied source and all floating-point values originally in the
destination are coerced into a representation with (max SL GSL) significand length
and (max EL GEL) exponent length. If there was originally no floating-point data in the
general destination pvar, this has no effect; GSL and GEL are both zero in this case. If,
however, floating-point data of a different representation resides in the destination
pvar, such coercion may have repercussions with respect to overflow, underflow,
precision, and accuracy.

The above rule of floating-point coercion for data stored in general pvars also applies
to data stored in mutable defined-float pvars, i.e., pvars that are declared to be of the
type (pvar (defined-float * *)).

Within *set forms, defined-float pvars can receive source data of type unsigned-byte,

type signed-byte, or type defined-float only. If the source data is of type
unsigned-byte or type signed-byte, a copy of it is converted to type defined-float
using the *Lisp float!! operation. This implies that. even if the destination is a mutable
defined-float pvar, it is an error to attempt to store unsigned-byte or signed-byte

source data in that destination unless the source data can be represented in the same

56 *Lisp Dictionary

floating-point format as is the destination pvar data. If this error is made, an overflow
error may be signaled depending on the interpreter or compiler safety level in use.

If the ·set source data is ofthe same floating-point format as that of the destination, a
simple data copy is done.

If the * set source data is of a floating-point format larger than the destination in either
significand length or exponent length, and if the destination is not a mutable defined­
float pvar, then it is an error.

If the *set destination is a mutable defined-float pvar, then a copy of both the source
and the destination data are converted to a floating-point representation defined by
the maximum of their significand and exponent lengths. After this conversion, a simple
data copy is done.

A general pvar can be *set into a defined-float pvar if and only if all the active data in
the general pvar satisfies the constraints in the preceding paragraphs.

(pvar (complex (defined-float significand exponent»)

*Lisp supports complex pvars with real and imaginary parts of type defined-float only.

The restrictions on complex pvar parameters are identical to the restrictions on
defined-float pvar parameters. The real and imaginary parts are always of exactly the
same type. Mutable complex pvars are declared with a * instead of with an integer
value for each parameter. For example,

(*proclaim '(type (pvar (complex (defined-float * *») cplx-mut»

declares a mutable complex pvar capable of storing variably sized complex numbers.

Since complex pvars can contain only defined-float components, the coercion rules for
putting complex data into a general pvar are identical to those for defined-float data.
Note however that complex data is completely independent of defined-float data with
respect to coercion: the existence of either type of data in a general pvar does not affect
the representation of the other type.

The rule of complex coercion for data stored in general pvars also applies to data
stored in mutable complex pvars.

Within *set forms, complex pvars can receive source data of type unsigned-byte,
signed-byte, defined-float, or complex only. If the *set source data is of type
unSigned-byte, signed-byte, or defined-float, it is coerced into the floating-point for­
mat determined by the complex destination, following the same rules as for pvars of,

/

/

Chapter 4: *Lisp TYpe Declaration 57

type defined-float. The source data is then converted to complex data of the same
floating-point format as the destination, with 0.0 as its imaginary part. Finally, a simple
data copy is done.

General pvars can be *set into complex pvars if and only if all the active data satisfies
the constraints in the preceding paragraph.

(pvar (array element-type dimensions»

Array pvars may not be declared mutable.

Array pvars may not be stored in general pvars. There is one exception: an array pvar
may be stored in a void mutable general pvar. A void mutable general pvar is a pvar of
type (pvar *) that has never had any data stored in it. When an array pvar is stored in a
void mutable general pvar, that mutable general pvar becomes an array pvar with the
same type and size as the array pvar which has been stored in it.

Within *set forms, array pvars can receive source data from other arrays pvars ofthe
same shape. Effectively, *set is called on each element of the destination and source.
The normal rules of type coercion with respect to the destination apply to * set opera­
tions acting on arrays.

(pvar struet-name)

A pvar of type struet-name may be declared only after struet-name has been defined
with *defstruct.

Structure pvars may not be declared mutable.

Structure pvars may not be stored in general pvars. There is one exception: a structure
pvar may be stored in a void mutable general pvar. A void mutable general pvar is a
pvar of type (pvar *) that has never had any data stored in it. When a structure pvar is
stored in a void mutable general pvar, that mutable general pvar becomes a structure
pvar with the same type and size as the structure pvar that has been stored in it.

Within *set forms, structure pvars can receive source data from other structure pvars
of exactly the same type. A simple bit copy is performed.

Part II

*Lisp Dictionary

*Lisp Dictionary abs!!
;:::::;::~::::::::::::*:::::::::::::::::::::::::::::::::::::;:::::::::::::::::::::;::::::::::::~::::::::::::;!;!;:;:;:;:::::::;!;:;!;!:!;:::;:::;:::;!;!:!;!::;:;::::!;:;!;:::::::::;:;:;:;:;::::::!:::!::;!;:::;:;:;:::;:;:;:;:::; :. . .:.,',' .• ' ;.:," :,": '::.:::::::.::".:}'::::.~::::::.:'::::::: ::':::'::::'::: i.i.:::':.·:::::;.;::.::;:::::;'::::::::::::::::::::::::::;::::::

abs!! [Function]

Thkes the absolute value of the supplied pvar.

Syntax--------------------------------------

abs!! numenc-pvar

Arguments ------------------------

numeric-pvar Numeric pvar. Pvar for which absolute value is calculated.

Returned Value -------------------------------

absolute-value-pvar
Temporary numeric pvar. In each active processor, contains
the absolute value of the corresponding value of numeric-pvar.

Side Effects -------------------------

The returned pvar is allocated on the stack.

Description ------------------------

The abs!! function takes the absolute value of numeric-pvar. It returns a temporary
pvar that contains in each active processor the absolute value of the corresponding
value of numeric-pvar. The abs!! function provides the same functionality for nu­
meric pvars as the Common Lisp function abs provides for numeric scalars.

Examples -----------------------

For non-complex numeric pvars, abs!! returns the positive magnitude of l1umeric­
pvar in each active processor. For example, the following are equivalent:

(abs!! pvar) <=>
(abs!! (!! -5» <=>

(if!! (minusp!! pvar) (-!! pvar) pvar)

(!! 5)

61

abs!! *Lisp Dictionary

For complex pvars, abs!! returns the complex magnitude of numeric-pvar in each
active processor, as a floating-point number.

(abs!! complex-pvar) <=>
(sqrt!! (+!! (expt!! (realpart!! complex-pvar) (!! 2»

(expt!! (imagpart!! complex-pvar) (!! 2»»

(abs!! (!! #c(4 3») <=> (!! 5.0)

Notes--

It is an error if any of the numeric-pvclr arguments contains a non-numeric value in
any active processor.

References--------------------------------~-------------

62

acas!! *Lisp Dictionary

Examples -----------------------

If numeric-pvarcontains non-complexvalues, acas!! returns the arc cosine in each
active processor. For example,

(acos!! (!! -1.0» <=> (!! 3.1415927)

If numeric-pvar contains complex values, acas!! returns the complex arc cosine in
each active processor. Thus,

(acos!! (!! #C(-1.0 0.0») <=> (!! #c(3.1415927 0.0»

Notes-----------------------------------

It is an error if numeric-pvar contains integer or floating-point values of magni­
tude greater than 1.0 in any active processor. Complex values with magnitude
greater than 1.0 are allowed.

It is an error if numeric-pvar contains a non-numeric value in any active processor.

References--------------------------

* Lisp Dictionary acosh!!

acosh!! [Function]

Takes the arc hyperbolic cosine of the supplied pvar.

Syntax--

acosh!! numeric-pvar

Arguments~-----------------------------------

numeric-pvar Numeric pvar. Pvar for which the arc hyperbolic cosine is cal­
culated.

Returned Value --------------------------------

acosh-pvar Temporary numeric pvar. In each active processor, contains
the arc hyperbolic cosine in radians of the corresponding value
of numeric-pvar.

Side Effects ---

The returned pvar is allocated on the stack.

Description ---

The acosh!! function calculates the arc hyperbolic cosine of numeric-pvar in all
active processors. It returns a temporary pvar containing in each active processor
the arc hyperbolic cosine in radians of the corresponding value of numeric-pv01:
The acosh!! function provides the same functionality for numeric pvars as the
Common Lisp function acosh provides for numeric scalars.

65

acoshll *Lisp Dictionary

Examples ---------------------""'"---

If numeric-pvar contains non-complex values, acosh!! returns the arc hyperbolic
cosine in each active processor. For example,

(acosh!! (!! 11.591953» <=> (!! 3.1415927)

If numeric-pvar contains complex values, acosh!! returns the complex arc hyper­
bolic cosine in each active processor.

(acosh!! (!! #c(11.591953 0.0») <=> (!! #c(3.1415927 0.0»

Notes--

It is an error if numeric-pvar contains integer or floating-point values of magni­
tude less than 1.0 in any active processor. Complex values with magnitude less than
1.0 are allowed.

It is an error if numeric-pvarcontains a non-numeric value in any active processor.

References---

66

*Lisp Dictionary add-initialization
::::::::::~~::~~:::;::::::~;::::;::~~::::~::::~:::::::::::::*::::::::::::::::;::::::::::::~::::::::~~::~~:::::::::::::::::::::::::::~::::::::::::::::::::i:::::::::::i::::::;i::!::i:i::!:::!i:::::i=i:::i=i::!i!:!:!i:i:i!i:::::i:i:i:::i:::i:i:i:i:::;:i:i:i:i:i:::i:i:i:;!i:i:i:i!;:;:::::i:::::i;::i::!:!i*i:::i:i:i:::i:i:;:::i:;!i:i:::i:i::::~*:::~::~:::::::~~::i*:::$::::~:~~::::::

add-initialization [Function]

Appends a *Lisp form to one or more initialization lists, which are evaluated before
and after *cold-boot and *warm-boot.

Syntax---

add-initialization name-of-form form init-list-name

Arguments--

name-of-form

form

Character string. Name of initialization being added.

Any *Lisp form. Code to evaluate at initialization time.

init-list-name Symbol or list of symbols. Initialization list(s) to which the code
is to be added.

Returned Value ---

nil Executed for side effect.

Side Effects --

The list or lists specified by init-Iist-name are modified by appending the initializa­
tion specified by form.

Description -------------------------------------

The function add-initialization adds a named initialization form to one or more of
the following *Lisp initialization lists:

• * before-* cold-boot-initializations *
*Lisp code evaluated immediately prior to any call to * cold-boot.

• *after-* cold-boot-initializations *

*Lisp code evaluated immediately after any call to * cold-boot.

67

add-initialization * Lisp Dictionary

• * before-*warm-boot-initializations *
*Lisp code evaluated immediately prior to any call to *warm-boot.

• *after- *warm-boot-initializations *
*Lisp code evaluated immediately after any call to *warm-boot.

The forms in these lists are evaluated in the order in which they were added to the
initialization lists.

The argument name-of-form is a character string that names the *Lisp code being
added to the specified list(s). The argument form may be any executable *Lisp
form.

The init-list-name must be either one of the initialization list symbols above or a
list of these symbols. In the latter case, the form is added to each initialization list
named.

The function delete-initialization may be called with name-of-form to remove the
initialization from the list(s).

Examples ------------------------

68

The function add-initialization is the correct way to add an initialization form to
any of the above lists. For example,

(add-initialization "Recompute Important Pvars"
'(recompute-important-pvars *number-of-processors-limit*)
'*after-*cold-boot-initializations*)

adds an initialization named "Recompute Important Pvars" to the list
* after- * cold-boot-initializations *, which calls a user-defined function named
recompute-important-pvars with the current number of processors.

The same initialization can be added to more than one list. For example,

(add-initialization "Yell About Booting"
'(format t "*Lisp has just been booted.")
, (*after-*cold-boot-initializations*

*after-*warm-boot-initializations*»

adds an initialization to both * after- * cold-boot-initiaJizations * and
* after- *warm-boot-initializations *, which displays a warning message immediate­
ly after any call to *cold-boot or *warm-boot.

"'Lisp Dictionary add-initialization
;:;:;!;!;::::::::!:::::::::::::::::::!::;!:!::;:::;:::::::::::::::~:::~::~:::::;::::::::~::::~~:;:::::::;::::::;::::::::::::::::::::::::;::::::::~:::::::::::;:::;:: :;:;:;:;:;:;:;:;:;:;:::;:::;:;:i:;:;:;:;:;:;:;:;:;:;:;:;:::::::::;::::!:!::::;:::::;::!:!::::::;:;!;::::::::::::::::::::::::::::::::;::::::::::::::::::~::::::::::::::::::::::::;:::::::::::::::::::::::::::::~::~:~:~:::~::::::~::::::::::

Because add-initialization is a function, the form and init-list-name arguments
must be quoted if they are not meant to be evaluated during the call to add-initiali­

zation.

Notes--

Adding two forms with the same name to the same list is permissible only if the
forms are the same according to the function equal; otherwise an error is signaled.

References---

See also the related operation delete-initialization.

See also the following Connection Machine initialization operators:
·cold-boot ·warm-boot

See also the character attribute initialization operator initialize-character.

69

*Lisp Dictionary address-nth
:::::::~:::~:::~:::~:::~::~:::;:::;:;:;:;:::::;!;:::::::::::;:;:::::::::::::::;:;:;:i:;:;:;:;:;:::;:;:;:::::::;:;:;:;:::::::::;::::::::::::::::::::~::::::::::::::::::::::::::::::::;:!:!:::!:!:::!:!:::::::::!:::!:!:!:!:::!:::!:::!;::!:::::::::~::::::::::::::::::;:::::~::::::::::::::;::::::::;:;:::::;!:::!::;:::;:;:;

address-nth [Function]

Returns the coordinate of an address object along a specified dimension.

Syntax--

address-nth address-object dimension

Arguments--

address-object

dimension

Front-end address object created by the function grid.

Integer. Number of the dimension for which the grid coordi­
nate of address-object is to be returned.

Returned Value ---------------------

coordinate Integer. The coordinate of address-object along the dimension
specified by dimension.

Side Effects ----------------------------------

None.

Description --

The function address-nth returns the grid (NEWS) coordinate of address-object
along the dimension specified by dimension. The argument dimension must be an
integer between 0 and one less than the number of dimensions in address-object.

Examples-------------------------------

The function address-nth returns the nth grid (NEWS) coordinate of address­
object, where n is the dimension specified by dimension.

(setq addr-obj (grid 12 3 0 29»

71

address-nth *Lisp Dictionary

(address-nth addr-obj 0) => 12
(address-nth addr-obj 1) => 3
(address-nth addr-obj 2) => 0
(address-nth addr-obj 3) => 29

Notes---

References---

72

See also the related operations
address-nth II
address-plus
address-plus-nth
address-rank
grid
grid-relative! I

address-plus!!
address-plus-nth! !
address-rank! !
gridl!
self!!

/

"

address-nth!! *Lisp Dictionary

Examples---

(address-nth!! (grid!! x y z) (!! 1»
(address-nth!! (grid!! x y z) (!! 2»

=> (!! y)

=> (!! z)

Notes--~--

References---

74

See also the related operations
address-nth
address-plus
address-plus-nth
address-rank
grid

grid-relative! !

address-plus!!
address-plus-nth! !
address-rank! !
grid!!

self!!

address-plus *Lisp Dictionary

Examples--

(address-plus (grid x y) 5 7) <=> (grid (+ x 5) (+ y 7»

Notes---------------------------~---

References---

76

See also the related operations
address-nth
address-plus! I
address-plus-nth

address-rank
grid
grid-relative! !

address-nth! !

address-plus-nth! !

address-rank! !
grid!!

self!!

address-plus! ! *Lisp Dictionary

Examples---

(address-plus!! (grid!! x y z) (!! 1) (!! 2) (!! 3»

<=>
(grid!! (+!! x (!! 1» (+!! y (!! 2» (+!! z (!! 3»)

Notes--

References---

78

See also the related operations
address-nth address-nth! !
address-plus
address-plus-nth
address-rank
grid
grid-relative!!

address-plus-nth! !
address-rank! !
grid!!
self!!

./

address-plus-nth *Lisp Dictionary

Examples -----------------------

(address-pIus-nth (grid x y) 5 0) <=> (grid (+ x 5) y)

Notes---

References---

80

See also the related operations
address-nth
address-plus
address-plus-nth! I
address-rank
grid
grid-relative I I

address-nth! !
address-plus! !

address-rank! I
grid!!
self!!

address-plus-nth! 1 *Lisp Dictionary

Examples---

(address-pIus-nth! !

<=>

(gr i d!! (!! x) (!! y) (!! z »
(!! 5) (!! 1»

(grid!! (!! x) (+!! y (!! 5» (!! z»

Notes--

References---

82

See also the related operations
address-nth address-nth! !
address-plus address-plus!!

address-plus-nth
address-rank
grid
grid-relative! 1

address-rank! !
grid!!

self!!

*Lisp Dictionary address-rank
::::::~~~:::::::::::*=!~*~~~;::*::::::::~::::::::::::::~:::::::::~:::~::::~::::~~~~:::::::*~:~*~::::;~:~~::~::~::::::::~::~:::::*~::i:::::;:::::::::::::;:::::i:::::::i:::::i::::::::::::~:::::::::::~:::::;:;::::::::::::::::::::::::::::::::~~:::*::::l::::::*:::::~-::::::*:::*:*::::.:::.:~:*::::::::::-:::~*~~::::~:

address-rank [Function]

Returns the number of coordinates specified by an address object.

Syntax--

address-rank address-obj

Arguments--

address-obj Front-end address object created by the function grid.

Returned Value --

rank Integer. Number of coordinates in address-obj.

Side Effects -------------------------------

None.

Description --------------------------

This function returns the number of coordinates in address-obj.

/

83

address-rank *Lisp Dictionary

Examples -----------------------

(address-rank (grid x y» => 2

Notes---------------------------

References-------------------------

84

See also the related operations
address-nth

address-plus
address-plus-nth

address-rank! !
grid

grid-relative!!

address-nth! !

address-plus! !
address-plus-nth! !

grid!!
self!!

/"

\

/

\

address-rank! ! *Lisp Dictionary

Examples---

(address-rank!! (grid!! (!! x) (!! y») <=> (!! 2)

Notes--

References---

86

See also the related operations
address-nth
address-plus
address-plus-nth

address-rank

address-nth! !
address-plus! !
address-plus-nth! !

grid grid!!
grid-relative!! self!!

\

"

*Lisp Dictionary alias!!

alias! ! [Macro]

Returns the actual contents of the specified subfield of a pvar, redefined as a
temporary pvar of appropriate size and type.

Syntax--

alias!! sub field-selector

Arguments ------------------------

sub field-selector Pvar sub field selector. Must be a call to either aref!! or
row-major-aref!!, a call to a structure pvar slot accessor de­
fined by *defstruct, or a call to one of the functions imagpart!!,

realpart!!, or load-byte!!.

Returned Value ---------------------------------------

aliased-pvar A temporary pvar of the same data type as the referenced pvar
subfield, such that the data contained in the aliased pvar is
identical to the data contained in the pvar subfield, rather than
being a copy of the data (i.e., the aliased pvar references the
same area of eM memory as the subfield selector.)

Side Effects --

None.

Description ------------------------

In *Lisp, a parallel array accessor, such as aref!! or row-major-aref!!, returns a
temporary pvar that is a copy of the element being referenced. Likewise, a parallel
structure slot accessor, as defined by a call to * defstruct, returns a temporary pvar
that is a copy of the parallel structure slot being accessed. Other pvar operations
that return subfields of a pvar, such as imagpart!!, realpart!!, and load-byte!!, by
definition return a copy of the referenced subfield. For most purposes, this copying
is transparent and makes no difference.

87

aliasl! *Lisp Dictionary

1Wo important exceptions are:

• passing a pvar sub field to a user-defined function that must modify the
subfield directly

• passing a pvar subfield to any function or macro where the size of the pvar
subfield makes copying inefficient (Le., a structure slot that contains
another structure of considerable size).

In these two cases, the alias! I macro can be used to specify that the actual contents
of the pvar subfield should be returned, rather than a copy.

The aliasll macro creates and returns a temporary pvar defined in such a way that
the contents of the pvar are the actual contents of the referenced pvar subfield. The
aliasll macro in effect "renames" or "aliases" the portion of a pvar referenced by
the supplied sub field-selector. The aliased-pvar returned by alias! I may be freely
referenced and modified as a pvar of the same data type as the pvar subfield.

Important: The alias!! macro is necessary only in the two cases mentioned above.
In all other cases, use of the alias!! macro has no effect and detracts from
readability of code. In some cases, expUcit use of the alias! I macro is redundant.
The following functions effectively perform an alias I I operation on their
arguments:

*setf *pset

Examples -----------------------

88

The sub field-selector argument to aliasl! can be an array reference, Le., a call to
either aref!1 or row-major-aref!!. For example, given the array defined by

(*defvar array-pvar (!! #2A«1 2 3) (4 5 6»»

both of the following expressions modify the same element of the array.

(modify-array-element
(alias!! (aref!! array-pvar (!! 1) (!! 1»»

(modify-array-element
(alias!! (row-major-aref!! array-pvar (!! 4»»

/-

.,--.

alias!! *Lisp Dictionary

90

The sub field-selector argument to alias!! can also be one of the pvar subfield opera­
tions imagpartl!, realpartl!, and load-byte!!. (Due to its implementation, alias!!
cannot be applied to these three operators in the *Lisp simulator.)

For example,

(alias!! (imagpart!! complex-pvar»
(alias!! (realpart!! complex-pvar»
(alias!! (load-byte!! integer-pvar position-pvar size-pvar»

Besides passing pvar subfields to functions that modify those fields, alias!! may
also be used to prevent copying of large pvar subfields.

For example, in the expression

(hypocondriac-p!! (alias!! (patient-case-history!! ellen»)

the user-defined function hypochondriac-p!! does not modify the case-history
slot of ellen. Even so, using alias!! in this expression is more efficient because it
prevents the possibly quite large case-history slot from being copied in the process
of passing it to the function hypochondriac-pI!.

An example of when not to use the alias!! macro is provided by the expression

(*set dest-pvar
(+! ! (alias!! (aref!! array-pvar (!! 0»)

(alias!! (structure-slot!! structure-pvar»»

Neither of the calls to alias!! are necessary in this expression, because no modifica­
tion of the referenced location takes place. It is also unnecessary and redundant to
apply alias!! to the arguments of the *Lisp functions ·setf and ·pset. For example,
in the expression

(*setf (alias!! (aref!! array-pvar (!! 3») (!! 2»

the ·setf macro effectively performs an alias!! operation on its first argument, so
the extra call to alias!! is unnecessary.

Also, in many cases it is not necessary to use the operator alias!! in combination
with aref!! to prevent the copying of large array pvars, because the *Lisp compiler
is able to recognize and optimize cases where this copying is unnecessary. See the
dictionary entry for aref!! for more information.

/.

/
I

\"

----,

*Lisp Dictionary *all
:::~::~:~:::::::::::~::::::::::::::::::::::::::~:::::::::::;:::;:::;:;:;:::;:;:::;:;:;:;:;:;:;:::;:;:;:;:::;:;:::;:::;:;:::::::::::::::::;::.::; ",' . "':':::::::'::: ::;:::;:::::;:::;:;:::::::::::::::;:::::::;:::;:;:;:;:;:;:::;:::::;:;::~:::::::::::::::::::::::::::::::;::::::::::::::::::::~::

*all [Macro]

Executes *Lisp forms with all processors selected.

Syntax---

*all &body body

Arguments---­

body *Lisp forms. Any number of statements. which are executed in
order.

Returned Value ------------------------------

body-value Scalar or pvar value. Value of final form in body.

Side Effects -----------------------

Temporarily binds currently selected set to include all processors during execution
of the forms in body.

Description ----------------------------------

The macro *all is one of the processor selection operations. It executes a set of
*Lisp forms with the currently selected set bound to include all processors in the
current VP set. The value of the final expression in the body of the *all form is re­
turned.

93

*all *' Lisp Dictionary

Examples---

94

The most common use of the *all macro is to ensure that all processors are selected
before the execution of a section of code. For example,

(*all
(*'set every-proc (!! 5»)

selects all processors and then uses *set to store 5 as the value of every-proc in
every processor. Using * all guarantees that every-proc has the same value in every
processor after this operation.

Processor selection macros can be nested. The expression

(*all
(*set numeric-pvar (random!! (!! 10.0»)
(*'when «!! numeric-pvar (!! 1»

(*set numeric-pvar (I!! numeric-pvar»»

uses *all to select all processors, *set to store a random floating-point value be­
tween 0 and 10 into numeric-pvar for every processor, and *when to select only
those processors in which the value stored in numeric-pvar is less than 1. In these
processors, I!! is used to calculate the reciprocal of the value in numeric-pvar, ~nd
*set is used to store the calculated value back into numeric-pvar.

Because *all temporarily binds the currently selected set, and restores its original
value upon exiting, it can be used within other processor selection macros to tem­
porarily reselect all processors. For example, the expression

(*when «!! data-pvar (!! 100»
(I (*sum data-pvar)

(*all (*sum data-pvar»»

uses *when to select those processors in which the value of data-pvar is less than
100. The global function *sum is used to take the slim of the values in these proces­
sors. Then *all is used to temporarily rebind the currently selected set so that *sum
can be used to take the sum of the values of data-pvar in all processors. The result
returned by the entire expression is the ratio between the sum of the values of data­

pvar that are less than 100 and the sum of all values of data-pvar.

*Lisp Dictionary *all
::::::::::::::::::::::~~~::.::::::::::::::::::::::::::::;:;:;:;:;:;:;::::!::;:;:;:;!;:::;:::;!;:;:::;:;:::;:::;:;:;:;:;!;:;:::::::::::::;:::;:;:;:;!;:;:::::::::;:;::::::: :::::::::::::::;:::;:::;:;:;:;:::::;:;: ::::;::!::;:;:;:::::::::;::::::;:::::;:;:::;:;:;:;:;::::::::::::!:!:::!:::::!:!;:;:;!:::::!:!;!::::::;!:!:::::::::::::!:!::;::::::!:::!:!:!::::;!:!:::!:::!:!:::::::::::::::::::::::::::::::::::::~

Notes--

The *cold-boot and *warm-boot operations force reselection of all processors,
but these operations also reset *Lisp and clear the *Lisp stack. See the definitions
of *cold-boot and *warm-boot for more information.

It is not necessary to use *all around every body of code. The *all macro is only
necessary only in three cases:

• Around the body of functions that need all processors active. but are called
from within code that restricts the currently selected set.

• Around any code that requires all processors to be selected temporarily.
For example, see the selective sum and division example above, which mo­
mentarily changes the currently selected set.

• Within code that changes the current VP set. Each Vi> set keeps track of its
own currently selected set of active processors. To avoid using a previously
restricted set of active processors when switching between VP sets, use
*all.

An example of the last case is:

(def-vp-set fred '(16384»
(def-vp-set wilma '(8192»

(*with-vp-set fred
(*when «!! (self-address!!) (!! 100»

(format t II-%In FRED, # active procs should be 100, -
and is: -d" (*sum (!! 1»)

(*with-vp-set wilma
(format t U-%In WILMA, # active procs should be 8192, -

and is -d" (*sum (!! 1»)
(*with-vp-set fred

(format t U-%In FRED, the # active procs should still -
be lOa, and is -d" (*sum (!! 1»)

(*all
(format t uIn FRED, the # active procs should now -

be 16384, is -0" (*sum (!! 1»»)
(format t "-%In WILMA, # active procs should still -

be 8192, is: -d" (*sum (!! 1»»
(format t "-%In FRED, # active procs should again -

be lOa, is: -d" (*SUlll (!! 1»»)

95

*all *Lisp Dictionary

This example produces the following output:

In FRED, # of active procs should be 100, and is: 100
In WILMA, # of active procs should be 8192, and is: 8192
In FRED, # of active procs should still be 100, and is: 100
In FRED, # of active procs should now be 16384, is: 16384
In WILMA, # of active procs should be 8192, is: 8192
In FRED, # of active procs should again be 100, is: 100

Note the use of *all within the *with-vp-set forms in this example to ensure that all
the processors of the newly selected VI' set are active. Note also the use of the *Lisp
idiom (*sum (!! 1» to determine the number of active processors.

Forms such as throw, return, return-from. and go may be used to exit an external
block or looping construct from within a processor selection operator. However,
doing so wi11leave the currently selected set in the state it was in at the time the
non-local exit form is executed. To avoid this, use the *Lisp macro with-css-saved.

For example,

(defun safe-division (y x)

(*when (evenp!! (self-address!!»
(block division

(with- css -saved
(*all

(*if (>!! y (!! 0»
(if (*or (=!! (!! 0) x»

(return-from division nil)
(/!! y x»»»»

Here return-from is used to exit from the division block if the value of x in any
processor is zero. When the with-css-saved macro is entered, it saves the state of
the currently selected set. When the code enclosed within the with-css-saved exits
for any reason, either normally o[via a call to an non-local exit operator like
return-from, the currently selected set is restored to its original state.

See the dictionary entry for with-css-saved for more information.

References--~---

96

See also the related operators
*case
*if

case!!
if II

*cond
*unless

condIt
*when

*ecase ecase!!
with-css-saved

/ '
i

c

*Lisp Dictionary allocate!!

allocate!! [Macro]

Allocates a global pvar.

Syntax--

allocate!! &optional pvar-initial-value nllme type

Arguments--

pvar-inifial-value Pvar expression. If supplied. is value with which global pvar is
initialized. If not supplied. a pvar with undefined values is
created.

name

type

Symbol. If supplied, stored as the symbolic name of the allo­
cated pvar.

Data type specification. If supplied, determines the data type
of the allocated pvar. Must be compatible with data type of
pvar-initial-value argument. If not supplied, a general mutable
pvar is created.

Returned Value ------------------------------

global-pvar The created global pvar is returned.

Side Effects ------------------------------

The returned pvar is allocated on the heap.

Description --------------------------

This operation creates a global pvar with the specified pvar-initial-value, name,
and type. Global pvars are deallocated during a call to *cold-boot, and are not
automatically reallocated. as are permanent pvars created by *defvar.

97

allocate!! *Lisp Dictionary

Examples -----------------------

98

Global pvars of any data type may be allocated on the heap using allocate!!:

(setq a (allocate!! (!! 5»)

(setq b (allocate!! (evenp!! (random!! (!! 2»)
'new-pvar 'boolean-pvar»

(setq heap-pvar
(allocate!! (!! #(1 2 3» nil

'(pvar (array (unsigned-byte 8) (3»»)

(ppp heap-pvar :end 2)
=> #(1 2 3) #(1 2 3)

The following example shows how allocate!! may bellsed to allocate pvars within
any VP set, and also how allocate!! is useful for creating an unspecifed number of
global pvars on demand.

(def-vp-set fred (list *minimum-size-for-vp-set*»

(defvar list-of-pvars nil)

(defun main
(*with-vp-set fred

(loop
(process-data)
(when (extra-pvar-needed)

(push (allocate!! (!! 0) nil
'(pvar (unsigned-byte 32»)

list-of-pvars»»)

By defining the list-of-pvars with allocate!!, the global pvars pushed onto the list
may be explicitly deallocated with the *deallocate operator whenever they are no
longer needed.

,

"'--

(

*Lisp Dictionary allocate!!
;:;:;:;:i:::;:;:;:;:;:;:;!;:;::=;::=;:::;:;:;:i:;::=;:~:;:::~::;:::::::::::::::::::::::;:::~::::;:~::;:::::;:::!::;:::::::::::::::::::;::::::::::!::;:; ::;.:::.:::.:.:.:::.:!;!;!;!; ., , :.:.;.:.; ::;:;!;:; ;:;:;:;:;!;:;:; ;:;:;:; ;:;:;:;:;:;:;!;:;:;:;:;:::;:;:;!;:;:;:;:;:;:;:;:;::!;:;:;!;:;:;:;:?,;:;:;:;:;:;:;:;:::;:;!;:;:;!;:;:;!;:;:;:;:;!::;:;:;:::::;:;:;::::::::::::::

Notes--

Usage Note:

The allocate!! macro is intended to be called within user code. not at top level.
It acts much like the malloc operator in the C language. in allowing the pro­
grammer to dynamically allocate CM memory within a program. Pvars allo­
cated using allocate!! are automatically deallocated during a *cold-boot. It is
an error to attempt to reference a global pvar deallocated by *cold-boot.

Language Note:

Global pvars and permanent pvars are allocated on the CM heap. In contrast
to global pvars. which are allocated by allocate!! and deallocated with * deallo­

cate, permanent pvars are allocated by * defvar and must be deallocated by the
function *deallocate-*defvars.

A global pvar created with allocate!! is simply returned. A permanent pvar
created with *defvar is bound to a global variable. Permanent pvars are reallo­
cated during a call to "cold-boot; global pvars are simply deallocated.

References---

See also the pvar allocation and deallocation operations
array!!

* deallocate

front-end!!

make-array! !

!I

* deallocate- * defvars

*Iet
typed-vector! !

*defvar

Iet
vector!1

See the *Lisp glossary for definitions of the different kinds of pvars that are allo­
cated on the eM stack and heap.

99

*Lisp Dictionary allocate-processors-for-vp-set

all ocate-processors-for-vp-set
allocate-vp-set-processors

[Function]

[Function]

Instantiates the specified flexible VP set. allocating virtual processors according to the
supplied dimensions or geometry.

Syntax--

allocate-processors-for-vp-set vp-set dimensions &key :geometry

Arguments ---

vp-set

dimensions

:geometry

Flexible VP set. Virtual processor set defined with def-vp-set.

Integer list or nil. Size of dimensions with which to instantiate
vp-set. Must be nil if geometlY argument is supplied.

Geometry object obtained by calling the function
create-geometry. Defines geometry of vp-set.

Returned Value ----------------------------------

nil Evaluated for side effect.

Side Effects --

Defines geometry of and instantiates vp-sct. and allocates any associated pvars.

Description --

This function is used during program execution to instantiate a flexible VP set. A
flexible VP set is a VP set that has been defined by calling def-vp-set without sup­
plying specific dimensions or geometry. By omitting the geometry from a
def-vp-set call and later calling allocate-processors-for-vp-set, it is possible to
create VP sets with dimensions and geometries determined at run time. For exam­
ple, VP set geometries might depend on characteristics of data that are read from a
file during program execution.

101

allocate-processors-for-vp-set * Lisp. Dictionary

It is an error to invoke allocate-processors-for-vp-set before *cold-boot has
been invoked, or to pass a fixed-size VP set as an argument.

The argument vp-set must be a flexible VP set defined by a call to the def-vp-set
macro in which the dimensions argument was nil and the :geometry-definition­
form keyword argument was either nil or unsupplied.

The dimensions argument must be a list of integers or nil. If a list of integers is
supplied, each integer must be a power of2. The product of the dimensions must
be at least as large as *minimum-size-for-vp-set* and, if larger than the physical
machine size, a power-of-two multiple of the physical machine size. Such a list
specifies the dimensions of a virtual array of processors named vp-sef. The dimen­
sions argument must be nil if an argument is supplied to the keyword :geometry.

If a :geometry keyword argument is supplied. it must be a geometry object. If
geometry is provided, it incorporates information about the dimensions of the VP
set being defined. (A geometry object may be obtained by calling the function cre­
ate-geometry. See the definition of create-geometry for more details.)

Examples--

102

This example shows how allocate-processors-for-vp-set, along with its compan­
ion function deallocate-processors-for-vp-set, may be used to instantiate a
flexible VP set several times with a different geometry at each invocation.

(def-vp-set disk-data nil
:*defvars «disk-data-pvar nil nil (pvar single-float»»

(defun process-files (&rest diskfiles)
(*cold-boot)
;;; at this point, disk-data-pvar has no memory allocated
; ;; on the CM
(dolist (file diskfiles)

(let «elements (read-number-of-elements-in file»)
(allocate-processors-for-vp-set disk-data

(list (next-power-of-two->= elements»)
;;; now disk-data-pvar has CM memory allocated
(let «array-of-data (read-data-from-disk file»)

(array-to-pvar array-of-data disk-data-pvar
:cube-address-end elements)

(process-data-in-cm disk-data disk-data-pvar»
(deallocate-processors-for-vp-set disk-data»»

/

allocated-pvar-p *Lisp Dictionary

Examples---

(allocated-pvar-p (!! 3» => :stack
(allocated-pvar-p (allocate!! (!! 3») => :heap

(setq x (!! 3» => #<field-pvar 12-2>
(*warm-boot) => nil
(allocated~pvar-p x) => nil
(setq y (allocate!! (!! 2»)
=> #<field-pvar-* allocate! I-return 1336-2>
(*cold-boot) => 512
(32 16)
(allocated-pvar-p y) => nil

Notes--

References---

106

See also the following general pvar information operators:
describe-pvar
pvar-Iength

pvar-name
pvar-type

pvar-exponent-Iength
pvar-Iocation

pvarp
pvar-vp-set

pvar-mantissa-Iength

pvar-plist

(

*Lisp Dictionary alpha-char-p!!
;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:::;:;:;:;:::::::::::::::::::::::::::::::::::~:::::::~:::;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:; :.:.:.:.:.:.:.:.:.:. ::...... ::::;:;:;:;:;:;:;:;:;:::::; ,'. .: ::.:.;:;:;:;:;:::::::;:::::;:;:::::::;:::::::;:::::::;:::;:;:::;:::;:::;:;:::::;:;:;:;:;:;:;:;:::::::;:::;:;

alpha-char-pl I [Function]

Performs a parallel test for alphabetic characters on the supplied pvar.

Syntax-------------------------

alpha-char-p!! character-pvar

Arguments------------------------------------

character-pvar Character pvar. Tested in parallel for alphabetic characters.

Returned Value -----------------------------

alpha-charp-pvar Temporary boolean pvar. Contains the value t in each active
processor where the corresponding value of character-pvar is
an alphabetic character. Contains nil in all other active proces­
sors.

Side Effects ---------------------

The returned pvar is allocated on the stacie

Description ---------------------------

The function alpha-char-p!! is a parallel character predicate. It returns a tempo­
rary pvar containing t in each active processor where the corresponding value of
character-pvar is an alphabetic character. and nil in all other active processors. The
function alpha-char-p!! provides the same functionality for character pvars that
the Common Lisp character predicate alpha-char-p provides for scalar charac­
ters.

Examples--

Alphabetic characters are all of the characters between #\A and #\Z. #\a and #\z

inclusive. The pvar that alpha-char-p!! returns contains t in each processor where

107

alpha-char-p!! *Lisp Dictionary
,~,-::::::~~<~~~:;:;:::::;:;:;:;:;:;~:~:;:~;:;:;:;:;:;~:;~:;:;:;:;:;:;:;:;:;:;:;:;:,:;:;:;:;:;:;:;:;:,:,:;:;:;:;:;:;:m;:;:;:::;';';'""~"",:,:,:;:",:,:,:,:";,,::,,,:,,,"":""""":,:,:,:,"":,:,:,:,,,:,,,:,:,,,:,:, ,";:"""'::,"::'::':':"""",',:,",:"":,:,,,:,:,:,:""",:",;":,:",:,:",:,:,:,:,:"",:""",:""':;:""':"':"'*':':;:"':'::""':'::'~::':':

the corresponding value of charactcr-pvar is one of these characters. For example,
if char-pvar contains the values #\A. #\newline. #\0, #\z. #\5, #\!, etc., then the
pvar returned by

(alpha-char-p!! char-pvar)

will contain the values t, nil, t, t, nil, nil, etc.

The function alpha-char-p!! is most useful in combination with the processor se­
lection operators. For example, if text-pvar is a character pvar representing a
string of text, then

(*when (alpha-char-p!! text-pvar)
(* sum (!! 1»)

returns the number of alphabetic characters in the string. Here, the macro *when
is used to select only those processors containing an alphabetic character. Then,
*sum is applied to the constant pvar (!! 1) to return a count of the number of se­
lected processors.

Notes--

References---

108

\

alphanumericp! I *Lisp Dictionary

The function alphanumericp!! provides the same functionality for character pvars
that the Common Lisp character predicate alphanumericp provides for scalar
characters.

Examples---

Alphanumeric characters are all of the characters between #\A and #\Z, #\a and
#\z, and #\0 and #\9 inclusive. The pvar that alphanumericp!! returns contains t in
each processor where the corresponding value of character-pvar is one of these
characters. For example, if char-pvar contains the values #\A, #\newline, #\0, #\z,
#\5, #\1, etc., then the pvar returned by

(alphanumericp!! char-pvar)

will contain the values t, nil, t, t, t, nil, etc.

The function alphanumericpl! is most useful in combination with the processor
selection operators. For example, if text-pvar is a character pvar representing a
string of text, then

(*when (alphanumericp!! text-pvar)
(* sum (!! 1»)

returns the number of alphanumeric characters in the string. The macro *when is
used to select only those processors containing an alphanumeric character, and
then *sum is applied to the constant pvar (!! 1) to return a count of the number of
selected processors.

Notes--

References---

110

/

*Lisp Dictionary amap!!

amap!! [Function]

Maps a function in parallel over a set of array pvars.

Syntax--

amap! I operator array-pvar &rest array-pvars

Arguments--

operator Parallel function. Must accept the same number of arguments
as the number of array-pvar arguments supplied.

array-pvar, array-pvars
Array pvars. Combined in parallel using operator.

Returned Value --------------------------------------

result-pvar Temporary array pvar. In each active processor, contains an
array whose value in each element is the result of combining
the corresponding elements of the arrays in the array-pvars us­
ing the specified operator.

Side Effects ---

The resulting pvar is allocated on the stack.

Description -------------------------

The amap!! function maps the supplied operator over the supplied array pvars. The
operator is applied in turn to each set of elements having the same row-major index
in the supplied array-pvars. Thus. the nth time /ill1ctio/1 is called. it is applied to a
list containing the nth element in row-major order from each of the array-pvars.

The returned array pvar contains in each active processor an array whose value in
any given element is the result of applying ope/'{f/or to the values of the correspond­
ing elements of the arrays in the supplied array-pvars.

111

amap!! *Lisp Dictionary

The *Lisp function amap!! is similar to the Common Lisp function map, but while
map works only on vectors, amap!! works on any type of array pvar. The amap!!

function requires no result type specification, as map does, because the result is
always returned as an array pvar.

For vectors, the amap!! function behaves much like the map function in accepting
vector pvar arguments of different element sizes and in limiting the mapping oper­
ation to the length of the shortest vector pvar supplied. For all other types of array
pvars, however, amap!! expects the array sizes of the supplied array-pvars to be
identical.

Examples---

The amap!! can be used to emulate vector operators such as the parallel vector
addition function v+!!. For example, v+!! is equivalent to calling amap!! with an
operator of '+!!. Thus:

(v+!! a b) <==> (amap!! ' +!! a b)

As another example, if y and x are vector pvars of length n, then

(*set y (amap!! 'log!! (amap!! 'cos!! x»)

is equivalent to

(dotimes (j n)

(*setf (aref!! y (!! j»
(log!! (cos!! (aref!! x (!! j»»»

Notes--

References----------------------~-----------------------

112

Also see the function *map, which behaves somewhat like amap!! but does not
return a value.

(

~-

*and *Lisp Dictionary

114

The following is a simple function definition using *and:

(*defun *t (pvar) (*and (eql!! pvar t! !»)

The function *t returns t if and only if its pvar argument is equal to t!!, that is, if it
contains the value t in every processor.

The function *and is also useful for determining whether an operation has been
performed on all values of a pvar. For example, the function defined by

(defun value-list (pvar)
(*let «checked-pvar nil! !»

(do «return-list nil»
«*and checked-pvar) return-list)

(*when (not!! checked-pvar)
(let «minumum (*min pvar»)

(push minimum return-list)
(*when (=!! pvar (!! minimum»)

(*set checked-pvar t! I»~»~»~)

returns a list of the numeric values contained in pvar in all of the currently active
processors. The variable checked-pvar. initially set to nil!!, indicates which of the
currently selected processors have already been checked.

Each time around the do loop, *when is used to select all active processors which
have not been checked. The minimum value contained in these processors is found
using *min, and pushed onto return-list. The variable checked-pvar is modified,
using *set, to indicate that all processors having this value have been checked.

Each time around the loop, checked-pvar is checked using *and. When (*and
checked-pvar) returns t, indicating that all of the currently active processors have
been checked, the loop exits, and return-list. the list of collected values, is returned.

/

/
\

* Lisp Dictionary *and

Notes--

References---

See also the related global operators:
* integer-length
*Iogior
*min

*xor

*Iogand
*Iogxor

*or

See also the related logical operators:
and!! not!! or!!

*max
*sum

xor!!

115

and!! *Lisp Dictionary

Examples---

The and!! function can be used either as a straightforward logical operator or as a
means of controlling evaluation. For example, the pvar returned by

(and! ! (integerp!! numeric-pvar)
(>=!! numeric-pvar (!! -5»
«=!! numeric-pvar (!! 5»)

contains t in each active processor for which the value of numeric-pyar is an
integer between -5 and 5, inclusive, and nil in all other active processors. We could
add numeric-pyar as the final argument, so:

(and! ! (integerp!! numeric-pvar)
(>=!! numeric-pvar (!! -5»
«=!! numeric-pvar (!! 5»
numeric-pvar)

This now returns a pvar containing the original value from numeric-pyar in each
processor where that value is an integer between -5 and 5, and nil in all other active
processors.

Because and!! controls the selected set in which its arguments are evaluated, it can
be used to control evaluation of pvar expressions. The expression

(if!! (and!! (integerp!! data-pvar)
(plusp!! data-pvar»

(sqrt!! data-pvar»

returns a pvarwhose value in each active processor is the square-root of the corre­
sponding value of data-pyar, if that value is a positive integer, and nil otherwise.

Notes---

118

Language Note:

Remember that and!! changes the currently selected set as it evaluates its argu­
ments. This can have unwanted side effects in code that depends on unchang­
ing selected sets, particularly code involving communication operators, such
as scan!!.

(
/

(

\

/
j

* Lisp Dictionary and! I
::;:;:;:;:::;:;:;:;:;:::;:;:;:;:::::::::::;:;:;:;:;:::::::::::::~:::~:~~::::::::::::~::::~::::::::::::::::::;:::;:::::::;:;:::::::::;:;:;:::;:::::;:::;:;:;:;:;:::;:;:::;:;:::;:::;:::::::::::;:::::::::::;:::::;:::;:::;:;:::::::::::::;:: . :: ',' ',',' .,::,:::", . :" ", , ':;::'::;::::::;;';:;::::;:::':';;::;::::::.:.:.:::':::::;::;';:::;:::;:;:::::;'::::::::::::;:;:::::::::;:;::::::::':::

For example, the expressions

(ppp (and!! (evenp!! (self-address! I»~
«!! (scan!! (self-address!!) '+!!) (!! 3»)

:end 8)
T NIL T NIL NIL NIL NIL NIL

(ppp (and!! «!! (scan!! (self-address!!) '+!!) (!! 3»
(evenp!! (self-address!!»)

:end 8)
T NIL NIL NIL NIL NIL NIL NIL

exemplify a case in which using and!! may cause a non-intuitive result because
of its deselection properties. In the first expression, the scan!! operation is
performed only in the even processors. In the second expression, the scan!!
operation is performed in all processors, resulting in a different set of dis­
played values.

This is the result of and II deselecting those processors that fail any clause be­
fore executing the next clause. One can avoid this in the following manner:

(*let «bI (evenp!! (self-address!!»)
(b2 «!! (scan!! (self-address!!) '+!!) (!! 3»»

(declare (type boolean-pvar bl b2»
(and!! bl b2»

References---

See also the related global operators:
*and
*Iogior

*min
*xor

* integer-length
*Iogxor

*or

See also the related logical operators:
not!! or!! xor!!

*Iogand
*max

*sum

119

*apply *Lisp Dictionary

Examples -----------------------

(*defun percent-difference!! (pvar1 pvar2)
(*!! U!! (-!! pvar2 pvar1) pvar1) (!! 100»)

(*apply 'percent-difference! !
(! ! 2) (list (! ! 4) » <=> (! ! 100.0)

(*apply 'percent-difference! !
(list (! ! 5) (! ! 2») <=> (ll -60.0)

Notes--

It is an error to use the Common Lisp apply operator with a function defined using
*defun.

It is legal to provide a lambda form as thefunction argument to *apply. However, in
this case there is no difference between using apply or using * apply, and using apply
is preferred for clarity.

References---

122

See also the following related operations:
*defun
*trace

*funcall
un*defun *untrace

.",.

(

arefl! "'Lisp Dictionary

Examples---

A sample call to arefl! is

(aref!! 2by5-array-pvar (!! 1) (!! 4»

which returns a pvar containing in each processor a copy of the element (1,4) of
2by5-array-pvar that is stored in that processor. An actual example of an array
reference is

(*defvar array-pvar (!! #2A«1 2 3) (456»»

(aref!! array-pvar (!! 0) (!! 2» <~> (!! 3)

Here, the element (0,2) ofthe array-pvar in each processor is 3, so the call to aref!!
with constant subscript-pvar arguments (pvars having the same value in each pro­
cessor) returns a pvar containing the value 3 in each processor.

The *setf operator may be used with eref!! to modify array locations in parallel.
For example,

(*setf (aref!! array-pvar (!! 0) (!! 2» (!! 9»

124

The subscript-pvar arguments to eref!! can contain different values in each
processor. This is known as non-constant array indexing. An example of
non-constant indexing is

("'proclaim '(type (vector-pvar single-float 2) xyzzy»
(*defvar xyzzy)

(defun non-constant-indexing-example ()
(*setf (aref!! xyzzy (!! 0» (!! 1.0»
(*setf (aref!! xyzzy (!! 1» (!! -1.0»
(ppp (aref!! xyzzy

(if!! (evenp!! (self-address!!» (!! 0) (!! 1»)
: end 8»

(non-constant-indexing-example)
1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

/

\

* Lisp Dictionary aref! !
:::::::::~~:~~:--:"!:::::::::"::::~::~:::::::::::::::::::;::::::::::::~~:::::::::;:::::::::::~::::::::::::::::;:;:;:::i:i:;:;:;:::i:::i:;:;:;:;:;:;:;:i:;:;!;:;:;:;:;:;:;:;:;:::;:;:::;:; ;:::;:; ;::!: ::::::::;:, ':::::::::!;!:::.::::: ... " :;:::i:::::;:::;:::::;:;:::;:;:::i:i:i:;:;:::;:::::;:;:::::::::::::::::::::~::::::;:::::::::::::;:::::::::::::;:;:::::;:;:::;:::;:;:;:;:i:;::::::

Notes---

Performance Note:

In general, especially for large arrays, the CM-2 implementation of non­
constant indexing can be very slow. See *sideways-array and sideways-aref!!

for a means of using the CM-2 architecture to do fast non-constant indexing
into arrays.

Usage Note:

In most cases, it is unnecessary to use the operator alias!! in combination with
aref!! to prevent the copying of pvars, because the *Lisp compiler is able to
recognize and optimize cases where this copying is unnecessary.

For example,

(*proclaim '(type (array-pvar single-float (4»
data-array-pvar»

(*defvar data-array-pvar (!! #(0.0 1.0 2.0 3.0»)

(defun bad-example (x)
(*set (the single-float-pvar x)

(oL.! ! (alias!! (aref!! data-array-pvar (!! 0»)

(alias!! (aref!! data-array-pvar (!! 1»»»

It is unnecessary to use alias!! to avoid having a copy of the data in elements 0
and 1 of data-array-pvar being made. As long as the *Lisp compiler is
compiling the code, then

(defun good-example (x)
(*set (the single-float-pvar x)

(+! ! (aref!! data-array-pvar (!! 0»
(aref!! data-array-pvar (!! 1»»)

is equivalent and will not result in any temporary pvars being used. In general
there is no need to use alias!! when performing array accessing except in
certain special cases that are discussed under the dictionary entry for alias!!.

125

arefll *Lisp Dictionary

References--------------------------------------~-------

126

See also the related array-referencing operations:
row-major-aref! !
row-major-sideways-aref! ! sideways-aref! !

The following operations convert arrays to and from sideways orientation:
* processorwise * sideways-array *slicewise

(

\

/

*Lisp Dictionary array!!

array!! [Function]

Creates and returns an array pvar. I n each active processor, an array of the specified
dimensions is created and initialized with corresponding values from the specified
pvars.

Syntax--

array!! dimensions &rest conlenf-jJvars

Arguments -----------------------------------

dimensions

content-pvars

Integer list. Specifics dimensions of array to store in each
processor.

Pvars. In each processor, specify, in row-major order, the val­
ues to be stored in that processor's array. The number of
content-pvars suppljed must match the number of array
elements specified by dimensions.

Returned Value -------------------------------

array-pvar Temporary array pvar. Contains in each active processor an
array of the specified dimensions containing the values of the
contenl-pvtll:\'.

Side Effects -----------------------

The returned pvar is allocated on the stack.

Description -------------------------------

The array!! function creates an array pvar with the specified dimensions, initialized
to contain the values of the specified conlen/-pvars.

The returned array-pvar cons iS1S of an array in each active processor. The values of
each processor's array elcments arc copied, in row-major order, from the corre­
sponding values of each supplied c0I11cnf-fJvm:

127

array!! *Lisp Dictionary

Examples---

(array!! ' (2 2) (!! 0) (!! 1)

(!! 2) (!l 3»

<=>
(!! #2A«O 1) (2 3»)

Notes--

The standard rules of coercion are used to determine the element type of the new
parallel array. Thus, a mixture of integer and floating-point elements yields a
floating-point result. A mixture of floating-point and complex elements yields a
complex result. An error is signaled if the data types present are not all compatible.
For instance, a string-char element and a floating-point element are not
compatible.

References---

128

See also the pvar allocation and dca\locatiol1 operations
allocate! !
* deallocate
front-end!1
make-array! !
!I

* deallocate- * defvars
*Iet
typed-vector! !

*defvar
Iet
vector!!

./

(
\,

*Lisp Dictionary * array-dimension
~~~~~::::~::~::::::::::::::::::::::::~~:$:~::::::~::::::::~::::::::~!:::::::;:::::::::;::::::::::::::::::::::::;:::::::;:::::::::: :::!::;:; ::::::::::::::!:::::::::::::: ,.:.:.;.:.::: :,' 

*array-dimension [*Oefun] 

Returns the length of an array pvar along a specified dimension. 

Syntax----------------------------------------------------------------------

*array-dimension array-pvar dimension 

Arguments----------------------------------------------

a"ay-pvar 

dimension 

Array pvar. 

Scalar integer. Index of the dimension for which the length of 
array-pvar is returned. 

Returned Value -----------------------------------------

length Scalar integer. Length of orray-pvar along specified dimension. 

Side Effects -------------------------

None. 

Description ------------------------------------------

This operation returns an unsigned integer equal to the size of the array-pvar 
dimension referenced by dimension. 

The argument dimension must be an unsigned integer between 0 and 1 less than the 
rank of array-pvar. 

129 



*array-dimension *Lisp Dictionary 

Examples -----------------------

(*defvar my-array-pvar (array!! '(2 1) (!! 0) (!! 1») 

(*array-dimension my-array-pvar 0) => 2 
(*array-dimension my-array-pvar 1) => 1 

Notes-------------------------------------------

References-----------------------------------------------

130 

See also the related array pvar information operators: 
array-dimension! ! 
*array-dimensions 
* array-element-type 
*array-rank 
* array-total-size 
array-row-major-index! ! 

array-dimensions! ! 

array-in-bounds-p! ! 

array-rank! ! 
array-total-size! ! 
sideways-array-p 

( 



* Lisp Dictionary array-dimension! ! 

array-dimension! ! [Function] 

Determines in parallel the length of an array pvar along a specified dimension. 

Syntax------------------------------------------------

array-dimension!! array-pya,. dimension-pya/" 

Arguments-------------------------------------------

array-pvar Array pvar. 

dimension-pvar Integer pvar. In each processor. the array dimension whose 
length is to be returned. 

Returned Value ----------------------------

length-pvar Temporary integer pvar. Contains in each active processor the 
length of army-pvar along the specified dimension. 

Side Effects ------------------------------------

Returned pvar is allocated on the stack. 

Description -------------------------

This function returns a pvar containing. in each processor. an unsigned integer 
equal to the length of the dimension-pvor dimension of array-pvar. 

The argument dimension-pvar must be a pvar containing. in each processor, an 
unsigned integer less than the rank of army-pya/". 

131 



array-dimension! ! *Lisp Dictionary 

Examples-------------------------------------------------------------------

(*defvar array-pvar (array!! '(2 1) (!! 0) (!! 1») 

(ppp (array-dimension!! array-pvar 

(mod!! (self-address!!) (!! 2») 
:end 12) 

2 1 2 1 2 1 2 1 212 121 

Notes---------------------------------------------------------

References-------------------------------------------------

132 

See also the related array pvar information operators: 
*array-dimension 
*array-dimensions 
*array-element-type 
*array-rank 
* array-total-size 
array-row-major-index! ! 

array-dimensions! ! 
array-in-bounds-p! ! 
array-rank! ! 

array-total-size! ! 
sideways-array-p 



/ 

*Lisp Dictionary *array-dimenslons 

*array-dimensions [*Oefun] 

Returns list of the lengths of each dimension of an array pvar. 

Syntax-------------------------------------------------

* array-dimensions array-pvar 

Arguments -----------------------------

array-pvar Array pvar. 

Returned Value ---------------------------------------

lengths-list Scalar integer list. Lengths of the dimensions of array-pvar. 

Side Effects -----------------------

None. 

Description -------------------------------------------

This operation returns a front-end list enumerating the dimensions of array-pvar. 
This list is of length (*array-rank array-pvar). 

133 



*array-dlmenslons *Lisp Dictionary 

Examples------------------------------------------------------------------

(*set my-array-pvar (array!! '(2 1) (!! 0) (!! 1») 

(*array-dimensions my-array-pvar) 

=> (2 1) 

Notes--------------------------------------------------

References-----------------------------------------------

134 

See also the related array pvar information operators: 
*array-dlmenslon 
array-dimensions! ! 

* array-element-type 
*array-rank 
* array-total-s Ize 
array-row-major-Index! ! 

array-dimension! I 

array-In-bounds-pl I 
array-rank! I 
array-total-slze! ! 
sideways-array-p 



*Lisp Dictionary array-dimensions! I 

array-dimensions! ! [Function] 

Returns a vector pvar containing the lengths of the dimensions of an array pvar. 

Syntax------------------------------------------------------------------------

array-dimensions!! array-pvar 

Arguments ---------------------------------------

a"ay-pvar Argument type. 

Returned Value ------------------------------------------------------------

lengths-pvar Temporary vector pvar. In each active processor, contains a 
vector enumerating the lengths of the dimensions of a"ay­
pvar. 

Side Effects ----------------------------------

The returned pvar is allocated on the stacie 

Description -----------------------------------

This function returns a vector pvar containing, in each processor, a vector whose 
nth element is the length of the nth dimension of array-pvar. 

135 



array-dimensions! ! *Lisp Dictionary 

Examples-------------------------------------------------~-------

(array-dimensions!! (array!! '(2 1) (!! 0) (!! 1») 
<=> ( !! # ( 2 1» 

Notes---------------------------------------------------------------

By definition, all arrays in an array pvar have the same size and shape. Thus, the 
pvar returned by array-dimensions!! will always have the same value in all proces­
sors. 

References--------------------------------------------------------

136 

See also the related array pvar information operators: 
*array-dimension 
*array-dimensions 

* array-element-type 
*array-rank 
* array-total-size 
array-row-major-index! ! 

array-dimension! ! 

array-in-bounds-p! ! 
array-rank! ! 
array-total-size! ! 

sideways-array-p 





*array-element-type *Lisp Dictionary 

Examples---------------------------------------------

(*array-element-type (array!! '(1 1) (!! 0») 
=> (PVAR (UNSIGNED-BYTE 1» 

Notes--------------------------------------------------

References-----------------------------------------------

138 

See also the related array pvar information operators: 
*array-dimension 
*array-dimensions 

array-in-bounds-p! ! 
*array-rank 
* array-total-size 

array-row-major-index! ! 

array-dimension! ! 
array-dimensions! ! 

array-rank! ! 

array-total-size! I 

sideways-array-p 

/-



*Lisp Dictionary array-in-bounds-p! I 

array-in-bounds-p! ! [Function] 

Tests in parallel whether array subscripts are within the bounds of an array pvar. 

Syntax-------------------------------------------------

array-in-bounds-p!! array-pvar &rest su!Jscripf-pvars 

Arguments----------------------------------------------

subscript-pvars 

Array pvar. 

Integer pvars. Subscripts to be checked against bounds of 
array-pvar. 

Returned Value -------------------------

in-boundsp-pvar Temporary boolean pvar. Contains t in every processor where 
the subscrijJt-pvars represent a valid reference to array-pvar. 
Contains nil in all other active processors. 

Side Effects ------------------------------

The returned pvar is allocated on the stack. 

Description ---------------------------------------------

This function returns a boolean pVa! with t in every processor where the values of 
the supplied subscript-pvars represent a valid reference to array-pvar and nil else­
where. 

139 



array-in-bounds-p! I *Lisp Dictionary 

Examples -----------------------

(*set my-array-pvar (array!! '(1 1) (!! 0») 

(array-in-bounds-p!! my-array-pvar (!! 0) (!! 0» 
(array-in-bounds-p!! my-array-pvar (!! 2) (!! 0» 

<=> t!! 
<=> nil!! 

Notes------------------------------

References-------------------------------------------------

140 

See also the related array pvar information operators: 
* array-dimension 

*array-dimensions 
* array-element-type 

*array-rank 
* array-total-size 
array-row-major-index! ! 

array-dimension!! 

array-dimensions! ! 

array-rank! ! 
array-total-size! ! 
sideways-array-p 

See also the related array-referencing operations: 
aref!! 

row-major-sideways-aref! ! 
row-major-aref! ! 
sideways-aref! ! 



*Lisp Dictionary *array-rank 

*array-rank [*Defun] 

Returns the number of dimensions of an array pvar. 

Syntax-----------------------------------------------------------------------

*array-rank array-pvar 

Argurnents-----------------------------------------------------

array-pvar Array pvar. 

Returned Value -----------------------------------------

rank Integer. Number of dimensions of array-pvar. 

Side Effects ---------------------------------------------

None 

Description -------------------------------------------------------

This operation returns an unsigned integer equal to the number of dimensions in 
array-pvar. 

141 



* array-rank *Lisp Dictionary 

Examples-----------------------------------------------

(*array-rank (array!! '(21) (!! 0) (!! 1))) => 2 

Notes------------------------------------------~------

References-----------------------------------------------

142 

See also the related array pvar information operators: 
*array-dimension 
* array-dimensions 
* array-element-type 
array-rank! ! 
* array-total-size 
array-row-major-index! ! 

array-dimension! ! 
array-dimensions! ! 
array-in-bounds-p! ! 

array-total-size! ! 
sideways-array-p 



* Lisp Dictionary array-rank! ! 

array-rank! ! [Function] 

Determines in parallel the number of dimensions of an array pvar. 

Syntax-------------------------------------------------------------------------

array-rank!! array-pvar 

Arguments------------------------------------------------------

array-pvar Array pvar. 

Returned Value ------------------------------------------

rank-pvar Temporary integer pvar. Contains in each active processor the 
rank, or number of dimensions, of array-pvar. 

Side Effects -----------------------------------

The returned pvar is allocated on the stack. 

Description --------------------------------------------------------------------

This function returns a pvar containing, in each processor, an unsigned integer 
equal to the number of dimensions in array-pvar. 

143 



array-rank! ! *Lisp Dictionary 

Examples---------------------------------------------------------~------

(array-rank!! pvar) <=> (!! (*array-rank pvar» 

Notes--------------------------------------------------------------------------

By definition, all arrays in an array pvar have the same size and shape. Thus, the 
pvar returned by array-rank!! has the same value in all processors. 

References-------------------------------------------------------------------

144 

See also the related array pvar information operators: 
* array-dimension 
*array-dimensions 
* array-element-type 
array-rank! ! 

* array-total-size 
array-row-major-index! ! 

array-dimension!! 
array-dimensions! ! 

-array-in-bounds-pll 

array-total-size! ! 
sideways-array-p 

'",,-





array-row-major-index! ! *Lisp Dictionary 

Examples---------------------------------------------

Consider a two-dimensional array pvar, as defined by 

(*defvar arr!! (!! #2A«10 30) (20 40»» 

The row-major index of each element in arr!! can be determined as follows: 

(ppp a :end 4) 
(ppp b :end 4) 

=> 0 1 0 1 
=> 0 0 1 1 

(ppp (array-row-major-index!! arr!! a b) 
:end 4) => 0 2 1 3 

That the row-major indices are independant of the contents of the array elements 
can be see by evaluating the expression 

(ppp (aref!! arr!! a b) :end 4) => 10 20 30 40 

Notes--------------------------------------------------

References-----------------------------------------------

146 

See also the related array pvar information operators: 
*array-dimension 
*array-dimensions 
*array-element-type 
*array-rank 
* array-total-s ize 
sideways-array-p 

array-dimension! ! 
array-dimensions! ! 
array-in-bounds-p! ! 

array-rank! ! 
array-total-size! ! 

( 





array-to-pvar *Lisp Dictionary 

Side Effects ---------------------

The contents of source-array, beginning at the element specified by array-offset, are 
copied into dest-pvar. All values of dest-pvar from :cube-address-start to :cube­

address-end are modified, regardless of the currently selected set. If the dest-pvar 
argument is not supplied, a temporary pvar is allocated on the stack. 

Description -----------------------

This function copies data from source-al1"oy to dest-pvar in send-address order. 
The source-array must be one-dimensional. If a dest-pvar is not provided, array-to­
pvar creates a temporary destination pvar. If a temporary destination pvar is cre­
ated, its value in processors to which array-to-pvar did not write is undefined. 

It is legal for source-array to contain more elements than can be stored in 
dest-pvar. The extra elements are ignored. It is an error, however, for source-array 
to contain fewer elements than are needed to fill dest-pvar. 

This function is especially useful for copying data into the eM. It is much faster 
than setting pvar elements individually using *sett and pret. 

Examples-----------------------

148 

After the following forms are evaluated, 

(*defvar pvar) 
(setq array (make-array *number-of-processors-limit* 

:initial-element 3» 
(array-to-pvar array pvar) 

The value of pvar is (!! 3). 

( 

" 

/' 



* Lisp Dictionary array-to-pvar 

Notes-----------------------------------------------------------------------------

Performance Note: 

This operation is fastest when pvars of a specific non-aggregate type are used, 
slower when general pvars are used, and very slow if aggregate pvars are used. 
The examples below shows how to move aggregate data efficiently into the eM. 

The following expressions define a *defstruct type and create a structure pvar 
of that type. 

(*defstruct foo 
(a 0 :type t :cm-type (pvar (unsigned-byte 32») 
(b 0.0 :type t :cm-type (pvar single-float» 
) 

(*proclaim I (type (pvar foo) a-foo-pvar» 
(*defvar a-foo-pvar) 

In the first example. an array of structure objects of type foo is created on the 
front end, and then copied in one operation to a structure pvar on the eM. This 
method of transferring data is very slow. but is relatively straightforward. 

(defvar a-foo-array 
(make-array *number-of-processors-limit* 

:element-type Ifoo» 

(defun init-a-foo-array () 
(dotimes (j *number-of-processors-limit*) 

(setf (aref a-foo-array j) (make-foo» 
) ) 

(defun move-a-foo-array-data-from-front-end-to-cm () 
(array-to-pvar a-foo-array a-foo-pvar) 
) 

The next example is very fast, although it is somewhat non-intuitive. The 
expressions below create a single front-end structure object, and initialize its 
slots with arrays of values that will form the slot values of the structure pvar on 
the eM. Moving the data to the eM involves a separate array transfer for each 
slot, copying the array of elements for that slot to the structure pvar on the eM. 

;;; create single front-end structure object 
(defvar a-foo (make-foo» 

149 



array-to-pvar *Lisp Dictionary 

;;; initialize the object's slots with arrays 
;;; instead of single values 
(defun init-a-foo () 

(setf (foo-a a-foo) 
(make-array *number-of-processors-limit* 

:element-type '(unsigned-byte 32») 
(setf (foo-b a-foo) 

(make-array *number-of-processors-limit* 
:element-type 'single-float») 

;;; perform one array-to-pvar transfer for each slot 
;;; (note use of alias!! to prevent slot copying) 
(defun move-a-foo-data-from-front-end-to-cm () 

(array-to-pvar (foo-a a-foo) 
(alias!! (foo-a!! a-foo-pvar») 

(array-to-pvar (foo-b a-foo) 
(alias!! (foo-b!! a-foo-pvar»» 

Th summarize, using a single front-end structure object with arrays as slot val­
ues and moving each array separately is much faster than using an array of 
structures and moving the array into the eM in a single operation. 

References-----------------------------------------------

See also these related array transfer operations: 
array-to-pvar-g rid 
pvar-to-array pvar-to-array-grid 

See also the *Lisp operation pref, which is used to transfer single values from the eM 
to the front end. 

The *Lisp operation *setf, in combination with pref, is used to transfer a single value 
from the front end to the eM. 

150 

/ 





array-to-pvar-grid *Lisp Dictionary 

Side Effects ----~----------------

The contents of source-array, beginning at the element specified by the :array­
offset argument, are copied into dest-pvar. All values of dest-pvar specified by the 
:grid-start and :grid-end arguments are modified, regardless of the currently 
selected set. If the dest-pvar argument is not supplied, a temporary pvar of the ap­
propriate size is allocated on the stack. 

Description -----------------------

This function copies data from source-array to dest-pvar in grid (NEWS) address 
order. 

The keyword arguments to :array-offset, :grid-start, and :grid-end must be lists of 
length *number-of-dimensions*. 

The data from source-array, starting with element :array-offset as the upper corner, 
are copied into dest-pvar, with :grid-start and :grid-end specifying the upper and 
lower corners, respectively. The value returned by array-to-pvar-grid is dest-array. 
If dest-pvaris unpro~ided or nil, array-to-pvar-grid creates a temporary destination 
pvar. If a destination pvar is created, its value in processors to which array-to-pvar­
grid did not write is undefined. 

It is legal for source-array to contain more or fewer elements than can be stored in 
dest-pvar. Extra elements are ignored, and copying an array with fewer elements 
modifies only a subset of the values of dest-pvar. 

Examples------------------------

152 

The following expressions select a two-dimensional grid configuration, define a 
two-dimensional front-end array, and then copy a portion of the array into a pvar 
on the eM. 

(*cold-boot :initial-dimensions ' (128 128» 

(defparameter an-array 
(make-array '(5 5) :element-type 'single-float 

: initial-element 0.0» 

(*proclaim '(type single-float-pvar grid-pvar» 
(*defvar grid-pvar) 



*Lisp Dictionary array-to-pvar-grid 

The following call transfers the 4 x 4 subarray of an-array whose corners are 

(1 1) (4 1) 

(1 4) (4 4) 

to the 4 x 4 subgrid of grid-pvar whose grid-address corners are 

(2 3) (6 3) 

(2 7) (6 7) 

(array-to-pvar-grid an-array grid-pvar 
:array-offset '(1 1) 
:grid-start '(2 3» 

Notice that since the dimensions of an-array are (5,5), and copying is specified to 
begin at (1,1), an array of only (4,4) elements is copied. This in turn means that only 
a (4,4) subgrid of values is modified in grid-pvar. 

Notes--------------------------------------------------------------

This function is especially useful for copying image data into the Connection Ma­
chine. It is much faster than setting pvar elements individually with *setf and pref. 

References-----------------------------------------------

See also these related array transfer operations: 
array-to-pvar 

pvar-to-array pvar-to-array-grid 

See also the *Lisp operation pref, which is used to transfer single values from the CM 
to the front end. 

The *Lisp operation *setf, in combination with pref, is used to transfer a single value 
from the front end to the CM. 

153 







* array-total-size *Lisp Dictionary 

Examples---------------------------------------------------------------------

(*array-total-size 
(array!! '(22) (!! 0) (!! 1) (!! 2) (!! 3») 

=> 4 

Notes----------------------------------------------------------

References--------------------------------------------------

156 

See also the related array pvar information operators: 
*array-dimension 
*array-dimensions 
*array-element-type 
*array-rank 

array-row-major-index! ! 
sldeways-array-p 

array-dimension! ! 
array-dimensions! ! 
array-in-bounds-p! ! 
array-rank! ! 

array-total-size! ! 

( 
\ 

" 



*Lisp Dictionary array-total-slze! ! 

array-total-size! ! [Function] 

Returns in parallel the total size of the arrays contained in an array pvar. 

Syntax-------------------------------------------------------------------------

array-total-size!! array-pvar 

Arguments-------------------------------------------------------------------

array-pvar Array pvar. 

Returned Value --------------------------------------------

size-pvar Temporary integer pvar. In each active processor, contains the 
total size (product of the lengths of each dimension) of the cor­
responding value of array-pvar. 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description -----------------------------------------------

This function returns, in each processor, an unsigned integer equal to the total 
number of array elements contained in that processor. 

(array-total-size!! array-pvar) 
<=> 
(!! (*array-total-size array-pvar» 

157 



array-total-size I I *Lisp Dictionary 

Examples-----------------------------------------------

(array-total-size! ! 
(array!! ' (2 2) (!! 0) (!! 1 ) (!! 2) (!! 3») 

<=> (!! 4) 

Notes----------------------------------------------------

By definition, an array pvar consists of one array per processor and each array has 
the same size and shape. Thus, the pvar returned by array-total-size!! has the same 
value in all processors. 

References-----------------------------------------------

158 

See also the related array pvar information operators: 
* array-dimension 
* array-dimensions 
*array-element-type 
*array-rank 

array-row-major-indexl! 
sideways-array-p 

array-dimension! I 
array-dimensions! ! 
array-in-bounds-p! ! 
array-rank! ! 

* array-total-size 

.~. 

\ 

( 
\ 



*Lisp Dictionary ash!! 

ash!! [Function] 

Performs a parallel arithmetic shift of the supplied pvars. 

Syntax------------------------------------------------

ash!1 integer-pvar count-pvar 

Arguments----------------------------------------------

integer-pvar 

count-pvar 

Integer pvar. Value to be shifted. 

Integer pvar. Number of bits by which to shift-to the left if 
positive, to the right if negative. 

Returned Value ----------------------------------------

shifted-pvar Temporary integer pvar. Contains in each processor the result 
of shifting the corresponding value of integer-pvar the number 
of bit positions specified by count-pvar. 

Side Effects -------------------------------------------

The returned pvar is allocated on the stack. 

Description ------------------------

The ash!! function performs a parallel arithmetic shift operation. It returns a tem­
porary pvar that contains in each active processor the result of shifting the corre­
sponding value of integer-pvar the number of bit positions specified by count-pvar. 

The values in integer-pvar are shifted to the left in those processors where count­
pvar is positive, and to the right where count-pvar is negative. In either case, the 
values from ;nteger-pvar are treated as two's-complement integers, and the sign bit 
is always preserved. In left shifts, zero bits are added from the right; in right shifts, 
copies of the sign bit are added from the left. 

159 



ash!! *Lisp Dictionary 

The ash!! function provides the same functionality for numeric pvars as the Com­
mon Lisp function ash provides for numeric scalars. 

Examples -----------------------

When the values of count-pvar are positive, the corresponding values of integer­
pvar are shifted to the left. 

(ash! ! (!! 2) (!! 0) ) <=> (!! 2) 
(ash! ! (!! 2) (!! 1» <=> (!! 4) 
(ash! ! (!! 2) (!! 3» <=> (!! 16) 
(ash! ! (!! 2) ( ! ! 9» <=> (!! 1024) 

When the values of count-pvar are negative, the corresponding values of integer­
pvar are shifted to the right. 

(ash! ! (!! 2) (!! -1» <=> (!! 1) 
(ash! ! (!! 2) (!! -2» <=> (!! 0) 
(ash! ! (!! 16) (!! -3» <=> (!! 2) 
(ash! ! (!! 1024) (!! -9» <=> (!! 2) 

The argument count-pvar can contain both posi tive and negative values. For exam­
ple, if shift-pvar contains the values -2, -1, 0, 1,2, etc., then the pvar returned by 

(ash!! (!! 4) shift-pvar) 

contains the values 1, 2, 4, 8, 16, etc. 

Notes-----------------------------------------

References-----------------------------------------------

160 

/' 

"'-. 

( 



*Lisp Dictionary asin!! 

asin!! [Function] 

Thkes the arc sine of the supplied pvar. 

Syntax------------------------------------------------

asinll numeric-pvar 

Arguments----------------------------------------------

numeric-pvar Numeric pvar. Pvar for which the arc sine is calculated. 

Returned Value ----------------------

arc-sine-pvar Temporary numeric pvar. In each active processor, contains 
the arc sine in radians of the corresponding value of numeric­
pvar. 

Side Effects ------------------------

The returned pvar is allocated on the stack. 

Description ------------------------

The asin I! function calculates the arc sine of numeric-pvar in all active processors. 
It returns (l temporary pvar containing in each active processor the arc sine in ra­
dians of the corresponding value of numeric-pvm: 

The asin!! function provides the same functionality for numeric pvars as the Com­
mon Lisp function asin provides for numeric scalars. 

Examples--------------------------------------------

If numeric-pvar contains non-complex values. asin!! returns the arc sine in each 
active processor. 

161 



asin!! *Lisp Dictionary 

(asin!! (!! 1.0» <=> (!! 1.5707963) 

If numeric-pvar contains complex values, asin!! returns the complex arc sine in 
each active processor. 

(asin!! (!! #c(1.0 0.0») <=> (!! #c(1.5707963 0.0» 

Notes--------------------------------------------------

An error is signalled if the argument numeric-pvar contains integer or floating­
point values of magnitude greater than 1.0 in any active processor. Complex values 
with magnitude greater than 1.0 are allowed. 

An error is signalled if the argument numeric-pvar contains a non-numeric value 
in any active processor. 

References----------------------------------------------

162 

/ 

/ 

\ 



*Lisp Dictionary asinh!! 

asinh!! [Function] 

lakes the arc hyperbolic sine of the supplied pvar. 

Syntax------------------------------------------------

asinhl! numeric-pvar 

Arguments -----------------------------------------------

numeric-pvar Numeric pvar. Pvar for which arc hyperbolic sine is calculated. 

Returned Value -----------------------------------

asinh-pvar Temporary numeric pvar. In each active processor, contains 
the arc hyperbolic sine in radians of the corresponding value of 
numeric-pvar. 

Side Effects ---------------------------

The returned pvar is allocated on the stack. 

Description ------------------------------

The asinh!! function calculates the arc hyperbolic sine of numeric-pvar in all active 
processors. It returns a temporary pvar containing in each active processor the arc 
hyperbolic sine in radians of the corresponding value of numeric-pvar. 

The asinh!! function provides the same functionality for numeric pvars as the 
Common Lisp function asinh provides for numeric scalars. 

163 



asinhll *Lisp Dictionary 

Examples-----------------------------------------------

If numeric-pvar contains non-complex values, asinh!! returns the arc hyperbolic 
sine in each active processor. Thus: 

(asinh!! (!! 11.548740» <=> (!! 3.1415927) 

If numeric-pvar contains complex values, asinh!! returns the complex arc hyper­
bolic sine in each active processor. For example: 

(asinh!! (!! #c(11.548740 0.0») <=> (!! #c(3.1415927 0.0» 

Notes--------------------------------------------------

An error is signalled if the argument numeric-pv(" contains a non-numeric value 
in any active processor. 

References-----------------------------------------------

164 

/ 



*Lisp Dictionary atan!! 
:;:~::::::;::::::::::::::::::::::::::::::::::::::::::::,:::;:::::::;!;:::::,:;:,:;:::;:;:;:::!:::::;';';.::;.;.;'::;:;:;'::,:,.;:;:;:;::; :;':::::'::;:".::,": ";';;:;':;::';,':' ", .,::';':'" •• :,' :" :::::;!::;:;:;!;:::;:::;!;!;:::;:;!;:;!;:;!;:::;!::;!;:;:;:;:;:;!;:;!;!;:;!;:;:;:;:;:;!;:;:;:;:;:;:;!;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;!;!;:;:;:;:;:;:;!;:;:;::::::~:::::::::::;:;:::::: 

atan!! [Function] 

Takes the arc tangent of the supplied pvar(s). 

Syntax------------------------------------------------

atan!! numeric-pvar &optional denominator-pvar 

Arguments---------------------------------------------

numeric-pvar Numeric pvar. Pvar for which arc tangent is calculated. 
Numerator of value if denominator-pvar is supplied. 

denominator-pvar Numeric pvar. If supplied, denominator of value. 

Returned Value -----------------------------------------

arc-tangent-pvar Temporary numeric pvar. In each active processor, contains 
the arc tangent in radians of the corresponding values in 
numeric-pvar and (if supplied) denominator-pvar. 

Side Effects -------------------------------------------

The returned pvar is allocated on the stack. 

Description ------------------------

The atan!! function calculates the arc tangent in all active processors. 

If only one argument is given. atan!! returns a temporary pvar containing in each 
active processor the arc tangent in radians of the corresponding value of numeric­
pvar. The argument numeric-pvar may contain either real or complex values in this 
case. 

If two arguments are given, the returned pvar contains in each active processor the 
arc tangent of the quotient of numeric-pvar and denominator-pvar. The numeric­
pvar and denominator-pvar arguments may not contain complex values in this 
case. The quadrant of the result is determined by the respective signs of the two 

165 



atan\! *Lisp Dictionary 

arguments. The angle returned in each processor is in standard position, with one 
side on the x-axis and the other in the same quadrant as the point defined by 
(numeric-pvar, denominator-pvar) in that processor. 

The atan!! function provides the same functionality for numeric pvars as the Com­
mon Lisp function atan provides for numeric scalars. 

Examples----------------------------------------------

If numeric-pvar contains non-complex values, atan!! returns the arc tangent in 
each active processor. 

(atan! ! ( ! ! 1.0» <=> ( ! ! 0.7853982) 
(atan! ! (! ! 3) ( ! ! 4» <=> ( ! ! 0.6435011) 
(atan! ! ( ! ! -3) ( ! ! 4» <=> ( ! ! -0.6435011) 
(atan! ! ( ! ! 3) ( ! ! -4» <=> ( ! ! 2.4980915) 
(atan! ! ( ! ! -3) ( ! ! -4» <=> ( ! ! -2.4980915) 

If numeric-pvar contains complex values, atan!! returns the complex arc tangent in 
each active processor. 

(atan!! (!! #c(0.27175258 1.08392333») <=> (!! #c(1.0 0.0» 

Notes--------------------------------------------------------------------------

An error is signalled if numeric-pvar and denominator-pvar both contain 0 in any 
active processor, or if either argument contains a non-numeric value in any active 
processor. 

References----------------------------------------------------------------------

166 



~ 
\ 

*Lisp Dictionary atanhll 

atanh!! [Function] 

Thkes the arc hyperbolic tangent of the supplied pvar. 

Syntax------------------------------------------------

atanh!! numeric-pv(" 

Arguments----------------------------------------------

numeric-pvar Numeric pvar. Pvar for which arc hyperbolic tangent is calcu­
lated. 

Returned Value -----------------------------------------

atanh-pvar 'Thmporary numeric pvar. In each active processor, contains 
the arc hyperbolic tangent in radians of the corresponding val­
ue of numeric-pvar. 

Side Effects --------------------------------------

The returned pvar is allocated on the stack. 

Description -----------------------------------------------

The atanh!! function calculates the arc hyperbolic tangent of numeric-pvar in all 
active processors. It returns a temporary pvar containing in each active processor 
the arc hyperbolic tangent in radians of the corresponding value of numeric-pvar. 
The atanh!! function provides the same functionality for numeric pvars that the 
Common Lisp function atanh provides for numeric scalars. 

Examples----------------------------------------------

If numeric-pvar contains non-complex values, atanh!! returns the arc hyperbolic 
tangent in each active processor. 

167 



atanhll "Lisp Dictionary 

(atanh!! (!! .1» <=> (!! 0.10033534) 

If numeric-pvar contains complex values. atanh!! returns the complex arc hyper­
bolic tangent in each active processor. 

(atanh!! (!! #0(0.0 0.0») <=> (!! #0(0.00.0» 

Notes----------------------------------------------------------------------

An error is signalled if the argument numeric-pvar contains a non-complex value 
of magnitude greater than or equal to 1 in any active processor. 

An error is signalled if the argument numeric-pvar contains a non-numeric value 
in any active processor. 

References-----------------------------------------------

168 

( 
\ 





bit!! *Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

170 

See also these related bit-array pvar operations: 
bit-and!! 

bit-eqv!! 
bit-notl! 

sbitll 

bit-andc1 !! 

bit-ior!! 
bit-orc1 !! 

bit-andc2!! 

bit-nand!! 
bit-orc2!! 

bit-nor!! 
bit-xor!! 





bit-and!! * Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar.1f 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples ------------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 100») 

(bit-and!! bitarr1 bitarr2) <=> (!! #(1 000» 

Notes-------------------------

References------------------------

172 

See also these related bit-array pvar operations: 
bit!! bit-andc1 !! bit-andc2!! 
bit-eqv!! 

bit-not!! 
sbit!! 

bit-ior!! 
bit-orc1 !! 

bit-nand!! 
bit-orc2!! 

bit-nor!! 
bit-xor!! 



*Lisp Dictionary bit-andc1 !! 

bit-andc1 !! [Function] 

Performs a parallel bit-wise AND operation on the supplied bit array pvars, after tak­
ing the complement of its first argument. 

Syntax-------------------------------------------------------------------------

bit-andc11! bit-array-pvar-l bit-array-pvar-2 &optional destination 

Arguments ----------------------------------------------------------------------

bit-array-pvar-l Bit array pvar. Complemented, then combined with bit-array­
pvar-2 using bit-wise AND. 

bit-array-pvar-2 Bit array pvars. Combined with the complement of bit-array­
pvar-l using bit-wise AND. 

destination Either the value t, the value nil, or a bit array pvar. Determines 
where the result is stored. Defaults to nil. 

Returned Value -------------------------------------------------------

bit-array-resu[t-pvar 
Temporary bit-array pvar. In each active processor, contains 
the result of combining the complement of bit-array-pvar-l 
with bit-array-pvar-2 using bit-wise AND. Either an allocated 
pvar or a temporary, depending on the value of destination. 

Side Effects ------------------------

If destination is nil or not supplied, the returned pvar is allocated on the stack. If 
destination is t, bit-array-pvar-l is destructively modified to contain the result. If 
destination is a bit array pvar, then destination is destructively modified to contain 
the result. 

173 





*Lisp Dictionary bit-andc211 

bit-andc2! ! [Function] 

Performs a parallel bit-wise AND operation on the supplied bit array pvars, after tak­
ing the complement of its second argument. 

Syntax----------------------------------------------------------------------

bit-andc2!! bit-array-pvar-l bit-array-pvar-2 &optional destination 

Arguments ------------------------

bit-array-pvar-l Bit array pvars. Combined with the complement of bit-array­
pvar-2 using bit-wise AND. 

bit-array-pvar-2 Bit array pvar. Complemented, then combined with bit-array­
pvar-l using bit-wise AND. 

destination Either the value t, the value nil, or a bit array pvar. Determines 
where the result is stored. Defaults to nil. 

Returned Value ----------------------------------------------------------

bit-array-resu[t-pvar 
Temporary bit-array pvar. In each active processor, contains 
the result of combining bit-array-pvar-l with the complement 
of bit-array-pvar-2 using bit-wise AND. Either an allocated 
pvar or a temporary, depending on the value of destination. 

Side Effects ---------------------------------------------------------

If destination is nil or not supplied, the returned pvar is allocated on the stack. If 
destination is t, bit-array-pvar-l is destructively modified to contain the result. If 
destination is a bit array pvar, then destination is destructively modified to contain 
the result. 

175 



bit-andc2!! * Lisp Dictionary 

Description ------------------------

This function performs a logical bit-wise operation on the contents of the first two 
arguments. The result is a bit-array pvar of the same rank and dimensions as 
bit-array-pvar-l and bit-array-pvar-2. 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. ' 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pva,r arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples----------------------------------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 100») 

(bit-andc2!! bitarr1 bitarr2) <=> 
(bit-and bitarr1 (bit-not!! bitarr2» <=> (!! #(0 0 1 0» 

Notes---------------------------

References------------------------

176 

See also these related bit-array pvar operations: 
bit!! bit-and!! bit-andc1!! 
bit-eqv!! 

bit-not!! 
sbit!! 

bit-ior!! 
bit-orc1 !! 

bit-nand!! 
bit-orc2!! 

bit-nor!! 
bit-xor!! 

( 

'",. 



* Lisp Dictionary bit-eqv!! 

bit-eqv!! [Function] 

Performs a parallel bit-wise equivalence operation on the supplied bit array pvars. 

Syntax-------------------------------------------------

bit-eqv!! bit-a"ay-pvar-l bit-array-pvar-2 &optional destination 

Arguments -----------------------------------------------

bit-a"ay-pvar-l, bit-a"ay-pvar-2 

destination 

Bit array pvars. Combined using bit-wise equivalence. 

Either the value t, the value nil, or a bit array pvar. Determines 
where the result is stored. Defaults to nil. 

Returned Value -------------------------------------------

bit-a"ay-resu[t-pvar 
Temporary bit-array pvar. In each active processor, contains 
the result of performing a bit-wise equivalence operation on 
the arrays in bit-a"ay-pvar-l and bit-a"ay-pvar-2. Either an 
allocated pvar or a temporary, depending on the value of desti­
nation. 

Side Effects -------------------------------------

If destination is nil or not supplied, the returned pvar is allocated on the stack. If 
destination is t, bit-a"ay-pvar-l is destructively modified to contain the result. If 
destination is a bit array pvar, then destination is destructively modified to contain 
the result. 

Description ---------------------------------------------

This function performs a logical bit-wise operation on the contents of the first two 
arguments. The result is a bit-array pvar of the same rank and dimensions as 
bit-a"ay-pvar-l and bit-array-pvar-2. 

177 



bit-eqv!! *Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples-----------------------------------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 1 0 0») 

(bit-eqv!! bitarr1 bitarr2) <=> (!! #(1 0 0 1» 

Notes----------------------------------------------------

References------------------------------------------------

178 

See also these related bit-array pvar operations: 
bitl! bit-and!! bit-andc1!! 
bit-lor!! 
bit-notl! 

sbit!! 

bit-nand!! 
bit-orc1 !! 

bit-nor!! 
bit-orc2!! 

bit-andc2!1 

bit-xor!! 

I 

'" 





bit-ior!! *Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples -----------------------

(*defvar bitarr1 (!! #(1 010») 
(*defvar bitarr2 (!! #(1 100») 

(bit-ior!! bitarr1 bitarr2) <=> (!! #(1 110» 

Notes---------------------------------------------------------------------

References-------------------------

180 

See also these related bit-array pvar operations: 
bit!! bit-and!! bit-andc1!! 

bit-eqv!! 
bit-not!! 
sbitll 

bit-nand!! 
bit-orc1 !I 

bit-nor!! 

bit-orc2!1 

bit-andc2!! 

bit-xor!! 

\ 

( 
\ 



*Lisp Dictionary bit-nand I I 
:::::::::~::~::::::::::~:::::::::~:::::~::::::~::::::::::::::i::::::::~::::~~::::::::~:~:::::::::::~~~::::::::::::::*:::::::::~::::~::~::::*::~::::::::::::::~:::*~:::::~::::::::~~::::::::::::::::::::::::::::::::::::::::::::::::::::::*:::~::::*:::~::~~~*:~~::::::::::~~~~:::::::::!~*x::~:x::::*:~::::::::::::::::::::::::::::::::::::::::::::::::~*::::::::: 

bit-nand!! [Function] 

Performs a parallel bit-wise NAND operation on the supplied bit array pvars. 

Syntax-----------------------------------------------------------------------

bit-nand!! bit-array-pvar-l bit-array-pvar-2 &optional destination 

Arguments-----------------------------------------------

bit-array-pvar-l, bit-array-pvar-2 

destination 

Bit array pvars. Combined using bit-wise NAND. 

Either the value t, the value nil, or a bit array pvar. Determines 
where the result is stored. Defaults to nil. 

Returned Value -----------------------------------------

bit-array-resu[t-pvar 
Temporary bit-array pvar. In each active processor, contains 
the bit-wise NAND of the arrays in bit-array-pvar-l and bit-ar­
ray-pvar-2. Either an allocated pvar or a temporary, depend­
ing on the value of destination. 

Side Effects ----------------------------------------------------------------

If destination is nil or not supplied, the returned pvar is allocated on the stack. If 
destination is t, bit-array-pvar-l is destructively modified to contain the result. If 
destination is a bit array pvar, then destination is destructively modified to contain 
the result. 

Description ------------------------

This function performs a logical bit-wise operation on the contents of the first two 
arguments. The result is a bit-array pvar of the same rank and dimensions as 
bit-array-pvar-l and bit-array-pvar-2. 

181 



bit-nand!! *Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples -----------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 100») 

(bit-nand!! bitarr1 bitarr2) <=> (!! #(0 1 1 1» 

Notes---------------------------------------

References-----------------------------------------------

182 

See also these related bit-array pvar operations: 
bit!! bit-and!! bit-andc1!! 

bit-eqv!! 
bit-not!! 
sbitll 

bit-ior!! 

bit-orc1 !! 

bit-nor!! 

bit-orc2!! 

bit-andc2! ! 

bit-xor!! 

/ 

\ 





bit-nor 11 *Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-a"ay-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-a"ay-pvar-l. 

Examples----------------------------------------------------------------------

(*defvar bitarr1 (!! #(1 010») 
(*defvar bitarr2 (!! #(1 100») 

(bit-nor!! bitarr1 bitarr.2) <=> (!! #(0 0 0 1» 

Notes----------------------------------------------------------------------------

References---------------------------------------------------------------------

184 

See also these related bit-array pvar operations: 
bit!1 bit-and!1 bit-andc1!1 

bit-eqvll 
bit-notll 
sbltl! 

bit-ior!! 
bit-orc1 !! 

bit-nand!! 
bit-orc2!! 

bit-andc2! I 

bit-xorl! 

/ 
.~. 

( 





bit-not I I *Lisp Dictionary 

destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-an'ay-pvar. 

Examples-------------------------------------------------------------------

(*defvar bitarr (!! #(1 0») 

(bit-not!! bitarr) <=> (!! #(0 i» 

Notes-------------------------------------------------------------------------

References-----------------------------------------------

186 

See also these related bit-array pvar operations: 
bitll bit-andl! bit-andc1!1 
bit-eqvll 
bit-orc111 

bit-ior!! 
bit-orc211 

bit-nand!! 
bit-xor!1 

bit-andc2!! 
bit-nor!! 
sbit!1 

/ 

/ 

\ 





bit-orc1 !! *Lisp Dictionary 

Description -----------------------

This function performs a logical bit-wise operation on the contents of the first two 
arguments. The result is a bit-array pvar of the same rank and dimensions as 
bit-a"ay-pvar-l and bit-a"ay-pvar-2. 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar.1f 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-a"ay-pvar-l. 

Examples-------------------------

(*defvar bitarr1 ( ! ! #(1 0 1 0) » 
(*defvar bitarr2 ( ! ! #(1 1 0 0) » 

(bit-orc1! ! bitarr1 bitarr2) <=> 
(bi t-or! ! (bit-not! ! bitarr1) bitarr2) <=> ( ! ! #(1 1 0 1» 

Notes-------------------------

References------------------------------------------

See also these related bit-array pvar operations: 
bit!! bit-and!! bit-andc1!! 

bit-eqv!! bit-ior!! bit-nand!! 
bit-not! I bit-orc2!! bit-xor!! 

188 

bit-andc2! ! 
bit-nor!! 
sbit!! 

( 
\ 





bit-orc211 *Lisp Dictionary 

Description ------------------------

This function performs a logical bit-wise operation on the contents of the first two 
arguments. The result is a bit-array pvar of the same rank and dimensions as 
bit-a"ay-pvar-i and bit-array-pvar-2. 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar. If 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-a"ay-pvar-i. 

Examples----------------------------------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 100») 

(bit-orc2!! bitarr1 bitarr2) <=> 
(bit-or!! bitarr1 (bit-not!! bitarr2» <=> (!! #(1 011» 

Notes------------------------------------------------

References-------------------------

190 

See also these related bit-array pvar operations: 
bitll bit-and!! bit-andc1!! 

bit-eqv!! 

bit-notl! 

bit-ior!! 
bit-orc1 !I 

bit-nand!! 

bit-xor!! 

bit-andc2!1 

bit-nor!! 

sbit!! 

\ 





bit-xor!! *Lisp Dictionary 

It is an error if both required arguments are not bit-array pvars of identical rank 
and dimensionality. 

If supplied, the optional destination argument must be either t, nil, or a bit array 
pvar with the same rank and dimensions as the bit-array-pvar arguments. It de­
faults to nil. If destination is nil, the operation returns a temporary bit array pvar.1f 
destination is a bit-array pvar, the result of the operation is destructively stored in 
that pvar. If destination is t, the result of the operation is destructively stored in 
bit-array-pvar-l. 

Examples---------------------------------------------------------------------

(*defvar bitarr1 (!! #(1 0 1 0») 
(*defvar bitarr2 (!! #(1 100») 

(bit-xor!! bitarr1 bitarr2) <=> (!! #(0 1 1 0» 

Notes----------------------------------------------------------------------

References-------------------------------------------------------------------

See also these related bit-array pvar operations: 
bitt! bit-and!! bit-andc111 

bit-eqv!! bit-ior!! bit-nand!! 
bit-not!! bit-orc1!! bit-orc2!! 

192 

bit-andc2! ! 

bit-nor!! 

sbitl! 

/ 

'\ 





boole!! *Lisp Dictionary 

The following Common Lisp integer constants are acceptable as components of 
the op-pvar argument: 

boole-clr boole-and booJe-1 booJe-andc1 
boole-set boole-ior boole-2 boole-andc2 
boole-eqv boole-nor boole-c1 boole-orc1 

boole-xor boole-nand boole-c2 boole-orc2 

Examples-------------------------------------------------------------------

A simple call to boolell is 

(boole!! (!! boole-and) n1 n2) 

which performs a boole-and operation in each processor on n1 and n2. Note that 
this is equivalent to the expression 

( logand!! n1 n2) 

Different logical operations can be performed in different processors. For exam­
ple, to have boole-and execute in all odd processors and boole-ior execute in all 
even processors, use the form 

(boole!! (if!! (oddp!! (self-address! I»~ 
(!! boole-and) 
( !! boole-ior» 

n1 n2) 

Notes--------------------------------------------------------------

References-----------------------------------------------------

See the definition of the boole function in Common Lisp: The Language. 

i94 

\. 

c 



*Lisp Dictionary booleanp!! 

booleanp!! [Function] 

Performs a parallel test for boolean values on the supplied pvar. 

Syntax------------------------------------------------

booleanp!! value-pvar 

Arguments -----------------------------------------------

value-pvar Pvar expression. Pvar to be checked for boolean values. 

Returned Value ---------------------------------------

booleanp-pvar Temporary boolean pvar. Has the value t in each processor in 
which value-pvarcontains either t or nil. Contains nil in all oth­
er active processors. 

Side Effects -------------------------------------------

The returned pvar is allocated on the stack. 

Description --------------------------------------

This predicate returns t in each processor in which value-pvar contains either t or 
nil, and returns nil in every other processor. When using general pvars, this can be 
useful to determine which processors contain boolean values. 

Standard Common Lisp does not have a boolean type. *Lisp defines such a type as 
boolean < = > (member t nil). 

Examples ---------------------------------------------

(booleanp!! nil!!) => t!! 

195 



booleanpll *Lisp Dictionary 

Notes--------------------------------------------------

References-------------------------------------------------

196 

See also these related pvar data type predicates: 
characterpl! 
floatp!1 
numberpl! 
typepll 

complexp!1 
front-end-p! ! 
string-char-p!1 

integerp!! 
structurep! ! 

/­
i 

.~-





both-case-p II 

(both-ease-p!! (!! #\e» <=> t!! 
(both-ease-p!! (!! #\T» <=> t!! 
(both-ease-p!! (!! #\3» <=> nil!! 

*Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

198 

\ 





byte I I *Lisp Dictionary 

Examples-----------------------------------------------

Consider an integer pvar that can be manipulated by one of the byte manipulation 
functions. If this integer pvar is specifed by a size-pvar of (II 16) and a position­
pvar of (I! 3), we have, in each processor, a 16-bit byte that starts at bit 3 (zero­
based). The call to byte!1 in this instance is 

(byte!! (!! 16) (!! 3» 

Notes--------------------------------------------------

References-----------------------------------------------

See also these related byte manipulation operators: 
byte-position!! byte-size!! 
deposit-byte I ! deposit-field!! 

Idbll Idb-test! I 
mask-field! ! 

200 

dpb!! 

load-byte! I 

/ 

\ 





byte-position II *Lisp Dictionary 

Examples------------------------------------------------------------------

(byte-position!! (byte!! (!! 16) (!! 3») <=> (!! 3) 

Notes---------------------------------------------------

References-------------------------------------------------------------------

See also these related byte manipulation operators: 
byte II byte-size! I 
deposit-byte! I deposit-field!! dpbll 
Idb!1 Idb-testll load-bytel! 
mask-field II 

202 

.~. 

"' ... 

c 





byte-size I I "'Lisp Dictionary 

Examples -----------------------

(byte-position!! (byte!! (!! 16) (!! 3») <=> (!! 16) 

Notes--------------------------

References------------------------

204 

See also these related byte manipulation operators: 
byte!! 
deposit-byte! I 
Idb!! 
mask-field! ! 

byte-position! ! 
deposit-field! ! 
Idb-test!! 

dpb!1 
load-byte! ! 





*case * Lisp Dictionary 

Description -----------------------

The *case macro is the parallel equivalent of the Common Lisp case operation. 
Its usage is similar to that of *cond. 

Examples -----------------------

When the following forms are evaluated, 

(*defvar result (!! 1» 
(*case (mod!! (self-address!!) (!! 4» 

(0 (*set result (!! 0») 
«1 2) (*set result (self-address!!») 
(otherwise (*set result (!! -1»» 

result is bound to a pvar with the values 0, 1,2, -1, 0, 5, 6, -1, etc. 

Notes-------------------------

206 

Usage Note: 

Forms such as throw, return, return-from, and go may be used to exit an exter­
nal block or looping construct from within a processor selection operator. 
However, doing so wi1lleave the currently selected set in the state it was in at 
the time the non-local exit form is executed. To avoid this, use the *Lisp macro 
with-css-saved. 

See the dictionary entry for with-css-saved for more information. 

Performance Note: 

In the CM-2 implementation of *Lisp, *case clauses execute serially, in the 
order in which they are supplied. At any given time, therefore, the number of 
processors active within a * case clause is a subset of the currently selected set 
at the time the *case form was entered. Providing a large number of clauses to 
*case (and likewise case!!) therefore results in potentially low overall 
processor utilization. 

/ 





~ .. 





casell *Lisp Dictionary 

Description ------------------------

AparaUel version of Common Lisp case, with similar usage to condll. If two 
clauses contain the same key, the returned pvar contains the values returned by the 
body forms in the first of the clauses. 

Examples -----------------------

For example, the pvar returned by 

(case!! (mod!! (self-address!!) (!! 4» 
(0 (!! 0» 

«1 2) (self-address!!» 
(otherwise (!! -1») 

contains the values 0, 1, 2, -1, 0, 5, 6, -1, etc. 

Notes---------------------------

Performance Note: 

In the CM-2 implementation of *Lisp, case!1 clauses execute serially, in the 
order in which they are supplied. At any given time, therefore, the number of 
processors active within a case! I clause is a subset of the currently selected set 
at the time the casell form was entered. Providing a large number of clauses to 
case!! (and likewise *case) therefore results in potentially low overall 
processor utilization. 

References--------------------------

See also the related operators 
*all *case 
*cond cond!! 
*ecase ecasel! 
*if if!! 
*unless *when 
with-css-saved 

210 

\ 

/ 
I 
\ 





ceiling!! *Lisp Dictionary 

Notes------------------------------~--------------------

References--------------------------~-------------------

See also these related rounding operations: 
floorll round!! truncate!! 

See also these related floating-point rounding operations: 
fceiling!! ffloor!! fround!! ftruncate!! 

212 

\ 

( 

\ 





char=!! *Lisp Dictionary 

Examples 

(char=! ! ( ! ! #\c) ( ! ! #\c) ) <=> t! ! 
(char=! ! ( ! ! #\c) ( ! ! #\C) ) <=> nil! ! 
(char=! ! ( ! ! #\c) ( ! ! #\3» <=> nil! ! 
(char=! ! ( ! ! #\c) ( ! ! #\z» <=> nil! ! 

(char=! ! ( ! ! #\c) ( ! ! #\c) ( ! ! #\c) ) <=> t! ! 
(char=! ! ( ! ! #\c) ( ! ! #\c) ( ! ! #\C» <=> nil! ! 
(char=! ! ( ! ! #\c) ( ! ! #\Z) ( ! ! #\C) ) <=> nil! ! 

Notes----------------------------------------------------

References-----------------------------------------------

214 





char/=!! * Lisp Dictionary 

Examples 

(char/=! ! ( ! ! #\c) ( ! ! #\c) ) <=> nil! ! 
(char/=! ! ( ! ! #\c) ( ! ! #\C) ) <=> t! ! 
(char/=! ! ( ! ! #\c) ( ! ! #\3) ) <=> t! ! 
(char/=! ! ( ! ! #\c) ( ! ! #\z» <=> t! ! 

(char=! ! ( ! ! #\c) ( ! ! #\c) ( ! ! #\c» <=> nil! ! 
(char=! ! ( ! ! #\c) ( ! ! #\c) ( ! ! #\C) ) <=> nil! ! 
(char=! ! ( ! ! #\c) ( ! ! #\Z) ( ! ! #\C) ) <=> t! ! 

Notes--------------------------------------------------

References-----------------------------------------------

216 





char<!! *Lisp Dictionary 

Examples 

(ehar<! ! ( ! ! #\e) ( ! ! #\e» <=> nil! ! 
(ehar<! ! ( ! ! #\e) ( ! ! #\C) ) <=> nil! ! 
(ehar<! ! ( ! ! #\e) ( ! ! #\3» <=> nil! ! 

(ehar<! ! ( ! ! #\e) ( ! ! #\z) ) <=> t! ! 

(ehar<! ! ( ! ! #\A) ( ! ! #\B) ( ! ! #\Z) ) <=> t!! 

Notes----------------------------------------------------

References-----------------------------------------------

2i8 

/ 

\ 



*Lisp Dictionary char>!! 
:::::::::::::::::::::::::::::::~::~~;:::~:::::::::::::::;::::::!:!:!:!:::::::!::;!:!:!:::!:!:!:::::::::!:::=:::::::::::::::::::::*:;:::::::;:.:::::::::~:::::::::::*::::::::::~::~~~:::::~::::::::~:::~~:::::::;~~::::::~::::::::;:;;:::::::::::::~:::;;::;::;::::::;::::t;::::::;::::::::::::;:;:::::::::::;:;:;!::;:;:;:::::;:;:;:::::;:::;!::::::;:::::::~:::t;::::*:::::::::::::::::::.:::::::::::: 

char> !! [Function] 

Performs a case-sensitive parallel comparison of the supplied character pvars for 
strictly decreasing order. 

Syntax-----------------------------------------------------------------------

char>!! character-pvar &rest character-pvars 

Arguments ------------------------

character-pvar 

character-pvars 

Character pvar. Compared in parallel, case-sensitive, for de­
creasing order. 

Character pvars. Compared in parallel, case-sensitive, for de­
creasing order. 

Returned Value -----------------------------

char-greater-than-pvar 
Temporary boolean pvar. Contains the value t in each active 
processor where the supplied character-pvar arguments are in 
case-sensitive decreasing order. Contains nil in all other active 
processors. 

Side Effects ---------------------------------

The returned pvar is allocated on the stack. 

Description ------------------------

The function char>!! performs a case-sensitive parallel comparison of the supplied 
character pvars for strictly decreasing order. 

219 



char>!! *Lisp Dictionary 

Examples 

(char>! ! ( ! ! #\c) ( ! ! #\c) ) <=> nil! ! 
(char>! ! ( ! ! #\c) ( ! ! #\C) ) <=> t! ! 
(char>! ! ( ! ! #\c) ( ! ! #\3) ) <=> t! ! 

(char>! ! ( ! ! #\c) ( ! ! #\z» <=> nil! ! 

(char>! ! ( ! ! #\z) ( ! ! #\j) ( ! ! #\a) ) <=> t! ! 

Notes--------------------------------------------------

References-----------------------------------------------

220 





char<=11 *Lisp Dictionary 

Examples 

(char<=! ! ( ! ! #\c) ( ! ! #\c) ) <=> t! ! 
(char<=! ! ( ! ! #\c) ( ! ! #\C) ) <=> nil! ! 
(char<=! ! ( ! ! #\c) ( ! ! #\3) ) <=> nil! ! 

(char<=! ! ( ! ! #\c) ( ! ! #\z» <=> t! ! 

(char<=! ! ( ! ! #\1) ( ! ! #\5) ( ! ! #\5) ) <=> t! ! 

Notes--------------------------------------------------

References-----------------------------------------------

222 



*Lisp Dictionary char>=!l 

char> =!! [Function] 

Performs a case-sensitive parallel comparison of the supplied character pvars for 
nonincreasing order. 

Syntax------------------------------------------------

char>=! I character-pvar &rest character-pvars 

Arguments---------------------------------------------

character-pvar 

character-pvars 

Character pvar. Compared in parallel, case-sensitive, for non­
increasing order. 

Character pvars. Compared in parallel, case-sensitive, for non­
increasing order. 

Returned Value ------------------------------------

char-greater-than-or-equal-pvar 
Temporary boolean pvar. Contains the value t in each active 
processor where the supplied character-pvar arguments are in 
case-sensitive nonincreasing order. Contains nil in all other ac­
tive processors. 

Side Effects -----------------------------------------

The returned pvar is allocated on the stack. 

Description ---------------------------

The function char>=!! performs a case-sensitive parallel comparison of the 
supplied character pvars for nonincreasing order. 

223 



char>=!1 * Lisp Dictionary 

Examples 

(char>=! ! ( ! ! #\c) ( ! ! #\c) ) <=> t! ! 
(char>=! ! ( ! ! #\c) ( ! ! #\e» <=> t! ! 
(char>=! ! ( ! ! #\c) ( ! ! #\3» <=> t! ! 
(char>=! ! ( ! ! #\c) ( ! ! #\z» <=> nil! ! 

(char>=! ! ( ! ! #\5) ( ! ! #\1) ( ! ! #\1) ) <=> t! ! 

Notes--------------------------------------------------

References-----------------------------------------------

224 

\ 

"'-

( 
\ 





character! I *Lisp Dictionary 

Examples -----------------------

Notes-----------------------------

References-------------------------------------------

226 

See also the related character pvar constructor make-charI!. 

See also the related character pvar attribute operators: 
char-bit!! char-bits!! char-code!! 
char-font!! initialize-character set-char-bitl I 





characterp' , *Lisp Dictionary 

Examples -----------------------

(characterp!! (!! #\c» <=> t!! 
(characterp!! (!! 0» <=> nil!! 

Notes--------------------------

References-------------------------

228 

See also these related pvar data type predicates: 
booleanpl! complexp!! 
floatp!! front-end-pl! 
numberp!! 
typep!! 

string-char-p! ! 
integerpl! 
structurep! ! 

./ 

I 
\ 

/. 

~ 



~\ 

* Lisp Dictionary char-bit!! 

char-bit!! [Function] 

Tests the state of a single flag bit of the supplied character pvar. 

Syntax-------------------------------------------------

char-bit!! character-pvar bit-name-pvar 

Arguments -----------------------------------------------

character-pvar 

bit-name-pvar 

Character pvar. Pvar for which bit selected by bit-name-pvaris 
tested. 

Integer pvar. Selects bit to be tested in each active processor. 
Must contain integers in the range 0 to 3 inclusive. 

Returned Value -----------------------------------------

flag-state-pvar Temporary boolean pvar. Contains the value t in each active 
processor where the flag bit named by bit-name-pvar in char­
acter-pvar is set. Contains nil in all other active processors. 

Side Effects ------------------------

The returned pvar is allocated on the stack. 

Description -----------------------------~---------------

This function tests the bit-name-pvar bit setting of character-pvar. 

In those processors where character-pvar contains a character element that has the 
bit-name-pvar bit set, char-bit!! returns t. It returns nil where character-pvar con­
tains a character element that does not have the bit-name-pvar bit set. 

The argument character-pvar must be a character pvar, a string-char pvar, or a 
general pvar containing only character and string-char elements. 

229 



char-bit I I * Lisp Dictionary 

Unlike its Common Lisp analogue, the argument bit-name-pvar must be an inte­
ger pvar (either an unsigned-byte or a signed-byte pvar). The following correspon­
dence holds between legal values for the bit-name-pvar argument and the recom­
mended Common Lisp control-bit constants: 

Common Lisp *Lisp 

:control (!I 0) 

:meta (I! 1) 
:super (!! 2) 
:hyper (I! 3) 

For example: 

(char-bit!! (!! #\control-x) (!! 0» => t!! 

(char-bit!! char-pvar (!! x» <=> 
(logbitp!! (!! x) (char-bits!! char-pvar» 

Examples -----------------------

Notes---------------------------

References-----------------------------------------------

230 

See also the related character pvar attribute operators: 
char-bits!1 
char-font! I 

char-code!! 
initialize-character set-char-bit! I 





char-bits! ! "Lisp Dictionary 

Examples---------------------------------------------------------------------

Notes-------------------------------------------------------------

References-----------------------------------------------

See also the related character pvar attribute operators: 
char-bit! I char-code I I 
char-font! ! initialize-character set-char-bitll 

\ 

232 





char-code I I * Lisp Dictionary 

Examples -----------------------

Notes----------------------------------------------------

References-----------------------------------------------

234 

See also the related character pvar attribute operators: 
char-bit I! char-bits!! 
char-fontll initialize-character set-char-bit! ! 

See also the related character/integer pvar conversion operators: 
char-inti! 
int-charl! 

code-char!! digit-char!! 

/ 

\ 





char-downcase! ! *Lisp Dictionary 

Examples 

(char-downcase! ! ( ! ! #\C) ) <=> ( ! ! #\c) 
(char-downcase! ! ( ! ! #\c) ) <=> ( ! ! #\c) 
(char-downcase! ! ( ! ! #\3» <=> ( ! ! #\3) 

Notes----------------------------------------------------

References-----------------------------------------------

236 



*Lisp Dictionary char-equal!l 

char-equal! ! [Function] 

Performs a case-insensitive parallel comparison of the supplied character pvars for 
equality. 

Syntax-----------------------------------------------------

char-equal!! character-pvar &rest character-pvars 

Arguments -------------------------------------------

character-pvar 

character-pvars 

Character pvar. Compared in parallel for case-insensitive 
equality. 

Character pvars. Compared in parallel for case-insensitive 
equality. 

Returned Value ------------------------------------

char-equal-pvar Temporary boolean pvar. Contains the value t in each active 
processor where all of the supplied character-pvar arguments 
contain the same character, regardless of case. Contains nil in 
all other active processors. 

Side Effects ------------------------------------------------------------------

The returned pvar is allocated on the stack. 

Description --------------------------------------

This function makes a case-insensitive comparison between the character element 
of character-pvar in each processor and the character elements of each of the 
character-pvars in the same processor. Differences in case, bit, and font attributes 
are ignored. 

A boolean pvar is returned. It contains t in all active processors where the test is 
true and nil in all active processors where the test is false. 

237 



char-equal! ! *Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pvar, a string-char pvar, or a general pvar containing only character or 
string-char elements. 

Examples 

(char-equal! ! ( ! ! #\c) ( ! ! #\c) ) <=> t! ! 
(char-equal! ! ( ! ! #\c) ( ! ! #\C) ) <=> t! ! 
(char-equal! ! ( ! ! #\c) ( ! ! #\3) ) <=> nil! ! 

(char-equal! ! ( ! ! #\c) ( ! ! #\z» <=> nil! ! 

Notes--------------------------------------------------

References-----------------------------------------------

238 



*Lisp Dictionary char-flipcase! ! 

char-flipcase! ! [Function] 

In the supplied pvar, converts uppercase characters to lowercase, and vice-versa. 

Syntax-------------------------

char-flipcase!! character-pvar 

Arguments-----------------------

character-pvar Character pvar. Pvar containing characters to be converted. 
Must be a pvar of type character or string-char, or a general 
pvar containing only elements of these types. 

Returned Value ---------------------

downcase-pvar Temporary character pvar. In each active processor, contains a 
copy of the corresponding value of character-pvar, with upper­
case characters converted to lowercase, and lowercase charac­
ters converted to uppercase. 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description ------------------------

This function attempts to invert the case of each character element of character­
pvar. The return value is a pvar containing converted characters where possible 
and intact original character values elsewhere. During these case conversions, the 
values of the bits and font attributes are not changed. Notice that only alphabetic 
characters are affected by case conversion. Thus, characters with non-zero bit field 
values are not changed. 

239 



char-flipcasell *Lisp Dictionary 

Examples 

(char-flipcase! ! ( ! ! #\C) ) <=> ( ! ! #\c) 
(char-flipcase! ! ( ! ! #\c) ) <=> ( ! ! #\C) 
(char-fl ipcase! ! ( ! ! #\3) ) <=> ( ! ! #\3) 

Notes----------------------------------------------------

References-----------------------------------------------

240 





char-font!! *Lisp Dictionary 

Examples -----------------------

Notes--------------------------------------------------

By definition, the font and bits attributes of a string-char pvar are zero. Thus, it is 
always the case that: 

(char-font!! string-char-pvar) <=> (!! 0) 

References-----------------------------------------------

242 

For a discussion of Common Lisp character attributes (code, bits, and font), see 
Common Lisp: The Language, Chapter 13. 

See also the related character pvar attribute operators: 
char-bitl! char-bits!! char-code!! 
initialize-character set-char-bitl! 

/ 

\ 





char-greaterp! ! *Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pvar, a string-char pvar, or a general pvar containing only character or 
string-char elements. 

Examples-----------------------------------------------

(char-greaterp!! (!! #\Z) (!! #\N) (!! #\A» <=> t!! 
(char-greaterp!! (!! #\Z) (!! #\z» <=> nil!! 

Notes-----------------------------------------------------

References-----------------------------------------------

244 

/ 

\ 





char-intI I "'Lisp Dictionary 

Examples-----------------------------------------------

(char-int!! (!! #\A» <=> (!! 65) 

Notes--------------------------------------------------

The char-intI I function relies on the Connection Machine system's encoding of 
characters. Results obtained from this function should not be expected to conform 
to results obtained from the Common Lisp function char-int run on front-end 
machines. 

References-------------------------------------------------------------------------------------

246 

See also the related character/integer pvar conversion operators: 
char-code!1 
int-char!! 

code-char! ! digit-char! ! 

/ 

\ 



*Lisp Dictionary char-Iessp II 

char-Iessp! ! [Function] 

Performs a case-insensitive parallel comparison of the supplied character pvars for 
increasing order. 

Syntax-----------------------------------------------

char-Iessp!! character-pvar &rest character-pvars 

Arguments----------------------------

character-pvar 

character-pvars 

Character pvar. Compared in parallel for case-insensitive 
increasing order. 

Character pvars. Compared in parallel for case-insensitive 
increasing order. 

Returned Value -----------------------------------------

char-greaterp-pvar 
Temporary boolean pvar. Contains the value t in each active 
processor where the supplied character-pvar arguments are in 
case-insensitive increasing order. Contains nil in all other ac­
tive processors. 

Side Effects -----------------------------------

The returned pvar is allocated on the stack. 

Description -------------------------

This function makes case-insensitive comparisons between the character element 
of character-pvar in each processor and the character elements of each of the 
character-pvars in the same processor. Differences in case, bit, and font attributes 
are ignored. 

A boolean pvar is returned. It contains t in all active processors where the test is 
true and nil in all active processors where the test is false. 

247 



char-Iessp!! * Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pyar, a string-char pyar, or a general pyar containing only character or 
string-char elements. 

Examples-----------------------------------------------

(char-lessp!! (!! #\A) (!! #\N) (!! #\Z» <=> t!! 
(char-lessp!! (!! #\Z) (!! #\z» <=> nil!! 

Notes--------------------------------------------------

References-----------------------------------------------

248 





char-not-equalll *Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pvar, a string-char pvar, or a general pvar containing only character or 
string-char elements. 

Examples 

(char-nat-equal! ! ( ! ! #\c) ( ! ! #\c) ) <=> nil! ! 
(char-nat-equal! ! (!! #\c) (!! #\e» <=> nil! ! 
(char-nat-equal! ! (!! #\c) (!! #\3» <=> t!! 
(char-nat-equal! ! ( ! ! #\c) (!! #\z» <=> t!! 

Notes--------------------------------------------------

References----------------------------~----------------

250 

/ 

" 

(' 

" 





char-not-greaterpll *Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pvar, a string-char pvar, or a general pvar containing only character or 
string-char elements. 

Examples-----------------------------------------------

(char-not-greaterp!! (!! #\Z) (!! #\N) (!! #\A» <=> nil!! 
(char-not-greaterp!! (!! #\Z) (!! #\z» <=> t!! 

Notes----------------------------------------------------

References-----------------------------------------------

252 

\ 

( 

\ 





char-not-Iessp! ! *Lisp Dictionary 

The argument character-pvar and each of the optional character-pvars must be a 
character pyar, a string-char pyar, or a general pyar containing only character or 
string-char elements. 

Examples-----------------------------------------------

(char-not-lessp!! (!! #\A) (!! #\N) (!! #\Z» <=> t!! 
(char-not-lessp!! (!! #\Z) (!! #\z» <=> nil!! 

Notes----------------------------------------------------

References-----------------------------------------------

254 





char-upcase II *Lisp Dictionary 

Examples 

(char-upcase! ! ( ! ! #\C) ) <=> ( ! ! #\C) 
(char-upcase! ! ( ! ! #\c) ) <=> ( ! ! #\C) 
(char-upcase! ! ( ! ! #\3) ) <=> ( ! ! #\3) 

Notes--------------------------------------------------

References----------------------------------------------

256 



*Lisp Dictionary cis!! 

cis!! [Function] 

Performs a parallel conversion of phase angles into unit-length complex numbers. 

Syntax-----------------------------------------------------------------------------------------------------------------------

cis!! numeric-pvar 

Arguments-------------------------------------------------------------------------------------------------------

numeric-pvar Non-complex numeric pvar. Phase angle in radians to convert 
to a complex number. 

R etu rned Val ue -----------------------------------------------------------------------------------

cos-i-sin-pvar Temporary complex pvar. In each active processor, contains a 
unit-length complex number with a phase angle equal to the 
corresponding value of numeric-pvar. 

Side Effects -------------------------

The returned pvar is allocated on the stack. 

Description -------------------------

This function is the parallel equivalent of the Common Lisp function cis. It returns 
a temporary complex pvar whose value in each processor is a complex number of 
unit length, whose phase is the value of the corresponding value of numeric-pvar. 

(cis!! (!! 3.1415927» <=> (!! #c(-1.0 2.3841858e-7» 

Another way to view this function is as returning the position on a unit circle, cen­
tered on the complex plane, that corresponds to the angle stored in each processor 
of a pvar (see Figure 1). 

257 



cis!! * Lisp Dictionary 

imaginary axis 

--angle 
b 
~---!-~~---+- real axis 

(cis!! (II angle» <=> (II #c( a b» 

Figure 1. The function cis!! calculates positions on a unit circle 
centered in the complex plane. 

Examples -----------------------

Notes-------------------------

References---------------------------------------------

See also these related complex pvar operators: 
abs!! complex! I 
conjugate!! imagpartll phase!1 
realpartll 

258 

,/ 
( 

\ 





code-char! ! *Lisp Dictionary 

Examples---------------------------------------------

(code-char!! (!! 65» <=> (!! #\A) 

Notes--------------------------------------------------

References-----------------------------------------------

260 

For a discussion of Common Lisp character attributes (code, bits, and font), see 
Common Lisp: The Language, Chapter 13. 

See also the related character pvar attribute operators: 
char-bit I ! char-bits! I char-code!! 
char-font!! Initialize-character set-char-bit! ! 

See also the related character/integer pvar conversion operators: 
char-code I I char-inti! digit-chari! 
int-char!! 





coerce!! *Lisp Dictionary 

Examples---------------------------------------------

262 

It is not generally possible to convert a given pvar to any data type; only certain 
conversions are permitted: 

• An integer pvar (a signed-byte or unsigned-byte pvar) may be converted 
to an integer pvar type of a different byte size. For instance, a pvar of type 
(pvar (unsigned-byte 8» may be coerced to (pvar (signed-byte 16» 

(*proclaim '(type (pvar (unsigned-byte 8» data-8» 
(*defvar data-8 (random!! (!! 20») 
(*proclaim '(type (pvar (unsigned-byte 16» data-16» 
(*defvar data-16) 
(*set data-16 

(coerce!! data-8 , (pvar (signed-byte 16»» 

Conversions to smaller byte sizes are also legal. For example, a pvar of type 
(pvar (unsigned-byte 8» may be coerced to (pvar (unsigned-byte 4» 

(*proclaim '(type (pvar (unsigned-byte 4» data-4» 
(*defvar data-4 (random!! (!! 4») 

(*set data-4 (coerce!! data-8 , (pvar (signed-byte 4»» 

• Integer pvars may be converted to floating-point pvar types. For example, a 
pvar of type (unsigned-byte-pvar 16) may be converted to a pvar of type 
(pvar single-float) 

(*proclaim '(type single-float-pvar data-sf» 
(*defvar data-sf) 

(*set data-sf (coerce!! data-16 , (pvar single-float») 

• A floating-point pvar may be converted to a floating-point pvar of a differ­
ent size. For instance, a pvar of type (pvar single-float) may be coerced to a 
pvar of type (pvar double-floal) 

(*proclaim '(type double-float-pvar data-df» 
(*defvar data-df) 

(*set data-df (coerce!! data-sf , (pvar double-float») 

/' 

1,,--



/ 

*Lisp Dictionary coerce!! 

• An integer pvar or a floating-point pvar may be converted to a complex 
pvar. For example, a single-float pvar can be converted to a complex pvar 
for which both exponent and significand are of type double-float 

(*proclaim '(type double-complex-pvar data-df-complex» 
(*defvar data-df-complex) 

(*set data-df-complex 
(coerce!! data-sf 'double-complex-pvar» 

• A complex pvar may be converted to a complex pvar of a different size. 
Thus, a pvar of type single-complex-pvar can be converted to a pvar of 
type double-complex-pvar 

(*proclaim '(type single-complex-pvar data-sf-complex» 
(*defvar data-sf-complex (complex!! (!! 1.0) (!! -1.0») 

(*set data-df-complex 
(coerce!! data-sf-complex 'double-complex-pvar» 

• An integer pvar may be converted to a character pvar. This conversion is 
identical to that performed by the function 'int-char!! 

(*proclaim '(type character-pvar data-char» 
(*defvar data-char) 

(*set data-char 
(coerce!! (random!! (!! 65» 'character-pvar» 

• A string-char array pvar of length 1 may be converted to a character pvar. 

(*proclaim '(type (pvar (array string-char (1») 
data-string-char» 

(*defvar data-string-char (!! He"»~ 

(*set data-char 
(coerce!! data-string-char 'character-pvar» 

263 



coerce!1 *Lisp Dictionary 

264 

• Any pvar, except an array or a structure pvar. may be converted to a gen­
eral pvar. 

(*proclaim '(type (pvar front-end) data-front-end» 
(*defvar data-front-end (front-end!! 'commander» 
(*proclaim '(type (pvar t) data-general» 
(*defvar data-general) 

(*set data-general (coerce!! data-front-end , (pvar t») 

• An array pvar's element type may be converted in accordance with the per­
mitted conversions mentioned above. For instance, an array pvar with ele­
ments of type single-float may be coerced to an array pvar with elements of 
type double-float. 

(*proclaim '(type (pvar (array single-float (20») 
data-array-sf» 

(*defvar data-array-sf 
(make-array!! '(20) 

:initial-element (random!! (!! 2.0» 
:element-type 'single-float» 

(*proclaim '(type (pvar (array double-float (20») 
data-array-df» 

(*defvar data-array-df) 

(*set data-array-df (coerce!! data-array-sf 
'(pvar (array double-float (20»») 

( 



* Lisp Dictionary coerce!! 

Notes----------------------------------------------------

Explicit type conversion functions may be used in place of coerce!!. 

Examples of *Lisp functions in this category are: 
ceiling!! character!! 

float!! floor!! 
truncate!! 

complex!! 

round!! 

References-----------------------------------------------

See also the related *Lisp declaration operators: 
* locally *proclaim unproclaim 

See also the related type translation function taken-as!!. 

265 







*cold-boot *Lisp Dictionary 

Side Effects ---------------------

Initializes *Lisp and Connection Machine hardware. If :undeflne-all is nil, 
reallocates permanent pvars and VP sets. Attempts to attach to CM hardware if 
not already attached. 

Description -----------------------

268 

The *cold-boot macro initializes the *Lisp system and resets the Connection Ma­
chine hardware. It should be called immediately after loading in the *Lisp software 
and attaching to a Connection Machine, and before executing *Lisp code that does 
anything other than defining pvars (with *defvar) and defining VP sets. The *cold­

boot macro may also be called from top level at any time to change the processor 
configuration of the Connection Machine. 

In general, * cold-boot should be called only from top level or at the very beginning 
of the main function of a program. It should never be called at any other point in a 
program, because it resets the entire state of *Lisp and the Connection Machine. 

The :safety keyword argument specifies a value for the *Lisp global variable 
*interpreter-safety-. See the description of *interpreter-safety* in Chapter 2, 
"*Lisp Global Variables", for a description of interpreter safety levels. 

The keyword arguments :initial-dimensions and :initlal-geometry-definition 
specify the geometry of the initial VP set bound to the *Lisp global variable 
*default-vp-set*. One or the other but not both ofthese keyword arguments may 
be provided. 

The :initial-dimensions keyword argument specifies the dimensions of the Connec­
tion Machine processor configuration. For example, an :initial-dimensions argu­
ment of (32 16 64) specifies a three-dimensional processor configuration with 
dimensions 32 x 16 x 64. The dimensions must be powers of 2. The product of the 
dimensions must be either equal to the number of physical processors attached, or 
equal to a power of two multiple of the number of attached processors. 

The :initial-geometry-definition allows the use of a geometry object to specify the 
processor configuration. Supplying a geometry object instead of a list of dimen­
sions permits greater control over the routing pattern and processor address 
mapping of the default VP set. See the definition of create-geometry for more in­
formation about creating and using geometry objects. 

./ 

\ 





*cold-boot *Lisp Dictionary 

Examples-----------------------------------------------

270 

Here are some sample calls to * cold-boot, defining various configurations of pro­
cessors. 

(*cold-boot :initial-dimensions '(64 64» 
(*cold-boot :initial-dimensions '(64 64 32» 
(*cold-boot :initial-dimensions '(2 2 2 2 2 2 2 2 222 2» 

Here is a sample call to * cold-boot using a geometry object to define the processor 
configuration. 

(defvar my-geometry 
(create-geometry :dimensions '(2 32 2) :weights '(2 1 3») 

(*cold-boot :initial-geometry-definition my-geometry) 

The next two examples assume that a Connection Machine with 8K processors is 
attached, and that no previous call to * cold-boot has been made. The first example 
defines a configuration with a VP ratio of 1, i.e., one virtual processor for each 
physical processor. Because no dimensions are supplied, a 2-dimensional grid of 
processors is defined, with dimensions 64 by 128. 

(*cold-boot) 
8192 
(64 128) 

;8k physical processors 

The second example defines a configuration with a VP ratio of2, i.e., twice as many 
virtual processors as physical processors. 

(*cold-boot 
:initial-dimensions '(128 128» ;16k virtual processors 

8192 
(128 128) 

Notice that the user does not specify the VP ratio explicitly. As long as the 
dimensions specified are equal to either the number of physical processors 
attached, or to a power-of-two multiple of the number of attached processors, the 
proper VP ratio will be determined automatically and transparently. 

( 
\ 

"-





·cold-boot *Lisp Dictionary 

.". 
References-----------------------------------------------

See also the related Connection Machine initialization operator ·warm-boot. 

See also the initialization-list functions add-initialization and delete-initialization. 

See also the character attribute initialization operator initialize-character. 

272 





comparell * Lisp Dictionary 

Notes--------------------------------------------------

References---------------------------------------------

\ 

'" 

274 





complex!! 

(complex!! (!! 2) (!! 3» <=> ( !! #c (2 3» 

(complex!! realpart-pvar) 
<=> 
(coerce!! realpart-pvar , (pvar (complex float» 

*Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

276 

See also these related complex pvar operators: 
abs!l 
conjugate!! 
realpart!! 

cis!! 
imagpart!! phase!! 





coniplexpll *Lisp Dictionary 

Examples--------------------------------------~-----

(complexp!! (!! #c(2 3») <=> t!! 

Notes--------------------------------------------------

References-----------------------------------------------

278 

See also these related pvar data type predicates-: 
booleanp!1 
floatpll 
numberp!1 
typepll 

characterpll 
front-end-p! I 
string-char-p! ! 

integerpll 
structurep! I 

/ 





*cond *Lisp Dictionary 

and all previous test-pvar expressions have the value nil. Providing t!' as the final 
test-pvar expression selects all remaining processors. 

Examples---------------------------------------------

When the expressions 

(*defvar result) 

(*let «mod4 (mod!! (self-address!!) (!! 4»» 
(*cond 

«=!! mod4 (!! 0» (*set result (!! 0») 
«<=!! (!! 1) mod4 (!! 2» 

(*set result (self-address! I»~) 
(t!! (*set result (!! -1»») 

are evaluated, result is bound to a pvar such that 

(ppp result :end 10) 

displays the values 

o 1 2 -1 0 5 6 -1 0 9 

Notes--------------------------------------------------

280 

Language Note: 

Even if there are no selected processors, all consequent forms are evaluated. 
For example, in the expression 

(*cond 
«minusp!! (self-address!!» (do-negati ve-actions» 
«plusp!! (self-address!!» (do-positive-actions» 
«zerop!! (self-address! I»~ (do-zero-actions» 
(t!! (when (*or tIl) 

(error "This clause cannot be executed"»» 

the call to do-negative-actions is evaluated, even though no processors have a 
negative self address. The do-positive-actions call is evaluated with the cur-

./ 
I 

~ 









cond!! *Lisp Dictionary 

Description -----------------------

If there are no clauses, cond II returns nilil. Otherwise, cond II is roughly equivalent 
to the following pseudo-code: 

( if!! pvar-l 
(progn all-the-forms-for-clausel) 
(cond!! (rest clauses» 

However, if there are no value-forms in a given clause, the test-pvar itself is used as 
the value of the clause, analogous to the Common Lisp condo 

If any active processor is not assigned a value by one ofthe clauses, the value of the 
returned pvar in that processor is nil, as if an implicit final clause of (t!1 nilll) were 
evaluated. An explicit final clause of the form 

(t!! (!! default-value» 

can be used to specify some other "default" processor value. 

Examples------------------------

284 

The expression 

(ppp (*let «mod4 (mod!! (self-address!!) (!! 4»» 
(cond! ! 

«=!! mod4 (!! 0» (!! 0» 
«<=!! (!! 1) mod4 (!! 2» (self-address!!» 
(t!! (!! -1»» 

:end 8) 

displays the values 

o 1 2 -1 0 5 6 -1 





condll *Lisp Dictionary 

Performance Note: 

In the CM-2 implementation of *Lisp, condl! clauses execute serially, in the 
order in which they are supplied. At any given time, therefore, the number of 
processors active within a cond I! clause is a subset ofthe currently selected set 
at the time the cond II form was entered. Providing a large number of clauses to 
condIt (and likewise *cond) therefore results in potentially low overall use of 
processors. 

References-----------------------------------------------

286 

See also *cond, which is a similar macro executed for side effect only. 

See also the related operators 
*all 
*case 
*ecase 
*if 

case!! 
ecase!! 

if!! 
*unless *when 
with-css-saved 



*Lisp Dictionary conjugate!! 
::::::::::~::::::::::::::::::::::~~~::~~::~::::::::::::::::::::;:::::::::::::::::;:::::::::::::;:;:::::::i:;:;::~~::~::::::.:::: .. ~~~::~~~::~:::::::::::::::::i:::::::::::i:i:i:i:i:i:i:i!i:i:i:i:i:i:::i:i:i:::i:i!::i:i:i:i:i:i::::::::::::::::::::::::::::::::*:::::::::::::::::::::::.~:!:::'::~:::::::::::~::::::S~::::'::::::::::::::~:::::*::::::::::::::::::::::~~~~~~~~r.:=::~,:':::::: 

conjugate!! [Function] 

Calculates in parallel the complex conjugate of the supplied pvar. 

Syntax------------------------------------------------

conjugate!! numeric-pvar 

Arguments----------------------------------------------

numeric-pvar Numeric pvar. Pvar for which the complex conjugate is calcu­
lated. 

Returned Value -----------------------------------------

conjugate-pvar Temporary numeric pvar. Contains in each active processor 
the complex conjugate of the corresponding value of numeric­
pvar. 

Side Effects -------------------------------------------

The returned pvar is allocated on the stack. 

Description ----------------------------------------------

Returns a temporary pvar whose value in each processor is the complex conjugate 
ofthe corresponding value of numeric-pvar. (The conjugate of a complex number is 
another complex number with the same real component and the negation of the 
imaginary component of the original number.) 

(conjugate!! (!! #c(4 5») <=> (!! #c(4 -5» 

287 



conjugate!! *Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

See also these related complex pvar operators: 
abs!! cis!! 

imagpart!! phase!! 

288 

complex!! 

realpart!! 

\ 

" 

( 
\ 





copy-seq II *Lisp Dictionary 

Examples------------------------------------------------------------------

(copy-seq!! data-pvar) 

(*defvar seq-pvar (!! #(1 234») 

(ppp seq-pvar :end 5) 
#(1 2 3 4) #(1 2 3 4) #(1 2 3 4) #(1 2 3 4) #(1 2 3 4) 

(*let «seq-copy (copy-seq!! seq-pvar») 
(*setf (pref seq-copy 2) #(4 3 2 1» 
(ppp seq-copy :end 5» 

#(1 2 3 4) #(1 2 3 4) #(4 3 2 1) #(1 2 3 4) #(1 2 3 4) 

(ppp seq-pvar :end 5) 
#(1 2 3 4) #(1 2 3 4) #(1 2 3 4) #(1 2 3 4) #(1 2 3 4) 

returns a copy of data-pvar as a temporary pvar on the stack. 

Notes--------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-----------------------------------------------

290 

See also these related *Lisp sequence operators: 
* fill length!! 
*nreverse 
subseql! 

reduce!! reverse!! 

See also the generalized array mapping functions amap!! and *map. 

I 

" 





cosll *Lisp Dictionary 

Examples--------------------------------------------

(cos!! (!! 0» <=> (!! 1) 

Notes--------------------------------------------------

References---------------------------------------------

( 
292 





cosh!1 *Lisp Dictionary 

Examples-----------------------------------------------

(cosh!! (!! 1» <=> (!! 1.5430806) 

Notes--------------------------------------------------

References---------------------------------------------

/ 

294 



/' 

* Lisp Dictionary count!! 

count!! [Function] 

Performs a parallel count on a sequence pvar, returning in each processor the number 
of sequence elements that match a given item. 

Syntax-------------------------------------------------

count!! item-pvar sequence-pvar &key :from-end :te8t :te8t-not 

:8tart :end :key 

Arguments----------------------------------------------

item-pvar 

sequence-pvar 

:from-8nd 

:t88t 

:t88t-not 

:8tart 

:8nd 

: key 

Pvar expression. Item to match in the corresponding value of 
sequence-pvar. Must be of the same data type as the elements 
of sequence-pvar. 

Sequence pvar. Contains sequences to be searched. 

Boolean pvar. Whether to begin search from end of sequence 
in each processor. 

Two-argument pvar predicate. Test used in comparisons. Indi­
cates a match by returning a non-nil result. Defaults to eqlll. 

Two-argument pvar predicate. Test used in comparisons. Indi­
cates a match by returning a nil result. 

Integer pvar. Zero-based index of sequence element at which 
counting starts in each processor. If not specified, counting be­
gins with first element. 

Integer pvar. Zero-based index of sequence element at which 
counting ends in each processor. If not specified, counting con­
tinues to end of sequence. 

One-argument pvar accessor function. Applied to sequence­
pvar before counting is performed. 

295 



countl! *Lisp Dictionary 

Returned Value ---------------------

count-pvar Temporary integer pvar. In each active processor, contains the 
number of elements of sequence-pvar that matched item ac­
cording to the function supplied to :test (or to :test-not). If the 
sequence pvar contains no elements, (!I 0) is returned. 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description ------------------------

296 

This function is the parallel equivalent of the Common Lisp count function. 

In each processor, the function count! I searches sequence-pvar for elements that 
match item-pvar. It returns a pvar containing a count of the matching elements 
found in each processor. 

Elements of sequence-pvar are tested against item-pvarwith the eqlll operator un­
less another comparison operator is supplied as either of the :test or :test-not key­
word arguments. The keywords :test and :test-not may not be used together. A 
lambda form that takes two pvar arguments and returns a boolean pvar result may 
be supplied as either the :test and :test-not argument. 

The :key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of 
sequence-pvar. 

/ 
.,,--. 

./ 

( 
I 

\ 









count-If I I *Lisp Dictionary 

Description -----------------------

This function is the parallel equivalent of the Common Lisp count-if function. 

In each processor, the function count-if! I searches sequence-pvarfor elements that 
satisfy the supplied test. It returns a pvar containing a count of the sequence ele­
ments found in each processor. A lambda form that takes a single pvar argument 
and returns a boolean pvar result may be supplied as the test argument. 

The :key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of se­
quence-pvar. 

Examples-------------------------

Notes------------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-------------------------

300 

The functions count! I, count-if! I, and count-if-notl I are similar to the *Lisp func­
tions find!l, find-if!!, and find-if-not!!. Here, however, the search continues until 
sequence-pvar is exhausted. 

These functions are members of a group of similar sequence operators, 
listed below: 

countll count-if!1 count-if-not! I 
find!! find-if!! find-if-not! ! 

nsubstitute! ! nsubstitute-if! ! nsubstitute-if-not! ! 

position!! position-if! ! position-if-not! ! 
substitute! ! substitute-if! ! substitute-if-not! ! 

See also the generalized array mapping functions amap!! and *map. 



* Lisp Dictionary count-if-not! ! 

count-if-not! ! [Function] 

Performs a parallel count on a sequence pvar, returning in each processor the number 
of sequence elements failing the supplied test. 

Syntax----------------------------------------------------------------------

count-if-not!! test sequence-pvar &key :from-end : start :end :key 

Arguments -----------------------------------------------

test 

sequence-pvar 

:from-end 

: start 

:end 

: key 

One-argument scalar predicate. Used to test elements of se­
quence-pvar. 

Sequence pvar. Contains sequences to be searched. 

Boolean pvar. Whether to begin search from end of sequence 
in each processor. 

Integer pvar. Zero-based index of sequence element at which 
counting starts in each processor. If not specified, counting be­
gins with first element. 

Integer pvar. Zero-based index of sequence element at which 
counting ends in each processor. If not specified, counting con­
tinues to end of sequence. 

One-argument pvar accessor function. Applied to 
sequence-pvar before counting is performed. 

Returned Value -------------------------------------------

count-pvar Temporary integer pvar. In each active processor, contains the 
number of elements of sequence-pvar that failed test. If the se­
quence pvar contains no elements, (II 0) is returned. 

Side Effects ----------------------------------------------------------------

The returned pvar is allocated on the stack. 

301 



count-if-notll *Lisp Dictionary 

Description ------------------:----------

This function is the parallel equivalent of the Common Lisp count-if-not function. 

In each processor, the function count-if-not!! searches sequence-pvar for ele­
ments that fail the supplied test. It returns a pvar containing a count of the se­
quence elements found in each processor. A lambda form that takes a single pvar 
argument and returns a boolean pvar result may be supplied as the test argument. 

The :key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of se­
quence-pvar. 

Examples------------------------

Notes--------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References------------------------

302 

The functions countll, count-Ifll, and count-if-not!! are similar to the *Lisp func­
tions findl!, find-if!!, and find-if-not!!. Here, however, the search continues until 
sequence-pvar is exhausted. 

These functions are members of a group of similar sequence operators, 
listed below: 

countll 
find!! 
nsubstitutel! 

position I I 
substitute!! 

count-ifl! 
find-if!! 
nsubstitute-if! ! 

position-ifll 
substitute-if! ! 

count-if-not! ! 
find-if-not! ! 
nsubstitute-if-not! I 
position-if-not! I 
substitute-if-not! ! 

See also the generalized array mapping functions amap!l and *map. 





create-geometry * Lisp Dictionary 

Side Effects ---------------------

None. 

Description -----------------------

304 

The create-geometry function creates and returns a data structure known as a 
geometry object. Geometry objects are used to define the shape of virtual proces­
sor sets. In addition, they permit control over interprocessor communication 
speed within a VP set. This can be particularly useful when it is critical to optimize 
the performance of scanning operations along specific dimensions of a VP set. 

Specifying a :dimensions keyword argument is mandatory. The value of the 
: dimensions keyword must be a list of integers, each of which must be a power of 2. 
These dimensions specify an n-dimensional hypercube of virtual processors. The 
product of the dimensions must be a power of two multiple of the physical machine 
size. 

If supplied, the value of :weights specifies the relative frequency of NEWS commu­
nication along each dimension. Given the specified weighting, the Connection Ma­
chine allocates virtual processors for optimal performance. 

For example, consider a three-dimensional VP set in which near neighbor commu­
nication is estimated to be twice as frequent in dimension 1 as in either dimension 0 
or 2. In this case, the :weights argument should be the list' (1 2 1). 

If supplied, the value of :ordering controls optimization of address translation for 
each dimension. For dimensions specified as :news-order, send addresses are 
gray-coded and mapped into NEWS addresses. This ensures that processors with 
neighboring send addresses are actually NEWS neighbors within the machine. For 
dimensions specified as :send-order, no special address translation is done. Pro­
cessors with neighboring geometry positions along these dimensions have neigh­
boring send addresses. 

The :on-chip-bits and :off-chip-bits arguments together specify a pair of bit­
masks that map send addresses into NEWS addresses, providing maximum control 
over interprocessor communication patterns at the hardware level. These argu­
ments are provided in *Lisp as a direct hook into Paris. 





create-geometry *Lisp Dictionary 

Notes--------------------------~----------------------------

The create-geometry function makes it possible to optimize a VP set geometry for 
NEWS communication along certain dimensions and for general send-address 
communication along other dimensions. 

The :weights, :ordering, :on-chip-bits, and :off-chip-bits arguments default to 
reasonable values if not specified. These arguments affect only the run-time per­
formance of interprocessor communication. They do not affect the data trans­
mitted in any way. 

The majority of *Lisp users will never need to use the :on-chip-bits and 
:off-chip-bits arguments; the :weights argument is usually sufficient. 

References-----------------------------------------------

306 

See the definitions of *cold-boot, def-vp-set, create-vp-set, let-vp-set, 
set-vp-set-geometry, and allocate-processors-for-vp-set for discussions on 
how to use geometry objects. 

See the Concepts section of the Paris Reference Manual for more information on 
the effect of address orderings. Also in the Paris Reference Manual, see the dictio­
nary entry for CM:create-detailed-geometry. 

( 

."" 





create-segment-set! ! *Lisp Dictionary 

308 

:end-bit argument is to be used to determine where the segments start, :start-bit 
may be nil!! or simply not supplied. 

Likewise, the: end-bit argument may be a pvar containing the value t in each proc­
essor that ends a segment and nil in all other processors. To signify that the 
:start-bit argument is to be used to determine where the segments end, :end-bit 

may be nil! I or simply not supplied. 

With these arguments, it is possible to specify a segment set from which certain 
processors are entirely excluded. However, if either argument to 
create-segment-set!! is not supplied, completely adjacent segments are defined. 

When constructing pvars to supply as :start-bit or : end-bit arguments, take care to 
properly interleave the starting and ending processors for each segment. It is an 
error to specify overlapping segments. 

From the segment start and end information, a structure pvar is constructed. The 
structure pvar created by a call to create-segment-set!! is defined as follows: 

(*defstruct segment-set 
(start-bits nil :type boolean) 
(end-bits nil :type boolean) 
(processor-not-in-any-segment nil :type boolean) 
(start-address 0 

:type (signed-byte 32) 
:cm-type (pvar (signed-byte 

(1+ *current-send-address-length*»» 
(end-address 0 

:type (signed-byte 32) 
:cm-type (pvar (signed-byte 

(1+ *current-send-address-length*»») 

The start-bits and end-bits slot pvars contain the :start-bit and :end-bit argument 
pvars supplied to create-segment-set!!. The processor-not-in-any-segment 
slot pvar is t in each processor excluded from the segments in the set and nil else­
where. 

The send address of every first and last processor in each segment is calculated and 
stored with the segment-set structure in the start-address and end-address slot 
pvars. In each processor that is included in a segment, the start-address slot pvar 
contains the send address of the first processor in the segment and the 
end-address slot pvar contains the send address of the last processor in the seg­
ment. For processors excluded from all segments in the set, the start-address and 
end-address slot pvars each contain -1. 









create-vp-set *Lisp Dictionary 

must be nil if an argument is supplied to the keyword: geometry. If not nil, dimen­
sions logically specifies an n-dimensional array of virtual processors. 

The argument to :geometry must be a geometry object obtained by calling create­
geometry. If the :geometry argument is provided, it incorporates information 
about the dimensions ofthe VP set being defined. (See the definition of create-ge­
ometry for more details.) 

Examples-------------------------------------------------

312 

The *Lisp forms 

(setq x (create-vp-set '(512 8 32» 
(setq y (create-vp-set (append (vp-set-dimensions x) '(2 2»» 

create two VP sets. The first, x, is created with a 3-dimensional configuration. The 
second, y, is created with a 5-dimensional configuration, using the function 
vp-set-dimensions to obtain the dimension sizes specified for the x VP set. 

The create-vp-set function is normally u"Sed during program execution, not at top 
level. Below is an example of how create-vp-set might be used in a program. 

(defun make-2d-vp-set (linear-vp-set n linear-pvar) 
(let «new-vp-set (create-vp-set (list n n»» 

(*with-vp-set new-vp-set 
(*let «new-pvar (!! 0») 

(*with-vp-set linear-vp-set 
(*when «!! (self-address!!) (!! n» 

(*pset :no-collisions linear-pvar new-pvar 
(cube-from-vp-grid-address! ! 

new-vp-set (self-address!!) (self-address! !») 
(*with-vp-set new-vp-set 

(ppp new-pvar :mode :grid :end '(4 4»»») 
(deallocate-vp-set new-vp-set») 

This example uses create-vp-set to create an n x n vp set, new-vp-set. It then 
creates a pvar, new-pvar, within the two-dimensional new-vp-set, and uses *pset 

to store the first n elements of linear-pvar into the main diagonal elements of new­
pvar. With new-vp-set selected, a function is called to perform an operation on the 
new-pvar, and finally deallocate-vp-set is called to deallocate the new-vp-set. 

Because n is used to determine the dimensions ofvp sets, n must be a power of two. 
( 



*Lisp Dictionary create-vp-set 

An example of how this function might be called is: 

(defparameter vp-set-size 32) 

(def-vp-set Id-vp-set (list vp-set-size» 
:*defvars «ld-pvar (self-address!!»» 

(make-2d-vp-set Id-vp-set vp-set-size Id-pvar) 

o 0 0 0 
o 1 0 0 
o 0 2 0 
000 3 

Notes----------------------------------------------------

References------------------------------------------------

See also the following VP set definition and deallocation operators: 
def-vp-set let-vp-set 
deallocate-def-vp-sets deaJlocate-vp-set 

See also the following geometry definition operator: 
create-geometry 

The following math utilities are useful in defining the size of VP sets: 
next-power-of-two->= power-of-two-p 

See also the following flexible VP set operators: 
allocate-vp-set-processors allocate-processors-for-vp-set 
deallocate-vp-set-processors 
set-vp-set-geometry 

deallocate-processors-for-vp-set 
with-processors-allocated-for-vp-set 

These operations are used to select the current VP set: 
set-vp-set *with-vp-set 

See also the following VP set information operations: 
dimension-size 
describe-vp-set 

vp-set-dimensions 
vp-set-total-size 

dimension-address-Iength 
vp-set-deallocated-p 

vp-set-rank 
vp-set-vp-ratio 

313 







cross-product *Lisp Dictionary 

Examples-----------------------------------------------

Notes-------------------------------------------------

References----------------------------------------------

316 

This function is one of a number of front-end vector operators, listed below: 
dot-product cross-product 

v+ v+-constant 
v- v--constant 
v* v* -constant vi-constant 

vabs vabs-squared vceiling 
vector-normal vfloor vround 
vscale vscale-to-unit-vector vtruncate 

These functions are the serial equivalents of the corresponding vector pvar 
operations. See Chapter 1, "*Lisp Overview" of this Dictionary for a list of these 
functions. 





cross-product!! *Lisp Dictionary 

Examples----------------------------------------------

Notes--------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References----------------------------------------------~ 

318 

This function is one of a number of vector pvar operators, listed below: 
cross-product!! dot-product!! 
v+!! v-I! v*!! 
vabs!! 
vscale-to-unit-vector! ! 

sf-cross-product! ! 
sf-v* -constant!! 
sf-vabs-squared!! 

vabs-squared! ! 
*vset-components 

sf-v+-constant! ! 
sf-v/-constant! ! 
sf-vector-normal! ! 

dsf-cross-product! I dsf-vector-normal!! 
dsf-vscale-to-unit-vectorll 

vscale!! 

sf-v--constant! I 
sf-vabsl! 
sf-vscale-to-unit-vector! ! 

/ 

:~ 





cube-from-grid-address * Lisp Dictionary 

Examples----------------------------------------------

For example, assuming a three-dimensional configuration is in effect: 

(cube-from-grid-address 10 20 30) => 1036 

Here, the processor located at coordinates (10, 20, 30) has a send (cube) address of 
1036. 

Notes---------------------------------------------------

Note that the send (cube) address corresponding to a particular grid address is not 
predictable from the grid address values alone. It also depends on the geometry of 
the current VP set, on the number of physical processors attached, and on the sys­
tem software version in use. In particular, the relationship between send and grid 
addresses in the *Lisp simulator is different from that of the actual CM-2 hard­
ware. 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­

grid-address, cube-from-vp-grid-address, grid-from-cube-address, and grid­

from-vp-cube-address. 

References------------------------------------------------

320 

See also these related send and grid address translation operators: 
cube-from-grid-address! I 
cube-from-vp-grid-address 

grid-from-cube-address 

grid-from-vp-cube-address 
self-address! ! 

cube-from-vp-grid-address! ! 

grid-from-cube-address! I 
grid-from-vp-cube-address! ! 

self-address-grid! ! 

/ 

I" 



r , 

l 

*Lisp Dictionary cube-from-grid-addressll 
'.:.:.;.:.:.:,',' ........ : ........... :.::;:;:;:;:::;:::; ::: ;:;:;:: ::;:;:;:::;:;:;:;:;:::::::::::::;:;:;:;:; ;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:::; ;.;.:.;.;.:.:.;:;:;:;:;:;:;:;:;:;:;:;.;.;:: ..................... , ... :.:.::::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; 

cube-from-grid-address! ! [Function] 

Performs a parallel conversion from grid (NEWS) addresses in the current VP set to 
send (cube) addresses. 

Syntax--------------------------------------------------

cube-from-grid-address!! coordinate-pvar &rest coordinate-pvars 

Arguments----------------------------------------------

coordinate-pvar, coordinate-pvars 
A series of integer pvars representing, in each processor, a grid 
(NEWS) address in the current VP set. The number of coordina­
te-pvars supplied must equal the rank of the current VP set. 

Returned Value --------------------------------------

send-address-pvar Temporary integer pvar. In each active processor, contains the 
send (cube) address corresponding to the values of the coordi­
nate-pvars. 

Side Effects -----------------------

The returned pvar is allocated on the stack. 

Description ----------------------------------------------

This function translates a series of coordinate-pvars, specifying a grid (NEWS) ad­
dress in each processor in the current VP set, into a single pvar that contains the 
corresponding send (cube) address in each processor. 

This is the parallel equivalent of cube-from-grid-address. 

321 



cube-from-grid-addressl I *Lisp Dictionary 

Examples ------------------------

For example, assuming a three-dimensional configuration is in effect: 

(cube-from-grid-address!! (!! 10) (!! 20) (!! 30» 
=> (!! 1036) 

Here, the send (cube) address of the processor located at coordinates (10, 20, 30), 
1036, is returned in all active processors. 

Notes----------------------------

322 

Note that the send (cube) address corresponding to a particular grid (NEWS) ad­
dress is not predictable from the grid (NEWS) address values alone. It also depends 
on the geometry of the current VP set, on the number of physical processors at­
tached, and on the system software version in use. 

For example, on the eM hardware, the expression 

(*cold-boot :initial-dimensions '(32 16» 
(ppp (cube-from-grid-address!! 

(self-address-grid!! (!! 0» 
(self-address-grid!! (!! 1») 

:mode :grid :end '(4 4» 

may display the following: 

0123 
4567 
891011 
12131415 

On the *Lisp simulator, the same code displays 

0163248 
1173349 
2183450 
3 193551 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­
grid-address I I, cube-from-vp-grid-addressl I, grid-from-cube-addressl I, and 
grid-from-vp-cube-addressl !. 

/ 

( 
\ 



*Lisp Dictionary cube-fl'om-grid-address! I 

References------------------------------------------------

See also these related send and grid address translation operators: 
cube-from-grid-address 
cube-from-vp-grid-address 
grid-from-cube-address 
grid-from-vp-cube-address 
self-address! ! 

cube-from-vp-grid-address! ! 
grid-from-cube-address! ! 
grid-from-vp-cube-address! ! 
self-address-grid! ! 

323 



/ 

( 



*Lisp Dictionary cUbe-from-vp-grid-address 

cube-from-vp-grid-address [Function] 

Converts a grid (NEWS) address in the specified VP set into a send (cube) address. 

Syntax-----------------------------------------------------------------------

cube-from-vp-grid-address vp-set coordinate &rest coordinates 

Arguments -----------------------

vp-set VP set object. VP set for which the supplied coordinates are 
converted. Must be both defined and instantiated. 

coordinate, coordinates 
A set of integers representing a grid (NEWS) address in vp-set. 
The number of coordinates supplied must equal the rank of 
vp-set. 

Returned Value ---------------------

send-address Integer. The send (cube) address corresponding to the set of 
coordinates. 

Side Effects -------------------------

None. 

Description ------------------------

This function translates a series of integer coordinates that specify the grid (NEWS) 
address of a single processor in vp-set into a single integer specifying the send 
(cube) address of that processor. 

325 



cube-from-vp-grid-address * Lisp Dictionary 

Examples-----------------------------------------------

For example, assuming the VP set my-vp has a three-dimensional geometry, 

(cube-from-vp-grid-address my-vp 10 20 30) => 1036 

Here, the processor located at coordinates (10, 20, 30) in the my-vp VP set has a 
send (cube) address of 1036. This means that the processor at coordinates (10, 
20,30) in my-vp can be accessed directly via the send address 1036, as in 

(pref (self-address!!) 1036) => 1036 

Using this conversion mechanism, it is unnecessary to make my-vp the current VP 

set in order to access processors via grid addresses within my-vp, as in 

(*with-vp-set my-vp 
(pref (self-address!!) (grid 10 20 30») => 1036 

Notes--------------------------------------------------

Note that the send (cube) address corresponding to a particular grid (NEWS) ad­
dress is not predictable from the grid (NEWS) address values alone. It also depends 
on the geometry of the current VP set, on the number of physical processors at­
tached, and on the system software version in use. 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­

grid-address, cube-from-vp-grid-address, grid-from-cube-address, and grid­
from-vp-cube-add ress. 

References------------------------------------------------

326 

See also these related send and grid address translation operators: 
cube-from-grid-address cube-from-grid-address!! 

cube-from-vp-grid-address! ! 
grid-from-cube-address 

grid-from-vp-cube-address 

self-address! ! 

grid-from-cube-address! I 

grid-from-vp-cube-address! ! 

self-address-grid! ! 

/ -

/ 





cube-from-vp-grid-address! I * Lisp Dictionary 

Examples-----------------------------------------------

For example, assuming the VP set my-vp has a three-dimensional geometry, 

(cube-from-vp-grid-address! ! 
my-vp (!! 10) (!! 20) (!! 30» => (!! 1036) 

Here, the send (cube) address ofthe processor located at coordinates (10, 20, 30) in 
the my-vp VP set, 1036, is returned in all active processors. 

Notes----------------------------------------------------

Note that the send (cube) address corresponding to a particular grid (NEWS) ad­
dress is not predictable from the grid (NEWS) address values alone. It also depends 
on the geometry of the current VP set, on the number of physical processors at­
tached, and on the system software version in use. 

For example, on the eM hardware, the expression 

(def-vp-set two-dim '(32 16» 

328 

(ppp (cube-from-vp-grid-address!! two-dim 
(self-address-grid!! (!! 0» 
(self-address-grid!! (!! 1») 

:mode :grid :end '(4 4» 

may display the following: 

0123 
4567 
891011 
1213 14 15 

On the *Lisp simulator, the same code displays 

0163248 
1173349 
2183450 
3193551 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­
grid-address!!, cube-from-vp-grid-address!!, grid-from-cube-address!!, and 
grid-from-vp-cube-address!! . / 









* deallocate *Lisp Dictionary 

Examples---------------------------------------------

(allocate!! global-pvar) 

;code using global-pvar 

(*deallocate global-pvar) 

Notes--------------------------------------------------

It is an error to use a pvar after it has been deallocated. The order in which pvars 
are deallocated does not matter. 

Global pvars and permanent pvars are allocated on the CM heap. In contrast to 
global pvars, which are allocated by allocate!! and deallocated with deallocate*, 
permanent pvars, are allocated by * defvar and must be deallocated by the function 
* deallocate-* defvars. 

References-------------------------------------------------

332 

See also the pvar allocation and deallocation operations 
allocate II arrayll 
* deallocate-* defvars 
front-end II 
make-arrayll 
I! 

*defvar 
*Iet 
typed-vector! I 

*Iet* 
vector!! 

See the *Lisp glossary for definitions of the different kinds of pvars that are allo­
cated on the CM stack and heap. 

\, 





* deallocate-* defvars * Lisp Dictionary 

Examples--------------------------------------------~ 

Here are some sample uses: 

(*deallocate-*defvars 'faa) ;delete faa pvar 

(*deallocate-*defvars 'faa 'bar) ;delete faa and bar pvars 

(*deallocate-*defvars : prompt) 

(*deallocate-*defvars) 

(*deallocate-*defvars :all) 

;get prompted for pvars 
;to delete 

;get prompted for pvars 
;to delete 

;delete all pvars declared 
;with *defvar 

Notes--------------------------------------------------

Before deallocating any permanent pvar, be certain that no library functions 
depend on that pvar. 

The two predefined pvars, til and nil! I, can never be deallocated. 

Global pvars and permanent pvars are allocated on the CM heap. In contrast to 
global pvars, which are allocated by allocate II and deallocated with deallocate*, 
permanent pvars, are allocated by * defvar and must be deallocated by the function 
* deallocate-* defvars. 

References---------------------------------------------

334 

See also the pvar allocation and deallocation operations 
allocate! I 
* deallocate 
front-end I I 
make-array! I 
II 

array!! 
*defvar 
*Iet 
typed-vectorl! 

*Iet* 
vector! I 

See the *Lisp glossary for definitions of the different kinds of pvars that are allo­
cated on the CM stack and heap. 





deallocate-def-vp-sets *Lisp Dictionary 

Examples --------------------------

(dea11ocate-def-vp-sets vp-set-l vp-set2) 
(dea11ocate-def-vp-sets :a11) 

Notes---------------------------

References----------------------------------------------

336 

See the *Lisp glossary for definitions of the kinds of VP sets that may be allocated 
and deallocated. 

See also the following VP set definition and deallocation operators: 
def-vp-set create-vp-set 
let-vp-set deallocate-vp-set 

( 
~ 





deallocate-processors-for-vp-set * Lisp Dictionary 

al pvars created by aliocate!l, are deallocated and destroyed by a call to the 
deallocate-processors-for-vp-set function. 

The :ok-if-not-instantiated keyword takes a boolean argument and defaults to nil. 
It determines whether or not an error is signaled if the provided VP set is not inst­
antiated at the time of the call. 

Examples -----------------------

This example shows how allocate-processors-for-vp-set, along with its compan­
ion function deallocate-processors-for-vp-set, may be used to instantiate a 
flexible VP set several times with a different geometry at each invocation. 

(def-vp-set disk-data nil 
:*defvars «disk-data-pvar nil nil (pvar single-float»» 

(defun process-files (&rest diskfiles) 
(*cold-boot) 
;;; at this point, disk-data-pvar has no memory allocated 
;;; on the CM 
(dolist (file diskfiles) 

(let «elements (read-number-of-elements-in file») 
(allocate-processors-for-vp-set disk-data 

(list (next-power-of-two->= elements») 
;;; now disk-data-pvar has CM memory allocated 
(let «array-of-data (read-data-from-disk file») 

(array-to-pvar array-of-data disk-data-pvar 
:cube-address-end elements) 

(process-data-in-cm disk-data disk-data-pvar» 
(deallocate-processors-for-vp-set disk-data»» 

Notes-------------------------

338 

The function deallocate-vp-set-processors is an obsolete alias for the function 
deallocate-processors-for-vp-set, and behaves identically. 









deallocate-vp-set * Lisp Dictionary 

Examples -----------------------

Notes----------------------------------------------------

Usage Note: The let-vp-set form automatically calls deallocate-vp-set using the 
default argument to deallocate-geometry-p. Do not assign a geometry object that 
should be preserved to a temporary VP set created with let-vp-set. 

References----------------------------------------------

See the *Lisp glossary for definitions of permanent and temporary VP sets. 

See also the following VP set definition and deallocation operators: 
def-vp-set create-vp-set 
let-vp-set deallocate-def-vp-sets 

342 





*decf *Lisp Dictionary 

Examples-----------------------------------------------

(*decf count-pvar (!! 3» 

Notes--------------------------------------------------

Usage Note: 

A call to the * decf macro expands as follows: 

(*decf data-pvar (!! 4» 
==> 

(*setf data-pvar (-!! data-pvar (!! 4») 

For this reason, the numeric-pvar must be a modifiable pvar, such as a permanent, 
global, or local pvar. It is an error to supply a temporary pvar as the numeric-pvar 
to *decf. 

References-----------------------------------------------

344 

See also the related macro *incf. 

The function 1-11 can be used to non-destructively perform a subtraction by 1 on 
its argument pvar. See the dictionary entry on 1-11 for more information. 

/ 
I 

\ 
'. 



*Lisp Dictionary *defsetf 

*defsetf [Macro] 

Assigns an update function to be used whenever * setf is called on the specified access 
function. 

Syntax------------------------------------------------

* defsetf accessor-function update-function 

Arguments----------------------------------------------

accessor-function Symbol. The name of a parallel structure accessor function. 

update-function Symbol. The name of an update function to be called whenever 
* setf is called on accessor-function. 

Returned Value ----------------------------------

update-function Name of update function assigned. 

Side Effects --------------------------------------------

Assigns update-function as function to be called whenever *setf is called on 
accessor-function. 

Description -------------------------

, Defines the update-function used for a given accessor-function in a call to *setf. 

345 



*defsetf *Lisp Dictionary 

Examples---------------------------------------------

(*defsetf 'get-pvar-value 'modify-pvar-value) 

Notes--------------------------------------------------

References-----------------------------------------------

346 

See also the dictionary entry for the • setf macro. 

The macro ·undefsetf may be used to remove the assignment made by *defsetf. 
See the definition of ·undefsetf for more information. 

/ 
\ 





"defstruct *Lisp Dictionary 

Returned Value ---------------------

structure-name Returns name of structure type. 

Side Effects ----------------------

Defines both front-end and parallel structure types, along with constructor, 
accessor, copying, and modification operations for both stucture types. 

Description ------------------------

348 

The macro "defstruct defines structure pyar types in *Lisp. A call to "defstruct 
defines both a Common Lisp scalar structure type and a Connection Machine par­
allel structure type. Further, "defstruct defines both scalar and parallel construc­
tor, accessor, and assignment operations for these new data types. This double 
functionality of "defstruct allows structures to be passed back and forth between 
the Connection Machine system and the front-end computer. 

A call to "defstruct does the following: 

• defines a front-end defstruct type structure-name, with slots correspond­
ing to the slot-descriptors of the "defstruct 

• defines a new pyar type, (pvar structure-name); pyars ofthis type can con­
tain only elements of type structure-name 

• defines a parallel constructor function make-structure-name! I, which 
creates pyars of type (pvar structure-name) 

• defines pyar accessors of the form structure-name-slot-name!! that take a 
pyar argument of type (pvar structure-name) and return a copy of the 
structure slot slot-name in parallel 

• defines "setf methods for these pyar accessors to permit modification of 
the structure pyar slots 

• defines a *Lisp predicate, structure-name-p!! to test whether a pyar is a 
parallel structure of the newly defined type 

• defines a sequence pyar copying operation copy-structure-name!!, that 
takes a pyar of type (pvar structure-name) and returns a copy of it 





*defstruct *Lisp Dictionary 

Keyword options in the slot-options list of each slot control typing and initializa­
tion of that slot. 

One keyword option, :type, must be specified for each slot. 

• :type 'lYpe specifier. Specifies data type of structure 
slot, for both front-end structures and structure pvars. This argument must 
specify a Common Lisp data type that is also valid as a pvar element type. 
Slots may not be specified as either general or mutable. 

All other permissible slot-options keywords are described below. 

• : cm-type Type specifier. Specifies data type of structure 
pvar slots, allowing extra control of structure pvar data types. Overrides 
data type specified by :type argument, but must be of a compatible data 
type (i.e., a more specific definition of the same basic data type). 

• :cm-initial-value *Lisp form. Evaluated when structure pvars 
are created to provide default value for this structure slot. If unspecified, 
structure slot is initialized using default-init argument. 

• :cm-uninitialized-p Boolean value. If t, structure objects are 
created with this slot uninitialized. Has no effect if nil. It is an error to sup­
ply a value for :cm-initial-value ifthe :cm-uninitialized-p argument is t. It 
is also an error to attempt to access an uninitialized structure slot before a 
value has been stored into it. 

• : read-only Boolean value. If t, indicates that the slot is not 
to be modified. Has no effect if nil. It is an error to try to modify a slot that 
has been declared as :read-only. 

Examples-----------------------------------------------

350 

An example of a call to *defstruct is 

(*defstruct elephant 
(wrinkles 30000 :type (unsigned-byte 16» 
(tusks t :type boolean» 

This expression defines both the front-end structure type elephant and a parallel 
structure type of (pvar elephant). 

\. 





*defstruct *Lisp Dictionary 

A parallel structure predicate, elephant-p!!, is defined. This takes a single pvar 
argument and returns til if it is of type (pvar elephant). 

(elephant-p!! jumbo!!) => t!! 

Finally, a parallel structure copying function, copy-elephant!!, is defined. It takes 
a pvar of type (pvar elephant), and returns a copy as a temporary pvar. 

(*defvar jumbo-copy!!) 
(*set jumbo-copy!! (copy-elephant!! jumbo! I»~ 

Notes--------------------------------------------------

352 

Language Note: 

Structure pvar slot accessor functions return a copy of the structure slot. If it is 
necessary to obtain the actual contents of the slot rather than a copy (e.g., to 
pass a slot to a function that modifies the slot's contents), use the macro alias! I 
in combination with the slot accessor function. However, it is only necessary to 
use the alias II operator in specific circumstances. See the definition of alias! I 
for more information on where and when it should be used. 

Important: the * setf macro automatically accesses the actual value specified 
by a slot accessor, so it is unnecessary to use alias!! in combination with *setf. 
For example, the expression 

(*setf (alias!! (elephant-wrinkles!! jumbo! I»~ (!! 4000» 

can be equivalently, and more efficiently, written as 

(*setf (elephant-wrinkles!! jumbo!!) (!! 4000» 

Usage Note: 

It is an error for any two slots to have the same name. Also, if any slot is given a 
slot-name of p, the p slot accessor structname-p will be shadowed by the 
structname structure pvar predicate structname-p. To get around this, use the 
*defstruct :conc-name option with an argument such asstructname-get-slot. 

( 

,/ 



c 
*Lisp Dictionary *defstruct 

References-----------------------------------------------

For a more detailed discussion of the * defstruct macro and of structure pvars in 
general, along with more examples of the use of * defstruct, see Chapter 4, entitled 
"Structure Pvars," in the *Lisp Reference Manual Supplement Version 5.0. 

The * defstruct macro is a parallel version of the Common Lisp defstruct macro. 
For a discussion of defstruct, and of the use of structures in Common Lisp, see 
Chapter 19, "Structures," in Common Lisp, the Language. 

353 







*defun *Lisp Dictionary 

356 

The *defun macro is analogous to the Common Lisp defun and can be used in 
place of it in defining a function that accepts pvar arguments or returns a pvar 
result. However, the * defun macro adds extra code to reset the CM stack when the 
function exits, thus deallocating any temporary pvars that have been created 
during execution of the function. For efficiency, the * defun macro should be used 
only to define functions that must reset the CM stack. 

The declarations argument can be any number of *Lisp declaration forms. These 
forms can include, but are not limited to, type declarations for the arguments to the 
function being defined by * defun. The documentation argument may be any num­
ber of documentation strings for the function. 

There are two cases where a user-defined function would have to reset the CM 
stack. One is where the function will be called outside of *Lisp operators, such as 
* set and *when, that automatically reset the *Lisp stack when they exit. Another is 
where the function will be used within a complicated *Lisp expression that causes 
*Lisp to run out of stack space. 

There are four rules to use in determining which *Lisp operators clear the CM 
stack, and therefore where it may be necessary to use *defun: 

• Operators defined by *defun always reset the CM stack. These operators 
are indicated, both in their Dictionary entries and in the table of contents, 
by the notation [*Defttn]. 

• All of the pvar pretty printing operators (ppp, ppp-css, etc.) reset the 
CM stack. 

• The following macros reset the CM stack: 

*all *and *apply *cond *case 
*decf *ecase *funcall *if * integer-length 
*incf *Iet *Iet* *Iogand *Iogior *Iogxor 
*map *max *min *or pref *pset 
*set *setf *sum *unless *when with-css-saved 
*xor 

• Functions whose names end in !! do not reset the CM stack. 

/ 





*defun *Lisp Dictionary 

If the function log-sum-pvar is defined by 

358 

(defun log-sum-pvar (pvar) 
(log (*sum pvar») 

and if the value of limit is very large, the expression above will run out of stack 
space. The problem is that the expression (random!! (!I i» creates a temporary 
pvar on the eM stack on each iteration. The function log-sum-pvar does not reset 
the stack when it exits, and neither does any operator surrounding it within the 
dotimes loop. As the loop repeats, new temporary pvars are created on the stack 
until the stack is exhausted. 

A better definition is 

(*defun log-sum-pvar (pvar) 
(log (*sum pvar») 

This adds code that resets the eM stack following each invocation of log-sum­
pvar. If log-sum-pvar is defined in this way, the example will execute normally. 

An example of a case where the use of *defun is not necessary, and is in fact ineffi­
cient, is the expression 

(dotimes (i limit) 
(*set result-pvar (+!! result-pvar (pvalue (!! i»») 

If the function pvalue is defined using defun, as in 

(defun pvalue (data-pvar) 
(expt!! data-pvar (random!! (!! 10»» 

the eM stack will not be exhausted even if limit becomes very large. The reason is 
that, like many *Lisp macros, *set automatically resets the stack after its argument 
expressions have been evaluated. If, in the example above, the function pvalue was 
defined with *defun, then the function would waste time needlessly resetting the 
stack each time around the dotimes loop. 

\ 





*defun *Lisp Dictionary 

If pvalue is defined with *defun in this way, then the expression 

(dotimes (i limit) 
(*set result-pvar (+!! result-pvar (pvalue (!! i»») 

will execute unnecessarily slowly. The *set macro automatically resets the stack 
when it exits, but because the pvalue function was defined with *defun, it will 
perform an extra, redundant stack reset operation each time around the loop. Re­
defining pvalue with defun will improve performance: 

(defun pvalue (pvar) 
(expt!! pvar (random!! (!! 10»» 

Notes--------------------------------------------------

360 

Implementation Note: 

A call to *defun performs two definitions. It defines both a macro namedjn­
name and a function with a symbol name derived fromjn-name. The macro 
expands into a call to the function, with enclosing code that records the original 
state of the stack and ensures that the stack is reset when the function exits. 

Usage Notes: 

To un define functions created with *defun, use the *Lisp operator un*defun. 

To apply *defun functions to lists of arguments, use the *Lisp operators *apply 
and *funcaU. It is an error to use the Common Lisp operators apply and funcaU 
for these purposes. 

The *Lisp tracing operations for *defun functions are *trace and *untrace. It 
is an error to use the Common Lisp operators trace and untrace to trace a 
function defined with *defun. 









*defvar *Lisp Dictionary 

is given, the allocated pvar is uninitialized. During a *cold-boot operation, un­
less the: undefine-all argument to * cold-boot has been specified as t, all pvars allo­
cated by * defvar are reallocated and the supplied initial-value-pvar expression is 
reevaluated to reinitialize the pvars. 

The optional argument vp-set defines the VP set to which the newly created pvar 
belongs. It defaults to the value of *default-vp-set*. 

The * defvar operator is intended: to be used only at top level. It is an error to call 
*defvar from within a user-defined function, as in 

(defun wrong-use-of-*defvar (x) 
(*defvar pvar (!! x» 
(*defvar pvar-squared (!! (* x x»» 

The *Lisp operator allocate!! should be used instead to dynamically allocate glob­
al pvars from within a user-defined function. See the definition of allocate!! for 
more information. 

Examples-----------------------------------------------

364 

The *defvar macro may be used to create a pvar with a specific initial value, as in 

(*defvar pi!! (!! 3.14159265» 

or with a value that is the result of a calculation, as in 

(defparameter upper-bound 65536) 
(*defvar limit-pvar (-!! (!! upper-bound) (self-address! I»~) 

The *defvar macro may also be used to create a pvar with no initial value, into 
which a value will later be stored by a call to an operator such as *set: 

(*defvar serateh-pvar) 

(* set sera teh-pvar (/!! (1+!! (self -address! ! ) ) ) ) 

Note that it is an error to access the contents of a pvar defined in this way until an 
operator such as *set has been used to store a value into the pvar. 

Array pvars and structure pvars may be created by a call to *defvar. However, 
when allocating either of these pvar types using *defvar, it is advisable to declare 

,/ 
( 

'" 

/ 
\ 





*defvar *Lisp Dictionary 

or by using!! to copy a front-end structure of a type defined by * defstruct to all 
processors, as in 

(*defvar white-elephant-pvar 
(!! (make-elephant :wrinkles 0 :tusks nil») 

The vp-set argument can be used to specify the VP set to which the newly created 
pvar belongs. For example, 

(def-vp-set ptbarnum '(128 128» 

(*defvar ptbarnum-jumbo (!! 4.0) "Weight in tons" ptbarnum) 

defines a VP set named ptbarnum, and a permanent pvar associated with 
ptbarnum named ptbarnum-jumbo. 

The def-vp-set operator provides a way to lexically associate the definitions of 
permanent pvars with the definition of the VP set to which they belong. See the 
definition of def-vp-set for more information. 

Notes------------------------~------------------------

366 

Language Note: 

Both permanent pvars and global pvars are allocated on the eM heap. Perma­
nent pvars are allocated by *defvar and must be deallocated by the function 
* deallocate-* defvars. In contrast, global pvars are allocated by allocate!! and 
must be deallocated with * deallocate. 

Style Note: 

It is a good idea not to provide an initial-value-pvar argument to * defvar that 
is complex or dependant on global variables for its value. In these cases, reeval­
uation of the initialization form when the pvar is reallocated by * cold-boot 
may cause an error. 



*Lisp Dictionary * defvar 
::::::;:::::;:;:;:;:;:;:;:;:;:;:;:;:::;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:::;:;:::::::;:;:;:;:;:;:;:::::::;:;:;:;:;:;:;:::;:::::::::::::::::::::::::::::::::::::::::::::::;:::::::::;:;:;:;:;:;:;:;:::;:::;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:::;:;:::::;:;:;:;:::;:::::;:::::;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:::;:;:::::;:;:;:::;:;:::::::::::::::;:;:;:::::;:;:::;:::::;:; 

For example, the code fragment 

(*cold-boot :initial-dimensions '(128 128» 
(setq image-or-nil 

(make-image-array :dimensions '(128 128») 
(*defvar image!! 

(array-to-pvar-grid image-or-nil nil 
:grid-end '(128 128») 

(setq image-or-nil nil) 
(*cold-boot) ;;; Error signalled in redefinition 

signals an error on the second invocation of *cold-boot because *Lisp tries to 
reallocate image!! using the variable image-or-nil, which has been set to nil. 

A better way to define pvars ofthis type is to use *defvar to declare the pvar, 
without an initial-value-pvar argument. The * set operator can then be used 
within an initialization routine to specify the value of the pvar, as in the 
following example: 

(*defvar data-pvar) 
(defun initialize-pvars () 

(*set data-pvar 
(complicated-operation-returning-data-pvar») 

References---------------------------------------------

See also the pvar allocation and de allocation operations 
allocate!! array!! 
* deallocate 
front-end!! 

make-array! ! 

!! 

* deallocate- * defvars 

*Iet 
typed-vector! ! 

See also the *Lisp predicate allocated-pvar-p. 

*Iet* 
vector!! 

See the *Lisp glossary for definitions of the different kinds of pvars that are allo­
cated on the CM stack and heap. 

See Chapter 4, "*Lisp Types and Declaration," for more information about pvar 
types, type coercion, and undeclared pvars. 

367 







def-vp-set * Lisp Dictionary 

The def-vp-set macro returns the symbol vp-set-name, after binding it to a VP set 
object with the specified vp-set-dimensions and associated :*defvars. . 

The vp-set-dimensions argument must be a quoted list of positive integers, a form 
that evaluates to a list of positive integers, or nil. If an argument is supplied to the 
keyword :geometry-definition-form, the vp-set-dimensions argument must be nil. 

Unot nil, vp-set-dimensions specifies an n-dimensional array of virtual processors, 
where n is the length of the list of integers supplied. 

Each dimension must be a power of two. The product of all dimensions must be 
equal to either the physical machine size or a power-of-two multiple of the physi­
cal machine size. The total size specified by vp-set-dimensions must be at least as 
large as *minimum-size-for-vp-set*. 

The argument to :geometry-definition-form must be a form which, when evalu­
ated, returns a geometry object. Examples of appropriate forms are: a call to 
create-geometry, a symbol bound to the result of a call to create-geometry, and a 
user-defined form that evaluates to a geometry object. See the definition of 
create-geometry for a description of geometry objects. 

If either vp-set-dimensions or a : geometry-definition-form is supplied, the VP set 
vp-set-name is created as a fixed-size VP set; its geometry is fixed and does not 
change. The returned VP set is initialized and allocated at *cold-boot time. If 
either vp-set-dimensions or a :geometry-definition-form is supplied and a 
*cold-boot has already been executed, the VP set vp-set-name is initialized and 
allocated immediately. 

370 

If both vp-set-dimensions and the :geometry-definition-form argument are nil, 

then the returned VP set is defined as a flexible VP set. This type of VP set has no 
specific geometry until it has been instantiated by calling the function 
allocate-processors-for-vp-set or with-processors-allocated-for-vp-set. This 
may be done any time after a call has been made to *cold-boot. 

The keyword :*defvars takes a list of lists, each of which specifies a permanent 
pvar that is associated with the VP set vp-sct-name. Each sublist must be of the 
form 

symbol &optional initial-value-form documentation pvar-type ) 

Here, symbol is bound to a pvar with initial value initial-value-form, documenta­
tion documentation, and type pvar-type. 



*Lisp Dictionary def-vp-set 
:::::::::::::::::::::::::::::::::::::::::::::::~::::::::::::::::::::::::~:::::::::::::::::::::::::::::::::::;:;:::;:;:;:;:::::::::::::::;:;:::;:;:::;:i:;:::::;:;:;:i:;:;:::;:;:;:;:;:;:::;:::;:;:i:::;:;:;:;:::::;:;:;::!;:::::::::;:;:::::::::::::;:::::;:::::::i:;:;:;:::;:::::;:;::~:::::::::::::::::;:~::::::::::::::::::::::::::::::::::::::::::;:::::~:::::::::~:::::;:::::;:::::::::;:;:;:;:;:;:;:;:;:;:;:;:;:; 

For each such sublist, ifpvar-type is not nil, a form with the following construction 
is evaluated. 

, (*proclaim ' (type ,pvar-type ,symbol) ) 

Whether or not pvar-type is nil, the following form is evaluated. 

, (*defvar ,symbol ,initial-value-form ,documentation vp-set) 

where vp-set is the symbol vp-set-name given as the first argument to def-vp-set. 

The : *defvars keyword provides the ability to textually associate pvars with their 
VP sets. Note that pvars thus specified are allocated and initialized only when the 
VP set set-name is instantiated. Such pvars are reallocated and reinitialized by 
* cold-boot. 

Examples-----------------------------------------------

This expression creates a three-dimensional VP set named fred with dimensions 
1024 by 32 by 128. 

(def-vp-set fred '(1024 32 128» 

This expression creates a two-dimensional VP set named george with a VP ratio of 
32, i.e., thirty-two virtual processors for each physical processor attached. 

(def-vp-set george (list *minimum-size-for-vp-set* 32» 

The expression 

(def-vp-set anne '(65536) 
:*defvars «x (!! 1) nil (field-pvar 2» 

(y (self-address! I»~»~ 

creates a one-dimensional VP set named anne, and defines two permanent pvars 
associated with anne as if by the following forms: 

(def-vp-set anne '(65536» 
(*proclaim '(type (field-pvar 2) x» 
(*defvar x (!! 1) nil anne) 
(*defvar y (self-address!!) nil anne) 

371 



def-vp-set *Lisp Dictionary 

If the arguments vp-set-dimensions and :geometry-definition-form are both nil, 
then a VP set with no initial geometry, known as aflexible W set, is defined. Flexible 
VP sets must be instantiated before use, by either of the instantiation operators 
allocate-processors-for-vp-set or with-processors-allocated-for-vp-set. For 
example, the pair of expressions 

(def-vp-set gumby nil) 
(allocate-processors-for-vp-set gumby '(128 64 32» 

defines a flexible VP set named gumby, and instantiates gumby as a three-dimen­
sional VP set. The expression 

(deallocate-processors-for-vp-set gumby) 

deinstantiates gumby, so that it may be instantiated with a different number of 
processors. The expression 

(with-processors-allocated-for-vp-set gumby 
:dimensions '(128 64 32) 
(user-defined-function» 

performs the same instantiation and deinstantiation automatically, temporarily 
instantiating gumby during the execution of the user-defined-function. 

Notes--------------------------------------------------

372 

Because the newly created VP set object is simply bound as the value of the symbol 
vp-set-name, it is a good idea to choose a vp-set-name that will not be used as the 
name of a global variable. For example, if the expressions 

(def-vp-set data-set' (512 512» 

and 

(*defvar data-set {random!! (self-address! i»~) 

are evaluated in order, the permanent pvar created by *defvar will replace the VP 

set created by def-vp-set as the value of the symbol data-set. 

( 





( 
" 





delete-initialization "Lisp Dictionary 

• *after-*warm-boot-initializations· 
*Lisp code evaluated immediately after to any call to ·warm-boot. 

The arguments are specified in the same manner as the first and third arguments 
for add-initialization. 

Examples -----------------------

The function delete-initialization is the recommended way to remove initializa­
tions from the above lists. For example, the expression 

(add-initialization "Recompute Important Pvars" 
'(recompute-important-pvars *number-of-processors-limit*) 
'*after-*cold-boot-initializations*) 

adds an initialization form named "Recompute Important Pvars" to the list 
*after-*cold-boot-initializations·. Evaluating the expression 

(delete-initialization "Recompute Important Pvars" 
'*after-*warm-boot-initializations*) 

will remove the initialization form. 

Notes----------------------------------------~----------

References--------------------------------------------------

See also the related operation add-initialization. 

See also the following Connection Machine initialization operators: 
·cold-boot ·warm-boot 

See also the character attribute initialization operator initialize-character. 

376 

( 
',-





deposit-byte I! *Lisp Dictionary 

Examples-----------------------------------------------

The returned value may have more bits than into-pvar if the inserted field extends 
beyond the most significant bit of into-pvar. For example, 

(deposit-byte!! (!! #B11) (!! 1) (!! 2) (!! #B10» 

returns 

(!! 5) <=> (!! #B101) 

Notes----------------------------------------------------

Usage note: 

This function is especially fast when both position-pvar and size-pvar are con­
stants, as in (II positive-integer). 

( 
References " 

See also these related byte manipulation operators: 
byte! I byte-position!! byte-size!! 
deposit-field!! dpb!! 

Idbl! Idb-test!! load-byte!! 
mask-field I I 

378 





deposit-field! ! * Lisp Dictionary 

Examples-----------------------------------------------

(deposit-field newbyte-pvar (byte!! size-pvar position-pvar) 
integer-pvar) 

<=> 
(dpb!! (ldb!! (byte!! size-pvar position-pvar) newbyte-pvar) 

(byte!! size-pvar position-pvar) integer-pvar) 

Notes------------~------------------------------------

References-----------------------------------------------

See also these related byte manipulation operators: 
byte!! byte-position!! byte-size!! 
deposit-byte!! dpb!! 
Idbll Idb-testl! load-byte!! 
mask-field! ! 

380 

/ 
( 
" 









































































































































































































gridll *Lisp Dictionary 

Examples---------------------------------------------

(*cold-boot :initial-dimensions '(8 4» 

(pref!! (s~lf-address!!) (grid!! (!! 4) (!! 2») <a> (!! 18) 

Notes----------------------------------------------------

References-----------------------------------------------

480 

See also the related operations 
address-nth address-nth!! 
address-plus 
address-plus-nth 
address-rank 
grid 
grid-relative! I 

address-plus!1 
address-plus-nth! ! 
address-rank! ! 

self!! 

( 





grid-from-cube-address *Lisp Dictionary 

The send-address argument must be.a non-negat~ve integer within the current ma­
chine configuration's range of send addresses. This range extends from zero 
through (1- *number-of-processors-limit*), inclusive. 

The dimension argument must be a non-negative integer between zero and one less 
than the rank of the current machine configuration. 

Examples--------------------------------------------------------------------------

Assume a four-dimensional machine configuration has been defined, and that the 
processor referenced by send address 6534 has a grid address of (65275259). 

(grid-from-cube-address 6534 2) => 75 

Here, the grid address component corresponding to dimension 2 is returned. To 
obtain all the grid address components for a given send-address, call grid-from­
cube-address repeatedly, specifying a different dimension each time. 

Notes------------------------------------------------------------------------------------------------

Note that the send (cube) address corresponding to a particular grid address is not 
predictable from the grid address values alone. It also depends on the geometry of 
the current VP set, on the number of physical processors attached, and on the sys­
tem software version in use. In particular, the relationship between send and grid 
addresses in the *Lisp simulator is different from that of the actual CM-2 hard­
ware. 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­
grid-address, cube-from-vp-grid-address, grid-from-cube-address, and grid­
from-vp-cube-address. 

References-----------------------------------------------

482 

See also these related send and grid address translation operators: 
cube-from-grid-address cube-from-grid-address! I 
cube-from-vp-grid-address cUbe-from-vp-grid-addressll 
grid-from-cube-address! ! 
grid-from-vp-cube-address 
self-address! ! 

grid-from-vp-cube-address! ! 
self-address-grid! ! 





grid-from-cube-addressll *Lisp Dictionary 

The send-address-pvar argument must be pvar containing a non-negative integer 
in each processor. Each of these integers must be within the range zero through 
(1- *number-of-processors-limit*), inclusive. 

The dimension-pvar argument must be a pvar containing, in each processor, a non­
negative integer between zero and the rank of the current machine configuration 
minus one. 

The return value of grid-from-cube-address!! is an integer pvar containing non­
negative integers. In each processor the integer returned is the dimension-pvar grid 
address component of the processor referenced by send-address-pvar. 

Examples---------------------------------------------------------------------

484 

Assume a four-dimensional machine configuration has been defined, and that the 
processor referenced by send address 6534 has a grid address of (65275259). 

(grid-from-cube-address!! (!! 6534) (!! 2» => (!! 75) 

Here, the grid address component corresponding to dimension 2 is returned in all 
active processors. 

A more extensive example of grid-from-cube-address! I is detailed below. 

(*cold-boot :initial-dimensions '(128 128» 

(ppp (self-address!!) :mode :grid :end '(44) :format II-3D ") 

o 1 2 3 
8 9 10 11 

16 17 18 19 
24 25 26 27 

(ppp (grid-from-cube-address! ! 
: mode :grid :end ' (4 4) 

0 1 2 3 
0 1 2 3 
0 1 2 3 

0 1 2 3 

(self-address! !) ( ! ! 0» 
: format II-3D II ) 









grid-from-vp-cube-address *Lisp Dictionary 

The dimension argument must be a non-negative integer between zero and one less 
than the rank of vp-set's dimensions. 

Examples-----------------------------------------------

Assume that my-vp has a four-dimensional geometry, and assume that the proc­
essor referenced by send address 6534 has a grid address of (65275259) within the 
geometry of my-vp. 

(grid-from-vp-cube-address my-vp 6534 2) => 75 

Here, the grid address component corresponding to dimension 2 is returned. Th 
obtain all the grid address components for a given send-address in a given vp-set, 
call grid-from-vp-cube-address repeatedly, specifying a different dimension each 
time. 

Notes--------------------------------------------------

Note that the send (cube) address corresponding to a particular grid (NEWS) ad­
dress is not predictable from the grid (NEWS) address values alone. It also depends 
on the geometry of the current VP set, on the number of physical processors at­
tached, and on the system software version in use. 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­

grid-address, cube-from-vp-grid-address, grid-from-cube-address, and grid­

from-vp-cube-address. 

References---------------------------------------------

488 

See also these related send and grid address translation operators: 
cube-from-grid-address cube-from-grid-address!! 

cube-from-vp-g rid-add ress 
grid-from-cube-address 
grid-from-vp-cube-address! ! 

self-address! ! 

cube-from-vp-grid-address! ! 
grid-from-cube-address! ! 

self-address-grid! ! 

"'-.. 





grid-from-vp-cube-address! ! ·Lisp Dictionary 

The value of send-address-pvar in each processor is assumed to be an integer rep­
resenting the send address of a single processor in vp-set. This is translated into an 
integer representing the grid address of that processor along the dimension speci­
fied by the value of dimension-pvar. 

The send-address-pvar must be a pvar containing a non-negative integer in each 
processor. Each of these integers must be within the range of valid send addresses 
for vp-set. 

The dimension-pvar argument must be a pvar containing, in each processor, a non­
negative integer between zero and the rank of vp-set's dimensions minus one. 

Examples---------------------------------------------------------------------

Assume the VP set my-vp has a four-dimensional machine geometry, and that the 
processor referenced by send address 6534 has a grid address of (65275259) in 
my-vp. 

(grid-from-vp-cube-address!! 
my-vp (!! 6534) (!! 2» => (!! 75) 

Here, the grid address component corresponding to dimension 2 in my-vp is re­
turned in all active processors. 

Notes--------------------------------------------------------------------------

490 

Note that the send (cube) address corresponding to a particular grid (NEWS) ad­
dress is not predictable from the grid (NEWS) address values alone. It also depends 
on the geometry of the current VP set, on the number of physical processors at­
tached, and on the system software version in use. 

It is an error to rely on a specific, fixed relation between send and grid addresses 
except as provided by *Lisp address conversion functions such as cube-from­

grid-address! I, cube-from-vp-grid-address!!, grid-from-cube-address!!, and 
grid-from-vp-cube-address!! . 

/ 









grid-relative! ! *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

494 

See also the related operations 
address-nth address-nth!! 
address-plus address-plus!! 
address-plus-nth 
address-rank 
grid 
self!! 

address-plus-nth! ! 
address-rank!! 
grid!! 





help *Lisp Dictionary 

Examples--------------------------------------------~ 

Notes--------------------------------------------------

References---------------------------------------------

/ 

496 





*If *Lisp Dictionary 

The then-form argument is evaluated with the currently selected set bound to those 
processors in which test-pvar evaluates to a non-nil value. The optional else-form 
argument is evaluated with the currently selected set bound to those processors in 
which test-pvar evaluates to a nil value. 

Examples---------------------------------------------

498 

(*defvar winners) 
(*defvar losers) 
(*if (zerop!! (random!! (!! 100») 

(*set winners (!! 1» 
(*set losers (!! 1») 

Important: Even if no processors are selected by test-pvar, both then-form and 
else-form are evaluated. 

(setq a 5 b 7) 
(*if nil!! (setq a 7) (setq b 5» 
a => 7 
b => 5 

In many cases, the macros *If and If I I can be used interchangeably. For example, 
these two expressions are equivalent, although in this case the latter expression is 
preferred as being more concise: 

(*if (evenp!! data-pvar) 
(*set bit-pvar (!! 1» 
(*set bit-pvar (!! 0») 

<=> 
(*set bit-pvar (if!! (evenp!! data-pvar) (!! 1) (!! 0») 

As with all proce~sor selection operators, calls to *If may be nested. Each call to *If 
subselects from the currently selected set, whether the selected set is the entire set 
of processors attached, or a subset selected by an enclosing operator. For example, 

(*defvar result (!! 0» 
(*if (evenp!! (self-address!!» 

(*if (zerop!! (mod!! (self-address!!) (!! 4») 
(*set result (!! 4» 
(*set result (!! 2») 

(*set result (!! 1») 
(ppp result) => 4 1 2 1 4 1 2 1 4 1 . . . 





*if *Lisp Dictionary 

References-----------------------------------------------

500 

The *Lisp operator if!! behaves exactly like *if, but returns a pvar based on the 
evaluation of its arguments. See the dictionary entry for if!! for more information. 

See also the related operators 
*all 
*ecase 

*case 
ecase!1 

case II 
*unless 

*cond 
*when 

condll 
with-css-saved 



l. 

* Lisp Dictionary if!! 

·f" I .. [Macro] 

Returns a pvar obtained by evaluating *Lisp forms with the currently selected set 
bound according to the logical value of a pvar expression. 

Syntax------------------------------------------------

if I I test-pvar then-form &optional else-form 

Arguments----------------------------------------------

test-pvar 

then-form 

else-form 

Pvar expression. Selects processors in which to evaluate then­
form and else-form. 

Pvar expression. Evaluated with the currently selected set re­
stricted to those processors for which the value of test-pvar is 
not nil. 

Pvar expression. If supplied, evaluated with the currently se­
lected set restricted to those processors in which the value of 
test-pvar is nil. Defaults to nil!!. 

Returned Value -----------------------------------------

then-else-pvar Temporary pvar. Contains the value of then-form in all active 
processors where test-pvar evaluates to a non-nil value. Con­
tains the value of else-form in all other active processors. 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description ---------------------------------------------

This operator is analogous to the Common Lisp conditional if, with one essential 
difference. Both then-form and else-form are evaluated, in mutually exclusive sets 
of processors. 

501 



if!! *Lisp Dictionary 

The then-form argument is evaluated with the currently selected set bound to those 
processors in which test-pvar evaluates to a non-nil value. The optional else-form 
argument is evaluated with the currently selected set bound to those processors in 
which test-pvar evaluates to a nil value. 

The if II macro returns a pvar that contains the value of then-form in all processors 
in which test-pvar is non-nil, and the value of else-form in all processors in which 
test-pvar is nil. 

(if!! question-pvar yes-pvar no-pvar) <=> 

(*let (result) 
(*when question-pvar (*set result yes-pvar» 
(*unless question-pvar (*set result no-pvar» 
result) 

Examples---------------------------------------------

502 

An example that demonstrates the usefulness of if!! is the following function to 
take the absolute value of a pvar: 

(defun my-abs!! (pvar) 
(if!! (>!! pvar (!! 0» 

pvar 
( - !! pvar») 

Important: Even if no processors are selected by test-pvar, both then-form and 
else-form are evaluated. For example, 

(setq a 5 b 7) 
(if!! nil!! 

(progn (setq a 7) (!! 0» 
(progn (setq b 5) (!! 1») => (!! 1) 

a => 7 
b => 5 

/ 
I 
\", 









imagpart!! *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

See also these related complex pvar operators: 
abs!! cis!! complex!! 

conjugate!! phase!! realpart!! 

./ 

506 





*incf * Lisp Dictionary 

Examples-----------------------------------------------

(*incf count-pvar (!! 3» 

Notes--------------------------------------------------

Usage Note: 

A call to the *incf macro expands as follows: 

(*incf data-pvar (!! 4» 
==> 

(*setf data-pvar (+!! data-pvar (!! 4») 

For this reason, the numeric-pvar must be a modifiable pvar, such as a permanent, 
global, or local pvar. It is an error to supply a temporary pvar as the numeric-pvar 
to *incf. 

References-----------------------------------------------

508 

See also the related macro *decf. 

The function 1+1! can be used to non-destructively perform a addition by 1 on its 
argument pvar. See the dictionary entry on 1+11 for more information. 

/ 

! 

\ 





initialize-character *Lisp Dictionary 

• * char-font-Iength 

• *char-font-limit 

• *character-Iength 

• *character-limit 

Determines whether the *Lisp compiler will assume that the bit widths of *Lisp 
character fields do not change. 

Description -----------------------

This function sets the values of the *Lisp character attributes, which are stored in 
global character variables. The initialize-character function must be called before 
*cold-boot is invoked, because these attributes are set when the machine is cold 
booted, not when the call to initialize-character is made. 

The keywords :code, :bits, and :font take integer values specifying how many bits 
will be allocated for each attribute of any character pvar. The defaults are: code 8, 
:bits 4, and :font 4. 

The value for :code must be greater than or equal to 7. 

The value for : bits must be greater than O. 

510 

The value for :font must be greater than or equal to O. 

The keyword :front-end-p takes either t or nil as a value, defaulting to nil. It deter­
mines whether character pvar attribute widths should be copied from the format 
being used on the front end machine. If :front-end-p is t, the global charactervari­
abIes are set to match the character storage format of the front end machine. 

The keyword : constantp takes a boolean value. This is used to assert whether or 
not the sizes of character attributes will remain constant across execution sessions. 
The *Lisp compiler uses this distinction to choose between producing compiled 
code that uses the global character variables and producing compiled code that 
substitutes hard coded values for these variables. Code compiled with: constantp t 
will run reliably only when the character attributes are the size specified at compile 
time. Code compiled with: constantp nil need not be recompiled to operate reliably 
with different character attribute sizes. 



"'\ 

*Lisp Dictionary Initialize-character 
:::::::::::::::*::~:::*::::::::::::;~::::.~:::::»~~~:;-::::::::::x::~*::::;:;:;:;:;:::::;:;:::;:;:;:;:::::::;:;:;:;:;:;:;:;:;:;:::;::::::::::::::::::::~::::::~::::::::~::::::::~~:.:::m:::::::::~:::::::::::.:::~::::::::::::W::~::~:;~~~::::*:*:::::::*:::::~::~~~~~~*;::::*:::::::::~::::"::~::$::r.(.;.'X::::::::::*::;~::::::~~~~~::',:":::::::::::::: 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

For a discussion of Lisp character attributes, see the Characters chapter of 
Common Lisp: The Language. 

See also the Connection Machine initialization function *cold-boot. 

See also the initialization-list functions add-initialization and delete-Initialization. 

See also the related character pvar attribute operators: 
char-bit!! char-bits!! char-code I I 
char-font I I set-char-bit II 

511 







Int-charll *Lisp Dictionary 

Examples---------------------------------------~------

Notes----------------------------------------------------------

References---------------------------------------------

See also the related character/integer pvar conversion operators: 
char-code I I char-inti I code-chari I 
digit-chari I int-char! I 

514 





integer-from-g ray-code II *Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------------------------------

References-----------------------------------------------

See also the related function gray-code-from-integer!!. 

516 





* integer-length *Lisp Dictionary 

Examples---------------------------------------~-------------------

Notes--------------------------------------------------

References---------------------------------------------

518 

See also the related global operators: 
*and 
*Iogior 
*min 
*xor 

*Iogand 
*Iogxor 
*or 

*max 
*sum 





Integer-length II * Lisp Dictionary 

Examples 

For example, 

(integer-length ( ! 0» <=> ( ! ! 0) 

(integer-length ( ! 1» <=> ( ! ! 1) 
(integer-length ( ! 3» <=> ( ! ! 2) 
(integer-length ( ! 4» <=> ( ! ! 3) 
(integer-length ( ! 7» <=> ( ! ! 3) 
(integer-length ( ! -1» <=> ( ! ! 0) 

(integer-length ( ! -4» <=> ( ! ! 2) 
(integer-length ( ! -7» <=> ( ! ! 3) 
(integer-length ( ! -8» <=> ( ! ! 3) 

Notes------------------------------------------------------

References---------------------------------------------

520 





Integer-reversel I *Lisp Dictionary 

Examples------------------------------------------------------------~----

Notes-------------------------------------------------------

Usage Note: 

This function relies on the internal representation of pvars in the Connection 
Machine system and therefore cannot work in the *Lisp simulator. 

References-----------------------------------------------

522 





integerpl! *Lisp Dictionary 

Examples-----------------------------------------------

Notes----------------------------------------------------

References-----------------------------------------------

524 

See also these related pvar data type predicates: 
booleanp!! 
floatpll 
numberp!1 
typepll 

characterp! ! 
front-end-p! ! 
string-char-p! ! 

complexp!1 

structurep! I 

/ 

/ 
I 





isqrt!! *Lisp Dictionary 

Examples ~--------------------,..........;.-

Notes--------------------------------------------------

References---------------------------------------------

/ 

526 





lem!1 *Lisp Dictionary 

• If one or more arguments (component values) are zero, then the result is 
zero. 

• For two arguments that are not both zero, the behavior is: 

(lcm!! ab) <=> 
(truncate!! (abs!! (*!! ab» (gcd!! ab» 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

528 

/' 





Idb!! *Lisp Dictionary 

Examples--------------------------------------------~ 

Notes--------------------------------------------------

References---------------------------------------------

See also these related byte manipulation operators: 
byte!! byte-position II 
deposit-byte!! deposit-field!! 
Idb-test!! load-byte!! 

530 

byte-size! ! 
dpb!! 
mask-field!! 

"-





Idb-test!! *Lisp Dictionary 

Examples------------------------------------------------------------------

Notes----------------------------~--------------------

References-----------------------------------------------

See also these related byte manipulation operators: 
byte!! byte-position!l 
deposit-byte II deposit-field! I 
Idb!! load-byte!! 

532 

byte-size II 
dpbll 
mask-field I ! 

/ 

.. " 





least-negatlve-floatl I *Lisp Dictionary 

Examples ------------------'--------

The argument jloating-point-pvar may be any floating point pvar of the required 
format. For example,' 

(least-negative-float!! (!! 0.0» <=> (!! -1.1754944e-38) 

The same result would be obtained with an argument of (!! 5.8) or with any single­
precision floating-point pvar. 

Notes-------------------------~ 

References------------------------

See also these related floating-point pvar limit functions: 
float-epsilon! I least-positive-float! I 
most-negative-floatll most-positive-float! ! negative-float-epsilon II 

534 

/ 





least-positive-floatl! *Lisp Dictionary 

Examples-------------------------------------------------------------

The argument jloating-point-pvar may be any floating point pvar of the required 
format. For example, 

(least-positive-float!! (!! 0.0» <=> (!! 1. 1754944e-38) 

The same result would be obtained with an argument of (II 5.8) or with any single­
precision floating-point pvar. 

Notes--------------------------------------------------

References-----------------------------------------------

See also these related floating-point pvar limit functions: 
float-epsilon! I least-negative-floatll 
most-negative-floatll most-positive-float! I negative-float-epsilon II 

536 





length II *Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-----------------------------------------------

538 

See also these related *Lisp sequence operators: 
copy-seq II * fill 
*nreverse 
subseqll 

reduce!! reverse I! 

See also the generalized array mapping functions amap!! and *map. 





*Iet "'Lisp Dictionary 

Description -----------------------

The *Iet macro is used to allocate local pvars that exist only during the evaluation 
of a series of *lisp forms. 

The first argument of a call to * let must be a list containing any number of local 
pvar descriptors. Each descriptor can be a list consisting of a symbol that will name 
the local pvar, followed by apvar-expression that will be used to initialize the pvar. 
Optionally, if no pvar-expression is required, the descriptor may be abbreviated to 
just the symbol. 

540 

The following call to * let illustrates the two possible var-descriptor forms: 

(*let (no-init 
(inited (!! 0») 

(*set no-init inited) 
no-init) => (!! 0) 

... ... this local pvar is not initialized 
this pvar is initialized to (!! 0) 

The * let macro expects its first argument to be a list of pvar descriptors; even if no 
local pvars are defined, an empty list must be provided as the first argument to *Iet. 

(*let () 
(*!! (self-address!!) (!! 5») 

The declarations argument can be any number of *lisp declaration forms. These 
forms can include, but are not limited to, type declarations for the local pvars 
defined by the variable descriptors of the *Iet. 

Local pvars survive only for the extent of the supplied body forms, but may be ac­
cessed and modified by any functions these forms call. In other words, the symbols 
defined by the *Iet macro have lexical scope (as in Common lisp), whereas the 
pvars themselves have dynamic extent that terminates when the *Iet form is exited. 

The *Iet macro returns the value of the last form of body. If a local pvar is returned 
as the value of the *Iet, it becomes a temporary pvar and its contents should be 
copied into another pvar. The *Iet macro is not able to return multiple values. 





542 

*Lisp Dictionary 

In general it is wise to declare the pvars allocated by *Iet. This allows the *Usp 
compiler to compile expressions involving those pvars. Here is the die-rolling 
example with die1 and die2 declared: 

(*let «diel (l+!! (random!! (!! 6»» 
(die2 (l+!! (random!! (!! 6»») 

(declare (type (field-pvar 8) diel die2» 
(*max (+!! diel die2») 

The length of a local pvar allocated by *Iet may be determined at run time. 
For example: 

(*let «processor-address (self-address!!») 
(declare 

(type (field-pvar *current-send-address-l~ngth*) 
processor-address» 

This type of declaration insures that pvars are defined efficiently, with the exact 
bit-size that is required. 

A more complex type declaration example is provided by the following definition: 

(defun make-me-a-float (type) 
(let «s (if (eq type : single) 23 52» 

(e (if (eq type : single) 8 11») 
(*let «my-float (!! 0.0») 

(declare (type (pvar (defined-float s e» my-float» 
my-float») 

This function returns a floating point pvar of either single or double precision, 
depending on the value of its type argument. 

Array pvars can be allocated on the *Usp stack by declaring them appropriately 
from within a *Iet or a *Iet* form. However, when allocating an array using *Iet or 
*Iet*, it is wise to explicitly declare the type ofthe pvar because undeclared pvars 
that have held any other type of data cannot hold arrays. 

/ 

/' 





*Lisp Dictionary 

Any array pvar declaration form expects a list of integers specifying array dimen­
sions. Consider the following two function defintions: 

(defun good-make-array-pvar (input-scalar-array) 
(let «dims (array-dimensions input-scalar-array») 

(*let (temp) 
(declare (type (pvar (array single-float dims» temp» 
temp») 

(defun bad-make-array-pvar (input-scalar-array) 
(*let (temp) 

(declare 
(type (pvar (array single-float 

(array-dimensions input-scalar-array») 
temp) ) 

temp) ) 

The bad-make-array-pvar function definition is in error because it places the form 
(array-dimensions input-scalar-array) inside the declare form. The declaration 
should instead contain a list of integer dimensions or a symbol bound to such a list. 

The good-make-array-pvar function definition works properly because the 
symbof dims is bound to a list of integers, the result of evaluating 
(array-dimensions input-scalar-array), outside of the declare form. The symbol 
dims is then supplied to the declare form, which, when executed, finds dims 
properly bound to a list of integers. 

Notes------------------------------------------------

References---------------------------------------------

544 

See also the pvar allocation and de allocation operations 
allocatel! array!! 
* deallocate * deallocate-* defvars 
front-end!! *Iet* 
make-array! ! 
II 

typed-vector! ! 

See also the *Lisp predicate allocated-pvar-p. 

*defvar 

vector!! 





*Iet* IIcLisp Dictionary 

Description -----------------------

The *Iet* macro is used to allocate local pvars that exist only during the evaluation 
of a series of IIcLisp forms. This macro behaves identically to *Iet except that,as in 
Common Lisp, variable descriptors are evaluated in sequence, so that the value 
bound to each variable can be used in defining the values of succeeding variables. 

The first argument of a call to * let* must be a list containing any number of local 
pvar descriptors. Each descriptor can be a list consisting of a symbol that will name 
the local pvar, followed by a pvar-expression that will be used to initialize the pvar. 
Optionally, if no pvar-expression is required, the descriptor may be abbreviated to 
just the symbol. As noted above, the pvar-expression of each local pvar descriptor 
can reference the values of all preceding local pvars defined by the *Iet* form. 

The declarations argument can be any number of IIcLisp declaration forms. These 
forms can include, but are not limited to, type declarations for the local pvars 
defined by the variable descriptors of the *Iet*. 

The * let* macro returns the value ofthe lastform of body. If a local pvar is returned 
as the value of the *Iet*, it becomes a temporary pvar and its contents should be 
copied into another pvar. The *Iet* macro is not able to return mUltiple values. 

Examples -----------------------

546 

This example "rolls" a pair of dice in each processor, and returns the maximum roll 
value obtained. Note that the value of the local pvar dice-roil depends on the values 
of the previously defined local pvars die1 and die2. 

(*let «die1 (1+!! (random!! (!! 6»» 
(die2 (1+!! (random!! (!! 6»» 
(dice-roll (+!! die1 die2») 

(*max dice-roll» 

See the definition of *Iet for more examples, including examples oflocal pvar type 
declaration. 









let-vp-set *Lisp Dictionary 

Examples -----------------"---------

(progn 
(let-vp-set (temp-cube (create-vp-set '(32 32 32») 

(*with-vp-set temp-cube 
(*let «thoughts (!! 5» 

(random (random!! (!! 10»» 
(declare (type (field-pvar 8) thoughts random» 
(*set thoughts (*!! random thoughts»») 

(format t "Now the temp-cube vp-set no longer exists"» 

Notice that the temporary VP set created by a let-vp-set form must be explicitly 
selected with a *with-vp-set form before it is used. Notice also that the temp-cube 
VP set is deallocated upon exit of the let-vp-set. 

Notes-----------------------------------------------

References-----------------------

550 

See also the following VP set definition and deallocation operators: 
def-vp-set create-vp-set 
deallocate-def-vp-sets deallocate-vp-set 

See also the following flexible VP set operators: 
allocate-vp-set-processors 
deallocate-vp-set-processors 
set-vp-set-geometry 

allocate-processors-for-vp-set 
deallocate-processors-for-vp-set 
with-processors-allocated-for-vp-set 

These operations are used to select the current VP set: 
set-vp-set *with-vp-set 

See also the following VP set information operations: 
dimension-size 
describe-vp-set 
vp-set-dimensions 
vp-set-total-size 

dimension-address-Iength 
vp-set-deallocated-p 
vp-set-rank 
vp-set-vp-ratio 

/ 





*lIght *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

Usage Note: 

Before using the *light function, it is necessary to call the Paris function 
CM:set-system-leds-mode with an argument of nil to disconnect the LED's 
from their normal processor monitoring mode, in which each LED is turned on 
whenever any of the sixteen processors to which that LED is connected are 
active. 

References---------------------------------------------

552 



*Lisp Dictionary -lisp 
;::*:::::::::::::*~:*:::*~~::*:::«::::~;-m::~:::::,::*:~*:::::::::::::::::::::::::::::*:::~:~~::::::::::~~::::::~~::~::::~~::~~::~~~~::~~:*:::::::::-;,*::r::~:::::-::::::<. .. "!$~~~~r:::::<~~~;"!!~~:::::::<-W.:!*$:*.::::~~::;w.*~:::::*:~~~*:~~~~~::::-::::~*%%~7Z"**=r::=*::::;*: 

*lisp [Function] 

Switches between user and -lisp packages. 

Syntax------------------------------------------------

*lisp &optional select-*lisp 

Arguments----------------------------------------------

select-*lisp Boolean value or the keyword :toggle. If supplied, determines 
which package is selected. If not, defaults to :toggle. 

Returned Value -----------------------------------------

None. Returns no values. 

Side Effects ------------------------

Changes the value of * package - . 

Description ------------------------------------

The function *lisp makes switching the current package from user to *lisp and 
back again easy. It should be called only at top level. The select-*lisp argument 
determines which package is selected. A value of t sets the current package to * lisp. 
A value of nil sets the current package to user. The keyword :toggle, the default, 
toggles between the user and * lisp packages. 

553 



* lisp * Lisp Dictionary 

Examples---------------------------------------------

Called with an argument of :toggle, the default, the function *lisp toggles the cur­
rent package between the user and *lisp packages: 

(in-package 'user) 

(*lisp : toggle) 
Default package is now *LISP. 

(*lisp) ;;; :toggle is the default 
Default package is now USER. 

An argument of t forces selection of the *lisp package, and an argument of nil 
forces selection of the user package: 

( in-package 'user) 

(*lisp t) 

Default package is now *LISP. 

(*lisp t) 

Default package is now *LISP. 

(*lisp nil) 
Default package is now USER. 

(*lisp nil) 
Default package is now USER. 

Notes--------------------------------------------------

References-----------------------------------------------

554 

/ 

"-





list-of-active-processors * Lisp Dictionary 

Examples-------------------------------------------------------------------

Notes--------------------------------------------------

References------------------------------------------------

556 

See also the definition of loap, a predefined alias for list-of-active-processors, 
and the looping operator do-for-selected-processors. 

See also the related processor selection operators 
*all 
*If 
*case 
*cond 

If!! 

easel! 
cond!1 

* ecase ecase I! 
*unless *when 
with-css-saved 





IQad-byte!! *Lisp Dictionary 

Example.s --------------.,..----------:---

In any processor in which zero bits are extracted, the resulting field contains zero. 
Out-of-range bits are treated as zero for positive integers, and one for negative in­
tegers. For example, 

(load-byte!! (!! 1) (!! 2) (!! 3» 
(load -byte!! (!! -1) (!! 2) (!! 3» 

<=> (!! 0) 

<=> (!! 7) 

Notes-------------------------------------------

Usage Note: 

This operation is especially fast when both position-pvar and size-pvar are con­
stants, as in 

(load-byte!! data-pvar (!! 2) (!! 3» 

References--------------------------------------------

558 

See also these related byte manipulation operators: 
byte II byte-position!! 
deposit-byte! ! 
Idbll 

deposit-field! ! 
Idb-test!! 

byte-size!! 
dpb!! 
mask-fieldl! 

/ 

./ 

"" .. 





loap * Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

560 





* locally * Lisp Dictionary 

Examples -----------------------

562 

A simple example of the use of *Iocally is 

(setq allocated-pvar 
(allocate!! (!! 0.0) nil 'single-float-pvar» 

(*locally 
(declare (type single-float-pvar allocated-pvar» 
(*let (result-pvar) 

(*set allocated-pvar (random!! (!! 10.0»» 
(dotimes (i 3) 

(*incf result-pvar allocated-pvar») 

in which allocated-pvar is declared to be of type single-float-pvar. 

An example of the use of * locally in a function definition is 

(defun *locally-test (j) 
(*locally 

(declare (type fixnum j» 
(*let (temp) 

(declare (type (unsigned-byte-pvar 32) temp» 
(*set temp (!! j» 
(ppp temp :end 8»» 

The use of * locally in this function declares the type of the scalar argument j, allow­
ing this function to execute more efficiently in both interpreted and compiled form. 

(*locally-test 1.0) 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

The following example displays many of the locations in which * locally can be used 
to provide a localized declaration. 

(*cold-boot :initial-dimensions '(8 4» 

(*proclaim '(type single-float-pvar result-pvar» 
(*defvar result-pvar) 









logll *Lisp Dictionary 

Examples ------------------~----

(log!! (!! 4) (!! 2» <=> ( !! 2.0) 

Notes--------------------------

The function log II will never return a complex pvar as its result unless 
numeric-pvar is complex, or is coerced into complex form by use of the functions 
complex!! or coerce!!, as shown below. 

(log! ! 

<=> 
(log! ! 

<=> 

(coerce!! (!! -1) '(pvar (complex single-float»» 

(complex!! (!! -1.0») 

(!! #c(O.O 3.1415927» 

References-----------------------------------------------

566 





*Iogand *Lisp Dictionary 

Examples---------------------------------------------

(*logand (!! 7» => 7 
(*when nil!! (*logand (!! 7») => -1 
(*logand (if!! (evenp!! (self-address!!» 

( !! 6) 
( !! 3») => 2 

(*logand (!! 0» => 0 

Notes------------------------------------------------~ 

References-----------------------------------------------

568 

See also the related global operators: 
*and 
*Iogior 
*min 
*xor 

* integer-length 
*Iogxor 
*or 

See also the related logical operators: 
and!! not!1 orll 

*max 
*sum 

xor!! 

/ 

/ 

',,-

\ 





logandll *Lisp Dictionary 

Examples 

(logand! ! ( ! ! 7) ( ! ! 7» <=> ( ! ! 7) 
(logand! ! ( ! ! 7) ( ! ! 3) ) <=> ( ! ! 3) 
(logand! ! ( ! ! 7) ( ! ! 6) ( ! ! 3» <=> ( ! ! 2) 

(logand! ! ( ! ! 7) ( ! ! 0» <=> ( ! ! 0) 

Notes--------------------------------------------------

References-----------------------------------------------

570 



*Lisp Dictionary logandc1!! 

logandc1 !! [Function] 

Performs a parallel bit-wise logical AND operation on the supplied integer pvars, after 
taking the ones complement of its first argument. 

Syntax------------------------------------------------

logandc111 integer-pvar1 integer-pvar2 

Argurnents-----------------------------------------------

integer-pvar 1 

integer-pvar2 

Integer pvar. Complemented, then combined with 
integer-pvar2 using bit-wise logical AND. 

Integer pvar. Combined with ones complement of integer­
pvar1 using bit-wise logical AND. 

Returned Value -----------------------

logandc1-pvar Temporary integer pvar. In each active processor, contains the 
result of combining the ones complement of integer-pvar1 with 
integer-pvar2 using bit-wise logical AND. 

Side Effects --------------------------------------------

The returned pvar is allocated on the stack. 

Description -----------------------------------------------

This function takes two integer pvars and, within each processor, performs a bit­
wise logical AND operation on the supplied pvars, after taking the ones 
complement of its first argument. 

(logandcl!! pvarl pvar2) <=> (logand!! (lognot!! pvarl) pvar2) 

571 



logandc1 II *Lisp Dictionary 

Examples -----------------------

Notes-------------------------

References---------------------------------------------

572 





logandc2!1 *Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------------------------------

References---------------------------------------------

574 





logbitpll *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

/ 

\ 

576 





logcountll *Li$p Dictionary 

Examples------------------------------------~--~--

(ppp (logcount!! (self-address!!») => 
o 1 1 2 1 223 1 2 2 3 2 3 34. . 

(logcount!! (!! 7» <=> (!! 3) 

Notes------------------------------------------------

References---------------------------------------------

578 

/ 

,/ 





logeqvll *Lisp Dictionary 

Examples 

(logeqv! ! ( ! ! 7) ( ! ! 7» <=> ( ! ! -1) 
(logeqv! ! ( ! ! 7) ( ! ! 3» <=> ( ! ! -5) 
(logeqv! ! ( ! ! 7) ( ! ! 6) ( ! ! 3» <=> (!! 2) 
(logeqv! ! (!! 7) (!! 0» <=> (!! -8) 

Notes--------------------------------------------------

References-----------------------------------------------

\,. 

580 





*Iogior *Lisp Dictionary 

Examples------------------------------------------~-

(*logior (!! 7» => 7 
(*when nil!! (*logior (!! 7») => 0 
(*logior (if!! (evenp!! (self-address! I»~ 

( !! 6) 

( !! 3») => 7 
(*logior (!! 0» => 0 

Notes--------------------------------------------------

References-----------------------------------------------

582 

See also the related global operators: 
*and 
*Iogxor 
*min 
*xor 

* integer-length 

* max 
*or 

See also the related logical operators: 
and!! not!! or!! 

*Iogand 

*sum 

xor!! 





logiorll *Lisp Dictionary 

Examples 

(logior! ! ( ! ! 0» < .. > ( ! ! 0) 
(logior! ! ( ! ! 7) ( ! ! 7» <=> ( ! ! 7) 
(logior! ! ( ! ! 7) ( ! ! 3» <=> ( ! ! 7) 
(logior! ! ( ! ! 4) ( ! ! 1) ( ! ! 0» <=> ( ! ! 5) 

Notes-------------------------------------------------

References-----------------------------------------------

584 

/ 

\ 



*Lisp Dictionary lognandll 

lognand!! [Function] 

Performs a parallel bit-wise logical NAND operation on the supplied integer pvars. 

Syntax---------------------------------------------------------------------------------------------------------------------

lognandll integer-pvarl integer-pvar2 

Arguments-------------------------------------------------------------------------------------------------------------

integer-pvarl, integer-pvar2 
Integer pvars. Combined using bit-wise logical NAND. 

R etu rn ed Va I u e -----------------------------------------------------------------------------------------------------

lognand-pvar Thmporary integer pvar. In each active processor, contains the 
bit-wise logical NAND of the corresponding values of the integ­
er-pvars. 

Side Effects -------------------------

The returned pvar is allocated on the stack. 

Descri pti on ------------------------------------------------------------------------------------------------------------

This function takes two integer pvars and, within each processor, performs a bit­
wise logical NAND operation on the supplied pvars. The following forms are equiv­
alent: 

(lognand!! pvarl pvar2) <=> (lognot!! (logand!! pvarl pvar2» 

585 



lognand!1 *Lisp. Dictionary 

Examples~--------------------------------------~---

Notes--------------------------------------------------

References---------------------------------------------

586 





lognorll *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

./ 

588 





lognotll * Lisp Dictionary 

Examples---------------------------------------------

Notes------------~--------~--------------~--------

References------------------------------~---------------

590 





logorc111 *Lisp Dictionary 

Examples------------------~------------------~----

Notes--------------~----------------------------------

References------------------------------------~-------

592 





logorc211 *Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

References .---------------------------------------------

/ 

594 



*Lisp Dictionary logtestll 
::::::::;*::*=:~*::::::!::::::::::::*:*:::::*:::::::*::l:::::::1::::::*::X~*~:::::.$:":"::: .. 1::'::~*~::::;::::'1W.:: .. ":":!:: .. ~~~~::::::~::::::-:::f .. ::::::w.::::~~~~~*::::::::::::::::::::":::::*:::::*:::::::::::::::*:*::::-1:::::~:":::::::::::::::::::*:::::~::::::::::~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::l:::::;:l:l:::?::l:l:::l:l:::::: 

logtest!! [Function] 

Performs a parallel test on the supplied integer pvars for bits which are set in both 
pvars. 

Syntax------------------------------------------------

logtestll integer-pvarl integer-pvar2 

Arguments----------------------------------------------

integer-pvarl, integer-pvar2 
Integer pvars. Tested in parallel for bits set in both pvars. 

Returned Value -----------------------------------------

logtest-pvar Temporary boolean pvar. Contains the value t in each active 
processor where the values of integer-pvarl and integer-pvar2 
contain corresponding bits that are set in both pvars. Contains 
nil in all other active processors. 

Side Effems------------------------------------------

The returned pvar is allocated on the stack. 

Description ---------------------------------------------

This predicate function is true in each processor where any of the one-bits in 
integer-pvarl is also a one-bit in integer-pvar2. The behavior is: 

(logtest!! pvarl pvar2) 

<=> 
(not!! (zerop!! (logand!! pvarl pvar2») 

595 



logtestll *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References--------------------------------------------

/ 

596 





*Iogxor *Lisp Dictionary 

Examples-----------------------------------------------

(*let «test (!! 0») 
(*setf (pref test 0) 1) 
(*setf (pref test 1) 2) 
(*setf (pref test 2) 4) 
(*logxor test» 

=> 7 

Notes--------------------------------------------------

References---------------------------------------------

598 

See also the related global operators: 
*and 
*Iogior 
*min 
*xor 

* integer-length 
*max 
*or 

See also the related logical operators: 
and!! not!! orll 

*Iogand 

*sum 

xorll 

" ... 

,/ 





logxorll *Lisp Dictionary 

Examples 

(logxor! ! ( !. ! 7) (II 7» <=> (II 0) 
(logxor! ! (II 1) (II 3) (II 4» <=> (II 6) 
(logxor! ! ( ! ! 0) (II 1) (II 2) (II 4» <=> (II 7) 

Notes--------------------------------------------------

References-----------------------------------------------

600 

/ 

/ 
f 





lower-ease-pll * Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

602 





make-array! ! * Lisp Dictionary 

Any valid fixed-size Common Lisp type or pvar type of fixed size may be specified 
as the value of :element-type. It is an error to not provide an :element-type 
argument when calling make-array!!. 

The value of : initial-element may be either a front-end scalar or a pvar. If it is a 
scalar, the function!! is used to convert it to a constant pvar. In either case, make­
array!! stores the value of initial-element in each processor into each element of the 
corresponding array. If initial-element is not specified, the contents of the newly 
created array are undefined. 

Unlike its Common Lisp counterpart, make-array!! does not support the following 
keyword parameters: : initial-contents, :adjustable, :fill-pointer, :displaced-to, 
and : displaced-index-offset. 

Examples -----------------------

(*defvar new-array-pvar) 
(*set new-array-pvar 

(make-array!! '(2 2 2) 
:element-type '(complex single-float) 
: initial-element #c(5.3 0.0») 

(aref (pref new-array-pvar 0) a 1 0) => #C(5.3 0.0) 

A pvar consisting of a three-dimensional array containing single-precision com­
plex numbers in each processor is defined and bound to the symbol new-array­
pvar. The value (!! 5.3) is *set into new-array-pvar so that, in all active processors, 
each array element is initialized. An arbitrary array reference in processor 0 veri­
fies the presence of an initial pvar array element value. 

Notes--~----------------------------------

References--------------------------------------

604 

See also the pvar allocation and de allocation operations 
allocate!! array!! 
* deallocate 
front-end!! 
typed-vector! ! 

* deallocate-* defvars 
*Iet 
vector!! 

*defvar 
*Iet* 
!! 





make-char!! *Lisp Dictionary 

Examples----------------------------------------------------------------

Notes------------------------------------~------------

References---------------------------------------------

See also the related character pvar constructor character!!. 

See also the related character pvar attribute operators: 
char-bit I! char-bits!! char-code I! 
char-font!! initialize-character set-char-bit! I 

606 

( 

\ 





*map *Lisp Dictionary 

Examples---------------------------------------------

Suppose we have two matrices and we wish to add the two matrices together ele­
meQ.t by element, multiplying the result of the addition by a constant, and storing 
the overall result back in the first matrix. This can be accomplished by 

(*proclaim '(type (pvar (array single-float (3 3») 
matrixl matrix2» 

(*defvar matrixl 
(!! #2A«1.0 2.0 3.0) (4.0 5.0 6.0) (7.0 8.0 9.0»» 

(*defvar matrix2 
(!l #2A«3.0 2.0 1.0) (6.0 5.0 4.0) (9.0 B.O 7.0»» 

(defun *map-example (single-float-constant) 
(declare (type single-float single-float-constant» 
(*map 

#' (lambda (elementl element2) 
(declare (type single-float-pvar elementl element2» 
(*set elementl (*!! (+!! elementl element2) 

matrixl 
matrix2 
» 

(*map-example 2.0) 

(pref matrixl 0) 

(!! single-float-constant»» 

=> #2A«B.0 B.O B.O) (20.0 20.0 20.0) (32.0 32.0 32.0» 

Notes------------------------------------------------

References---------------------------------------------

See also the related function amapl!. 

608 





mask-field! I 

The following forms are equivalent: 

(mask-field (byte!! size-pvar pos-pvar) bits-pvar) 
<=> 

(logand!! bits-pvar 

*Lisp Dictionary 

(dbp!! (!! -1) (byte!! size-pvar pos-pvar) 0» 

Examples------------------------------------------------------------------

Notes-----------------------------------------------------------

References---------------------------------------------------

See also these related byte manipulation operators: 
byte! I byte-position! I 
deposit-byte!! deposit-field II 
Idb!! Idb-testll 

610 

byte-size!! 
dpb!1 
load-byte!! 





*max * Lisp Dictionary 

Examples---------------------------------------------

(*max (mod!! (self-address!!) (!! 5») <=> 4 

Notes--------------------------------------------------

References--------------~-----------------------------

612 

See also the related global operators: 
*and 
*Ioglor 
*min 
*xor 

* integer-length 
*Iogxor 
*or 

*Iogand 

*sum 

,/ 





maxi I *Lisp Dictionary 

Examples--------------------------------------------~ 

(ppp (max!! (mod!! (self-address!!) (!! 2» 
(mod!! (self-address!!) (!! 3»» => 

o 1 2 1 1 2 0 1 2 1 1 2 012 . . . 

Notes--------------------------------------------------

References-----------------------------------------------

.! 

614 





*mln *Lisp Dictionary 

Examples--------------------------------------------

(*min (mod!! (self-address!!) (!! 5») <=> 0 

Notes-------------------------------------------------

References----------------------------------------------

616 

See also the related global operators: 
*and 
*Ioglor 
*or 

* integer-length 
*Iogxor 
*sum 

*Iogand 
* max 
*xor 





min!! *Lisp Dictionary 

Examples---------------------------------------------

(ppp (min!! (mod!! (self-address!!) (!! 2» 
(mod!! (self-address!!) (!! 3»» => 

o 1 0 0 0 1 0 1 000 1 01. . . 

Notes----------------------------------------------------

References-----------------------------------------------

618 





mlnusp\l * Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

(minusp!! (!! -1» <=> t!! 
(minusp!! (!! -0.0» <=> nil!! 

References-----------------------------------------------

,/ 

\. 

620 





modI! *Lisp Dictionary 

Examples------------------------~~--------~---------

(ppp (mod!! (self -address! !) (!! 5») => 
o 1 2 3 401 2 340 123 4 . . . 

Notes--------------------------------------------------

References-----------------------------------------------

622 

/ 





most-negative-float!! * Lisp Dictionary 

Examples---------------------------------------------

The argument jloating-point-pvar may be any floating point pyar of the required 
format. For example. 

(most-negative-float!! (!! 0.0» <=> (!! -3.4028235e38) 

The same result would be obtained with an argument of (11 5.8) or with any single­
precision floating-point pyar. 

Notes---------------------------------------------------

References--------------------------------------------------

See also these related floating-point pyar limit functions: 
float-epsilon I! least-negative-floatll least-positive-float!! 
most-posltlve-floatl! negative-float-epsilon I! 

624 





most-positive-floatll *Lisp Dictionary 

Examples -------------------------

The argument f/oating-point-pvar may be any floating point pvar of the required 
format. For example, 

(most-positive-float!! (!! 0.0» <=> (!! 3.4028235e38) 

The same result would be obtained with an argument of (II 5.8) or with any single­
precision floating-point pvar. 

Notes----------------------------------------------------

References-----------------------------------------------

See also these related floating-point pvar limit functions: 
float-epsilon II least-negative-float II least-positive-floatll 
most-negative-float II negative-float-epsilon II 

626 





· negative-float-epsilon II *Lisp Dictionary 

Examples -----------------------

Notes-------------------------------------------

References------------------------------------------

See also these related floating-point pvar limit functions: 
float-epsilon I I least-negative-floatl I least-positive-floatl I 
most-negative-floatll most-positive-floatll 

628 





* news *Lisp Dictionary 

The source-pvar argument is evaluated only by processors in the currently selected 
set, but the dest-pvar argument can be modified in any processor. In other words, 
even though only active processors transmit values from source-pvar, values can be 
received and stored in dest-pvar by any processor, active or not: 

The relative-coordinate-integer arguments specify a single relative grid address 
used by all active processors in determining the address of the destination, i.e., if 
the nth relative-coordinate-integer argument is the value j, then each active proces­
sor will transmit a value to the processor j units away along dimension n. 

The grid addresses calculated by a * news operation are toroidal, i.e., there are no 
upper or lower bounds on the values of the relative-coordinate-integer arguments. 
Where grid addresses are produced that specify processors off the edge of the cur­
rent grid, those addresses wrap around to the opposite edge of the grid. 

Examples -----------------------

630 

The * news macro can be used to perform global shifts of data across processor 
grids of any dimension. However, the macro is most commonly used on 
two-dimensional grids, where each processor has four neighbors, one each to the 
"left" and "right" along dimension 0, and one each "up" and "down" along 
dimension 1. 

The following expressions define such a grid, along with two pvars that will be used 
in the following examples. 

(*cold-boot :initial-dimensions '(32 16» 
(*defvar source (random!! (!! 10») 
(*defvar dest) 

A call to ppp displays the grid of values stored in the source pvar. 

(ppp source :mode :grid :end '(4 4) :format 11-2D ") 

7 9 8 6 
9 5 2 7 
624 2 

8 5 9 1 

/ 





* news *Lisp Dictionary 

Usage Note: 

632 

The grid address assigned to a processor by a one-dimensional VP set is not the 
same as the processor's send address. For example, given the one-dimensional 
grid defined by 

(*cold-boot :initial-dimensions 
(list *minimum-size-for-vp-set*» 

the following expression displays in send address (:mode :cube) order the 
send addresses of a sample set of processors 

(ppp (self-address!!) :mode :cube :start 24 :end 40) 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

and this expression displays the grid addresses of the same processors in send 
address order: 

(ppp (self-address-grid!! (!! 0» :mode :cube 
:start 24 :end 40) 

24 25 26 27 28 29 30 31 4~ 49 50 51 52 53 54 55 

Notice that the grid addresses of the last eight processors in this example are 
different from their send addresses. In general, there is no simple way to relate 
the grid address assigned to a processor by a VP to the send address of that 
processor except by the *Lisp address conversion functions cube-from-grid­
address, cube-from-vp-grld-address, grid-from-cube-address, and grid­

from-vp-cube-address. The assignment depends on such factors as the size 
and shape of the VP set, and on the number of physical processors attached. 

Of course, if the grid addresses are displayed in grid address (:mode :grid) 
order, the addresses displayed will be sequential: 

(ppp (self-address-grid!! (!! 0» :mode :grid 
:start 24 :end 40) 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

\ 





( 

f 





news II *Lisp Dictionary 

words, it is legal for the grid address specified by relative-coordinate-integers to 
cause values to be retrieved from processors that are not in the currently selected 
set. 

The relative-coordinate-integer arguments specify a single relative grid address 
used by all active processors in determining the address of the destination, i.e., if 
the nth relative-coordinate-integer argument is the value j, then each active proces­
sor will retrieve a value from the processor j units away along dimension n. 

The grid addresses calculated by a news!! operation are toroidal, i.e., there are no 
upper or lower bounds on the values of the relative-coordinate-integer arguments. 
Where grid addresses are produced that specify processors off the edge of the cur­
rent grid, those addresses wrap around to the opposite edge of the grid. 

Examples-----------------------------------------------

The newsll macro can be used to perform global shifts of data across processor 
grids of any dimension. However, the macro is most commonly used on 
two-dimensional grids, where each processor has four neighbors, one each to the 
"left" and "right" along dimension 0, and one each "up" and "down" along 
dimension 1. 

The following expressions define such a grid, along with two pvars that will be used 
in the following examples. 

636 

(*cold-boot :initial-dimensions '(32 16» 
(*defvar source (random!! (!! 10») 
(*defvar dest (!! 0» 

A call to ppp displays the grid of values stored in the source pvar. 

(ppp source :mode :grid :end '(4 4) :format 11-2D ") 

7 9 8 6 
9 5 2 7 
6 2 4 2 
8 5 9 1 

I 
i 

\ 





news!! *Lisp Dictionary 

(ppp dest : mode :grid :end '(4 4) : format II~2D ") 

24 0 8 0 
24 0 8 0 
24 0 8 0 
24 0 8 0 

If the III operation in this example was performed with the entire set of processors 
selected, then a division by 0 would have occurred in the left-most column of pro­
cessors because (self-address-gridll (II 0» returns 0 for each processor in that 
column. The division was actually performed only in the processors belonging to 
the odd columns, i.e., those processors having data retrieved from them, so no er­
ror was signalled. 

Notes~~~~~~~~~~~~~~~~~~~~~~~~---

638 

Notice that newsll is to *news as prefll is to *pset. Thus, while news!! retrieves 
information from processors, * news sends information to processors. Like news!!, 
*news assumes a toroidal arrangement of grid addresses, i.e., addresses wrap 
around the grid. 

Performance Notes: 

Although seemingly symmetric, the CM-2 *Lisp implementation of news!! is 
faster than the CM-2 *Lisp implementation of *news. 

Also, when news!! is invoked with relative coordinates that are powers of two, 
as in 

(news!! pvar 8 16) 

the CM-2 implementation of *Lisp uses special Paris instructions that are able 
to quickly retrieve the data. The above call to news!! is therefore signficantly 
faster than a call to newsl! with non-power-of-two arguments, such as 

(news!! pvar 7 15) 

\ 





news II *Lisp Dictionary 

However, in this example, the processors for which the addresses are being 
displayed are not the same as in the previous two examples. Displaying proces­
sor grid addresses in grid address order by definition displays the addresses of 
those processors whose grid addresses are sequential. 

The errors produced by neglecting this distinction are more pervasive than 
these examples demonstrate. For example, it is a common mistake to expect the 
expression 

(ppp (news!! (self-address!!) 1) :mode :cube 
:start 24 :end 40) 

to display a series of sequential send addresses. In fact, it displays this: 

24 25 26 27 28 29 30 31 48 33 34 35 36 37 38 39 

The following expression produces the expected result: 

(ppp (news!! (self-address-grid!! (!! 0» 1) 
:mode :grid :start 24 :end 40) 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

References---------------------------------------------

See also these related NEWS communication operators: 
* news news-border!! 
* news-direction news-direction!! 

See also these related off-grid processor address tests: 
off-grid-border-pll off-grid-border-relative-direction-pl! 
off-grid-border-relative-p!! off-vp-grid-border-p!! 

See also these related processor communication operators: 
prefl! * pset 

640 

/ 
I 





news-borderll *Lisp Dictionary 

the current VP set, the processor instead returns the value of the supplied border­
pvar. 

Examples---------------------------------------------

642 

A sample call to news-border!! is 

(news-border!! pvar border-pvar 1 1) 

The news-border!! macro can be used to perform global shifts of data with a spe­
cific "boundary" value stored in all processors that attempt to read information 
from outside the boundaries of the grid. For example, given the two-dimensional 
grid configuration defined by 

(*cold-boot :initial-dimensions '(128 128» 

the expression 

(ppp (news-border!! 
(self-address-grid!! (!! 0» (!! -1) -1 -1) 

:mode :grid 
:end '(4 4) 
: format "-2D ") 

performs a diagonal shift of data "downwards" and "rightwards" across the grid, 
producing the following output: 

-1 -1 -1 -1 
-1 0 1 2 
-1 0 1 2 
-1 0 1 2 

The value -1 is stored into processors along the "top" and "left" edges of the grid 
because these are the processors that attempt to read outside the grid in this opera­
tion. 









* news-dlrEtction * Lisp l)ictionary 

The source-pvar argument is evaluated only by processors in the currently selected 
set, but the destination-pvar argument can be modified in any processor. In other 
words, even though only active processors transmit values from source-pvar, val­
ues can be received and stored in destination-pvar by any processor, not just those 
in the currently selected set. 

The dimension-scalar parameter must be an integer in the range [O .. (N -1)], where 
N is the number of dimensions defined for the current VP set. 

The distance-scalar parameter must be an integer. The sign of this value deter­
mines in which direction along the specified dimension data is sent. Grid ad­
dresses wrap around where necessary. 

This function permits * news operations along a given dimension without requiring 
specification of the total number of dimensions in the current VP set. Thus, assum­
ing a three-dimensional machine configuration, 

(*news-direction my-pvar my-result 2 3) 
<=> 
(*news my-pvar my-result 0 0 3) 

Examples -----------------------

646 

This function is particularly useful when writing subroutines that must do NEWS 
operations along a particular dimension of the currently defined grid but may be 
called with VP sets of differing ranks ~.ctive. 

(defun shift-upward-along-y-axis (dest-pvar 
source-pvar 
distance) 

(*news-direction source-pvar dest-pvar 1 (- distance») 







*Lisp Dictionary news-direction!l 
:::::::::~:::::::::::::::::~:::::::::::~:::~::::~::~~~~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::;::::::::::::::::::::::~::::::::::::::::::::~:::::::::::::::::::::::::::::::::::::~:::::::::i~:~:::::::::::::::::::::::::::::::::::::::::::~:::::::::::::::::::::::;:;!;:;:;:;:;:;:;:;:::;:;:::;!;!:!::::;:;:;!::::::::::::::::::~::::::::::::::::::::::::::::::~::::::::::::::;:;:;:;:;:::; 

news-direction! ! [Macro] 

Performs NEWS (grid) communication along a specified dimension, returning a pvar 
containing values copied from the supplied pvar. 

Syntax-----------------------------------------------------------------------

news-direction! ! source-pvar dimension-scalar distance-scalar 

Arguments ------------------------

source-pvar Pvar expression. Pvar from which values are copied. 

dimension-scalar Integer. Dimension along which to perform copy. 

distance-scalar Integer. Distance over which values are copied. 

Returned Value ---------------------

news-value-pvar Temporary pvar, of same type as source-pvar. In each active 
processor, contains a copy of the value of source-pvar in the 
processor distance-scalar away along the dimension specified 
by dimension-scalar. 

Side Effects -----------------------------------------------------------------

The returned pvar is allocated on the stack. 

Description ------------------------

Performs a news!! operation on the specified pvar, along the specified dimension 
and at the specified distance. Each active processor in the current VP set retrieves 
source-pvar data from the processor that is distance-scalar processors away along 
the dimension-scalar axis. 

The source-pvar parameter must be in the current VP set. 

649 



news-direction II * Lisp Dictionary 

Even though only active processors retrieve values from source-pvar, values can be 
retrieved from any processor, not just those in the currently selected set. In other 
words, it is legal for the grid address specified by dimension-scalar and distance­
scalar to cause values to be retrieved from processors that are not in the currently 
selected set. 

The dimension-scalar parameter must be an integer in the range [O .. (N -1)], where 
N is the number of dimensions defined for the current VP set. 

The distance-scalar parameter must be an integer. The sign of this value deter­
mines from which direction along the specified dimension data is retrieved. Grid 
addresses wrap around where necessary. 

This function permits newsll operations along a given dimension without requir­
ing specification of the total number of dimensions in the current VP set. Thus, 
assuming a three-dimensional machine configuration has been defined, the 
following equivalence holds: 

(news-direction!! my-pvar 1 2) 
<=> 
(news!! my-pvar 0 2 0) 

Examples--------------------------------------------------------------------

650 

This function is particularly useful when writing subroutines that must do NEWS 
operations along a particular dimension of the currently defined grid but may be 
called with VP sets of differing ranks active. 

(defun shift-upward-along-y-axis (pvar distance) 
(news-direction!! pvar 1 distance») 



*Lisp Dictionary news-direction I ! 

Notes--------------------------------------------------

References-----------------------------------------------

See also these related NEWS communication operators: 
* news 
*news-direction 

newsl! 

See also these related off-grid processor address tests: 

news-border I ! 

off-grid-border-pll off-grid-border-relative-direction-p!! 
off-grid-border-relative-p! I off-vp-grid-border-p!! 

See also these related processor communication operators: 
pref!! * pset 

651 







next-power-of-two->= *Lisp Dictionary 

Examples---------------------------------------------------------------------

(next-power-of-two->= 356) => 512 

Notes------------------------~-----------------------------------------------

Usage Note: 

This function is useful in computing the dimensions of VP sets, because each 
dimension of a VP set must be an integral power of two in size, and the total 
number of processors in a VP set must be a power of two multiple of the num­
ber of physical processors available. 

For instance, if a data file has 23,432 items, a call to next-power-of-two->=, 
specifically 

(next-power-of-two->= 23432) => 32768 

can be used to determine that a VP set of size 32768 is required to process the 
data. 

References-----------------------------------------------

654 

See also the related predicate power-of-two-p. 

The next-power-of-two->= function is most useful in combination with the 
following VP set definition operators: 

def-vp-set create-vp-set let-vp-set 

/ 





notll * Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------~--------------------

References---------------------------------------------

656 

See also the related global operators: 
*and *integer-Iength 
*Iogior *Iogxor 
*min 
*xor 

*or 

See also the related logical operators: 
andll orll xorll 

*Iogand 
*max 
*sum 





notanyll *Lisp Dictionary 

In each processor, the predicate is first applied to the index 0 elements of the 
sequences in the sequence-pvars, then to the index 1 elements, and so on. The nth 
time predicate is called, it is applied to the nth element of each of the sequences. If 
predicate returns t in any processor, that processor is temporarily removed from 
the currently selected set for the remainder of the operation. The operation contin­
ues until the shortest of the sequence-pvars is exhausted, or until no processors 
remain selected. 

The pvar returned by notany!! contains t in each processor where predicate returns 
the value nil for every set of sequence elements. If predicate returns t for any set of 
sequence elements in a given processor, notanyl! returns nil in that processor. 

Examples -----------------------

(notany!! 'equalp!! (!! #(1 2 3» (!! #(9 4 1») <=> t!! 

Notes----------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-----------------------------

See the related functions every!l, notevery!l, and somell. 

See also the general mapping function amap!1. 

658 

/ 





notevery!1 *Lisp Dictionary 

In each processor, the predicate is first applied to the index 0 elements of the 
sequences in the sequence-pvars, then to the index 1 elements, and so on. The nth 
time predicate is called, it is applied to the nth element of each of the sequences. If 
predicate returns nil in any processor, that processor is temporarily removed from 
the currently selected set for the remainder ofthe operation. The operation contin­
ues until the shortest of the sequence-pvars is exhausted, or until no processors 
remain selected. 

The pvar returned by notevery!! contains t. in each processor where predicate re­
turns the value nil for at least one set of sequence elements. Ifpredicate returns t for 
every set of sequence elements in a given processor, notevery!! returns nil in that 
processor. 

Examples -----------------------

(notevery!! 'equalp!! (!! #(1 2 3» (!! #(1 2 4») <=> t!! 

Notes---------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-----------------------------------------------

See the related functions every!!, notany!!, and some!!. 

See also the general mapping function amap!!. 

660 



*Lisp Dictionary *nreverse 

*nreverse [*Defun] 

Destructively reverses each sequence stored in the supplied sequence pvar. 

Syntax---------------------------

*nreverse sequence-pvar 

Arguments-------------------------

sequence-pvar Sequence pvar. Pvar containing sequences to be reversed. 

Returned Value ---------------------

sequence-pvar Sequence pvar. The supplied sequence-pvarwith each of its se­
quences destructively reversed. 

Side Effects ----------------------

None. 

Description -----------------------------------------------

The function *nreverse destructively modifies sequence-pvar to contain its ele­
ments in reverse order. The argument sequence-pvar must be a vector pvar. 

661 



*nreverse * Lisp ·Dictionary 

Examples------------------------------------~-------

(*nreverse (!! #(1 2 3 4») <=> (!! #(4 321» 

Notes--------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References---------------------------------------------

See also these related *Lisp sequence operators: 
copy-seq II * fill length!! 
reduce!! reverse!! subseq!! 

See also the generalized array mapping functions amapl! and *map. 

662 



*Lisp Dictionary nsubstltute! I 

nsubstitute! ! [Function] 

Performs a destructive parallel substitution operation on the supplied sequence pvar, 
replacing specified old items with new items. 

Syntax-------------------------------------------------

nsubstitute! I new-item old-item sequence-pvar 
&key :from-end :test :test-not 

: start :end :count :key 

Arguments----------------------------------------------

new-item 

old-item 

sequence-pvar 

:from-end 

:test 

:test-not 

: start 

:end 

:count 

Pvar expression, of same data type as sequence-pvar. Item to 
substitute for old-item in each processor. 

Pvar expression, of same data type as sequence-pvar. Item to be 
replaced in each processor. 

Sequence pvar. Pvar containing sequences to be modified. 

Boolean pvar. Whether to begin substitution from end of se­
quence in each processor. 

Two-argument pvar predicate. Test used in comparisons. Indi­
cates a match by returning a non-nil result. Defaults to eql!!. 

Two-argument pvar predicate. Test used in comparisons. Indi­
cates a match by returning a nil result. 

Integer pvar. Index of sequence element at which substitution 
starts in each processor. If not specified, search begins with 
first element. Zero-based. 

Integer pvar. Index of sequence element at which substitution 
ends in each processor. If not specified, search continues to 
end of sequence. Zero-based. 

Integer pvar. Maximum number of replacements to perform in 
each processor. Defaults to (length!! sequence-pvar) 

663 



nsubstitute\! 

: key 

*Lisp Dictionary 

One-argument pvar accessor function. Applied to 
sequence-pvar before· search is performed. 

Returned Value ---------------------

sequence-pvar Sequence pvar. The supplied sequence-pvarwith each of its se­
quences destructively modified. 

Side Effeds----------------------------------------

Destructively modifies sequence-pvar, replacing elements matching old-item with 
copies of new-item. 

Description ------------------------

664 

This function is the parallel equivalent of the Common Lisp nsubstitute func­
tion.The nsubstitute!!, nsubstitute-if!!, and nsubstitute-if-not!! functions are 
destructive versions of the substitute!! functions. 

In each processor, the function nsubst.itute!! searches sequence-pvar for elements 
that match old-item. Each such element is destructively modified to contain the 
value specified by new-item. 

Elements of sequence-pvar are tested against old-item with the eql!! operator un­
less another comparison operator is supplied as either of the :test or :test-not ar­
guments. The keywords :test and :test-not may not be used together. A lambda 
form that takes two pvar arguments and returns a boolean pvar result may be 
supplied as either the :test and :test-not argument. 

The keyword :from-end takes a boolean pvar that specifies from which end of se­
quence-pvar in each processor the operation will take place. 

Arguments to the keywords: start and: end define a subsequence to be operated on 
in each processor. 

The : key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of se­
quence-pvar. 







*Lisp Dictionary nsubstitute-ifl! 

nsubstitute-if! ! [Function] 

Performs a destructive parallel substitution operation on the supplied sequence pvar 
replacing items that satisfy the supplied test with new items. 

Syntax-------------------------------------------------

nsubstitute-if! ! new-item test sequence-pvar 
&key :from-end :start :end :count :key 

Arguments ----------------------------------------------

new-item 

test 

sequence-pvar 

:from-end 

:start 

:end 

:count 

:key 

Pvar expression, of same data type as sequence-pvar. Item to 
substitute for elements satisfying test in each processor. 

One-argument pvar predicate. Test used in comparisons. Indi­
cates a match by returning a non-nil result. Defaults to eqll!. 

Sequence pvar. Pvar containing sequences to be modified. 

Boolean pvar. Whether to begin substitution from end of se­
quence in each processor. 

Integer pvar. Index of sequence element at which substitution 
starts in each processor. If not specified, search begins with 
first element. Zero-based. 

Integer pvar. Index of sequence element at which substitution 
ends in each processor. If not specified, search continues to 
end of sequence. Zero-based. 

Integer pvar. Maximum number of replacements to perform in 
each processor. Defaults to (length!! sequence-pvar) 

One-argument pvar accessor function. Applied to 
sequence-pvar before search is performed. 

Returned Value ----------------------------------------

sequence-pvar Sequence pvar. The supplied sequence-pvarwith each of its se­
quences destructively modified. 

667 



nsubstitute-ifll * Lisp Dictionary 

Side Effects ----------------------

Destructively modifies sequence-pvar, replacing elements that satisfy the supplied 
test with copies of new-item. 

Description -----------------------

This function is the parallel equivalent of the Common Lisp nsubstitute-if func­
tion.The nsubstitute!!, nsubstitute-ifll, and nsubstitute-if-notll functions are 
destructive versions of the substitute! I functions. 

In each processor, the function nsubstltute-Ifll searches sequence-pvar for ele­
ments satisfying test. Each such element is destructively modified to contain the 
value specified by new-item. A lambda form that takes a single pyar argument and 
returns a boolean pyar result may be supplied as the test argument. 

The keyword :from-end takes a boolean pyar that specifies from which end ofse­
quence-pvar in each processor the operation will take place. 

Arguments to the keywords: start and: end define a subsequence to be operated on 
in each processor. 

The :key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of se­
quence-pvar. 

The : count keyword argument must be a positive integer pvar with values less than 
or equal to (length!! sequence-pvar). In each processor at most count elements are 
substituted. 

Examples-----------------------

668 









nsubstitute-it-notl! *Lisp Dictionary 

Side Effects ---------------------

Destructively modifies sequence-pvar, replacing elements that fail the supplied test 
with copies of new-item. 

Description -----------------------

This function is the parallel equivalent of the Common Lisp nsubstitute-it-not 
function.The nsubstitute! I, nsubstitute-it! I, and nsubstitute-if-not!! functions are 
destructive versions of the substitute!! functions. 

In each processor, the function nsubstitute-if-notl! searches sequence-pvar for 
elements failing test. Each such element is destructively modified to contain the 
value specified by new-item. A lambda form that takes a single pvar argument and 
returns a boolean pvar result may be supplied as the test argument. 

The keyword :from-end takes a boolean pvar that specifies from which end of se­
quence-pvar in each processor the operation will take place. 

Arguments to the keywords : start and :end define a subsequence to be operated on 
in each processor. 

The :key keyword accepts a user-defined function used to extract a search key 
from sequence-pvar. This key function must take one argument: an element of se­
quence-pvar. 

The :count keyword argument must be a positive integer pvarwith values less than 
or equal to (length II sequence-pvar). In each processor 'at most count elements are 
substituted. 

Examples-----------------------------

672 

, 
'-







"'Lisp Dictionary null!! 
:::::~:~:::~:::~::::::~::~~::::::~:::~~~::~::::::::::::::::~:~::::::~::::::::::::::::::::::::::::::::::::::~:~::::::::::::::::::?~::::~:::::::.::::::::::::::~~::"::::~~::::--:-::::~:::::::~~:w::::~:~~*:::-~$:::::::::::::::::::::::::::~:::::::~:::::::::~::::::::::::::::::::::::::~::::::::::::::::::::::~::::::::::::::~::::::::::::::::"::*:::::":!~~:::::::::::::::::::: 

null! ! [Function] 

Performs a parallel test for nil values on the supplied pvar. 

Syntax------------------------------------------------

null!! pvar 

Arguments -----------------------------------------------

pvar Pvar expression. Pvar to be tested for nil values. 

Returned Value ---------------------

null-pvar Temporary boolean pvar. Contains t in those active processors 
where pvar contains the value nil. Contains nil in all other pro­
cessors. 

Side Effects ------------------------------

The returned pvar is allocated on the stack. 

Description --------------------------

This function is functionally equivalent to not!!. 

675 



null!! *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

/ 

676 





numberpll *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

678 

See also these related pvar data type predicates: 
booleanpll characterp!1 
floatp!1 front-end-pl! 
string-char-p! ! 
typep!! 

structurep! ! 

complexp!! 
integerp!! 





oddp!l *Lisp Dictionary 

Examples--------------------------------------------

Notes------------------------------------------------

References----------------------------------------------

680 

I 

\ 





off-grld-border-pll *Lisp Dictionary 

Examples ------------------------

682 

This example defines a two-dimensional grid configuration, and generates a pair of 
pvars that contain random grid addresses. 

(*cold-boot :initial-dimensions '(4 4» 
(*defvar x-coordinate (random!! (!! 6») 
(*defvar y-coordinate (random! ! (!! 6») 

(ppp x-coordinate : mode :grid) 

4 5 5 5 
4 2 2 2 
2 1 5 3 

5 1 2 3 

(ppp y-coordinate : mode :grid) 

0 1 0 5 
0 0 2 4 
1 1 4 4 

5 3 1 1 

Some of the grid addresses specified by the pvars will lie outside the grid of the VP 
set. A call to off-grid-border-pl I determines which grid addresses actually do lie 
outside the grid. 

(ppp (off-grid-border-p!! x-coordinate y-coordinate) 
: mode :grid :format 11-38 ") 

T T T T 
T NIL NIL T 
NIL NIL T T 

T NIL NIL NIL 

/ 
~. 





\ 





off-grid-border-relative-direction-pll * Lisp Dictionary 

The distance-scalar argument must be an integer and may be negative. The sign of 
this value determines in which direction alo~g the specified dimension relative ad­
dresses are calculated. 

The return value of this function is a boolean pvar that contains t in each processor 
for which an invalid relative address is specified and nil elsewhere. 

If, for an active processor P in the current VP set, there exists another processor 
that is distance-scalar processors away along the dimension-scalar axis, then the 
result returned in processor P is nil. 

Examples-----------------------------------------------

This function is similar to off-grid-border-pll and off-grid-border-relative-pll. 
However, it permits relative address verification along a single dimension without 
requiring specification of the total number of dimensions in the current VP set. 
Thus, the following forms are equivalent, 

(off-grid-border-relative-direction-p!! 1 5) 
<=> 
(off-grid-border-relative-p!! 0 5 0) 

assuming a three-dimensional machine configuration. 

Notes-----------------------------------------------------

References-----------------------------------------------

686 

See also these related NEWS communication operators: 
*news 
* news-direction 

news!! 
news-direction! ! 

news-border! I 

See also these related off-grid processor address tests: 
off-grid-border-p! ! 
off-grid-border-relative-p! ! off-vp-grid-border-p I! 

See also these related processor communication operators: 
pref!! * pset 





off-grid-border-relative-p II *Lisp Dictionary 

Examples--------------------------------------------

This example defines a two-dimensional grid configuration, and then makes a call 
to off-grid-border-relative-p I! that tests the same relative grid address, (-1,-1), in 
each processor. As the result of this operation shows, the only processors for which 
this relative grid address is off the edge of the grid are those processors on the 
"top" and "left" edges of the grid. 

(*cold-boot :initial-dimensions '(128 128» 

(ppp (off-grid-border-relative-p!! (!! -1) (!! -1» 
:mode :grid :end '(4 4) :format 11-38 ") 

T T T T 
T NIL NIL NIL 
T NIL NIL NIL 
T NIL NIL NIL 

688 

The off-grld-border-relative-pll function can also be used to easily select all pro­
cessors within two processors of the border. 

(*when (or!! (off-grid-border-relative-p!! (!! -2) (!! -2» 
(off-grid-border-relative-p!! (!! 2) (!! 2») 

(check-border-condition» 









off-vp-grid-border-pl I *Lisp Dictionary 

Examples-----------------------------------------------

This example creates a two-dimensional VP set, two-d-vp-set, a one-dimensional 
VP set, my-vp-set, and a pair of pvars belonging to my-vp-set that contain 
random grid addresses within two-d-vp-set. 

692 

(def-vp-set two-d-vp-set '(4 4» 
(def-vp-set my-vp-set '(8» 

(*defvar y-coordinate (random!! (!! 5» nil my-vp-set» 
(*defvar x-coordinate (random!! (!! 5» nil my-vp-set» 

(ppp x-coordinate) 
1 4 1 3 003 1 

(ppp y-coordinate) 
402 2 3 1 1 4 

A call to off-grid-border-pll, specifically 

(*with-vp-set my-vp-set 
(ppp (off-vp-grid-border-p!! two-d-vp-set 

x-coordinate y-coordinate») 
T T NIL NIL NIL NIL NIL T 

demonstrates that the coordinate pairs contained in processors 0, 1, and 7 of the 
·two coordinate pvars are invalid for two-d-vp-set. 

As this example shows, it is not necessary for the coordinate-pvar arguments to 
belong to the specified vp-set, or to even have the same size (number of elements). 



*Lisp Dictionary off-vp-grid-border-pll 

Notes--------------------------------------------------------------------------

References------------------------------------------------

This function is similar to off-grid-border-p! I except that it permits testing of grid 
addresses within a specific VP set other than the current one. 

See also these related NEWS communication operators: 
-news 

- news-direction 
news! I 
news-direction II 

news-borderll 

See also these related off-grid processor address tests: 
off-grid-border-p! I off-grid-border-relative-direction-p!! 
off-grid-border-relative-pll 

See also these related processor communication operators: 
prefll - pset 

693 







*or * Lisp Dictionary 

Examples---------------------------------------------

Two examples of the use of global operators such as * or are 

(*defun =t!! (pvar) (not (*or (not!! pvar») 
(*defun =nil!! (pvar) (not (*or pvar») 

Notes--------------------------------------------------

Th determine whether there are any processors currently selected, a handy idiom is 

(*or t!!) 

which returns t only if there are selected processors. 

References----------------------------------------------

696 

See also the related global operators: 
*and 
*Iogior 
*min 

* integer-length 

*Iogxor 

*sum 

See also the related logical operators: 
and!1 notll or!! 

*Iogand 

*max 
*xor 

xorll 

( 

." 





orll *Lisp Dictionary 

Examples -----------------------

A simple example of the use of the or! 1 macro is 

(ppp (or!! (evenp!! (self-address!!» 
«!! (self-address!! (!! 3»» 

:end 10) 

T T T NIL T NIL T NIL T NIL 

Notes--------------------------

698 

Language Note: 

Remember that orll changes the currently selected set as it evaluates its argu­
ments. This can have unwanted side effects in code that depends on unchang­
ing selected sets, particularly code involving communication operators, such 
as scan!!. 

For example, the expressions 

(ppp (or!! (evenp!! (self-address! I»~ 
«!! (scan!! (self-address!!) '+!!) (!! 5») 

:end 8) 

T T T T T NIL T NIL 

(ppp (or!! «!! (scan!! (self-address!!) '+!!) (!! 5» 
(evenp!! (self-address! I»~) 

:end 8) 

T T T NIL T NIL T NIL 

exemplify a case in which using or!! may cause a non-intuitive result because of 
its deselection properties. In the first expression, the scan!! operation is 
performed only in the odd processors. In the second expression, the scan!! op­
eration is performed in all processors, resulting in different set of displayed 
values. 









phasel! * Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

See also these related complex pvar operators: 
absll cisll complex!! 
conJugate II imagpartll realpartll 

702 





pluspll *Lisp Dictionary 

Examples -----------------------

Notes----------------------------------------------------

References--------------------------

704 





positionll *Lisp Dictionary 

Returned Value ---------------------

position-pvar Temporary pvar, of same data type as elements of sequence­
pvar. In each active processor, contains the numeric index of 
the first element of sequence-pvar that matched item-pvar. Re­
turns the value -1 in processors where no match was found. 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description ------------------------

This function is the parallel equivalent of the Common Lisp position function. 

In each processor, the function position!! searches sequence-pvar for elements that 
match item-pvar. It returns a pvar containing the index of the first match found in 
each processor. In any processor failing the search, the returned pvar contains -1. 

Elements of sequence-pvar are tested against item-pvarwith the eql!! operator un­
less another comparison operator is supplied as either ofthe :test or :test-not ar­
guments. The keywords :test and :test-not may not be used together. A lambda 
form that takes two pvar arguments and returns a boolean pvar result may be 
supplied as either the :test and :test-not argument. 

The keyword :from-end takes a boolean pvar that specifies from which end of se­
quence-pvar in each processor the operation will take place. 

Arguments to the keywords: start and: end define a subsequence to be operated on 
in each processor. 

706 

The : key argument specifies a one-argument pvar function that is applied in paral­
lel to each element of sequence-pvar before the comparison with item-pvar is per­
formed. This argument can be used to select a key value from a structure, or to 
manipulate the values being compared. 

,/ 













( 

/ 





position-if .... notl! . *Lisp Dictionary 

Side Effects ---------------------

The returned pvar is allocated on the stack. 

Description -----------------------

This function is the parallel equivalent of the Common Lisp position-if-not 
function. 

In each processor, the function position-if-not!! searches sequence-pvar for ele­
ments that fail the supplied test. It returns a pvar containing the index of the first 
such element found in each processor. In any processor failing the search, the re­
turned pvar contains -1. A lambda form that takes a single pvar argument and 
returns a boolean pvar result may be supplied as. the test argument. 

The keyword :from-end takes a boolean pvar that specifies from which end ofse­
quence-pvar in each processor the operation will take place. 

Arguments to the keywords : start and :end define a subsequence to be operated on 
in each processor. 

The : key argument specifies a one-argument pvar function that is applied in paral­
lel to each element of sequence-pvar before the comparison with item-pvar is per­
formed. This argument can be used to select a key value from a structure, or to 
manipulate the values being compared. 

Examples---------------------------

714 

(*defvar vector-pvar (!! #(1 2 3 4 5 6 7») 

(position-if-not!! <lambda (pvar) (/=!! pvar (!! 4») 
vector-pvar) <=> (!! 3) 





,/ 





power-of-two-p *Lisp Dictionary 

Examples-----------------------------------------------------------

Notes----------------------------------------------------

References-----------------------------------------------

See also the related function next-power-of-two->=. 

The power-of-two-p function is most useful in combination with the following VP 

set definition operators: 
def-vp-set create-vp-set let-vp-set 

718 

,/ 





ppp 

: processor-list 

:.print-arrays 

* Lisp Dictionary 

List of integers or nil. Send addresses of processors between 
:start and :end for which values are formatted. This argument 
is meaningless unless the value of the : mode argument is 
:cube. Defaults initially to nil. 

Scalar boolean. Determines whether arrays are displayed in 
full. Defaults to t. 

: return-argument-pvar 

: pretty 

: stream 

Scalar boolean. Determines whether ppp returns the 
supplied pvar as its value. Defaults to nil. 

Scalar boolean. Value that Common Lisp global variable 
* print-pretty* is bound to during printing. Defaults to nil. 

Stream object. Stream to which output is printed. Defaults to 
nil, which directs output to *standard-output*. An argument 
of t directs output to *terminal-io*. 

Returned Value ---------------------

pvar-or-nil Depending on the value supplied for the : return-argument­

pvar argument, either the supplied pvar argument or nil. 

Side Effects ---------------------

Prints the selected values of pvar to the stream specified by the: stream argument. 

Description -----------------------

This macro is an alias for the macro pretty-print-pvar, which performs identically. 

The ppp macro prints out the value of pvar in all specified processors, regardless of 
the currently selected set. If ppp accesses a processor that has no defined value for 
pvar, the output produced is not defined. 

720 

The keyword: mode can have the value: cube or : grid; in the latter case the pvar is 
printed out using grid addressing rather than cube addressing. 

/ , 





ppp *Lisp Dictionary 

722 

The : processor-list argument may be used to select specific processors to display, 
but only when the printing : mode is : cube, as it is by default. For example, 

(ppp (-!! (!! 20) (self-address! I»~ 
:processor-list ~(1 2 3 5 7 11 13 17 19» 

displays the output 

19 18 17 15 13 9 7 3 1 

The : grid option to the: mode keyword causes the output of ppp to be displayed in 
grid-address format. For example, assuming a two-dimensional grid, 

(ppp (self-address!!) :mode :grid :end ~(4 4» 

displays output similar to 

o 8 16 24 
1 9 17 25 
2 10 18 26 
3 11 19 27 

The : ordering argument may be used to specify the order in which grid dimensions 
are displayed. For example, 

(ppp (self-address!!) :mode :grid :end ~(4 4) 
:ordering ~(1 0» 

displays output similar to 

o 1 2 3 
8 9 10 11 
16 17 18 19 
24 25 26 27 

The keyword argument: pretty can be used to cause the output of some pvar values 
to be displayed in a neater format. Calling ppp on a structure pvar, for example, 
yields output such. as the following: 

HS(PERSON :NAME 0 :AGE 0 :SEX NIL) #S(PERSON :NAME 0 :AGE 0 
:SEX NIL) HS(PERSON :NAME 0 :AGE 0 :SEX NIL) 

\, 





ppp *Lisp Dictionary 

References-----------------------------------------------

724 

See also these related pvar pretty-printing operations: 
pppll 
ppp-address-object 
pppdbg 
pretty-print-pvar 

ppp-css 
ppp-struct 
pretty-print-pvar-in-currently-selected-set 

/ 





pppl! *Lisp Dictionary 

Examples ----------------------~ 

Notes-----------------------------------------------

There are global variables that specify the defaults for each of the keyword argu­
ments. See Chapter 2, "*Lisp Global Variables" in Part I of this Dictionary for a list 
of these variables. 

References------------------------------------------------

726 

See also these related pvar pretty-printing operations: 
ppp 
ppp-address-object 
pppdbg 
pretty-print-pvar 

ppp-css 
ppp-struct 
pretty-print-pvar-in-currently-selected-set 

\ 





ppp-address-object * Lisp Dictionary 

Examples -----------------------

Notes-------------------------~ 

There are global variables that specify the defaults for each of the keyword argu­
ments. See Chapter 2, "*Lisp Global Variables" in Part I of this Dictionary for a list 
of these variables. 

References-----------------------------------------------

See also these related pvar pretty-printing operations: 
ppp pppll 
ppp-css 
pppdbg ppp-struct 
pretty-print-pvar pretty-print-pvar-in-currently-selected-set 

728 

/ 





ppp-css * Lisp Dictionary 

Examples-----------------------------------------------------------

Notes-------------------------------------------------------------------------

There are global variables that specify the defaults for each of the keyword argu­
ments. See Chapter 2, "*Lisp Global Variables" in Part I of this Dictionary for a list 
of these variables. 

References-----------------------------------------------

730 

See also these related pvar pretty-printing operations: 
ppp ppp!! 
ppp-address-object 
pppdbg 
pretty-print-pvar 

ppp-struct 
pretty-print-pvar-in-currently-selected-set 



*Lisp Dictionary pppdbg 

pppdbg [Macro] 

Prints the values ofthe supplied pvar in neatly formatted style, displaying the form that 
is evaluated to provide the pvar as a title. 

Syntax-------------------------------------------------

pppdbg pvar &rest keyword-args 

Arguments -----------------------------------------------

pvar 

keyword-args 

Pvar expression. Pvar to be printed. 

Keyword arguments. Accepts same keyword arguments as 
ppp. 

Returned Value --------------------------------

pvar-or-nil Depending on the value supplied for the :return-argument­

pvar argument, either the supplied pvar argument or nil. 

Side Effects -----------------------

Prints selected values ofpvar to the stream specified by the :stream argument. 

Description ----------------------------------------------

This macro is equivalent to ppp, except that the :title keyword argument defaults, 
not to nil (no title), but to the original form supplied as the pvar argument for 
pppdbg. The argument pvar may be any pvar. The keyword-args are identical to 
those for ppp. 

731 



pppdbg *Lisp Dictionary 

Examples-----------------------------------------------

For example, the expression 

(pppdbg (self-address!!) :end 10) 

displays the following: 

(SELF-ADDRESS! I): 0 1 2 345 6 7 8 9 

Notes--------------------------------------------------

There are global variables that specify the defaults for each of the keyword argu­
ments. See Chapter 2, "*Lisp Global Variables" in Part I of this Dictionary for a list 
of these variables. 

References---------------------------------------------

See also these related pvar pretty-printing operations: 
ppp ppp!! 
ppp-address-object ppp-css 
ppp-struct 
pretty-print-pvar pretty-print-pvar-in-currently-selected-set 

732 

,/ 





ppp-struet *Lisp Dictionary 

Description -----------------------

The function ppp-struet attempts to print out the structure pvar pvar in readable 
format, with processor values for each slot being shown left to right, one line per 
slot. The number of values displayed per line is determined by per-line. 

The keyword arguments :start, :end, : print-array, and :stream control the amount, 
format, and destination of the output exactly as with ppp. 

The argument :width determines the printed width of each slot value, and defaults 
to 8 characters. 

The argument :title defaults to t, which specifies that the title printed out is the 
name ofthe * defstruet of which pvar is an instance of. If nil, no title is printed out. 
If it is a string, then that string is used as the title. 

Examples---------------------------------------

734 

(*defstruct person 
(ssn 0 :type (unsigned-byte 32» 
(age 0 :type (unsigned-byte 16» 
(height 0.0 :type single-float) 
(weight 0.0 :type single-float) 
) 

(ppp-struct a-person 8 :end 16 :width 10) 

*DEFSTRUCT PERSON 

SSN: 219101296 545417079 833166928 508389095 
685245194 687147484 442455228 
AGE: 43 76 9 96 
31 59 82 
HEIGHT: 0.7566829 6.0384245 6.8458276 2.9526687 
2.5360777 0.65423644 0.16378379 
WEIGHT: 52.873016 11.53174 29.510529 223.5896 
130.44492 24.180532 214.51915 

945762998 

63 

6.9201202 

244.65019 

/' 
/ 









pref *Lisp Dictionary 

Examples-----------------------------------------------

The expression 

(pref faa 17) 

returns the value of pvar foo in processor 17. 

The macro *setf may be applied to pref to store a value into a single processor of a 
pvar. For example, the expression 

(*setf (pref faa 17) (* 19 99» 

sets the value of pvar foo in processor 17 to 1881. 

The send-address argument may reference any processor; it is not limited to 
processors in the currently selected set. The pref macro may be used to access any 
processor, whether or not that processor is currently active, in which the 
pvar-expression contains valid data. 

738 

For example, the result returned by the expression 

(*all 
(*let «x (self-address! !») 

(*when «!! (self-address!!) (!! 10» 
(pref x 30»» 

is defined, even though the call to *when deselects processor 30. The contents of 
the local pvar x is set in all processors prior to the call to *when, so that when pref is 
called to access the value of x in processor 30, that value is defined. 

The result of the following similar expression is not defined, however. 

(*all 
(*when «!! (self-address!!) (!! 10» 

(*let «x (self-address!!») 
(pref x 30»» 

This example is in error, for the contents of x are determined after the currently 
selected set has been restricted, excluding processor 30. The local pvar x therefore 
has no defined value in that processor. The value returned by this example is unde­
fined. 





pref *Lisp Dictionary 

This second method is much faster for array pvars containing large arrays 
because less data is transmitted between the eM and the front end. Even for 
expressions involving small arrays, the second method is more efficient 
because the *Lisp compiler is able to recogize and compile expressions of this 
type. 

Of course, this same principle applies to reading data from a single slot of a 
structure pvar. It is in general more efficient to perform a parallel reference on 
the eM than it is to copy an entire array or structure from the eM to the front 
end and performing a serial reference on the front end. 

References--------------------------------~-------------

740 

See also the II operator, which takes a single value and broadcasts it to all 
processors. 

See also the following four operations that move more than one element at a time 
between the front end and the eM: 

array-to-pvar 
pvar-to-array 

See also the related operations: 
prefll * pset 

array-to-pvar-grid 
pvar-to-array-grid 

*set *setf 





prefll *Lisp Dictionary 

Description -----------------------

The prefll macro is an interprocessor and inter-VP set communication operation. 
It returns a pvar containing in each active processor the value of pvar-e.xpression in 
the processor specified by send-address-pvar. 

Each active processor retrieves a value from the pvar returned by pvar-expression. 
Specifically, each processor retrieves the value of pvar-expression in the processor 
specified by the value of send-address-pvar. 

The processors from which these values are being retrieved need not be in the cur­
rently selected set. Also, pvar-expression need not be in the current VP set. The 
prefll operation allows data to be retrieved from non-active processors and from 
pvars in VP sets other than the current one. 

The keyword argument : collision-mode determines the communication method 
used when there are collisions. A collision occurs when a single value of pvar-ex­
pression is accessed by more than one processor, i.e., when the value of 
send-address-pvar is the same in two or more active processors. The Connection 
Machine arranges that all processors involved in a collision get the same value, but 
depending on the number of collisions that occur, one of a number of strategies 
may be used to provide efficient communication. 

742 

The : collision-mode argument has four legal values: 

• : no-collisions 

This option asserts that no two processors will attempt to reference the 
same value. If two processors do attempt to access the same value, the re­
sult is undefined. The : no-collisions option is significantly faster than any 
of the options that allow collisions, with the exception of the nil option. 

• : collisions-allowed 

This option asserts that collisions are allowed, but that relatively few colli­
sions will actually occur. The time required to complete the pref!! opera­
tion is proportional to the maximum number of processors involved in a 
collision. 

• : many-collisions 

This option asserts that many collisions will occur, and is especially useful 
when large numbers of processors are accessing the same value. This op­
tion is slower than the preceding two, but the algorithm used ensures that 

\ 





pref!! * Lisp Dictionary 

• If pvar-expression is an expression and no :vp-set argument is provided, 
then pvar-expression is evaluated in the set of processors specified by 
send-address-pvar in the current VP set. 

• If pvar-expression is an expression and a :vp-set argument is specified, 
then pvar-expression is evaluated in the set of processors specified by 
send-address-pvar in the VP set specified by the :vp-set argument. 

Examples of these three cases are shown below. 

Examples------------------------------------------------------------------

744 

Here is a sample call to prefl!: 

(*defvar pvar-a (random!! (!! 10») 
(*defvar pvar-b) 
(*set pvar-b (pref!! pvar-a (self-address! I»~) 

The value of pvar-a in each processor is copied and returned by pref!!, and stored 
in pvar-b by *set. In this example, no interprocessor communication takes place; 
each processor is simply getting data from itself. 

More interesting uses of pref!! involve exchanging values between processors. For 
example, the expression 

(*set backwards-pvar 
(pref!! pvar (-!! (!! (1- *number-of-processors-limit*» 

(self-address! I»~»~ 

stores the values of pvar into backwards-pvar in reverse order of send addresses. 

The expression 

(*set pvar-a 
(pref!! pvar-a (mod!! (1-!! (self-address! I»~ 

(!! *number-of-processors-limit*»» 

shifts the value of pvar-a in each processor to the processor with the next higher 
send address (with wraparound). 





prefll *Lisp Dictionary 

:vp-set fred) 
:end 5» 

This example produces the .following output: 

746 

The current vp set is #<VP-SET Name: FRED, Dimensions . . . > 
The number of active processors is 1 
25 25 25 25 25 

The prefl! operation can also be used to transfer values between different VP sets, 
as in the following example. 

(*proclaim '(type (pvar (unsigned-byte 4» 
matrix diagonal-elements» 

(def-vp-set diagonal-vp-set '(8192) 
:*defvars «diagonal-elements (!! 0»» 

(def-vp-set matrix-vp-set '(128 128) 
:*defvars «matrix (random!! (!! 10»») 

These forms define two VP sets, diagonal-vp-set and matrix-vp-set, with one and 
two dimensions respectively. Two pvars are also defined, one associated with each 
VP set, that have the following initial values: 

(ppp matrix : mode :grid :end ' (5 5» 

DIMENSION 0 (X) -----> 

5 6 3 5 6 
4 9 4 5 6 
3 9 1 5 2 
2 6 2 3 9 
4 0 9 3 4 

(ppp diagonal-elements :end 5) 

o 0 0 0 0 

\ 





prefl! *Lisp Dictionary 

Another way of converting grid addresses to send addresses within a pref!! form is 
the use the grid!! function. For instance, the above call to praf!! could have been 
written as 

(pref!! matrix (grid!! (self-address!!) (self-address! I»~) 

See the definition of grid!!, and Section 6.5, '~ddress Objects" of the *Lisp 
Reference Supplement, Version 5.0, for more information. 

Notes--------------------------------------------------

748 

Usage Note: 

The default value (nil) of :collision-mode invokes the Paris instruction 
cm:get-IL, which uses the CM-2 backward routing hardware. As the number of 
collisions increases, this tends to be faster than :collisions-allowed and 
: many-collisions, but it can require much more temporary memory. 

Performance Note: 

A call to prefll with no collisions is implemented using two calls to *pset: one to 
send the address of the processor requesting the data to the processor from 
which the data is to be retrieved, and another to send the data requested back 
to the requesting processor. 

It is often possible to rewrite an algorithm that uses prefll (in which data is 
retrieved) into an algorithm using *pset (in which data is sent, rather than re­
trieved), halving the communications time required. 

For example 

(*when «!! (self-address!!) (!! 100» 
(*set dest (pref!! source 

(+!! (self-address!!) (!! 100»») 

could be rewritten as 

(*when (and!! «=!! (!! 100) (self-address! I»~ 
«!! (self-address!!) (!! 200») 

(*pset source dest (-!! (self-address!!) (!! 100»» 

/ 

/ 
! 
\. 









pretty-prlnt-pvar *Lisp Dictionary 

: processor-list List of integers or nil. Send addresses of processors between 
:start and :end for which values are formatted. This argument 
is meaningless unless the value of the : mode argument is 
:cube. Defaults initially to nil. 

: print-arrays Scalar boolean. Determines whether arrays are displayed in 
full. Defaults to t. 

: return-argument-pvar 

: pretty 

: stream 

Scalar boolean. Determines whether pretty-print-pvar returns 
the supplied pvar as its value. Defaults to nil. 

Scalar boolean. Value that Common Lisp global variable 
*print-pretty* is bound to during printing. Defaults to nil. 

Stream object. Stream to which output is printed. Defaults to 
nil, which directs output to *standard-output*. An argument 
of t directs output to *terminal-io*. 

Returned Value ---------------------

pvar-or-nil Depending on the value supplied for the : return-argument­
pvar argument, either the supplied pvar argument or nil. 

Sid. Effects ---------------------

Prints the selected values of pvar to the stream specified by the: stream argument. 

Description -----------------------

This macro has an alias ppp, which operates identically. See the definition of ppp 
for more information about both of these macros. 

Examples-------------------------

752 

A sample call to pretty-print-pvar is 

(pretty-print-pvar (self-address! I»~ 
o 1 2 ~ 4 5 6 7 8 9 10 11 12 . . . 





\ 





pretty-print-pvar-in-currently-selected-set *Lisp Dictionary 

Description ------------------.,.....-----

This function prints out the the cube address and value of pvar for all processors in 
the currently selected set. 

Examples--------------------------------------------

Notes--------------------------

There are global defaults for each of the keyword arguments. 

See Chapter 2, "*Lisp Global Variables" for a list of these variables. 

References---------------------------

756 

This macro has an alias, ppp-css. 

See also these related pvar pretty-printing operations: 
ppp pppll 
ppp-address-object 
pppdbg 
pretty-print-pvar 

ppp-struct 

/ 





• processorwise *Lisp Dictionary 

Examples-----------------------------------------------

Notes------------------------------~--------------------

The function ·processorwise is equivalent to a call to ·sideways-array with an 
array argument that is in sideways (slicewise) orientation. 

There are some important restrictions on the size of arrays passed as arguments to 
• processorwise. 

The array-pvar argument must be an array pvar that contains elements whose 
lengths are powers of 2 or multiples of 32. Further, the total number of bits the 
array occupies in eM memory must be divisible by 32. This number can be deter­
mined either by (pvar-Iength array-pvar) or by multiplying the total number of 
elements in the array by the size of an individual element. 

The ·processorwise function is most efficient when the array elements of array­
pvar are each 32 bits long. 

References-----------------------------------------------

See also the functions ·sideways-array, sideways-array-p, and ·slicewise. 

758 

\ 





*proclaim *Lisp Dictionary 

Examples-----------------------------------------------

The *proclaim macro is commonly used in five ways: 

760 

II 10 provide type declarations for permanent pvars defined by *defvar. 

(*proclaim '(type (pvar single-float) my-float-pvar» 
(*defvar my-float-pvar) 

(*proclaim 
'(type (vector-pvar (array (unsigned-byte 32) (4 4» 3) 

my-nested-arrayl my-nested-array2» 
(*defvar my-nested-arrayl) 
(*defvar my-nested-array2) 

II 10 provide function declarations so that the *Lisp Compiler has 
information regarding the returned value of user-defined *Lisp functions. 

For example, 

(*proclaim 
'(ftype (function (single-float-pvar single-float-pvar) 

single-float-pvar) 
hypotenuse! ! ) ) 

informs the *Lisp compiler that the hypotenuse!! function takes two single 
float pvars as arguments and returns a single float pvar as a result. 

The expression 

(*proclaim , (ftype (function (&rest t) 
(pvar boolean) 

my-and! !» 

informs the *Lisp compiler that the my-and! I function takes any number 
of arguments of any type, and returns a boolean pvar. 

Currently, the *Lisp compiler does not use the information about 
arguments provided in function or ftype *proclaim forms. The declaration 
for each argument in these forms may be completely specified for 
documentation purposes, or may be specified simply as t. However, the 
number of argument declarations provided must match the number of ar­
guments accepted by the function. 

/ 





*proclaim *Lisp Dictionary 

Notes--------------------------------------------------

Syntax Notes: 

The declaration argument of *proclaim must be quoted to prevent evaluation, 
just as in Common Lisp the declaration argument to proclaim must be quoted. 

Also, nearly all calls to *proclaim end with a double parentheses, as the above 
examples show. It is a good rule of thumb to recheck any *proclaim form 
ending with a single parenthesis or with more than two parentheses, for it may 
contain an error. Note the exception given by the fourth example above. The 
use of *proclaim to declare the *Lisp compiler safety level ends in three 
parentheses, but is nevertheless correct. 

Compiler Note: 

The use of the Common Lisp proclaim operator to inform the *Lisp compiler 
of type information is obsolete and no longer supported. 

References-----------------------------------------------

See also the related *Lisp declaration operators: 
* locally unproclaim 

See also the related type translation function taken-as!!. 

See also the related type coercion function coerce!!. 

762 

/ 





*pset *Lisp Dictionary 

Returned Value ---------------------

nil Evaluated for side effect only. 

Side Effects ----------------------

In each processor specified by dest-address-pvar, destination-pvar is overwritten 
with either a single source-pvar value or a combination of source-pvar values. 

If notify-pvar is supplied, it is set to t in each processor in which destination-pvar 
received a value; elsewhere it is unaffected. 

Description -----------------------

764 

The *pset macro is an interprocessor and inter-VP set communication operation. 
It copies values from one pvar to another. Source values from one processor may 
be copied to a different processor. Also, source-pvar and destination-pvar may be­
long to different VP sets. 

Using a mailbox analogy, the values in source-pvar are messages, the values in dest­
address-pvar are the addresses of the mailboxes to which they are sent, and destina­
tion-pvar is the set of mailboxes into which the messages are delivered. 

The arguments value-pvar and dest-address-pvar are only evaluated by the active 
processors of the current VP set. These arguments must be pvars belonging to the 
current VP set. 

The dest-pvar argument may be any pvar in any VP set; it does not need to belong to 
the current VP set. 

The dest-address-pvar may contain integer values that constitute valid send ad­
dresses for the VP set to which dest-pvar belongs. Alternatively, an address object 
pvar may be used as the value of the dest-address-pvar argument. 

For all processors in the currently selected set, the value of value-pvar is sent to the 
processor addressed by dest-address-pvar, and stored into destination-pvar in the 
processor addressed by dest-address-pvar. 

I 

'" 





*pset *Lisp Dictionary 

Examples -----------------------

Here is a simple call to *pset: 

(*defvar pvar-a (random!! (!! 10») 
(*defvar pvar-b) 
(*pset :no-collisions pvar-a pvar-b (self-address! !» 

The value of pvar-a in each processor is stored in the corresponding processor of 
pvar-b. Because there is no possibility of more than one value being sent to the 
same processor, the: no-collisions option is used to increase efficiency. This exam­
ple is identical in operation to a call to * set: 

766 

(*set pvar-a pvar-b) 

In this example, data is copied from one pvar to another within each processor, so 
no interprocessor communication takes place. 

More interesting uses of * pset involve exchanging values between processors: 

(defun backwards (pvar) 
(*let (backwards-pvar) 

(*pset :default pvar backwards-pvar 
(-!! (!! (1- *number-of-processors-limit*» 

(self-address! !») 
backwards-pvar» 

This function takes any pvar and returns a copy of that pvar with its values in re­
verse send-address order. The *pset macro is used to transfer the value of pvar 
from each processor to the processor's opposite in terms of send addresses, where 
the value is stored in backwards-pvar. So, for example, 

(*cold-boot :initial-dimensions '(10» 
(ppp dest :end 10) 

displays the values 

9 8 7 6 5 4 3 2 1 0 

/ 

( 
\ 
\, 





*pset *Lisp Dictionary 

768 

This shows that, for example, there are 6808 occurrences of the value 2 in 
data-pvar. 

The *pset macro may also be used to transfer values between VP sets, as in the 
following example. 

(*proclaim '(type (pvar (unsigned-byte 16» 
one-d-pvar two-d-pvar» 

(def-vp-set one-d '(128) 
:*defvars 

«one-d-pvar (1+!! (self-address! I»~»~) 

(def-vp-set two-d '(128 128) 
:*defvars 

«two-d-pvar (!! 0»» 

These forms define two VP sets, one-d and two-d, with one and two dimensions 
respectively. The VP set two-d is defined as a square grid with as many processors 
along its edge as there are processors in one-d. 

1\vo pvars are also defined, one associated with each VP set, having the following 
initial values: 

(ppp one-d-pvar :end 10) 
1 2 3 4 5 6 7 8 9 10 

(ppp two-d-pvar :mode :grid :end '(5 5» 

DIMENSION 0 (X) -----> 

o 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 
o 0 000 
o 0 000 

( 
\ 





*pset *Lisp Dictionary 

Finally, the following function definition shows how the : notify argument to *pset 
can be used: 

(defun send-and-add (source dest address) 
"This function sums source into dest, and then counts" 
"How many processors actually summed up data." 
(*let (notify-pvar) 

(declare (type boolean-pvar notify-pvar» 
(*all (*set notify-pvar nil! I»~ 
(*pset :add source dest address :notify notify-pvar) 
(*all (*when notify-pvar 

(format t "-%-D processors summed data" 
(*sum (!! 1»»») 

This function may be called with any number of processors selected. All 
processors are made active temporarily to initialize notify-pvar, and then a call is 
made to * pset to perform a send operation. The value of notify-pvar is then used to 
display the number of processors that actually transmitted data. First all 
processors are selected (since some processors receiving data may not be in the 
currently selected set), and then notify-pvar is used to select those processors that 
in fact received data. With these processors active, a call to *sum is made to return 
a count of those processors. 

Notes---------------------------------------------------

770 

The *pset macro invokes the general routing hardware of the Connection Ma­
chine. While providing flexibility in communication of values between processors, 
the general router is less efficient than the communication methods employed by 
more specialized operators, such as *news, news!! and scan!!. 

Performance Considerations: 

The :or and :and combination methods are faster if the source-pvar contains 
only boolean values (t or nil). 

Cautions: 

The argument notify-pvar is unaltered in processors where destination-pvar is 
unaltered. The implications are: 

II This allows one to track the cumulative effects of multiple *pset calls. 
/ 









pvar-exponent-Iength *Lisp Dictionary 

Examples---------------------------------------------------------------------

Notes----------------------------------------------------

References------------------------------------------------

774 

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar 
pvar-Iength 
pvar-name 
pvar-type 

pvar-Iocation 
pvarp 
pvar-vp-set 

pvar-mantissa-Iength 
pvar-plist 

( 
\. 





pvar-Iength *Lisp Dictionary 

Examples------------------------------------------------------------------

Notes----------------------------------------------------

References------------------------------------------------------

776 

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iocation pvar-mantissa-Iength 
pvar-name 
pvar-type 

pvarp 
pvar-vp-set 

pvar-plist 





pvar-Iocatlon *Lisp Dictionary 

Examples------------------------~---------------------

Notes----------------------------------------------------

References-----------------------------------------------

778 

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength pvar-mantissa-Iength 
pvar-name 
pvar-type 

pvarp 
pvar-vp-set 

pvar-plist 

( 
! 

"'-





pvar-mantlssa-Iength *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength pvar-Iocation 
pvar-name pvarp pvar-plist 
pvar-type pvar-vp-set 

780 

I 
.", 

/ 
I 

\-, 





pvar-name *Lisp Dictionary 

Exa,mples ~--------------------.,,-.--

Notes-------------------------------------------

References-----------------------------------------------

782 

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength 
pvarp 
pvar-type 

pvar-Iocation 
pvar-plist 
pvar-vp-set 

pvar-mantissa-Iength 





pvarp * Lisp Dictionary 

Examples--------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

See also the following general pvar information operators: 
allocated-pvar-p descrlbe-pvar pvar-exponent-Iength 
pvar-Iength pvar-Iocatlon pvar-mantissa-Iength 
pvar-name pvar-plist pvar-type 
pvar-vp-set 

784 





pvar-plist *Lisp Dictionary 

Examples ---------------------------

Notes----------------------------

References-------------------------------

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength pvar-Iocation pvar-mantlssa-Iength 
pvar-name pvarp pvar-type 
pvar-vp-set 

786 

/ 
! 
\ 





pvar-to-array *Lisp Dictionary 

Description -----------------------

This function moves data from source-pvar into dest-a"ay in send-address order. 

If provided, dest-a"ay must be one-dimensional. If a dest-a"ay is not provided, an 
array is created of size :cube-address-end minus :cube-address-start. 

,The data from source-pvar in processors :cube-address-start through 
1 - :cube-address-end are written into the dest-a"ay elements starting with ele­
ment :array-offset. The result returned by pvar-to-array is dest-a"ay. 

Examples----------------------------

A sample pvar-to-array call is the expression 

(pvar-to-array (self-address!!) nil 
:cube-address-start 3 
:cube-address-end 10) 

788 

which returns the array 

#(3 4 5 6 7 8 9) 

A call to pvar-to-array that uses the :array-offset keyword is 

(pvar-to-array (self-address!!) nil 
:array-offset 2 
:cube-address-start 3 
:cube-address-end 10) 

which returns the array 

#(NIL NIL 3 4 5 6 7 8 9) 

\ 









pvar-to-array-grid *Lisp Dictionary 

Description -----------------------

This function moves data from source-pvar into dest-a"ay in grid address order. 

If provided, dest-a"ay must have the same number of dimensions as the current 
Connection Machine configuration. If dest-a"ay is not specified, an array is cre­
ated with dimensions :grld-end minus :grid-start, where the subtraction is done 
component-wise to produce a list suitable for make-array. The data from source­
pvar in the sub-grid defined by :grld-start and :grid-end as the "upper-left" and 
"lower-right" corners, respectively, are written into a similar sub-grid of dest-array 
starting with element :array-offset as the upper-left corner. The arguments :array­
offset, :grid-start, and :grid-end must be lists oflength *number-of-dlmensions*. 

The value returned by pvar-to-array-grid is dest-a"ay. 

Examples------------------------

Assuming a two-dimensional grid has been defined, for which 

(ppp (self-address!!) :mode :grid :end '(4 4» 

displays the values 

o 4 8 12 
1 5 9 13 
2 6 10 14 
3 7 11 15 

then when the expression 

792 

(pvar-to-array-grid (self-address!!) nil 
:grid-start ' (1 1) :grid-end' (4 3» 

is evaluated, it returns the array 

#2A( (5 6) (9 10) (13 14» 

and the expression 

(pvar-to-array-grid (self-address!!) nil 
:array-offset '(1 1) 
:grid-start '(1 1) :grid-end '(4 3» 

\ 

\ 



*Lisp Dictionary pvar-to-array-grid 
:::::::~':!~~::*::~~::.:s»"-:-'t-::~;-::~;-:::~~~:::"*~::::::~:::::::::~::::::::~*:~::::::*:::::::::::::*:::~~::~::":::~::':!*:~*::::!::::::~*:::~*:~*:::::*::!::::::::*:::::::::::~::::::~~~::::~:::::::::~:::::::"::~:::*:*:::::~~:: .. ~$:::':;-::::::::-::~~~:::*~:::~*~:::::*:::::::::~:~:*:::::~::~*:~:!i::::~~::::::::'::*:::::::::::::*: 

when evaluated, returns the array 

#2A«NIL NIL NIL) (NIL 5 6) (NIL 9 10) (NIL 13 14» 

The following example shows the use of pvar-to-array-grid to extract a subgrid 
from a pvar and store it into a predefined front-end array: 

(*cold-boot :initial-dimensions '(128 128» 

(defparameter an-array 
(make-array '(10 10) 

:element-type 'single-float 
:initial-element 0.0» 

(*proclaim '(type single-float-pvar data-pvar» 
(*defvar data-pvar (float!! (self-address!!») 

(ppp data-pvar : mode :grid : end ' (5 5) : format 
DIMENSION 0 (X) -----> 

0.0 1.0 2.0 3.0 4.0 
8.0 9.0 10.0 11.0 12.0 

16.0 17.0 18.0 19.0 20.0 
24.0 25.0 26.0 27.0 28.0 

128.0 129.0 130.0 131.0 132.0 

11-5F ") 

The following call to pvar-to-array-grid transfers the 4 x 4 subgrid of data-pvar 
whose corners are 

(1 1) (4 1) 
(1 4) (4 4) 

to the 4 x 4 subarray of an-array whose corners are 

(2 3) (6 3) 

(2 7) (6 7) 

(pvar-to-array-grid data-pvar an-array 
:array-offset '(2 3) 
:grid-start '(1 1) 
:grid-end '(5 5» 

(aref an-array 2 3) => 9.0 

793 



pvar-to-array-grid *Lisp Dictionary 

Notes----------------------------------------------------

Performance Note: 

The pvar-to-array-grid function performs most efficiently when used on non-ag­
gregate pvars of declared type and when the front-end array is of corresponding 
type to that of the pvar. 

For instance, transferring data from a pvar of type single-float into an array whose 
element type is single-float is very efficient. Transferring a general pvar into an 
array whose element type is t will not be as efficient. 

'fransferring aggregate pvars (structures and arrays) using a single call to one of the 
functions array-to-pvar, pvar-to-array, pvar-to-array-grid, or array-to-pvar-grid 

is very slow. See the performance note under the definition of array-to-pvar for a 
discussion of how to transfer aggregate data efficiently between the front end and 
the eM. 

Syntax Note: 

Remember that when no dest-a"ay argument is specified to the pvar-to-array and 
pvar-to-array-grid functions, a nil must be provided instead if keyword arguments 
are to be used. 

References-----------------------------------------------

See also these related array transfer operations: 
array-to-pvar 
pvar-to-array 

array-to-pvar-grid 

See also the *Lisp operation pret, which is used to transfer single values from the CM 
to the front end. 

The *Lisp operation *sett, in combination with pret, is used to transfer a single value 
from the front end to the CM. 

794 





pvar-type *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

796 

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength 
pvar-name 
pvar-vp-set 

pvar-Iocation 
pvarp 

pvar-mantissa-Iength 
pvar-plist 





pvar-vp-set *Lisp Dictionary 

Examples-------------------------------------------------------------------

Notes-----------------------------------------------------------------------

References--------------------------------------------------

See also the following general pvar information operators: 
allocated-pvar-p describe-pvar pvar-exponent-Iength 
pvar-Iength pvar-Iocation pvar-mantissa-Iength 
pvar-name pvarp pvar-plist 
pvar-type 

798 





random!! *Lisp Dictionary 

Examples---------------------------------------------

For example, when the expression 

(ppp (random!! (!! 10» :end 10) 

is evaluated, the first ten values of the random-valued pvar returned by random!! 
are displayed, for example 

891 3 402 7 6 5 

Notes------------------------------------------------

This operation is faster when provided constant pvar arguments, as in the example 
above, than when applied to non-constant pvar arguments, as in 

(*set random-data (random!! data-pvar» 

References-----------------------------------------------

800 

.1 

\ 





rank!! *Lisp Dictionary 

Description -----------,.--------------

802 

The rank!! function returns a pvar containing values from 0 through one less than 
the number of active processors. The order of the values in the returned rank-pvar 
indicates the ranking of the values in the supplied numeric-pvar. 

The ranking is performed so that for any two active processors pi and p2, if the 
value of rank-pvar in pi is less than the value of rank-pvar in p2, then the value of 
numeric-pvar in processor pi satisfies the supplied predicate with respect to the 
value of numeric-pvar in processor p2. (The current implementation limits predi­
cate to the operator <=!I.) 

The keywords, :dimension and :segment-pvar permit rankings to be taken along 
specific grid dimensions and within segments. 

The :dimension keyword specifies whether the ranking is done by send address 
order or along a specific dimension. If a dimension is specified, ranking is per­
formed only along that dimension. The default value, nil, specifies a send-address 
order ranking. 

For example, assuming a two-dimensional grid, a :dimension argument of 0 causes 
ranking to occur independently in each "row" of processors along dimension O. A 
: dimension argument of 1 causes ranking to occur independently in each "column" 
of processors along dimension 1 (see Figure 2). 

DIM 0 DIM 0 DIM 0 

D~ffi 0 4 8 12 
1 5 9 13 

D~fij I .. 

I .. 

D~rm 
2 6 10 14 ... .. 
3 7 11 15 ... ... r r 

(self-addressl!) :dimension 0 :dimension 1 

Figure 2. Effect of different :dimension arguments, 
assuming a two-dimensional grid 

\ 





rank!! 

An example of rankll with a :dimension argument is 

(rank!! (self-address!!) '<=!! :dimension 1) 

Assuming a two-dimensional VP set geometry, if the expression 

(*defvar random-values (random!! (!! 32») 
(ppp random-values :mode :grid :end '(4 4» 

displays the values 

0 7 8 15 
1 6 10 13 
2 5 9 14 
3 4 11 12 

then the expression 

(ppp (rank!! random-values '<=!! :dimension 1) 
:mode :grid :end '(4 4» 

will display the values 

o 3 0 3 
1 221 
2 1 1 2 
3 0 3 0 

*Lisp Dictionary 

The function sort!! might be implemented using a combination of rank!! and" pset, 
as follows: 

804 

(*cold-boot :initial-dimensions '(8» 

(*defvar random-values (random!! (!! 32») 
(ppp random-values) 
22 17 5 31 0 4 12 4 

(defun my-sort!! (unsorted-pvar) 
(*let (sorted-pvar) 

(*pset :no-collisions unsorted-pvar sorted-pvar 
(rank!! sorted-pvar) 

sorted-pvar») 

i 
\ 









tealpartll *Lisp Dictionary 

Examples--------------------------------------------

Notes------------------------------------------------

References----------------------------------------------

See also these related complex pvar operators: 
aball cisll complexll 
conJugateli Imagpart!! phasell 

808 

/ 

." 

/ 



* Lisp Dictionary reducell 

reduce!! [Function] 

Combines elements of a sequence pyar in parallel using a binary pyar function. 

Syntax------------------------------------------------

reduce!! function sequence-pvar &key :from-end : start :end :initial-value 

Arguments----------------------------------------------

function 

sequence-pvar 

:from-end 

: start 

:end 

: initial-value 

lWo-argument pyar function. Used to combine elements of se­
quence-pvar in parallel. 

Sequence pyar. Pvar containing sequences to be reduced. 

Scalar boolean. Whether to begin search from end of sequence. 
Defaults to nil. 

Integer pyar. Index, zero-based, of sequence element at which 
reduction operation starts. If not specified, search begins with 
first element. 

Integer pyar. Index, zero-based, of sequence element at which 
reduction operation ends. If not specified, search continues to 
end of sequence. 

Pvar, of same type as elements of sequence-pvar. If supplied, is 
included in reduction operation as first value supplied tofunc­
tion. 

Returned Value -----------------------------------------

reduce-pvar Temporary pyar, of same type as elements of sequence-pvar. In 
each active processor, contains result of reducing the corre­
sponding sequence of sequence-pvar by the supplied function. 

Side Effects -------------------------------------

The returned pyar is allocated on the stack. 

809 



reduce!! *Lisp Dictionary 

Description ------------------------

The function reduce!! is similar to the Common Lisp function reduce. It operates 
in each processor to combine all the elements of sequence-pvar, two at a time, using 
function. A pvar containing the reduction result in each processor is returned. 

The argument function must be a binary operation that accepts pvar arguments of 
the type contained in sequence-pvar. The argument sequence-pvar must be a vector 
pvar. 

The keyword :from-end takes a boolean and defaults to nil. Reduction is left-asso­
ciative in any processor with a :from-end value of nil. Otherwise, reduction is 
right-associative. 

lne keywords :start and :end define a subsequence of sequence-pvar. 

The keyword :initial-value takes a pvar of the same type as the elements of se­
quence-pvar and provides an initial value for the reduction calculation. If an 
:initial-value value is supplied, it is logically placed at the beginning of 
sequence-pvar and included in the reduction. If :from-end is t, the value of 
: initial-value is logically placed at the end of sequence-pvar. 

Examples--------------------------------------------

The expression 

(reduce!! #'+!! number-sequence-pvar) 

adds up the elements of number-sequence-pvar in each processor. 

Notes---------------------------

810 

Language Note: 

Although the function reduce! I is in many way similar to the Common Lisp func­
tion reduce, it is not exactly identical, for while reduce can return any Common 
Lisp value, reduce!! can only return a pvar of the same type as the elements of 
sequence-pvar. 



*Lisp Dictionary reduce!! 
::;:;:;:;:;:;:;:;:;:::;:;:::::;:::::;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:::;:;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::;:;:::;:;:;:;:;:;:::;:::;:;:;:;:;:;:;:;:;:::;:;:;:;:::;:;:::;:;:::::::::::::::::::::::::::;:::::::::::::::::::::::::::;:;:;:;:::;:::;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::::::::::::::::::::::::::::::::::;:: 

Compiler Note: 

Because of the utility of the reduce!! function for vector pvar operations, the 
*Lisp compiler will compile this function, but only under certain conditions. 
Specifically, for reduce!! to compile, the function argument must be a 
compilable function, and none of the keyword arguments may be used. 

References----------------------------------------------

See also these related *Lisp sequence operators: 
copy-seq!! 

*nreverse 
* fill 
reverse!! 

length!! 

subseq!! 

See also the generalized array mapping functions amap!! and *map. 

811 







reduce-and-spread! I *Lisp. Dictionary 

Description -----------------------

Conceptually, this function first performs a 

(scan!! pvar function :dimension dimension) 

It then takes the scanll result from the last active processor along the scanning 
dimension and performs a backwards copy!! scan. A pvar containing the result of 
this copy scan is returned. Thus, the scan II results are spread to all the processors 
which participated in the reduce-and-spread!!. 

814 

The dimension argument determines the grid dimension along which the operation 
is performed. It must be either a non-negative integer scalar within the range of 
dimensions of the VP set to which pvar belongs, or nil. If dimension is nil, 
send-address order scanning is done. 

For example, assuming a two-dimensional grid, a dimension argument of 0 causes 
ranking to occur independently in each "row" of processors along dimension O. A 
dimension argument of 1 causes ranking to occur independently in each "column" 
of processors along dimension 1 (see Figure 3). Because the grid has only two 
dimensions, the only valid arguments for dimension are 0, 1, and nil. 

DIM 0 DIM 0 

nrffi nr@F-t-"F-+-'f'-l 0 4 8 12 
1 5 9 13 

, .. 
I .. 

2 6 10 14 .... I .. 

3 7 11 15 I r 

(self-address II) dimension = 0 dimension = 1 

Figure 3. Effect of different dimension arguments, 
assuming a two-dimensional grid 

/ 

\ 

\ 

, 
I 
\ 









reml! *Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------------------------------

References---------------------------------------------

818 

/ 
\ 

" 





reverse!! * Lisp Dictionary 
/ 

Examples---------------------------------------------

Notes----------------------------------------------------

Compiler Note: 

The *Lisp compiler does not compile this operation. 

References-----------------------------------------------

See also these related *Lisp sequence operators: 
copy-seq!! * fill length!! 
*nreverse reduce!! subseq!! 

See also the generalized array mapping functions amap!! and *map. 

820 





*room *Lisp Dictionary 

Description -----------------------'-

Collects and prints information about CM memory usage. 

The *room function returns four values. Each return value indicates the total 
amount of CM memory in use for a particular purpose at the time of the call. 

• The first return value reports the total number of bytes of CM memory al­
located on the *Lisp stack. 

• The second return value reports the total number of bytes of CM memory 
on the heap allocated to pvars created with allocate!!. 

• The third return value reports the total number of bytes of CM memory on 
the heap allocated to pvars created with *defvar. 

• The fourth return value reports the total number of bytes of CM memory in 
use as overhead, including overhead for the *Lisp VP mechanism and over­
head for Paris. 

The :how keyword argument must be either :by-vp-set (the default), :by-pvar, or 
: totals. If the value of : how is : by-vp-set, then the four statistics are collected and 
printed for each existing *Lisp VP set. If the value of : how is : by-pvar, then 
statistics are given for each pvar as well as for each VP set. If the value of : how is 
:totals, then only summary information is printed. The :how keyword argument 
specifies only how memory information is printed; it has no impact on the values 
returned by *room. 

The : print-statistics keyword defaults to t. If it is set to nil, the results are returned 
but not printed and the : how keyword is ignored. 

The :stream keyword defaults to t, indicating that output goes to the standard out­
put device. An alternate stream may be specified. 

Examples -----------------------

Notes-------------------------

References-----------------------

822 

/ 

\ 





rotll "'Lisp Dictionary 

Examples-----------------------------------------------

Notes--------------------------------------------------

This function is especially fast when n-pvar and word-size are both constant pvars. 

References-----------------------------------------------

824 





round!! *Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------------------------------

References-----------------------------------------------

See also these related rounding operations: 
ceilingl! floor!! truncate! I 

See also these related floating-point rounding operations: 
fceilingll ffloor!' froundl! ftruncate! I 

826 





row-major-aref! ! *Lisp Dictionary 

Examples -----------------------

Consider the following: 

(*defvar my-array (!! #2A( (5 8) (3 0»» 
(pref (row-major-aref!! my-array (!! 2» 19) => 3 

In each processor is stored the array: 5 8 
3 0 

The element with row-major index 2 is referenced using row-major-aref!!. This 
results in a pvar whose value is 3 everywhere. The pref function then references this 
value in the 19th processor, yielding 3. 

It is legal to compose *setf with row-major-aref!!. For example, 

(*setf (row-major-aref!! my-array (!! 2» (!! 25» 

stores the value 25 in the third element of the component array in each processor. 

(pref (row-major-aref!! my-array (!! 2» 19) => 25 

Notes----------------------------

Usage Note: 

The row-major-arefll function can be used to implement subroutines that per­
form operations on arrays of any dimensionality. 

References-------------------------------------------------

828 

See also the related array-referencing operations: 
aref! I row-major-sideways-arefl I sideways-aref! ! 

The following operations convert arrays to and from sideways orientation: 
* processorwise * sideways-array *slicewise 

See also the *map and amapl! functions for another way to iterate in row-major 
order over the elements of array pvars of any dimensionality. 

./ 





row-major-sideways-arefll *Lisp Dictionary 

Examples-----------------------------------------------

Consider the following: 

(*proclaim '(type (array-pvar (unsigned-byte 8) '(2 2» 
my-sideways-array» 

(*defvar my-sideways-array (!! #2A«5 8) (3 0»» 

In each processor is stored the array: 5 8 
3 0 

The array is turned sideways, and is verified to be sideways. 

(*slicewise my-sideways-array) 
(sideways-array-p my-sideways-array) => T 

In the following example, a different index into my-sideways-array is calculated in 
each processor, and then the array elements corresponding to those indices are 
accessed using row-major-sideways-arefl!. 

(ppp (row-major-sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 4») 

:end 14) 

830 

5 8 305 8 3 0 5 8 3 058 

It is legal to compose *setf with row-major-sideways-arefl!. For example, 

(*setf (row-major-sideways-aref!! my-sideways-array 
( !! 2» 

( !! 25» 

stores the value 25 in the third element of the component array in each processor. 

(ppp (row-major-sideways-aref!! my-sideways-array 
(mod!! (self-address!!) (!! 4») 

:end 14) 

5 8 25 0 5 8 25 0 5 8 25 0 5 8 









bitll *Lisp Dictionary 

\ 

Examples---------------------------------------------

Notes----------------------------------------------------

References---------------------------------------------

834 





scale-float! ! * Lisp Dictionary 

Examples-------------------------------------------------------------------

(scale-float!! (!! 3.5) (!! -1» <=> (!! 1.75) 
(scale-float!! (!! 1.0) (!! 2» <=> (!! 4.0) 

Notes--------------------------------------------------------------------------

References-------------------------------------------------------------------

836 



*Lisp Dictionary scan!! 

scan!! [Function] 

Performs a cumulative reduction operation on the supplied pvar, either by send 
address or along a specified dimension of the currently defined grid. 

Syntax-------------------------------------------------

scan!! pvar function &key :direction :segment-pvar 

: include-self : dimension : identity 

Arguments ---------------------------------------------

pvar 

function 

:direction 

: segment-pvar 

: include-self 

:dimension 

: identity 

Pvar expression. Pvar containing values to be scanned. 

Tho-argument pvar function. Determines type of scan. May be 
any of +!!, *!!, and!!, or!!, logand!!, logior!!, logxorl!, max!!, 

min!!, and copy!!, or a user-defined function, in which case a 
value must be supplied for the :identity argument. 

Either :forward or : backward. Determines direction of scan 
through send addresses or across grid. Default is :forward. 

Boolean pvar containing the value t in each processor that 
starts a segment, and the value nil elsewhere. Determines seg­
ments within which scanning takes place. If not supplied, an 
unsegmented scan is performed. 

Boolean. Determines whether to include the value contained in 
each processor in the scan calculation for that processor. 
Default is t. 

Integer. Index, zero-based, of dimension of currently defined 
grid along which scanning is performed. If not supplied, a 
send-address order scan is performed. 

Pvar expression. Identity element for function. Must be 
supplied if function is not a specialized scanning function. 
Ignored otherwise. 

837 



scan II * Lisp Dictionary 

Returned Value ---------------------

scan-pvar Temporary pvar. A copy of pvar to which the scanning opera­
tion specified by function has been applied. 

Side Effects ---------------------

The returned pvar is allocated on the stack. 

Description ------------------------

The scanll function performs a cumulative reduction operation on the supplied 
pvar, either by send address or along one dimension of the currently defined grid. 

"Reducing" in this context refers to the Common Lisp function reduce, which ac­
cepts two arguments. function and sequence. The reduce function appliesfunction, 
which must be a binary associative function, to all the elements of the sequence. 
For example. if + were the function all the elements in sequence would be summed. 
In the case of a scan!! function, the sequence becomes the pvar values contained in 
the ordered set of selected processors. 

838 

For each selected processor, the value returned to that processor is the result of 
reducing the pvar values in all the processors preceding it. Its own pvar value is 
also, by default, included in the reduction. 

The function argument may be one of the associative binary pvar functions +!!, 
andl!, or!!, logand!!, logior!l. logxorll, maxll, mini I, or copyll. in which case an 
efficient "specialized scan" is performed. In addition, other associative binary 
pvar operators may be supplied, including user-defined pvar functions, in which 
case a less efficient "generalized scan" is performed. 

The function *! I is a special case; if used to perform a scan on a floating-point pvar. 
it performs as efficiently as one of the specialized scan operators listed above. If 
applied to any other numeric arguments, it is treated as a generalized scan 
operator. 

The :direction keyword controls the direction of the scan through send addresses 
or across the grid. The default value for this argument, the keyword :forward, 
causes the scan to be performed in order of ascending send or grid addresses. The 
keyword :backword causes the scan to be performed in descending order. 



* Lisp Dictionary scan!! 

The :segment-pvar argument provides a limited segmented scan functionality, 
which permits independent scans to be perfomed within mutually exclusive groups 
of processors, known as "segments." It must be a boolean pvar containing the value 
t in each processor that starts a segment, and nil elsewhere. The end of each 
segment is determined by the starting point of the next segment. More advanced 
segmented scans, in particular scans with non-contiguous segments, are possible 
through the function segmented-set-scan!!. 

The boolean keyword argument :include-self controls whether the scan result 
calculated in each processor includes the value of pvar in that processor. When 
: include-self is nil, the result of the scan!! operation is undefined in the first active 
processor of the first segment. Also, when : include-self is nil, the result of the 
scan II operation in the first processor of each of the other segments is the 
cumulative result of the scan II operation over all active processors in the 
immediately preceding segment. 

The :dimension keyword value defaults to nil, indicating that the scan is performed 
in send address order. Alternatively, dimension may be given as an integer between 
o and one less than the rank of the current VP set. If dimension is an integer value, 
the scan operation is performed along that dimension. If desired, dimension may 
be specified as :x, :y, or :z; these are equivalent to dimensions 0, 1, and 2. For exam­
ple, the expression 

(scan!! pvar 'copy!! :dimension :z) 

copies the value of each point in the x, y plane at z = 0 into the corresponding point 
in the x, y plane at z = 1, and thence to x, y at z = 2, and so on to z = n, where n is the 
extent of z. 

If a generalized scan is performed, an : identity keyword value must be supplied. If 
supplied, the value of :identity must be the parallel identity element for function. 
That is, iffunction is applied to the identity pvar in combination with any legal pvar 
value P, then the result is P. It is an error to specify the : identity keyword for spe­
cialized scans. 

Examples -----------------------

Iffunction is the function +!!, scan!! performs a summation over the set of selected 
processors, ordered by cube address as shown below: 

(self-address!!) => 0 1 2 
(scan!! (self -address! !) , +! ! » => 0 1 3 

34567 

6 10 15 21 28 

839 



scan II *Lisp Dictionary 

840 

In the next example there are four segments. The first is 0, 1, 2; second is 3; third is 
4, 5, 6; and fourth is 7 .... 

(self -address! ! ) 
segment-pvar 
(scan!! (self-address!!) '+!! 

=> o 1 2 3 4 5 6 7 ... 
=> t nil nil t t nil nil t ... 

:segment-pvar segment-pvar) => o 1 3 3 4 9 15 7 ... 

The direction of the scanning is normally from lowest to highest cube-address. If 
the :direction argument is : backward, then the scan is from highest to lowest cube­
address. When scanning backward, segments are sequences of processors in de­
scending cube-address order. For example, belowwe see three segments: the first is 
7, 6, 5; the next is 4; and the last is 3, 2, 1, O. 

(self-address! !) 
segment-pvar 
(scan!! (self-address!!) '+!! 

:segment-pvar segment-pvar 

=> 0 1 2 3 4 5 6 7 
=> nil nil nil t t nil nil t 

:direction : backward) => 6 6 5 3 4 18 13 7 ... 

Following are two further examples using +11 with segmented scans. (The "*" 
indicates a pvar value that is not defined.) 

(self -address! !) => 0 1 2 3 4 5 6 7 ... 
segment-pvar => t nil nil t t nil nil t ... 

(SCan! ! (self-address!!) , +! ! 
:segment-pvar segment-pvar 
:include-self t) => 0 1 3 3 4 9 15 7 ... 

(scan! ! (self-address! !) , +! ! 
:segment-pvar segment-pvar 
: include-self nil) => * 0 1 3 3 4 9 15 ... 

The use of the keyword argument :include-self with a value of nil prevents each 
processor from including its own value for (self-address!!) in the scan. Note that 
the result of the scan is not defined for processor 0 in the second scan example, and 
that result of the scan in the first processor of each of the other segments is the 
cumulative sum of the values in the immediately preceding segment. 





scan II *Lisp Dictionary 

842 

and the expression 

(ppp (scan!! (self-address!!) '+!! :dimension 1) 
:mode :grid :end '(4 4» 

displays the values 

0 4 8 12 
1 9 17 25 
3 15 27 39 
6 22 38 54 

The following example shows a segmented backwards copy!! scan along dimension 
1 of the grid with an :include-self value of nil. If the expression 

(ppp (self-address!!) :mode :grid :end '(4 5» 

displays the values 

0 5 10 15 
1 6 11 16 
2 7 12 17 
3 8 13 18 
4 9 14 19 

then 

(ppp (scan!! (self-address!!) 'copy!! 
:dimension 1 
:direction :backwards 
:segment-pvar (evenp!! (self-address-grid!! (!! 1») 
: include-self nil) 

:mode :grid 
:end '(4 4» 

displays the values 

2 7 12 17 
2 7 12 17 
4 9 14 19 
4 9 14 19 









segment-set-end-ad.dress *Lisp Dictionary 

Examples~------------------~------------~~---------

Notes----------------------------------------------------

References-----------------------------------------------

846 

For information about the components of a segment set structure object, see the 
dictionary entry for create-segment-set! I. 

See also these related segment set operators: 
segment-set-scan II 
segment-set-end-blts 
segment-set-end-addressl! 
segment-set-start-blts 
segment-set-start-address 

segment-set-end-bits! I 

segment-set-start-bits I! 
segment-set-start-addressll 

segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segmentll 





segment-set-end-address! ! * Lisp Dictionary 

Examples -----------------------

Notes--------------------------------------------------

References---------------------------------------------

For information about the components of a segment set structure pvar, see the dic­
tionary entry for create-segment-set!!. 

848 

See also these related segment set operators: 
segment-set-scan! ! 
segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address 

segment-set-end-bits! ! 

segment-set-start-bits! I 
segment-set-start-address! ! 

segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segment! I 





segment-set-end-bits 'f<CLisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

850 

For information about the components of a segment set structure object, see the 
dictionary entry for create-segment-setll. 

See also these related segment set operators: 
segment-set-scan II 
segment-set-end-bitsll 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address 

segment-set-end-address! I 
segment-set-start-bits! I 
segment-set-start-address! I 

segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segment! I 





segment-set-end-bits 11 * Lisp Dictionary 

Examples----------------------------------------------------------------------

Notes----------------------------------------------------------------------------

References-----------------------------------------------------

852 

For information about the components of a segment set structure pvar, see the dic­
tionary entry for create-segment-sett!. 

See also these related segment set operators: 
segment-set-scan 11 

segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits 

segment-set-end-address! ! 
segment-set-start-bitsl! 

segment-set-start-address segment-set-start-address!! 
segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segmentll 

\". 





segment-set-processor-not-in-any-segrnent *Lisp Dictionary 

Examples--------------------------------------------~~------~-------

Notes------~------------------------------------------

References---------------------------------------------

For information about the components of a segment set structure object, see the 
dictionary entry for create-segment-set!!. 

854 

See also these related segment set operators: 
segment-set-scan! ! 
segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address 

segment-set-end-bitsl! 
segment-set-end-address! ! 
segment-set-start-bits! ! 
segment-set-start-addressl! 

segment-set-processor-not-in-any-segment! ! 





segment-set-processor-not-in-a'ny-segment! I *Lisp Dictionary 

Examples-------------------------------------------------------------------

Notes--------------------------------------------------

References-----------------------------------------------

For information about the components of a segment set structure pvar, see the dic­
tionary entry for create-segment-set! I. 

856 

See also these related segment set operators: 
segment-set-scan II 
segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address 

segment-set-end-bitsll 
segment-set-end-address! I 
segment-set-start-bits! I 
segment-set-start-address! I 

segment-set-processor-not-in-any-segment 

I 

\ 





segment-set-scan II *Lisp Dictionary 

Side Effects ----------------------

The returned pvar is allocated on the stack. 

Description -----------------------

A segment-set-scanll operation works the same way as the scan!1 operation, 
except that it uses segment sets. It performs a specified associative binary *Lisp 
function over the values contained in the processors of each segment. This is done 
as a reduction analogous to the Common Lisp sequence function reduce. The cu­
mulative result of the reduction is stored in each processor within a segment. For 
each segment, the scan operation is reinitiated; results obtained within one seg­
ment are not carried over into the next. 

Unlike scan!!, segment-set-scan!! has no :dimension keyword; only scans using 
send address order are presently supported. Also, segment-set-scan! I has no 
:include-self keyword; in a segment-set-scanll operation each processor always 
receives the result of applying the scan operation to all processors in its segment, 
including itself. 

The pvar argument may be any pvar acceptable to the function specified as the 
function argument. 

The function may be one of the following associative binary parallel functions: 

858 

+!I, andll, or!l, max!l, minll, copy!!, logandll, logior!!, logxor!! 

The segment-set-pvar must be a segment set pvar, as returned by the function 
create-segment-set! I. (See the dictionary entry of create-segment-setl! for more 
information. ) 

The :direction keyword argument may be given as either :forward or :backward 
and defaults to : forward. A forward scan operation is performed in ascending send 
address order. Descending send address order is used if a backward direction is 
specified. 

The :check-for-processors-not-in-segment-set keyword takes a boolean value 
and defaults to nil. If t is specified, segment-set-scan!! checks for processors 
which are in the CSS but which are not included in the segment set. If any are found, 
an error is signaled. If the default is used, the pvar value in processors which are in 
the CSS but which are not included in the segment set are simply ignored. 

\ 









segment-set ... start-address *Lisp Dictionary 

Examples-------------------------------------------------------------------

Notes----------------------------------------------------------------------

References-----------------------------------------------

862 

For information about the components of a segment set structure object, see the 
dictionary entry for create-segment-setl!. 

See also these related segment set operators: 
segment-set-scan! ! 
segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address II 

segment-set-end-bits! ! 
segment-set-end-address! ! 
segment-set-start-bitsll 

segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segment! I 

\ 





segment-set-start-addressll *Lisp Dictionary 

Examples------------------------------------------------------------------

Notes---------------------------------------------------------------------

References------------------------------------------------------------------

864 

For information about the components of a segment set structure pvar, see the dic­
tionary entry for create-segment-setll. 

See also these related segment set operators: 
segment-set-scan II 
segment-set-end-bits segment-set-end-bits I I 

segment-set-end-address I I 
segment-set-start-bits I I 

segment-set-end-address 
segment-set-start-blts 
segment-set-start-address 
segment-set-processor-not-in-any-segment 
segment-set-processor-not-In-any-segment II 





segment-set-starl-bits *Lisp Dictionary 

Examples---------------------------------------------

Notes--------------------------------------------------

References---------------------------------------------

866 

For information about the components of a segment set structure object, see the 
dictionary entry for create-segment-set!l. 

See also these related segment set operators: 
segment-set-scan I I 
segment-set-end-bits 
segment-set-end-address 
segment-set-start-bits I! 
segment-set-start-address 

segment-set-end-bits! ! 
segment-set-end-address! I 

segment-set-start-address! I 
segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segmentl I 

I 

\ 





segment-set-start-bltsll * Lisp Dictionary 

Examples--------------------------------------------------------------------

Notes--------------------------------------------------------------------------

References-----------------------------------------------

868 

For information about the components of a segment set structure pvar, see the dic­
tionary entry for create-segment-setll. 

See also these related segment set operators: 
segment-set-scan II 
segment-set-end-bits segment-set-end-bits II 
segment-set-end-address 
segment-set-start-bits 
segment-set-start-address 

segment-set-end-address I! 

segment-set-start-address! ! 
segment-set-processor-not-in-any-segment 
segment-set-processor-not-in-any-segment II 

/ 
i 
\ 





self!! *Lisp Dictionary 

Examples---------------------------------------------

Notes----------------------------------------------------

References----------------~-----------------------------

870 

See also the related functions 
enumeratell 
self-address I I 

rank!! 
self-address-grid! I 

See also the related operations 
address-nth address-nthl! 
address-plus address-plus! I 
address-plus-nth 
address-rank 
grid 
grid-relative II 

address-plus-nth! ! 
address-rankll 
grid!! 

sortl! 



/ 

*Lisp Dictionary self-address! I 

self-address! ! [Function] 

Returns a pvar containing, in each processor, the send address of that processor. 

Syntax-------------------------------------------------

self-address! ! 

Argurnents------------------------------------------------

Takes no arguments. 

Returned Value -----------------------------------------

self-address-pvar Temporary integer pvar. In each active processor, contains the 
send address of that processor. 

Side Effects -------------------------------------------

The returned pvar is allocated on the stack. 

Description -----------------------------------------------

This function returns a pvar that contains the send address of each selected 
processor. 

Exarnples-----------------------------------------------

An example of a call to self-address!! from top level is the expression 

(ppp (self-address!!) :end 10) 

which displays the following: 

o 1 2 3 4 5 6 7 8 9 

871 



self-address I I *Lisp Dictionary 

The self-address!! function is most commonly used in combination with processor 
selection operators to select a specific subset of processors. For example, 

(ppp (if!! (evenp!! (self-address! I»~ 
( !! 0) 
( !! 1» : end 10) 

o 1 0 1 0 1 0 1 0 1 

More complex selections of processors can be specified by combining the self­

address!! function with mathematical operators such as mod!1. 

(*defvar mod-pvar) 
(*set mod-pvar (mod!! (self-address!!) (!! 4») 

(ppp mod-pvar :end 14) 
o 1 2 3 0 1 2 3 0 1 2 3 0 1 

(ppp (if! ! «! ! mod-pvar ( ! ! 2» 
( ! ! 1) 
( ! ! 0» 

:end 14) 
110 o 1 1 001 100 1 1 

Notes----------------------------------------------------

References----------------------------------------------

872 

See also these related operations: 
enumerate! ! 

self-address-grid II 
rank!! 
sort!! 

self!! 

See also these related send and grid address translation operators: 
cube-from-grid-address 
cube-from-vp-grid-address 
grid-from-cube-address 

grid-from-vp-cube-address 

cube-from-grid-address! ! 
cube-from-vp-grid-address! I 
grid-from-cube-address! I 
grid-from-vp-cube-address! ! 

( 

\ 





self-address-grid! I *Lisp Dictionary 

Examples -----------------------

Assuming a two-dimensional grid, the expression 

(ppp (self-address-grid!! (!! 0» :mode :grid :end '(4 4» 

displays the values 

012 3 
o 1 2 3 
o 1 2 3 
o 1 2 3 

and the expression 

(ppp (self-address-grid!! (!! 1» :mode :grid :end '(4 4» 

874 

displays the values 

000 0 
1 1 1 1 
222 2 
333 3 

The following code fragment selects the diagonal elements of the grid, 

(*when (=!! (self-address-grid!! (!! 0» 
(self-address-grid!! (!! 1») 

and the following fragment selects the tridiagonal elements of the grid: 

(*when (or! ! (=, , · . (self-address-grid!! (!! 0» 
(self-address-grid! ! (!! 1») 

(=, , · . (self-address-grid! ! (!! 0» 
(1+! ! (self-address-grid!! (!! 1» » 

(=, , · . (self-address-grid! ! ( ! ! 0» 
(1-! ! (self-address-grid! ! (!! 1»») 

./ 





self-addres8-grld II *Lisp Dictionary 

References-----------------------------------------------

876 

See also these related operations: 
enumeratell 
8elf-addressll 

rankll 
sort!! 

selfll 

See also these related send and grid address translation operators: 
cube-from-grid-address cube-from-grid-addressl! 
cube-from-vp-grid-address 
grid-from-cube-addres8 
grid-from-vp-cube-address 

cube-from-vp-grid-addressll 
grid-from-cube-addressl! 
grid-from-vp-cube-address! I 

\ 





*set *Lisp Dictionary 

It is an error to attempt to * set the value of a temporary pvar. Thmporary pvars are 
returned by *Lisp functions such as !I and +!!. The *Lisp simulator catches this 
error and prints an error message. Neither the *Lisp interpreter nor the *Lisp com­
piler catches this error. 

Examples------------------------------------------------------------------------------------------------------

878 

The following examples show how *set may be used to copy values between pvars: 

(*defvar pvar1 (!! 2» 
(*defvar pvar2 (self-address! I»~ 
(*defvar dest) 

;;; set dest to product of pvar1 and pvar2 in each processor 
(*set dest (*!! pvar1 pvar2» 

(ppp dest :end 8) 
o 2 4 6 8 10 12 14 

'" set dest to the value of pvar1 in each processor 
'" where the value of pvar2 is less than 4 
(*when «!! pvar2 (!! 4» 

(*set dest pvar1» 

(ppp dest :end 8) 
2 2 2 2 8 10 12 14 

As an example of how not to use *set, consider the function foo below. 

(defun faa (x) (*set x (!! 5») 

These calls to the function foo violate the rule against setting the value of a tempo­
rary pvar, and are therefore in error: 

(faa (!! 3» 
(faa (cos!! (+!! ab») 

To modify array elements and structure pvar slots, use the * sett macro. See the 
dictionary entry for *setf for more information. 














































































































































































































































































































































































































































































