The
Connection Machine
System

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts



First printing, February 1990
Revised, October 1991

32k 3 ok 2k 3 3k 3k 3 3k sk 3 3k ok 3 s 3¢ o 3k e sk 3k e e 3k 3k e sk ok ke e 3k ke e e sk e 3k 3k 3k 3 ok ok 3¢ e 3k sk 3 3k ok e 3k ok e 3k sk e e sk e e 3k e e ok ok e ke ok ke e sk ok ok e 3k ok ok ok

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

ek sk sk ke 3 3k ok e ok 3k 3k 3k ke 3k 3k ok sk e 3 ok 3k ke ok 3k ke e ok 3k 3k 3k sk e 3k sk 3k ok 3k ok 3¢ 3k sk ok 3 3k ok ke sk ok ke e ok ok 36 ok e 3 3k e o 3k ke 3 ok ok ke 3k sk ke o e ok ok e ok ok ok ok ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-1, CM-2, CM-200, and CM-5 are trademarks of Thinking Machines Corporation.

Paris, *Lisp, and Lisp/Paris are trademarks of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

Sun, Sun-4, Sun Workstation, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
SunOS and Sun FORTRAN are trademarks of Sun Microsystems, Inc.

Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.

CommonLoops is a trademark of Xerox Corporation

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

-



Contents

About This Manual .. ........iiiiiiit ittt tnnnanenrenneanenns xv
Customer SUPPOTE . ...ttt ittt it i ittt xix

PartI *Lisp Overview

Chapter 1 *Lisp Functions and Macros...............................

1.1 Basic Pvar Operations ...........coeveieiiiiieieenenonnnnnneenns
1.1.L1 Pvar Allocation ...........coviuiueennnenecnaeenennnnns
1.1.2 Pvar Data Type Declaration and Conversion ........... e
1.1.3 Pvar Referencing and Modification ................... ..
1.1.4 PvarInformation .............ciiiiiiiiniiinnnennnnnnnn

1.2 *Lisp Function Definition ............ccciiiiiiiiiiiiiiiinnn..
1.3 Processor SeleCtion . ....coiviniiiin ittt ittt e,

1.4 Operations on Simple Pvars ...................... e .
1.4.1 Boolean Logical Operators ........ e
1.4.2 Numeric Pvar Operations ............cceevevmneneeennans

Numeric Predicates ............ccooiiiiiiiiiiiinnn.
Relational Operators ..............cccenunnnn. e
Math Operators .........coviiieiiiieeinnreennonenns
Trigonometric Functions .............c..ooviviennnn..
Floating-Point Pvar Operators ..............c.coeveen.
Floating-Point Pvar Information Functions ..............
Complex Pvar Operators .. ......ccceveerunereennrecnns
Bitwise Integer Operators .........ccovveiieerveeennnn
Bitwise Logical Operators ..............cceeeuvevennn.
1.4.3 Character Pvar Operations ..............ccoeuvevieenenennn
Character Pvar Operators ............cveuevvenerrennn
Character Pvar Attribute Operators ....................
Character Pvar Predicates .................cooviinnn.
Character Pvar Comparisons . ........c.cevvvevereeeennn.

O O 0O 00 00 0 00 0 N NI N &8 i i d hUVWW W

Yersion 6.1, October 1991 iii



.
v

1.5

1.6

1.7

1.8

19
1.10
1

Chapter 2

21
22
23
24

25
2.6
2.7

S

*Lisp Dictionary

Operations on Aggregate Pvars ...........coviiniiiennnrenenennnns 9
1.5.1 Array Pvar Operations .............ccoeiiimuiinennennnn. 9
Basic Array Pvar Operations ......................... 9

Vector Pvar Operations ..........ccooviininnninnnnn., 10

1.5.2 Structure Pvar Operations ............ccoeviuiinninnnnnnn. 11
Processor Addressing Operations ................c.ooiiiiiiiian... 12
1.6.1 Processor Enumeration, Ranking, and Sorting ............... 12
1.6.2 Send/NEWS Address Operators ..........coovvvneennennen. 12
1.6.3 Address Object Operators ..........cccvevennnnnennennnns 12
Inter- and Intra-Processor Communication Operations . ................ 13
1.7.1 Inter-Pvar Communication Operators ................c.u... 13
1.7.2 NEWS Communication Operators ....................o.. 13
1.7.3 Front-End Array to Pvar Communication Operators .......... 13
1.7.4 Scan and Spread Operators ...........ccoeriiievienennnnnns 13
1.7.5 Segment Set Scanning Operators .............coevveeeens 14
1.7.6 Global Communication Operators ...............voveennn. 14
VP Set Operations .. .....eeeiernnereernnneroneneennnneeenannnns 14
1.8.1 VP Set Definition Operators .........ceuuveuveeenerereaeenns 14
1.8.2 VP Set Geometry Functions ..........covvvvenennnnnnnns 15
1.8.3 Flexible VP Set Allocation Operators .............c.cuu... 15
1.8.4 VP Set Deallocation Operators .. .........c.ceveeeenunnnnes 15
1.8.5 Current VP Set Operators . .........ccoviviiiiinnennnnnnns 15
1.8.6 VP Set Operators .« .. ovevnveveereeennnninnnenennnns 15
General Information Operations . .........covverieetreinnnennnnennn. 16
Entertainment Operations . ... ......coveveerteeererennnnaanreennaans 16
Connection Machine Initialization Functions ........................ 16
*Lisp Global Variables..................................... 17
Predefined Pvars ...........coiiiiiiiiiiii ittt 17
Configuration Variables ..............iiiiiiiiiiiiiiiiiiiinnnnn, 17
Initialization List Variables ..............cooiiiiiiiiiiiinnnnnn., 19
Configuration Limits ..........ccovtiiiiiiiiiiiiiiiiiiiiinnnn. 20
24.1 Armay Size LImits ..........ooiiiniiriiiiiiniiaiaaana., 20
2.4.2 Character Attribute Size Limits .................vinn... 20
Error Checking ......viiiiiiiii ittt ittt eiieeeieennns 22
*Lisp Compiler Code-Walker. ...........oiuunieieenennnnnnns 23
Pretty-Printing Defaults ............ccoiiiiiiiiiiiiiiiiiiinnan.. 23

Version 6.1, October 1991



Contents
R

Chapter 3 *Lisp Glossary ............ ..., 25
3.1 Connection Machine Terminology ..............cvviiinniaennn. 25
' K R Y T 25

3,12 PrOCESSOTS . .vvoiveiinetetiniaeeeneeennneennneenn 26

313 Fields ... e 26

3.1.4 Connection Machine Memory ...............ccccoinnnn.... 27

32 *Lisp Terminology .. .vvvvenneereneeeeennneneeeennnnannneeennns 27
3.2.1 Parallel Variables (Pvars) ...............ccviienniiinnn, 27

Pvar Classes . .....ooviiiii ittt 28

Pvar Types . ...ovviiiiiiii i i e 29

3.2.2 Processor Addressing ............coeeiiiiiiiiiiiiiaann 29

3.2.3 Virtual Processor Sets ...........c.coiiiiiiiiiiiia, 30

Classes of VP Sets ..........ccoiiiiiiiiiiiniinnnn.. 31

3.2.4 Important VP Sets ............ e eeet et eai s 32

3.3 Background Terminology .. .....ooviviviiniineieerrnnnnneeeennnns 32

Chapter 4 *Lisp Type Declaration .................................... 33
T 7 o7 33
4.2 Using Type Declarations . .........c.uveurereeennnneenennnnannenan 36

4.2.1 *Lisp Declaration Operators ...........coevveeeerenennnn.. 36

4.2.2 Basic Rules of Type Declaration ...............c.cvuun.. 39
Declaring Pvars .........coiiieiiiinniinnennnneennn. 40

Declaring Pvar Functions ............................ 41

Declaring Scalar Expressions ..............cccvennnn... 42

43 General Pvars .. ...ttt et 44
44 Mutable Pvars .. ..ottt it 45
4.5 Mutable General Pvars ..........coiitiiiiiniiiiiiiiieeiinaeennns 46
4.6 Rules of *Lisp Type Declaration and Coercion ...................... 47

Chapter 5 *Lisp Compiler Options ................................... 53

5.1 Setting Compiler Options . ........ovveeiininiiiirennnenerenenenns 53
5.1.1 Using the Compiler Options Menu ............... ... ..., 53

5.1.2 The Standard Options Menu ..............ccciieennnnn... 54

5.1.3 The Extended Compiler Options Menu .................... 54

Using the Compiler Menu on a Symbolics Front End ..... 55

5.1.4 Setting *Lisp Compiler Variables Directly ................. 56

5.2 *Lisp Compiler Options .. .. .....c.oveeriirreeeerereeneeaeeaeennn, 57

Version 6.1, October 1991



vi *Lisp Dictionary

PartII *Lisp Dictionary

-1+ Y- | A [Function] .... 79
acosll,acosh!l ... ... ... i i [Function] .... 81
add-initialization ............... .. ... ... o i [Function] .... 83
address-nth, address—plus-nth, address-rank . .................. [Function] .... 86
address~nth!!, address—plus-nth!l, address-rank!! ............... [Function] .... 88
aliasll ... [ [Macro] .... 90
Ml e e e [Macro] .... 94
allocatell ....... ... i it [Macro] .... 98
allocate—processors—for-vp-set ...................cciiivinn.. [Function] ... 101
allocate-vp—set—processors ................c.cccviiinennnnnnnnn [Function] ... 101
allocated—pvar—p ...ttt e i it e e [Function] ... 104
alpha—char-pll........ ... .. i e [Function] ... 106
alphanumericpll ........ .. .. . i i i e [Function] ... 108
amapll L e e e [Function] ... 110
- 1 1+ A [*Defun] ... 112
-3 o 1 [Macro] ... 114
B T« « 1 [Macro] ... 117
- - 1 A [Function] ... 119
armayll .. e e e [Function] ... 123
*array—dimension, array—dimension!! .................... [*Defun, Function] ... 125
*array-dimensions, array-dimensions!! .................. [*Defun, Function] ... 127
*array-element-type .......... ... ... i [*Defun] ... 129
array—in-bounds—p!l . ... .. ... ... . [Function] ... 130
*array-rank,array-rank!! ................. .. ... ... ... [*Defun, Function] ... 132
array-row-major-index!! .......... ... ... ... . L i, [Function] ... 134
AITAY— 0PV ...ttt ittt it ittt it e e [*Defun] ... 136
array-to—pvar—grid ............0i it i it e e [*Defun] ... 140
*array-total-size, array-total-sizell ............................. [*Defun] ... 143
ashll L. e e e e [Function] ... 145
asinll,asinhll . ... ... ... . e [Function] ... 148
atanll,atanhll ........ ... ... ... it [Function] ... 150
bithh .......... ... e e [Function] ... 152
bit-and!!, bit-andc1!, bit-andc2!!, bit-eqv!!, bit-ior!!, bit-nand!!,

bit-norl!!, bit-not!!, bit-orc1!!, bit—orc2!!}, bit—xor!! ............ [Function] ... 153
boolell ... e [Function] ... 156
booleanpll ... ....... ... e [Function] ... 158
both—case—pll ... ... i [Function] ... 160
bytell ... e [Function] ... 162
byte—position!!, byte-size!l ........ ... ... .. ... il [Function] ... 164
*case, Casell ... e e e e [Macro] ... 166
ceilingll ... ... . e e [Function] ... 169
char=!l, char/=!}, char<!l, char<=!}, char>!l,char>=l .............. [Function] ... 171
character!l ... ... ... .. e [Function] ... 173
characterpll ......... ... . i e e [Function] ... 175

Version 6.1, October 1991



Contents

vii

char-bitl] . ... .. . . i [Function] ... 177
char-bits!l ... ... ... [Function] ... 179
char—codell ... ... ... ... ... i P [Function] ... 181
char-downcasell .......... ... .. i ittt [Function] ... 183
char-equalll .. ... ... ... . e [Function] ... 184
char-flipcasell . ........... ... . it i it [Function] ... 186
char—font!l ... ... ... i e [Function] ... 188
char—greaterpll ......... ... .. . i i i i [Function] ... 190
char-Intll . ... ... e [Function] ... 192
char-lesspll ... ... . e e [Function] ... 194
char-not-equalll ...... ... ... .. ... i [Function] ... 196
char-not—greaterp!l .............. ...ttt [Function] ... 198
char—not=lesspll ........... ... i [Function] ... 200
char—upcasell ......... ... ittt e [Function] ... 202
| R [Function] ... 204
code—charll ... ... ... i i i i e [Function] ... 206
coercell .. ... e et e [Function] ... 208
*eold-boot ......... . i e e e, [Macro] ... 212
COMPAre!l . .. i i i e e it e, [Function] ... 217
complex!l .. ... . i e e [Function] ... 218
compleXpll ... .. i et e [Function] ... 220
*cond,condll . ... e [Macro, Function] ... 222
conjugatell ... ... .. e [Function] ... 227
COPY-SEA!l .o i e i i e e e [Function] ... 228
cosll,coshll ... ... .. ... . . . . e e [Function] ... 230
countll, count-ifll, count-if-not!! .............................. [Function] ... 231
create—geometry .......... ... il i e e e, [Function] ... 234
create~segment-set!! .......... ... ... ... i, [Function] ... 238
CreAtE—VP—Set .. ... ...ttt i i e it it [Function] ... 241
CroSS—Product ... .....c.uuiiiirnnnretnnnrreeeeneaeeeeeeannns [Function] ... 244
cross—product!] ... ... ... i i [Function] ... 246
cube-from—grid—address .................cciiiiiiiiiiiiiiaaa, [Function] ... 248
cube-from—-grid-address!! ............. ... ... . il [Function] ... 250
cube—from-vp—grid-address ............... ... . 0., [Function] ... 253
cube-from-vp—grid-address!! . ................ ... ... . ..., [Function] ... 255
*deallocate ....... ..ot i i [Function] ... 258
*deallocate—*defvars ........... ...ttt ittt [Function] ... 260
deallocate~def-vp-sets ................coiiiiiiiiiiiiiiiaann, [Function] ... 262
deallocate—geometry ............ ... ittt [Function] ... 264
deallocate-processors—for-vp-set ............................. [Function] ... 265
deallocate—vp—set-processors .............. ..ottt [Function] ... 265
deallocate~vp-set ............ ... . o i [Function] ... 268
B« T O [Macro] ... 270
*defsetf ... ... i e [Macro] ... 272
efstruct ... i et e [Macro] ... 274

Version 6.1, October 1991



viii *Lisp Dictionary
Y S

*defun ...l e [Macro] ... 280
efvar ... i e [Macro] ... 286
def-vp=set ..........ciiiiiiiiiiiii i i e [Macro] ... 291
delete—initialization .................. ... il [Function] ... 296
deposit-bytell ........ ... [Function] ... 298
deposit-fieldll ........... ... . i [Function] ... 300
describe—Pvar ............iiiiiiiii ittt it i i [Function] ... 302
describe—vp—set ............... it [Function] ... 304
digit—charll .. ... ... i i i it [Function] ... 307
digit—char-pll ........ ... .. . i i [Function] ... 309
dimension-address-length .................... ... ... ... [Function] ... 311
dimension-size ............... ... ... il [Function] ... 313
do—for-selected—processors ...............c.ciiiiiiiiiiiiinnnnn, [Macro] ... 315
dot—product . ..........ccoiiiiiiii it i e [Function] ... 317
dot-productll ........... e i, [Function] ... 319
dpbl L et e .... [Function] ... 321
*ecase,@casell ........ . e e [Macro] ... 323
enumeratel] .. ....... ... .. . it [Function] ... 326
-1 1 PPN [Function] ... 328
- T | 1 [Function] ... 330
equalll ... ... i i i it [Function] ... 332
equalpll ... i et ettt ee e [Function] ... 333
evenpll ... .. i i i i ittt e [Function] ... 334
VeIVl e, [Function] ... 335
OXP L e ettt e [Function] ... 337
eXPU L e e e [Function] ... 338
feellingll ... .. i i it [Function] ... 340
1 {+ T o A P e [Function] ... 342
Ml e [*Defun] ... 344
find!!, find—ifll, find—-if-not! . ...... ... ... ... ... ... oo, [Function] ... 346
floatll .. .. it e [Function] ... 349
float—epsilon!l ......... ... i e [Function] ... 351
float-signll ....... ..o [Function] ... 353
floatpll ... . e e e [Function] ... 355
floorll ... e [Function] ... 356
front-endll ... ... e [Function] ... 358
front—end—pll .. ... e [Function] ... 360
froundll ... ... i i i e [Function] ... 362
ftruncatell .......... ... .. e [Function] ... 364
Muncall . ... i i i et it i [Macro] ... 366
L 1= | [Function] ... 368
graphic—char-pll . ..... ... ... ... .. i i [Function] . .. 369
gray—code—from—integer!! ............. ... ... .. il {Function] ... 370
e T [Function] ... 371

gridll ... e [Function] ... 373

Version 6.1, October 1991



Contents

grid—-from—cube~address ............. ... ... ... il [Function] ... 375
grid—from—cube-address!! .................. ... ..l [Function] ... 377
grid—from-vp—cube-address .................. ittt [Function] ... 380
grid—from-vp—cube-address!l ... .............. ... ... ... [Function] ... 382
grid-relativell ....... ... ... ... . .. i [Function] ... 385
=Y« [Function] ... 387
1 SN [Macro] ... 388
L1 O [Macro] ... 391
imagpartll ... ... . e e e [Function] ... 394
b {2 T N [Macro] ... 395
initialize—character ............. ... .. ... i il [Function] ... 397
int—charll ........ .. e [Function] ... 400
integer-from—gray-codel! .............. ... ... il [Function] ... 402
*Yinteger-length . ......... ... ... ... i it [*Defun] ... 403
integer-lengthll ... ... ... ... . ... . . . [Function] ... 404
integer—reversell .......... ... . .. it i i [Function] ... 406
iNtegerpll ... . i e e i e e [Function] ... 407
T [ 4 A [Function] ... 408
oMl L i e e [Function] ... 409
. ) 1 PN [Function] ... 411
Idb—testll ...... ... i e e e [Function] ... 413
least-negative—float!!, least-positive-float!l ..................... [Function] ... 414
lengthll .. ... i e [Function] ... 416
B (52 8l = o [Macro] ... 418
let—vp—set. ... ... ..ot i i it et [Function] ... 424
Might .o e [*Defun] ... 426
B 1« [Function] ... 428
list—~of-active—processors ............. ... .. it [Function] ... 430
load-bytell .. ... ... ...t i i e [Function] ... 432
o T« [Macro] ... 434
Mocally ... i e e, [Macro] ... 435
logll .o e et e, [Function] ... 438
b [+ T T- T T PPN [*Defun] ... 440
logandl!, logandc1!l, logandc2ll, logeqv!l, logiorll, lognand!l, lognor!!,

lognot!!, logorci!l, logorc2!ll, logxorl! ....................... _ [Function] ... 442
logbitpll .. e e e [Function] ... 445
logoountll . . ... . e [Function] ... 446
b 1o L A AP [*Defun] ... 447
logtest!l ........ @t et e e et [Function] ... 449
OgXOF . . e [*Defun] ... 450
lower—case—pll ........ .. i i it e [Function] ... 452
make—array!l ... .. i i e i [Function] ... 453
make—charll ... ... .. i i i [Function] ... 455
B 1T T« T PR et [Function] ... 457
mask~fieldll ........ ... . [Function] ... 459
*max ..... et e e e ettt et e e, [*Defun] ... 461

Version 6.1, October 1991



o ss s e s sl s s e e s

1T 4 | [Function] ... 462
11111 [*Defun] ... 463
M . i e e e [Function] ... 464
minuspll .. ... e e [Function] ... 465
1T | [Function] ... 466
most-negative-float!!, most-positive-float!l . .................... [Function] ... 467
negative—float—epsilon!! .................. .. ... e [Function] ... 469
BWS ..t e e ettt [*Defun] ... 471
L [Macro] ... 476
news-borderll ....... ... ... .. . [Macro] ... 481
*news—direction........... ... .. ... il [*Defun] ... 483
news—directionll ....... ... ... ... ... i, [Macro] ... 485
next-power—of—twWo—>= . ... . ... ... i it iiiie e, [Function] ... 487
1= 4 [Function] ... 489
notany!l .. ... e i [Function] ... 490
noteveryll ... .. .. i e [Function] ... 492
B 15T T [*Defun] ... 494
nsubstitutell, nsubstitute—if!!, nsubstitute-if-not!l ............... [Function] ... 496
NUI L e e [Function] ... 499
numberpll ... e [Function] ... 500
oddpl .. i et [Function] ... 501
off-grid-border-p!l ............ et te e eteenronaenatnsnannenss [Function] ... 502
off-grid-border-relative-direction—p!l .......................... [Function] ... 505
off-grid—border-relative—pll ............. ... ... ... il [Function] ... 507
off-vp—grid-border-p!l .......... ... ... . . i, [Function] ... 509
- [*Defun] ... 511
1 [Macro] ... 513
Phasell .. ... .. e [Function] ... 516
PIUSPIl e e e [Function] ... 517
positionl!!, position-ifll, position-if-notl! ........................ [Function] ... 518
POWEr—Of—tWO—P .......ovvvrrnrenrnranennnnns. e [Function] ... 521
13 4711 - Y AU Ot [Macro] ... 522
<7+ 2 [Macro] ... 524
07 07«1 1 AU [Macro] ... 529
ppp-address—-object ........... ... ... .. . il [Function] ... 531
T oo =T PR [Macro] ... 533
o707 +To <7« A AUt " [Macro] ... 535
PPP-SITUCE ... ittt ittt i it i e e e [Function] ... 537
Pref o i ittt [Macro] ... 540
prefll L e e e e [Macro] ... 544
pretty—print—pvar. . ..... .. ... i i i i i et i e [Macro] ... 552
pretty—print—-pvar-in—currently-selected-set ...................... [Macro] ... 553
PrOCESSOTWISE ... ....0ivieiiiennneneenneeennenaneecanannenns [*Defun] ... 555
B 1o {1 1 T [Macro] ... 557
i+ 2 [Macro] ... 561

Version 6.1, October 1991



Contents

pvar-exponent-length ........... .. ... .. .. .. . . i, [Function] ... 571
pvar-length . ... ... ... . .. i e [Function] ... 572
pvar-location . ... ... ... . [Function] ... 573
pvar-mantissa-length ................ ... ... ... i, [Function] ... 574
PVAr—NAME .. ..ttt ettt it ie e ittt it e e, [Function] ... 575
77 ¢ < T [Function] ... 576
PVar—Pplist . ... . e e [Function] ... 577
PVAI—0—aITAY .. ...t vtittie et e ettt aneneeanenanneens [*Defun] ... 578
pvar-to—array—grid .......... ... ... i e [*Defun] ... 581
PVAr—YPe . .. i e e i [Function] ... 585
PVAr—VP—=Set . . .. .. ittt [Function] ... 586
randomll .. ... i e e [Function] ... 587
FaNKIl e e e [Function] ... 589
realpartll . ... ... e e [Function] ... 594
reducell .. ... .. e [Function] ... 595
reduce—and-spread!! .......... ... ... .. il [Function] ... 598
oMl L e e [Function] ... 601
reversell .. .. e [Function] ... 602
B -7 1 1 PO [Function] ... 604
- 4 N [Function] ... 606
roundll L. e [Function] ... 607
row-major-arefll .. ... ... ... ... e [Function] ... 609
row—major-sideways-aref!l ............ ... .. .. ... il [Function] ... 611
St . e e e e [Function] ... 614
scale—float!l .. ... ... ... . ... [Function] ... 615
SCanll ... e e [Function] ... 616
segment-set-end-address {-bits}

segment-set-processor-not—in—-any—segment

segment-set-start-address{-bits} ......................... [Function] ... 624
segment-set—-end-address!! {-bits!!}

segment-set-processor-not-in-any-segment!!

segment—set-start—-address!! {-bits!!} ...................... [Function] ... 626
segment-set-scanll ....... ... ... ... ... i [Function] ... 628
Selfll L. e e e [Function] ... 631
self-address!! ........ ... .. . [Function] ... 633
self-address—grid!! ........ ... ... ... . i [Function] ... 635
=T PN [Macro] ... 638
b= « RPN [Function] ... 640
set—char-bit!l ...... ... .. ... . [Function] ... 644
Set=VP—SBt . ... ... i e [Function] ... 646
set-vp-set—geometry .............uiiiiiiiiiiii i, [Function] ... 647
sideways—arefll ... ... .. ... . .. [Function] ... 649
*sSideways—array .............uiiiiiiiiiii i et [*Defun] ... 653
SidewayS—array—p . ........oitiiiiii i i e e [Function] ... 655
slgnUMll L. e e [Function] ... 656
sinll,sinhll ..o [Function] ... 657

Version 6.1, October 1991




xii *Lisp Dictionary

*slicewise ...l i e e [*Defun] ... 658
SomMell L. e et [Function] ... 659
SOPl .o e e et it [Function] ... 661
spreadll .. ... i e e e [Function] ... 665
LT 4 PR [Function] ... 668
standard—char-pll ....... ... ... .. ... .. i [Function] ... 670
string—char—p!l ...... ... ... . [Function] ... 671
structurepll . ... ... . e i e [Function] ... 672
subseqll .. ... e e [Function] ... 673
substitutell, substitute—ifll, substitute—if-not!l, .................. [Function] ... 675
UM Lottt et iiiiie ettt e et [*Defun] ... 678
taken—asll ......... ...t [Function] ... 679
tanll, tanhll ... .. ... ... ..t [Function] ... 681
B LT T [Macro] ... 682
trace—stack ............ ... il i e e [Function] ... 684
truncatell ... ... .. e [Function] ... 692
typed-vector!l .. ... ... ... e [Function] ... 693
tyPePIl L e et e i e [Function] ... 695
*undefsetf . ... ... i i e [Function] ... 697
untdefun .. ... e e [Function] ... 698
UNIESS ... . i i e ettt i [Macro] ... 699
unproclaim .. ... ... i e e [Function] ... 701
UNETACE ... .t ii it ttin it eeeenneennaerneeanaaesnaennrennnn [Macro] ... 702
upper—case—pPll ... ... i e [Function] ... 704
VA, Ve V5 W i it e e e e e e e [Function] ... 705
VL V=L VL W i [Function] ... 706
v{¥=5—constant . ............ ... ... ... 0. crerenanannias [Function] ... 708
v+scalarll, v—scalarll, v*scalarll,v/scalarl! .. ..................... [Function] ... 709
VabS ... e [Function] ... 711
Vabsll L e [Function] ... 712
vabs—squared ............... ittt it i i [Function] ... 714
vabs—squared!l . .............. i e [Function] ... 715
Veelling ... .ot e i e i e [Function] ... 717
A2 (=L | AP [Function] ... 718
vector—normal ............iiiiiiiii i i i e e, [Function] ... 720
vector—-normalll . ... .. ... .. i e [Function] ... 722
VEI0Or . e et et [Function] ... 724
vp-set—-deallocated—p, vp—set—dimensions

vp-set-rank, vp-set-total-size, vp—set-vp-ratio . ............. [Function] ... 725
VIOUNA ... . ittt ittt ietenttererenrraanacnneea e [Function] ... 727
R Lo | - PP [Function] ... 728
vscalell . ... . e e e [Function] ... 729
vscale—to—unit-vector ............ ... ... il [Function] ... 731
vscale—to—-unit-vector!! ............. ... ... . ... ..., [Function] ... 733
*vset—components .............. . ittt [*Defun] ... 735
viruncate .......... . e e e [Function] ... 737

Version 6.1, October 1991



Contents

*warm-boot . ... ... i e [Macro] ... 738
MWHEN .. e e e e [Macro] ... 741
with—css—saved ............ ... it i i [Macro] ... 744
with-processors-allocated—for-vp-set ........................... [Macro] ... 747
*with-vp—set ......... .. ... . e [Macro] ... 749
o> (- P [*Defun] ... 752
b T ¢ [Function] ... 754
-1 (o« [Function] ... 756
P [Function] ... 757
=L =L <L <=L oI o=l e [Function] ... 761
H I A e [Function] ... 763
TH e e [Function] ... 765

Version 6.1, October 1991

xiii






About This Manual

Objectives

The *Lisp Dictionary is a complete reference source for the essential constructs of the *Lisp language.
It is intended to provide quick access to the definitions of all *Lisp functions, macros, and global vari-
ables. It is not intended to explain the conceptual basics of programming in *Lisp, although a glossary
of important and frequently used terms is included.

Note: This document reflects the *Lisp language as implemented on the Connection Machine models
CM-2 and CM-200. The *Lisp Glossary, in particular, is specific to these models in its descriptions of
hardware features. Connection Machine model CM-5 users should also refer to the Porting to CM-5
*Lisp document for differences between the two implementations.

Intended Audience

This reference dictionary is intended for readers with a working knowledge of Common Lisp, as de-
scribed in Common Lisp: The Language, and a general understanding of the Connection Machine sys-
tem. The Getting Started In *Lisp guide is a good source for the level of introductory information you
need to use this dictionary—in particular, its appendices provide a concise overview of the CM system.
The first chapter of the CM User s Guide is also a good source for this information, and the Connection
Machine Technical Summary provides a more in-depth introduction to the CM, including a detailed
look at how the CM operates.

Revision Information

Thisrevised edition of the dictionary conforms with Version 6.1 of the *Lisp software, as implemented
on the CM-2 and CM-200. It does not describe the changes implemented in Version 7.0 of the *Lisp
software for the CM-5. These changes are currently documented in the manual Porting to CM-5 *Lisp.

Organization of This Manual
The *Lisp Dictionary is divided into two parts.

PartI, “*Lisp Overview,” provides a complete list of the functions, macros, and important global vari-
ables of *Lisp, as well as several chapters of useful overview material.

Part II, “*Lisp Dictionary,” is a complete dictionary of all functions and macros in the *Lisp language.

Version 6.1, October 1991 XV



*Lisp Dictionary

SRS e s e S e e e

Organization of This Manual, cont.

Part 1.

*Lisp Overview

Chapter 1. *Lisp Functions and Macros

A list of the names of all functions and macros in *Lisp, grouped by purpose.

Chapter 2. *Lisp Global Variables

Descriptions of the important global variables in *Lisp.

Chapter 3. *Lisp Glossary

Definitions of important terms used here and in other *Lisp manuals.

Chapter 4. *Lisp Type Declaration

A list of *Lisp data types, exact instructions for using (and not using) type declara-
tions in *Lisp code, and a summary of the data type coercion rules of *Lisp.

Chapter 5. *Lisp Compiler Options

Part IL.

Descriptions of the effects of each of the many *Lisp compiler options.

*Lisp Dictionary
A complete dictionary of the *Lisp language, including all *Lisp functions and macros.

Related Documents

Getting Started In *Lisp
This manual provides both an overview of *Lisp and an introduction to *Lisp programming.

Porting to CM-5 *Lisp
This manual provides a summary of the changes made to the *Lisp language in Version 7.0 for
the CM-S.

Paris Reference Manual

This manual describes Paris (for parallel instruction sef), the low-level programming lan-
guage of the CM-2 and CM-200. *Lisp programmers who wish to make use of Paris calls
from *Lisp should refer to the Paris manual for more information.

CM User s Guide
This manual provides overview and introductory material for new users of the CM.

Common Lisp: The Language, by Guy L. Steele Jr. (Burlington, Mass.: Digital Press, 1984).
This book defines the de facto industry standard Common Lisp. The second edition, pub-
lished in 1990, includes information about changes and extensions recommended by the
ANSI technical committee X3J13 for the forthcoming ANSI standard Common Lisp.

Version 6.1, October 1991



Preface xvii

Notation Conventions

Symbol names and code examples in running text appear in bold, as in *cold—boot. Code examples set
off from the main text appear in a typewriter style typeface, as follows:

(pref a 23)

Names that stand for pieces of code (metavariables) appear in italics, as in pvar-expression. In function
or macro definitions, argument names appear in italics. Keywords and argument list symbols
(&optional, &rest, etc.) appear in bold:

pref pvar-expression send-address &key :vp-set

Argument names typically indicate the data type(s) accepted for that argument; for example, argument
names containing the term pvar must be parallel variables. The name integer-pvar restricts an argu-
ment to a parallel variable with integer values. Functions typically signal an error when given argu-
ments of an improper type.

The table below summarizes these notation conventions:

Convention Meaning

boldface Symbol names, keywords, and code examples in text.
italics Metavariables and argument names.

typewriter Code examples set off from text.

=> Evaluates to.

==> Expands into (macros, for example).

<=> Are equivalent (produce the same result).

Version 6.1, October 1991






Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet

Electronic Mail: customer—support@think.com
uucp

Electronic Mail: ames!think!customer—support
Telephone: (617) 234-4000

(617) 8761111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To : field should be addressed
as follows:

To: customer—support@think.com

Please supplement the automatic report with any further pertinent information.

Xix






Part 1
*Lisp Overview




£

v_\\
\

A



Chapter 1

*Lisp Functions and Macros

This chapter provides an overview of the functions and macros of *Lisp, organized in cate-
gories of functionally related operations. Only the names of functions are shown; consult
the corresponding entry in the dictionary for argument lists and descriptions.

1.1 Basic Pvar Operations

*Lisp includes basic operations to allocate, access, modify, and deallocate pvars.

1.1.1 Pvar Allocation

These operations allocate/deallocate permanent pvars:

*deallocate-*defvars *defvar

These operations allocate/deallocate global pvars:

allocate!! *deallocate

These operations allocate local pvars for the duration of a body of code:

*let *let*

This operation returns a temporary pvar with the same value in each processor:

Version 6.1, October 1991 3



S

These operations return a temporary pvar of a specific data type:

arrayll front-end!! ' make-array!!
typed-vectorl! vectorll

1.1.2 Pvar Data Type Declaration and Conversion
These forms are used to declare/undeclare the data type of a pvar:

*locally *proclaim unproclaim

These operations are used to convert pvars from one data type to another:

coercell taken-as!!

1.1.3 Pvar Referencing and Modification |
This operation is used to reference the values of a pvar:

pref

These operations are used to modify the values of a pvar:

*set - setf

These operations are used to define *setf methods for user-defined functions:

*defsetf *undefsetf

This operation is used in passing aggregate pvar elements to user-defined functions, to pre-
vent copies of those elements from being made:

Version 6.1, October 1991

N

£\



Chapter 1. *Lisp Functions and Macros 5
; ; e R

1.1.4 Pvar Information

These predicate operations test the data type of a pvar:

booleanp!! characterp!! complexpl!! floatp!!
front-end-pl! integerpl! numberp!! string—char-pl!
structurep!! typepl!

These operations return general information about a pvar:

allocated—pvar—p describe—pvar pvar—exponent-iength
pvar-mantissa-length pvar-name pvarp
pvar-plist pvar-type pvar-vp-set

These operations return Paris-level information about a pvar:

pvar-length Returns Paris field length of a pvar, in bits.
pvar-location Returns Paris field-id of a pvar.

These operations are used to print the values contained in a pvar:

ppp pppll ppp-address—object
ppp-css pppdbg ppp-struct
pretty—print—pvar pretty-print-pvar-in—currently—selected-set

1.2 *Lisp Function Definition

These Common Lisp operations are used to define, call, and trace *Lisp functions:

apply defun funcall
trace untrace

These *Lisp operations are used to define, call, and trace user-defined *Lisp functions that
must reset the *Lisp stack (see the definition of *defun for more information):

*apply *defun *funcall
*trace un*defun *untrace

Version 6.1, October 1991



6 *Lisp Dictionary

R

1.3 Processor Selection

These forms conditionally bind the currently selected set of processors during the
evaluation of their body forms or clauses:

*all *case casel! *cond
condl! *ecase ecasel! *if
ifll *unless *when with—css—-saved

This form iterates over the currently selected set of processors:

do-for-selected—processors

These forms return a list of the send addresses of all active processors:

list-of-active—processors loap

1.4 Operations on Simple Pvars

*Lisp includes specialized operations for simple (boolean, numeric, or character) pvars.

1.4.1 Boolean Logical Operators

These operations perform logical operations on boolean pvars:

and!! notl! orl! xor!!

1.4.2 Numeric Pvar Operations

*Lisp includes operations that perform tests and math operations on numeric pvars.

Numeric Predicates

evenpl! minuspl! nuli!!
oddpl!! plusp!! zeropl!!

Version 6.1, October 1991



Relational Operators

=[l <l >l
=1l <=l >=|l
eq!l eqil! _ equalpl!!

Math Operators
+l -1l 1 m
1+l 1-11 absl! ceiling!!
comparell *decf expll expt!!
floorl! gedll *incf isqrt!!
Ieml! logl!! maxl! minl!
mod!! randoml|! rem}! round!!
signuml! sqrtll truncatell

Trigonometric Functions

acos!! asin!! atan!!
acoshl!! asinh!! atanhl!!
cosl!! sinl] tan!!
cosh!! sinh!! tanhl!

Floating-Point Pvar Operators

fceiling!! ffloorl! float!!
float—signl! fround!! ftruncatel!
scale—float!!

Floating-Point Pvar Information Functions

float-epsilon!! least—positive—float!! least-negative—float!!
most-positive—float!! most-negative—float!! negative-float—epsilon!!

Version 6.1, October 1991



8 *Lisp Dictionary
Ee

Complex Pvar Operators

absl! cisl!! complex!!
conjugate!! imagpart!! phasel!l
realpart!!

Bitwise Integer Operators

ashll ‘ bytell

byte—position!! byte-sizell

deposit-byte!! deposit-field!!

dpbl! gray—code—from-integer!l
integer-from—gray—codel! integer-lengthl!!
integer-reversel! load-byte!!

IdbH Idb-test!!

mask-field!! rot!!

Bitwise Logical Operators

boolell logand!! logandc1!!
logandc2!! lotbitp!! logcount!!
logeqv!l logiorl! lognand!!
lognorll lognot!! logorc1!!
logorc2!! logtest!! logxor!!

1.4.3 Character Pvar Operations

*Lisp includes operations that construct, test, and compare character pvars.

Character Pvar Operators

character!! char—doWncase!! char-flipcase!!
char-int!! char-upcasel! code—char!!
digit—char!! int—charl! make—char!!

Version 6.1, October 1991

~



e

Character Pvar Attribute Operators

char-bit!! char-bitsl! char-codell
char-font!l initialize~character set—char-bit!!

Character Pvar Predicates

alpha—char-p!! alphanumericp!l both—case-pl!l
characterpl! digit-char—p!! graphic—char-pll
lower—case—pl! standard—-char-pl! string—char—pl!!
upper—case-pll

Character Pvar Comparisons

char=!! char<lI! char>!

char/=l1 char<=l| char>=l!
char—equall! char-greaterpl! char-lessp!!
char-not-equalll char-not—greaterpl! char-not-lessp!!

1.5 Operations on Aggregate Pvars

*Lisp includes specialized operations for aggregate (array, structure, or front-end) pvars.

1.5.1 Array Pvar Operations

*Lisp includes operations to create, modify, and test multidimensional array pvars. Also
included are specialized operations for one-dimensional array pvars (vectors).

Basic Array Pvar Operations

These operations return a temporary array pvar:

arrayll make-array!!

Version 6.1, October 1991



*Lisp Dictionary
S

These operations obtain information about an array pvar:

*array—-dimension
*array—-dimensions
*array-element-type
*array-rank
*array-total-size
array-row-major-indexi!

array—-dimension!!
array—dimensions!!
array-in—-bounds—-pl!!
array-rank!!
array-total-size!l
sideways-array-p

These operations access elements of array pvars:

arefll
row-major-sideways—arefl|

row—major-arefl|
sideways-arefi!

These operations map a function over a set of array pvars:

amapl!! *map

These are specialized operations for bit-array pvars:

bitl! bit-and!l bit-andc1l! bit-andc2!!
bit-eqv!! bit-iorll bit-nand!! bit-norll
bit-not!! bit-orc1!! bit-orc2!! bit-xorl!
shit!!

These operations convert arrays to and from a sideways (slicewise) orientation:

*processorwise *sideways-array *slicewise

Vector Pvar Operations
These operations return a temporary vector pvar:

typed-vectorl!! ' vector!!

These are specialized operations for vector (one-dimensional array) pvars:

cross—product!! dot-product!! v+

v-il vl vl

v+scalarl! - v=-scalarl! v*scalarll

viscalarll vabsl! vabs-squared!!
vector-normall!! vscalell vscale-to-unit-vectorl!
*vset-components

Version 6.1, October 1991

~



These are serial (front-end) equivalents to the parallel vector operators:

cross—product
v .
v+-constant
vi-constant
veeiling
vround
vtruncate

These are specialized operations for sequence pvars:

copy-seqli
count-if-not!!
find!!

length!!

*nreverse
nsubstitute—if-noti!
position—-if-noti!
somel!
substitute—if!!

dot-product
v*
v—constant
vabs
vector-normal
vscale

count!!

every!!

find—ifl!

notany!!
nsubstitute!!
positionl!

reduce!l

subseq!!
substitute—if-not!!

v+
v/

v*constant
vabs~squared

vfloor
vscale-to—unit-vector

count-ifl!

*ill
find-if-notl!
notevery!l
nsubstitute—if!!
position-if!!
reversell
substitute!!

Note that in *Lisp, sequence pvars are defined as one-dimensional array (vector) pvars.

1.5.2 Structure Pvar Operations

This operation defines a parallel structure type and defines functions that create and access
instances of that parallel structure type:

*defstruct

Version 6.1, October 1991



12 *Lisp Dictionary
e e -

1.6 Processor Addressing Operations

*Lisp includes operators that provide processor addressing information.

1.6.1 Processor Enumeration, Ranking, and Sorting

This operator enumerates the currently active processors:

enumerate!!

These operators rank and sort values in the currently active processors:

rank!! sortl!

1.6.2 Send/NEWS Address Operators

These operators provide access to the send and grid addresses of processors:

cube-from—grid-address cube—from—grid-addressl!
cube-from-vp—grid—address cube-from-vp—grid-address!!
grid—from—cube—-address grid—from—cube-address!!
grid—-from-vp—cube-address grid-from-vp-cube-address!!
self-addressl! self-address—grid!!

These operations are tests for off-grid processor addresses:

off—grid-border-p!! off-grid-border-relative—-direction—p!!
off—grid-border-relative—p!! off-vp—grid-border—pl!

1.6.3 Address Object Operators

These operators create and manipulate address objects:

address-nth address—nth!!
address—plus—nth address—plus—nthl!
address—rank address-rank!!
gridgrid!! grid-relative!!
selfll

Version 6.1, October 1991

TN



1.7 Inter- and Intra-Processor Communication Operations

*Lisp provides operations that transfer values between pvars, exchange values between
different processors, execute scans and reductions across processors, and perform global
tests.

1.7.1 Inter-Pvar Communication Operators

These operators transfer values between pvars using global routing:

prefll *pset

1.7.2 NEWS Communication Operators

These operators transfer values between pvars using NEWS communication:

*news news!! news-border!!
*news—direction news—direction!!

1.7.3 Front-End Array to Pvar Communication Operators

These operators transfer values between arrays on the front end and pvars on the
Connection Machine:

array—to—pvar array-to—-pvar-grid
pvar-to-array pvar-to—array—grid

1.7.4 Scan and Spread Operators

These operators perform scans and reductions, and spread values across processors:

reduce-and-spread!! scanl!!
spreadl!

Version 6.1, October 1991



14 *Lisp Dictionary

1.7.5 Segment Set Scanning Operators

These operators create and manipulate segment set objects, and perform segmented scans:

create-segment-set!! segment—set-scan!!
segment-set—end-bits segment—set-end-bits!!
segment-set-end-address segment-set—-end-address!!
segment—set—start-bits segment-—set—start-bits!!
segment-set-start-address segment-set—start-address!!

segment-set-processor-not-in—-any-segment
segment-set—processor-not—in—any—segment!!

1.7.6 Global Communication Operators

These operators perform a global test or function, returning a single front-end value:

*and *integer-length *logand *logior
*logxor *max *min *or
*sum *xor

1.8 VP Set Operations

These operations define, allocate, and deallocate fixed-size and flexible VP sets.

1.8.1 VP Set Definition Operators

This operation is used to define permanent VP sets, both fixed-size and flexible:

def-vp-set

These operations are used to define and allocate temporary, fixed-size VP sets:

create—vp-—set . let~vp-set

These operations are math utilities that are useful in defining the size of VP sets:

next—power—of-two—>= power—of-two—p

Version 6.1, October 1991

TN



Chapter 1. *Lisp Functions and Macros 15

1.8.2 VP Set Geometry Functions

These operations create and deallocate the geometry objects used in defining VP sets:

create—geometry deallocate—geometry

1.8.3 Flexible VP Set Allocation Operators

These operations are used to modify the geometry of a flexible VP set:

allocate—vp-set—processors allocate—processors—for-vp—set
deallocate-vp-set-processors deallocate—processors—for-vp—set
set-vp-set-geometry with—processors-allocated—for-vp-set

1.8.4 VP Set Deallocation Operators

These operations are used to deallocate VP sets:

deallocate—def-vp-sets deallocate—vp-set

1.8.5 Current VP Set Operators

These operations are used to select the current VP set and to get information about its size:

set-vp-set *with~vp-set
dimension-size dimension—-address—length

1.8.6 VP Set Operators

These operations are used to obtain information about any VP set:

describe-vp-set vp-set—deallocated—p vp-set—dimensions
vp—-set-rank vp-set-total-size vp-set-vp-ratio

Version 6.1, October 1991



*Lisp Dictionary

1.9 General Information Operations

This operator provides a limited help function for *Lisp symbols:

help

These operators trace and display the current levels of CM memory use:

*room trace-stack

This macro uses the *Lisp compiler to expand a piece of *Lisp code so that you can see
the resulting Lisp/Paris code:

ppme

1.10 Entertainment Operations

This operator provides access to the front-panel LED’s:

*light

1.11 Connection Machine Initialization Functions

These operators reinitialize the Connection Machine system:

*cold-boot *warm-boot

These operators add and remove forms from the cold- and warm-boot initialization lists:

add-initialization delete—initialization

This operator toggles between the *lisp and user packages in the *Lisp interpreter and in
the *Lisp simulator:

*lisp

Version 6.1, October 1991

e



Chapter 2
*Lisp Global Variables

2.1 Predefined Pvars

These are permanent pvars that are predefined by *Lisp as parallel equivalents for the
Common Lisp constants t and nil. It is an error to use either t!! or nil!! as the destination for
*set, *pset, or any other form that modifies its argument.

This is a predefined pvar with the value nil in each processor:

nill! [Constant]

This is a predefined pvar with the value t in each processor:

t! [Constant]

2.2 Configuration Variables

*Lisp provides a number of configuration-dependent variables with values that are set by
operators such as *cold-boot, set-vp—set, and *with—vp-set. A program that depends only
on these configuration variables will run on a Connection Machine system in any grid con-
figuration and at any VP ratio.

It is an error to access these variables before *cold-boot has been called for the first time.
Also, the user must not modify the values of any of these configuration variables.

Version 6.1, October 1991 17



*Lisp Dictionary
s
*current-cm—configuration* [Variable]

The value of this variable is a list of integers. The nth element of the list is the size of
the nth dimension in the current machine configuration.

*current—grid-address—lengths* [Variable]

The value of this variable is a list of integers. The nth element of the list defines the number
of bits necessary to hold a grid (NEWS) address coordinate for the nth dimension of the
current VP set.

*current-send-address—length* , [Variable]

The value of this variable is the number of bits needed to hold the send address of a single
processor in the current VP set. The variable *log-number—of—processors—limit* is an obso-
lete equivalent.

*current-vp-set* [Variable]

This variable is always bound to the current VP set. Its value changes whenever the current
VP set changes. It is bound by default to the *default-vp-set*. The operators set-vp-set and
*with-vp-set can be used to change the current VP set.

*default-vp-set* [Variable]

The value of this variable is the default VP set, the VP set that is current when no other VP
set is current. If no initial dimensions are specified, the first time *cold-boot is called,
*default-vp-set* is bound to a two-dimensional VP set with a VP ratio of one.

*log-number—of-processors-limit* [Variable]

This obsolete variable is equivalent to the variable *current-send-address—length*. It pro-
vides the base 2 logarithm of the number of processors attached.

*minimum-size-for-vp-set* [Variable]

The value of this variable is the minimum number of virtual processors with which a VP
set may be defined. In the current implementation, this is also the number of physical pro-
cessors that is currently attached. The product of the dimensions of any VP set must be
greater than or equal to the value of this variable.

Version 6.1, October 1991

N



*number—of-dimensions* [Variable]

This variable is always bound to the number of dimensions in the current VP set. Its value
changes whenever the current VP set changes.

*number—of-processors-limit* [Variable]

This variable is always bound to the number of virtual processors in the current VP set. Its
value changes whenever the current VP set changes.

2.3 Initialization List Variables
These variables each contain a set of forms that are executed automatically before and after

each execution of *cold-boot and *warm-boot. The *Lisp functions add-initialization and
delete-initialization are used to add and remove forms from these lists.

*after—*cold-boot-initializations* [Variable]

The forms in this list are executed immediately following any call to *cold-boot.

*after—*warm-boot-initializations* ’ [Variable]

The forms in this list are executed immediately following any call to *warm-boot.

*before~*cold-boot-initializations* [Variable]

The forms in this list are executed immediately prior to any call to *cold-boot.

*before—*warm-boot—initializations* [Variable]

The forms in this list are executed immediately prior to any call to *warm-boot.

Version 6.1, October 1991



2.4 Configuration Limits

These constants and variables determine the size limits for specific *Lisp data types. Other
than as documented here, they should not be modified in any way.

2.4.1 Array Size Limits

These constants are implementation-dependent limits on the dimension length, rank, and
total size of array pvars. They should not be modified in any way.

*array-dimension—limit [Constant]

This is the upper exclusive bound on the extent of a single array pvar dimension. Each
dimension specified for an array pvar must be less than *array-dimension—limit. The value
of *array—dimension-limit is guaranteed to be greater than or equal to 1024.

*array-rank-limit [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have. The
number of dimensions specified for a *Lisp array pvar must be less than *array-rank-limit.
The value of *array-rank-limit is guaranteed to be greater than or equal to 8.

*array-total-size-limit [Constant]

This is the upper exclusive bound on the product of all the dimensions specified for an
array pvar. The total number of elements a parallel array can have must be less than *array-

total-size-limit. The value of *array-total-size-limit is guaranteed to be greater than or equal
to 1024.

2.4.2 Character Attribute Size Limits

These variables represent user-specified limits on the length and value of the code, bits, and
font attributes of character pvars. These variables may be set to values other than the de-
faults by calling the *Lisp function initialize-character. The value of these variables should
not be modified by the user in any other way.

Version 6.1, October 1991

—



Note that if the initialize—character function is used, it must be called immediately prior to
calling *cold-boot, because the values of the attribute variables below are used in initializ-
ing *Lisp and the Connection Machine system.

*char-bits—length [Variable]

This defines the length in bits of the bits subfield of a pvar character. The default is 4 bits.

*char-bits-limit [Variable]
This is the upper exclusive bound restricting the value of the pvar character bits attribute.
The default is 16.

*char—code-length [Variable]
This defines the length in bits of the code subfield of a pvar character. The default is
8 bits. Pvars of type (pvar string—char) have only a code field and are the same length as
*char-code-length.

*char—code-limit[ Variable]
This is the upper exclusive bound restricting the value of the pvar character code attribute.
The default is 256.

*char-font-length [Variable]

This defines the length in bits of the font subfield of a pvar character. The default is 4 bits.

*char—font-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character font attribute.
The default is 16.

*character-length [Variable]

This defines the total length in bits of a pvar of type pvar character. The default is 16 bits.

Version 6.1, October 1991



22 *Lisp Dictionary

e e e e e i T

*character-limit [Variable]

This is the upper exclusive bound restricting the integer value contained by a pvar of type
character.

2.5 Error Checking

These variables control the error-checking measures taken by the *Lisp interpreter and
compiler in evaluating and compiling code. These variables may be freely modified by the
user to contain any of the specified legal values.

*interpreter—safety* [Variable]

This variable determines the amount of run-time error checking performed by the *Lisp
interpreter. The value of *interpreter—safety* must be an integer between 0 and 3, inclusive.
The effect of each setting is given below.

Most run-time error checking disabled.

1 Minimal run-time error checking; for any error signaled, an error message is
not emitted until the next time a value is read from the CM.
2 Reserved for future expansion, do not use.
3 maximum run-time error checking; error messages emitted immediately.
*safety* [Variable]

This variable determines the amount of error-checking code generated by the *Lisp com-
piler. The value of *safety* must be an integer between 0 and 3, inclusive. The effect of each
setting is given below.

Low safety. Error conditions are prevented from being signalled.

1 Error conditions are signalled, but notification of an error does not occur
at the time the error takes place.

2 Identical to a *safety* level of 3 or 1, depending on the value ( t or nil ) of the
variable *immediate—error-if-location*, modifiable at run time.

3 High safety. Errors signalled immediately, with detailed error messages.

Version 6.1, October 1991



*immediate—error-if-location* [Variable]

Determines the action taken at run-time by code compiled with a *safety* value of 2. If the
value of this variable is t, such code behaves as if compiled with a *safety* value of 3. If
the value of this variable is nil, such code behaves as if compiled with a *safety* value of 1.

*warning-level* Variable]
g- [

This variable controls the type of warnings generated by the *Lisp compiler. The value of
*warning-level* must be one of the symbols :high, :normal, or :none. The effect of each
setting is given below.

:high Detailed warnings emitted whenever a section of code is not compiled.
:normal Warnings generated only for invalid arguments and type mismatches.
:none Prevents generation of any warnings.

2.6 *Lisp Compiler Code-Walker

slc:*use—code-walker* [Variable]

This boolean variable controls whether the code-walker portion of the *Lisp compiler is
active. For more information about the code-walker, see the *Lisp Release Notes Version
5.2. For more information about compiling *Lisp code, see the *Lisp Compiler Guide
Version 5.2.

2.7 ' Pretty-Printing Defaults

These variables provide global defaults for the keyword arguments of all of the pvar pretty
printing operations. Some functions do not include keywords that correspond to all these
global variables; consult the dictionary definition of each printing function for a list of the
keyword defaults used.

Version 6.1, October 1991



24 *Lisp Dictionary
E 4

*ppp—default-mode* [Variable]

This variable provides the default for the :mode keyword argument. Its initial value is
:cube. Its other legal value is :grid.

*ppp—default-format* [Variable]
This variable provides the default value for the :format keyword argument. Its initial value
is the string “~s .

*ppp—default-per-line* [Variable]

This variable provides the default value for the :per-line keyword argument. Its initial value
is nil.

*ppp—default-start* [Variable]

This variable provides the default value for the :start keyword argument. Its initial value
is zero.

*ppp—default-end* [Variable]

This variable provides the default value for the :end keyword argument. Whenever the cur-
rent VP set changes and whenever *cold-boot is called, *ppp—default-end* is reset to the
current value of *number—of-processors—limit*.

*ppp-default-title* [Variable]
This variable provides the default value for the :title keyword argument. Its initial value
is nil, indicating that no title should be printed.

*ppp—default-ordering* [Variable]
This variable provides the default value for the :ordering keyword argument. Its initial val-
ue is nil, indicating that no special grid dimension ordering is required.

*ppp—default-processor-list* [Variable]

This variable provides the default value for the :processor-list keyword argument. Its ini-
tial value is nil, indicating that all processors between :start and :end should be displayed.

Version 6.1, October 1991



'Chapter 3

*Lisp Glossary

This chapter contains a glossary of special terms and concepts used in descriptions of the
*Lisp language.

3.1 Connection Machine Terminology

These are terms directly relating to the Connection Machine and its relationship to the
*Lisp language.

3.1.1 Machines

Connection The Connection Machine (CM) consists of a large number of proces-

Machine sors that operate on data in parallel, linked together by an internal
communications network and controlled by an external front-end
computer.

front end The external computer system that transmits instructions and data to

the processors of the CM and receives data returned by the processors
as a result of their operations is called the front end.

Version 6.1, October 1991 25



26

*Lisp Dictionary

-

3.1.2 Processors

processors

physical
processors

virtual

processors

active
processors

currently
selected set

3.1.3 Fields

field

allocation/
deallocation

value of a field

The conceptual entities that operate on data in parallel within the CM
are called processors. Each processor has an associated local memory,
within which data is stored and manipulated. Each processor is also
connected to all other processors by an internal communications net-
work. The term “processors” can be used to refer to the physical
processors of the CM, but it is most commonly used to refer to the
virtual processors simulated by the machine. This is the convention
observed in this document.

The single-bit processing units within the CM that operate on data in
parallel are called the physical processors of the machine. Each physi-
cal processor simulates the actions of one or more virtual processors.

The conceptual processing entities simulated by the physical proces-
sors of the CM are called virtual processors. This simulation is
transparent to the user. No matter how many virtual processors are
simulated, each has its own associated memory and operates indepen-
dently of the others.

Each processor maintains an internal flag that determines whether it
is active, that is, whether or not it executes the instructions it receives.
Only the active processors of the CM execute any given operation.

The set of all currently active CM processors is called the currently
selected set. The currently selected set is changed by using *Lisp spe-
cial forms such as *all, *when, *if, *cond, and *case.

Data is stored on the CM in fields. A field consists of a contiguous set
of bits at the same location in the memory of each processor.

A field is created by allocating, or reserving, the same number of bits
in the memory of each processor. When a field is no longer needed, it
can be deallocated, freeing the memory for use in other fields.

The value of a field in any given processor is simply the value con-
tained in the set of bits allocated for the field in that processor’s
memory.

Version 6.1, October 1991

N



3.1.4 Connection Machine Memory

heap/stack

cold boot

warm boot

Fields are allocated in two areas of memory on the CM known as the
heap and the stack. Fields allocated on the heap are permanent, and
persist until the user explicitly deallocates them. Fields allocated on
the stack are temporary, and are automatically deallocated whenever
the stack is cleared.

The Connection Machine operation that resets the internal state of the
machine and clears its memory is called a cold boot. All Connection
Machine fields are deallocated during a cold boot.

The Connection Machine operation that resets the internal state of the
machine and clears the stack, but does not clear the heap, is called a
warm boot. Fields allocated on the stack are deallocated during a
warm boot.

3.2 *Lisp Terminology

These are terms relating to the data structures and operations of the *Lisp language.

3.2.1 Parallel Variables (Pvars)

parallel variable The *Lisp data structure that represents a collection of values stored

value of a pvar

corresponding
value

one-per-processor on the CM is called a parallel variable, or pvar. A
pvar consists of a field allocated on the CM and a front-end data struc-
ture that contains the location, length in bits, and data type of that
field.

In any given processor, the value of a pvar is simply the value of its
associated field in that processor.

Given two pvars, 4 and B, for the value of 4 in any processor there is
a corresponding value of B located in the memory of the same proces-
sor. Operations on pvars typically act by combining the corresponding
values of two or more pvars.

Version 6.1, October 1991



*Lisp Dictionary

R S e e

scalar value A front-end data type, such as an integer, a character, or a structure
object, is called a scalar value.

pvar contents The contents of a pvar is the entire set of scalar values stored in the
field of that pvar.

Pvar Classes

There are two main classes of pvars, heap pvars and stack pvars, corresponding to the two
types of Connection Machine memory.

heap pvars Heap pvars are relatively permanent, long-term storage locations for
data, with global scope and dynamic extent. Heap pvars are divided
into permanent pvars and global pvars.

stack pvars Stack pvars are temporary storage locations for data, with lexical
scope and dynamic extent. They are automatically deallocated when-
ever the stack is cleared. Stack pvars are divided into local pvars and
temporary pvars.

permanent pvars Permanent pvars are created by the *defvar macro. They are named
global pvars and are automatically reallocated whenever the CM is
cold-booted, unless explicitly deallocated by the user.

global pvars Global pvars are created by the allocate!! function. They are identical
to permanent pvars, with the exception that global pvars are not
reallocated when the CM is cold booted.

local pvars Local pvars are created by the *let and *let* macros. They are allocated
on the stack as local variables for the duration of a body of code.

temporary pvars Temporary pvars are returned by most functions and macros in *Lisp.
They are temporary storage locations intended to contain values only
until those values are copied to pvars of one of the above classes. It is
an error to attempt to modify any temporary pvar value.

Version 6.1, October 1991



Chapter 3. *Lisp Glossary 29

Pvar Types

Heap and stack pvars are divided into three groups based on the data types of their values:
simple pvars, aggregate pvars, and general pvars. Simple and general pvars may also be
declared as mutable pvars.

simple pvars

aggregate pvars

general pvars

mutable pvars

Simple pvars contain either boolean, numeric, or character values.

Aggregate pvars contain either arrays, structure objects, or pointers to
front-end data structures.

General pvars can contain values of differing data types, with the ex-
ception that general pvars may not contain aggregate data objects such
as arrays or structures. General pvars are not as efficient as simple or
aggregate pvars, because type-checking overhead is required by their
use and because code containing general pvars cannot be compiled.

Mutable pvars are simple or general pvars that have been declared to
contain values of unspecified bit sizes. *Lisp code containing simple
mutable pvars cannot be compiled as efficiently as code containing
simple pvars of fixed size.

3.2.2 Processor Addressing

The value of a pvar in any processor may be accessed and modified. To do this, it is neces-
sary to specify a processor’s address within the CM. There are two basic schemes in *Lisp
for assigning addresses to processors: send addressing and grid addressing.

configuration

send address

An abstract arrangement of processors that groups them in an
n-dimensional array, such as a line, a plane, or a cube, is called a con-
figuration. The number of dimensions in a configuration is the rank of
that configuration. The geometry of the current VP set determines the
current configuration. Note: the terms grid, machine configuration,
and NEWS grid are sometimes used synonymously with configuration.

Each processor has a unique send address, roughly corresponding to
the location of the processor within the hardware. Send addresses
range between zero and one less than the total number of processors.
(In previous versions of *Lisp, this was referred to as the cube address
of the processor.)

Version 6.1, October 1991



30

[ s S i

grid address

address object

*Lisp Dictionary

A list of coordinate integers that specify a processor’s position in a
given configuration is called that processor’s grid address. The num-
ber of coordinates in a grid address must be equal to the rank of the
configuration. For example, the grid address of a processor in a two-
dimensional configuration is a list of two integers.

An address object is a data structure that can be used as a send address
but that specifies a given processor’s grid address. Address objects are
more flexible than grid addresses because they automatically translate
grid addresses between different processor configurations. This flexi-
bility is obtained at the cost of efficiency, however; address objects are
less efficient than other forms of processor addressing.

3.2.3 Virtual Processor Sets

geometry
geometry object

virtual
processor set

VP set object

VP ratio

A geometry is a description of the size and shape of a particular con-
figuration of virtual processors. It can be either a list of integers or a
geometry object.

A geometry object is a front-end data structure that contains a speci-
fied geometry. It is used to define the size and shape of virtual
processor sets.

A virtual processor set, or VP set, is an arrangement of virtual proces-
sors in a specified n-dimensional geometry. A VP set can have pvars
associated with it, and values may be transferred between pvars asso-
ciated with different VP sets. Only one VP set, known as the current
VP set, may be active at any given time.

A front-end data structure defining the geometry and associated pvars
of a virtual processor set is called a VP set object.

The number of virtual processors simulated by each physical proces-
sor on the CM for a given VP set is referred to as the virtual processor
ratio, or VP ratio, of the VP set.

Version 6.1, October 1991



Chapter 3. *Lisp Glossary

Classes of VP Sets

There are two main classes of VP sets, permanent and temporary. Permanent VP sets are
further divided into fixed-size and flexible VP sets.

permanent
VP set

temporary VP
sets

fixed-size
VP set

flexible
VP set

defined

instantiated

A permanent VP set is defined using the def-vp-set operator. Perma-
nent VP sets are automatically reallocated when the CM is cold booted
until the user explicitly deallocates them. Permanent VP sets can be
either fixed-size or flexible.

A temporary VP set is defined using either the create-vp-set or the
let-vp-set operator. They are deallocated during a cold boot, as are
their associated pvars. Temporary VP sets are always fixed-size.

A fixed-size VP set has a specific geometry that does not change. Fix-
ed-size VP sets are defined by calling def-vp-set with specific
geometry information.

A flexible VP set has no geometry initially—its shape and size is deter-
mined by the user at run-time. Flexible VP sets are defined by calling
def-vp—set without providing specific geometry information. Flexible
VP sets must be instantiated before they can be used (see below).

A permanent VP set (fixed or flexible) is defined by the def-vp-set
operator. A temporary VP set is defined either by the create—vp-set or
the let-vp—set operator.

Fixed-size VP sets can be used immediately. Flexible VP sets must be
instantiated (assigned a temporary geometry) by an operator such as
allocate-processors—for-vp-set before they can be used.

Version 6.1, October 1991



32

e e

*Lisp Dictionary

3.2.4 Important VP Sets

current VP set

current
configuration

default VP set

At any one time, there is one active VP set: the current VP set. Only
pvars associated with this VP set are directly accessible, and unless
otherwise specified, newly declared pvars are associated with the cur-
rent VP set. The variable *current-vp-set* is always bound to the
current VP set.

The rank and size of the current VP set, i.e., the size and shape of the
set of processors currently in use, is often referred to as the current
configuration of the machine.

When the CM is cold booted for the first time, a default VP set is
created. Until some other VP set is created and selected, the default VP
set remains current and determines the configuration of the CM. The
variable *default-vp—set* is always bound to the default VP set.

3.3 Background Terminology

The naming convention for *Lisp operators, along with other useful background informa-
tion, is described here.

"

parallel
equivalent of

Functions that have names ending in !! (pronounced bang-bang) re-
turn a pvar result. The !! is intended to resemble “||”, the mathematical
symbol for parallelism. Note: These functions return temporary pvars
that may be reclaimed whenever the *Lisp stack is cleared; these tem-
porary pvars must be copied into a more permanent class of pvar (by
*set, for example) if you want to keep them.

Functions and macros with names ending in * (pronounced star), per-
form parallel operations but do not always return a pvar. The name of
the language itself, “*Lisp” (star-Lisp), comes from this convention.

This phrase is used to describe the correspondence between a Com-
mon Lisp function and a *Lisp function function that perform similar
operations. For example, mod!! is the parallel equivalent of Common
Lisp’s mod. This means that mod!! performs the same calculation as
mod, but that mod!! takes parallel variables as arguments and performs
the mod operation for each active processor within the CM.

Version 6.1, October 1991



Chapter 4

*Lisp Type Declaration

This chapter describes the different types of parallel variables, or pvars, available in *Lisp,
discusses type declaration and the rules of type coercion, and explains how to use type
declarations in *Lisp.

4.1 Pvar Types

A pvar is defined by the kind of values that can be stored in it. The following pvar types
are supported in *Lisp:

general front-end boolean signed-byte
unsigned-byte defined-float complex character
string—char array structure

For most pvar types, *Lisp provides several equivalent forms that may be used in
declarations. For instance, for almost any valid pvar type specifier (pvar x), x—pvar is also
a valid type specifier.

Each pvar type is listed below with equivalent type forms. Each pair of forms separated by
<=> is equivalent and may be used interchangeably within *proclaim, declare, and the
forms, as well as with the operators coerce!l and taken-as!!.

general — A value of any data type for each processor.

(pvar t) <=> general-pvar

front-end — A reference to a front-end value for each processor.

(pvar front-end) <=> front-end-pvar

Version 6.1, October 1991 33



boolean — Either t or nil for each processor.

(pvar boolean) <=> boolean-pvar

unsigned-byte — A non-negative integer for each processor.

(pvar (unsigned-byte width)) <=> (unsigned-pvar width)
<=> (unsigned-byte-pvar width)
<=> (field-pvar width)

(pvar bit) <=> (pvar (unsigned-byte 1))

signed-byte — A signed integer for each processor.

(pvar (signed-byte width)) <=> (signed-pvar width)
<=> (signed-byte-pvar width)

(pvar fixnum) <=> (pvar (signed-byte fixnum—length))
<=> fixnum-pvar

(pvar integer) <=> (pvar (signed-byte *))

defined-float — A floating-point number for each processor.

(pvar (defined-float significand—length exponent-length) )
<=> (float-pvar significand—length exponent-length)

(pvar short-float) <=> (pvar (defined-float 15 8))
<=> short-float-pvar

(pvar single-float) <=> (pvar (defined-float 23 8))
<=> single-float-pvar

(pvar double-float) <=> (pvar (defined-float 52 11))
<=> double~float-pvar

(pvar long-float) <=> (pvar (defined-float 74 21))
<=> long-float-pvar

(pvar float) <=> (pvar (defined-float * *))
<=> float-pvar

character — A Common Lisp character for each processor.

(pvar character) <=> character-pvar
(pvar string-char) <=> string-char-pvar

Version 6.1, October 1991

J—



*Lisp Tpe

SRS

Chapter 4.

Declaration 35
R 4 %

complex — A complex number for each processor.

(pvar (complex (defined-float significand exponent)))
' <=> (complex-pvar significand exponent)

(pvar (complex short-float))
<=> (pvar (complex (defined-float 15 8)))
<=> short-complex-pvar

(pvar (complex single-float))
<=> (pvar (complex (defined-float 23 8)))
<=> single-~complex-pvar

(pvar (complex double-float))
<=> (pvar (complex (defined-float 52 11)))
<=> double-complex-pvar

(pvar (complex long-float))
<=> (pvar (complex (defined-float 74 21)))
<=> long-complex-pvar

(pvar complex)
<=> (pvar (complex (defined-float * *)))
<=> complex-pvar

array — A Common Lisp array for each processor.

(pvar (array element-type dimensions))

<=> (array-pvar element-type dimensions)
(pvar (vector element—type length))

<=>  (vector-pvar element-type length)

(pvar (string length)) <=> (string-pvar length)
<=> (pvar (vector string-char length))

(pvar (bit-vector length)) <=> (bit-vector-pvar length)
<=> (pvar (vector (unsigned-byte 1) length))

structure — A Common Lisp structure for each processor.
(pvar structure-name) <=> Structure—name-pvar
Note: structure—name must be a parallel structure type defined by *defstruct.

*Lisp allows mutable pvar types (pvars of varying bit-length). The most flexible type of
pvar in *Lisp is the general mutable pvar. Mutable pvars and the general mutable pvar type
are described in separate sections later in this chapter.

Version 6.1, October 1991 X



*Lisp Dictionary

4.2 Using Type Declarations

Type declarations are useful for two reasons. First, interpreted code executes faster if type
declarations are provided for all allocated pvars. Second, the *Lisp compiler will only com-
pile *Lisp code that references pvars that are declared to be of a definite type. (For this
reason, code that uses general or mutable pvars generally will not compile.)

This section provides a basic guide to the methods and use of type declaration in *Lisp. It
includes a description of the operators used for type declaration, along with a set of guide-
lines for the use of type declarations in user code.

Type declarations represent promises made by you to the compiler that only values of the
declared type will be assigned to a variable or returned by a declared form. Type declara-
tions do not cause type coercion. It is an error for a program to violate a type declaration,
and the results of an incorrectly declared expression are not defined. Also, if a type
declaration is changed, all compiled code that depends on that declaration must be recom-
piled.

4.21 *Lisp Declaration Operators

Three operators are used for type declaration in *Lisp: the Common Lisp declaration oper-
ators declare and the, and the *Lisp declaration operator *proclaim. A general description
of the use of each of these operators appears below.

The *proclaim operator is used in the following ways:
= To declare the data type of a permanent pvar defined by *defvar, as in

(*proclaim ’ (type (pvar single-float) my-pvar))
(*defvar my-pvar (random!! 1.0))

which declares the permanent pvar my-pvar to be of type (pvar single-float).
= To declare the pvar data type returned by a user-defined *Lisp function, as in

(*proclaim
! (ftype (function (pvar pvar) (field-pvar 16))
my-pvar-function))

which declares that the pvar returned by the function my-pvar—function is of type
(field—pvar 16).

Version 6.1, October 1991



» To declare the data type of scalar variables and user-defined functions that are
used in a pvar expression (any expression that returns a pvar as its value), as in the
following examples:

(*proclaim ’ (type (unsigned-byte 8) *my-limit¥*))
(defvar *my-limit* 20)
(*set data-pvar

(+!! (random!! *my-limit*) (random!! *my-limit*)))

the global variable *my-limit* used in the two calls to 11 is declared to be of type
(unsigned-byte 8).

An example of a function declaration is given by the expressions

(*proclaim ’ (ftype (function () fixnum) die-roll))
(defun die-roll () (+ (random 6) (random 6) 2))
(*set dice-pvar (die-roll))

in which the user-defined function die-roll is declared to return a fixnum result.

Important: Do not use *proclaim to declare the returned values of Common Lisp
functions. Instead, use the Common Lisp the operator as shown in the section on
the below.

= To declare that a user-defined *Lisp function will be defined with *defun:

(*proclaim ’ (*defun fn))
(*proclaim ’ (ftype (function (t t) single-float-pvar fn))
(*proclaim ’ (type single-float-pvar z)) (*defvar z)
(defun bar () (*set z (fn 3.0 4.0)))
(*defun fn (a b)

(declare (type single-float-pvar a b))

(+!! a b))

This is important because *defun operators are really macros, not functions, so if
a *defun operation is referenced before it is defined (as in a file of *Lisp code), the
“forward references” to the operator will be compiled incorrectly.

The Common Lisp declare operator is used in the following ways:
» To declare the pvar data type of local pvars created by *let or *let*, as in

(*let ((pvar-1 (random!! 1.0)) (pvar-2 (random!! 10)))
(declare (type single-float-pvar pvar-1))
(declare (type (field-pvar 8) pvar-1))
(pvar-computation pvar-1 pvar-2))

Version 6.1, October 1991



= To declare the data types of arguments to functions defined by defun or *defun. For
example,

(*defun pvar-computation (pvar-1 pvar-2)
(declare (type single-float-pvar pvar-1))
(declare (type (field-pvar 8) pvar-2))
(combine-pvars pvar-1 pvar-2))

= To declare the data types of scalar local and looping variables, as in

(let ((limit (+ 2 (random 8))))
(declare (type fixnum limit))
(*let ((sum-pvar 0))
(do((i O (+ i 2)))
((>= i 1limit) sum-pvar)
(declare (type fixnum 1i))
(*set sum-pvar
(+!! sum-pvar (random!! i)
(random!! limit))))))

The Common Lisp the operator is used to declare the data type of an expression in situa-
tions not covered by either of the above two operators.

= To declare the data type returned by a Common Lisp expression, as in

(*set data-pvar
(the (unsigned-byte 32)
(+ normal-limit extra-limit))))

= To make “on the spot” declarations where a single inline declaration is preferable

to a more global, widespread declaration. For example,

(*set data-pvar
(log!! (the double-float-pvar figures-pvar)))
(*set (the (pvar unsigned-byte 16) data-pvar)
(the (pvar (unsigned-byte *))
(if store-three-pvar-p 3 0)))

Note that it is no less efficient to use *proclaim or declare in place of the wherever this is
possible, i.e., in declaring the data types of pvars and the data types returned by

user-defined *Lisp functions. Readability and maintainability of code can often be
improved by doing so.

Version 6.1, October 1991



Chapter 4. *Lisp Type Declaration 39

4.2.2 Basic Rules of Type Declaration

The following is a set of basic guidelines for the declaration of *Lisp data objects. These
rules describe the data objects that must be declared in order to permit code to compile, and
describe how these objects should be declared. These rules also describe which data objects
should not be declared.

Declaring Pvars

= Declare with *proclaim the data type of permanent pvars defined by *defvar.

= Declare with declare or the the data type of global pvars created by allocate!! wher-
ever these pvars are used.

= Declare with declare the data type of local pvars defined by *let and *let*.

= Don’t declare the pvar data type of temporary pvars returned by .

Declaring Pvar Functions

»  Declare with declare the arguments of a user-defined *Lisp function (i.e., a func-
tion defined by either defun or *defun).

= Declare with *proclaim the returned value of a user-defined *Lisp function.

‘= Declare with *proclaim all *defun definitions prior to all type declarations for and
calls to these definitions.

= Don’t declare the pvar data type returned by any predefined *Lisp operator.
Declaring Scalar Expressions

= Declare with *proclaim the data type of any scalar global variable that is used in a
pvar expression.

= Declare with declare the data type of any scalar local variable that is used in a pvar
expression (i.e., a variable defined by let, let*, or the do family of looping opera-
tors).

= Declare with the the data type of any scalar expression other than a variable (i.e.,
a call to a Common Lisp function) that is used in a pvar expression.

= Don’t declare the data type of scalar constants used in pvar expressions.

The next three sections provide examples for each of these rules.

Version 6.1, October 1991



40 *Lisp Dictionary
Ere

Declaring Pvars

= Declare with *proclaim the data type of permanent pvars defined by *defvar. For
example, the *Lisp forms

(*proclaim ’ (type (pvar (unsigned-byte 8)) perm-pvar))
(*defvar perm-pvar (random!! 255))

(*proclaim ’ (type boolean-pvar y-or-n-p-pvar))
(*defvar y-or—-n-p-pvar (zerop!! (random!! 2)))

declare perm—pvar to be of type (pvar (unsigned-byte 8)), and y—or-n—p—pvar to be
of type boolean—pvar.

= Declare with declare or the the data type of global pvars created by allocatel! wher-
ever these pvars are used. For example, in

(setqg a-pvar (allocate!! 0.0 nil ’single-float-pvar))
(*set (the single-float-pvar a-pvar) (random!! 10.0))
(dotimes (i 3)

(*incf data-pvar (the single-float-pvar a-pvar))))

the the operator is used to declare a-pvar to be of type single-float—pvar.

Another example is

(defvar pvars nil)
(dotimes (i 10)
(push (allocate!! 0.0 nil ’single-float-pvar) pvars))
(defun randomize-nth-pvar (n)
(*set (the single-float-pvar (nth n pvars))
(random!! 1.0)))

in which the is used to declare whichever allocated pvar is selected from the float-
pvars list to be of type single-float—pvar.

=  Declare with declare the data type of local pvars defined by *let and *let*.

For example,

(*let ((local-pvar (random!! 32)))
(declare (type (unsigned-byte-pvar 8) local-pvar))
(*!! (+!! local-pvar local-pvar) 2))

(*let* ((float-pvar (random!! 5.0))

(integer-pvar (floor!! float-pvar)))

(declare (type short-float-pvar float-pvar))
(declare (type (field-pvar 6) integer-pvar))
(abs!! (-!! float-pvar integer-pvar)))

Version 6.1, October 1991

VRN



*Lisp Type Declaration 41

=  Don’t declare the pvar data type of temporary pvars returned by !l.

For example, the following declarations are unnecessary:

; 1+ These declarations are unnecessary.

(the (unsigned-byte-pvar 5) (!! 3))

(the character-pvar (!! #\C))

(the (array-pvar single-float (3)) (!! #(1.0 2.0 3.0)))

Declaring Pvar Functions
= Declare with declare the arguments of a user-defined *Lisp function (i.e., a func-
tion defined by either defun or *defun).
For example, in
(*defun global-range (argument-pvar)

(declare (type (field-pvar 256) argument-pvar))
(- (*max argument-pvar) (*min argument-pvar)))

the argument—pvar to global-range is declared to be of type (field-pvar 256), and in
(defun zero-pvar-when (test-pvar float-pvar)
(declare (type boolean-pvar test-pvar))

(declare (type double-float-pvar float-pvar))
(if!! test-pvar float-pvar (!! 0.0)))

the test—pvar argument is declared to be of type boolean—pvar, and the float-pvar
argument of type double-float-pvar.

»  Declare with *proclaim the returned value of a user-defined *Lisp function.

For example, in

(*proclaim
" (ftype (function (pvar pvar) (pvar single-float))
- surface-area!!))

the function surface-areal! is declared to return a (pvar single-float) value.

Version 6.1, October 1991



42 *Lisp Dictionary

»  Declare with *proclaim all *defun definitions prior to all type declarations and calls
to these operations. This is important because *defun operators are really macros,
not functions, so if a *defun operation is referenced before it is defined (as in a file
of *Lisp code), the “forward references” to the operator will be compiled incor-
rectly.

(*proclaim ’ (*defun xyzzy-foo))

(*proclaim
"({ftype (function (t t) (pvar single-float)) =xyzzy-foo))

(*defun xyzzy-foo (a b)
(declare (type single-float-pvar a b))
(+!! a b))

= Don’t declare the pvar data type returned by any predefined *Lisp operator.

For example, the following declarations are unnecessary:

;+; These declarations are unnecessary.

(*proclaim ’ (function evenp!! (t t) (pvar boolean)))
(*proclaim ’ (ftype (function (t) boolean-pvar) evenp!!))
(*set data-pvar (the single-float-pvar (log!! (!! 3))))

Declaring Scalar Expressions

= Declare with *proclaim the data type of any scalar global variable that is used in a
pvar expression. For example, in

(*proclaim ’ (type single-float global-variable))
(defvar global-variable 50)
(*set data-pvar (log!! (!! global-variable)))

the global-variable used to initialize data—pvar is declared to be a single-float.

In the expression

(*proclaim ’ (type character special-char))

(defvar special-char #\Return)

(*if (char=!! char-pvar (!! special-char))
(handle-special-char char-pvar)
(handle-normal-char char-pvar))

the variable special—char is declared to be of type character. Note that the *proclaim
operator must be used instead of Common Lisp’s proclaim. Otherwise, the *Lisp
compiler will not have access to these declarations.

Version 6.1, October 1991



*Lisp Bype Declaration
o

Declare with declare the data type of any scalar local variable that is used in a pvar
expression (i.e., a variable defined by let, let*, or the do family of looping opera-
tors). For example, in

(do ((1 1 (* i 2)))
((> i 256) data-pvar)
(declare (type fixnum i))
(*incf (data-pvar (!! i))))

the iteration variable i is declared to be of type fixnum.

Another example is the expression

(let ((maximum-limit 10)
(minimum-limit 2.5))
(declare (type fixnum maximum-limit))
(declare (type single-float minimum-limit))
(*set condition-pvar
(cond!! ((>!! highest-reading-pvar (!! maximum-1i-
mit))
(front-end-pvar!! ’TOO-HIGH))
((<!! lowest-reading-pvar (!! minimum-limit))
(front-end-pvar!! ’TOO-LOW))
(t!! (front-end-pvar ’'WITHIN-LIMITS)))))

in which the local variables maximum-limit and minimum-limit are declared to be
of type fixnum and type single-float, respectively.

Important: Because the iteration variable of dotimes is always of type fixnum, it
is unnecessary to use declare to declare the type of this variable. For example,

;77 The declaration in this dotimes call is unnecessary.
(dotimes (i 50) (*incf data-pvar (!! (the fixnum i))))

Declare with the the data type of any scalar expression other than a variable (i.e.,
a call to a Common Lisp function) that is used in a pvar expression.

For example, in

(*proclaim ’ (type fixnum sum elements))
(*set data-pvar (the short-float (/ sum elements)))

the expression (/ sum elements) is declared to be of type short-float.

Version 6.1, October 1991



*Lisp Dic

R

tionary

R S

S s e

In the expression

(*proclaim ’ (type fixnum total))
(*set data-pvar (+!! (the fixnum (+ total 4))
(the fixnum (- total 4))))

the expressions (+ total 4) and (- total 4) are declared to be of type fixnum.

Note that all variables used in these scalar expressions must also be declared, as
shown in this example.

= Don’t declare the data type of scalar constants used in pvar expressions.

For example, the following declarations are unnecessary.

;77 The declarations in these forms are unnecessary.

(*set pi-pvar (!! (the short-float 3.14159)))
(*set space-char-pvar (!! (the character #\Space)))
(*set array-pvar (!! (the (array fixnum (5))

#(1 2 3 4 5))))

4.3 General Pvars

This section describes the general pvar data type in more detail.
(pvar t)

A pvar that is declared explicitly as (pvar t) is a general pvar. Before a general pvar is initial-
ized, it is referred to as void.

General pvars are allowed to contain, in different processors at the same time, data belong-
ing to any pvar type except the array or structure types.

Whenever a general pvar is used, *Lisp checks to see which data types it contains. Then,
each data type the general pvar contains is checked to verify that it satisfies the domain
requirements of the operation being performed. All this run-time checking takes time.
General pvars therefore offer almost complete generality with a correspondingly severe
reduction in run time efficiency.

When data of a particular type is stored in a general pvar, *Lisp ensures that the parameters
for that type are identical across all the values of that type. If an attempt is made to store
pvars of the same type but with divergent parameters into a general pvar, *Lisp will coerce
each pvar into a single type with identical parameters.

Version 6.1, October 1991



Chapter 4. *Lisp Type Declaration 45

For example, when source values of type (defined—float 52 8) are stored in a general pvar
containing values of type (defined—float 23 11), the source values are copied and they and
all the original values in the destination are coerced into type (defined-float 52 11).

General pvars can receive data from any pvar that is not of type array or structure. When
data of a particular pvar type is stored in a general pvar, *Lisp applies rules of type coercion
specific to that pvar type.

Within a *set form, a general pvar destination is always expanded as necessary to hold
whatever size data is provided by the source. If the source is a general pvar, *set executes
as though it were called once for each type of data contained in the source general pvar.
Thus, given a general pvar source containing boolean, signed-byte, and complex data, the
*set operation effectively performs the following sequence. First, only the processors con-
taining boolean data are activated. Next, the boolean data is copied to a boolean pvar.
Finally, *set is called with the general destination pvar and the boolean source pvar. This
process is repeated for the signed-byte and complex data types.

If a *set with a general pvar destination does not have a general pvar source, the *set opera-
tion depends on the type of the source pvar, as described under each pvar type in Section
4.6, “Rules of *Lisp Type Declaration and Coercion,” below.

4.4 Mutable Pvars

Pvars may be declared to be mutable, which allows them to contain data of varying size
and type. To declare a pvar as mutable, specify the symbol * in place of one or more param-
eters in the type specification of the pvar. For example,

(*let (mutable-signed-pvar)
(declare (type (signed-pvar *) mutable-signed-pvar))
-)

(*proclaim ’ (type (pvar (defined-float * *))

mutable-float-pvar))
(*defvar mutable-float-pvar)

Version 6.1, October 1991



*Lisp Dictionary

4.5 Mutable General Pvars

Pvars that are not declared to be of a specific type default to a type known as mutable gen-
eral. Before a mutable general pvar is initialized, it is said to be void.

This is the form used within declarations to explicitly declare a mutable general pvar:

(pvar *)

For example, the following forms proclaim random-mutable—pvar to be a mutable general
pvar and then allocate the pvar random-mutable—pvar.

(*proclaim ’ (type (pvar *) random-mutable-pvar))
(*defvar random-mutable-pvar)

If a mutable general pvar is void and a pvar of any specific data type is *set into it, then
the mutable general pvar will assume the characteristics of that type, but will retain its sta-
tus as a mutable general pvar. Once a mutable general pvar has contained data of two or
more distinct types, however, it loses its mutable quality and becomes an ordinary general
pvar. For example, if a pvar declared to be of type (pvar *) has both integers and characters
stored in it, it becomes a pvar of type (pvar t).

For the purpose of this definition, the following groups of pvar types are considered as
distinct with respect to their effect on a mutable general pvar:

boolean

signed-byte and unsigned-byte
character and string—char
defined-float

complex

The signed-byte pvar type is considered a super type that subsumes the unsigned-byte pvar
type. Similarly, the character pvar type is considered to subsume the string—char pvar type.
Thus, during a session, a mutable general pvar may hold both string-char and character
data and still retain its status as a mutable general pvar. Similarly, if a mutable general pvar
of type unsigned-byte has signed-byte data stored in it, it changes into a mutable general
pvar of type signed-byte.

This is significant because if a mutable general pvar has held only one distinct type of data,
no tests are performed on the types it contains. Thus, the run-time execution speed of code
using mutable general pvars that have held only one distinct type of data is much faster than
the execution speed of the same code using general pvars.

Version 6.1, October 1991



Chapter 4. *Lisp Type Declaration 47

Given these distinctions in type membership, so long as no data of a different type is *set
into a mutable general pvar, the mutable general pvar will behave exactly as though it was
a mutable pvar of the same type as the data last stored it.

Aggregate (array and structure) pvars are a special case. Aggregate pvars may only be *set
into a mutable general pvar if the mutable general pvar is void. In this case, the mutable
general pvar ceases to be a mutable general pvar and becomes an aggregate pvar of the
same type and size as the source pvar.

4.6 Rules of *Lisp Type Declaration and Coercion
This section defines the *Lisp rules of type declaration and coercion. For each *Lisp pvar
type listed below, the following questions are answered:

= Can pvars of this type be declared mutable?

=  What types of data can be stored into a pvar of this type?

=  What type coercions take place if the data is not of the same type as the pvar?

= What happens when data of this type is stored in a general pvar?

In each case, the latter two questions are answered by explaining the type coercions that
occur when *set is used to copy a pvar of one type into a pvar of another type. Coercions
performed by other *Lisp operators (such as coerce!!) behave similarly.

Note that when *set is used to copy values from a source pvar into a destination pvar, the
source pvar is copied and then type converted if necessary. The (possibly converted) copy
of the source pvar is then stored in the destination pvar. No coercion takes place on the
original copy of the source pvar.

(pvar boolean) boolean—pvar
Boolean pvars have no parameters associated with them and are therefore never mutable.
When boolean values are stored in a general pvar, no type conversion is performed.

Within *set forms, boolean destination pvars can receive data of type boolean only.

A general pvar can be *set into a boolean pvar if and only if all the active data in the general
pvar is boolean.

Version 6.1, October 1991



SRS e

(pvar front-end)
Front-end pvars have no parameters associated with them and are therefore never mutable.
When front-end values are stored in a general pvar, no type conversion is performed.
Within *set forms, front-end destination pvars can receive data of type front-end only.
A general pvar can be*set into a front-end pvar if and only if all the active data in the gen-
eral pvar is of type front-end.

(pvar string—char) string—char—pvar

Pvars of type string—char have no parameters associated with them and therefore can never
be declared as mutable.

When data of type string—char is put into a general pvar, it is converted to type character.

Within *set forms, string—char destination pvars can receive data of type string—char or
type character only. If the source pvar is of the character data type, then the expression
(*and (string—char-p!l source)) must return t.

A general pvar can be *set into a string—char pvar if and only if all active data in the general
pvar is of type string—char. That is, (*set destination source) is valid if destination is a
string—char pvar and if (*and (string—char-p!! source)) returns t for the general pvar source.

(pvar character) character—pvar

Character pvars have no parameters associated with them and therefore can never be de-
clared as mutable.

When character data is put into a general pvar, no type conversion is performed.

Within *set forms, character destination pvars can receive source data of type string—char
or of type character only.

A general pvar can be *set into a character pvar if and only if all the active data in the
general pvar is of type string—char or of type character.

Version 6.1, October 1991



(pvar (unsigned-byte length)) (field—pvar length)

Pvars of type unsigned-byte are also known as field pvars. They have one parameter asso-
ciated with them, a length in bits. This length may be specified as any positive integer, or
as *. Pvars declared as (pvar (unsigned-byte *)) or (field—pvar *) are mutable. For instance,

(declare (type (field-pvar 16)) ubsixteen)

declares an unsigned-byte pvar of exactly 16 bits per processor. On the other hand,
(declare (type (field-pvar *)) ub-mut)

declares a mutable unsigned-byte pvar.

Pvars declared as (pvar (unsigned-byte *)) are initially allocated 1 bit per processor. They
can, however, contain unsigned values of any length.

When data of type unsigned-byte is put into a general pvar, it is first converted to an
equivalent quantity of type signed-byte.

Within *set forms, destination pvars of type unsigned-byte can receive source data of type
unsigned-byte or of type signed-byte only. If the source data is of type signed-byte, then
all the data values must be non-negative; the source data is coerced to type unsigned-byte
before storage is effected. If the destination is of type (unsigned-byte *), then data of any
number of bits is allowed. Otherwise, it must be possible to represent every active datum
in the source using the number of bits specified for the destination’s length.

A general pvar can be *set into a pvar of type unsigned-byte if and only if all the active data
in the general pvar satisfies all the constraints detailed in the preceding paragraph.

(pvar (signed-byte length)) (signed—pvar length)

Pvars of type signed-byte have one parameter associated with them, a length in bits. This
length may be specified as any positive integer greater than 1, or as *. Pvars declared as
(pvar (signed-byte *)) are mutable. For instance,

(*proclaim ' (type (pvar (signed-byte *)) s-mut))

proclaims a mutable signed-byte pvar. Mutable signed-byte pvars are initially allocated 2
bits per processor. They can, however, contain signed values of any length.

If source data of type signed-byte is moved into a general pvar, and if the source data length
is larger than the length of the signed-byte data already contained in the destination, the
signed-byte data already contained in the general pvar destination is sign-extended to ac-
commodate the increased size.

Version 6.1, October 1991



*Lisp Dictionary
S

Within *set forms, signed-byte pvars can receive source data of type unsigned-byte or of
type signed-byte only. If the source data is of type unsigned-byte, it is coerced into type
signed-byte before *set storage takes place. If the destination is of type (signed-byte *), then
source data of any bit length is allowed. Otherwise, it must be possible to represent every
active datum in the source using the same number of bits as the signed-byte destination.

A general pvar can be *set into a signed-byte pvar if and only if all the active data in the
general pvar satisfies all the constraints detailed in the preceding paragraph.

(pvar (defined-float significand exponent))

Pvars of type defined-float have two parameters associated with them: each defines the
number of bits allocated per processor to store a portion of a floating-point number. The
first parameter specifies the significand length; the second parameter specifies the expo-
nent length.

The significand length may be any positive integer greater than or equal to 1 and less than
cm:*maximum-significand-length*. The exponent length may be any positive integer
greater than or equal to 2 and less than cm:*maximum-exponent-length*.

Mutable defined-float pvars are declared using * instead of a value for both significand
length and exponent length. For example:

(declare (type (pvar (defined-float * *))) mut-float)

It is illegal to specify only one of these parameters as *. Mutable floating-point pvars are
initially allocated 23 bits for the significand and 8 for the exponent, in each processor—
with the sign bit, the total length is 32 bits.

When defined—float data is put into a general pvar, floating-point numbers with one repre-
sentation may be coerced into floating-point numbers of another representation. If
defined-float data with significand length SL and exponent length EL is copied into a gen-
eral pvar containing defined-float data with significand length GSL and exponent length
GEL, both the copied source and all floating-point values originally in the destination are
coerced into a representation with (max SL GSL) significand length and (max EL GEL) expo-
nent length. If there was originally no floating-point data in the general destination pvar,
this has no effect; GSL and GEL are both zero in this case. If, however, floating-point data
of a different representation resides in the destination pvar, such coercion may have reper-
cussions with respect to overflow, underflow, precision, and accuracy. ‘

The above rule of floating-point coercion for data stored in general pvars also applies to
data stored in mutable defined-float pvars, i.e., pvars that are declared to be of the type
(pvar (defined-float * *)).

Version 6.1, October 1991



Chapter 4. *Lisp Type Declaration 51

Within *set forms, defined-float pvars can receive source data of type unsigned-byte, type
signed-byte, or type defined-float only. If the source data is of type unsigned-byte or type
signed-byte, a copy of it is converted to type defined—float using the *Lisp float!! operation.
This implies that, even if the destination is a mutable defined-float pvar, it is an error to
attempt to store unsigned-byte or signed-byte source data in that destination unless the
source data can be represented in the same floating-point format as is the destination pvar
data. If this error is made, an overflow error may be signaled depending on the interpreter
or compiler safety level in use.

If the *set source data is of the same floating-point format as that of the destination, a sim-
ple data copy is done.

If the *set source data is of a floating-point format larger than the destination in either sig-
nificand length or exponent length, and if the destination is not a mutable defined—float
pvar, then it is an error.

If the *set destination is a mutable defined-float pvar, then a copy of both the source and
the destination data are converted to a floating-point representation defined by the maxi-
mum of their significand and exponent lengths. After this conversion, a simple data copy
is done.

A general pvar can be *set into a defined—float pvar if and only if all the active data in the
general pvar satisfies the constraints in the preceding paragraphs.

(pvar (complex (defined-float significand exponent)))
*Lisp supports complex pvars with real and imaginary parts of type defined-float only.

The restrictions on complex pvar parameters are identical to the restrictions on
defined-float pvar parameters. The real and imaginary parts are always of exactly the same
type. Mutable complex pvars are declared with a * instead of with an integer value for each
parameter. For example, this form defines a mutable complex pvar:

(*proclaim ’ (type (pvar (complex (defined-float * *)))
mcmplx))

Since complex pvars can contain only defined-float components, the coercion rules for put-
ting complex data into a general pvar are identical to those for defined-float data. Note
however that complex data is completely independent of defined-float data with respect to
coercion: the existence of either type of data in a general pvar does not affect the represen-
tation of the other type.

The rule of complex coercion for data stored in general pvars also applies to data stored in
mutable complex pvars.

Version 6.1, October 1991



52 *Lisp Dictionary

Within *set forms, complex pvars can receive source data of type unsigned-byte, signed—
byte, defined-float, or complex only. If the *set source data is of type unsigned-byte,
signed-byte, or defined-float, it is coerced into the floating-point format determined by the
complex destination, following the same rules as for pvars of type defined-float. The source
data is then converted to complex data of the same floating-point format as the destination,
with 0.0 as its imaginary part. Finally, a simple data copy is done.

General pvars can be *set into complex pvars if and only if all the active data satisfies the
constraints in the preceding paragraph.

(pvar (array element—type dimensions))
Array pvars may not be declared mutable.

Array pvars may not be stored in general pvars. There is one exception: an array pvar may
be stored in a void mutable general pvar. A void mutable general pvar is a pvar of type (pvar
*) that has never had any data stored in it. When an array pvar is stored in a void mutable
general pvar, that mutable general pvar becomes an array pvar with the same type and size
as the array pvar which has been stored in it.

Within *set forms, array pvars can receive source data from other arrays pvars of the same
shape. Effectively, *set is called on each element of the destination and source. The normal
rules of type coercion with respect to the destination apply to *set operations acting on
arrays.

(pvar struct-name)

A pvar of type struct-name may be declared only after struct-name has been defined with
*defstruct.

Structure pvars may not be declared mutable.

Structure pvars may not be stored in general pvars. There is one exception: a structure pvar
may be stored in a void mutable general pvar. A void mutable general pvar is a pvar of type
(pvar *) that has never had any data stored in it. When a structure pvar is stored in a void
mutable general pvar, that mutable general pvar becomes a structure pvar with the same
type and size as the structure pvar that has been stored in it.

Within *set forms, structure pvars can receive source data from other structure pvars of
exactly the same type. A simple bit copy is performed.

Version 6.1, October 1991



Chapter S

*Lisp Compiler Options

This chapter describes the many compiler options you can use to control the way in which
your *Lisp code is compiled, and also describes the means by which you can modify those
options.

5.1 Setting Compiler Options

The compiler options control the behavior of the *Lisp compiler, including the degree of
optimization it performs while generating code. There are two ways to set the compiler
options: using a menu and directly modifying the values of *Lisp global variables.

5.1.1 Using the Compiler Options Menu

The options menu can be displayed by typing:

> (in-package ’*1lisp)
> (compiler-options)

For The Curious: You can also display the current settings of the *Lisp compiler options
(without modifying them) by typing:

(slc::report-options)

In the Lucid Common Lisp version of *Lisp this function takes an optional argument that
if non-nil adds the Lucid compiler options to the displayed list:

(slc::report-options t)

Version 6.1, October 1991 53



54 *Lisp Dictionary

fss

5.1.2 The Standard Options Menu

The standard options menu lists the following options. (Default values are shown.)

Starlisp Compiler Options

Compile Expressions (Yes, or No) Yes

Warning Level (High, Normal, None) Normal

Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None) Warn
safety (0, 1, 2, 3) 1

Print Length for Messages (an integer, or Nil) 4

Print Level for Messages (an integer, or Nil) 3

Pull Out Common Address Expressions (Yes, or No) No

Use Always Instructions (Yes, or No) No

On a UNIX front end, options are listed one at a time, each with its current value. To keep
the current value for an option and go on to the next option, press Return. To change the
option, type the desired value and press Return. At the end of the options list, confirmation
is requested:

Do the assignment? (Yes, or No)

To save the options you’ve selected, type Yes and press Return. To cancel the changes
you’ve made, type No and press Return.

5.1.3 The Extended Compiler Options Menu

Not all available options for controlling the behavior of the *Lisp compiler are listed by
default when the options menu is invoked. The options that are not in the default menu
provide capabilities that are not generally needed.

To invoke the options menu with all options listed, type the following:

(compiler-options :class :all)

Version 6.1, October 1991



The extended options menu lists the following options. (Default values are shown.)

Starlisp Compiler Options

Compile Expressions (Yes, or No) Yes

Warning Level (High, Normal, None) Normal

Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None) Warn
Safety (0, 1, 2, 3) 1

Print Length for Messages (an integer, or Nil) 4

Print Level for Messages (an integer, or Nil) 3

Optimize Bindings (No, Cspeed<3, Yes) Cspeed<3

Peephole Optimize Paris (No, Cspeed<3, Yes) Cspeed<3

Pull Out Common Address Expressions (Yes, or No) No

Use Always Instructions (Yes, or No) No

Machine Type (Current, Compatible, Cml, Cm2, Cm2-FPA, Simulator) Current
Add Declares (Everywhere, Yes, No) No

Use Undocumented Paris (Yes, or No) Yes

Verify Type Declarations (No, Current-Safety, Yes) Current-Safety
Constant Fold Pvar Expressions (Yes, or No) Yes

Speed (0, 1, 2, 3) 1

Compilation Speed (0, 1, 2, 3) 1

Space (0, 1, 2, 3) 1

Strict THE Type (Yes, or No) Yes

Immediate Error If Location (Yes, or No) Yes

Optimize Check Stack Expression (Yes, or No) Yes

Generate Comments With Paris Code (Yes, Macro, No) Yes

Using the Compiler Menu on a Symbolics Front End

On a Symbolics front end, changes are made by clicking the mouse on desired options and
by typing new values where appropriate. To exit the menu and save the options you’ve
selected, click the left mouse button on the Exit box. To exit the menu without saving the
new selections, click on the Abort box.

Also, there are two alternate methods of invoking the options menu on a Symbolics front
end:

= At a Lisp Listener, type the command

:Set Compiler Options
= In the editor, type

meta-x Set Compiler Options

Version 6.1, October 1991



56 *Lisp Dictionary

proveveee

5.1.4 Setting *Lisp Compiler Variables Directly

In addition to using the compiler options menu, compiler options may be changed by
changing the value of associated *Lisp global variables, or, for certain options, by using a
global declaration.

To set the values of compiler option variables, use the following operators:
setq compiler-let optimize/*optimize

These operators are described below, along with examples of their use.

setq

The simplest way to interactively modify the value of a compiler variable is to setq it to
a new value. For example, you’ll often want to modify the values of the compiler variables
*warning-level* and *safety*. You can use setq to change them, like this:

(setqg *warning-level* :high *safety* 3)

compiler-let

The Common Lisp special form compiler-let can be used to selectively change the value
of any *Lisp compiler option for a region of code. For example ‘

(compiler-let ((*compilep* t) (*safety* 0)
(*use—always—-instructions* t))

)

insures that the *Lisp compiler operates with a safety level of 0 and enables the use of Paris
-always instuctions for the region of code enclosed by the compiler-let form.

optimize
*optimize

The Common Lisp optimize declaration specifier may be used within either a *proclaim
form or a declare form to change optimization levels for both the Common Lisp compiler
and *Lisp compiler. The *optimize declaration specifier, used within a *proclaim or a de-
clare form, changes the optimization level for the *Lisp compiler only; it does not affect
the Common Lisp compiler.

The following properties may be set by using optimize and *optimize:

safety speed space compilation—speed

Version 6.1, October 1991



Chapter 5. *Lisp Compiler Options 57

For example,
(*proclaim ’ (optimize (safety 3)))
sets the safety level to 3 for both compilers, and
(*proclaim ’ (*optimize (safety 3)))
sets the safety level to 3 only for the *Lisp compiler.

The Common Lisp declare form may be also used with either the optimize or the *optimize
declaration specifier to change the *Lisp optimization levels. For example:

(*let ((truth t!!))
(declare (optimize (safety 3)))
(foo (bar truth)))

In this example the declare form sets both the Common Lisp and the *Lisp safety levels at
3 for the entire body of the *let form.

5.2 *Lisp Compiler Options
All compiler options are listed below, in alphabetical order. Each is listed in the form

Name
Values: legal values for this option
Default:  the default value for this option
Variable: the global variable associated with this option
A description of the compiler option, and of the effects of each of its values.

Note: Often the value displayed for a compiler option on the options menu will not be the
same as the corresponding Lisp value stored in the compiler variable. For example, many
compiler options are displayed as Yes or No choices on the menu, yet the corresponding
variable will have values of either t or nil. In such cases, the appropriate Lisp values for the
compiler option will be shown in parentheses after the values that appear on the options
menu.

Version 6.1, October 1991



58 , *Lisp Dictionary
S

Add Declares

Values: Everywhere (:everywhere), Yes (t), No (nil)
Default:  No (nil) on Symbolics front ends, Yes (t) on other front ends
Variable: *add-declares*

The Add Declares compiler option determines if and how the *Lisp compiler will generate
code that includes type declarations for stack address computations.

A value of Everywhere (:everywhere) causes the compiler to generate type declarations
using both declare and the forms. A the form is used wherever declare is not legal.

A value of Yes (t) causes the compiler to generate type declarations wherever a declare
form is appropriate.

A value of No (nil) prevents the compiler from generating any type declarations. The de-
fault value on Symbolics front ends is nil because the Symbolics implementation generally
ignores type declarations.

Compile Expressions

Values: Yes (t), No (nif)
Default:  Yes (t)
Variable: *compilep*

The Compile Expressions option enables or disables the *Lisp compiler.
A value of Yes (t) enables the *Lisp compiler; a value of No (nil) disables it.

By default, the compiler is enabled.

Compilation Speed

Values: 0,1,2,3
Default: 1 ‘
Variable: *compilation-speed*

Note: Except as a constraint on the Optimize Bindings and Peephole Optimize Paris options,
the Compilation Speed option is not currently used by the *Lisp compiler.

The Compilation Speed compiler option advises both the Common Lisp and the *Lisp com-
pilers of the relative importance of compilation speed.

Version 6.1, October 1991



Chapter 5. *Lisp Compiler Options 59

A value of 0, (low compilation speed) means compilation speed is totally unimportant.
A value of 1, the default, means compilation speed is of little importance.
A value of 2 means compilation speed is of moderate importance.

A value of 3 means compilation speed is extremely important. Note: At this value, both
Optimize Bindings and Peephole Optimize Paris are disabled.

Constant Fold Pvar Expressions

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *constant-fold*

The Constant Fold Pvar Expressions compiler option determines whether or not the *Lisp
compiler will constant fold certain pvar expressions.

A value of Yes (t) allows the compiler to constant fold pvar expressions in which all argu-
ments to certain *Lisp functions contain identical values in all active processors. Examples
of these kinds of arguments are nilll, t!1, and calls to the function Il (this includes scalar
constants that are promoted to pvars).

A value of No (nil) prevents the compiler from constant folding.
For example, with this option enabled, expressions containing constant arguments, such as:
(+!! (the (unsigned-byte 32) x-position) 128 32 5)

are automatically simplified by performing the obvious arithmetic on the front-end. For
example, the above expression is simplified to:

(!! (the (unsigned-byte 32) (+ x-position 128 32 5)))
Constant-folding is done wherever possible. For example, the expression

(+!! (the (unsigned-byte-pvar 32) x-position) 128 32 5)
is simplified to

(+!! (the (unsigned-byte-pvar 32) x-position) 165)

Constant folding can often make *Lisp code more efficient.

Version 6.1, October 1991



e

For example, with constant folding enabled,
(*sum (-!! 1.0))
compiles into:

(progn ;; Constant global sum - *sum.
(* -1.0 (cm:global-count-always cm:context-flag)))

whereas without constant folding, the same expression compiles into:

(let* ((slc::old-next-stack-field (cmi::next-stack-field))
(-!!-index—-2 (+ slc::old-next-stack-field 32)))
(progl ‘
(progn
(cm:allocate-stack-field
(- =!!-index-2 slc::o0ld-next-stack-field))

;: Move constant - !!.

(cm:move—-constant slc::old-next-stack-field 1065353216 32)

(cm:lognot (+ slc::old-next-stack-field 31)

(+ slc::o0ld-next-stack-field 31) 1)

(cmi::global-float-add slc::old-next-stack-field 23 8)

(cm:deallocate-upto-stack—-field slc::old-next-stack-
field)))

Clearly, constant folding allows the compiler to generate more efficient code.

Generate Comments With Paris Code

Values: Yes (t), Macro (:macro), No (nil)
Default:  Yes (t)

Variable: *generate-comments*

The Generate Comments With Paris Code compiler option controls whether or not the *Lisp
compiler inserts comments into the Lisp/Paris code it generates.

A value of Yes (t) causes the compiler to generate comments

A value of Macro (:macro) causes the compiler to generate comments when forms are ma-
croexpanded using the Symbolics editor command Macro Expand Expression.

A value of No (nil) prevents the compiler from placing comments in Lisp/Paris code.

Version 6.1, October 1991



Chapter 5. *Lisp Compiler Options 61

Immediate Error If Location

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *immediate-error-if-location*

The Immediate Error If Location option may be changed at run time to change the level of
safety used by code compiled at a Safety level of 2.

The default value of Yes (t) makes such code run as if compiled at Safety level 3.
A value of No (nil) makes the code run as if compiled at Safety level 1.

See the description of the Safety compiler option for more information.

Inconsistency Reporting Action

Values: Abort (:abort), Error (:error), Cerror(:cerror),
Warn (:warn), None (:none)

Default:  Warn (:warn)

Variable: *inconsistency-action*

The Inconsistency Reporting Action option controls the behavior of the compiler when an
inconsistency is discovered. An inconsistency usually indicates an implementation error in
the compiler.

An value of Abort (:abort) causes the compiler to report a discovered compiler inconsisten-
cy and immediately abort the compilation.

A value of Error (:error) causes the compiler to report a discovered compiler inconsistency
using the Common Lisp function error. This signals a fatal error and enters the debugger.

A value of Cerror (:cerror) causes the compiler to report a discovered compiler inconsisten-
cy using the Common Lisp function cerror. This signals a continuable error and enters the
debugger. The program may be resumed after the error is resolved.

The default value of Warn (:warn) causes the compiler to report a discovered compiler in-
consistency using the Common Lisp function warn. This prints a warning message but
normally does not enter the debugger.

A value of None (:none) instructs the compiler not to take any special action when an in-
consistency in the compiler is discovered.

Version 6.1, October 1991



62 *Lisp Dictionary
O s - :

i

Machine Type

Values: Current (:current), Compatible (:compatible),
CM1 (:em1), CM2 (:cm2), CM2-FPA (:cm2-fpa),
Simulator (:simulator)

Default:  Current (:current)

Variable: *machine-type*

Note: This option is not currently used by the *Lisp compiler.

The Machine Type option directs the *Lisp compiler to generate code that is either specific
to one of the Connection Machine models or compatible across models.

The default value of Current (:current) instructs the compiler to generate code specific to
the current machine type.

A value of Compatible (:compatible) instructs the compiler to generate code compatible
across machine types.

A value of CM1 (:cm1) allows the compiler to generate code specific to Connection Ma-
chine model CM-1.

A value of CM2 (:cm2) allows the compiler to generate code specific to the CM-2.

A value of CM2-FPA (:cm2-fpa) allows generation of code specific to the CM-2 with the
floating-point accelerator. When machine type CM2-FPA is specified, the *Lisp compiler
generates Paris instructions that take advantage of the floating point accelerator hardware.
This is the most useful value of the Machine Type option.

A value of Simulator (:simulator) allows the compiler to generate code specific to the simu-
lator. Note: This value is currently equivalent to the Compatible setting.

The example below demonstrates how the Machine Type option interacts with other compil-
er options. Code generated by compiling a *sum expression using three different
combinations of the Machine Type and Use Always Instructions options is shown. Each
successive combination produces more efficient code. Safety is set to 0 in all cases to elimi-
nate error detection code, so that the examples are more readable.

Consider the following *Lisp code:

(*proclaim ’ (type (pvar single-float) sfl sf2))
(*sum (*!! (+!! sfl (!! 128.0)) sf2))

Version 6.1, October 1991



When the Machine Type option is set to Compatible (:compatible) and the Use Always In-
structions option is set to No (nil), the compiler generates the following code:

(let* ((slc::o0ld-next-stack-field (cm:allocate-stack-field 32))
(*!!-index-2 (+ slc::old-next-stack-field 32)))
(declare (ignore *!!-index-2))
(progl
(progn ;; Move constant - !!.
(cm:move—-constant slc::old-next-stack-field 1124073472 32)
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-2-11 slc::old-next-stack-field
(pvar-location sfl) 23 8)
;7 The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-11 slc::old-next-stack-field
(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field slc::o0ld-next-stack-
field)))

However, when Machine Type is set to CM2-FPA (:cm2-fpa) and Use Always Instructions
is set to No (nil), the compiler generates the following, more efficient, code:

(let* ((slc::old-next-stack-field (cm:allocate-stack-field 32))
(*!!'-index-2 (+ slc::old-next-stack~field 32)))
(declare (ignore *!!-index-2))
(progl
(progn
(cmi::clear-mem cm:overflow-flag)
(cm: f-add-constant-3-11 slc::old-next-stack-field
(pvar-location sfl) 128.0 23 8)
;7 The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-11 slc::old-next-stack-field
(pvar—-location sf2) 23 8)
;+ The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field slc::old-next-stack-
field)))

Version 6.1, October 1991



64 *Lisp Dictionary
b

The most efficient code is generated when Machine Type is set to CM2-FPA (:cm2-fpa) and
Use Always Instructions is set to Yes (t):

(let* ((slc::old-next-stack-field (cm:allocate-stack-field 32))
(*!!-index-2 (+ slc::old-next-stack-field 32)))
(declare (ignore *!!-index-2))
(progl
(progn
(cmi::clear-mem cm:overflow-flag)
(cm: f-add-const-always—3-11 slc::old-next-stack-field
(pvar-location sfl) 128.0 23 8)
;7 The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow—-flag 394259 nil)
(cm:f-multiply-always—-2-11 slc::old-next-stack-field
(pvar—-location sf2) 23 8)
;: The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add slc::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field slc::old-next-stack-
field)))

Macroexpand Inline Forms
Note: this option applies only to users on Symbolics front ends.

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *macroexpand-inline-forms*

This option controls the way the command Macro Expand Expression All expands inline
function forms.

The default value of t causes the command Macro Expand Expression All to expand inline
forms as if they were macros.

A value of nil prevents the command Macro Expand Expression All from expanding inline
forms as if they were macros.

Expanding inline function forms as if they were macros may make the *Lisp compiler’s
output more difficult to read. For example, consider the following *set expression:

(*set u8 u4)

Version 6.1, October 1991



Chapter 5. *Lisp Compiler Options 65

'With Macroexpand Inline Forms set to nil, an invocation of Macro Expand Expression All
displays:

(progn
;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (pvar—location u8)
(pvar-location u4) 8 4)
nil)

With Macroexpand Inline Forms set to t, an invocation of Macro Expand Expression All dis-
plays:

(progn
;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (aref u8 1)
(aref ud 1) 8 4)
nil)

Notice that function calls like pvar-location have been turned into calls to aref.

Macroexpand Print Case
Note: this option applies only to users on Symbolics front ends.

Values: No (nil),
Downcase (:downcase), Upcase (zupcase)
Capitalize (:capitalize)

Default:  No (nil)

Variable:  *macroexpand-print-case*

This option controls the print case used to display the expansions produced by the
Macroexpand Expression command.

A Macroexpand Expression value of nil (the fault) causes the value of the variable *print—-
case* to be used.

A non-nil Macroexpand Expression value is used instead of *print-case*.

Version 6.1, October 1991



66 *Lisp Dictionary
b A

Macroexpand Repeat

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *macroexpand-repeat*

Note: this option applies only to users on Symbolics front ends.
This option controls the way the command Macro Expand Expression works.

A value of t causes Macro Expand Expression to use the Common Lisp macroexpand func-
tion, which repeatedly calls macroexpand-1 to expand a macro expression.

A value of nil causes Macro Expand Expression to use the Common Lisp macroexpand—1
function, which does not repeat.

Optimize Bindings

Values: No (nil), Cspeed<3 (cspeed<3), Yes (t)
Default:  Cspeed<3 (cspeed<3)
Variable:  *optimize-bindings*

The Optimize Bindings option provides control over compilation speed by altering the num-
ber of temporary bindings generated by the *Lisp compiler.

A value of Yes (t) enables this option and causes extra bindings to be removed. When bind-
ing optimization is enabled, some temporary variables are eliminated and others are used
repeatedly.

A value of No (nil) disables binding optimization. When the binding optimization option
is disabled, the code produced by the compiler is more readable because it uses unique
temporary address variables to represent each value represented.

The default value of Cspeed<3 varies binding optimization based on the value of the *com-
pilation-speed* variable. If compilation speed is 3 (the highest possible value), then
*optimize-bindings* is set to nil. If compilation speed is less than 3, then *optimize-bind-
ings* is set to t.

Version 6.1, October 1991



Optimize Check Stack Expression

Values: Yes (t), No (nil)
Default:  Yes (yes)
Variable: *optimize—~check-stack*

The Optimize Check Stack Expression compiler option determines how the *Lisp compiler
manages the temporary stack space used by the Lisp/Paris code it generates.

The default value of Yes (t) makes the compiler try to remove the length expression from
calls to cm:allocate—stack-field.

A value of No (nil) disables this optimization.

Peephole Optimize Paris

Values: No (nil), Cspeed<3 (3), Yes (t)
Default:  Cspeed<3 (3)
Variable: *optimize—-peephole*

The Peephole Optimize Paris option controls the *Lisp compiler’s peephole optimization of
generated Lisp/Paris code.

A value of Yes (t) causes the *Lisp compiler to optimize the Lisp/Paris code it generates.
A value of No (nil) prevents this optimization.

The default value of Cspeed<3 varies peephole optimization based on the value of the
*compilation-speed* variable. If compilation speed is 3 (the highest possible value), then
*optimize—peephole* is set to nil. If compilation speed is less than 3, then *optimize—peep-
hole* is set to t.

Print Length for Messages
Print Level for Messages

Values: an integer or nil

Length Default:4

Level Default: 3 ,
Variables: *slc—print-length* *slc—print-level*

These options control how much of a list expression the compiler prints when generating
a warning about that expression.

Version 6.1, October 1991



e
As in Common Lisp, the Print Level indicates how many levels of data object nesting will
be printed, counting from 0.

The Print Length indicates how many elements at each level will be printed, counting
from 1.

For both variables, if the value nil is specified, no limit is imposed.

The Common Lisp variables *print-length* and *print-level* are bound to these variables
when compiler messages are printed.

Pull Out Common Address Expressions

Values: Yes (t), No (nil)
Default:  No (t)
Variable: *pull-out-subexpressions*

Note: This option is not fully implemented and therefore may not work in some cases.

The Pull Out Common Address Expressions option determines whether the compiler per-
forms common subexpression elimination on address expressions such as calls to
pvar-location. Enabling this option can, in certain circumstances, increase performance
significantly.

A value of Yes (t) enables this optimization; a value of No (nil) disables it. This optimiza-
tion is off by default.

When enabled, this option trims the code executed on the front end; it does not affect the
code executed on the Connection Machine. If a program already has a high Connection
Machine utilization, this option will do little to improve the execution time. Conversely, if
a program has a low Connection Machine utilization, enabling Pull Out Common Address
Expressions can reduce execution time. The potential benefit is usually greater for larger
expressions, where there are more opportunities for common addressing expressions.

For example, consider the following *set expression:

(*set sl16 (+!! (*!! s8 s8-2) s16-2))

Version 6.1, October 1991




Chapter 5. *Lisp Compiler Options 69

Here is the code produced with this option disabled:

(progn
(cm:multiply (pvar-location sl6) (pvar-location s8)
(pvar—location s8-2) 16 8 8)
(cm:+ (pvar-location sl6) (pvar-location s16-2) 16)
(cmi::error—-if-location cm:overflow-flag 66575)
nil)

Here is the code produced by the compiler with this option enabled:

(let* ((pvar-location-sl6-1 (pvar-location sl16))
(pvar-location-s8-2 (pvar-location s8))
(pvar—-location-s8-2-3 (pvar—-location s8-2))
(pvar-location-sl16-2-4 (pvar-location s16-2)))

(cm:multiply pvar—location-sl16-~1 pvar-location-s8-2
pvar-location-s8-2-3 16 8 8)

(cm:+ pvar-location-sl6-1 pvar-location-sl6-2-4 16)

(cmi::error-if-location cm:overflow-flag 66575)

nil)

Notice that pvar-location is executed four times when Pull Out Common Address Expres-
sions is enabled, versus five times when it is disabled.

Rewrite Arithmetic Expressions

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *rewrite-arithmetic-expressions*

This option determines whether the compiler optimizes arithmetic operations such as
(*set x (+!! x y 2))
using the associative rules of arithmetic.

The default value of Yes (t) allows the compiler to rewrite arithmetic operations as if they
were associative.

A value of No (nil) prevents this arithmetic-rewriting optimization.

When this option is enabled, the *Lisp compiler may produce more efficient code in some
cases.

Version 6.1, October 1991



When this option is disabled, the *Lisp compiler evaluates expressions in the order in
which they appear.

Regardless of the current Rewrite Arithmetic Expressions setting, you can force a specific
order of evaluation by explicitly directing the computation:

(progn (*set x (+!! x y)) (*set x (+!! x z)))

Usage Note: When computing with floating-point data, results may vary depending on
how this option is set. For example, consider the expression

(*set x (+!! x y 2))
The laws of arithmetic allow this to be computed as either of the following expressions:
(*set x (+!! x (+!! y z))) (*set x (+!! (+!! x y) z))

Given the limitations imposed by fixed-precision floating-point arithmetic, the two ways
of evaluating the original expression may not yield identical results if x, y, and z are float-
ing-point or complex pvars.

Safety

Values: 0,1,2,3
Default: 1
Variable: *safety*

The Safety option controls what kind of code the compiler generates to detect error condi-
tions, and also controls how these error conditions are reported.

At a safety level of 0 (low safety) no error-checking code is generated.

At the default safety level of 1, limited error-checking code is generated, so an error may
not be signalled at the exact point in your code at which it occurred.

At a safety level of 2, the generated code implements either level 1 or level 3 safety, de-
pending on the value of the compiler variable *immediate—error-if-location*. (See
description of the Immediate Error If Location compiler option.)

At a safety level of 3, (high safety), full error-checking code is generated, so that an error
will always be signalled at the exact point in your code at which it occurred.

In general, high safety produces slow but safe code, and should be used for debugging
purposes, while low safety produces the fastest code.

Version 6.1, October 1991



Space

Values: 0,1,2,3
Default: 1
Variable: *space*

Note: This option is not currently used by the *Lisp compiler.

The Space compiler option advises both the Common Lisp and the *Lisp compilers of the
relative importance of the space utilization of compiled code, including both the size of the
generated code and its run-time space utilization.

A value of 0, means code size and instruction space utilization are totally unimportant.
A value of 1, the default, means code size and space utilization are of little importance.
A value of 2 means code size and space utilization are of moderate importance.

A value of 3 means code size and space utilization are extremely important.

Speed

Values: 0,1,2,3
Default: 1
Variable: *speed*

Note: This option is not currently used by the *Lisp compiler.

The Speed compiler option advises both the Common Lisp and the *Lisp compilers of the
relative importance of speed in the resulting code.

A value of 0, (low speed) means speed of execution is totally unimportant.
A value of 1, the default, means speed of execution is of little importance.
A value of 2 means speed of execution is of moderate importance.

A value of 3 means speed of execution is extremely important.

Version 6.1, October 1991



72 *Lisp Dictionary

Use Always Instructions

Values: Yes (t), No (nil)
Default:  No (nil)
Variable: *use-always-instructions*

Note: This option may generate undocumented Paris instructions.

The Use Always Instructions option determines whether or not the *Lisp compiler generates
unconditional —always Paris instructions for stack operations.

A value of Yes (t) enables the use of the Paris —always instructions; a value of No (nil)
disables their use. This option is disabled by default.

For an example of code generated when this option is set to Yes, see the last example under
the Machine Type option description.

Use Code Walker

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable:  slc::*use-code-walker*

This option controls whether the code walker portion of the *Lisp compiler is enabled.

The default value of Yes (t) enables the code walker. A value of No (nil) disables the code
walker.

The code walker allows the *Lisp compiler to find type declarations it would otherwise
miss, and to compile *Lisp code more thoroughly.

If the code walker is enabled, the compiler sees declarations in all locations permitted by
Common Lisp, and will compile all properly declared code.

If the code walker is disabled, the compiler will only see declarations within *defun, *let,
*let*, and *locally forms, and will only compile code within these *Lisp forms:

*set *pset *setf pref *sum *integer-length
*or *and *xor *logior *logand *logxor
*max *min *locally

Additionally, the predicates for *when, *unless, *if, and *cond and the variable initialization
forms for *let and *let* variables will be compiled, but the body code of these forms will
not.

Version 6.1, October 1991



Use Undocumented Paris

Values: Yes (t), No (nil)
Default:  Yes (t)
Variable: *use-undocumented—-paris*

The Use Undocumented Paris compiler option determines whether or not the code gener-
ated by the *Lisp compiler uses undocumented Paris instructions.

The default value of Yes (t) allows the use of undocumented Paris instructions. In many
cases, enabling this option significantly increases the execution speed of compiled *Lisp
code.

A value of No (nil) disallows the use of most undocumented Paris instructions.
For example, with Use Undocumented Paris set to Yes (t), compiling
(*sum (if!! bl s8 s8-2))

results in code that includes three internal, undocumented Paris functions in the CMI pack-
age. When the same *sum statement is compiled with this option set to No (nil), the
generated code includes only documented functions in the CM package.

If the Use Undocumented Paris option is disabled, it still allows the *Lisp compiler to gen-
erate undocumented Paris routines in cases where no appropriate documented Paris
instructions exists. However, if a documented instruction exists, it will be used, even if the
undocumented instruction is faster.

Verify Type Declarations

Values: No (nil), Current—Safety (:current-safety), Yes (t)
or an integer between 0 and 3

Default:  Current—Safety (:current-safety)

Variable: *verify-type—declarations*

The Verify Type Declaration compiler option determines whether or not the *Lisp compiler
generates type verification code for arguments to user-defined functions that have been
given either the or deciare type declarations.

This option is primarily useful for debugging *Lisp programs. The most common user er-
rors are declaring pvar arguments incorrectly and violating type declarations.

Version 6.1, October 1991



*Lisp Dictionary

" _—

These errors are often hard to track down because the results of violating a type declaration

can be unpredictable. With the Safety option set at 3, and the Verify Type Declarations option

- enabled, the compiler generates code to catch erroneous and violated type declarations im-
mediately.

The legal integer values for this option are:
0 No error checking is done.
1 Minimal error checking is done.
2 Moderate error checking is done (more than level 1, but less than level 3).
3 Full type verification error checking is done.

A value of Yes (t) causes to the compiler to generate the maximum amount of error check-
ing code, and is equivalent to a value of 3.

A value of No (nil) prevents the compiler from generating any type verification code and
is equivalent to a value of 0.

The default value of Current-Safety (:current—safety) sets the verification level based on
the current safety level. If the Safety option is set to 0, and Verify Type Declarations is set
to Current—Safety, no verification code is generated. With Safety at 3, verification becomes
likewise set to 3, and so on.

As an example, consider the following *sum expression.
(*sum (the (field-pvar 32) quux)))

At a Verify Type Declarations level of 0. the compiler generates no type checking code, so
this *sum expression compiles into

(cm:global-unsigned-add (pvar-location quux) 32)
At Verify Type Declarations level 1, the compiler generates minor error checking code:
(progn
(if (not (*lisp-i:internal-pvarp quux))
(slc::error—doesnt-match-declaration

quux ’ (pvar (unsigned-byte 32))))
(cm:global-unsigned-add (pvar—-location quux) 32))

In this case, a test is done to make sure that quux is a pvar.

Version 6.1, October 1991



Chapter 5. *Lisp Compiler Options 75
e s i

At Verify Type Declarations level 2, the compiler generates more error checking code:

(progn
(if (not (and(*lisp-i:internal-pvarp quux)
(eq (pvar—-type quux) :field)))
(slc::error-doesnt-match-declaration
quux ’ (pvar (unsigned-byte 32))))
(cm:global-unsigned-add (pvar-location quux) 32))

Here, the verification code insures that quux is a field—pvar.

At Verify Type Declarations level 3, the compiler generates the maximum error checking
code:

(progn
(if (not (and(*lisp-i:internal-pvarp quux)
(eq (pvar-type quux) :field)
(eql (pvar-length quux) 32)))
(slc::error-doesnt-match-declaration
quux ’ (pvar (unsigned-byte 32))))
(cm:global-unsigned-add (pvar-location quux) 32))

In this case, the verification code tests that quux is a field-pvar of length 32.

Warning Level

Values: High (:high), Normal (:normal), None (:none)
Default:  Normal (:normal)
Variable: *warning-level*

The Warning Level option controls the warnings produced by the *Lisp compiler.

A warning level value of High (:high) causes the compiler to generate a warning whenever
an expression is not compiled. The warning tries to explain why the expression is not com-
piled. Usually the cause is a lack of type declarations, as shown in the following example:

(*proclaim ’ (type (pvar (signed-byte 8)) s8))
(*set s8 (+!! s8 variable))

Version 6.1, October 1991



*Lisp Dictiona

SR

Attempting to compile the above code with the warning level set to High (:high), produces
the following warning:

;7; Warning: *Lisp Compiler: While compiling VARIABLE:
;¢ The expression (*LISP-I::*SET-1 S8 (+!! S8 VARIABLE)) is not compiled
;:; because the *Lisp compiler cannot find a declaration for VARIABLE

By contrast, the following form can be successfully compiled because the data type of vari-
able is supplied.

(*proclaim ’ (type (pvar (signed-byte 8)) s8))
(*set s8 (+!! s8 (the (pvar (signed-byte 8)) variable)))

The default warning level of Normal (:normal) causes the compiler to generate warnings
only for invalid function arguments and type mismatches.

For example, with warning level set to Normal (:normal), an attempt to compile

(*proclaim ’ (type (field-pvar 8) u8))
(*proclaim ’ (type boolean-pvar bl))
(*set u8 (-!! bl))

results in this warning:

Warning: While compiling Bl:

Function -!! expected a numeric pvar argument but got a boolean pvar argument.

At a warning level value of None (:none) the compiler does not signal warnings.

Version 6.1, October 1991



Part 11
*Lisp Dictionary







*Lisp Dictionary
o e

abs!! | [Function]

Takes the absolute value of the supplied pvar.

SYNTAX

absll  numeric—pvar

ARGUMENTS

numeric-pvar Numeric pvar. Pvar for which absolute value is calculated.

RETURNED VALUE

absolute—value—pvar
Temporary numeric pvar. In each active processor, contains the
absolute value of the corresponding value of numeric—pvar.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The abs!! function takes the absolute value of numeric—pvar. It returns a temporary
pvar that contains in each active processor the absolute value of the corresponding
value of numeric—pvar. The abs!! function provides the same functionality for numeric
pvars as the Common Lisp function abs provides for numeric scalars.

EXAMPLES

For non-complex numeric pvars, abs!! returns the positive magnitude of numeric—pvar
in each active processor. For example, the following are equivalent:

(abs!! pvar) <=> (if!! (minusp!! pvar) (-!! pvar) pvar)
(abs!! (1! =5)) <=> (1! 5)

Version 6.1, October 1991 79



*Lisp Dictionary
e

For complex pvars, absll returns the complex magnitude of numeric—pvar in each
active processor, as a floating-point number.

(abs!! complex-pvar) <=>
(sgrt!! (+!! (expt!! (realpart!! complex-pvar) (!! 2))

(expt!! (imagpart!! complex-pvar) (!! 2))))

(abs!! (!! #c(4 3))) <=> (!! 5.0)

NOTES

It is an error if any of the numeric—pvar arguments contains a non-numeric value in any
active processor.

80 ) Version 6.1, October 1991



*Lisp Dictionary acosll, acosh!!
e

acosl!!, acosh!! [Function]

Take the arc cosine and arc hyperbolic cosine of the supplied pvar.

SYNTAX
acosl! numeric—-pvar
acoshll numeric-pvar
ARGUMENTS
numeric-pvar Numeric pvar. Pvar for which the arc cosine (arc hyperbolic
cosine) is calculated.
RETURNED VALUE

arc—cosine-pvar  Temporary numeric pvar. In each active processor, contains the arc
cosine (arc hyperbolic cosine) in radians of the corresponding value
of numeric—pvar.

SIDE EFFECTS
The returned pvar is allocated on the stack.

DESCRIPTION

The acos!! function calculates the arc cosine of numeric—pvar in all active processors.
It returns a temporary pvar containing in each active processor the arc cosine in radians
of the corresponding value of numeric—pvar. Similarly, the acosh!! function calculates
the arc hyperbolic cosine of numeric—pvar in all active processors. The acos!! and
acoshl! functions provide the same functionality for numeric pvars as the Common
Lisp functions acos and acosh provide for numeric scalars.

Version 6.1, October 1991 81



acosll, acosh!! *Lisp Dictionary

PR

R

EXAMPLES

If numeric—pvar contains non-complex values, acosl! returns the arc cosine in each
active processor, while acosh!! returns the arc hyperbolic cosine in each active proces-
sor. For example: '

(acos!! (!! -1.0)) <=> (!! 3.1415927)
(acosh!! (!! 11.591953)) <=> (!! 3.1415927)

If numeric—pvar contains complex values, acos!! returns the complex arc cosine in
each active processor, while acoshl! returns the complex arc hyperbolic cosine in each
active processor:

(acos!! (!! #c(-1.0 0.0))) <=> (!! #c(3.1415927 0.0))
(acosh!! (!! #c(11.591953 0.0))) => (!! #c(3.1415927 0.0))

NOTES

It is an error if numeric—pvar contains integer or floating-point values of magnitude
greater than 1.0 in any active processor. Complex values with magnitude greater than
1.0 are allowed.

It is an error if numeric—pvar contains a non-numeric value in any active processor.

82

Version 6.1, October 1991



*Lisp Dictionary

add-initialization [Function]

Appends a *Lisp form to one or more initialization lists, which are evaluated before and
after *cold-boot and *warm-boot.

SYNTAX

add-initialization = name—of~form form init-list-name

ARGUMENTS
name—of—form Character string. Name of initialization being added.
form Any *Lisp form. Code to evaluate at initialization time.
init-list—-name Symbol or list of symbols. Initialization list(s) to which the code
is to be added.
RETURNED VALUE
nil Executed for side effect.
SIDE EFFECTS

The list or lists specified by init-list—name are modified by appending the initialization
specified by form. '

DESCRIPTION

The function add-initialization adds a named initialization form to one or more of the
following *Lisp initialization lists:

s *before—*cold-boot-initializations*
*Lisp code evaluated immediately prior to any call to *cold-boot.

s *after—*cold-boot-initializations*
*Lisp code evaluated immediately after any call to *cold-boot.

Version 6.1, October 1991 83



add-initialization *Lisp Dictionary
e e

S

= *before~*warm-boot-initializations*
*Lisp code evaluated immediately prior to any call to *warm-boot.

= *after—*warm-boot-initializations*
*Lisp code evaluated immediately after any call to *warm-boot.

The forms in these lists are evaluated in the order in which they were added to the
initialization lists.

The argument name—of—form is a character string that names the *Lisp code being
added to the specified list(s). The argument form may be any executable *Lisp form.

The init-list-name must be either one of the initialization list symbols above or a list
of these symbols. In the latter case, the form is added to each initialization list named.

The function delete-initialization may be called with name—of—form to remove the ini-
tialization from the list(s).

EXAMPLES

84

The function add-initialization is the correct way to add an initialization form to any of
the above lists. For example,

(add-initialization ”"Recompute Important Pvars”
" (recompute—important-pvars *number-of-processors-limit¥*)
' *after-*cold-boot-initializations*)

adds an initialization named “Recompute Important Pvars” to the list *after-*cold-boot-
initializations*, which calls a user-defined function named recompute-important-pvars
with the current number of processors.

The same initialization can be added to more than one list. For example,

(add-initialization ”“Yell About Booting”
! (format t ”*Lisp has just been booted.”)
! (*after-*cold-boot-initializations*
*after-*warm-boot-initializations*))

adds an initialization to both *after—*cold-boot-initializations* and *after—*warm-boot—
initializations*, which displays a warning message immediately after any call to
*cold-boot or *warm-boot.

Because add-initialization is a function, the form and init-list-name arguments must be
quoted if they are not meant to be evaluated during the call to add-initialization.

Version 6.1, October 1991

7N



add-initialization

*Lisp Dictionary
B :

NOTES

Adding two forms with the same name to the same list is permissible only if the forms
are the same according to the function equal; otherwise an error is signaled.

REFERENCES

See also the related operation deleteinitialization.

See also the following Connection Machine initialization operators:
*cold-boot *warm-boot

See also the character attribute initialization operator initialize~character.

Version 6.1, October 1991 85



address{-nth

P

*Lisp Dictionary

address—nth, address—plus—nth,
address—rank [Function]

These are the scalar couterparts of the functions address—nth!!, address—plus-nth!!, and
address-rankl!

address—nth returns the coordinate of an address object along a specified dimension.
address—plus-nth increments the coordinate of an address object for a specified dimension.
address-rank returns the number of coordinates specified by an address object.

SYNTAX

address-nth address—object dimension => coordinate
address—plus-nth  address—object increment dimension => inc—addresss—obj
address-rank address—obj => rank
ARGUMENTS

address—object Front-end address object, as created by the function grid.

dimension Integer. Zero-based number of the dimension to be returned or
incremented (for address-nth and address—plus-nth only).

increment Integer. Amount by which the specified dimension is to be
incremented (for address—plus—nth only).

RETURNED VALUE

coordinate Integer. The coordinate of address—object along the dimension
specified by dimension.

inc—addresss—obj  Address object. Copy of address—obj with the coordinate specified
by dimension incremented by increment. '

rank Integer. Number of coordinates in address—obj.

SIDE EFFECTS

None.

86 Version 6.1, October 1991



DESCRIPTION

The function address—nth returns the grid (NEWS) coordinate of address—object along
the dimension specified by dimension. The argument dimension must be an integer
between 0 and one less than the number of dimensions in address—object.

The function address—plus—-nth increments the nth coordinate of address—obj, where n
is the grid (NEWS) dimension specified by dimension.

The function address-rank returns the number of coordinates in address—obyj.

EXAMPLES
(setq addr-obj (grid 12 3 0 29))

(address-nth addr-obj 0) => 12
(address-nth addr-obj 3) => 29

(address-plus-nth addr-obj 5 0) <=> (grid 17 3 0 29)

(address-rank addr-obj) => 4

REFERENCES
See also the related operations
address-nth!! address—plus-nth!! address—rank!!
grid grid!l grid-relative!l selfll

Version 6.1, October 1991 87



address{-nthll,

*Lisp Dictionary
]

address—nth!!, address—plus—nth!!,
address-rank!! [Function]

These functions perform simple operations on address objéct pvars.

address-nth!! creates an address object pvar containing the specified coordinates.

address-nth!! returns a copy of an address object pvar with each of its values incremented
along the specified dimensions.

address-rank!! returns a pvar containing the rank of each value of an address object pvar.

SYNTAX
address-nth!! address—obj—pvar dimension—pvar => cobrdinate—pvar
address—~plus-nthl! address—obj—pvar increment—pvar dimension—pvar
=> inc—address—pvar
address-rankl! address—obj—pvar => rank-pvar
ARGUMENTS

address—obj—pvar Address object pvar, as created by the function grid!!.

dimension-pvar  Integer pvar. Zero-based number of the dimension to be
retrieved/incremented (address—nth!! and address—plus—nthi!
only).

increment—pvar  Integer pvar. Amount by which the coordinate specified by
dimension—pvar is to be incremented (address—plus—nth!! only).

RETURNED VALUE

coordinate-pvar  Temporary integer pvar. In each active processor, contains the coor-
dinate of the corresponding value of address—obj—pvar along the
dimension specified by dimension—pvar.

inc—address—-pvar Temporary address object pvar. In each active processor, contains a
copy of the value of address—obj—pvar with the coordinate speci-
fied by dimension—pvar incremented by increment-pvar.

rank-pvar Temporary integer pvar. In each processor, contains the number of
coordinates in the corresponding value of address—obj—pvar.

88 Version 6.1, October 1991



*Lzsp chtzonary address{-nthl|, —plus—nth!l —rank!!}
A : e S

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

For each processor, address—nth!! returns the nth grid (NEWS) coordinate of address—
object—pvar, where n is the dimension specified by the corresponding value of
dimension—pvar.

For each processor, address~plus—nthl! returns an address object pvar that is a copy of
address—obj—pvar with the dimension specified by dimension—pvar incremented by
increment-pvar.

For each processor, address-rank!! returns in each processor the number of coordinates
in the corresponding value of address—obj—pvar.

EXAMPLES

(address—-nth!! (grid!! x y z) (!! 1)) => (!! y)
(address—-nth!! (grid!! x y z) (!! 2)) => (!! z)

(address-plus—-nth!! (grid!! (!! x) (!t y) (!! z))
(' 5) (1Y 1))
<=>
(grid!! (!! x) (+!! y (t!Y 5)) (!! z2))

(address-rank!! (grid!! (!! x) (!! y))) <=> (!} 2)

REFERENCES
See also the related operations
address—nth address—plus—-nth address—rank

grid grid!! grid-relative!! selfl!

Version 6.1, October 1991 89



aliasl!

R e e e

alias!! [Macro]

Returns the actual contents of the specified subfield of a pvar, redefined as a temporary
pvar of appropriate size and type.

SYNTAX

alias!! subfield-selector

ARGUMENTS

subfield—selector ~ Pvar subfield selector. Must be a call to either arefl! or
row-major-arefll, a call to a structure pvar slot accessor defined by
*defstruct, or a call to one of the functions imagpart!!, realpart!!, or

load-bytell.

RETURNED VALUE

aliased—pvar A temporary pvar of the same data type as the referenced pvar sub-

field, such that the data contained in the aliased pvar is identical to
the data contained in the pvar subfield, rather than being a copy of
the data (i.e., the aliased pvar references the same area of CM
memory as the subfield selector.)

DESCRIPTION

90

In *Lisp, a parallel array accessor, such as arefll or row-major-arefll, returns a tempo-
rary pvar that is a copy of the element being referenced. Likewise, a parallel structure
slot accessor, as defined by a call to *defstruct, returns a temporary pvar that is a copy
of the parallel structure slot being accessed. Other pvar operations that return subfields
of a pvar, such as imagpartll, realpart!l, and load-bytell, by definition return a copy of
the referenced subfield. For most purposes, this copying is transparent and makes no
difference.

Two important exceptions are:

= passing a pvar subfield to a user-defined function that must modify the sub-
field directly

Version 6.1, October 1991



*Lisp Dictionary alias!!

= passing a pvar subfield to any function or macro where the size of the pvar
subfield makes copying inefficient (i.e., a structure slot that contains another
structure of considerable size).

In these two cases, the alias!! macro can be used to specify that the actual contents of
the pvar subfield should be returned, rather than a copy.

The alias!! macro creates and returns a temporary pvar defined in such a way that the
contents of the pvar are the actual contents of the referenced pvar subfield. The alias!!
macro in effect “renames” or “aliases” the portion of a pvar referenced by the supplied
subfield—selector. The aliased-pvar returned by alias!l may be freely referenced and
modified as a pvar of the same data type as the pvar subfield.

Important: The alias!l macro is necessary only in the two cases mentioned above. In
all other cases, use of the alias!! macro has no effect and detracts from readability of
code. In some cases, explicit use of the alias!! macro is redundant. The following func-
tions effectively perform an alias!! operation on their arguments:

*setf *pset *news

EXAMPLES

The subfield-selector argument to alias!! can be an array reference, i.e., a call to either
arefll or row-major-arefl!. For example, given the array defined by

(*defvar array-pvar (!! #2A((1 2 3) (4 5 6))))
both of the following expressions modify the same element of the array.

(modify-array-element

(alias!! (aref!! array-pvar (!! 1) (!! 1))))
(modify-array-element
(alias!! (row-major-aref!! array-pvar (!! 4))))

The subfield—selector argument to alias!! can also be a structure slot reference, i.e., a
call to a slot accessor function created by *defstruct.

Version 6.1, October 1991 91



alias!!
S

The following code illustrates how to use alias!! with structure pvars:

(*defstruct history-struct
(description nil :type (vector string-char 1000))
(sickness-id 0 :type (unsigned-byte 32)))

(*defstruct patient
(id-no 0 :type (unsigned-byte 8))
(doctor 0 :type (unsigned-byte 8))
(sick-p t : type boolean)
(case-history nil :type (pvar (array history-struct (100))))
)

(defun modify-patient-slot (slot-pvar value)
(declare (type (field-pvar *) slot-pvar value))
nil
(*set slot-pvar value))

(defun in-error ()
(*let ((ellen (make-patient!!)))
(declare (type (pvar patient) ellen))
(modify-patient-slot (patient-sick-p!! ellen) nil!!)
(ppp (patient-sick-p!! ellen) :end 5)))

(defun correct ()
(*let ((ellen (make-patient!!)))

(declare (type (pvar patient) ellen)) h
(modify-patient-slot
(alias!! (patient-sick-p!! ellen)) nillt!)
(ppp (patient-sick-p!! ellen) :end 5)))
The in-error function is in error because (patient-sick—p!! ellen) returns a temporary
pvar containing a copy of the data in ellen’s sick—p slot. This pvar is allocated on the
stack. The function modify-foo—slot then attempts to *set this temporary pvar, rather
than the actual data stored in the structure ellen. The original data is not modified.
The correct function is correct because alias!! returns the actual slot sick—p from ellen
as a pvar that can be modified by a call to the user-defined function modify—patient—
slot.
The subfield—selector argument to alias!! can also be one of the pvar subfield opera-
tions imagpartll, realpart!!, and load-byte!!. (Due to its implementation, alias!! cannot
be applied to these three operators in the *Lisp simulator.)
For example,
(alias!! (imagpart!! complex-pvar))
(alias!! (realpart!! complex-pvar))
(alias!! (load-byte!! integer-pvar position-pvar size-pvar))
/
/
\

92 Version 6.1, October 1991



*Lisp Dictionary - alias!!

Besides passing pvar subfields to functions that modify those fields, alias!! may also
be used to prevent copying of large pvar subfields.

For example, in the expression
(hypocondriac-p!! (alias!! (patient-case-history!! ellen)))

the user-defined function hypochondriac—p!! does not modify the case-history slot of
ellen. Even so, using alias!! in this expression is more efficient because it prevents the
possibly quite large case-history slot from being copied in the process of passing it to
the function hypochondriac—pl!.

An example of when not to use the alias!! macro is provided by the expression

(*set dest-pvar
(+!! (alias!! (aref!! array-pvar (!! 0)))
(alias!! (structure-slot!! structure-pvar))))

Neither of the calls to alias!! are necessary in this expression, because no modification
of the referenced location takes place. It is also unnecessary and redundant to apply
alias!! to the arguments of the *Lisp functions *setf and *pset. For example, in the ex-
pression

(*setf (alias!! (aref!! array-pvar (!! 3))) (!! 2))

the *setf macro effectively performs an alias!! operation on its first argument, so the
extra call to alias!! is unnecessary.

Also, in many cases it is not necessary to use the operator alias!! in combination with
arefl! to prevent the copying of large array pvars, because the *Lisp compiler is able
to recognize and optimize cases where this copying is unnecessary. See the dictionary
entry for aref!l for more information.

NOTES

The alias!! macro may not be applied to an array reference that uses indirect addressing,
i.e., a call to arefl! with an index pvar containing different values in each processor. The

- alias!l macro also may not be applied to array accessors that operate on arrays in side-
ways (slicewise) orientation. These operators are:

sideways—arefl!! row-major-sideways-arefl!

REFERENCES

See also the related operator taken-as!

Version 6.1, October 1991 93



*all
T

*all [Macro]

Executes *Lisp forms with all processors selected.

SYNTAX
*all &body body

ARGUMENTS
body *Lisp forms. Any number of statements, which are executed in
order.
RETURNED VALUE
body-value Scalar or pvar value. Value of final form in body.
SIDE EFFECTS

Temporarily binds currently selected set to include all processors during execution of
the forms in body.

DESCRIPTION

The macro *all is one of the processor selection operations. It executes a set of *Lisp
forms with the currently selected set bound to include all processors in the current VP
set. The value of the final expression in the body of the *all form is returned.

EXAMPLES

The most common use of the *all macro is to ensure that all processors are selected
before the execution of a section of code. For example, the form

(*all (*set every-proc (!! 5)))

94 ‘ Version 6.1, October 1991



selects all processors and then uses *set to store 5 as the value of every—proc in every
processor. Using *all guarantees that every—proc has the same value in every processor
after this operation.

Processor selection macros can be nested. The expression

(*all
(*set numeric-pvar (random!! (!! 10.0)))
(*when (<!! numeric-pvar (!! 1))
(*set numeric-pvar (/!! numeric-pvar))))

uses *all to select all processors, *set to store a random floating-point value between 0
and 10 into numeric-pvar for every processor, and *when to select only those processors
in which the value stored in numeric—pvar is less than 1. In these processors, /! is used
to calculate the reciprocal of the value in numeric—pvar, and *set is used to store the
calculated value back into numeric-pvar.

Because *all temporarily binds the currently selected set, and restores its original value
upon exiting, it can be used within other processor selection macros to temporarily
reselect all processors. For example, the expression

(*when (<!! data-pvar (!! 100))
(/ (*sum data-pvar)
(*all (*sum data-pvar))))

uses *when to select those processors in which the value of data-pvar is less than 100.
The global function *sum is used to take the sum of the values in these processors. Then
*all is used to temporarily rebind the currently selected set so that *sum can be used to
take the sum of the values of data—pvar in all processors. The result returned by the
entire expression is the ratio between the sum of the values of data-pvar that are less
than 100 and the sum of all values of data—pvar.

NOTES

The *cold-boot and *warm-boot operations force reselection of all processors, but these
operations also reset *Lisp and clear the *Lisp stack. See the definitions of *cold-boot
and *warm-boot for more information.

It is not necessary to use *all around every body of code. The *all macro is only neces-
sary only in three cases:

= Around the body of functions that need all processors active, but are called
from within code that restricts the currently selected set.

Version 6.1, October 1991 95



96

*Lisp Dictionary
S s

= Around any code that requires all processors to be selected temporarily. For
example, see the selective sum and division example above, which momentari-
ly changes the currently selected set.

=  Within code that changes the current VP set. Each VP set keeps track of its own
currently selected set of active processors. To avoid using a previously
restricted set of active processors when switching between VP sets, use *all.

An example of the last case is:

(def-vp-set fred ' (16384))
(def-vp-set wilma ’ (8192))

(*with-vp-set fred

(*when (<!! (self-address!!) (!! 100))
(format t ”~%In FRED, # active procs should be 100, ~
and is: ~d” (*sum (!! 1)))

(*with-vp-set wilma
(format t ”“~%In WILMA, # active procs should be 8192, ~
and is ~d” (*sum (!! 1)))
(*with-vp-set fred
(format t ”“~%In FRED, the # active procs should still ~
be 100, and is ~d” (*sum (!! 1)))
(*all
(format t ”“In FRED, the # active procs should now ~
be 16384, is ~D” (*sum (!! 1)))))
(format t ”~%In WILMA, # active procs should still ~
be 8192, is: ~d” (*sum (!! 1))))
(format t ”“~%In FRED, # active procs should again ~
be 100, is: ~d” (*sum (!! 1)))))

This example produces the following output:

In FRED, # of active procs should be 100, and is: 100

In WILMA, # of active procs should be 8192, and is: 8192

In FRED, # of active procs should still be 100, and is: 100
In FRED, # of active procs should now be 16384, is: 16384
In WILMA, # of active procs should be 8192, is: 8192

In FRED, # of active procs should again be 100, is: 100

Note the use of *all within the *with-vp—set forms <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>