=\

fr

TEXAS INSTRUMENTS

Improving Man’s Effectiveness Through Electronics

Model 990 Computer

Terminal Executive Development System

(TXDS)

Programmer’s Guide

MANUAL NO. 946258-9701
ORIGINAL ISSUE 1 APRIL 1977
REVISED 1 SEPTEMBER 1978

Digital Systems Division

(:) Texas Instruments Incorporated 1978
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, technigues or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer Terminal Executive Development System (TXDS)
Programmer’s Guide (946258-9701)

Original Issue i 1 April 1977
Revised i i 1 September 1978

Total number of pages in this publication is 205 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 0 13-1-132......... ...0

Effective Pages 0 Appendix ADiv 0

fi-xii. 0 Al-A4. 0

I-1-14. 0 Appendix BDiv 0

2-1-2-120 .00 o il 0 B1-B2............. 0

31-36. o 0 AppendixCDiv 0

4-1-424. 0 C1-C2........ . 0

5-1-56. 0 Appendix DDiv 0

6-1-64.............. 0 D-1-D2............. 0

7-1-78. . i 0 Alphabetical Index Div. . . .0

8-1-86.............. 0 Index-1 - Index-6. 0

9-1-9-50. 0 User’s Response 0

10-1-10-26 0 Business Reply 0

11-1-11-14ol L 0 CoverBlank........... 0

12-1-126............ 0 Covercoovvvvnn.. 0

o
@ 946258-9701

PREFACE

This manual enables the user to employ the Terminal Executive Development System (TXDS) in
conjunction with the TX990 Operating System and the Model 990/4, 990/5, or 990/10 Computer
System hardware configuration to develop, improve, change, or maintain (1) the user’s customized
Operating System and the user’s applications programs or (2) any other type of user-produced
programs (e.g., the user’s own supervisor call processors or the user’s own utility programs). It is
assumed the reader is familiar with the Model 990 Computer System assembly language and the
concepts of the TX990 Operating System.

The sections and appendixes of this manual are organized as follows:

I Introduction — Provides a general description of the TXDS utility programs and their
capabilities. Also includes a description of the control functions of the TXDS Control
Program. '

II Loading and Executing a Program — Provides a step-by-step procedure for loading and
executing (1) each of the TXDS and TX990 Operating System utility programs and (2) a
user program. Also describes the TXDS Control Program and how to correctly respond to
its prompts.

III Verification of Operation — Provides several short step-by-step procedures to checkout
proper operation of the TXDS software.

v Creating and Editing Program Source Code — Describes the capabilities of the TXEDIT
utility program and how the user can employ those capabilities to edit or generate the
text of source programs and object programs.

V Assembling Source Programs — Describes how the user can employ the TXMIRA utility
program to assemble source files (i.e., source code programs).

VI TX990 Cross Reference (TXXREF) Utility Program — Describes how the user can
employ the TXXREF utility program to produce a listing of each user-defined symbol
in a 990 assembly source program along with the line numbers on which the symbol is
defined and all of the line numbers on which the symbol is referenced.

VII Linking Object Modules (TXLINK) — Describes how the user can employ the TXDS
Linker utility program to form a single object module from a set of independently
assembled object modules (in the form of object code or compressed object code).

VIII TXDS Copy Concatenate (TXCCAT) Utility Program — Describes how the user can
employ the TXCCAT utility program to copy one to three files to a single output file.

IX TXDS Standalone Debug Monitor (TXDBUG) Utility Program — Describes how the user
can employ the TXDBUG utility program to debug programs which have been designed
to operate in a “‘standalone” situation without support of an operating system.

X TXDS PROM (TXPROM) Programmer Utility Program — Describes how the user can
employ the TXPROM programming utility program to control the Programming Module
(PROM) hardware to make customized ROMs containing user-created data or programs.

iii Digital Systems Division

{@ 946258-9701

XI TXDS BNPF/High Low (BNPFHL) Dumyp Utility Program — Describes how the user can-
employ the BNPFHL utility program to produce a BNPF or high/low file format.

XII TXDS IBM Diskette Conversion Utility (IBMUTL) Program — Describes how the user can
employ the IBMUTL utility program to transfer standard IBM-formatted diskette datasets
to TX990 Operating System files and to transfer TX990 Operating System files to
standard IBM-formatted diskette datasets.

X1 TXDS Assign and Release LUNO Utility Program — Describes how the operator can
assign and release LUNOs in systems which do not include OCP

A Glossary — Clarifies selected words used in this TX990 Operating System Programmer’s
Guide.

B Compressed Object Code Format — Describes the compressed object code format. -
Task State Codes — Lists and describes the task state codes.

D I/O Error Codes — List and describes the I/O error codes available to the user, when
coding a program, for printout or display on a terminal device.

The following documents contain additional information related to the TX990 Operating System
and are referenced herein this manual: :

Title Part Number

Model 990 Computer TX990 Operating System Programmer’s 9462599701 .
Guide
Model 990 Computer TMS9900 Microprocessor Assembly 943441-9701
Language Programmer’s Guide
Model 990 Computer Model FD800 Floppy Disc System 945253-9701 - -
Installation and Operation

h Model 990 Computer Model 913 CRT Display Terminal 9434579701
Installation and Operation
Model 990 Computer Model 911 Video Display Terminal 9434239701
Installation and Operation
Model 990 Computer Model 733 ASR/KSR Data Terminal 9452599701
Installation and Operation
Model 990 Computer Model 804 Card Reader Installation 945262-9701
and QOperation
Model 990 Computer Models 306 and 588 Line Printers 945261-9701
Installation and Operation
Model 990 Computer PROM Programming Module 945258-9701
Installation and Operation
990 Computer Family Systems Handbook 945250-9701
Model 990 Computer Communications System Installation - 945409-9701
and Operation :

iv Digital Systems Division

N

946258-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION I. INTRODUCTION

1.1 General e e 1-1
1.2 TXDS Text Editor (TXEDIT) Utility Program - . - .« .« .o it i 1-2
1.3 TXDS Assembler (TXMIRA) Utility Program 1-2
14 TXDS Cross Reference (TXXREF) Utility Program, 12
1.5 TXDS Linker (TXLINK) Utility Program.ttt ittt i e e iae e 1-2
1.6 TXDS Copy/Concatenate (TXCCAT) Utility Program 12
1.7 TXDS Standalone Debug Monitor (TXDBUG) Utility Program. 12
1.8 TXDS PROM (TXPROM) Programmer Utility Program. 1-2
19 TXDS BNPF/High Low (BNPFHL) Dump Utility Program 1-2
1.10 TXDS IBM Diskette Conversion Utility IBMUTL) Program 12
1.11 TXDS LUNO (TXLUNO) Program oo vt it ettt e e et e e e e e e e e 12

SECTION II. LOADING AND EXECUTING A PROGRAM

2.1 Introduction. e e e 2-1

2.2 Loading and Executinga Program. L. L e e 22
2.3 Responding to TXDS Control Program Prompts 2-3
23.1 Pathname Syntax it ittt ettt e ettt e 24
2.3.2 Prompt-Responses.t e e e e e 2-5
233 Special Keyboard Control Keys i i i e e 2-7
24 Backing Up TI-Supplied Diskettes.t e e e e 29
2.5 TXDS Control Program Error Messagesottt iie i 2-11

SECTION III. VERIFICATION OF OPERATION

31 Introduction. e e e e e 3-1
3.2 Requirements. e e e 31
33 L0707 15 13 ¢ 3-1-

SECTION IV. CREATING AND EDITING PROGRAM SOURCE CODE

4.1 Introduction. e e e e e e e e 4-1
42 LUNOES .« .ottt e e e e e e e 42
43 Loading TXEDIT ittt 43
44 CoMMANGS. . . o ottt et e e e e e e e e e e 44
44.1 L 1 T3 1 P 44
442 Command Operands.ottt e e e e 44
443 Symbol Definition. e e e e e e 44
444 Special Keys/Characters oo ittt ittt e et e e e e e e e 4-7
445 Setup Commands ittt e e e e e e 4-7
446 Pointer-Movement Commandsttt it it i e e e e e 4-8
447 Edit Commandsttt ittt ettt et e 4-9
448 Print Commands u ittt e e e e e e e e e e e 4-12
449 Output Commandsottt ittt e e e e e e e 4-13
44.10 Terminate-Sequence Commands.o v ittt e e 4-14

v Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4.5 EITOT MESSAEES . .« v v ot e v e e e s esm e et i e e et s s snen s 4-14
4.6 Example: Entering a Source Program onaCassette or Dlskﬁtte e e 4-14
4.7 ExampleofHowtoEthaSourcePngram.._.,.,..,,.,,...,,.,..,_..,._,...,....,,4-18
4.8 Example of How to Edit an Object Program. o viivnrerneennnee. . 422

SECTION V. ASSEMBLING SOURCE PROGRAMS

5.1 Introduction. e P 1
5.2 LUNOsand Their Uses . . o v v v s v erveensoecrornanoassesss . 13
53 Operation Interaction. . . , . e e e e, 872
54 TXMIRA Options e e e e 52
54.1 Memory Option (M). . .« v v oot ii i ieii et eeeee e ens e e ... 53
542 Cross Reference Option (X). e e 593
543 hstmgOp’uon(L)53
544 Print Text Option (T). vvun.s e e 53
54.5 SymbolTablehshngOpnon(S)..,,,..,..., e tra e ey .. 53
54.6 Compress Object Option (C) oo vt ini e ae e B F
5.4.7 PredeﬁneReglstersOptmn(R)....,..,,,g,..,...,,,....,,.....,,....,....,5-3
5.5 BETOIS « + o v o e e e e e e e et ettt e tsa s s, 54
5.5 TXMIRA Error MeSSages.oy ev v siennsroconnsrsoernnnansreesss ceees. 54
5.6 TXMIRAExample,SS

SECTION VI. TXDS CROSS-REFERENCE (TXXREF) UTILITY PROGRAM

6.1 Introductloneél
6.2 LUNOs.......... PP < 83
6.3 C)peratmgProcedure,.,,_.,,,..,,,,,.*.....,,,..,,.,.'.....,.,g,,’,..,..,,6-1
64 LlstmgFormatﬁl
6.5 Options.ovvvunnn P e .. 64
6.6 ErrorMessages.,...,,.,....',....,...,..,.,.,......,.,,,,..,....,,,...6-4

7.1 IntroduCtion. + . v v v vt e e st i e P A3 |
7.2 TXLINK File Structures and LUNOAss1gnments e e e e aa et 7-1
7.3 TXLINK EXECULION « « « o & o s v e e e e emaee o ens e onesaaeneensneensasssses 7-2
7.4 TXLINK Control Options. oo v v vvvnrorocnenss P %
74.1 Memory Override (M), ovvvvenneeeen P A
74.2 CompressedOb]ect(C)...,.,.....,,...,..,.......,...,..,.,...._....,,,..7-3
743 ProgramldenuﬁerIDTOptlon(l).....,........,..,,,.,.,.,...,.,,.,,,.,’7-4
744 Partial Option (P)o v v vevienarne Ceee e e N 7-4
74.5 Load Map Option (L), « + v v v e eveemmenn e n e ... 14
7.5 Linked Object Module , . .. oot veee.. 16
7.6 EITOT MESSAEES « -+ v v v v o vmsnm s na s tosasananensnsassnsssscneensnss .. 76
7.7 TXLINK Example. e e e T

vi - Digital Systems Division

o

946258-9701

Paragraph

8.1
8.2
8.3
8.4
84.1
842
843
844
84.5
8.4.6
84.7
8.4.8
8.4.9
8.5
8.6

9.1
9.2
9.3
9.3A
94
9.5
9.5.1
9.5.2
9.5.3
9.54
9.6
9.6.1
9.6.2
9.6.3
9.64
9.6.5
9.6.6
9.6.7
9.6.8
9.6.9
9.6.10
9.6.11
9.6.12
9.6.13
9.7
9.7.1
9.7.2
9.73
9.8

TABLE OF CONTENTS (Continued)
Title Page

SECTION VIIL. TXDS COPY/CONCATENATE (TXCCAT) UTILITY PROGRAM

Introduction. . . . oottt e e e e e e e e 8-1
TXCCAT LUNOS . . \ti ittt e et e e e et et ettt et et e 8-1
Operator Interaction e 8-1
(0 o1 5 1o 1 - e 8-2
Truncate Option (TR) i e et e et e e 8-2
Fix Records (FL)ot e e e e e et e 82
SKip Records (SK). . . oottt it e e e e e e e e e 83
List File (LF)o e e e e i e et 83
Space Listing (SL) . . . v v ittt e e e e 83
Number Lines (NL) oo ot e e i i 83
NoInput Rewind (RI) i e 83
No Output Rewind (RO)t e et 8-3
ANSI Formatted File (AF) oo i e et e 8-3
Examples. e e e e e e 84
Errors .« o e e e e e e e 8-4

SECTION IX. TXDS STANDALONE DEBUG MONITOR (TXDBUG) UTILITY PROGRAM

Introduction. e e 9-1
General Description oo ittt e e e 9-2
Installation of TXDBUG. ittt it e e e et et e e e et et e e e 9-2
Loading TXDBUG.o ettt ettt et i e 9-2
DEbUE MOGES . o o oo ettt et e e e e e e e e 9-4
Debug Monitor Command Structuresttt ittt 9-5
Debug Command Codes oo ittt it ettt e e e e e 9-6
Miscellaneous Commandsttt e e e e e e e e 9-7
Command Entry e e e e e e e e e 9-7
Notational Conventionst v ittt ittt et e et e 9-8
Command DesCriptions.o ittt i e e e e e e e e e 99
Execute User Program (EX). it e 9-9
Execute User Program under SIEor Trace (RU) 9-10
Hexadecimal Arithmetic (HA)........ e 9-11
Find Byte (FB).ottt e et et e e e e e 9-12
Find Word (FW) .« ..o e e e e it e et e 9-13
Breakpoint Commands (SB, CB). i e e 9-15
Communications Register Unit Commands (IC,MC) 9-18
Memory Commands (IM, MM) et e e 9-20.
Processor Register Commands (IR,MR). 9-22
Workspace Register Commands (IW,MW) i, 9-23
Snapshot Commands (SS, IS, CS)ottt e e e e 9-25
Trace Commands (ST, SR, CR) it e e et e 9-29
Write Protect Option Commands (SP,CP) i 9-36
Debugging Techniquesottt it et et e e e 9-40
General Debugging Techniques.o i i e i -9-40
Specific Debugging Techniques i 9-42
Patching e 9-44
Error Messages oo ittt it e e e e e e 9-49

vii Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
SECTION X. TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM

10.1 Introduction. ot i e e e e e 10-1

10.2 Required Configuration it i e 10-1
103 Description e e e e, 10-1

10.3.1 PROM Burn and Verifyttt e et e e et e e e e e e e e e e e 10-2
10.3.2 PROMRead Operation. ittt ittt it it e e . -10-2
103.3 LUNOS USed . .ottt it ettt e e et e et et e e et eaee e, 104
104 Loading TXPROM.ttt itz ... 10
10.5 TXPROM Operationot itnn et nesaseneeeeeenneenseons 104
10.5.1 Control File Creation. e e e e et e e 104
10.5.2 Control File Modificationt ittt e e e e e e e 10-5
10.5.3 Control File Execution. it e et e e e 10-6
106 Data Files i e e e e e e e e e 10-8
10.7 Control Files o e e e e 10-8
10.7.1 Data File Name. e e et e et e 10-8
10.7.2 Data Bias.o e e e e e e e e e e 109
10.7.3 Transfer Code. i e e 109
10.74 Compare After e e e e e e e e e e e 10-9
10.7.5 Memory Displayot e e e e e 10-10
10.7.6 PROM DSPIay . . oottt e et e i e e e e e e e e e e 10-10
10.7.7 Memory Starting Address e e 10-11
10.7.8 Number of Memory Bytes. oottt 10-11
10.7.9 Memory Starting Bit e e e e e 10-11
10.7.10 PROM Starting Addresst e e e e 10-11
10.7.11 Number of PROM Wordsottt et e et et e e e e ienes 10-12
10.7.12 PROM Starting Bit.ottt e e et e e e e e e 10-12
10.7.13 Memory Mapping Levels. e e e e 10-12
10.7.14 Memory Level n Bit Stepo oottt e e 10-12
10.7.15 Memory Leveln Loop Count. i i et et i et 10-13
10.7.16 PROM Mapping Levelsottt i it e et it et et i e e 10-13
10.7.17 PROM Level n Bit Step. v it e i e e e e it e et e 10-13
10.7.18 PROM Level n Loop Countot i ettt e e e e e e e e e e e e e e e e e e e 10-14
10.7.19 Transfer Bit Width. e 10-14
10.7.20 PROM Bits per Word ottt it i i i et et e et e e ettt e 10-14
10.7.21 Program Zeros Or Ones.ottt it e e e e e e e 10-14
10.7.22 Pulse Width i et e e e e et e 10-15
10.7.23 Duty Cycle. . . oottt e e e 10-16
10.7.24 Numberof Retries. i e e 10-16
10.7.25 Simultaneously Programmable Bits. 10-16
10.7.26 CRU BaSE . .. it ittt e e e e e e e e e 10-16
10.8 Bit String Mapping.o it e e e e 10-16
10.8.1 . Level 1 Mapping Example. i i i i e e 10-17
10.8.2 Level 2Mapping Example ittt e e 10-17
10.8.3 Level 3 Mapping Example o i i e e e e 10-19
109 Standard Control Filest e e e e 10-19
10.10 Variable Parameters. e e e e e 10-19
10.11 Programming EPROMs. iiitinnnnnennn.. PSR S S 10-21

viii Digital Systems Division

o

£

C

ﬁ 946258-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
10.12 Programming Examples L e 10-23
10.12.1 EPROM Programming Example e 10-23
10.12.2 PROM Programming Example i 10-24
10.12.3 Control File Change Examplet 10-25
10.12.4 Executing a Control File Example innnn.. 10-26
10.13 Nonrecoverable Error Messages i e 10-26
SECTION XI. TXDS BNPF AND HIGH-LOW (BNPFHL) DUMP UTILITY PROGRAM

11.1 Introduction.ot e e e e e e e 11-1
11.2 LUNOS .« .ottt et e e e e e e e e e 11-3
113 Loading the BNPFHL Utility Program. ittt 113
11.3.1 Response to the INPUT: Prompt e e e e e e e e e 114
11.3.2 Response to the OUTPUT: Prompt.t i e i et e i e e e s 114
1133 Response to the OPTIONS: Prompt i e 114
1134 Response to the MEMORY: Prompt i 11-7
114 Error Messageso vt ittt e e e e e e 11-8
11.5 Examples of Usage of the BNPFHL Utility Program. 11-8
11.5.1 Example of BNPF Formatted Dump Using Default Substitute Parameters 11-10
1152 Example of HILO Formatted Dump Using Default Substitute 11-11
11.53 Example of HILO Formatted Dump Beginning at Position 4 and of Initializing the Buffer

toall Binary Oneso ittt i i et e e e e e e 11-12
1154 Example of a HILO Compare with DiscrepantData 11-13
11.5.5 Example of a BNPF Formatted Dump with Bias 100 11-14
11.5.6 Example of a BNPF Compare with DiscrepantData., 11-14

SECTION XII. TXDS IBM CONVERSION UTILITY (IBMUTL) PROGRAM
12.1 Introduction.ttt e e e e e e e e e e 12-1
12.2 IBMUTL DeSCHPtION « « & v vt e e vt it et e e et e e e et et et et et et e ie e 12-1
1221 Formatting IBM Diskette it i e 12-1
12.2.2 Transferring TX990 Filesto IBM Datasets 12-1
12.23 Transferring IBM Datasets to TX990 Files o i 12-1
123 LUNOs and Their Uses. . . . oo vt ittt it i it et e it ettt et e et it e et e 12-1
124 Loadingand Executing. ottt e e 12-1
12.5 Operator Interaction e 1222
12.5.1 Special Charactersottt it i e e e e e e e 122
1252 Operator Prompts e 1222
12.6 Error Reportingand Recovery e 12-5
SECTION XIII. TXDS ASSIGN AND RELEASE LUNO UTILITY PROGRAM
13.1 Introduction. e e e e 13.1
13.2 Loading and Executing. e e 13-1
133 Operator Interaction ittt e e e 13-1
133.1 Operator Prompts o e e e e e s 13-1
1332 Special Charactersottt it s it e e e e e e e e e e e 132
134 Error Messagesand Recovery. o i i e e 13-2
ix Digital Systems Division

946258-9701

Appendix

O aw >

Figure
1-1

1-2

3-1
6-1

7-1
7-2

9-1
9-1A
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6
10-7

11-1
11-2
11-3
11-4

APPENDIXES
Title Page
GlOSSaTY . o o it e e e e e A-1
Compressed Object Code FOTMAt « . . . oo vttt et e ettt e e e e e e B-1
Task State Codes.ottt e e C-1
IJOEIor Codesot v ittt et e e e e e e e e e e D-1

LIST OF ILLUSTRATIONS
Title Page

Terminal Executive Software Development System, Data Flow and

Control Pathso Lo 1-3
Model FS990/4 Floppy Based Software Development System, Minimum

Hardware Configuration for TXDS 1-4
TXMIRA Sample Output Listing 34
Sample Cross Reference Listing (Abbreviated). 6-2
Files Accessed by TXLINK o . . o . oo 72
Load Map Listing« L e e e e e e e e 7-5
Debug Monitor Memory Configuration 9-4
CRU Output Data Format. 9-37
Trace Region Precedence of Lower Region Number. 943
Using Both Trace and SIE.o 9-44
PROM Burn, Compare Operation v o v v vivie 10-3 °
PROM Bum, Compare and Read Operation 10-3
Level 1 Mapping Exampleo 10-17
Level 2 Mapping Example o000 C.o. . 10-18
Level 3 Mapping Exampleo e e e e 10-20
EPROM Programming Example. o 10-23
PROM Programming Example L0000 10-25
Standard Object Code Format to BNPF Format Conversion 11-1
‘Standard Object Code Format to BNPF Format, Full First Line Conversion 11-1
Standard Object Code Format to High-Low Format Conversion. 11-2
Standard Object Code Format to High-Low Format, Full First Line Conversion. 11-2

X Digital Systems Division

s

™

9462589701
LIST OF TABLES
Table Title Page
2-1 Pathname Syntax Variationsttt it i i e 2-5
2-2 Utility Program File-Name Identifiers i 2-7
2-3 TXDS Control Program Error Messageso ov it iiii it 2-11
4-1 TXEDIT Default-Substitutesottt it it ittt e e et eeeneannan 44
4-2 List of Commands and Special Keys/Characters. :, 4.5
43 TXEDIT Error MESSAZES « « « o v v vt te e vt aee o iie e i iae e ieeee e ann 4-15
5-1 © Pathname Defaults.o i it e e e e 52
52 TXMIRA OPtIONS « « v v ettt ettt e et e ettt et et ee e eees ey 52
5-3 Symbol AttribULeS. . . . o vt 5-3
54 . TXMIRA Fatal BITOrS .« v o o ot e e e e e e e e e e e e e e et et et e e a e e 54
5-5 TXMIRA Nonfatal Errors . . . oottt i i e it et e ettt ei e e 5-5
6-1 Pathname Defaults.o v ittt ettt et e ettt i e 6-1
6-2 EITOr MESSAEES © . o o v v et ettt e et e ittt 64
7-1 Pathname Defaults. oo ittt i i i e 72
7-2 TXLINK OPtions . . .o vt ettt e ettt iee e it ettt ieae e teaees e, 7-3
7-3 EITOT MESSAEES & « o v v e vttt e ae e et i eae e e 77
8-1 Pathname Defaults.ottt ittt ettt e 8-1
82 TXCCAT OPHONS -« v v vttt et ettt ittt ttetaesaeaeeeeaaeeeeeeans 8-2
83 ANSI Carriage Control Characters. oo iie e e it et 84
84 TXCCAT BITOTS & & o v e et e e e e e e e e e e e e e e e et ettt et ettt 8-5
9-1 Valid Debug Command Combinations. ot 9-7
9-2 TXDBUG Keyboard Commands.« v v v v e vitnnevmunenonesanee e enaeennn. 9-8
10-1 Table of Control File Parameter Prompts.o oo ittt 10-7
10-2 PUISE WIdthS. © o ot ettt it e e e e e e e 10-15
10-3 Minimum, Standard and Maximum Pulse Widths and Duty Cycles. 10-15
104 Level 1 Mapping Example Parameters oottt 10-18
10-5 Level 2 Mapping Example Parameters i 10-19
10-6 Level 3 Mapping Example Parameters oo 10-21
'10-7 Standard Control Fileso .t ottt e e e e e 10-22
11-1 BNPEFHL Error MESSAZES. « « « « « « « v v e e e e et e e eee e e e e e e e ia e 119
'tl 2-1 IBMUTL ErrOr MESSAZES . « « « « < o v e e ee e e e e e e et e e e e e e e ie e ...126

xi/xii Digital Systems Division

S

@ 946258-9701

SECTION I

INTRODUCTION

1.1 GENERAL

The Terminal Executive Development System (TXDS) provides an extensive software capability to
assist in developing, improving, changing, or maintaining (1) the user’s customized Operating
System and the user’s applications programs or (2) any other type of user-produced programs (e.g.,
the user’s own supervisor call processors or the user’s own utility programs). Essentially, TXDS
delivers this capability by means of the following nine utility programs:

o TXDS Text Editor (TXEDIT) Utility Program

® TXDS Assembler (TXMIRA) Utility Program

® TXDS Cross Reference (TXXREF) Utility Program

e TXDS Linker (TXLINK) Utility Program

® TXDS Copy Concatenate (TXCCAT) Utility Program

® TXDS Standalone Debug Monitor (TXDBUG) Utility Program
e TXDS PROM (TXPROM) Programmér Utility Program

e TXDS BNPF/High Low (BNPFHL) Dump Utility Program

e TXDS IBM Diskette Conversion Utility (iBMUTL) Program

e TXDS LUNO (TXLUNO) Utility Program

Another important feature of TXDS is its capability to function as a control center by means of the
TXDS Control Program. The TXDS Control Program simplifies operator interaction with the
computer by (1) informing the operator, for example, when a program has been successfully loaded
or executed or (2) by requesting the operator for an entry of data/information into the computer
via the keyboard of the system console (i.e., the 911 or 913 Video Display Terminal, the
733 ASR/KSR Data Terminal, or the 743 KSR Data Terminal). Basically, the TXDS Control Pro-
gram functions to prompt (i.e., request) the user for the name of the utility program to load, and
the input, output, and options parameters required by the utility program. After the parameters
have been entered via the system console keyboard, by the user, in response to the prompts, the
specified utility program is loaded into memory and executed. When the utility program has
completed execution, the TXDS Control Program again prompts the operator for the name of
another program to load, and for the input, output, and options parameters required by the
program.

TXDS can also be used to extend and upgrade the capabilities of the TX990 Operating System. By
making appropriate use of the TXDS utility programs, users are able to more easily develop,
improve, change, or maintain their software. TXDS is an ideal supplement to the TX990 Operating
System software package.

11 _ Digital Systems Division

@ 9462589701

The TXDS utility programs are briefly described in the following paragraphs; detailed descriptions
(including step-by-step loading procedures, descriptions of available commands, and coding @
examples explaining typical employment of each utility program) are provided in the other sections

in this manual. Figure 1-1 presents the data flow and control paths among the elements of the
Terminal Executive Development System software; figure 1-2 presents a typical hardware configura-

tion supporting TXDS capabilities.

1.2 TXDS TEXT EDITOR (TXEDIT) UTILITY PROGRAM

TXEDIT operates interactively with the operator’s system console and provides a method of
modifying existing source code on diskette files or cassettes and of creating new source files. Its
features include the ability to make multiple single directional editing passes on the source file to
add, remove, move, or change lines of source.

1.3 TXDS ASSEMBLER (TXMIRA) UTILITY PROGRAM

TXMIRA is a two-pass assembler that produces object code for any member of the Model 990
Computer family, including the TMS9900 Microprocessor. The assembler accepts an assembly
language source program and produces a source listing and an object file. For more detailed infor-
mation, refer to the Model 990 Computer TMS9900 Microprocessor Assembly Language
Programmer’s Guide.

1.4 TXDS CROSS REFERENCE (TXXREF) UTILITY PROGRAM

TXXREF produces a listing of each user-defined label in a 990 assembly source program along with
the line number on which each label is defined and ail of the numbers of the lines from which the
label was referenced. The program may be invoked by either user directive, via the TXDS Control
Program, or by chaining to it from the assembler.

1.5 TXDS LINKER (TXLINK) UTILITY PROGRAM «
TXLINK links object modules produced by the assembler to form a single object module. The
linker allows the specification of up to three input files each of which may contain multiple object
modules. TXLINK can also perform partial links which may later be linked with additional modules
to complete the linking process.

1.6 TXDS COPY/CONCATENATE (TXCCAT) UTILITY PROGRAM
TXCCAT facilitates the transfer of data from file or device to file or device and allows for the
specification of up to three source or object files to be copied to one output file or device.

1.7 TXDS STANDALONE DEBUG MONITOR (TXDBUG) UTILITY PROGRAM
TXDBUG is a memory-resident, standalone, system executive that provides extensive program
debug features and responds interactively to user input from a 733 ASR Data Terminal.

1.8 TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM
TXPROM provides flexible user control of the PROM programming process as well as standardized
programming options.

1.9 TXDS BNPF/HIGH LOW (BNPFHL) DUMP UTILITY PROGRAM

This utility allows a user to produce a BNPF-forniatted file, output the file to an appropriate media
(paper tape, cassette, etc.) and to compare the media contents to the BNPF-formatted file. It also
allows a user to produce a TI 256 by 4 high/low-formatted file, output the file to an appropriate
media, and compare the media contents to the input file contents.

1.10 TXDS IBM DISKETTE CONVERSION UTILITY (IBMUTL) PROGRAM
This utility provides a means of transferring standard IBM-formatted diskette data sets to TX990)
files and transferring TX990 files to standard IBM-formatted diskette data sets. - (

1.11 TXDS LUNO (TXLUNO) PROGRAM
TXLUNO allows the user to assign and release LUNOs without using OCP commands.

12 Digital Systems Division

uoysinig swajsAs reybig

)

SYSTEM CONSOLE

TXDS IJ

CONTROL. .

PROGRAM
TTTTT L

Fe———————————
L J 0 b l
| l —r—— _——— | i
v ¥ 4) ¥ <
OBJECT TEXT ASSEMBLER CROSS LINKER COPY
MANAGER EDITOR — —& REFERENCE CONCATENATE
4 L2 4 4 L3 f
: | te—q - | |
' il .)
I S, e
—/ | |
' MEEREE:
FILE
MANAGEMENT
3
4
FD80O
FLOPPY
DISC UNIT

(A)135907B

Figure 1-1. Terminal Executive Software Development System, Data Flow and Control Paths

10L6-857916

946258-9701

810 LINE PRINTER

911 VIDEO DISPLAY

TERMINAL

|
W
&
<ESO
LogsS
WWFE
MUOM
oo
MCMO
< 2
AN
82Zk
e
adsh
>
o
o
J
bz
o
1519)
03]
a2
Lo

(A)135902

Model FS990/4 Floppy Based Software

2

Figure 1
Development System

ion for TXDS

t

figura

Hardware Con

imum

m

M

5

ivision

Digital Systems D

14

o)
@@ 946258-9701

SECTION II

LOADING AND EXECUTING A PROGRAM

~

2.1 INTRODUCTION _

This section provides the user with a simple procedure for executing: (1) each of the TXDS and
TX990 Operating System utility programs; and (2) a user program. The TXDS and TX990.
Operating System utility programs are listed as follows:

TXDS TX990 Operating System

Utility Programs Utility Programs
Text Editor (TXEDIT) System Generation (GENTX)
Assembler (TXMIRA) Object Manager (OBJIMGR) -
Cross Reference (TXXREF) Diskette Backup (BACKUP)
Linker (TXLINK) Diskette OCP System Utility (SYSUTL)
Copy Concatenate (TXXCAT) List 80-80 (LIST80)
Standalone Debug (TXDBUG) Diskette Dump (DSKDMP)

PROM Programmer (TXPROM)
BNPF/HIGH LOW Dump (BNPFHL)
IBM Diskette Conversion (IBMUTL)
LUNO Assignment (TXLUNO)

The program loading and executing procedure is greatly simplified by the interactive, memory-
resident TXDS Control Program, which enables loading and executing of any one of the above
utility programs or a user program. The TXDS Control Program (only one of which is included with
each Terminal Executive Development System) assists in program loading and execution by printing
out or displaying prompts (i.e., requests) on the system console, sequentially, as follows:

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

The TXDS Control Program also prints out or. displays information which indicates to the operator
that a program has been successfully loaded or is in the process of being executed. For example,
after the TXDS Control Program is executed, the following printout or display is presented at the
system console: :

TXDS V.R.E YY.DDD

PROGRAM:

The above display tells the operator that the TXDS Control Program is in execution and that the
operator may respond to the PROGRAM: prompt by specifying the program to be loaded. The
display heading indicates the name of the monitor (TXDS), the revision status (V=Version, R=
Release, E=ECN level), and the date that the program was released (YY=Year, DDD=Julian day).

2-1 Digital Systems Division

{@2 9462589701

The following paragraphs in this section present a procedure for loading and executing a program
with supplementary supporting information describing: (1) how to correctly respond to the
prompts; (2) how to use correct syntax; (3) how to use the special keyboard control keys; and
(4) how to code the COMMON memory block. Also included in this section is a procedure for
backing up a TIsupplied TXDS diskette and a description of the TXDS Control Program. error

messages.

2.2 LOADING AND EXECUTING A PROGRAM
Proceed as follows:

1.

Load the Operating System (which has been customized to the user’s software/hardware
configuration) by performing the steps in Section II, entitled ‘“Loading The Operating
System”, of the TX990 Operating System Programmer’s Guide.

Press the exclamation point (!) key on the system console keyboard.

If OCP is included in the system, it responds with a period (.) prompt:

!

If OCP is not included, proceed to step 5.

Execute the TXDS Control Program by responding to the period (.) prompt as follows:

!
.EX,16.TE.

Observe the following printout or display presented on the system console:
TXDS V.RE YY.DDD
PROGRAM:
NOTE

To correctly respond to the PROGRAM:, INPUT:, OUTPUT:, and
OPTIONS: prompts, the operator is required to understand the
information presented under paragraph 2.3.

Respond to the PROGRAM: prompt in accordance with the parameters defined in
paragraph 2.3 below by entering the device-name identifier of the input device on which
the program to be loaded and executed is stored and/or the file-name identifier of the
program to be loaded and executed.

After responding to the PROGRAM: prompt, the user can enter a carriage return and
respond to the INPUT: prompt; then enter another carriage return and respond to the
OUTPUT: prompt; and then enter another carriage return and respond to the OPTIONS:
prompt. The user has an alternative and shortened procedure, using the asterisk (*) as
described in the paragraph entitled ‘‘Special Keyboard Control Keys’’.

22 Digital Systems Division

C

{@ 946258-9701

1. If a syntax error was made, the prompt for the parameter line
in error will be displayed and the operator must reenter that
parameter and all of the parameters for the prompt line follow-
ing the one in error.

NOTE

2. If a utility program bid by the operator was illegal, the print-
out or display readout presented in the paragraph entitled
“TXDS Control Program Error Messages’ will be displayed.

8. After responding to the OPTIONS: prompt, the operator depresses the carriage return
key and causes the program to be loaded into memory and then executed. When the
program is loaded into memory, a title identifying the utility will be displayed. Observe
the following printout/display from the system console if, for example, the TXLINK
utility program was loaded:

TXLINK V.R.E YY.DDD LINK EDITOR

(where 937537 is the part number of the TXLINK utility program)

9. After the loaded program has completed execution, observe the following printout or
display readout from the system console:

TXDS V.RE YY.DDD

PROGRAM:
NOTE

When the user desires to execute a task that already resides in
memory without loading the task, a hexadecimal sign is entered,
followed by the task ID (10). For example, after the TXEDIT utility
program has been loaded into memory, it can be reexecuted as
follows:

TXDS V.RE YY.DDD

PROGRAM: >10
INPUT: DSC:TASK2/SRC
OUTPUT: DSC:SCRATCH/SRC
OPTIONS: (carriage return)

A description of the prompts and associated response-entries is provided in the following
subparagraphs.

2.3 RESPONDING TO TXDS CONTROL PROGRAM PROMPTS

The operator’s response to the PROGRAM:, INPUT:, or OUTPUT: prompt is used to specify
(1) the device-name identifier of the input device on which the program to be loaded and executed
is stored and/or (2) the file-name identifier of the program to be loaded and executed. When the file
is on a diskette input device, the full response to any of the prompts requires inclusion of the
diskette-name identifier (e.g. DSC, DSC2, DSC3, DSC4) and the file-name identifier (e.g. : TXLINK
or :TXEDIT) and the extension. An example of a full response to a PROGRAM: prompt is:

PROGRAM: DSC:TXLINK/SYS

23 , Digital Systems Division

@ 946258-9701

When the file is on a non-diskette device such as a cassette unit, card reader, line printer or other
I/O device, the full response to any of the prompts requires inclusion of solely the device-name (
identifier (e.g., CS1 or CR). An example of a correct full response to a PROGRAM: prompt is:

PROGRAM: CR
Both device names and file names are called pathnames.

2.3.1 PATHNAME SYNTAX. When a pathname is used to indicate a dev{ce, it consists of the
one- to four-character device name assigned to that device during system genetation (see the 7X990
Operating System Programmer’s Guide).

A pathname which designates a file has basically three fields:

® A device or volume name to designate the diskette which contains the file. A device name
is the one- to four-character name assigned to the diskette drive during system generation.
A volume name may only be used on customized TX990 operating systems which include
volume name support (see the 7X990 Operating System Programmer’s Guide section on
system generation). Volume names are also one to four characters.

® A file name which is one to seven characters and separated from the device or volume
name by a colon (:). The file name is specified when the file is created. The first character
must be alphabetic (A-Z); the rest may be alphanumeric.

® An extension to the file name which is one to three characters and separated from the file
name by a slash (/). The extension may also be specified when the file is created. The first
character must be alphabetic; the rest must be alphanumeric. Extensions are commonly
used to describe how a file is used, such as LST for listing files, SRC for source files, and
OBJ for object files.

AN

No imbedded blanks are allowed in any of the three fields.

When specifying pathnames in response to prompts made by any of the utility programs, some of
the fields may be omitted, and the utility uses a default value for that field. Table 2-1 shows the
possible pathname variations.

NOTE

The default-substitutes mentioned in table 2-1 are determined by
the utility program being executed. Consequently, in. some utility

programs, a default-substitute may not exist. Further, the utility
program being executed also determines whether or not a default-
substitute results in an error.

The TXDS Control Program checks the syntax of all of the pathnames entered for utility programs

before they are executed. If the pathname syntax is not legal, then the prompt associated with that -
entry is again printed out or displayed (to reprompt the operator).

¢

,a Digital Systems Division

946258-9701

Pathname

DEV:FILE/EXT
VOL:FILE/EXT

:FILE/EXT
DEV:FILE
VOL:FILE

:FILE

:FILE/

DEV/EXT
VOL/EXT

JEXT

DEV:
VOL:

DEV

Table 2-1. Pathname Syntax Variations

Explanation

This is the full pathname response for a diskette file. An example is: DSC:TXLINK/SRC.
No default-substitute is employed when a full response is made.

The missing DEV causes the default diskette name, defined during system generation,
to be used in the device field.

This causes a blank to be provided for the extension.

The default diskette name, defined during system generation, is used for the device field
and a blank is used as the extension.

This causes the default diskette name, defined during system generation, to be used
for the device field and the extension to be defaulted as specified in the utility program
being executed.

This causes a default-substitute to be provided for the file as specified in the utility
program being executed.

This causes the default diskette name, defined during system generation, to be used for
the device field and the file default to be defaulted as specified in the utility program
being executed.

This causes the default diskette name, defined during system generation, to be used for
the device field and the file and extension to default as specified in the utility program
being executed.

This causes a default-substitute to be provided for the file and extension as specified in
the utility program being executed.

This is a full device name. No default-substitutes apply.

2.3.2 PROMPT-RESPONSES. The TXDS Control Program prompts the user to enter the program
pathname, input pathname, output pathname, and option-selections. The TXDS Control Program
then checks the pathnames for syntax. If the syntax is not correct, it will prompt the user again.
After all of the responses to the prompts are entered, the TXDS Control Program loads and
executes the specified program as task 104¢.

2.3.2.1 PROGRAM: Prompt. The operator’s response to the PROGRAM: prompt must specify
either the pathname of the program to be loaded and executed, or the task ID of a program already

in memory.

Digital Systems Division

@’@ 9462589701

Only one pathname can be entered in response to the PROGRAM: prompt. When the program
is to be loaded as a privileged task (enabling the task to execute certain supervisor calls), the
user must enter the pathname followed by a “,P”. A task, when not linked with the TX990 Opera-
ting System, can only be made privileged when it is loaded. All tasks linked with the TX990 Opera-
ting System are privileged.

When the user enters only a slash (/) for the extension field in the PROGRAM: prompt pathname,

the extension will default to SYS and SYS will be substituted into the pathname before any drives
are searched.

When a PROGRAM: pathname, for a diskette configuration, does not specify the diskette transport
drive, the TXDS Control Program starts a device-file search beginning with the diskette transport
drive that is the default-substitute defined during system generation. For a standard TI-supplied
TXDS system, the default-substitute is DSC. If the file is not on the diskette of the first default
diskette transport drive, the TXDS Control Program will concatenate a 2 to DSC and the file search
would then proceed to DSC2. In the same manner, the search continues to DSC3 and to DSC4.
The search is only effective when the diskette default-substitute is the main diskette transport drive
and when its device-name identifier is comprised of three characters, (i.e., DSC or any other three
characters). It should also be noted that whenever the user specifies the device-name identifier in
response to the PROGRAM: prompt, only the specified device (e.g., the specified diskette transport
drive) is searched.

The file-name identifier for each utility program is listed in table 2-2. If a task ID is entered, it must
be preceded by a “greater than™ sign (>).

2.3.2.2 INPUT: Prompt The operator’s response to the INPUT: prompt is used to specify the
pathname of the input information needed by the program during its execution. For example: the
TXMIRA utility program uses the response to the INPUT: prompt to specify the pathname of
the source file; the TXLINK utility program uses the response to the INPUT: prompt to specify the
pathname of the individual object modules to be linked; and the TXCCAT utility program uses
the response to the INPUT: prompt to specify the pathname of the individual files to be copied
together. The other utility programs each use the response to the INPUT; prompt in the manner
described under each of the utility program sections in this manual. The operator can enter zero
to three input pathnames separated by commas. The TXDS Control Program will check each para-
meter for syntax. If the syntax is wrong, the TXDS Control Program will prompt the user again.
The user must enter the entire line again.

The INPUT: pathname default-substitutes for each utility program are listed and described in each
utility program section of this TXDS Programmer’s Guide and in each utility program section of
the TX990 Operating System Programmer’s Guide.

2.3.2.3 OUTPUT: Prompt. The response to the OUTPUT: prompt is the pathname for storage of
the output information. For example: the TXMIRA utility program uses the response to the
OUTPUT: prompt to specify the pathname where object is stored and assembly source tile listings
are to be presented; the TXLINK utility program uses the response to the OUTPUT: prompt to
specify the pathname where the linked object is to be stored and where load map listings are to be
presented; and the TXCCAT utility program uses the response to the OUTPUT: prompt to specify
the pathname where the copied files are to be stored. The other utility programs each use the
response to the OUTPUT: prompt in the manner described under each of the utility program
sections herein this manual. Up to three pathnames (separated by commas) can be entered in
response to the OUTPUT: prompt.

The OUTPUT: pathname default-substitutes for each utility program are listed and described in
each utility program section of this 7XDS Programmer’s Guide and in each utility program section
of the TX990 Operating System Programmer’s Guide.

2-6 _ Digital Systems Division

o

{[@? 946258-9701

2.3.2.4 OPTIONS: Prompt. The operator’s response to the OPTIONS: prompt is used to specify
the option(s) selected from the total alternative options available for the program which is to be
loaded and executed. These options are described in the applicable utility program section in this
TXDS Programmer’s Guide or in the TX990 Operating System Programmer’s Guide.

Table 2-2. Utility Program File-Name Identifiers

File Name Identifier

:GENTX/SYS
:OBIMGR/SYS
:BACKUP/SYS
:SYSUTL/SYS
:LIST80/SYS
:DSKDMP/SYS
:“TXMIRA/SYS
:TXXREF/SYS
:TXLINK/SYS
:TXCCAT/SYS
:TXEDIT/SYS
:IBMUTL/SYS

:TXDBUG/SYS

:TXLUNO/SYS

Notes:

Utility Program

System Generation !,3

Object Manager ! 3
" Diskette Backup ! 3
System Utility *»3

List 80-80 !> *

Diskette Dump !> 3
Assembler 2

Cross Reference 2

Linker 2

Copy Concatenate 2

Text Editor 2

IBM Diskette Conversion 2> 3

Standalone Debug?
LUNO Assignment?3

1= TX990 Operating System utility program.

2= TXDS Terminal Executive Development System utility program.

3~ Capable of being loaded and executed using OCP commands or

the TXDS Control Program.

*~ This utility can only be excuted using OCP.

2.3.3 SPECIAL KEYBOARD CONTROL KEYS. The special keyboard control keys are described

as follows:

1. RUB OUT/DELETE LINE

2. CONTROL H/Back Arrow

3. Carriage. Return/NEW LINE

Allows the operator to reenter a parameter.
Pressing the RUB OUT key causes a line feed
followed by a carriage return. The operator may
then enter the line again.

Allows the operator to backspace by character
and correct a typing error.

Causes TXDS Control Program to terminate if
the carriage return or NEW LINE was the only
entry in response to the PROGRAM: prompt,
otherwise terminates a prompt line entry.

Digital Systems Division

e}
%@ 946258-9701

4. ESCAPE/RESET If an ESCAPE or RESET is entered during a

print out, the TXDS Control Program terminates. - (
5., Causes a default to be activated when entered

as the response to the INPUT: or OUTPUT:

prompts.
6. & In any prompt line, pressing the & key as the

first character in the response causes the TXDS
Control Program to restart with the PROGRAM:
prompt.

7. * When entered after a prompt line entry, in place
of a carriage return, permits the next prompt
line to be entered without being prompted by
the TXDS Control Program. When a prompt line
is terminated with an asterisk (*) followed by a
carriage return, no more prompts are given and
default-substitutes are made by the utility pro-
gram for those pathnames not entered. The ex-
perienced user can enter all or several of the
parameters on one prompt line.

The following examples utilize the asterisk (*) feature in lieu of the INPUT:, OUTPUT:, and
OPTIONS: prompts:

N

Example 1:

To load the TXEDIT utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as presented in the following example:

TXDS V.RE YY.DDD

PROGRAM: DSC:TXEDIT/SYS*DSC:TASK2/SRC*DSC:SCRATCH/SRC*
(where DSC:TASK2/SRC is the INPUT: pathname; DSC:SCRATCH/SRC is the OUTPUT:
pathname; and the OPTIONS: entry is provided by the default-substitution specified in the
TXEDIT utility program.)
The above can also be entered as follows:

TXDS V.RE YY.DDD

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC:TASK2/SRC*DSC:SCRATCH/SRC*

Example 2:

To load the SYSUTL utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as follows:

TXDS V.RE YY.DDD (

PROGRAM: :SYSUTL/SYS***CF,: TEMP/OBJ

2.8 Digital Systems Division

[o]
{@ 9462589701

(where the INPUT: and OUTPUT: parameters are null and the OPTIONS: parameter is
CF,:TEMP/OBIJ.

NOTE
1. In the above examples, it is necessary to press the carriage
return key at the end of the parameter line to cause the pro-
gram to be loaded and executed.
2. If a parameter line ‘ends with an asterisk (*) and a pathname is
not entered for each prompt, then default substitutes are made
by the utility program for those pathnames not entered.

Example 3:

The following example utilizes the comma (,) to cause a default-substitution to be made in the
OUTPUT: pathname below. '

TXDS V.RE YY.DDD
PROGRAM: :TXMIRA/SYS
INPUT: :TASK1

OUTPUT: ,CRT
OPTIONS: M800,X,L

(where the OUTPUT: pathname defaults to a substitute specified in the TXMIRA Assembler
utility program.)

The following example utilizes both the asterisk (*) and the comma (,) special keyboard controls:

To load the TXMIRA Assembler utility program after the TXDS Control Program has been
loaded, the asterisk (*) is used as follows:

TXDS V.RE YY.DDD
, PROGRAM: :TXMIRA/SYS*:TASK1*,CRT*M800,X,L

(where TASK1 is the INPUT: pathhame and where the OUTPUT: pathname is the default-
substitute provided in the TXMIRA Assembler utility program.)

2.4 BACKING UP TI-SUPPLIED DISKETTES) ’

Before the TIsupplied TXDS diskettes are used, they should be backed up onto scratch diskette(s):
(1) to ensure that a backup diskette is available if the diskette(s) is destroyed; and (2) to ensure
that either of the two diskettes (i.e., the original diskette and the backup diskette) will always be
available to do future system generations with the use of a minimum 16K-memory configuration.

Backup the system diskette by performing the following step-by-step procedure:

1. Remove the system diskette from diskette transport drive 1 and insert in its place the
TX990 parts diskette.

2. Take a scratch diskette and place it into diskette transport drive 2.

29 Digital Systems Divisibn

@ 946258-9701

3. Start the backup procedure by bidding the BACKUP utility as follows:
PROGRAM: :BACKUP/SYS*(C/R)
NOTE

(C/R) signifies.a NEW LINE entry on a 913 VDT, a RETURN on a
911 VDT, and a carriage return on an ASR. :

The items underlined below are the user’s responses to the prompts.
The Diskette Backup and Initialize Utility is loaded:

BACKUP V.R.E YY.DDD BACKUP/INITIALIZE
- OUTPUT DISC OR VOLUME NAME? DSC2 (C/R)

4. If the diskette is not initialized the following message is displayed:
DISC I/O ERROR, CODE 1E
THE OUTPUT DISC MUST BE INITIALIZED

5. If the diskette is initialized, the following message is displayed:

DELETE ALL FILES ON DSC2? (Y/N) N(C/R)

6. The rest of the procedure is:
INITIALIZE DSC2? (Y/N) Y(C/R)
OUTPUT DISC ID SCRATCH DISR (C/R)
OUTPUT VOLUME NAME BKUP (C/R)

After the diskette is initia_lized, the following will be printed:
COPY FILES? (Y/N)

At this point remove the diskettes from drive 1 and load the system diskette to be backed up. Then
respond to the prompt as follows:

COPY FILES? (Y/N) Y(C/R)
VERIFY FILES? (Y/N) Y(C/R)
INPUT PATHNAME? DSC (C/R)

ERROR LOG:

2-10 - Digital Systems Division

o

S

%@ 946258-9701

For a discussion of any error messages which are output at this point, see the Diskette Backup
Utility section of the TX990 Operating System Programmer’s Guide.

THE DISC IS NOW BEING VERIFIED
ERROR LOG:

For a discussion of any error messages which are output at this point, see the Diskette Backup
Utility section of the TX990 Operating System Programmer’s Guide.

FINISHED! .

- COPY FILES? (Y/N) N(C/R)
VERIFY FILES? (Y/N) N(C/R)
SET SYSTEM FILE? DSC

If the backed up diskette has a system file on it, respond to the prompt with the name of that file.
For example, if the system file was :SYSASR/CMP, the response should be:

SET SYSTEM FILE? DSC:SYSASR/CMP(C/R)

Termination of BACKUP is accomplished by entering an asterisk to the next prompt:
OUTPUT DISC OR VOLUME NAME: *(C/R)

BACKUP & INITIALIZE UTILITY ENDED
TXDS V.RE YY.DDD

2.5 TXDS CONTROL PROGRAM ERROR MESSAGES
Refer to table 2-3 for a list of error messages, the reason for each error, and the recovery method.

Table 2-3. TXDS Control Program Error Messages

Error Reason Recovery
nn — BAD PGM LOAD nn represents error code listed Reenter parameter
in Error Appendix D.
— BAD PGM LOAD Cannot find object file. Reenter parameter
nn — CAN’T BID TASK nn represents the task state code Reenter parameter.
of task 10,4 listed in State Code
Appendix C.
CAN’T GET COMMON— System was configured without Configure a system with 168
ABORTED COMMON. bytes of common.
2-11/2-12 Digital Systems Division

£

[e]
K‘r@; 9462589701

SECTION III
VERIFICATION OF OPERATION

3.1 INTRODUCTION
This section provides several short procedures to verify that the software is operating properly.
These procedures are listed below and described in the following procedural steps:

® Load and Initialize TX990 Operating System

® load and Initialize TXDS Control Program

® TXCCAT Verification Procedure

® TXEDIT Verification Procedure

® TXMIRA Verification Procedure

® OBJMGR Verification Procedure

® TXLINK Verification Procedure
The Operating System Diskette mentioned in the procedure refers to either TXDS System Diskette
2 (for 913 VDT systems), TXDS System Diskette 3 (for ASR systems), or TXDS System Diskette 4
(for 911 VDT systems).

3.2 REQUIREMENTS :
This procedure requires the following items in addition to the required hardware for a TXDS
system:

® TX990 Operating System Programmer’s Guide

e TXDS System Diskette

® TX990 Parts Diskette

3.3 OPERATION
The following steps of the verification procedure demonstrate that the system is operational.

1. Initialize TX990 by loading TXBOOT from TXDS system diskette.
a. Insert TXDS System Diskette in diskette drive #1.
b. On the front panel, press the following pushbutton switches to load the system.
HALT
RESET
LOAD

c. Bid the TXDS control program by entering ! at the system console.

3-1 Digital Systems Division

946258-9701

Place scratch diskette in drive #2. If diskette is not initialized; place TX990 Parts
Diskette in diskette transport drive #1 and execute the Disc Backup and Initialize @
(BACKUP) utility program as described in Section X of Model 990 Computer TX990
Operating System Programmer’s Guide. Replace the System Diskette in transport drive 1.

Copy :TXTST1/SRC from System Diskette to scratch diskette using TXCCAT. With_

System Diskette in transport drive 1 and the scratch diskette in transport drive 2, enter
the following commands to copy :TXTST1/SRC to the scratch diskette:

PROGRAM: DSC:TXCCAT/SYS
INPUT: DSC:TXTST1/SRC
OUTPUT: DSC2:TXTST1/SRC
OPTIONS: (carriage return)

After completion of the copy, TXDS will come up and should be given the following
parameters in order to execute TXEDIT:

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC2:TXTST1/SRC
OUTPUT: (carriage return)
OPTIONS: (carriage return)

Position TXEDIT to line 20 of TXTST1/SRC using the DOWN (D) command and print
the line to assure that the pointer is positioned correctly.

D20
P

N

The following line should be printed

20 DATA OLD,CNT1
Edit line 20 to enable printing the new message by using the Change (C) command.
Replace line 20 with the following line, spacing the DATA over seven spaces and the
NEW,CNT one more space.

2C20-20

DATA NEW,CNT

Enter an extra carriage return to terminate the Change command.
Print line 19 and the modified line to ensure the change has been made correctly.

T

D18

P2

19 BLWP @WRITE PRINT MESSAGE
DATA NEW,CNT

C

32 Digital Systems Division

o
{'@ 946258-9701

8. Terminate the editing session by executing the Quit (Q) command.

’Q

Upon executing the Quit command, TXEDIT issues a prompt to ensure that it is time
to terminate. After responding with a “T’, the current input file and buffer are copied
to the output scratch file. Respond with a ‘Y’ when asked if the scratch file is to be
copied to the input file.

TERMINATE/CONTINUE?T

TEXT IN SCRATCH FILE
TRANSFER TO INPUT? Y
END EDIT

TXEDIT is then terminated and the TXDS control program is rebid.

9. Now assemble TXTST1/SRC using TXMIRA. The assembled object is directed to the file
TXTST1/OBJ on the scratch diskette. The object is designated as compressed object on
the options line. The assembly output listing is listed to the default system printer as
specified in the OPTIONS: parameter. Also, the cross reference listing output from
TXXREF is listed to the default system printer. The sample output listings are illustrated
in figure 3-1.

Enter the following parameters.

PROGRAM: DSC:TXMIRA/SYS
INPUT: DSC2:TXTST1/SRC
OUTPUT: DSC2:TXTST1/OBIJ.
OPTIONS: C\LX ‘

The output listing should reflect the changes made in step 6. Verify that no errors are
detected by TXMIRA.

10. Place TX990 Parts Diskette in drive #1.

11. Object Manager is then loaded and executed to combine the three required object
modules into one module for linking into the TX990 System. Execute the object manager
as follows: ‘

PROGRAM: DSC:OBJMGR/SYS*
OBJMGR V.RE YY.DDD OBJECT MANAGER

After printing the above message,; object manager requests specification of a file in which
the combined object is to be placed. At this point the TX990 Parts Diskette should be
removed and the System Diskette installed in drive #1. After specifying the output file,
enter the pathname of the three required object files and designate that each input file
is to be copied and rewound.

33 Digital Systems Division

946258-9701

TXTST1 TXMIRA
TXDS TEST PROGRAM

2.3.0 78.244 00:08:11 01/702/00 PAGE 0001

Q001 * Q0937808 MODULE 01
0003 IDT “TXTST1/
0004 *
0005 REF CNT.NEW,WRITE
0006 *
Q007 0000 0006~ DATA TSTWSP,START,O0
0002 0045~
0004 0000 .
0008 0004 TSTWSP BSS 32
0009 0026 1600 ENDPRG DATA 21600 END OF PROGRAM OP CODE
0010 9*
0011 DXOP SVC, 15 ##% DEFINE XOP
0012 *
0013 0028 OD OLD BYTE 20D, >0A,>0A
0029 0A
002A 0A
Q014 002B 20 TEXT 7 OLD MESSAGE —— WRONG !'!'~
0015 0043 oD BYTE >0D.>0A
0044 0A
0016 0010 CNT1 EQU $-0LD
TXTST1 TXMIRA 2.3.0 78.244 00:08:11 £01/02/OO PAGE 0002
TXDS TEST PROGRAM :
0018 START
0019 0046 0420 BLWP @WRITE PRINT MESSAGE
0048 O)
0020 004A 0028° DATA NMEW., CNT
004C 001D
0021 QO04E ZFEO SVC @ENDPRG END OF PROGRAM
0050 00267
Q022 END
0000 ERRORS
TXXREF 2.3.0 752.244 Q008222 01702700 PAGE 0001
CNT QOO DOZ0
CNT1 Q14
ENDFRG 0009
NEW T GV
aLp 0013 00164
START o01s Q07
SVC 0011
TSTWEF 0003 Q007
WRITE o00s 0019

THERE ARE 0009 SYMBOLS

Figure 3-1. TXMIRA Sample Output Listing

34 Digital Systems Division

=

EN

[e]
{r@ 946258-9701

OUTPUT FILE: DSC2:TXTST/OBJ

INPUT FILE: DSC2:TXTST1/OBJ

REWIND INPUT FILE? Y
TXTST1 ? C !
END-OF-FILE

INPUT FILE: DSC:TXTST2/OBJ
REWIND INPUT FILE? Y
TXTST2 ? C
END-OF-FILE

INPUT FILE: DSC:TXTST3/OBJ

REWIND INPUT FILE? Y
TXTST3 ? C
END-OF-FILE

INPUT FILE: *
END OBJECT MANAGER

Object manager terminates upon entering an asterisk on the input line.
12. Execute TXLINK to link the object manager output as follows:

PROGRAM: DSC:TXLINK/SYS
INPUT: DSC2:TXTST/OBJ
OUTPUT: DSC2:TXTEST/OBJ,LOG
- OPTIONS: CJITXTEST,L
TXLINK V.R.E. YY.DDD LINK EDITOR

The output line contains the name of the file TXTEST/OBJ in which the linked object
is to be placed, as well as the device to which the load map is directed. ‘C’ specifies that
the object is to be compressed, ITXTEST’ designates that the IDT for the linked object
is to be TXTEST, and ‘L’ specifies that the output of TXLINK is to be listed. The default
memory size of 12K is available for the link. '

Following is the link output.

TXLINK 2.3.0 78.244 14:06:26 07/06/78 Page 0001
TXTEST LENGTH 00A0 '
MODULE LENGTH ORIGIN DATE TIME
TXTSTI1 0052 0000 :
TXTST2 001E 0052 01/25/77 15:11

TXTST3 0030 0070 01/25/77 15:14
‘ DEFINITIONS

A CNT 001D NEW 0052 WRITE 0070

Digital Systems Divisloﬁ

(o]
@ 946258-9701

13. The TXDS Test Program is now ready for execution. Execute by entering the compressed
object module name on the program line followed by *. Upon executing, the following
message is issued prior to termination and TXDS is rebid.

PROGRAM: DSC2:TXTEST/OBJ*

HAVE A GOOD DAY !!

36 Digital Systems Division

AN

S

0 «
%@ 946258-9701

CREATING AND EDITING PROGRAM SOURCE CODE

SECTION IV

4.1 INTRODUCTION .

The TXDS Text Editor (TXEDIT) Utility Program provides the user/programmer with the capability
of editing the text of source programs and object programs and, in addition, the capability of
creating source programs. Basically, 21 TXEDIT commands are available to fulfill the programmer’s
needs. The commands are grouped as follows:

® Setup commands:
Start Line Numbers (SL) command
Stop Line Numbers (SN) command
Set Print (SP) column margin number command
Set Margin (SM) for Find command

Set Tabs (ST) command

® Pointer-Movement commands
‘ Down (D) command
Up (U) command
Top (T) command
Bottom (B) command
L] | Edit 'commands
Change (C) command
Insert (I) command
Move (M) command
Remove (R) command
Find (F) string command
® Print commands
Limits (L) command

Print (P) command

4-1 Digital Systems Division

o
%@ 946258-9701

® Output commands

N

Keep (K) commanci
Quit (Q) command
End (E) command

® Terminate-Sequence commands
Terminate (T) command
Continue (C) command

All of the TXEDIT commands are capable of being entered via the keyboard of the system console.
To edit a program or record, the user must first have the program or record recorded on a TI disk-
ette or cassette. The text is then edited by feeding it from the TI diskette or cassette (hereinafter
referred to as the input file) into a memory buffer where the editing is performed and then out to
the scratch file (until an EOF character is read or a Quit command is entered). If further editing is
required, the text data is reversed to flow back from the scratch file into the memory buffer and
back to the input file (until the EOF is read again or a Quit command is entered again). This trans-
fer between the two files (with multiple editing activities being automatically performed during ~
each pass) continues until the user is finished. At that time, the TXEDIT program provides a print-
out or display on the system console which states whether the input file or the scratch file contains
the final edited text. The user then has the option of using a command to transfer the resultant final

edited text back to the input file in substitution of the preedited source program or the preedited
object program or record.

CAUTION . ' ~{

The user should ensure that the input file is not destroyed by
copying it onto a temporary file diskette or cassette.

The TXEDIT program may be executed in a Model 990/4, 990/5 or a 990/10 minicomputer con-
figured to support a TX990 Operating System. The minimum configuration includes a computer
with 16K words of memory and an interactive operator system console, the LOG.

The following paragraphs describe various TXEDIT program functions and procedures. A TXEDIT
loading procedure is presented. Specific editing procedures using the TXEDIT commands are
presented for: changing, adding, moving, or removing source or object records in the buffer and to
locate and modify a character string in a group of records; using editor commands to move the text
editor’s buffer line pointer; moving lines/text into and out of the buffer; and using special terminal
keyboard characters. Procedures for coding source or object files and writing a new source program
are also explained. A description of possible error and warning messages is provided. Concluding
this section is an example of how to enter and edit a source program and a discussion of how to
edit an object program.

4.2 LUNOs

LUNOs 7 and 8 are assigned by the text editor. LUNO 7 is assigned to the input file, and LUNO 8
is assigned to the output file. The text editor uses the system console as the interactive device.
When the text editor terminates, all files are closed and all LUNOs are released.

4-2 Digital Systems Division

[e]
(_r@.j; 946258-9701

4.3 LOADING TXEDIT

The user can load the TXEDIT utility program only by use of the TXDS Control Program (The
TXEDIT utility program cannot be loaded via OCP.) After the TXDS Control Program is executed
using the procedure in Section II, responses to the TXDS Control Program’s PROGRAM:, INPUT:,
OUTPUT: and OPTIONS: prompts are then entered by the user via the keyboard of the system
console. The user responds to the PROGRAM: prompt as follows:

PROGRAM: :TXEDIT/SYS

The response to the INPUT: prompt requires the pathname of the source program file location on
diskette or cassette. If the diskette file is specified by the pathname and none exists, it will be
created. This is the correct procedure for generating a new source file. An insert (I) command may
then be used to generate lines of source code. The response to the OUTPUT: prompt requires the
pathname of the scratch file location on diskette or cassette. If the diskette file is specified by the ~
pathname and none exists, it will be created. The OUTPUT: file pathname must not be the same as
the INPUT: file pathname. In response to the OPTIONS: prompt, the user may specify the size of
the memory buffer. Under the TXEDIT utility program, this is the only option available to be
specified. The size of the memory buffer is specified by the user entering an M followed by a deci-
mal number (which may vary from one to five characters in length). The decimal number specifies
the number of bytes to be used for the memory buffer. The memory size is determined using the
following procedural example: if the user wishes to edit 75 lines of text, each character on each
line is used to specify one byte; further, each line is preceded by a six-byte header and followed
by a one-byte carriage return. Consequently, if each line of text has an average length of 40 bytes
plus 6 bytes for the header and 1 byte for the carriage return, then 75 lines of text would require
3525 bytes. Table 4-1 lists the TXEDIT default-substitutes.

An example of loading TXEDIT from diskette follows:
TXDS V.RE YY.DDD
PROGRAM: :TXEDIT/SYS

INPUT: DSC2:UPDATE/SRC
OUTPUT:

OPTIONS: M4000
The above response-entries to the prompts cause the TXEDIT utility prbgram to be loaded from
diskette into memory and then to be executed. The OUTPUT: pathname is provided by the
TXEDIT utility program with :SCRATCH/SRC (Diskette Drive #1) as the default-substitute.’

An example of loading a file from cassette follows:

TXDS V.R.E YY.DDD
PROGRAM: :TXEDIT/SYS
INPUT: CS1
OUTPUT:

OPTIONS: M4000

The above response-entries to the prompts cause the TXEDIT utility program to be loaded from

diskette into memory and then to be executed. Output will be: SCRATCH/SCR (Diskette Drive
#1).

4-3 Digital Systems Division

946258-9701
Table 4-1. TXEDIT Default-Substitutes
Entry Pathname Default-Substitute ; @
INPUT: DEVICE Default disc drive
FILE No default-substitute
EXTENSION SRC
OUTPUT: DEVICE Default disc drive
FILE SCRATCH ‘
EXTENSION SRC
OPTIONS: M (memory) 3000 bytes

4.4 COMMANDS

4.4.1 GENERAL. The TXEDIT utility program supplies 21 edit commands to fulfill the user’s
needs. Further, eight special keys/characters are also provided to meet general utility needs (e.g.,
RUB OUT, ESC, et. al.). The commands are entered at the keyboard of the system console in
response to the printing of a question mark (?7); and after the command is entered, it is executed by
entering a carriage return. The syntax of the command is free form in that one or more spaces may
‘be inserted between characters and operands of the commands. A list of the commands and a brief
description of each command is provided in table 4-2. The detailed descriptive information pertain-
ing to each command is provided in the following paragraphs.

4.4.2 COMMAND OPERANDS. Command operands are used to specify ‘a number of lines, line

numbers, or displacements from the pointer. The edit commands and one of the print commands
may specify a group of lines by first and last line number of by a number of lines relative to the
pointer.

443 SYMBOL DEFINITION. The symbols used in conjunction with TXEDIT commands are
defined as follows:

Angle brackets < > enclose items required to be supplied by the user.
Brackets [1 enclose optional items.

Braces enclose items between which a choice must be made; one, and only one, of
the items must be included.

Items in capital letters must be entered as shown.
NOTE

The syntax definitions and examples presented in this section do not
have spaces between the characters of the two-character commands,
between the command and operands, or between operands. Spaces
may be entered at these points if desired, and all operands are
decimal numbers.

o~

4-4 Digital Systems Division

946258-9701

)

Table 4-2. List of Commands and Special Keys/Characters
Command Syntax Description
SETUP COMMANDS

SL Start Line numbers (SL) command causes line numbers to be printed with
each line of text.

SN Stop line Numbers (SN) command causes line numbers not to be printed.
SP Set Print margin (SP) command sets the right boundary for print display.
SM Set Margin (SM) for Find command sets the left and right boundaries for

the Find command.
ST Set Tabs (ST) command sets up to five tab stops.

POINTER-MOVEMENT COMMANDS

D Down (D) command moves the pointer down toward the bottom of the
buffer.
U Up (U) command moves the pointer up towards the first line in the buffer.
T Top (T) command moves the pointer to the first line in the buffer.
B Bottom (B) command moves the pointer to the last line in the buffer.
EDIT COMMANDS
C Change (C) command removes lines from the buffer and inserts new ones in

their place. The new lines are input from the terminal.

I Insert (I) command takes input from the terminal and places the new lines
into the buffer.

M Move (M) command moves lines from one place in the buffer to another.
R Remove (R) command deletes lines from the buffer.
F Find string (F) command searches for the first occurrence of a character

string in a line and replaces it with another string of characters.

PRINT COMMANDS
L Limits (L) command causes the first line and the last line to be displayed.
P Print (P) command displays lines of text.

4-5 Digital Systems Division

%@ 9462589701

Table 4-2. List of Commands and Special Keys/Characters (Continued)

Command Syntax Description

OUTPUT COMMANDS

TorC

CTRL-H

RUB OUT

CTRLI

ESC/RESET

position keys

DELETE LINE

TAB

Keep (K) command takes lines of text out of the buffer and puts them in
the output file.

Quit (Q) command takes lines of text out of the buffer or the input files
and puts them in the output file.

An (E) command terminates without writing an EOF to the output file.

TERMINATE-SEQUENCE COMMANDS

Allows the user to make multiple single directional editing passes on a
source or object program.

SPECIAL KEYS/CHARACTERS

Pressing the control key and the H key simultaneously on the hard copy
terminal causes the terminal to backspace a character to enable rewriting
over an entered character-error.

The RUB OUT key causes the line just entered to be deleted so that a new

line can replace it.

Pressing the control (CTRL) key and the I key simultaneously on a hard-
copy terminal causes a tab stop to be entered in the input string, although
only one space will be echoed on the terminal.

Pressing the ESCape or RESET key on the system console causes a display
to be aborted.

When using a VDT, only the left position key (<) and the right (-) position
key are recognized. The up and down position keys cause garbage to be
entered into the input string. The left position key causes characters to be
deleted from the character string; a right position key causes whatever was
under the cursor to be entered.

DELETE LINE on a VDT acts the same as a RUB OUT on a hardcopy
terminal.

A SPACE character is echoed. The TAB is interpreted by the text editor and
spaces are inserted to fill the text line to the next TAB setting. Refer to
paragraph 4.4.5.5 which follows.

46 Digital Systems Division

4

)

r

{@ 946258-9701

4.4.4 SPECIAL KEYS/CHARACTERS. The following special characters are recognized by the text
editor when the terminal is an ASR or KSR. A backspace character (CTRL H) backspaces one
character position. A RUB OUT character deletes the line that has just been entered from the key-
board. On an ASR or KSR, a tab (CTRL I) echoes as one space upon character input, but moves to
the nearest tab stop when the line is printed. (Tab stops are initially defined at character positions
8, 13, 31, and 33.) An escape (ESC) entered from the keyboard during print output causes the cur-
rent I/O operation and the command to be aborted; a question mark (?) prompt is then printed out
or displayed, to which another TXEDIT command-response-entry can be made.

The following special characters are recognized by the text editor when the terminal is a VDT. The
position keys will move the pointer for backspace, or forward space. The DELETE LINE key will
delete the line that has just been entered from the keyboard. The RESET key, when entered during
a printout, causes the current I/O operation and the command to be aborted. If the space bar is
entered during a printout, the printout will halt until the space bar is entered again. This allows the
user to scan the printout before it rolls off the top of the screen without aborting the 1/O operation.

44.5° SETUP COMMANDS. Setup commands may be entered immediately following loading of
TXEDIT to: set limits for the Find command; set the right margin for printing; enable or inhibit
printing of line numbers; set tabs. If no Setup command is entered, line numbers are printed. The
right margin for lines or print corresponds to column 72. Columns 1 through 72 are scanned by the
Find command, and tabs are preset at 8, 13, 31, and 33, which are the standard columns for source
code instructions, operands, and comments.

Setup commands may be entered anytime during an editing session. It is often desirable to change
the Find command limits before entering a Find command, so that only certain columns are
searched. The user may want to inhibit the printing of line numbers to enable more source codes to
be printed on a line. If the user is generating code to be assembled by TXMIRA, he may want to
set the right margin to column 60, since TXMIRA does not scan characters past column 60.

44.5.1 Start Line Numbers (SL). The Start Line Numbers (SL) command causes TXEDIT to
print line numbers to the left of each statement or record. Syntax for the SL command is as
follows: .

SL

The SL command is used to restore printing of line numbers after line number printing has been
inhibited by execution of an SN command.

4.4.5.2 Stop Line Numbers (SN). The Stop Line Numbers (SN) command causes TXEDIT to omit
printing of line numbers except in the message resulting from the Limits (L) command. The syntax
for the SN command is as follows:

SN

The SN command may be entered initially or at any time during the edit operation. Omitting the
line numbers when editing object code may be desirable to permit printing the entire record.

4.4.5.3 Print Margin (SP). The Print Margin command specifies the column number of the right
margin where printing is to end, except for the message resulting from the Limits (L) print com-
mand, described in this section. The syntax for the SP command is as follows:

SPs

4-7 Digital Systems Division

946258-9701

The s represents the column number of the right margin where printing is to end (i.e., one of the.

columns between 10 and 80, inclusive). If line numbers are being printed, the line numbers are
included in the margin column. Line numbers use six columns, so that if the right margin is
column 60, only 54 characters plus 6 line number character digits and blanks for spacing are
printed. The following example shows an SP command that specifies column 60 as the right margin
for printing:

?7SP60

4454 Set Margin (SM). The Set Margin (SM) command specifies left and right limits for the Find
command. Syntax for the SM command is as follows:

SMs,t

There must be a comma between s and t. The Find command scans from column s through column
t and may be limited to the desired field by the SM command. The default value for the scan limits
is from column 1 to column 72 (or the end of the line if less than 72). The following example shows

" an SM command that limits the scan of subsequent Find commands to columns 8 through 25:

7SM8,25

4455 Set Tabs (ST). The Set Tabs (ST) command allows up to five tabs to be set between
column 1 and 72. Syntax for the ST command is as follows:

STn,n,n,n,n
NOTE

There must be a comma between every column number. The column

" number is indicated by n. Tabs must be set in ascending order, and
if they are not, a blank will be inserted for the descending tab. If
more than five tabs are entered, an INVALID OPERAND error
message is issued; however, the first five tabs are set and ready for
use. If no column numbers are entered, all tabs are cleared.

4.4.6 POINTER-MOVEMENT COMMANDS. Pointer-movement commands may be used to move
the pointer to any line in the buffer of TXEDIT. Initially, the pointer is at line 1. Moving the
pointer with the Down (D) command past the last line in the buffer causes TXEDIT to read source
lines or object records from the input file to fill the empty lines. Other commands move the pointer
upward a specified number of lines, or to the top of the buffer, or downward to the bottom of the
buffer. The pointer-movement commands permit the user to move the pointer as desired for effec-
tive use of commands that identify lines by specifying a displacement from the pointer. The pointer
commands are described in the following subparagraphs.

4.4.6.1 Down (D). The Down (D) command causes TXEDIT to move the pointer down a specified
number of lines. When the specified move is to a line number greater than the contents of the
buffer, TXEDIT adds lines to the buffer and reads records from the input file to fill these lines. The
syntax for the D command is as follows:

Dn

48 Digital Systems Division

£

. .
{@ 946258-9701

The pointer is moved down n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The D command may be entered to read in lines from the input file or to move the
pointer to a line farther down in the buffer. Initially, or when the pointer is at the bottom of the
buffer, TXEDIT reads n lines from the input file. When the pointer is m lines above the bottom of
the buffer and n is greater than m, TXEDIT reads n - m lines from the input file. In each of these
cases, the pointer is at the bottom of the buffer after execution of the D command. However, when
the pointer is m lines above the bottom of the buffer and m is greater than or equal to n, no lines
from the input file are read. The pointer is m - n lines above the bottom of the buffer after execu-
tion of the command. The following example shows a D command to move the pointer down
30 lines.

D30

4.4.6.2 Up (U). The Up (U) command moves the pointer up a specified number of lines. Syntax
for the U command is as follows:

Un

The pointer is moved up n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The U command may be entered to move the pointer up to a specific line in the buf-
fer. The following example shows a U command to move the pointer up 6 lines:

U6

44.63 Top (T). The Top (T) command moves the pointer to the first line in the buffer. The .
syntax for the T command is as follows:

T

4.4.6.4 Bottom (B). The Bottom (B) command moves the pointer to the bottom (i.e., last) line in
the buffer. The syntax for the B command is as follows:

B

4.4.7 EDIT COMMANDS. The edit commands add, change, remove, rearrange, or scan lines of
source or object code, and act upon a set of lines in the buffer specified by line number or by a dis-
placement from the pointer. The edit commands are described in the following paragraphs.

4.47.1 Change(C). The Change command deletes a specified set of lines and permits input of one
or more lines to replace the deleted lines. The syntax for the command is as follows:

<> -<t>
C { [+] [<n>]
-<n>

Line s through line t are deleted, or n lines with respect to the pointer are deleted. The values of s
and t can be equal. As many replacement lines as required are entered. Each line is followed with a
carriage return; the last line is followed with two carriage returns. When n is preceded by a minus
sign, n lines preceding the pointer line are deleted, but the pointer line is not deleted. The new lines
are inserted in their place. When n is unsigned or is preceded by a plus sign, n lines beginning with
the pointer line are deleted, and the new lines are inserted. When no operand is entered, the pointer
line is deleted. and replaced by the new lines. When the pointer line is deleted, the pointer is moved
to the next line of the buffer following the newly inserted lines. If the line that was changed was the
last line in the buffer, the pointer will be at the first line in the buffer. The following example
shows a C command to change lines 5 through 7, replacing them with four lines.

4-9 Digital Systems Division

(o]
q@ 946258-9701

?C5-7
LOD MOV 1,4
Al 4,1
CI 4, WA+60
JLT SUM

The following example shows a C command to change the pointer line and the two lines that follow
the pointer, replacing them with two lines:

7C3
LOD MOV 1,4
CI 4,WA+60

4.4.7.2 Insert (I). The Insert (I) command permits input of one or more lines following the pointer
or a specified line. The syntax for the I command is as follows:

[[<s>]

As many lines as required are entered. Each line is followed with a carriage return; the last line is
followed with two carriage returns. When s is in the range of 1 to 9999, lines are inserted following
line s. When s is 0, lines are inserted ahead of the top line in the buffer. When s is omitted, lines are
inserted following the pointer line. The following example shows the use of the I command to insert
two lines following line 10: .

110
CKON
DEC 7

44.7.3 Move (M). The Move (M) command moves a specified block of lines to a specified location
and deletes the block of lines at the previous location. The block is specified by first and last line
numbers or by a number of lines preceding or following the pointer. The location to which the
block will be moved is specified as a line number or as the pointer. The syntax for the M command
is as follows:

<s> -<t>, [<r>]
M ([+] <n>, <>
-<n>, <r>

Line s through line t are moved, or n lines with respect to the pointer are moved. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are moved.
When n is unsigned or preceded by a plus sign, n lines beginning with the pointer line are moved.

The specified lines are placed following line r when r is greater than zero. When r is zero, the
specified lines are placed ahead of the top line in the buffer. When r is omitted, the lines are placed
following the pointer line, but r can only be omitted when specifying lines s through line t. Num-
bered lines moved by the Move command retain their original line numbers, if any. When the
pointer line is moved, the pointer moves with it. When s and t are specified, r must be less than s or
greater than t. The following example shows an M command to move lines 6 through 8 to follow
line 25:

"M6-8,25

The command in the following example moves four lines beginning with the pointer line to follow
line 30:

7M4,30

4-10 Digital Systems Division

£

@ 9462589701

4.4.7.4 Remove (R). The Remove (R) command removes a block of lines. The block is specified
by first and last line numbers, or by a number of lines preceding or following the pointer. The syn-
tax for the R command is as follows:

<s>-<t>
R [+] [<n>]
-<n>

Lines s through t are removed, or n lines with respect to the pointer are removed. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are removed.
When no operand is entered, the pointer line is removed. When the pointer line is removed, the
pointer is moved to the next line of the buffer. If the last line in the buffer is removed the pointer

will point to the first line in the buffer. The following example shows an R command to remove
line 12:

7R12-12
The command in the following example removes the three lines preceding the pointer line:
7R-3

44.7.5 Find (F). The Find (F) command scans a block of lines for the first occurrence in each line
of the specified character string. Optionally, the command may replace the string with or without
printing the resulting line, or may print the line and permit the user to specify whether or not to
substitute the string. In all cases, the command prints the count of matching lines found. The block
is specified by first and last line numbers, or by a number of lines preceding or following the
pointer. The syntax for the F command is as follows:

<s>-<t> ' [P]

F q[+] <n> { L} <dD><string I><dl> ‘

<> F <d2>[<string2>]<d2>[V] [P]
Line s through line t are scanned, or n lines are scanned. When n is preceded by a minus sign, n lines
preceding the pointer line, but not the pointer line, are scanned. When n is unsigned or preceded by
a plus sign, n lines beginning with the pointer line are scanned.

When an F is entered following the lines to be scanned, the columns specified in an SM command
are scanned for the first occurrence in each line. Columns 1 through 72 are the default scan columns
unless the line is shorter than 72 columns, in which case it will scan to the end of the line. When an
L is entered, the command performs a label scan, beginning at the left limit and extending to the
first space. ‘

The character string used in the scan is designated stringl, and is enclosed by identical characters,
each represented by dl. The character represented by dl may be any character that does not appear
in stringl.

When no other parameter is entered, the command scans the specified lines and prints the number
of lines in which a match of stringl was found. When P is entered following dl, the command prints
each line in which a match of stringl was found, and also prints the number of lines in which the
string occurred following the last line scanned.

Character string, string2, enclosed by identical characters, each represented by d2, is the replacing
string. String2 may be omitted, or may be longer or shorter than stringl. When the replacement is

4-11 Digital Systems Division

[e]
{@ 946258-9701

made, the characters of string2, if any, replace the characters of stringl and the length of the
resulting line is adjusted as necessary. When there are no characters entered for string2, the char-
acters of stringl are deleted. Character d2 may be any character that does not appear in string2,
V, or P.

When no other parameter is entered following string2, the specified lines are scanned and string2
replaces the first appearance on each line of stringl, or label stringl, each time a match is found.
The command prints the number of lines in which the replacement was made after scanning the
last line.

Either V or P, or both, may be entered following string2. The verify operation, specified by V,
prints the line in which the match is found, and prints the question Y/N? on the next line. The user
must enter Y or N followed by a carriage return to continue the operation. When the user enters Y
the replacement is made. When the user enters N the replacement is not made. The scan continues
in either case.

The print operation is specified by P. After the replacement is made, the resulting statement is
printed and the scan continues.

When the specified lines have been scanned, TXEDIT prints the number of lines in which a match
was found. The pointer is left unchanged throughout the operation.

‘The general rule of TXEDIT which allows spaces between characters or operands does not apply to
stringl and string2. Any spaces between the characters represented by dl are considered part of
stringl, and any spaces between the characters represented by d2 are considered part of string 2.
Lines brought into memory have trailing balnks suppressed and therefore comparisons should not
be made past the last non-blank character of a line.

The following example shows an F command to replace the first appearance in each line of the
string EUEN with the string EVEN in lines 34 through 48 and print the resulting lines:

?F34-48F*EUEN*$EVENSP

The command in the following example verifies the replacement of label P1 with string PUNI in
each of nine lines beginning with the pointer line:

?FIL'P1""PUN1'V

4.4.8 PRINT COMMANDS. The print commands cause TXEDIT to print the first and last lines in
the buffer, or to print one or more specified lines. The print commands are described in the follow-
ing paragraphs.

4.4.8.1 Limits (L). The Limits (L) command causes TXEDIT to print the first and last lines in the
buffer, including the line number, if any, with the right margin at column 72. The SN and SP com-
mands do not affect the operation of the L command. The syntax for the L command is as follows:

L
The L command is used to identify the top and bottom lines of the buffer.

4.4.8.2 Print (P). The Print command causes TXEDIT to print a block of lines. The block of lines
is specified by first and last line numbers, or by a number of lines preceding or following the
pointer. The SL and SN commands, when entered, control printing of line numbers, and the SP
command, when entered, sets the right margin of the print lines. When these commands are not
entered, line numbers are printed and the right margin is column 72. The syntax of the P command
is as follows.

4-12 Digital Systems Division

@ 946258-9701

<> -<t>
P [+] [<n>]
-<n>

Line s through line t are printed, or n lines are printed. When n is preceded by a minus sign, n
lines preceding the pointer line, but not the pointer line, are printed. When n is unsigned or pre-
ceded by a plus sign, n lines beginning with the pointer line are printed. When no operand is entered,
the pointer line is printed. The following example shows a P command to print lines 8 through 10:

7P8-10
The command in the following example prints the pointer line and the next three lines:
P4

The user may terminate the Print command at any time by entering an ESC character at the key-
board. TXEDIT then prints a question mark and awaits input of another command.

449 OUTPUT COMMANDS. TXEDIT provides two commands to write source or object code
and one command to end execution of TXEDIT. The Keep (K) command writes the entire buffer
or specified lines from the buffer. The Quit (Q) command writes specified lines from the buffer,
the entire buffer, or the buffer contents and the remainder of the input file, and writes an end-of-
file record on the output file. The output commands are described in the following paragraphs.

4.49.1 Keep (K). The Keep (K) command writes a specified number of lines from the buffer to
the output device. The syntax for the K command is as follows:

K[<n>]

The first n lines of the buffer, or all lines in the buffer when n is omitted, are written on the output
file. When the pointer line is written, the pointer is moved to the top line remaining in the buffer.
The K command is entered to write lines no longer required in the buffer in order to have space in
the buffer for additional lines. The followmg example shows a K command to write the top 15 lines
of the buffer:

K15

4.49.2 Quit (Q). The Quit (Q) command writes lines from the buffer and input file followed by an
end-of-file record. The syntax of the Q command is as follows:

Q[<s>]

The lines of the input file up to and including line number s are written. When line number s is in
the buffer, lines are written from the buffer only. When line number s is not in the buffer, TXEDIT
writes the lines in the buffer, reads the additional lines from the input file, and writes these lines.
If line number s is never found, the rest of the file will be copied. When s is zero the edit is finished;
no more data is written from the buffer or from the file, and an EOF character is inserted in the
output file. The Q command is used to truncate data. When s is omitted, the lines in the buffer.
and the remainder of the input file are written. The Q command is entered to write the output file,
or the remainder of the output file, including the end-of-file record. After the lines have been
copied to the output file, the terminate sequence is entered.

4-13 Digital Systems Division

o
@ 946258-9701

14.4.9.3 "End (E). Another comniand available to initiate the terminate sequence is the End com-

mand. This command ends the edit function without writing any data to the output file and does

not cause the EOF character to be written. This provides an escape route from TXEDIT in the event

a nonrecoverable error has been detected and there is no requirement to write an.. EOF on the out-

put file. The system will respond to the E command with the TERMINATE/CONTINUE? prompt.

The user must then enter a T to exit from the TXEDIT program and restart without affecting the
current status of the input or scratch files.

4.4.10 TERMINATE-SEQUENCE COMMANDS. Two commands can be used to initiate a
terminate sequence, depending on the particular situation. The normal method of terminating is
with the Quit (Q) command, as explained above. The Q command always writes an EOF on the out-
put file, and the system.responds with the following message:

‘TERMINATE/CONTINUE?

In response to this message, the user enters a T or C. When it is desired to reverse the flow of the -

data and continue. the editing, the Continue (C) command is entered. The system responds with the
question mark (?) prompt and editing continues, starting at line one, again. When editing is
completed and the T response is entered for terminate, the system responds with one of two
messages as follows:

e TEXT IN INPUT FILE.
END EDIT.
or
e TEXT IN SCRATCH FILE.

TRANSFER TO INPUT?

CAUTION

The user should ensure that the input file is not destroyed by
copying it onto a temporary file diskette or cassette.

The first message, “TEXT IN INPUT FILE”, ends the TXEDIT and returns control to the TXDS
Control Program. If the second message, “TEXT IN SCRATCH FILE”, is printed and the user
enters a Y for yes, the text is transferred from the scratch file back to the input file and control is
returned to the TXDS Control Program. If an N for no is entered, the system prints “END EDIT”
and without any additional action, returns control to the TXDS Control Program.

4.5 ERROR MESSAGES
The TXEDIT error messages capable of being presented on the system console by TXEDIT, their
reason for occurring, and the procedure for recovery from each error is presented in table 4-3.

4.6 EXAMPLE: ENTERING A SOURCE PROGRAM ON A CASSETTE OR DISKETTE

The following paragraphs describe the use of TXEDIT to enter a new source program on a cassette
or diskette. The Insert (I) command is used to input new source statements. Any of the commands
may be used to correct any errors made in entering the statements. Because statements entered

with the Insert command have no line numbers, the pointer-relative spec1ﬁcat10n is the only avail-

able means of specifying a line in a command.

- 4-14 Digital Systems Division

A~

.

946258-9701

Message

INVALID OPERATOR

INVALID OPERAND

BUFFER EMPTY

BUFFER FULL

END OF FILE

OFF THE TOP

LAST LINE

LINE NOT FOUND

CAN’T GET MEMORY

CAN'T GET COMMON

Table 4-3. TXEDIT Error Messages
Reason

The operator portion of a command
entry is incorrect.

The operand is not entered correctly or
is beyond the range of values for that
operand.

A command that operates on data in the
buffer is entered before data has been
placed in the buffer from the input file
or from the keyboard (either initially

or after writing the entire buffer con-
tents).

A D, I, or C command has attempted to
put more data into the buffer than the
buffer can contain.

End-of-file has been encountered on in-
put or a D command has attempted to

read more records than is contained in

the input file.

A negative displacement caused the
pointer to be moved past the beginning
of buffer. (That is, the negative dis-
placement from the pointer line in a C,
M, R, F, or P command is greater than
the number of lines in the buffer before
the pointer line.)

A positive displacement caused the
pointer to be moved beyond the last
line at the end of the memory buffer.

A line, or line number, was referenced
but was not in the buffer. The first line
ina C,M, R, F, or P command, or the
line number in an I command, or the
destination line number in an M
command is not in the buffer.

Memory option was greater than avail-
able memory.

COMMON was not included at system
generation time.

Recovery

Enter a valid, correct command.

Enter a valid, correct command or
enter another command.

Enter a D or I command and data.

Enter a K command or write data .
from the buffer before entering or
reading more data.

Enter a Q command. Another edit-
ing session may be entered by enter-
ing a C to the TERMINATE/CON.-
TINUE? question. TXEDIT will
make no further attempt to read the
input file until the program restarts.

After printing the message, TXEDIT

is positioned at the top (i.e., first)
line of the buffer.

TXEDIT prints a question mark and

waits for another command.

The command is not executed by
TXEDIT. Enter another command in
response to the question mark (?)
prompt.

Enter a smaller memory option.

Execute the system generation utility
and include COMMON.

Digital Systems Division

9462589701

Table 4-3. TXEDIT Error Messages (Continued)

Message Reason Recovery

nn — I/O ERROR (where There was an I/O error. Correct error and restart.

nn refers to the error code

listed in Appendix D, en-

titled “I/O Error Codes™).

NAMES CANNOT BE The input file name entry and the output Reenter INPUT: and OUTPUT:

THE SAME file name entry were the same. parameter.

ILLEGAL PARAMETER The file name was not included in the Reenter the INPUT: parameter.
INPUT: parameter.

TRANSFER 1/O ERROR There was an 1/O error transferring the Carrect and use the TXCCAT utility to
output file to the input file. copy the output file to the input file.

I/O ERROR, RETRY? If “Y” is entered, it will backspace one

(Y, N, or CR to abort record and try to read that record again.

I/0) If “N” is entered, it will try to read the

next record. If a carriage return (CR)
is entered, the text editor will terminate.

The following text describes an example of writing a source program using TXEDIT.

The initial méssage and the first command, with associated entries, are as follows:

TXEDIT V.R.E YY.DDD TEXT EDITOR
10
Wi BSS 32
START RSET
"~ LWPI W1
CLE RO

The I command with an operand of zero causes TXEDIT to place the lines that follow at the top
of the buffer. The buffer pointer is not moved as lines are entered and remains ahead of the first
line entered. In the above example, an error was made in the operation field of the fourth line, so
the user entered an additional carriage return to terminate the command, permitting entry of
another command to correct the error.

The next part of the example program is:

’K3
?P1
CLE RO

The K command causes TXEDIT to write the first three lines on the output medium. The Pl
command causes TXEDIT to print the pointer line to verify that the pointer is at the line that
contains the error. An alternative to using the Keep command to write the correct portion of the
program is to use a Down (D) command to position the pointer for correction of the error, leaving
the first three lines in the buffer.

4-16 Digital Systems Division

[

@ 946258-9701

The next command and the associated entries are as follows:

2C
CLR RO
11 INC RO
INO J1
D1 DEC RO
INE D1
IMP 11

END START

The C command deletes the error line and accepts seven lines of source code. The example source
program is now complete, with three lines written on the output medium, and seven lines in the
buffer.

The next command and the resultant printout or display follows:

F10F'J1"T1"
LAST LINE
1 FOUND

The F command scans the contents of the buffer, replacing the first appearance in each line of
string J1 with string I1. The command attempts to scan 10 lines,and prints the message “LAST
LINE” because there are only seven lines in the buffer. The V and P options (described above under
the Find (F) command paragraph) could have been used. This is an alternate method of correcting
an error in a source program entered from the keyboard using TXEDIT.

The next command and the resultant printout or display follows:

P10
CLR RO
I1 INC RO
JNO I1
D1 DEC RO
JINE D1
- JMP I1
END START
LAST LINE

The P command causes TXEDIT to print the contents of the buffer and the last line message.
Entering the Quit command causes the terminate sequence to be entered.

’Q
TERMINATE/CONTINUE?

The Q command causes TXEDIT to write the buffer contents on the output medium following the
records previously written by the Keep (K) command. An end-of-file record is written following the
last record. The user then enters a T to terminate the text editor, and a Y to transfer the scratch file

* to the original input file.

TERMINATE/CONTINUE?T
TEXT IN SCRATCH FILE. -
TRANSFER TO INPUT?Y
END EDIT

417 Digital Systems Division

(o]
{@ 946258-9701

4.7 EXAMPLE OF HOW TO EDIT A SOURCE PROGRAM

The capabilities of TXEDIT to edit source programs include adding, moving, and removing state-
ments, and replacing a character string in statements. The edited program may include portions of
a number of source programs. The purpose of editing is to correct or modify a source program.
The following paragraphs describe an example of editing a source program and considerations for
editing source programs. For this example, a typical source program is used for which no Setup
command is required because default values for print margin and F command limits are used and
line numbers are printed. ' '

The initialization messages and the first cdmmand are as follows:
TXEDIT V.RE YY.DDD TEXT EDITOR
D117

The D command moves the pointer down 117 lines, and TXEDIT reads in the source file to fill the
buffer as defined by the D command. A smaller value could have been used to read part of the file,
followed by a subsequent D command to read the remainder. Had a larger value been entered,
TXEDIT would have read the 117 records of the file and printed the end-of-file message. TXEDIT
prints the prompt character (?) and awaits another command.

The next command and printout result are as follows:

7L
0001 TITL ‘EDITING EXAMPLE’
0117 END

=

The L command verifies the buffer contents by printing the first and last lines in the buffer. Had
the SN and SP commands been entered, they would not have affected the printing of the limits
resulting from the L. command.

The next command is as follows:

T
The T command moves the pointer to the top of the buffer (line 1) from line 117 where the first
command had placed the pointer. Moving the pointer to the top of the buffer permits using pomter—

relative commands for the area at the top of the buffer.

The following commands move line 46 to a position after line 116 and remove line 1 17.

M46-46,116
?R117-117

The following command is entered.

"M81-87,115

4-18 Digital Systems Division

@ 9462589701

This M command moves lines 81-87 to a position following line 115 to cause the line numbers in
the buffer to be out of sequence.

The following commands prepare the move operation for verifying.

B

7P1

0046 END START

The B command places the pointer on the last line of the buffer, and the P command prints the
pointer line to verify that it is on the proper line.

The next command and the resultant printout or display on the system console are presented as
follows:

P-13
0111 UP2 MOV *R10,*R10
0112 JNE UP1
0113 BL @ATTOP
0114 MOV *DUMNXT,TMLOC
0115 JMP UP3

0081 *ROUTINE COMMON TO UP AND DOWN

0082 UDCOM1 MOV RTN,RS

0083 BL @SCANOP

0084 INC UDCNT

0085 MOV UDCNT,UDCNT
0086 JEQ EXIT

0087 B *RS

0116 *

The P command prints the 13 lines preceding the pointer line, and the result shows that lines 81-87
have been placed after line 115. This result also shows the effect of the previous move and remove
commands.

The next command and associated entries are as follows:

"7
*TITLE = MSGOUT MESSAGE OUTPUT
MSGOUT MOV *R11,*R10
MOV @MCOUNT(R10),R10
BLWP @PRINT
B *R11

The I command inserts five lines following line 77. The number of lines inserted is the number of
lines entered with the command and may be one or more lines. After the carriage return that
terminates the last line, an additional carriage return is entered to terminate the command.

4-19 Digital Systems Division

% 946258-9701

The next command and resultant printout are as follows:

P77-78 (
0077 JMP EXIT
*TITLE= MSGOUT MESSOUT OUTPUT
MSGOUT MOV *R11,*R10
MOV @MCOUNT(R10),R10
BLWP @PRINT
B *R11
0078 EOFEXT BL @MSGOUT

The P command prints lines 77 through 78, which includes the five unnumbered lines inserted by
the previous command. The result shows that the lines have been inserted correctly.

The next command and the resuitant interaction are as follows:

7F1-46F'EXIT"EXTDWN'VP

0071 JMP EXIT

Y/N? Y

0071 JMP EXTDWN

0077 JMP EXIT

Y/N? Y

0077 JMP EXTDWN

0080 EXIT RTWP

Y/N? Y

0080 EXTDWN RTWP

0086 JEQ EXIT : ra
Y/N? N {QL

0004 -FOUND

The F command finds the first appearance in a line of the string EXIT in lines 1 through 46.
(Remember that line 46 is now the last line, i.e., after line 116.) The entire buffer is scanned
because the top line in the buffer is line 1 and the bottom line is line 46. Line numbers greater than
46 between lines 1 and 46 are also scanned. The replacing string is used only when the user enters
a Y following the printing of the line found. In the example shown, the replacement was not made
in line 86 because the user entered an N following the printing of this line. Lines 71, 77 and 80 were
replaced because the user entered a Y following the printing of these lines. The count of lines found
is printed after all lines have been scanned. The F command may be used to scan only a portion of
the buffer, from one line up to the entire buffer, and replace from one character to the entire
statement.

The next three commands are as follows:

?7R15-15
- 7R17-17
?R19-19

Each R.command removes the specified line from the buffer. Three commands that remove one line
each are necessary because the lines to be removed are not consecutive. A single R command may
remove one or more consecutive lines.

C

4-20 Digital Systems Division

-

@ 946258-9701

The next command and the resultant printout are as follows:

7P14-20
0014 DUMNXT EQU 0
0016 LINAD EQU 2
0018 LINPTR EQU 4
0020 CLLOC EQU 6

The P command prints lines 14 through 20. The result shows that the lines specified in the Remove
(R) command were removed.

The next command is as follows:
702

The U command positions the pointer to the second line preceding the pointer line. The pointer
could have been moved any number of lines up to the top of the buffer.

The next two commands, the resultant printout of the first command, and the entry associated
with the second are as follows:

7P68-68

0068 A @MAXLIN,UDCNT
7C68-68 :
A v @MINLIN,UDCNT

The P command prints line number 68 to verify that line 68 is the desired line. The C command
changes line 68 to the line entered with the command. One or more consecutive lines may be
deleted by a C command, and any number of lines, including zero lines, may be added. The number
of lines added does not have to be equal to the number of lines deleted and the added lines have no
line numbers.

If there were no more data in the input file, or if the remaining data were to be discarded, the next
command would be ?Q117. This would place the data in the buffer in the SCRATCH file and place
an EOF at thé end of the data. If, however, there were more data in the input file but no editing
was required, the next command would be just 7Q. The Q command would write the entire buffer,
plus whatever was remaining in the input file would be placed into the scratch file and EOF would
be placed at the end.

The next response from the system would be as follows:

TERMINATE/CONTINUE?

If no further editing is desired, the operator enters a T for terminate. The system would respond as
follows:

TEXT IN SCRATCH FILE.
TRANSFER TO INPUT?

" At this point the operator decides where the text is to reside. If a Y is entered for Yes, the scratch
file text is transferred directly to the input file, or if N is entered, the text remains in the OUTPUT
file. The system ends the TXEDIT by printing END EDIT and the TXDS control program is reacti-
vated.

421 Digital Systems Division

o]
{@ 946258-9701

4.8 EXAMPLE OF HOW TO EDIT AN OBJECT PROGRAM

The capabilities of TXEDIT to edit object programs include adding, moving, and removing records,
and replacing a character string in records. These capabilities allow the user to combine object code,
correct object code, and add object code at the machine instruction level. In editing object code, it
is necessary to thoroughly understand the object code format and the significance of tag characters
(described in the Model 990 Computer/TMS9900 Microprocessor Assembly Language Programmer’s
Guide). Records may be inserted into an object program at any point except that the records that
contain tag character 3 or 4, tag character 5 or 6, and tag character 1 or 2 must follow all other
records in the object file. Further, the record that contains tag character D, if any, must precede

the record that contains the first tag character 0. Each record must end with tag character F. When:

the contents of a record are altered, tag character 7 and associated field must be removed.

When the length of relocatable code is increased, the contents of the hexadecimal field associated
with the final O tag character must be changed. The following paragraph describes an example of
editing an object program.
NOTE

Compressed object code cannot be edited.
In the example, the purpose of the edit is to add a record to specify a load point, to change instruc-
tions that use workspace register 1 to use workspace register 7 instead, to change an instruction, and
to add an instruction.
The initialization message and the first command are as follows:

7SN

The SN command is a setup command that inhibits printing of line numbers. When line numbers are
printed, printing of an object record may be truncated because of the length of the print line.

The next command and the associated entry are as follows:

210
D1000F

The I command with an operand of O inserts the associated line at the top of the buffer. The line
will be the first record in the edited object file, and contains load point of 1000,¢, specified with a
D tag character.

The next command and the resultant printout are as follows:

D10

END OF FILE

The D command causes TXEDIT to read in the object file to be edited. The file contains six

records, so the operand used causes TXEDIT to attempt to read past the end-of-file record. This
inhibits further reading of any input file in this run of TXEDIT.

4-22 Digital Systems Division

~

oo

)

{@ 9462589701

The next command and the resultant printout are as follows:
L

D1000F
0006 200CE10010C TFCABF

The L command causes TXEDIT to print the limits. The top line in the buffer is the line entered
with the I command, and has no line number. The bottom line is the last line of the object file,
line 6. :

The next command and the resulting interaction are as follows:
?F1-6F'B0002"' 'BOOOE" VP

00000SAMPROG 90040C0000A0020BC06 DB000290042C0020A0024BC81BCO02A7F219F
Y/N2Y '

OO000SAMPROG 90040C0000A0020BC0O6DBO00E90042C0020A0024BC81BCO02A7F219F
A0028B0241B0000BCB41B0002B0380A00CAC0052C00A2B02E0CO032B0200BOFOF7F1DEF
Y/N?Y

A0028B0241B0000BCB41B000EBO380A00CAC0052C00A2B02E0CO032B0200BOFOF7F1DEF
0002 FOUND

The F command scans for the character string BO002 with the verify and print options. The replace-
ment string, BOOOE, changes the memory address of workspace register 1 to that of workspace
register 7 in two instructions. Verification and printing provides control and documentation of the
changes.

The next command and the resulting interaction are as follows:
?F1-6F'7F151"'''VP

A00D6BCOAOCO0CABO4C3BC160C00CCBCIAOCO0DOBC1F2B0287B3A00A00ECBO2217F151F
Y/N?Y

AOOD6DCOAOCO0CABO4C3BC160C00CCBC1AOCO0DODC1F2B0287B3A00A00EBO221F
0001 FOUND

The F command scans for the character string 7F151, which is a checksum tag character and
associated field. The replacement character string is a null string, and the result is to remove the
checksum from a record which was changed by an edit command not shown here.

The next command and the associated entry are as follows:

?1
AOOECB0227A00F0BO6C7A010ABOACTF
AO10CB1OFFF

4-23 Digital Systems Division

V‘l@p 946258-9701

The I command inserts the associated two lines following the line on which the pointer had been
positioned by an edit command not shown. The first line will cause the loader to overlay three
words of the original file, which is another way of changing object code. The second line is an added
instruction which will increase the size of the program module.

The next three commands, the resultant printout of the second, and the associated entry of the
third are as follows:

D3

7P1
200CE0010C 7FCABF
26%(:}3001013 F

The D command moves the pointer line‘ down three lines, and the P command causes TXEDIT to

print the pointer line to verify the pointer position. The C command changes the pointer line to

modify the number of words of relocatable code in the program. If this is not done, and another
module is loaded following this module without specifying a load address for the subsequent
module, the subsequent module will overlay the instruction that was added. The pointer line is also
changed to delete the checksum.

The last command and the final messages are as follows:

’Q
TERMINATE/CONTINUE ?T

The Q command causes TXEDIT to write the contents of the buffer and any data remaining in the
input file, followed by an end-of-file record, on the output medium. The T response causes TXEDIT
to terminate and issue the message:

TEXT IN SCRATCH FILE.
TRANSFER TO INPUT?

If all editing is completed, the user responds with a Y (yes) and TXEDIT transfers the scratch file
to the input file and prints “END EDIT”.

4-24 Digital Systems Division

A

@ 946258-9701

SECTION V
ASSEMBLING SOURCE ISROGRAMS

5.1 INTRODUCTION

The TXMIRA Utility Program is a member of a family of assemblers that may be used with the
Model 990 Computer family. It functions to substitute absolute operation codes and addresses
(i.e. Model 990 machine language) for symbolic codes and addresses (i.e. assembly language
source code programs). TXMIRA provides for the allocation of storage to the minimum extent
of assigning storage locations to successive instructions and for the computation of relocatable
addresses from symbolic addresses. The TXMIRA program has the following features:

® Assembles all instructions for the Model 990/4, Model 990/5, and the Model 990/10
Computers

® Supports many assembler directives

® Supports program, data, and common segmentation
® Supports both pseudo instructions (NOP,RT)

® Supports é sorted symbol list option

® Provides error messages in text form

° Suéports compressed object code

® Prints or truncates ‘TEXT’ string option

® Assembles FORTRAN compiler source output

As a two-pass assembler program, TXMIRA reads the program source statements two times, pro-
viding maximum programming flexibility in the process of producing object code. On the first pass,
the assembler maintains the location counter and builds a symbol table similar to those in a one-pass
assembler. During this pass some errors may be detected and printed on the listing device. For the
second pass, the source statements are read in again by rewinding the input file. During
the second pass, the assembler generates the object code using the symbol table developed during
the first pass. The two pass feature reduces the restrictions on forward referencing. TXMIRA
produces a listing of the source code and the object code (i.e., machine language). Optionally, the
assembler prints out the symbol table. Further, the resultant output produced by the TXMIRA
utility program may be linked to other output modules or be loaded separately for execution.

For more details on the Model 990 assembly language, refer to Model 990 TMS9900 Microprocessor
Assembly Language Programmer’s Guide, part number 943441-9701.

5.2 LUNOs AND THEIR USES
LUNOs 5, 6, and 7 are used by TXMIRA program for source input, object output, and listing,
respectively. All LUNOs are assigned by the TXMIRA program. Upon termlnatlon of the TXMIRA
program, all LUNOs are released.

5-1 , Digital Systems Division

o
(r\@fp 9462589701

5.3 OPERATION INTERACTION Fé
The TXMIRA program can only run under the control of the TXDS Control Program. The INPUT: {
parameter must have the pathname of the source file to be assembled. The first OUTPUT: param-
eter must have the pathname of the file or device to which the object code will be written. The sec-
ond OUTPUT: parameter must have the pathname to which the listing will be written. The object
pathname and the listing pathname must be separated by a comma. If the output file does not
exist, it will be created as a sequential file with the name given. If the listing pathname is null,
the system default printer will be used. If only part of the listing pathname is used, the defaults in
table 5-1 will be used. The following is an example of loading and executing TXMIRA using the
TXDS Control Program.
PROGRAM: :TXMIRA/SYS
INPUT: :SOURCE
OUTPUT: :OBJECT,LP
OPTIONS: SLM4000
5.4 TXMIRA OPTIONS
The TXMIRA assembler options are specified by a single alphabetic character followed in one
case, M, by a numeric field.- Input format is free-form in that delimiters (i.e. separators) may be
commas, blanks or no delimiters. The options recognized by TXMIRA are listed and descrtbed
in table 5-2. These options are described further in the following subparagraphs.
Table 5-1. Pathname Defaults
Field Source Object Listing ‘ N
DEV DEFAULT DISC NAME DEFAULT DISC NAME DEFAULT DISC NAME
FILE NONE SOURCE FILE SOURCE FILE
EXT SRC OBJ LST
Table 5-2. TXMIRA Options
Option Description
Mnnnnn . Overrides memory size default; default is
2400 bytes
X Produce cross-reference
L Produce assembly listing
T Expand TEXT code on listing
S Produce sorted symbol list
C Produce compressed object output)
R Predefine registers : ({'

where n is a decimal digit

52 Digitaf Systems Division

o
%@ 946258-9701

5.4.1 MEMORY OPTION (M). The memory option is used to override the default memory size.
The size is expressed in bytes. The syntax of the option is as follows:

Mn (where n is a decimal number up to five decimal digits)
Some examples follow:

M4096
M20000
MO01000

5.4.2 CROSS-REFERENCE OPTION (X). This option is used when a cross-reference is desired.
Upon termination of TXMIRA, the TXDS Control Program will chain to the TXXREF Utility
Program (described in Section VI) to perform the cross-reference operations. To enable the cross-
reference option to work properly, the TXXREF object code must be in a file with the following
pathname:

:TXXREF/SYS

5.4.3 LISTING OPTION (L). This option is used when a listing is desired by the user. It may be
overriden by the LIST and UNL assembler directives. Errors are always printed.

5.4.4 PRINT TEXT OPTION (T). This option is used when expansion of TEXT statements is
desired by the user. Default results in no expansion of TEXT statements.

5.4.5 SYMBOL TABLE LISTING OPTION(S). This option is used when a sorted symbol list
output is desired. The list presents four symbols to a line; and each symbol presents the following
information in sequence: (1) attribute tag; (2) symbol; and (3) value. Table 5-3 defines the symbols
used in the listing.

5.4.6 COMPRESSED OBJECT OPTION (C). This option is used when compressed obje.cf code is
desired, and it may only be written to a diskette file. Compressed object takes up less diskette
‘space. See Appendix B for a description of compressed object.

5.4.7 PREDEFINE REGISTERS OPTION (R). This 'option is used to predefine the regisfer
symbols used in a source program, equating the symbol RO with workspace register 0, R1 with
register 1, R2 with register 2, . . . R15 with register 15.

Table 5-3. Symbol Attributes
Character Meaning

n

Data Relocatable

Common Relocatable
Program Relocatable
External Reference (REF)
External Definition (DEF)
Extended Operation (XOP)
Undefined

Secondary Reference (SREF)

+

-

“aoxow

53 Digital Systems Division

946258-9701

5.5 ERRORS

~

5.5.1 TXMIRA ERROR MESSAGES. The TXMIRA assembler processes fatal errors (table 5-4)
and nonfatal errors (table 5-5). The fatal errors cause the run to abort with the appropriate error

message printed.

The nonfatal errors do not cause the run to abort. An error message is printed following the state-

ment containing the error. The format of the printout is as follows:

*#xxx SYNTAX ERROR — RCD nnnn

where nnnn is the source record number.

When there are undefined symbols in an assembly, the undefined symbols are listed at the end of
the assembly listing under the following heading:

THE FOLLOWING SYMBOLS ARE UNDEFINED:

Error

CANT GET COMMON
CANT GET MEMORY

SYMBOL TABLE
OVERFLOW

NO END CARD FOUND
nn-ILLEGAL PATHNAME
nn-I/O ERROR-A

nn-ASSIGN ERROR
nn-CLOSE ERROR

Table 5-4. TXMIRA Fatal Errors

Description

COMMON not in system

MEMORY size requested too
large

MEMORY size too small

END directive missing
PATHNAME syntax is incorrect

I/O ERROR on A, where A
can be:

S=SOURCE
O=0BJECT
L=LISTING

Error in Assign or Open

Error in Close

Recovery

Re-Gen system with COMMON

Decrease request

R

Increase request

Add directive and reassemble
Correct pathname and retry

Correct and retry

Correct pathname and retry

Correct pathname and retry

Note: nn is a system returned error code. See Appendix D for explanation.

54

Digital Systems Division

4@ 946258-9701

Table 5-5. TXMIRA Nonfatal Errors

**+%*SYNTAX ERROR — RCD nnnn
****¥*]LLEGAL EXTERNAL REF. — RCD nnnn
*#***VALUE TRUNCATION — RCD nnnn
***#*MULTIPLY DEFINED SYM — RCD nnnn
¥+**INVALID OPERATOR — RCD nnnn
**3*+]LLEGAL FORWARD REF.RCD nnnn
*****]LLEGAL TERM — RCD nnnn
*¥*4%**[LLEGAL REGISTER — RCD nnnn
**x%*SYMBOL TRUNCATION — RCD nnnn
%UNDEFINED SYMBOL — RCD nnnn
**%%xCOMMON TABLE OVERFLOW — RCD nnnn
xPEND ASSUMED — RCD nnnn

*****DEND ASSUMED — RCD nnnn

**%3%*xCEND ASSUMED — RCD nnnn

**x444NQ END CARD FOUND **END ASSUMED-—RCD nnnn

where nnnn is the record number in which the
error occurred

5.6 TXMIRA EXAMPLE

Following is an example of loading and executing TXMIRA. The diskette file :TXTST1/SRC is
entered in the INPUT: source file parameter line. DSC2: is entered in the first OUTPUT: parameter
causing TXMIRA defaults for the file name and extension. Therefore, the object (machine) code
is written to the diskette file DSC2: TXTST1/OBJ. LOG is entered in the second output parameter
producing the source listing output on the system console. Two options are entered in the
OPTIONS: parameter line. The L option produces a source listing, and the S option produces a
symbol table. .

TXDS V.RE YY.DDD

PROGRAM: TXMIRA/SYS
INPUT: TXTST1/SRC
OUTPUT: DSC2:,LOG
OPTIONS: L,S
TXMIRA V.RE YY.DDD ASSEMBLER

Digital Systems Division

946258-9701

Following is an example of the source listing caused by entering an L in the OPTIONS: parameter rs
line.
L
TXTST1 TXMIRA 2.3.0 78.244 00:10:36 01/702/00 PAGE 0001
TXDS TEST PROGRAM
0001 * 00937808 MODULE 01
0003 IDT “TXTST1~
0004 *
0005 : REF CNT,NEW,WRITE
0006 #* '
0007 0000 0006”7 DATA TSTWSP,START.0
0002 00457
0004 0000
0008 0006 TSTWSP BSS 32
0009 0026 1600 ENDPRG DATA >1600 END OF PROGRAM OP CODE
0010 3*
0011 DXOP SVC, 15 *### DEFINE XOP
0012) *
0013 0028 oD OLD BYTE >0D,>0A,2>0A
0029 0A
002A 0A
0014 002B 20 TEXT < OLD MESSAGE —- WRONG !!~“
0015 0043 oD BYTE >0D,>0A ‘
0044 OA
0016 001D CNT1 EQU $-0LD
TXTST1 TXMIRA 2.3.0 78.244 00:10:36 01702700 PAGE 0002 P
TXDS TEST PROGRAM .
e
0018 START :
0019 0046 0420 BLWP @WRITE PRINT MESSAGE
0048 0000
0020 004A 0028~ DATA OLD,CNT1
004C 001D
0021 004E 2FEOQ SVC @ENDPRG END OF PROGRAM
0050 0026~
0022 END

Following is an example of the sorted symbol table caused by entering an S in the OPTIONS:

parameter line.

TXTST1 TXMIRA 2.3.0 78.244 00:10:36 01/02/00 PAGE 0003
TXDS TEST PROGRAM

E CONT 0000 . CNTI1 001D 7 ENDPRG 0026 E NEW Q000

< OLD 0028 7 START 0045 X svC 000F 7 TSTWSP 0006

E WRITE 0048

0000 ERRORS

C

5-6 Digital Systems Division

[e]
@ 9462589701

TXDS CROSS-REFERENCE (TXXREF) UTILITY PROGRAM

SECTION V1

6.1 INTRODUCTION

The TX990 Cross Reference (TXXREF) Program is a single pass cross-reference program. The pro-
gram gives a listing of each user-defined symbol in a 990 assembly source program along with the
line numbers on which the symbol is defined and all of the line numbers on which the symbol is
referenced. The line numbers of the references to a symbol are in ascending order, and the symbols

are in alphabetical order. If the symbol was never defined, only the line numbers of the references
to the label will be listed.

6.2 LUNOs

LUNOs 5 and 6 are used by TXXREF. They are assigned when execution begins and released upon
termination by the program. LUNO _5 is the source input LUNO, and LUNO 6 is the listing LUNO.

6.3 OPERATING PROCEDURE

TXXREF can only run under the control of TXDS. The object program may be loaded from a
device or from the file, :TXXREF/SYS.

The INPUT: parameter must contain the pathname of a source program. The OUTPUT: parameter
must contain the pathname of a listing device to which the cross-reference listing will be directed. If
there is no response to the OUTPUT: prompt, the default print device will be used.

The pathname defaults are given in table 6-1. The input file must preexist, and if the output file
does not exist, it is created with the name given. Lastly, an option may be entered to override the
symbol table size.

6.4 LISTING FORMAT

An example of a listing is shown in figure 6-1. The heading gives the name and version of TXXREF
and the time and date of the run, if the time and date are initialized. Each line of the cross-reference
begins with the symbol, listed alphabetically, followed by the line number on which it was defined
(appearance in the label field), if any, and the list of line numbers, in ascending order, on which the
symbol was referenced, if any. The last line gives the number of symbols in the cross-reference.

NOTE

If TXXREF runs out of table space, it prints the references found at
that point, and attempts to continue. If insufficient space was freed
up by that process, then TXXREF terminates.

Table 6-1. Pathname Defaults

Field Input Output
DEV SYSTEM DISC SYSTEM DISC
FILE NONE INPUT FILE
EXT SRC : LST

6-1 Digital Systems Division

o
@ 946258-9701

TXXREF 2.3.0 73.244 022022 O7/07/72 FAGE Q001
ASREXT (=} R T &)

ASRHAN Bley Glez

EAD B2EE

EACINT B24E Q25

BUFL sl bels alas

EBUF2 @a185 a15a

BUFZ= 2124 3151

BUFADH G14Z (sl)

BUFADL BOss HEag

EBUFE (s i P Glde

BUFF G148 alde

BUFH 9147 alde

COMSIZ B2ES BzIe

CRTHAM Bzza B23E0

DFLDSC 88sa BEass

DFLFPTE G651 515 k]

DNT Bazs BAazE

DNTZ aa4a BEES

DNTEND B&S7 BazEs

FMFPEUF ©155 B15d

FPYDZDs ' az2v4 Bz?voS

FPYDSE |97 8198 6213 8az2i1d4
FFPYINT azea Gz8l g21e 8217
FPYSPR 193 fl94 @Gze3 Gzi1a
FRE@S®EZ 9004 aEaz Boeas

GO f17E 9171 B2es B2ET
GOo1z B23z BR3EE

IDL91=E az2s azz2s

ILLEVE Rzl

KEIDLE glez Qléed

KETHE Baz7 BEazs

KSELl BEEzE aEze az2zd azsl

KYBIN G250 @251

KYBUT aeEzs T el v T s R 17 I
LDTETR G885 BEaed

LEVZE Gz4s |90

LEW4 Bz2ohd azol

LEVE Bzez Bz

LEWT azva RzZaz

LOCE Bz49 B247

LocC4 Bza7 azn5s

LoCs BZes B2e3E

LOC? B2vVE 8271

LFHAN gigd @185

LPINT G187 al1s8 az2hs Bazse
LFSFPUR ai8a 8181

LVYLFTR B86iz ae1z

Figure 6-1. Sample Cross Reference Listing (Abbreviated)
Sheet 1 of 2

6-2 Digital Systems Division

946258-9701

MAXSTZ B8zz BE25

MAXSTA B8zl 515 Pl)

FPDTE 8168 aa41 @84x BBa4S Aava 0e23T 6267
PDTZ aivv aa4d4y Bled 82359

FDT4 a19a BE49 Bass B1vV B2ve
PDTS 5 b [BEa51 Barv:z elsa exvy
FDTe azz2 BA53E B2u8c

PDTSTR 81539 a15s

TXXREF 2.3.0 78.244 08:20:22 Q7/07/78 FAGE 0002
FUREFLG Sd8id BsEgs

RET azs4 B243 @255 ez2ed4 [fzra
SLICE g s 1 S

STINTRE G685 Baaz

TASKCH 8246 Bgzze

TRABAD Bz285 B283

TEAFRET B2z4z @284

TRFINT Bz259 Bzes

THSTRZE (50 g © % % £

UM<svC aezz HEZE

USCTRE B8z 5[5 b R v P

WSFPZE az44 gzoa

HsFd4 Bz252 G291

HEFe azc8 Bzs2

WEPT B2es B293

xMF4 BZ7E Bgilsz Bazes8 Bzvs

KU Bz4X @285

THERE ARRE wB7z SYMBOLS

Figure 6-1. Sample Cross Reference Listing (Abbreviated)
Sheet 2 of 2

6-3 Digital Systems Division

9462589701

6.5 OPTIONS . p
The only option that is recognized by TXXREF is the memory-size-override option. The size is
given in bytes. The option is as follows:
Mnnnnn where n is a decimal digit.
The following are exaﬁnples:
M4096
M00206
M2000
The default memory size is 4800 bytes. The memory block is used to build a symbol table. There-
fore, the size must be at least 12 times the number of symbols in the source program, plus 4 times
the number of references.
6.6 ERROR MESSAGES)
The errors, descriptions and recovery for TXXREEF are listed in table 6-2.
Table 6-2. El"l'Ol' Messages
Error Description Recovery
CANT GET COMMON System COMMON not in Regenerate system with
system. COMMON
N
CANT GET MEMORY Memory request too large Decrease size
nn - ILLEGAL PATHNAME Pathname doesn’t exist or Correct name and retry
open error
nn - I/O ERROR Error on read or write Retry
- INSUFFICIENT MEMORY - Symbol table exceeded Increase memory
ABORT memory request
nn - ASSIGN ERROR Error on Assign or Open Correct pathname and retry
nn - CLOSE ERROR Error on Close Correct pathname and retry
1

6-4 Digital Systems Division

(o]
(_‘—@? 946258-9701

SECTION VII

LINKING OBJECT MODULES

7.1 INTRODUCTION

In order to link separate object modules together to form a complete program, the user must
execute either the Link Editor or the TXDS Linking Utility Program (TXLINK). For linking
FORTRAN programs or tasks and procedures, the Link Editor must be used; TXLINK does not
support FORTRAN or procedures.

The output of both the Link Editor and TXLINK is a file with a linked object module. The Link
Editor can also create program files (see Section I of the TX990 Operating System Programmer’s
Guide) as output.

The Link Editor is discussed in the Model 990 Computer Link Editor Reference Manual, part
number 949617-9701. TXLINK is discussed in the following paragraphs.

TXLINK accepts standard Model 990 object code modules (described in the Model 990 Computer
TMS 9900 Microprocessor Assembly Language Programmer’s Guide, part number 943441-9701,
and compressed object code, available as an option (illustrated in table 6-3) and links the modules
according to command information supplied by the user and the linking information in the modules.
The linked output module is written on the output file.

Linking allows a set of independently assembled object modules to be linked to form a single object
module. The major linking function is the resolution of external references and definitions in the
individual unlinked modules.

TXLINK also supports partial linking of modules. A partially linked module may be used as input
to another run of TXLINK with additional modules that satisfy the unresolved references.

The following restrictions apply:

e Linking of modules having absolute origin addresses (AORG directive) is not supported.

® There must be enough memory for all symbols, (12 bytes/symbol), IDTs (24 bytes/IDT)
and twice the length of the longest module to be linked. Memory size is defined by the
“M” option.

@ TXLINK only recognizes object tags ““0”’ through g,

® TXLINK does not link FORTRAN programs or tasks with procedures.

7.2 TXLINK FILE STRUCTURES AND LUNO ASSIGNMENTS '
Figure 7-1 shows the relationship of the files accessed by TXLINK. Control information and file

access names are passed by the Terminal Executive Development System (TXDS) via system
COMMON.

TXLINK supports up to three object input files and two output files. Each input file can contain
any number of concatenated object modules. Input LUNOs used are 10,4, 11,4 and 12,4. The out-
put of TXLINK consists of a linked object file and load map listing. Output LUNOs used are 7 for
the object file and 6 for the load map listing.

7-1 Digital Systems Division

@ 946258-9701

7.3 TXLINK EXECUTION . Pa
TXLINK can only be executed under TXDS Control Program. The INPUT: parameter coqtams the L
pathnames of one to three input files. Each pathname must be separated by a comma. An input file

may contain several object modules concatenated together. There may only be one end-of-file on

each file, and the file must be a sequential file or device. All input files are rewound by TXLINK

before they are used. '

LINKED
INPUT ' OBJECT
INPUT A TXLINK
@ X x
, LLOAD MAP
INPUT | LISTING
3

///
kY

Figure 7-1. Files Accessed by TXLINK

The OUTPUT: parameter may contain two pathnames separated by a comma. The first pathname
indicates the file to which the linked object code is written. The second pathname indicates the file
to which the load map is listed. If either of the output files does not exist, TXLINK creates a
sequential file with the pathnames entered. If the second output pathname is null, the system de-
fault printer is used. If only part of the pathname is defaulted, table 7-1 applies.

The defaults for the input and output pathnames are listed in table 7-1. Finally, the options are
entered.

Table 7-1. Pathname Defaults

Field Input Output Listing
DEV ‘DEFAULT DISC NAME DEFAULT DISC NAME DEFAULT DISC NAME
FILE NONE NONE OUTPUT FILE
EXT OBJ OBJ LST
72

Digital Systems Division

[o]
@ 946258-9701

7.4 TXLINK CONTROL OPTIONS

The following options control linking operations. All options are specified by a single alphabetic
character followed in some cases by an override field. Input is free-form in that delimiters for
options may be commas, blanks or no delimiters. The options are listed in table 7-2 and described
in the following paragraphs.

7.4.1 MEMORY OVERRIDE (M). This option allows a larger block of memory for tables to be
allocated to the Linker Utility. The default memory size is 11,800 bytes. The syntax for the
option is:

Mnnnnn

Where n is a decimal number of the number of bytes required. There may be up to five decimal
digits. The scan terminates when a nonnumeric character is encountered.

The following are examples of the memory option:

M4096
M00300
M24000

7.4.2 COMPRESSED OBJECT (C). The use of this object enables TXLINK to write compressed
object code to the linked object file. TXLINK writes standard object code unless the C option
is used. The syntax of the option is:

C

Compressed object format takes up less room on the diskette than standard 990 object code. The
diskette is the only Floppy System device capable of supporting compressed object. The reader
should be familiar with the Model 990 Computer object code format. If not, read the Model 990
Computer TMS 9900 Microprocessor Assembly Language Programmer’s Guide, or refer to
Appendix B.

Table 7-2. TXLINK Options

' Option Description
Mnaonnn Override default memory size, default is 11800 bytes.
C Compressed object output.
laaaaaaaa IDT for linked object.
P Partial link desired.
L | Print load map and symbol list. \

Note: n is a decimal digjt and a is an alphanumeric character.

7-3 Digital Systems Division

(]
@ 9462589701

7.4.3 PROGRAM IDENTIFIER, IDT, OPTION (I). This option enables the user to specify an
object identifier for the linked object. Otherwise, the IDT of the first module input will be used. (
(An IDT is generated during assembly. It is the identification name of the module,-and it is invoked

by the “IDT” assembler directive.) The syntax of the option is:

JTaaaaaaaa

Where a is an alphanumeric character.

The scan terminates on a delimiter, blank or comma, or after eight characters.

Following are examples of the IDT option:

IMYLINK
IBADLINK
IWOwW.

7.4.4 PARTIAL OPTION (P). The use of this option specifies that the module is to be partially
linked. The partially linked module includes information for linking all unresolved references re-
maining in the module after the link. The partially linked object may be used in a subsequent
linking operation to finish resolving the references. The syntax of the option is:

P

74.5 LOAD MAP OPTION (L). This option specifies that a load map listing is to be produced as
shown in the example in figure 7-2. The two-line header of the load map listing identifies the
version of TXLINK and shows the time and date of the run, provided the time and date have been
initialized. The second line consists of the program name and its length. "

BN

C

Change 1 7-4 Digital Systems Division

[e]

9462589701

LENGTH ORIGIN

TXLINK 2.3.0
TXLNKD
MODULE
TXLNKD 0432cC
TXLNK1 043C
TXLNKZ 03BC
TXLNK3 0492
TXLNK4 03E8
A0 0398

ASGPRB 0346
BADTAG 028F
BLANK 0121
N CBDAS 0381
CDALIM 0C30
CHAB2 0378
CLSOPC 03183
COMMON O3F8

A DEV 0000

EMSG1 0292
EOL 0143

A FILE 0005

GETDAT 0372
GETTAG O7EC
HOUR 0122
IDTTBL 0400
ILLHEX O1F2
ILLRED 025C
INCMPR 042A
INPNM -~ 0062
I0BUF 0062
LIMCHK 0858
LOGERR OECS8
MLEN O3FE

MONTH 012E
NWVAL1 043A

OBJFTR 0OC2C
OBJRC1 O0O0B3
OPNLUN 030D
OPTTBL O3AE

N OUTOBJ 0C48

PASS 0408
PONTRS 09C2
PROOPT 1152
READ OE3C
RELES 039D

A SDFTPR 00A4

SHEADZ 0198
SVN 03%96
SYMLST 0422
TERM 036A
UCPDLA O038E
WP 0042

78.244 14:06:26
LENGTH 149E

0000
Q42C
0868
ocza
10B6

DATE

06/28/78
046/28/78
046/28/78
06/28/78
06/28/78

07/06/78

TIME

08:350
08:51
08:53
08:55
08:57

DEFINITIONS

ASGFLG
ASGPTR
BINDEC
BYJUL
CBDA&
CDDLIM
CLOSE
CMPDLA
COMPRS
DEVSET
EMSG2
EPOINT
FLAGS
GETHEX
HEAD1
IDTEND
ILLASS
ILLMEM
ILLSUM
INDFT
INPNM1
I0REG
LNCNT
LOGID
MODCNT

MULMOD
OBJEOF

OBJRSS
OBJRCD
OPNTYP
OUTLUN
PAGCNT
PASS2
PRGLEN
PUNCH
RECORD
RELMEM
SEG@BIN
SHIFTH
SYMBOL
SYMOVR
TITRST
UCFDLD
WP1

0356
035C
ODEA
0494
0382
0Cc32
0316
038A
041E
120E
0ZB8
0412
086E
0818
0102
0402
0234
Q1E0Q
0216
03C0o
0063
10B6
03FC
0104
0426
oC18
033E
QOE9
00B2
0311
03%9E
O3FA
0532
040C
0322
0062
040E
0420
1452
Q86A
0204
Q042C
0390
0043

2>

ASGIN
ASSERR
BINHEX
CBDA
CBHA
CHAB
CLROBJ
CMPDLD
CRLF
DTLIST
EMSG3
EPTAG
GETCM1
GETMEM
HEAD2
IDTLEN
ILLCLS
ILLPTH
ILLTAG
INLUN
INPTRS
LASTIN
LODADD
LSTLUN
MODLEN
NAMESZ
OBJIN
OBJR&O
ONE
OPTCNT
OUTNM
PAGENO
PGHDR
PRGMEM
PUTCOD
REFDEF
REWIND
SEQDEC
SRCSYM
SYMDMP
SYMTAB
TXLINK
VALPTR
WRTOP

Figure 7-2. Load Map Listing

0428
1336
0DCO
037C
0384
0376
0D36
038C
0144
03B6
02E4
0414
036D
036E
0146
0392
0224
0246
027¢
039A
03F2
039C
041C
03A6
040A
0010
033A
OOEE
0394
0006
0076
0140
10D6
0D&6
ODFC
08FC
032E
OOFE
08SBA
0A62
0404
0000
0870
0324

PAGE 0001

ASGLUN 0349
A ATOCRT 0200
BINONE 039S
CBDR4 0380
CBHAZ2 0386
CHAB1 0377
CLSLUN 0319
COMMA 0399
DATE 0062

EF 0397
ENTRY 043C
A EXT 000D

GETCOM 036C
GETSVL 0896
HEDLEN 015D
IDTSAV 0146
ILLCMN O1CE
ILLPUN 026C
ILLWRT 026C
INLUNI 039B
I0BF82 00B2
A LIBFLG 158D
LODPNT 0402
MEMDFT 03B4
MON 13DC
NEWSYM 0416
OBJLUN 033D
OBJRSO 0102
OPEN 030A
A OPTION 0070
OUTNM1 0077
PARTAL 0424
PNTLOG 1110
PRINT 1106
PUTMEM 0370
RELABS 0410
REWLUN 0331
SHEAD1 0164
SVAL 0874
SYMEND 0406
TBLEN O9AE
A TYPE 0004
VRE 0112

7-5

Digital Systems Division

@ 9462589701

The heading is followed by a list of the modules, with the name (IDT) of each object module in
the linked module, the length of each module, the origin of the module within the linked module
and the date and time that each object module was generated.

The next section of the listing lists in alphabetical order the definitions in the modules. The symbols
and corresponding hexadecimal values are printed four per line. The value is the definition within
the linked module. When the listing shows an “N” preceding definition, the symbol was not
referenced from another module.

When an “A” precedes a symbol, the symbol is self-defining (absolute). When the value is followed
by a “U”, the symbol is unresolved. When the value is followed by an “M”, the symbol has been
multiply defined, the first definition is the one that is used.

After all definitions have been listed and if there are multiply-defined modules, IDTs, or symbols
or if there are unresolved symbols, a corresponding message is printed as presented in the examples
in the next paragraph.

The load map is a useful tool during debug of an object module. After a task is loaded into memory,
it has an absolute task origin, which is the absolute memory address of the task. If the user has the
Operator Communication (OCP) Software Module in his system, he can calculate the task origin by
using the (STATUS) command. By adding the absolute task origin to any of the values in the

load map, the user can get the absolute memory address of that symbol.

The absolute memory address of a symbol that was not defined using a DEF directive within a
module can be computed. First, add the relative address in the assembly listing (see Section IV,
TX990 Assembler (TXMIRA)) to the relative origin value of the module’s IDT found in the symbol
map. Then add this sum to the absolute task origin in memory. The final sum is the absolute
memory address of the symbol.

7.5 LINKED OBJECT MODULE A

The linked object module produced by TXLINK consists of object code similar to that produced by
the assemblers. Object code is described in the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide. As shown below, each module is terminated by a record
beginning with a colon and containing the module name, date, time of linking and TXLINK
identifier.

MODULE 07/06/78 08:57:39 TXLINK V.R.E
A fully-linked object module is ready to be loaded and executed by the operating system.

7.6 ERROR MESSAGES
Table 7-3 lists fatal error messages that are printed on the LOG when TXLINK encounters an error.

7-6 Digital Systems Division

£

{@ 946258-9701

Message
CANT GET COMMON
CANT GET MEMORY
ILLEGAL HEX DATA
MEMORY OVERFLOW
BAD CHECKSUM
nn—ILLEGALPATHNAME
nn—READ ERROR
nn—WRITE ERROR

ILLEGAL OBJECT
TAG-A

nn—ASSIGN ERROR

nn—CLOSE ERROR

Table 7-3. Error Messages
Description

System COMMON not in system
Memory requested is too large
Nonhex digit found in input object
Tables exceeded available area
Bad input object code
Pathname syntax error
Error in reading object input
Error in writing linked object or load map
Module contains absolute load or entry

address or garbage. “A” is tag that was
found.

Error in assigning or opening file

Error in closing a file

Recow;ery
Regen system with COMMON
Decrease size and retry -
Reassemble module
Increase size and retry
Reassemble module
Correct and retry
Check file and retry
Retry

Reassemble module

Correct pathname and retry

Correct pathname and retry

Note: The error code nn is returned from the system. See Error Appendix D for meaning.

7.7 TXLINK EXAMPLE

The following three object modules will be linked to form one object module by using TXLINK:

1. This is the contents of the object file entitled :TXTST1/OBJ

39}

00052TXTSTL AOOOOCO006C0045B0000A0006A0026B1500BODOABOAZ0BAFACTF21AF
AO0ZEBAA20BADASBI353B4 14784520820 2DB2057B524F BAEATB2021 B210D7F 2AAF
A0044BOA00B0420B0000C0028B001 DB2FEOCO0Z6TF745F

40000CNT 40000NEW 30048WRITE 7FBASF

TXTSTL 07/06/78 08:22:00 TXMIRA 2.3.0

. This is the contents of the object file entitled :TXTST2/OBJ

0001DTXTST2 ACOOOBODOABOA4SBA156BAS20B41 20847 AFBAF 44B2044B41597F 1 DOF
A00128202182120B2020820208200DB0A007F8B0F
5001DCNT SO00ONEW 7FB3AF

: TXTSTZ 07/06/78 08:35:48 TXMIRA 2.3.0

3. This is the contents of the object file entitled :TXTST3/OBJ

00030TXTST3 AGOOOCCO04C0026B0000B0O000BOBOOBOOOCBOOOOBOOOOBOCOOTF 287F
A0012A0024BCOFEBC1 7EB2FEOCO006B03B0TFB05F
SO0000WRITE 7FD29F

: TXTST3 07/06/78 08R:49:58 TXMIRA 2.3.0

0001

0002
0003

(001
0002
0003
0004

0001
0002
0003

7-7

Digital Systems Division

o
%@ 946258-9701

The following example loads and executes TXLINK using the above three files as input parameters.
The resultant file, :TXTST/OBJ, holds the linked object module. @

PROGRAM: :TXLINK/SYS
INPUT: :TXTST1/OBJ,:TXTST2/OBJ,:TXTST3/OBJ
OUTPUT: :TXTST/OBJ
OPTIONS: ITXTST M400,L

~ TXLINK. V.R.E. YY.DDD LINK EDITOR

Following is the link map, which is generated when an “L” is entered in the OPTION: parameter
line:
TXLINK 2.3.0 78.244 14:06:26 07/06/78 Page 0001
TXTST LENGTH 00AO

MODULE LENGTH ORIGIN DATE TIME

TXTST1 0052 0000 07/05/78 08:49

TXTST2 001E 0052 07/05/78 11:18

TXTST3 0030 0070 07/05/78 11:11

DEFINITIONS

N CNT 001D N NEW 0052 WRITE 0070

Following is the contents of the object file entitled :TXTST/OBJ. This file may be loaded into
memory and executed.

"

f

k¥
000AOTXTST ADOGOCO00SCO045BO000A0026B1600BODOABOA20BAF ACBA4207F 21CF 0001 e
A0030BAD4SES353B4147B4520B2D2DB2057B524F BAE47B2021 B210DBOR0O7F 2B7F 0002
A0D44B0420C0070C0028B001 DB2FEOCO026BODOABOAABBA 1 56B4520B41 207F 2E0F 0003
AO0SCB474FB4F44B2044B415782021B21208202082020B2000B0A00CO076TF 2EFF 0004
A0072C00956B0000BOCCOBOBOOBO000BO0OOBOOOOBOCOOANI?EBCOFEBC] 7E7F 30BF 0005
AOO9AB2FEOCO076B03B07FBA2F 0006

TXTST 07/06/73 08:57:39 TXLINK 2.3.0 0007

C

7-8 Digital Systems Division

o
@ 946258-9701

TXDS COPY/CONCATENATE (TXCCAT) UTILITY PROGRAM

SECTION VIII

8.1 INTRODUCTION

The TXCCAT program copies one to three files to a single output file. Although simple record
modifications are supported upon output, the program is basically a file copy by which sequential
and relative record files may be duplicated or concatenated together into one file with no embedded
end-of-files. TXCCAT copies information from cassettes, files or card reader input to cassettes,
files, or printing devices. TXCCAT is a software module which runs under the Terminal Executive .
Development System (TXDS).

TXCCAT is a software module which runs under the Terminal Executive Development System
(TXDS).

8.2 TXCCAT LUNOs)
The TXCCAT program uses LUNOs 7, 10, 11 and 12. LUNOs 10, 11 and 12 are assigned to the

input files; LUNO 7 is assigned to the output file. All LUNOs are released upon termination of
TXCCAT.

8.3 OPERATOR INTERACTION

- TXCCAT is executed via the TXDS control program. Input and output pathnames are passed via
- COMMON. : Table 8-1 provides the pathname defaults., i

The INPUT: parameters may have one to three pathnames separated by commas. The files will
be used to generate an output file. The OUTPUT: parameter contains one pathname to be used
for the output file. Input files must preexist and can be either sequential or relative record. Output
files are assumed to have the same characteristics as input files, although input records may be
modified for output. If input is from a device, the output file is sequential and, if the output file
does not exist, it is created. If no output file is specified, the default-system print device is used.
The default-system print device is defined during system generation.

Table 8-1. Pathname Defaults

Field Input Output

DEV System Disc System Disc

FILE None First Input File Name
EXT SRC First Input Extension

At any point in the processing, the operator can terminate TXCCAT by pressing the event key on
the system console. The event key is defined as follows: :

820KSR, 733 ASR, 743 KSR: Control X
911 VDT: CMD
913 VDT: HELP
NOTE

In order to use this feature, the EVENTK task must have been
included during system generation.

8-1 Digital Systems Division

946258-9701

8.4 OPTIONS
All TXCCAT options are specified by two alphabetic characters followed, in some cases, by a (
decimal numeric field. Input format is free-form. Delimiters for options may be commas, blanks

or no delimiter. Each time a new pair of characters is read it is considered a new parameter. An
illegal parameter results in an error message and program termination. Table 8-2 lists the options
recognized by TXCCAT.

The numeric scan terminates after the maximum size is exhausted or a nonnumeric character is
encountered.

8.4.1 TRUNCATE OPTION (TR). The truncate option truncates records to the size specified. The
syntax is as follows:

TRnnnn
where n is a decimal number and four digits is the maximum field size. The following are examples:

TR76 Truncate to 76 characters.
TRO0O76 Truncate to 76 characters.

8.4.2 FIX RECORDS (FL). This option forces input records to a specified size by either padding
with blanks or by truncation. The syntax is as follows:

FLnnnn
where n is a decimal number and four digits is the maximum field size. The following are examples:

FL76 Fix to 76 characters.
FL0OO76 Fix to 76 characters.

£

Table 8-2. TXCCAT Options

Option Description
TRnnnn Truncate record to length nnnn.
FLnnnn Fix records to size nnnn by padding with blanks or by truncation.
SKnnnn Skip nnnn input records, prior to output.
LFnn List file, page length = nn, default = 55.
SLon Space lines on listing, nn = space count, default = 0.
NL Number lines on listing.
RI Do not rewind input on open.
RO Do not rewind output on open.
.v __AL ANSI Formatted File.

Note: n is a decimal digit and the maximum field size is given by the number of n’s.

C

8-2 Digital Systems Division

[o]
{@? 946258-9701

8.4.3 SKIP RECORDS (SK). This option skips the specified number of input records prior
to output. The syntax is as follows:

SKnnnn
where n is a decimal number-and four digits is the maximum field size. The following are examples:

SK200 .
SK0020
SK9999

8.4.4 LIST FILE (LF). This option lists files and allows the use of the NL and SL option. The

numeric field gives the printer page length. If the page length is not specified, 55 lines per page
is the default. The syntax is as follows:

LFnn
where n is a decimal number and 2 digits is the maximum field size. The following are examples:

LF

LF55
LF06
LF99

8.4.5 SPACE LISTING (SL). This option is only in effect with the list option LF. The syntax is
as follows: , '

SLnn

where n is one or two decimal digits. The following are examples:

SL : Single Spacing
SL1 Single Spacing
SL2 Double Spacing

8.4.6 NUMBER LINES (NL). This Option is only in effect with the list option LF and causes
the printing of the line numbers associated with the input lines. The syntax is as follows:

NL

8.4.7 NO INPUT REWIND (RI). When this option is selected, the input is not rewound when
opened. The syntax is as follows:

RI

8.4.8 NO OUTPUT REWIND (RO). When this option is selected, the output is not rewound
when opened. The syntax is as follows:

RO
8.4.9 ANSI FORMATTED FILE (AF). This option will treat the first character of each record as
o an ANSI Standard Carriage Control Character. Table 8-3 describes the ANSI character accepted.
- ‘

Change 3 83 Digital Systems Division

%@ 9462589701

Table 8-3. ANSI Carriage Control Characters V

ANSI Character Definition ; Q
Blank Skip one line before printing
0 Skip two lines before printing
1 Skip to first line of next page before printing
+ Suppress line spacing before printing (overprint)

8.5 EXAMPLES

The following three examples show how to use TXCCAT to: copy a file to a cassette; copy three
files to another file; and list a file on a printer. Each example assumes that the TXDS Control
Program is active and that a diskette containing TXCCAT is loaded.

Example 1:
"~ PROGRAM: :TXCCAT/SYS
INPUT: DSC2:TXTST1/OBJ
OUTPUT: CS1
OPTIONS: FL8&O
Example 2:

PROGRAM: :TXCCAT/SYS

INPUT: DSC:TXTST1/SRC,DSC2:TXTST1/SRC,CS1 A
OUTPUT: DSC2:TXTST3/SRC* N
OPTIONS:
Example 3:

This example assumes that a line printer is included in the system.

PROGRAM: :TXCCAT/SYS
INPUT: DSC2:TXTST3/SRC
OUTPUT: LP
OPTIONS: LF66,SL1,NL

8.6 ERRORS :
The errors generated by TXCCAT are listed in table 8-4 together with possible corrective action.

¢

84 Digital Systems Division

946258-9701

Error
CANT GET COMMON
ILLEGAL OPTION — aa
nn — ILLEGAL
PATHNAME

nn — READ ERROR

nn — WRITE ERROR
nn — OPEN ERROR

nn — CLOSE ERROR

Table 8-4. TXCCAT Errors

Description

System COMMON not in system
Option aa not found

Input files does not exist or
open error

Error in Reading File

Error in Writing File

Error in opening or assigning files

Error in closing a file

Note: nn is the system I/O status error given in Appendix D.

Action

Regenerate system with COMMON
Reenter correct option

Correct and Retry

Retry

Retry
Correct pathname and retry

Correct pathname and retry

8-5/8-6

Digital Systems Division

a

[e]
@ 946258-9701

SECTION IX
TXDS STANDALONE DEBUG MONITOR (TXDBUG) UTILITY PROGRAM

9.1 INTRODUCTION

This section discusses the capabilities and operation of the TXDS standalone debug monitor,
TXDBUG, explains how to debug under monitor control, gives detailed descriptions of the
commands available to the user, and supplies debugging techniques. The following topics are
covered:

TXBUG installation procedures for 733 ASR, 820 KSR, 913 VDT or 911 VDT system
consoles.

A general description of TXDBUG, including functions, features and capabilities.

A detailed description of the operating procedures necessary to load TXDBUG and the
program to be debugged.

A description of two modes of debugging: one in which the program being debugged
executes with minimal TXDBUG intervention, and one in which TXDBUG exercises tight
control of the program being debugged.

A description of TXDBUG command structures, and the operator interface to TXDBUG.

Detailed descriptions of each of the debug commands.

A discussion of debugging techniques including general techniques and techniques specific
to TX990. ~

A discussion of methods used to patch programs (i.e., to correct them in memory rather
than at the source code level.)

A summary of errors which may occur during a debugging session.

The TXDBUG provides for debugging programs which have been designed to operate in a “stand-
alone” environment with no operating system support. The debug monitor attempts to

“hide” itself from the program being debugged, using as few machine resources as possible in the
performance of debug tasks.

The following minimum hardware system configuration is required to run the standalone debug

monitor:

990/4 CPU (including 6-slot chassis and Programmer Panel), 990/5 CPU, or 990/10 CPU.

When a 990/4 CPU is used, 4096 words dynamic RAM Memory Expansion including
Memory Write Protect and Memory Parity are needed.

733 ASR Data Terminal, 820 KSR, 913 VDT or 911 VDT.

FD Floppy Disc.

9-1 Digital Systems Division

% 946258-9701

9.2 GENERAL DESCRIPTION

The TXDBUG is memory-resident and communicates interactively with the operator through the (
733 ASR Data Terminal keyboard and printer. It provides the following capabilities:

® Inspection and modification of memory, registers, and CRU space

® Controlled execution of user programs with optional trace of instructions and/or data
® Multiple breakpoints with optional automatic display of registers and specified memory:
® Miscellaneous aids such as hexadécimal arithmetic and search-under-mask.

9.3 INSTALLATION OF TXDBUG o _
To install TXDBUG, a file name :SADBUG/SYS must be created on the TXDS Utilities Diskette.

Then, one of the three stand-alone debug monitors listed below must be copied into it. The three
debug monitors are named:

:SADPRT/SYS 733 ASR, 743 KSR, 820 KSR or 33 ASR (TTY)
:SAD911/SYS 911 VDT
:SAD913/SYS 913 VDT
Example:
If the device to be used as the debug console is the 911 VDT, perform the following:
1. Place the TXDS System Diskette in DSC and TXDS Utilities Diskette in DSC2.

2. Respond to the following prompts by entering: ::1
PROGRAM: :TXCCAT/SYS
INPUT: DSC2:SAD911/SYS
OUTPUT: DSC2:SADBUG/SYS
OPTIONS:

This will be create the file :SADBUG/SYS on DSC2 and copy :SAD911/SYS from DSC2 to the
:SADBUG/SYS file.

9.3A LOADING TXDBUG

The TXDBUG program is stored as a file on the TXDS Utilities Diskette. To load TXDBUG and

begin the debug session, invoke the program load facility of TXDS and specify the following
parameters: v

PROGRAM: :TXDBUG/SYS
INPUT: <file name of program to be debugged>
OUTPUT: g

‘OPTIONS: <hexadecimal integer specifying the load point of the program tobe a....gged> -

The file name supplied for the input parameter must include all extensions. The loader wiil search
all available drives if the device name is not specified.

I>f 1{36 load point of the program to be debugged is not supplied, TXDBUG assumes the default value

C

92 Digital Systeris Division

[o]
%@@ 946258-9701

After TXDBUG has been successfully loaded, the TXDBUG load point, entry point, and length are

printed:
TXDBUG V.R.E YY.DDD DEBUG UTILITY
TXDBUG LOAD POINT = ENTRY POINT = LENGTH =

NOTE

For certain debug operations the TXDBUG entry point is required.
Make note of the entry point at this time.

When the loading process is completed, the TXDBUG will prompt the operator with a period (*.”).
At this time the memory configuration (for a 16K system) will appear as illustrated in figure 9-1,
with the user’s program located as specified by the load point in the option parameter. TXDBUG

may be used to debug any program for which the instruction and data space does not overlap
TXDBUG.

NOTE

Since the user’s program overlays the TX990 executive, the TX990
executive must be rebooted when the debug session is finished.

Once the user program is entirely debugged, it may become the executing program when a disc

boot is performed by using the “SF’’ operation described in the TX990 Operating System Pro-
grammer’s Guide.

In the following description of TXDBUG usuage, the ESCAPE key denotes the ESC key ona 911
VDT or 733 ASR and the RESET key on a 913 VDT.

9-3 Digital Systems Division

946258-9701

BYTE FUNCTION
ADDRESS _—
0000
INTERRUPT AND XOP VECTORS
007F
0080 FRONT PANEL WORKSPACE
009F
00A0
USER SPACE (CONTAINS THE PROGRAMS
> TO BE DEBUGGED)
W_—/——-‘
T e e
<
> DEBUG MONITOR (TXDBUG)
7FFF J
F800
FRONT PéNEL.ANDvSELF—TEST
DATA AREA
FOFF 990/4
FAOO ONLY
OPTIONAL RAM/ROM
FBFF
FCOO0
FRONT PANEL S/W,ROM
LOADER, AND SELF-TEST
ROMS
FFFF

Figure 9-1. Debug Monitor Memory Configuration

9.4 DEBUG MODES

The user may specify that the debug monitor execute the program being debugged in either of two
different modes: Execute free, or Run controlled. When executing free, the monitor relinquishes
control to the test program which is then executed at full processor speed. This mode is only
recommended when a program is expected to be error free or when timing considerations are being
examined. The only way to interface with the monitor in this mode is to bracket instruction
sequences in the test program with LREX instructions or with unconditional branches to the debug
monitor entry point. An LREX has the same effect as pressing the HALT switch on the front panel.
An unconditional branch to the monitor entry point restarts the monitor. If this is attempted and
the monitor does not respond with a period prompt (‘.”), the probable cause is that the executing
program has destroyed the monitor.

9-4 Digital Systems Division

3

C

o
@ 946258-9701

The normal method of execution during program debug is to initialize the PC, WP, ST by using the
Modify AU Registers (MR) command and use the RUN (RU) command. In the RUN mode, the
monitor uses the Single Instruction Execution (SIE) facility to execute the user’s program one in-
struction at a time. Execution continues until: the number of instructions specified have been
executed; a breakpoint occurs; or the operator presses the ESCAPE key on the 733 ASR Data
Terminal keyboard. The Execute (EX) command can be used in place of the RUN command.
Using this command, the program is executed without using the SIE or trace features.

The highest level of control is exercised when a test program is being executed via the RUN
command and the instruction address is within a Trace region. In this case, each instruction is
interpretively executed by the monitor. Source and destination operands are examined and op-
tionally printed before and after each instruction. The amount of information printed as each
instruction is executed is determined by user-defined Trace regions (SR command).

NOTE

Trace regions are ignored when the EX command (Execute free) is -
used.

9.5 DEBUG MONITOR COMMAND STRUCTURES
To interact with TXDBUG, the user enters commands at the 733 ASR Data Terminal.

The available debug commands may be classified into the following groups.
® Set commands. These commands allow the user to define up to four of each of the
following aids: program-counter breakpoints, formatted snapshots, trace regions, and

trace formats.

® (Clear commands. These commands allow the user to remove the effect of a previously set
command.

® Inspect commands. These commands allow the user to display the contents of AU
registers, workspace registers, memory regions, and CRU lines. These commands are also
used to force snapshots.

® Modify commands. These commands allow the user to examine and optionally modify:
memory; workspace registers; AU registers; and CRU lines (by inspecting the input and
modifying the output).

® Miscellaneous commands. These commands include functions such as word and byte
memory searches, and hexadecimal arithmetic with autematic decimal conversion.

When debugging a program, the user may specify that TXDBUG:
~® Print data on the terminal for examination,
® Modify data,

® Specify program elements (parameters whose values are determined by the user) for
interpreting the progress of his program,)

® Set and clear program elements,

Change 2 9-5 Digital Systems Division

%@ 9462589701

® Search for specific bit patterns in bytes and words,
® Perform arithmetic calculations with hexadecimal numbers. @

These actions may be performed on memory, registers, and CRU input and output lines. They may
also be performed on specifiable debug elements: breakpoints, snapshots, and trace regions. The
debug elements are defined as follows:

® Breakpoint — A point during the execution of a program at which control is returned to
TXDBUG to allow the user to. examine the progress of his program or enter any of the
debug commands. '

® Snapshot — A printed display of the contents of contiguous workspace registers plus the
contents of an area in memory as defined by the operator. A snapshot may be printed
automatically at a breakpoint.

® Trace region — An area of the program about which information concerning the
execution of an instruction is output on the printer. This information may be printed
following the execution of each instruction, each branch, or each change in the contents
of a data word.

9.5.1 DEBUG COMMAND CODES. All debug commands are comprised of a two-letter mnemonic;
the first of which denotes the operation to be performed (inspect, modify, etc.). The second identi-
fies the debug or machine element upon which the operation is to be performed (memory, CRU,
etc.). The four general-purpose operations are as follows:

I — Inspect Vs
M — Modify ~
S — Set
C — Clear.
The elements on which these operations may be performed are:
M — Memory -
W — Workspace registers (RO —R15)
R — AU Registers (WP, PC, ST) when used with I, or M.
R — Trace Region when used with S or C
C —-CRU
B — Breakpoint
S — Snapshot
T — Trace Type
P — Protect region (invalid for computer without write-protect option). \()

9-6 , Digital Systems Division

o]
@ 946258-9701

Some combinations of operations and elements are illegal. Table 9-1 identifies the valid
combinations. Table 9-2 lists the available two-letter mnemonics associated with the valid
combinations.

9.5.2 MISCELLANEOUS COMMANDS. The following are classified as miscellaneous commands:

EX — Execute a user program.

RU — Run a user program.

HA — Hexadecimal arithmetic.

FB — Search under mask for a particular 8-bit pattern (Find Byte).
FW — Search under mask for a particular 16-bit pattern (Find Word).

9.5.3 COMMAND ENTRY. Readiness of the monitor to accept a command is indicated when the
monitor “prompts” the operator by printing a period (*.””) as the first character of a new line. For
all activities except when a user program is being executed free (EX command) the operator may
force a return to the command mode by pressing the ESCAPE key on the 911 VDT or 733 ASR
terminal, or RESET on the 913 VDT.

From zero to eight parameters may be entered with each two-letter command. The command is
separated from its parameter list by a comma (*,””) or by one or more blanks. Each parameter in
the list is terminated by a comma or by one or more blanks, with the parameter list being ter-
minated by a carriage return. As each parameter is entered, its syntax is validated by the monitor.
The parameter may either be a hexadecimal number, a binary number, or a character string. The
backspace character (CTRL-H on the 911 VDT or 733 ASR terminal, or < on the 913 VDT) may
be used to change the entered characters, or the entire parameter may be reentered by pressing
the delete key (RUB OUT on the 733 ASR terminal). The entire command entry may be aborted
by pressing the ESCAPE key on 911 VDT or 733 ASR terminal (RESET on 913 VDT).

If an error is detected by the monitor during command entry, one of the following error codes will

be printed:
Code Meaning
MPOO Invalid parameter or hexadecimal number entered, or maximum parameter list
exceeded.
MSO01 Invalid command. The first two characters do not match any known command.

A complete list of error codes appears in paragraph 9.8.

Table 9-1. Valid Debug Command Combinations

‘Element
Operation M w R c B S T P
I X X X X X
M X X X X
S X X X X X
C X X X - X

(“X” indicates acceptable combination.)

9-7 Digital Systems Division

9462589701

Table 9-2. TXDBUG Keyboard Commands

DEBUG Commands
IC Inspect Control Register Unit (CRU)
M Inspect Memory
IR Inspect AU Register (WP, PC, ST)
IS Inspect Snapshot
w Inspect Workspace Registers
MC Maoadify Control Register Unit (CRU)
MM Modify Memory
MR Modify Registers
MW Modify Workspace Registers
SB Set Breakpoint
SP Set H/W Write Protect Option
SR Set Trace Region
SS Set Snapshot
ST Set Trace _
CB Clear Breakpoint
CP Clear H/W Write Protect Option
CR Clear Trace Region
Cs Clear Snapshot

9.5.4 NOTATIONAL CONVENTIONS. The notational conventions used in the syntax definitions
of the keyboard commands are as follows:

<> Item to be supplied by the user. The term shown within angle brackets is a generic
term.
[] Optional item — may be included or left out, at the user’s discretion. Items not

enclosed in brackets are required.
{ } Choice to be made from two or more items, one of which must be included.

Items in capital letters in the syntax definition are entered into the command statement exactly
as shown.

The fields in the command (the command mnemonic and the parameters) are separated by either
commas or strings of one or more blanks. This choice is shown sumbolically as:

(.

When one or more parameters are omitted, two or more field separators may occur in sequence. The
user must be sure that he includes the correct number of separators in a sequence; he should be
- aware of how they are interpreted by the computer. Two strings of blanks run together will be
read as a single long string of blanks. A comma preceded or followed by a blank will be read as two
separators in sequence. It is suggested, therefore, that commas (without preceding or following
blanks) be used to set off omitted parameters.

N

9-8 Digital Systems Division

-

(o]
{@? 946258.9701

In the examples of command statements, user-supplied data is underlined to distinguish it from data
printed by the monitor. The carriage returns that terminate command statements are not shown in
the examples.

9.6 COMMAND DESCRIPTIONS

Each command supported by the debug monitor and a brief functional description is presented in
table 9-2. Detailed descriptions of the “miscellaneous” commands are presented in paragraphs 9.6.1
to 9.6.5. The remaining paragraphs provide detailed descriptions of the ““debug” commands.

9.6.1 EXECUTE USER PROGRAM (EX). The Execute User Program command is used to execute
a user program at speed with neither interference from nor control by the monitor. The program is
executed at full processor speed. Initialize the AU registers (ST, PC, WP) using the MR command
before using the EX command. :

Syntax definition:
EX

Description: The program is executed directly by the 990 computer without using the SIE or trace
features. Execution is started with the PC, WP and ST that would be displayed if an Inspect
Registers (IR) command were executed.

Application notes: In order to regain control from an executing user program, the user must
transfer control to the monitor’s starting memory location. This may be done by inserting a branch
in the test program or by using the programmer panel.

Upon regaining control in the monitor, the WP, PC, and ST registers will have the same values as
before”the EX command unless execution of the user program destroyed the monitor data space.

Example:

Assume the user has written an assembler which assembles source from cassette or terminates
depending on user input.

IR
PC=046C WP=0000 ST=0000
EX

ASM/TERM? A

ASM/TERM? T

IR

PC=046C WP=0000 ST=0000

The EX command begins execution with the PC, WP, and ST registers equal to the values obtained
when the Inspect Registers (IR) command is invoked. A program run under EX does not change the
contents of these registers. The second IR command shows that the contents remain the same.

99 Digital Systems Division

o
@ 946258-9701

9.6.2 EXECUTE USER PROGRAM UNDER SIE OR TRACE (RU). The Execute User Program
under SIE or Trace command provides controlled execution of the user’s program. Initialize the
AU registers (ST, PC, WP) using the MR command before using the RU command. '

Syntax definition:

RU [{t; } <instruction count>]

9-10 Digital Systems Division

==X

Q_@Z) 946258-9701

Parameter:

instruction count Maximum number of instructions to be executed
before returning to command mode. A value of
0 indicates an infinite instruction limit applies.

Parameter default value: The value of the instruction count at the last entry into command mode
is used as the default value. If the previous RU command has exhausted the instruction count, the
default is 0, implying no instruction limit. The system is initially loaded with a default value of 0.

Description: Instructions in the user’s program are executed one at a time using either the hardware
SIE feature or the software trace interpreter. The user may specify one of these two modes of
operation with the Set Trace Reglon (SR) command (paragraph 9.6.12). The user is referred to:
The 990 Computer Family System’s Handbook, part number 945250-9701, for a detailed explana-
tion of SIE.

Before the monitor executes a user instruction, it checks whether the instruction is within a defined
trace region. If the instruction is within a trace region, the trace interpreter is called and the in-
struction traced. If the instruction is not within a trace region, the instruction is executed using
Single Instruction Execution. In both cases, the user’s WP, PC, and ST registers are updated after
each instruction executed. The monitor checks whether a breakpoint has been reached and if so,
prints out the user’s registers and snapshot if defined. If a snapshot is a531gned toa breakpomt the
monitor continues execution after the breakpoint has been reached, without operation intervention.
If no snapshot was specified, the monitor returns control to the command processor. (Refer to the
descriptions of the SB and SS commands in paragraph 9.6.6.1 and 9.6.11.1.) If the run count,
number of instructions to be executed, is depleted, the monitor returns control to the command
processor. Otherwise the monitor continues execution of the user program.

9.6.3 HEXADECIMAL ARITHMETIC (HA). The Hexadecimal Arithmetic command calculates

the sum and difference of two hexadecimal numbers. The 2’s complement hexadecimal value and
the signed decimal value are printed.

Syntax definition:

ma [, }fraaeo] [, J <oanes]]

Parameters:
value Hexadecimal humber value (04 digits).
Parameter défault values: |
If the Value parameter is not specified, a default value of 0 is used.

Application note: No overflow checks are made; therefore, two positive numbers may have a.
negative sum. All results are represented in 16 bits.

9-11 Digital Systems Division

@? 9462589701

Examples:
A
.HA 103A BA2 1
SUM=1BDC 07132 DIFF=0498 +01176
.HA 89 89
SUM=0112 00274 DIFF=0000 +00000
.HA 8030 EF00
SUM=6F30 28464 DIFF=9130 -28368
.HA EF00 _
SUM=EFO00 -04352 DIFF=EF00 -04352 '
The calculated difference between the specified number values is the first value minus the second
value.
'9.6.4 FIND BYTE (FB). The Find Byte command is used to scan an area of memory for a
particular byte value.
 Syntax definition:
FB {%} [<start mem addr>] {% } [<ending mem addr>] {% } -

<desired value> [{é } <mask>]

The command is terminated by a carriage return.
Parameters:

start mem addr - Memofy address at which search begins.
(14 character hexadecimal number.)

ending memory addr Memory address at which search is terminated.
(14 character hexadecimal number.)

desired value Hexadecimal value for which the search
is made. This value is required.

mask Hexadecimal value to be ANDed with each

byte before comparing it with the desired
value. :

Parameter default values:

If the starting memory address is not specified, a value of 0 is used.

If the ending memory address is not specified, a value of FFFF 4 is used.

If the mask parameter is not specified, a value of FF ¢ is used.

9-12 Digital Systems Division

@ 9462589701

Description: Each byte in the memory search range is ANDed with the mask and compared to the
desired value. The memory location and contents are printed out whenever a match is found. After
each match, the user must enter a space on the terminal keyboard to continue the search. If he
enters a carriage return, the command terminates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MSO05 The <desired value> parameter is missing.
Reenter the command.

MXO06 The beginning address is an invalid memory
address. Reenter the command.

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor data area is being searched,
results may not appear to be correct since the monitor is changing during the search process.

Examples:

.FB 0,2000,0,0F
0000=0000
0000=0000
0002=0000
0002=0000
0004=0000
0004=0000
0006=0000
0006=0000
0008=0000

.FB 0,2000,06,0F
0300=0456
0644=0556

In the first example, the high order four bits of each byte are masked so that any byte with a 0
in the low order four bits will be located. The address of the leftmost byte of each word is
printed so that if both bytes of a word are printed, an address location will be printed twice.
For example, if bytes 0004 and 0005 are printed, the address 0004 will appear twice in the
listing.

In the second example, the high order four bits of each byte are masked so that any byte with a
6 in the low order four bits will be located.

9.6.5 FIND WORD (FW). The Find Word command is used to scan an area of memory for a
particular word value.

9-13 Digital Systems Division

%}\ﬁ; 9462589701

Syntax definition:

FW {%} [<start mem addr>] {%} [<ending mem addr>] [%}

<desired value> [{1’5 } <mask>]

The command is terminated by a carriage return.

Parameters:
start mem addr Memory address at which search begins.
(1-4 hexadecimal characters.) Must be
even byte (word) address.
ending memory Memory address at which search is terminated.
addr (14 hexadecimal characters.)
desired value Hexadecimal value for which the search
is made. The value is required.
mask ’ Hexadecimal value to be ANDed with each word

before comparing it with desired value.
Parameter default values:
If the starting memory address is not specified, a value of 0 is used.
If the ending memory address is not specified, a value of FFFF,4 is used.
If the mask parameter is not specified, a value of FFFF ¢ is used.

Description: Each word in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the terminal keyboard to continue the search.
If he enters a carriage return, the command terminates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MPOO The beginning address is an invalid memory
address. Reenter the command.

MSO05 The <desired value>> parameter is missing.
Reenter the command. '

9-14 Digital Systems Division

C

%@ 9462589701

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:

.FW 0,2999 456,

0300=0456

.FW 0,2000,56,00FF

0300=0456
0644=0556

In the second example, the monitor searches for words with a 56 in the low order byte. By

pressing the space bar on the terminal keyboard, the user can cause the monitor to continue
searching for another occurrence of the data word.

9.6.6 BREAKPOINT COMMANDS (SB, CB). These two commands control breakpoint as
indicated in the following paragraphs.

9.6.6.1 Set Breakpoint (SB). The Set Breakpoint command is used to define a breakpoint which
causes the processor to stop or interrupt execution of a user program prior to executing the in-
struction at the specified memory address.

Syntax definition:

SB {1’5} <bkpt no.> {% }<memory addr> [{{s } [<ref cnt>]

[{é...} <snapshot no.>]]

Parameters:

bkpt no.

memory

addr

ref cnt

snapshot no.

Breakpoint index number. The number may be O,
1, 2 or 3. Required parameter which services as a
unique identifier for individual breakpoints.

Address of an instruction on which the breakpoint
is to be set. Required parameter. (1-4 hexadecimal
characters.)

The pass number (hexadecimal) on which a break-
point is to be taken. For example, a reference
count of 3 means to break on the third reference
to the memory address for an instruction fetch.
Default value is 1.

Index number of a previously defined snapshot
which is to be displayed when the breakpoint
is taken (see SS command). Default value is no
snapshot O, 1, 2, 3.

9-15

Digital Systems Division

{_@? 9462589701

Parameter default values:

If the reference count (pass number) is not specified, a value of 1 is used. If the user enters a
value of 0, it is equivalent to a reference count of FFFF .

If the snapshot number is not specified, a snapshot is not printed.

Use of breakpoints: The breakpoint is one of the key elements in program debugging because it
enables the user to specify conditions under which he wants to receive control. Breakpoints are
particularly useful when the user wants to intercept control after an unexpected control transfer
occurs from a conditional branch. By setting a breakpoint on the unexpected or error path out
of a conditional branch, the program may be allowed to execute without interruption unless
some error condition occurs.

When a breakpoint is encountered, the contents of the processor registers are displayed. (The
contents are the values that would be displayed if an IR command were to be invoked.) The
breakpoint index number is aiso displayed to aid in determining which breakpoint was
encountered.

Error message:

DP20 Breakpoint specification error. Required index number may
be valid or missing, or the PC value (memory address) may
have been omitted.

Application notes: The PC value for a breakpoint must point to the flrst word of a multiword
instruction.

A breakpoint occurs before the execution of the instruction to which it points.

If a snapshot is associated with a breakpoint, execution 6f the user program resumes after the
snapshot is printed. If no snapshot is associated with the breakpoint, execution terminates and the
debugger accepts another command.

If more than one breakpoint is associated with a specific loation, only the first (lowest numbered)
will be found:

When execution is under the control of the Execute User Program under SIE or Trace (RU) com-
mand with an instruction count: (1) a breakpoint occurs; and (2) a new count is not specified
on the next RU command. Then, when execution is resumed, counting is continued as if no break-
point was encountered.

Breakpoints are not active when the user code is executed with the EX command.
An error is not reported when a Set Breakpoint (SB) command redefines an already defined break-

point. The specified breakpoint is modified to take on a new definition. This feature may be used
to modify the snapshot index associated with a breakpoint.

9-16

Digital Systems Division

o,

o~

%@ 9462589701

Examples:
.SB 0,1000,1,2

.SB 1,1000,1,0
.SB 2,1004

The first two examples set a breakpoint at address 1000 on the first reference to that address for
an instruction fetch. The first example sets breakpoint index number O with snapshot index
number 2 to be displayed, and the second example sets breakpoint index number 1 with
snapshot index number O to be displayed. The third example specifies breakpoint index number
2 to be taken at memory location 1004,,. No snapshot is printed, and execution of the user

' program terminates after the breakpoint is encountered.

9.6.6. 2 Clear Breakpoint (CB). The Clear Breakpoint command is used to disable prevmusly ‘

b e

spec1fled breakpoints. - . » Y

Syntax definition:

CB [{,b } [<starting breakpoint number>] [{;6 } <ending breakpoint number>]]

The command is terminated by a carriage return.

Parameters:

starting breakpoint The first breakpoint to be cleared. A
number number from 0 to 3.-

ending breakpoint The last breakpoint to be cleared. A
number number from 0 to 3.

Parameter default values:
If no parameters are spéciﬁed, all breakpoints are cleared.
If only the first parameter is given, orily the specified breakpoint will be cleared.

If only the second parameter is given, breakpoints O through the specified ending breakpoint will
be cleared.

Description: If an attempt is made to clear a breakpoint that has not been set, the command is
ignored.

Error message:

DP13 A breakpoint index greater than the maximum possible
index number (3) was specified, or the ending break-
point index was less than the starting breakpoint
index number.

9-17 Digital Systems Division

(o]
@ 946258-9701

Examples: A
&
CB 1,3 <
.cB
The first example clears all breakpoints except number 0. The second example clears all
breakpoints.
9.6.7 COMMUNICATIONS REGISTER UNIT COMMANDS (IC, MC). Commands to control the
990 1I/0 port (the Communications Register Unit) are explained in the following paragraphs.
9.6.7.1 Inspect CRU Input Lines (IC). The Inspect CRU Input Lines command is used to display
in hexadecimal format the contents of one or more consecutive CRU locations.
Syntax definition:
IC [{%. N [<CRU address lower limit>] [{] <CRUaddress upper 1imit>]]
The command is terminated by a carriage return.
Parameters:
CRU lower limit ~ CRU address that begins the display. The
address must be in the range of 0 to 1FFF,,.
(14 hexadecimal characters.) e
“

CRU upper limit ~ CRU address that ends the display. The
address must be in the range 0 to 1FFF .
(1-4 hexadecimal characters.)
Parameter default values:

If the CRU lower limit is not specified, a value of 0 is used.

If the CRU upper limit is not specified and the CRU lower limit is specified, the default value is the
CRU lower limit. Sixteen bits are displayed.

If neither parameter is specified, the entire CRU is displayed.

Description: Data is displayed in groups of four words, two groups per line. The. address of t'he
first word on the line is printed on the left. The display may be terminated at any time by pressing
the ESC key on the terminal keyboard.

The address displayed is the actual CRU bit address times two.
Error message:
DP13 The highest CRU address specified is less than the lowest

CRU address specified, or the highest CRU address specified)
is greater than the highest CRU address permitted (1FFF). _ £

9-18 Digital Systems Division

%@ 9462589701

Examples:

.IC 1000 1060
1000=FFFF FFFF FFFF FFFF

.IC 100

—

0100=608D

In the first example, the CRU bits at addresses 1000,, through 1060,¢, in 20,4 bit increments, are
displayed. Since the CRU addresses are twice the actual bit addresses, the address of the next 10,4
CRU bits would be a 20, address increment. In the second example, the 16 CRU bits at location
100, are displayed.

Example:

IC

0000=600D FFFF FFFF 40DF >0000 8001 0DO00 409B
0100=FFFF FFFF FFFF FFFF >FFFF FFFF FFFF FFFF
0200=FFFF FFFF FFFF FFFF >FFFF FFFF FFFF FFFF

9.6.7.2 Modify CRU Register (MC). The Modify CRU Register command reads and dlsplays
the data on CRU input lines, and sets data on CRU output lines.

Syntax definition:

MC [[b,} [<CRU address>] [{f’)} <CRU width>]]

The command is terminated by a carriage return.
Parameters:

CRU address The CRU word address. A value from 0 to 1 FFF,,.
(14 hexadecimal characters.)

CRU width The number of bits to be changed in each CRU
word (hexadecimal). A value from 1 to 10,4. A
value of O is interpreted as 10,4. (1-2 hexadecimal
characters.)

Parameter default values:

If the CRU word address is not specified, a value of O is used.

If the CRU width is not specified, a value of 10,4 is used.

Description: When the CRU bit width is less than 16 bits, the data value is displayed right
justified in a four-digit hexadecimal value. The user’s data may be input as a four-digit value; the
rightmost bits, where the bit width is given by the CRU width parameter, are used to modify the

CRU value. Enter a new value to change the value, a space to continue on to the next value, and
a carriage return to terminate data modification.

9-19 Digital Systems Division

{@ 9462589701

The addresses are displayed as they would be used in workspace register 12 (the CRU base
address), which is the actual CRU bit address times 2. Also, data is displayed and entered
directly as the STCR/LDCR instruction receives/sends it. A

If the CRU word address is greater than 1FFF,,, the command is ignored.
Error message:

DP12 CRU bit width parameter too small (negative) or too
large (greater than 10,¢). Invalid bit string width.

Application note: The Modify CRU Register command may be used to change the data being
sent to an external device during the debugging of a new interface.

Examples:
.MC 1000 8

1000=00FF 0080
1010=00FF 0040

.MC 1000
1000=FFFF 1000

9.6.8 MEMORY COMMANDS (IM, MM). The commands explained in the following paragraphs
allow user knowledge and control of memory contents.

9.6.8.1 Inspect Memory (IM). The Inspect Memory command is used to display in hexadecimal \
format the contents of one or more cornsecutive memory locations. e

Syntax definition:

M [{t; } <starting mem addr> [[t; } <ending mem addr>]]

The command is terminated by a carriage return.

Parameters:

starting mem addr Hexadecimal value representing the memory
address of the first memory word displayed.
(1-4 hexadecimal characters.)

ending mem addr Hexadecimal value representing the memory
address of the last memory word displayed.
(1-4 hexadecimal characters.)
Parameter default values:
If neither parameter is specified, all memory is dumped.
If the ending address is not specified, only one word is displayed. A

An odd address is changed to the preceding word address before the addressed byte is displayed.

9-20 Digital Systems Division

il—_@; 9462589701

Description: Memory is displayed in groups of four words, two groups per line. The address of
the first word on the line is printed at the left. The display may be terminated at any time by
pressing the ESC key on the terminal keyboard. '

Error message,

DPI13 The ending address specified is less than the
starting address specified.

Examples:
.IM_1000,1004
1000=1002 COEO 023E

M 1006
1006=1004

9.6.8.2 Modify Memory (MM). The Modify Memory command displays the address and contents '
of a memory word and accepts a new hexadecimal data value from the user.

Syntax definition:

‘MM [[f,] <memory address>]

The command is terminated by a carriage return.
Parameter:

memory address Address of memory to be modified.
Parameter default value: 1f the memory address is not specified, a value of 0 is used.
Description: If the user inputs a new value, the memory location is modified to match the input
value. If the user terminates his input with a blank (space), the hext location value is printed and
the process repeated. If the user terminates his input with a carriage return or comma, the
command processing terminates.
Error message:

DPOO An invalid hexadecimal value was input.
Application nore: The MM command is useful for setting up desired conditions in order to check
out a routine. It is also convenient tor creating patches and for examining memory one word at
a time.

Example:

.MM 1000

1006=FFFF

|oo

9-21 Digital Systems Division

o]
{—@p 946258-9701

These command statements place the value 1 in location 1000,-3 in location 1002, and 8 in location

1006. The user may enter a space (blank) if he does not want to modify a location but wants to go Z
on to the next location. A carriage return terminates the command at any time.
9.6.9 PROCESSOR REGISTER COMMANDS (IR, MR). The following commands allow control
of the 990 computer program control registers: the program counter, workspace pointer, and status
registers.
9.6.9.1 Inspect Registers (IR). The Inspect Registers command displays the contents of the user’s
registers: the program counter (PC), workspace pointer (WP), and status (ST) registers for the
current user program. These values are displayed in groups of four hexadecimal characters.
Syntax definition:

IR
The command is terminated by a carriage return.
Application note: The displayed register values are those values which are loaded into the processor
in response to an EX or RU command.
Example:

PC=0246 WP=0000 ST=0000

9.6.9.2 Modify Registers (MR). The Modify Registers command displays the contents of the ,
user’s internal registers — workspace pointer (WP), program counter (PC), and status (ST) -
registers — and allows the user to modify them.

Syntax definition:
MR
The command is terminated by a carriage return.

Description: The register name and current contents are printed in hexadecimal and a hexadecimal
input is accepted from the user. If the user inputs a valid hexadecimal number, the contents of the
registers are changed. If the user enters a space, the processor prints the name and contents of the
next register. If the user enters a carriage return, the command terminates.

Error message:

DP0O An invalid hexadecimal number was input, or the
number input was greater than FFFF 4.

Application notes: Modification of the Workspace Pointer (WP) register causes the registers that
would be displayed by the Inspect Workspace Registers (IW) command to change. The Modify
Registers command is used to establish the initial environment for a program executed with the
Execute User Program Directly (EX) or the Execute User Program under SIE or Trace (RU)

command.) {
‘I{

9-22 Digital Systems Division

il_@}; 9462589701

Examples:

MR

PC=2000 244

WP=0000 A6

ST=0000

MR

PC=0244

WP=00A6 A2

ST=0000 2

MR

PC=0244 246
The first example changes the value in the PC register to 244, and the value in the WP register
to A6,,. The second example changes the WP register value to A2, and the ST register value
to 2,6. The third example changes the PC register value to 246 . '
As in the second example, the user may press the space bar on the terminal keyboard if he does

not wish to modify a particular register. As in the third example, he may press the RETURN
key on the terminal keyboard after entering a new PC register value to terminate the command.

9.6.10 WORKSPACE REGISTER COMMANDS (IW, MW). The following commands allow precise
control of the memory area selected to be the workspace registers.

9.6.10.1 Inspect Workspace Registers (IW). The Inspect Workspace Registers command is used to
display the contents of a sequence of the user’s workspace registers.

Syntax definition:

Iw [{;b }[<starting reg number>] [{ ;6 } <ending reg number>]]

The command is terminated by a carriage return.
Parameters:

starting reg number The number of the first workspace register to be
displayed. Single hexadecimal number.

ending reg number The number of the last workspace register to be
displayed. Single hexadecimal number.

9-23 Digital Systems Division

%@ 9462589701

Parameter default values:

If the starting workspace register is not specified, a value of 0, signaling register 0, is used.

If the ending workspace register is not specified, the value used is the starting workspace register.
If neither parameter is specified, all 16 registers are displayed.

Description: The set of workspace registers displayed are those pointed to by the WP that would
be displayed if an IR command were executed. Workspace registers are displayed with the
register number preceding the register contents.

Error message:

DP13 Either the starting workspace register number is
greater than the ending workspace register number,
or a workspace register number greater than F
was requested.

Examples:
W
R0O=0000 R1=0000 R2=0026 R3=0000 R4=0000 R5=2032 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=3798 RE=2008 RF=0002
If no workspace register or range is specified, all 16 registers are printed.

w28 : :
R2=0000 R3=0000 R4=0000 R5=0000 R6=0000 R7=0000 R8=0000

JW 2
R2=0000
9.6.10.2 Modify Workspace Registers (MW). The Modify Workspace Registers command is used to

display and change the contents of one or more of the user’s workspace registers.

Syntax definition:

MW [{é } < starting reg number >]

The command is terminated by a carriage return.
Parameter:

starting workspace reg The number of the first workspace register
to be displayed. (Hexadecimal value.)

9-24 Digital Systems Division

@ 9462589701

Parameter default value:
If the starting workspace register is not specified, register zero is assumed and a value of 0 is used.

Description: The mnemonic and current contents of the workspace registers are displayed. The
command processor accepts the user’s input, which may be a new hexadecimal value for the register
contents and a terminator. If this input is a new value, the current contents of the specified register
are changed. If the terminator is a blank, the next register is. printed for modification. If the
terminator is a carriage return or comma, the command processing terminates. The command
processing terminates automatically after processing workspace register 15 (F).

Application note: The user is cautioned to be sure that the workspace pointer actually points to
the intended workspace. The Modify Workspace Registers command displays the registers within
the current workspace (the workspace defined by displaying the WP in an IR command).

Example:

MW 4
R4=0000 7
R6=0000 89
R6=0000
R7=0000 1000

This example changes the contents of workspace registers R4, RS and R7 to 7,,, 89, and
1000,,, respectively. A carriage return was entered after changing the contents of R7.

< 9.6.11 SNAPSHOT COMMANDS (SS, IS, CS). The following commands provide a convenient way

to specify debugging information to be displayed..

9.6.11.1 Set Snapshot (SS). The Set Snapshot command is used to define a set of registers and
memory locations to be displayed as a single unit.

Syntax definition:

SS {f; } [<snapshot no.] [{’f; } [<starting reg no.>] [{t,) }[<ending reg no.>]

[{é } [<starting memory addr>] [{é } <ending memory addr>]]]]

The command is terminated by a carriage return.

Parameters:
| snapshot no. Index number of snapshot to be defined.
The index is a number in the range 0-3.
starting reg no. First workspace register to be displayed.
ending reg no. Last workspace register to be displayed.

starting memory addr = First memory word address to be displayed.

ending memory addr Last memory word address to be displayed.

9-25 Digital Systems Division

@ 946258-9701

Parameter default values:
If the snapshot number is not specified, a value of 0 is used. §
If the starting workspace register number is not specified, a value of 0 is used.

If the ending workspace register number is not specified, the value used is the starting register
number if the starting register number is specified. Otherwise, the value is 06 .

If the starting memory address is not specified, a value of 0 is used.

If the ending memory address is not specified, the value used is the starting memory address if the
starting memory address is specified. Otherwise, it is 046 .

Description: Snapshots may be invoked with the Inspect Snapshot (IS) command or when a
breakpoint which references the snapshot index is encountered.

Error messages:

DPO3 A parameter is greater than the required maximum value.
Reenter the command.

DP04 Snapshot is already defined. Reenter the command.

DP13 The ending parameter (register or memory address) is
less than the beginning parameter.

Application notes: Snapshots are convenient for defining a frequently used display during a debug

session. If certain registers or memory data areas are frequently modified, they are likely choices R
for snapshots.

Since a snapshot may be attached to a PC breakpoint to dump some data and continue
execution, a trace can be constructed which will be activated only when some specified event
occurs. A dump may be produced and execution will continue without operator intervention.

Snapshots are useful for extended traces when the user wants to leave the computer running
with breakpoints established. This would allow the computer to do an automatic dump when
an exceptional condition is encountered and then continue execution.

Examples:

.SS 1,2,5,1000,1002

SS 0,0F

In the first example, the snapshot associated with index 1 displays workspace registers 2 through.
5 and memory locations 1000,, through 1002,,. In the second example, the snapshot asso-
ciated with index O displays workspace registers O through F,, and memory address O (the
default). Refer to the IS command examples in paragraph 9.6.11.2 for the corresponding
commands. '

'e
C

9-26 Digital Systems Division

@ 946258-9701

9.6.11.2 Inspect Snapshot (IS). The Inspect Snapshot command is used to display sequences of
workspace registers and memory addresses.

Syntax definition:

IS [{t’) } [<starting snapshot no.>] [{t; } <ending snapshot no.>]]

- The command is terminated by a carriage return.
Parameters:

starting snapshot no. Index number (number of the snapshot in
sequence) of the first snapshot to be
displayed. A number from O to 3.

ending snapshot no. Index number of the last snapshot to be
displayed. A number from 0 to 3.

Parameter default values:

If neither the starting snapshot number nor the ending snapshot number is specified, all
snapshots are displayed.

If the starting snapshot number but not the ending snapshot number is specified, the named
snapshot is displayed.

If the ending snapshot number but not the starting snapshot number is specified, the snapshots
from O through the specified snapshot are displayed.

Description: Snapshots are defined with the Set Snapshot command. Attempts to display
undefined snapshots are ignored.

Error message:

DP13 Either the ending snapshot number is greater than
the starting snapshot number, or a snapshot number
greater than the permitted maximum was input. Re-
enter the command with the correct snapshot numbers.

Examples: |

1S

SNAPO

R0=0000 R1=0000 R2=0000 R3=0000 R4=0007 R5=0089 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=0000 RE=0000 RF=0000
0000=0000

SNAP1

R2=0000 R3=0000 R4=0007 R5=0089

1000=0001 0003

9-27 Digital Systems Division

e@ 946258-9701

1S 1.3
SNAP1 1
R2=0000 R3=0000 R4=0007 R5=0089 \
1000=0001 0003

1S3

———

The snapshots in these examples were set in the examples of the Set Snapshot (SS) command
(paragraph 9.6.11.1). In the last example, if a snapshot is not set, the monitor will return control
without printing anything.

9.6.11.3 Clear Snapshot (CS). The Clear Snapshot command is used to disable previously specified
snapshots.

Syntax definition:

CS [{% }[<starting snapshot number>] [{%] <ending snapsnot number>]]

The command is terminated by a carriage return.

Parameters:
starting snapshot number The first snapshot to be cleared. A
number from 0 to 3. -
ending snapshot number The last snapshot to be cleared. A ~

number from O to 3.
Paramerer default values:
If no parameters are specified, all snapshots are cleared.
If only the first parameter is given, only the specified snapshot will be cleared.

If only the second parameter is given, snapshot O through the specified ending snapshot will be
cleared.

Descriprion: If an attempt is made to clear a snapshot that has not been set, the command is
ignored.

Error message:
DPI13 A snapshot index greater than the maximum possible
index number (3) was specified. or the ending snap-
shot index was less than the starting snapshot index

number.

Examples:

.CS 0,2
.CS 2

9-28 Digital Systems Division

946258-9701

In the first example, all snapshots except index number 3 are cleared. In the second example,
only snapshot 2 is cleared.

9.6.12 TRACE COMMANDS (ST, SR, CR)
The following commands allow precise control of regions to be examined in detail during a debug
session, including specification of the information to be displayed.

9.6.12.1 Set Trace Definition (ST). The Set Trace Definition command defines parameters that
determine what information about instruction trace regions will be printed. There are up to four
different trace formats that may be defined, any one of which may be associated with one or more
“trace regions”. The format determines what is to be displayed for each instruction traced in the
associated region.

Syntax definition:

ST (t; } <format index> '{’ } <char string>

b..
The command is terminated by a carriage return.
Parameters:

format index Trace format index number; a number
from 0 to 3.

char string Character string describing the options
to be printed. The string contains from
1 to 27 characters.

Parameter default values: There are no default values. Both parameters are required.

Character string symbols: The character string symbol definitions and the associated trace
printouts are as follows: ,

Character Trace Output Description

P XXXX Program counter. The program counter is printed for every instruction exe-
cuted. The program counter value is printed if anything else is printed even if
“P was not specified (example 1).

I F-III1 Instruction and format. (Instruction formats are described in the Model 990 .
Computer TMS9900 Microprocessor Assembly Language Programmer’s Guide,
Manual No. 943441-9701.) The instruction and its format are printed for each
instruction executed (example 2).

M ST=XXXX Status mask. The contents of the status mask which is placed in the user sta-
tus register is printed after each instruction executed (example 2).
w WP=XXXX Workspace pointer changes. When the user’s workspace changes, the new

workspace is printed.

T BT=XXXX Targets for branch or jump instruction. Whenever a branch or jump occurs,
the target address of the branch/jump is printed.

9-29 Digital Systems Division

946258-9701

Character Trace Output Description
A4
C C=XXXX CRU address. When one of the instructions that references the CRU (LDCR, N
STCR, TB, SBO, SBZ) is executed, the address of the first bit referenced is
printed. For example, for TB 2, the address is base (=R12) + 2.
N (null) Null trace. No printout occurs. If any other characters occur in the string, the
null trace is overridden.
X X-XXXX XOP level. When an XOP instruction is executed, the XOP level is printed.
S Source. Refers to the source register. It is followed by an E, B, A or R.
E SE=XXXX Source effective address. This address is the memory location that the source
field addresses. It is printed for every instruction (example 2) that has a
source operand.
B SB=XXXX Contents of source effective address before execution. The contents of the
source effective address before execution are printed for every instruction
(example 2) with a source operand.
A SA=XXXX Contents of source effective address after execution. The contents of the
source effective address are printed after each instruction with a source
operand is executed (example 2).
R SR=XXXX Contents of source workspace register after execution for T, = 3 (indirect
addressing with autoincrement). (T; is the source addressing mode field in an
assembly language machine instruction.) The contents of the source register
is printed if an autoincrement is specified.
D Destination. Refers to the destination. It is followed by an E, B, A or R.
" E DE=XXXX Destination effective address. This address is the memory address that the p
destination field addresses. The destination effective address is only printed \
S

for Format 1, 3, and 9 assembly language machine instructions. All other
instruction format types do not have a destination field (example 2).

B DB=XXXX Contents of destination effective address before statement executed. This is
printed whenever a destination field exists (example 2).
A DA=XXXX Contents of destination effective address after execution. This is printed

whenever a destination field exists (example 2).

R DR=XXXX Contents of destination workspace register after execution for Ty = 3 (in-
direct addressing with autoincrement). (T is the destination addressing mode
field in an assembly language machine instruction.) The contents of the
destination register is printed if an autoincrement is specified.

Description: The character string is scanned for proper syntax. If the string conforms to the
syntax, a trace print control template is built and placed in the trace format table.

The character string in the ST command allows the user to select only those portions of the
trace output that he needs. For tutorial purposes, an extensive trace output could be requested,
while minimal traces such as a PC or variable trace are also easily selected. Each character in the
character string represents a desired portion of the trace. '

If any trace option other than PC is printed, PC is also printed.

A trace on a variable (see ST command) is implemented by specifying the desired variable,

9-30 Digital Systems Division

{@ 946258-9701

The character string is scanned from left to right. The characters E, B, A and R are modified by
the most recent occurrence of S or D. If E, B, A or R is encountered before an occurrence of S
or D, or if an invalid character is encountered, the scan is aborted and an invalid syntax message
is issued. A character string consisting entirely of S or D is also an invalid syntax.

All four trace format table elements have initial values as follows when the debug monitor
overlay containing the ST command is loaded:

Index Number . Equivalent Character String
0 P
1 PIWSEADEA
2 ' T
3 PIMWTCXSEBARDEBAR (all trace output options)

Error messages:

DP23 Syntax error in trace format character string.
’ Reenter the command.

DP26 Invalid trace format index number. Reenter
the command.

Examples of typical character strings: Some examples of typical character strings are presented
here. To invoke a PC trace, the character string is

P
If a branch trace is desired, the character string is

T

The character string for a trace that includes PC, instruction and format, workspace pointer
changes, and source and destination effective addresses is

PIWSEDE

To specify all options, the character string is the same as the string equivalent to default trace
format index number 3 (above).

Example 1: Trace format 1 in the following example is defined as a program counter trace. The
program counter is the only option printed.

9-31 Digital Systems Division

Q@? 946258-9701

PC=198C 46C

RU
046C
0470
0474
1A92
1A96
198C
198E
1992
1994
1996

Example 2: This example shows the trace format index number 1 set to a full trace.

ST 1,PIMWTCXSEBARDEBAR

SR 1,24C,260,1,S

MR

PC=0250 24C

_RU
024C
0250
0254
0258
025C
0260

8-02E0
6-04E0
6-04E0
6-04E0
6-0720
1-C820

ST=0000
ST=0000
ST=0000
ST=0000
ST=0000
ST=C000

SE=00A6
SE=01FC
SE=01B4
SE=01B8
SE=01BA
SE=021E

DB=1850 DA=109A

S$B=024C
S$B=0054
SB=C259
SB=C060
SB=01E6
SB=109A

SA=024C

SA=0000

SA=0000

SA=0000

SA=FFFF

SA=109A DE=00D2

9.6.12.2 Set Trace Region (SR). The Set Trace Region command defined a trace region.

Syntax definition:

SR {;

} <region index> {’

b...

} <lower mem addr> {’ } <upper mem addr>

b..

. cormt s [) e mens] [J <05 [} <2
I <v3>]]]]

The command is terminated by a carriage return.

Digital Systems Division

L\

{?\ﬁ? 9462589701

Parameters:

region index Trace region index number; a number from
0 to 3.

lower mem addr First memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

upper mem addr Last memory address in the trace region;
a hexadecimal number in the range O to
FFFE.

format index Trace format index number; a number from
0 to 3.

step region If this field contains S, an instruction
step region is specified. If it contains
N, the field specifies no instruction step.
Any other character specifies no instruc-
tion step.

vl, v2,v3 Addresses of variables to be traced while
in the designated region. Up to three vari-
ables may be specified. The range of values
for each variable is 0 to FFFE . In the
printed trace data, only changes are shown.

Parameter default values:
The first four parameters in the syntax definitions are required.
If the step region parameter is not specified, a value of N is used.

If none of the parameters vl, v2, and v3 are specified, no variables will be traced in the
designated region.

Description: The specified regions of memory are designated as the program area to be executed
under control of the interpretive trace.

The trace region index number determines which trace type will be executed as defined by the
Set Trace Definition (ST) command. If two overlapping regions have been defined, the region
with the lowest index has precedence and the trace type defined in that region is executed. (See
example 1.)

The trace format index number indicates the trace type vector assigned to the trace region. When
the trace overlay is loaded, each of the four trace type vectors, indices O through 3, is assigned
an initial value. These vectors may be modified by the Set Trace Definition (ST) command.
Trace types may vary from a null trace to a full trace.

The function of the instruction step region is to control the execution of the user program. If
the instruction step region is set by entering an S parameter on the terminal keyboard, only one
instruction at a time will be executed and traced. To execute another instruction, the user must
press the space bar.

9-33 Digital Systems Division

@ 946258-9701

If variables have been specified to be traced, only changes will be printed. The format of the

output is: %
AAAA = DDDD
Where AAAA is the address of the variable and DDDD is the new value of the variable. These
are hexadecimal values.
Error messages:
DP13 The specified last memory address was less than the
first memory address. Reenter the command.
DP10 Invalid trace region index number. Reenter the command.
DP26 Invalid trace format index number. Reenter the command.
Example 1: This example shows the setting of two different trace regions, one a PC trace and
the other a full trace. The region with the lower index is executed when the two regions overlap.
In this manner, the user can get a general trace until he reaches a critical section of the program
where he wants everything traced.
.ST 1,PIMWTCXSEBARDEBAR
ST 2P
SR 2,0,2000,2,N
.SR 1,24C,260,1,S
.MR ,
PC=0250 246 -
.RU
0246
024A

024C 8-02E0 ST=0000 SE=00A6 SB=024C SA=024C
0250 6-04E0 ST=0000 SE=01FC SB=0054 SA=0000
0254 6-04E0 ST=0000 SE=01B4 SB=C259 SA=0000
0258 6-04E0 ST=0000 SE=01B8 SB=C060 SA=0000
025C 6-0720 ST=0000 SE=01BA SB=01E6 SA=FFFF
0260 1-C820 ST=CO00 SE=021E SB=109A SA=109A DE=00D2
DB=1850 DA=109A

0266

026A

0270

0274

0278

027A

027E

Outside the critical region, a continuous run is desired. Inside the critical region, there is a single
instruction step. The operator must press the carriage return or space bar on the terminal
keyboard after each statement executed.

C

9-34 Digital Systems Division

{@ 946258-9701

Example 2: The trace region is set from 0 to 2000,,, with the trace format index number equal .
to 3. (Trace type 3 defaults to a full trace.) The snapshot prints workspace registers 1 through 4
to 1004,,. A breakpoint is set at 0474,, with snapshot 1
associated. A Modify Registers (MR) command sets the program counter to 046C,,, and
execution is begun by issuing an Execute User Program under SIE or Trace (RU) command.

and memory locations 1000,

.SR 1,0,2000,3,N

.SS 1,1,4,1000,1004
.SB 1,474,1

—

MR

PC=198C 46C
" .RU '

046C 8-02E0 ST=2000 WP=044C SE=1968
0470 1-C2A0 ST=C000 SE=00A6 SB=1A92
DB=0000 DA=1A92

BKPT#1

PC=0474 WP=044C ST=C000

SNAP1

R1=11C0 R2=0000 R3=0000

1000=10D8 C145 1305

0474 6-045A ST=CO000
1A92 1-C2A0 ST=2000

R4=0000

BT=1A92 SE=1A92

SE=00A8

DB=1A92 DA=0000

1A96 6-0420 ST=2000 WP=1968

SA=1968

198C 6-04C3 ST=2000 SE=196E

198E 1

S$B=0000

BT=198C
SB=FFFF

SB=0900 SA=0900
SA=1A92 DE=0460

SB=C2A0 SA=C2A0
SA=0000 DE=0460

SE=1988 SB=1968

SA=0000

Following is a listing of the portion of the program executed in this example with all references

resolved: :

Memory Object
Location Code Source

046C 02E0 LWPI MAINW
046E 044C '

0470 C240. MOV @ENTRY,RI10
0472 00A6

0474 045A B *R10

1A92 C2A0 INT MOV @KBLUNORIO
1A94 00A8

1A96 0420 BLWP @OPEN

1A98 1988

1988 1968 OPEN D.ATA IOWKS

198A 198C DATA OPEN1

198C 04C3 OPENI1 CLR R3

9-35

Digital Systems Division

{@Dp 946258-9701

This is a typical example using snapshots, breakpoints and an instruction trace. Since a snapshot "
is associated with the breakpoint, the snapshot is printed and execution continued. An exit from «‘
the RU command is made by pressing the ESC key on the terminal keyboard.

9.6.12.3 Clear Trace Region (CR). The Clear Trace Region instruction is used to disable previously
specified trace regions.

Syntax definition:
CR [{i, } [<starting trace region>] [[% } <ending trace region>]]

The command is terminated by a carriage return.

Parameters:
starting trace region The first trace region to be cleared.
A number from O to 3.
ending trace region The last trace region to be cleared.

A number from 0 to 3.
Parameter default values:
If no parameters are specified, all trace regions are cleared.
If only the first parameter is given, only the specified trace region will be. cleared. s

If only the second parameter is given, trace regions 0 through the specified ending trace region
will be cleared. ' :

Error message:
DP13 A trace region index greater than the maximum possible
index number (3) was specified, or the ending region
~ index was less than the starting region index number.
Examples:
.CR 13
.CR

In the first example, all but region O are cleared. In the second example, all regions are cleared.

9.6.13 WRITE PROTECT OPTION COMMANDS (SP, CP)
These commands allow control of the optional hardware memory write protect feature on 990/4
computers. These commands are ignored on a 990/5 computer.

9-36 Digital Systems Division

946258-9701

9.6.13.1 Set Write Protect Region (SP). The Set Write Protect Region command sets the write
protect region to the address specified in the command. This command is only valid if the user has
a 990/4 computer with the write protect option. A protection violation generates a general inter-
rupt signal which may be wired to any available interrupt level. Refer to the Model 990/4 Computer
Computer System Hardware Reference Manual for the procedure for wiring a memory board to a
desired interrupt level.

To set a write protect region, the lower and upper bounds must be output to CRU base address
1FAQ,¢. The most significant bit (bit 0) is the Protect/Permit bit. Bit 0, when set to 1, indicates
write permit, and, when set to O, indicates write protect. To specify the protect region, memory is
divided into 256-word blocks. The lower and upper bounds are each seven bits long and serve as
an index into the memory addresses to specify which contiguous 256-word block of memory is to
be protected. For example, the lower bound of the protect region equal to 2000,, would be
represented in the Protect register as 10,5. The memory block beginning at location 20004 is the
sixteenth 256-word (512-byte) memory block. A bound is calculated by dividing the starting ad-
dress of the memory block by 200, (512,4). In this example, 2000,¢ divided by 200, is equal
to 10,6. The upper bound is not included in the protect region. When outputting to the CRU
Protect register to specify the protect bounds, a Load CRU (LDCR) instruction with a count of 16
must be used to set all 16 bits because the Protect register works like a shift register. To protect
the memory range 2000, to 4000,¢, the lower bound is set equal to 10,4, the upper bound is
set to 20,4, and the Protect bit is set to 0. Therefore, the Protect register is set to 1020,¢ by out-
putting these fields to the CRU in the format specified in figure 9-1A.

LB usB
P *‘2

NOT
USED

BIT FIELDS
P PROTECT/PERMIT BIT
0—PROTECT
1—PERMIT
LB LOWER BOUND

uB UPPER BOUND

NOTES

THE CRU OUTPUT DATA FORMAT IS THE SAME AS THE
FORMAT OF DATA IN MEMORY BEFORE IN LDCR
INSTRUCTION 1S EXECUTED.

BITS 1 AND 9 ARE THE MOST SIGNIFICANT BITS, AND BITS
7 AND 15 ARE THE LEAST SIGNIFICANT BITS OF THE LB
AND UB FIELDS.

(A)133373

Figure 9-1A. CRU Output Data Format

9-37 Digital Systems Division

[o]
{_@} 946258-9701

When an attempt is made to write into a memory location within the protected region, the Protect -
Violation flag is set to FFFF,¢. This flag, which is normally 0, can be sensed by reading any of the Q
16 CRU bits at base 1FAQ,¢. If this protected region is within the TMS9900 on-board RAM, the

write is not inhibited. If this protect region is on the expansion memory card, the write is inhibited.

The Protect Violation flag may be cleared in two different ways:

1. 1/O RESET (RSET) — This machine instruction clears the violation flag and sets bit 0
of the Protect register to 1 (not protected).

2. Output a 1 to any or all of the 16 bits of the Protect register.
If the user has wired his system such that a write protection violation causes an interrupt at a
- certain level, he must initialize the trap vector for that level and process the interrupt. The level 2
trap vector is initialized automatically by the Debug Monitor. The user may take advantage of this
~fact and wire his memory board interrupt to level 2. The system then prints:

when a protection violation occurs. When this happens, a RSET instruction is executed and the
user must reestablish the protect bounds before starting execution again.

Syntax definition:

SP {b,.)] <lower mem addr> {’0’. N } <upper mem addr>

N

. The command is terminated by a carriage return.

When the user issues an SP 0600,0800 and then an EX command, his program begins execution.
Should the user program then attempt to write into memory location 0700, hardware write protect

sets the protection violation flag in the CRU and interrupts the CPU if the user has wired that
interrupt.

Parameters:

lower mem addr Lower boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

upper mem addr Upper boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

Description: This command sets the write protect region from the lower to the upper memory
bound addresses. If the memory addresses entered are not on 256-word boundaries, the bounds .

will be set at the next lower 256-word boundary. The lower bound is included within the
protect region but the upper bound is not. ’

The SP command overrides any previously defined protect region.

C

9-38 Digital Systems Division

&

When the upper and lower bounds are sent to the CRU, the Protect Violation flag is cleared if it
has been set.

Error message:

MSO05 Parameter specification error. Either a required parameter
is missing, or the lower bound is greater than or equal
to the upper bound.

Application note: This command is ignored if the write protect option is not implemented in the
system hardware.

Examples:

.SP 1000,2000

This command protects a region in memory from 1000,, to 1FFF .

.SP 1000,1FO00

This command protects a region from 1000, to IDFF,,. The address 1F00,s is not a

256-word boundary; therefore, the upper bound is set at the next lower 256-word boundary,
1EQOQ.

9-39 Digital Systems Division

(l@ 946258-9701

9.6.13.2 Clear Write Protect Region (CP). The Clear Write Protect Region command clears the
protect register and removes protection from the write-protected region. .

Syntax definition:
CcP
The command is terminated by a carriage return.

Description: The CP command clears the Protect register and sets the Protect/Permit bit to Permit.
The Protect Violation flag is cleared if it has been set.

Application note: This command is ignored if the write protect option is not implemented in the
system hardware.

Example:
cP

9.7 DEBUGGING TECHNIQUES
Debugging techniques may be divided into three basic categories:

1. Preventive techniques — those which may be used to decrease the number of errors.
Most of these techniques emphasize simplicity. Code should be simple and straight-
forward enough to make it obvious that the program works.

2. Exposure techniques — those which may be used to make the operation of a program
easier to follow during the debugging process.

N

3. Remedial techniques — those used when a bug occurs in the user’s program. Typically,
most programmers’ efforts are expended on these techniques.

Programming effort devoted to avoiding errors or making them apparent is important. Debugging
and maintenance represent the majority of the cost in software development and support. The

following paragraphs briefly discuss debugging in general and the specifics of debugging under
TXDBUG.

9.7.1 GENERAL DEBUGGING TECHNIQUES. Several debug techniques will be helpful to the
programmer in any debugging situation. These paragraphs offer some suggestions about debugging
a program under development.

9.7.1.1 Debug Code in the Source Program. Include debug code in the source program. The user
should keep the testing process in mind from the moment he starts to create a program. When
referencing or changing data, the programmer should consider how to tell if the change is correct
when reconstructing the results of a run. This often involves being aware of what intermediate
results of a computation are lost.

For example, if the value of a variable D is calculated by the statement

D=A+B

‘and the program later encounters the statement [:

D=C+D

940 Digital Systems Division

o
@(p 946258-9701

the second statement will cause a new value D to replace the previously calculated value. The
calculated sum A + B will therefore be lost. If, on the other hand, the program contains the
statement

E=A+B
and, later in the program, the statement
D=C+E

the value of E will be preserved when D is caiculated by the second statement. The programmer
can examine the memory location containing the value of E to determine the calculated sum A +
B.

After a computation is completed, reconstruction of the results of a program run involves
distinguishing which decision paths have been taken through the program’s code and determining
what variables are relevant in calculating the results of a computation.

When the source code is written, it is often simple to store intermediate results in extra memory
to record those results, branch paths, or the number of passes through loops. Such statements
can be flagged with a character string (e.g., **DEBUG**) in the comment field. When the source
code is ready for production, TXEDIT can be used to locate and remove the code that stores
intermediate results. '

9.7.1.2 Checking the Program. Once a program has been successfully assembled, a thorough
check of the program can often turn up errors which are hard to detect when the program is
executing. In addition to making sure that the program is a correct implementation of the
algorithm, it is often worthwhile to read through the program looking for specific errors:

® Register errors. Using the wrong register; referencing a register not in the current
workspace; using a register as an immediate value (e.g., Al R1,R2 instead of A R1,R2
or Al R1,2); using byte-level operations or data where the data is in the wrong half of
the register; or using byte-level data with the other half of the register containing
incorrect data which affects the computation.

® Variable names. Misspelling of variable names such as TO and TO; or using a single
variable to contain different quantities.

® [nitialization errors. Referencing values which may not have been properly initialized.
This often occurs when a program is re-executed.

® Buffer initialization. Omitting an instruction to clear an input buffer between input
operations when variable length records are read into a common fixed-length buffer.

® Branch conditions and loop terminations. Using the wrong branch instruction (espe-
cially JH, JL, JGT, JLE, JLT, JHE, or JOC with subtracts); or executing a loop one
time too many or one time too few.

® [nconsistent techniques. Using conventions or debug elements which are inconsistent
with the coding practice for the module.

941 Digital Systems Division

@ 946258-9701

® Module interfaces. Using variables or parameters which were not correctly set up for an
interface; using registers or variables within a subroutine which have values that are not
to be changed within the calling routine.

® Boundary conditions. Checking that the full range of the possible input data to a
computation is correctly processed by the algorithm.

9.7.1.3 Execution Tree. In debugging or testing a program, it is often convenient to visualize
the possible paths through the program as a tree with each node of the tree representing a
conditional branch. Exhaustive testing of a program would then require testing each possible
path through the program under all inputs which follow that path. While it is impossible to test
all paths of a typical program, examination of the various paths (or small sets of paths) may
reveal errors in the original logic. ,

9.7.2 SPECIFIC DEBUGGING TECHNIQUES. The following paragraphs describe techniques
directed specifically to debugging under the debug monitor.

9.7.2.1 Planning the Debugging Session. Know the status of the debugging effort at all times. As
the user interacts with the program through the console, he should be careful to record any
changes made to the program and to be aware of the state of the program when examining it. In
a debugging session, the user should have a clear idea of what he wants to accomplish and how
he intends to accomplish it. Decisions made in the process of debugging should be carefully
thought out.

9.7.2.2 Use of Breakpoints. There are three ways of stopping or interrupting the execution of a
user’s program which is being debugged at a specific location in the program:

1. Set an instruction count on the RUN command.
2. Execute with the single step option under instruction trace.
3. Set appropriate breakpoints.

Breakpoints stop execution at specific points in the user program rather than at arbitrary points
controlled by the instruction count. The user may easily determine in advance and check the
results of a computation without concerning himself about the state of the program.

When using breakpoints, be sure that the program will actually reach the desired breakpoint. This
may involve putting additional breakpoints on the other paths from conditional branches.

Breakpoints are particularly useful when forcing some condition within a program which is not
easily created from its parameters, for example, a CRU input. As an illustration of such a
condition, an input value is to be read from a pressure transducer in an on-line process control
environment. However, if the program is being debugged, a physically connected transducer is
usually impractical and the values must be entered by the programmer. Breakpoints may be set
prior to the start of a code sequence. When the breakpoint is taken, the user may set or modify
the existing conditions in order to cause specific paths to be taken (as if a specific input had
been received from the transducer).

The breakpoint reference count can be used to see that a loop is repeated the correct number of
times. By setting the reference count equal to the number of iterations through the loop and
setting another breakpoint outside the loop, the user may check that the loop is exhausted on
the correct iteration. Breakpoints with attached snapshots with dump debug data or key variables
yield a good trace aimed at checking the specific progress of a computation.

942 Digital Systems Division

V)

(o}
@? 946258-9701

9.7.2.3 Excluding Loops from Instruction Traces. When tracing a program with printout, it is
sometimes desirable to exclude printing of small loops which are very frequently executed or

~ which run for many iterations. (See figure 9-2.) These may be excluded by carefully choosing
trace regions, which are areas where an instruction trace is to be run within a program. In
determining which t{race region is applicable (and thus what trace type to use), the system wili
find the first (lowest numbered) region containing the user’s PC. By selecting a high numbered
trace (3) for the main trace control and then setting regions within that large region with lower
numbered traces which do not print, the user may prevent a large quantity of output where it is
not wanted. ’

An alternate mechanism is to allow the small loops to be executed by SIE and the remaining
program traced. (See figure 9-3.) This can be done by setting trace regions to cover all of the
program except the small loops or frequently executed parts. Such a mechanism works well
unless the user is using XOPs (other than XOP 15 for debug monitor I/O) or interrupts which are
processed differently by SIE and instruction trace.

If the user is performing I/O by means of supervisor calls (XOP 15), this XOP is executed
directly (without SIE or instruction trace). If XOP 15 is not used for program I/O, it is
executed directly under SIE.

USER PROGRAM TRACE REGION CONTROLL.ING
DEFINITION TRACE REGION
PGM: ———-— “ 3
—_— TRACE .
E REGION 3 S REGION 3
T /
Al -——
TRACE
JMP A REGION 2 REGION 2
B —~————
———— REGION 3
== /
(A)133102

Figure 9-2. Trace Region Precedence of Lower Region Number

943 Digital Systems Division

o
%:@ 946258-9701

USER PROGRAM TRACE REGION
DEFINITION

PGM: ————
S TRACE
—— REGION 1
/
Al —_— A
e NO TRACE
S REGION
P A
M)
B ———- j
g TRACE
—_— REGION 2
—-——= /
(A)133103

Figure 9-3. Using Both Trace and SIE

MODE OF
EXECUTION

> TRACE

g SIE

— N\

L TRACE

9.7.2.4 Simulating an Interrupt. A BLWP instruction may be used to control an interrupt routine
which is being checked out. This can be handled with the following code sequence. The quantity

“1” is the value to which “INTLVL” has been equated.

Instruction Operand
LIMI INTLVL
BLWP @INTLVL*4
JMP $

Generated Code

0300
i

0420
4%

10FF

The LIMI sets the interrupt status to the correct level. The BLWP transfers control through the

interrupt vector. -

9.7.3 PATCHING. Patching (attaching portions of code to existing program code) should be

avoided if possible.

During a debug session, it is generally necessary to make patches to object code; however, it is
advisable never to leave patches in a completed program (or create ROM firmware from a
program with patches). An object program for which there is no corresponding source program is

inconvenient and troublesome.

The following paragraphs cover patching techniques. The examples show how to patch a

two-address instruction; this instruction is used:

MOV *R1,*R2+

9-44

Digital Systems Division

)

O

(I@} 9462589701

Because of the number of items to be considered, patching a two-address instruction is one of
the more difficult operations. There are two ways to approach it: building a bit image and the
additive method.

9.7.3.1 Patching by Building a Bit Image. In building a bit image, the user merely fills in each
field in the 16-bit word on a bit-by-bit basis. When all fields are complete, the value is converted

to hexadecimal for the patch contents.
Example:
Patch the following assembly language instruction:
MOV *R1,*R2+
by building a bit image.

The MOV instruction has this format:

oP D T s
cooe |B| T4 s
L1 l L L1] Ll

Determine the bits that occupy each field. Starting with the op code field, the hexadecimal
op code for a MOV instruction is C000. The first three bits of this op code are 110,;
transfer these bits into the op code field.

The Byte Indicator (B) field specifies whether or not the instruction is a byte instruction.
The MOV instruction is a word instruction; therefore, this field is set to 0. (The B field is
always O for a MOV instruction.) Another way of specifying the same information would be
to use the MOV or MOVB instruction (as appropriate) and a four-bit op code.

The D field specifies the destination workspace register. The destination address is *R2+,
which indicates workspace register 2 and the workspace register indirect autoincrement
addressing mode. The addressing mode for the destination, 11,, is placed in the T, field.
Transfer the binary value of the register number, 0010,, into the D field.

Use a similar procedure for the source address, which is *R1. In this case, workspace
register 1 is specified and the addressing mode is workspace register indirect. Therefore,
transfer 01, into the T, field and 0001, into the S field.

The instruction field contents will now be:

110 o} 11 o010 01 0001

Now read these 16 bits as a four-digit hexadecimal number.

1100 1100 1001 0001

c c 9 1
The resulting hexadecimal number is the desired value. The patch value is CC91.

9-45 Digital Systems Division

{@‘}9 946258-9701

9.7 .?:2 Patching b)f the Additive Method. The second approach to the patching problem is the
additive method. With a little practice, the patch described in the first approach can be created a

little faster by treating each of the fields as a hexadecimal number and adding the results to
produce the patch. '

Example:

Patch the same assembly language instruction as in the bit image example:
MOV *R1,*R2+

py using the additive method. This method involves adding hexadecimal values correspond-
ing to each field to the instruction’s op code to get the patch value.

The programmer can think of a bit field value as being placed into the instruction word,
right justified, and shifted left the number of bits necessary to move it to the appropriate
field. This shift is equivalent to binary multiplication, so the bit field value times an
appropriate multiplier will give a value to be added to similarly obtained values for other bit
fields to yield a sum representing the contents of the instruction word.

Recall that the values for the addressing modes and workspace registers in the previous
examples were:

Destination mode (T)
Destination register (D)
Source mode (T,)
Source register (S)

——N) W

In calculating the patch value by the additive method, these values are used.

The first number in the calculation is the hexadecimal op code for the MOV instruction,
C000. The B field is always O in the MOV instruction; it can be considered part of the
instruction op code and ignored in the calculation. .

The second number to be added is the value of the destination mode. The code for the
address mode is shifted left ten bits, equivalent to multiplication by 400,,. The code is
3,6; therefore, the value to be added is

3,6 * 400, = 0C00,
The third number is the destination register value. To create the value to be added, the
register number, 2,¢, is shifted left six bits, equivalent to multiplication by 40,s. The value
is

2.6 * 40,6 = 0080,¢ -

Calculation of the fourth value involves a code of 1, for the source mode and a four-bit
shift (multiplication by 10,4). The value is

1,6 * 10,6 = 0010,

Finally, the source register number, 1,4, is unshifted. The value to be added is 0001 5.

9-46 Digital Systems Division

{@ 946258-9701

To calculate the required sum, the values are added:

Op code of MOV instruction C000

Destination mode 0Co00
Destination register 0080
Source mode 0010
Source register 0001
Patch value CC91

The sum, CC91,,, is the object code to be patched. The patch value is the same as the
value obtained in the previous example.

When the same instruction format is used repeatedly, the multiplication cpnstants — 40044,
40,, and 10,4 — do not change and become simple to handle with practice.

9.7.3.3 Symbolic Versus Indexed Addressing. The address mode for both symbeolic (actual
memory address) and register indexed addressing is the same (mode 10,). The type of addressing
is determined by the register field. A register field of zero is symbolic; therefore, no RO indexing
exists. In constructing a patch with a specific address, process it exactly as if it were a register
indexed with a register of zero. Refer to the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide, Manual No. 943441-9701, for further information
about symbolic and indexed memory addressing.

- 9.7.3.4 Branch Distance Calculations for Jump Instructions. The signed displacement in an
Unconditional Jump (JMP) instruction is a two’s complement eight-bit number which represents
the number of words to skip forward or backward from the current PC (the PC pomts to the
instruction following the jump instruction).

To calculate the displacement for a jump instruction, evaluate

1/2 (target location-(instruction 'address+2)).
If the target address is less than the instruction address, add 10000,, to the target address and
perform the subtraction. Note that a forward branch must generate a positive displacement and a
backward branch must generate a negative displacement to be in range.
Example 1:

Patch location 17A, with a jump to location 1FE.

The source address is equal to the instruction address +2, which is 17A+2 = 17C.

The target location minus the source address is 1FE - 17C = 82. Continuing,

1/2 (target location - source address) = 41

The displacement, 41, is positive. The patch value is therefore 1041,,, where 10 is the
hexadecimal op code for the JMP instruction and 41 is the displacement value.

Example 2:

Patch Location 1FE;, with a jump to location 17A,,.

9-47 Digital Systems Division

o
@ 946258-9701

The source address is equal to the instruction address+2, which is 1FE;s+2,, = 200,5. The
sum of the target location plus 10000,,, minus the source address, is 1017A,4-200,, =

FF7A,¢. Continuing
1/2 (target location - source address) = 7FBD = BD (dropping the first two digits)

The displacement, BD, is negative. The patch value is therefore 10BD,,, where 10 is the
hexadecimal op code for the JMP instruction and BD,¢ is the displacement value, negative
in this case.

Note that the 7F is generated from the addition of 2,, (10000,¢) and may be discarded. If
the high order eight bits of the destination are not equal to 7F, the branch distance is too
great to reach with a JMP instruction.

9.7.3.5 Use of Spin and No-operation. It is sometimes convenient to patch a spin (branch to itself)
into a location to intercept control in unexpected situations (the alternate path of a conditional
jump, for example). That instruction is a JMP to itself and is a value of IOFFI(> (The corresponding
assembly language code is JMP $.)

Unwanted instructions can be replaced with a No-Operation (NOP) which is a JMP to the next
instruction. The value for an NOP is 1000,¢. Strings of NOPs may also be placed at various loca-
tions in the program source to reserve space for temporary debug patches.

9.7.3.6 Out-of-Line Patches. It is often necessary to patch more instructions into a program than
there is room, requiring an out-of-line patch. The simplest mechanism is to use a symbolic address
branch instruction to a specific location where the patch is placed. After the patch, use a branch
instruction back to the original code.

Example:

0460
{loc A)@— A ----

B ---- ———-
.- 0460
(loc B)

Be careful to see that code which is overlayed is moved to the patch area, that it is not a PC
relative jump, and that the return pointer comes to the beginning of an instruction.

948 Digital Systems Division

946258-9701

9.8 ERROR MESSAGES

TXDBUG may issue any of the following error messages:

Message
MXO01
MX06
MS01
MSO05
MPOO
DP0O
DPO3
DP04
DP10
DP12
DP13
DP20
DP23

DP26

Meaning
Unrecoverable 1/0 error
Invalid memory address or instruction
Invalid command
Required parameter missing
Parameter specification error

Invalid hexadecimal number input

Parameter value is greater than the allowed maximum

Snapshot is already defined

Invalid trace region index

CRU bit width parameter invalid

Invalid range of registers or memory addresses
Breakpoint specification error

Syntax error in trace format character string

Invalid trace format index number

In addition, during the initial TXDBUG load, the TX990 program loader may issue the following

€ITOr messages:

Message
LDFE
LDFF

LDXX

Meaning
Load bias error

Get common error (system error)

All other load errors are of the form (LD(XX) where XX is

the TXDS I/O error code received

9-49/9-50

Digital Systems Division

£

o
@ 9462589701

TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM

SECTION X

10.1 INTRODUCTION

This section describes the TXPROM programmer utility program along with the required hardware
and software . In addition, it describes the function and use of control files, bit string mapping of
PROMs, and examples of the use of the utility, as well as instructions for loading and operating
the utility. For standard operations, refer to the loading and operating procedures contained in
paragraphs 10.4 and 10.5, plus the descnptlon of standard control files found in paragraph 10.7.
The description portion of this section is also helpful for operation of the utility. For custom
mapped PROMs or PROMs with nonstandard data configurations, read all the information
contained in this section. For further information regarding PROM programming with a 990
Computer System, refer to the following related publications: :

Title Part Number

Model 990 Computer TMS9900 Microprocessor 943441-9701
Assembly Language Programmer’s Guide

Model 990 Computer PROM Progfamming Module 945258-9701
Installation and Operation

Model 990 Computer AMPL Microprocessor 946244-9701
Prototyping Laboratory Operation Guide

10.2 REQUIRED CONFIGURATION
The TXPROM programmer utility program requires the following configuration for proper opera-
tion:

® An FS990 System
® A Model 990 PROM Programming Unit.

The TXPROM programmer utility software is part of the TX990/TXDS system software and is
packaged on a diskette. TXPROM includes the follo_wing files:

® :TXPROM/ — contains the PROM programming software.

® A set of standard control files — :S288, S287 :8471, :S472, :E2704B, :E2704,:52708B,
:E2708, :E2716B and :E2716.

10.3 DESCRIPTICN

The TXPROM programmer utility is a software module that controls a computer hardware system
to create custom Read Only Memories (ROMs). The hardware system can program either Program-
.mable Read Only Memory devices (PROMs) or Erasable Programmable Read Only Memory devices
(EPROMs). Throughout this section, the term PROM refers to either of these devices unless it
specifically excludes one of them. TXPROM is part of the Terminal Executive Development System
that runs under the TX990 Operating System.

10-1 Digital Systems Division

o
é@ 946258-9701

Functions performed by TXPROM include:

£
A
® (Copying data from a file to a PROM
@ Storing data from a PROM into memory or a file
® Displaying a disc file in PROM format
® Comparing data contained in a PROM with that contained in a file, and indicating any
discrepancies.
TXPROM uses predefined control information to store data in or read data from PROM devices.
Included with the utility is a set of standard control files that contain the control information for
reading and programming PROMs that employ the memory configuration used in the 990 Computer
Family. For other applications, the user can modify these control files or create new files using the
information supplied in this section.
10.3.1 PROM BURN AND VERIFY. Three steps are required to transfer data from a data file into
a PROM. As illustrated in figure 10-1, these steps are:
1) Load control and data information from a diskette into separate areas in computer
memory.
2) Use the information contained in the control area of memory to direct the transfer of .
data to the PROM to burn-in the data. s
“~

3) Use the information in the control area of memory to read the contents of the newly
programmed PROM and compare the contents of the PROM with the contents of the
data in the memory buffer area in memory.

The TXPROM software performs the second and third steps after having been instructed to do so
by the operator. The user must, therefore, adequately prepare both the data file and the control
file to ensure that TXPROM accurately transfers the data to the PROM. The requirements of each
of these files are explained later in this section of the manual.

10.3.2 PROM READ OPERATION. A PROM read operation requires TXPROM to perform two
steps, as illustrated in figure 10-2:

1) Use the information contained in a control file to read data from a PROM and store the
data in the memory buffer area.

2) Store the information from the memory buffer area into a diskette data file as directed
by the user.

C

10-2 Digital Systems Division

9462589701

T1 990
COMPUTER MEMORY
TX990 MONITOR
PROM
FLOPPY DISC
PROGR
STEP 1 STEP 2
CONTROL FILE
LOAD
CONTROL. AREA
LOAD MAP
DATA FILE > MEMORY BUFFER A EEEE——
(A)136186
Figure 10-1. PROM Burn, Compare Operation
T1 990
COMPUTER MEMORY
TX990 MONITOR
PROM
V
TX PROM
PROGRAM
CONTROL. AREA
STEP 1 STEP 2
MAP STORE
»| MEMORY BUFFER ™ DATA FILE
(A)136187

Figure 10-2. PROM Burn, Compare and Read Operation

10-3 Digital Systems Division

@
The transfer of data from the memory buffer to the data file is performed on a word-for-word basis
in binary-object format. The previous contents of the data file are lost. The data from the PROM @
can be read into memory without being stored in an output file by specifying “DUMY” as the out-
put file. This method can be used for preliminary inspection of ROM data, as well as for data file

formatting. For example, to read data from four 4 X 256 PROMs and store it in a 256-word file, the
following steps could be used: -

1) Read the first three half-bytes (4-bit transfers) into the memory buffer using a read -
operation with DUMY as the output file. This stores the first twelve bits in memory.

2) Read the fourth half-byte into the memory buffer with a read operation that specifies
the desired output file. The complete 16-bit word is transferred to the output file.

10.3.3 LUNOS USED. TXPROM assigns LUNO AA,, to the control file (see paragraph 10.5).

10.4 LOADING TXPROM

TXPROM is loaded under direction of the TXDS control program. Before loading TXPROM, the
diskette containing the software must be inserted into a drive unit and that unit prepared for
operation. Since the control program searches all system drives for the requested file, the diskette
need not be loaded on a specific drive in multiple drive systems. When initiated, the control
program produces the following prompt on the system console:

PROGRAM:
To load TXPROM, respond to this prompt as follows:

PROGRAM: :TXPROM/*<carriage return>

£

The control program then locates the file containing TXPROM, loads it into memory, and begins
execution of TXPROM. Input and output operations will then be directed to the system console
during execution of TXPROM. Any other interactive device supported by TXDS may be used. To
specify a different device for interaction with TXPROM, respond to the PROGRAM: prompt as
follows:

PROGRAM: :TXPROM/*[device] *<carriage return>

105 TXPROM OPERATION
When TXPROM is successfully loaded, it prints the following identification and prompt on the
selected interactive device:

TXPROM V.RE YY.DDD PROM PROGRAMMER UTILITY
CONTROL FILE =

The response to this prompt determines which of three modes of operation that TXPROM will
enter: control file creation, control file modification, or control file execution. The following
paragraphs describe the three modes of operation, provide a general procedure for performing each
function, and illustrate each mode with an example.

10.5.1 CONTROL FILE CREATION. The control file creation mode allows the user to create a
new control file for a custom application after determining that none of the standard control files
satisfies the requirements. The mode is entered by pressing the carriage return key in response to
the CONTROL FILE = prompt. In this mode, TXPROM outputs each control file parameter ™
prompt in order, followed by an asterisk (*). The asterisk indicates that the parameter is a variable (J
that must be supplied when the control file is executed. If the parameter is to remain a variable,

10-4 Digital Systems Division

{@P 946258-9701

press the carriage return key on the terminal to move to the next parameter prompt. If the
parameter is to be a predetermined value, type that value and press the carriage return key. The
entered value becomes the default value for that parameter. Entered values must be in decimal
unless specified otherwise by one of the following prefixes:

< binary
! octal
> hexadecimal

For example, to enter an octal loop count of 4004, the prompt and response appear as:
MEM LEV I LOOP CNT* 1400

At any point the remaining parameter prompts may be bypassed, leaving them as variable
parameters, by pressing the A (caret) key. TXPROM then proceeds with the file creation mode
termination sequence. This sequence is entered either by pressing the caret key or by completing
consideration of all parameter prompts. TXPROM then produces the prompt:

SAVE UNDER FILE NAME =

Entering a floppy disc file name in response to this prompt and then pressing the carriage return
causes TXPROM to create a control file with the specified name. That file name can than be used to
call the newly created control file for execution. Standard control files are write-protected and can-
not be altered. Therefore, choose a file name other than a standard control file name for newly
created or modified files. Entering only a carriage return in response to the above prompt creates no
new file. The parameters remain in memory until modified, a control file name other than DUMY is
specified, or TXPROM is terminated. The parameters can be accessed by referencing DUMY as the
desired control file for execution or modification.

When the new file name is determined and the carriage return is entered, TXPROM issues the -
following prompt:

EXECUTE,BEGIN OR TERMINATE?
The responses to this prompt are as follows (letters in parentheses are optional):

EX(ECUTE) Switch to execution mode and use the newly entered control file param-
eters for the operation.

BE(GIN) Restart the TXPROM sequence by returning to the CONTROL FILE =
prompt.

TE(RMINATE) Return to the TXDS control program.

10.5.2 CONTROL FILE MODIFICATION. The control file modification mode allows the user to
modify the contents of a previously created control file. The mode is entered by responding to the
CONTROL FILE = prompt with the name of an existing control file without including a parameter
list. TXPROM then responds with the prompt:

MODIFY OR EXECUTE?

10-5 Digital Systems Division

@ 946258-9701

Entering the following response places TXPROM in the modification mode (letters in parentheses
are optional):

MO(DIFY)

TXPROM then produces the parameter prompts for the control file information as it does in
control file creation mode, except that the prompts are followed by the existing values for the
parameters. Asterisks indicate variable parameters that must be defined at execution time. The
parameters can be changed by typing in the desired value in place of the existing value following
each prompt and then pressing a carriage return. The resulting modified control file can replace
the original file (if the original file is not a standard control file), can be saved in a new control
file, or can be saved in memory only for immediate execution depending upon the response to the
SAVE UNDER FILE NAME = prompt. As in the creation mode, pressing the A (caret) key at any
time skips over the remaining parameters without changing their values. When the SAVE UNDER
FILE NAME = prompt has been satisfied and a carriage return entered, TXPROM agam produces
the following prompt:

EXECUTE, BEGIN OR TERMINATE
Responses to this prompt are identical to those for creation mode.

10.5.3 CONTROL FILE EXECUTION. The control file execution mode allows the user to program
a PROM using the parameters in an existing control file. The control file may be one of the supplied
standard control files, or a custom generated file produced using the file creation mode of
TXPROM. The execution mode is entered by responding to the CONTROL FILE = prompt with
the name of an existing control file, or by responding with the name of an existing control file and
its parameter list. If only a control file name is specified (without the parameter list), TXPROM
responds with the prompt:

MODIFY OR EXECUTE?

Entering the following response places TXPROM in the execute mode (ietters in parentheses are
optional):

EX(ECUTE)

A parameter list is not required because TXPROM generates prompts for all missing parameters.
However, if parameters are included, they must be in the order specified in table 10-1. The param-
eter list contains a string of values separated by commas and enclosed in parentheses following the
control file name. The example, the following reply to the CONTROL FILE = prompt illustrates
the parameter list:

DSC:S287(DSC2:DATA, 2, 0, 0, 4, 16)<cr>
N—— \— —— T
control data file TS
file FR
code
CM
PR
after
mem
start
addr:
mem
start
bit

mem lev 1
bit step

10-6 Digital Systems Division

946258-9701

Table 10-1. Table of Control File Parameter Prompts

Parameter Prompt

DATA FILE =
DATA BIAS =

TSFR CODE =

CMPR AFTER =

MEM DISP =
PROM DISP =

MEM START ADDR =

#MEM BYTES =

MEM START BIT =

PROM START ADDR =

#PROM WORDS =

PROM START BIT =

**MEM MAP LEVELS =

MEM LEV 1
2
3

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

**PROM MAP LEVELS =

PROM LEV 1
2
3

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

TSFR BIT WIDTH =

PROM BITS/WORD =

PROG 0sOR 1’s =

PULSE WIDTH =

DUTY CYCLE =

NO. RETRIES =

SIMUL PROG’BLE BITS =

CRUBASE =

Possible

Value

TX990 Pathname

*

0to2

i

OP o
f—

1to3

0 to 7FFFyq
1to0 32,767
Oto 7FFF16
110 32,767
0to 7FFF16
1to0 32,767
1to 3

0 to 7FFF ¢
1to 32,767
0to 7FFF ¢
1 to 32,767
0to 7FFF16
1to0 32,767
1to8

1to 8

0,1

1to6

0to 100
Oto FFFF16
1to8

0to 1FFE

Description
Name of data file

Value to add to relocatable code in object
modules

Transfer code: 0 nothing, 1 burn PROM,
2 read PROM

Compare after: 0 nothing, 1 compare PROM
and memory

Memory display: 0 nothing, 1 display memory
PROM display: 0 nothing, 1 display PROM
Memory bound low (address) ,
Memory bytes to be transferred

Memory beginning bit

PROM bound fow (address)

PROM words to be transferred

PROM beginning bit

Number of memory mapping levels

Number of bits skipped between loops
Number of repetitions of loop 1

Number of PROM mapping levels

Number of bits skipped between loops
Number of repetitions of loop 1

Transfer bit string width

Program zero’s or one’s

Programming pulse width

% of time used in programming device
Number of retries

Number of simultaneously programmable bits

Base CRU address for PROM interface card

*Any value 0 to FFFF ¢ ; however, some paiametérs interact with each other to create other
limitations. See text.

10-7

Digital Systems Division

@ 496258-9701

All numeric parameters are expected to be in decimal notation, but can be in octal, binary or
hexadecimal if preceded by the proper prefix as described in the file creation description. When
TXPROM enters the execute mode, it scans the contents of the control file and selects the required
variable parameters. If a variable parameter list was supplied, the supplied values are filled into the
control file data. If additional values are required or if no list was supplied, then TXPROM generates
prompts for each required parameter.

TXPROM then checks all parameters for boundary violations. If any value is out of bounds,
TXPROM generates a prompt for that value to be changed by the user.

When all parameters have been verified, the control file is executed. When execution is complete,
TXPROM generates the following messages:

SUCCESSFUL EXECUTION
REPEAT, BEGIN OR TERMINATE?

Proper responses to this message are as follows (letters in parentheses are optional):

RE(PEAT) Repeat the execution process (for burning more than one PROM)
BE(GIN) Return to the CONTROL FILE = prompt at the start of TXPROM

TE(RMINATE) Return to the TXDS Control program.

10.6 DATA FILES

TXPROM uses data files to store formatted data on diskette or in computer memory. The data is in
object format as described in the Assembly Language Programmer’s Guide. The data in the files may
be burned into a PROM or compared to the data already in a PROM. Data files are created either by
an assembly, by the link editor, or by reading a PROM and storing the contents in a file. When the
data is transferred from the file to a PROM, the data is treated as a series of ascending addressed
locations each 16 bits long. Each 16-bit word is selected from the file according to control param-
.eters in the control file (Memory Starting Address Number of Memory Bytes, Memory Start Bit,
Memory Level n Bit Step, and Memory n Level Loop Count). The data may then be transferred to
the PROM according to other control file parameters so that each bit in the data file can be stored
separately in the PROM.

10.7 CONTROL FILES

TXPROM uses control files to determine the pattern that data in data files will be stored in a
PROM. The data is not necessarily transferred to the PROM as an exact image of the data file.
Instead, the parameters of the control file allow each bit, or group of bits, of the data file to be
mapped to a separate location in the PROM. Table 10-1 lists each of the parameters in the control
file along with the range of values for each parameter. In the file creation phase, TXPROM produces
control file parameter prompts for user response. No default values exist during creation mode.

In the file modification phase of a PROM programming sequence, TXPROM allows the user to
change the control file parameters after issuing the prompts listed in the table. The user can then
select the default value with a carriage return or enter a new value. The default values for each
standard control file are listed later in this section. The following paragraphs describe the use and
function of each control file parameter.

10.7.1 DATA FILE NAME. The data file name is an alphanumeric parameter that specifies the
name of the floppy disc data file to be used during the current operation. The file name may also
be the name of an input file from a 733 ASR cassette drive; however, the cassette cannot be used
as an output file to store information from a PROM read operation because the output format is
not cassette compatible. To indicate that no data file is to be used, enter the file name, DUMY.

g& -

10-8 Digital Systems Division

o
@ 946258-9701

This specification allows information to be read from a PROM into memory without being stored
in a data file. During the initiation sequence, TXPROM allows the user to enter the data file name
after it issues the following prompt: :

DATA FILE = *
No default value exists for this parameter in the standard control files.

10.7.2 DATA BIAS. The data bias parameter allows a pre-existing object module to be loaded into
memory at a simulated load point that is displaced (biased) from the normal load point of zero.
The actual load point in memory of the file is unaffected by this parameter. Typically, the data
bias is the same as the base address of the data in the target system in which the PROM is to be
used. The value of the data bias is added to each word that is marked as relocatable by the
assembler or link editor. TXPROM accesses the data as if it were loaded in memory, starting at the
data bias value. Therefore, the memory starting address parameter must be consistent with the ad-
dressing used in the biased file. For example, a program that is 10004 bytes long and is loaded
with a data bias of 500, must have its memory starting address parameter within the range of
500,6 to 14FF;,. TXPROM allows the user to enter the data bias after it issues the following
prompt:

DATA BIAS=*
The default value for this parameter in the standard control files is zero (no displacement).

10.7.3 TRANSFER CODE. The transfer code parameter defines the operation to be performed with
the PROM device. The code is one of the following three values:

0 No operation
i Transfer data from specified data file to PROM
2 Read data from PROM and store in specified data file

TXPROM allows the user to enter the transfer code parameter after it issues the following prompt:
TSFR CODE = *

The default value for this parameter in control files :E2704B, :E2708B, and :E2716B is 1 (PROM
burn operation). There is no default value for the other standard control files.

10.7.4 COMPARE AFTER. The compare after parameter allows the user to enable (1) or disable (0)

a comparison of the PROM data with the data file data following either a burn or a read operation.

If the comparison is successful, TXPROM proceeds to the next operation. If the comparison fails,

TXPROM displays the memory byte address, the PROM address, and the two bit strings in the-
following format:

>Mxxxx.yy=zz Raaaa.bb=cc
Refer to the description of memory display and PROM display later in this section for an explana-
tion of the display formats. TXPROM allows the user to enter the compare after parameter after

it issues the following prompt:

CMPR AFTER = *

109 Digital Systems Division

@ 946258-9701

The default value for this parameter in control files :E2704B, :E2708B, and :E2716B is 0 (disable
comparison). There is no default value for the other standard control files.

10.7.5 MEMORY DISPLAY. The memory display parameter allows the user to select a display of
the memory data file on the data terminal being used. This parameter may be either a 1 to enable
memory display, or a 0 to inhibit memory display. If the memory display parameter is equal toa 1,
the memory region containing the data file is displayed in the following format:

Mxxxx. yy=zz

In this notation, the letters have the following significance:

M = Designatesa memory display

xxxx = Memory byte address

yy = Displacement of start of bit string within memory byte (0<yy<7)

zz = The value of the bit string in hexadecimal notation when‘ right-justified within

an 8-bit field.

A maximum of four entries are displayed on each output line of the terminal. For example, a
memory display value of: '

MOOOB. 00=5A

indicates that the bit string at byte address 000B,4 that begins with the first bit of that byte has a
value of 5A;¢. TXPROM allows the user to enter the memory display parameter after it issues the
following prompt:

MEM DISP = *
The default value for this parameter in the standard control files is zero (no display).
10.7.6 PROM DISPLAY. The PROM display parameter allows the user to select a display of the
PROM contents being burned o:r read. The display appears on the data terminal being used to
initiate TXPROM during the execution of the program. This parameter may be either a 1 to enable
PROM display, or a 0 to inhibit PROM display. If the PROM display parameter is equal to a 1, the
PROM region is displayed in the following format:

Raaaa. bb=cc

In this notation, the letters have the following significance:

R Designates a PROM display

aaaa = PROM word address

bb = Displacement of start of bit string within PROM word (0<bb<7)
cc = The value of the bit string in hexadecimal notation when right-justified within an
8-bit field.

e 10-10 Digital Systems Division

£

o
@ 946258-9701

A maximum of four entries are displayed on each output line of the terminal. For example, a
PROM display of

ROOE1L. 00=7A

indicates that the bit string at PROM word address O0E1,4, that begins the first bit of that byte, has
a value of 7A,¢4. TXPROM allows the user to enter the PROM display parameter after it issues the
following prompt: .

PROM DISP = *
The default value for this parameter in the standard control files is zero (no display).

10.7.7 MEMORY STARTING ADDRESS. The memory starting address parameter indicates the
starting address in memory of the first bit string to be transferred to the PROM or to be read from
the PROM. If the object module is relocatable, the memory starting address is an absolute memory
address. TXPROM allows the user to change the memory starting address parameter by producing
the following prompt:

MEM START ADDR = *
No default value exists for this parameter in the standard control files.

10.7.8 NUMBER OF MEMORY BYTES. This parameter indicates the number of bytes to be
transferred from or to memory during the PROM operation. TXPROM adds this value to the
memory starting address to create a range of addresses in memory for the transfer operation. if
TXPROM tries to access a bit string outside this range of addresses, an error is indicated. TXPROM
allows the user to change the memory bytes parameter by producing the following prompt:

MEM BYTES = *
The default value for this parameter varies with the particular standard control file.

10.7.9 MEMORY STARTING BIT. This parameter indicates the starting bit address relative to the
starting byte (indicated by memory starting address) of the bit string to be transferred during the
operation. The value of this parameter may be any positive magnitude; however, if the value
exceeds 7, the starting bit will be located beyond the starting byte indicated by the memory starting
address. TXPROM allows the user to enter the memory starting bit after it issues the following
prompt:

MEM START BIT = *
No default value exists for this parameter in the standard control files.
10.7.10 PROM STARTING ADDRESS. The PROM starting address parameter indicates the
starting word address in PROM of the first bit string to be burned or to be read. TXPROM
allows the user to enter the PROM starting address after it issues the following prompt:

PROM START ADDR = *

The default value for this parameter in the standard control files if O.

10-11 Digital Systems Division

@ 9462589701

10.7.11 NUMBER OF PROM WORDS. This parameter indicates the number of PROM words that

will be processed during the current operation. TXPROM adds this value to the PROM starting 4(
address to create a range of addresses in PROM for the transfer operation. If TXPROM tries to

access a bit string outside this range of addresses, an error is indicated. TXPROM allows the user to

enter the PROM words parameter after it issues the following prompt:

PROM WORDS = *
The default value for this parameter varies with the particular standard control file.

10.7.12 PROM STARTING BIT. This parameter indicates the starting bit address relative to the
starting word address (indicated by PROM starting address) of the bit string to be processed. The
value of this parameter may be any positive magnitude; however, if the value exceeds the word size
for the PROM device type being used, the starting bit is located beyond the starting word indicated
by the PROM starting address. TXPROM allows the user to enter the PROM starting bit after it
issues the following prompt:

PROM START BIT = *
The default value for this parameter in the standard control files is O.

10.7.13 MEMORY MAPPING LEVELS. The memory mapping levels parameter specifies the
number of loop levels to be used in mapping data from memory into the PROM device. The number
of levels may be 1, 2 or 3. Refer to the discussion of Bit String Mapping later in this section for
complete information about the use of this parameter. If this parameter is 1, then the loop count
for levels 2 and 3 arc automatically set to 1. TXPROM allows the user to enter the memory
mapping levels parameter after it issues the following prompt:

£

**MEM MAP LEVELS =

Enter a value of 1 for all standard control files except :E2704B, :E2708B, and :E2716B. For these
files, enter a value of 2.

10.7.14 MEMORY LEVEL n BIT STEP. This parameter determines the number of bits that are
skipped between successive bit addresses when performing a level n (n = 1, 2, or 3) mapping loop.
For example, to access only the even-numbered bits (or the odd-number bits) this parameter is set
to a value of 1. This value causes a skip of one bit between each bit accessed. TXPROM allows the
user to enter this parameter for each of the three possible mapping levels after it issues the following
prompt(s) (only the prompts for the number of levels selected in the memory mapping levels
parameter are produced):

MEM LEV 1 BIT STEP =
or

MEM LEV 2 BIT STEP =
or

MEM LEV 3 BIT STEP =

¢

10-12 Digital Systems Division

{@’@ 9462589701

The default value for the level 2 and 3 parameters in the standard control files is zero. There is no
default value for the level 1 parameter in the standard control files.

10.7.15 MEMORY LEVEL n LOOP COUNT. This parameter determines the number of iterations
that are performed of the level n (n=1, 2 or 3) mapping loop. The value may be within the range of
0 to 32,767. TXPROM allows the user to enter this parameter for each of the three possible
mapping levels after it issues the following prompts (only the prompts for the number of levels
selected in the memory mapping levels parameter are produced; all other levels are set to one:

MEM LEV 1 LOOP COUNT =
or

MEM LEV 2 LOOP COUNT =
or

MEM LEV 3 LOOP COUNT =

The default value for each of these parameters in the standard control files varies with the selected
control file.

10.7.16 PROM MAPPING LEVELS. The PROM mapping levels parameter specifies the number of
lIoop levels to be used when mapping data into the PROM. The number of levels may be 1, 2 or 3.
Refer to the discussion of Bit String Mapping later in this section for complete information about
the use of this parameter. If this parameter is 1, then the loop count for levels 2 and 3 are automa-
tically set to 1. TXPROM allows the user to enter the PROM mapping levels parameter after it issues
the following prompt:

**PROM MAP LEVELS =

When responding to this prompt, enter a value of 1 for each standard control file except :E2704B,
:E2708B, and :E2716B. These files require a response of 2.

10.7.17 PROM LEVEL n BIT STEP. This parameter determines the number of bits that are
skipped between successive bit addresses when performing a level n (n = 1, 2 or 3) mapping loop.
For example, to burn every other bit in a PROM (either the odd or even bit addresses) this param-
eter is set to a value of 1. This value causes a skip of one bit between each bit operated on in the
PROM. TXPROM allows the user to enter this parameter for each of the three possible mapping
levels after it issues the following prompt(s) (only the prompts for the number of levels selected in
the PROM mapping levels parameters are produced):

PROM LEV 1 BIT STEP = *
or

PROM LEV 2 BIT STEP = *
or

PROM LEV 3 BIT STEP = *

10-13 Digital Systems Division

@ 9462589701

The default value for level 1 in the standard control file :S287 is 4; all other standard control files
have a default value of 8. ' @

The default value for levels 2 and 3 for this parameter in the standard control files is zero. This
value causes TXPROM to access every consecutive bit in the PROM.

10.7.18 PROM LEVEL n LOOP COUNT. This parameter determines the number of iterations
that are performed of the level n (n =1, 2, or 3) mapping loop. The value may be any number from
1 to 32,767. TXPROM allows the user to enter this parameter for each of the three possible PROM
mapping levels after it issues the following prompt(s) (only the prompts for the number of levels
selected in the PROM mapping levels parameter are produced; all other levels are set to one):

PROM LEV 1 LOOP COUNT = *
or

PROM LEV 2 LOOP COUNT = *
or

PROM LEV 3 LOOP COUNT = *

The default value for each of these parameters in the standard control files varies with the selected
control file.

10.7.19 TRANSFER BIT WIDTH. The transfer bit width designates the number of bits that are to
be transferred in each bit string. This parameter applies to both the memory and the PROM Ps
portions of the operation. TXPROM allows the user to change the transfer bit width by producing \

the following prompt: -
TSFR BIT WIDTH = *
The default value for this parameter in standard control file :S287 is 4; all other standard control
files have a default value of 8.
10.7.20 PROM BITS PER WORD. This parameter specifies the number of bits in each word of the
PROM device being used. It should match the architecture of the PROM device. TXPROM allows
the user to change this parameter by producing the following prompt:
PROM BITS/WORD = *
The default value for this parameter in standard control file :S287 is 4; all other standard control
files have a default value of 8.
10.7.21 PROGRAM ZEROS OR ONES. This parameter indicates whether the PROM device begins
as all zeros and must be programmed by burning ones, or if it begins as all ones and must be
programmed by burning zeros. The PROM Programmer Installation and Operation Manual contains
a table of initial conditions for all devices that can be programmed with that unit. This parameter
should be set to a 1 if a high-level programming pulse (programmed with ones) is required, and to a
0 if a low-level programming pulse (programmed with zeros) is required. TXPROM allows the user
to change this parameter by producing the following prompt:
PROG 0'SOR I'S=* C

10-14 Digital Systems Division

946258-9701

The default value for this parameter in the standard control files varies with the control file
selected.

10.7.22 PULSE WIDTH. The pulse width parameter is a code that designates the duration of the
programming pulse to be used with the selected PROM device. Table 10-2 lists and defines these
codes. Table 10-3 lists the programming pulses required for some commonly used PROM devices.
The pulse width is the length of time that power is applied to the PROM device to burn
simultaneously programmable bits. TXPROM allows the user to change the value of this parameter
by producing the following prompt:

PULSE WIDTH = *

The default value for this parameter in the standard control files varies with the control file
selected.

Table 10-2. Pulse Widths

Pulse Width Pulse Width
Code (ms)
1 0.5
2 1.0
3 2.0
4 4.0
5 8.0
6 16.0

Pulse Width=2604€x(25)ms

Table 1()-3. Minimum, Standard and Maximum Pulse Widths and Duiy Cycles

Pulse Width (ms) Duty Cycle
PROM Types Minimum Standard Maximum Minimum Standard Maximum

TTL

188A,S188, 5288,

$287, 8387, 8470,

S471, 8472, 5473 1 2 20 25% 35%
EPROMs

2704,2708, 2716 0.1 0.1 1 100% 100%

Note: TTL PROM types have the prefix SN74.

10-15 Digital Systems Division

Y’l—@; 946258-9701

10.7.23 DUTY CYCLE. The duty cycle parameter indicates the percentage of the programming
cycle time that it actually used for burning the PROM. The total programming cycle consists of a p
programming (burn) phase and a rest phase. The duty cycle value (between O and 100) represents %
the maximum percentage of total time that the programming pulse can be active. Table 10-3 lists

the duty cycle requirements of some commonly used PROM devices. TXPROM allows the user to
change this parameter to match the requirements of the PROM device being used by producing the
following prompt:

DUTY CYCLE = *

The default value for this parameter in the standard control files is 25 for PROMs and 100 for
EPROMs.

10.7.24 NUMBER OF RETRIES. This parameter indicates the number of times that TXPROM
will try to program a specific set of bits without success using the normal pulse width. If the first
attempt to program a set of bits in a PROM device fails. TXPROM repeats the programming cycle
for that set of bits until the correct data is transferred or the number of retries count is depleted.
TXPROM allows the user to change this parameter by producing the following prompt:

NO. RETRIES = *
The default value for this parameter in the standard control files is zero.

10.7.25 SIMULTANEOUSLY PROGRAMMABLE BITS. This parameter indicates the number of
bits in the PROM device that can be programmed with the same programming pulse. This parameter
is a physical restriction of the type of PROM device. Bipolar devices require that only one bit be
programmed at a time; EPROMs require that an entire EPROM word be programmed simultan-
eously. TXPROM allows the user to change this parameter by producing the prompt:

SIMUL PROG’BLE BITS = *
The default value for this parameter in the standard control files is 1 for PROMs and 8 for EPROMs.

10.7.26 CRU BASE. The CRU base parameter of the control file defines the CRU base address to
be used to select the PROM Programmer interface card. For standard applications, the interface
card responds to base address 20,¢. If the interface card is installed in a chassis location other than
the standard slot, the CRU base parameter must be changed. TXPROM allows the user to enter the
CRU base after it issues the following prompt:

CRU BASE = *
The default value for this parameter in the standard control files is 20, .

10.8 BIT STRING MAPPING

The software uses the memory and PROM mapping parameters to determine the addresses of the bit
strings to be used in the programming cycle. When specifying mapping parameters, the PROM or
memory words within the defined bounds are considered to be a continuous string of bits. The
memory file is further divided into 16-bit words, while the PROM string is divided into words whose
length is determined by the architecture of the device. Mapping is required so that portions of the
16-bit memory words may be programmed into PROMs that have smaller word widths. The
mapping parameters include bit step and loop count, as defined previously in this section.

TXPROM allows three levels of bit string mapping: level 1, level 2 and level 3. Level 1 determines \()
successive bit strings in memory or PROM. When the level 1 loop count is exhausted, the initial bit =

10-16 Digital Systems Division

{@ 9462589701

is incremented as determined by the level 2 bit step and the level 1 mapping is repeated. Each
time that the level 1 loop count is exhausted, the level 2 loop count is decremented, the initial
bit incremented, and the mapping repeated until the level 2 loop count is exhausted. At that point,
the level 3 increment is added tc the beginning address, the level 3 loop count is decremented, the
loop counts for levels 1 and 2 are restored, and the entire cycle is repeated. When the level 3 loop
count is exhausted, cycling is complete. A map cycle for memory bits is completely independent
of a map cycle for PROM bits; however, the total number of bits that are mapped in the memory
cycle must be equal to the number of bits mapped to a PROM.

10.8.1 LEVEL 1 MAPPING EXAMPLE. Figure 10-3 illustrates an example of level 1 mapping. In
the example, the first four bits of each memory word are mapped into the odd-numbered addresses
of a 256 X 4 PROM, (a 128 half-byte transfer). Table 10-4 lists the mapping parameters for both
memory and PROM to accomplish the transfer.

10.8.2 LEVEL 2 MAPPING EXAMPLE. Figure 10-4 illustrates an example of level 2 mapping. In
the example, the first and the last four bits of each memory word are mapped into a 256 X 8 PROM
(a 256-byte transfer). Table 10-5 lists the mapping parameters for both memory and PROM to ac-
complish the transfer. The example combines level 2 memory looping with level 1 PROM looping.

MEMORY (128 X 16) PROM (256 X 4)
BITS BITS
ADDRESS 0 3 8 15 ADDRESS 0 3
0 1 0
4 3 2
6 4 3 2
e L & L A A~ - [] -~
e ® _ — T ® -
e T o T] °
254 | 128 255 128
(A)136188

Figure 10-3. Level 1 Mapping Example

10-17 Digital Systems Division

(l‘_é? 9462589701

ADDRESS

510

(A)136189

Table 10-4. Level 1 Mapping Example Parameters

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 - PROM START ADDR =0
#MEM BYTES = 256 #PROM WORDS = 256
MEM START BIT =0 PROM START BIT =4

MEM LEV 1 BIT STEP = 16
MEM LEV 1 LOOP CNT =128
MEM LEV 2 BIT STEP = 0
MEM LEV 2 LOOP CNT =1
MEM LEV 3 BIT STEP =0
MEM LEV 3 LOOP CNT =1

PROM LEV 1 BIT STEP = 8
PROM LEV 1 LOOP CNT = 128
PROM LEV 2 BIT STEP=0
PROM LEV 2 LOOP CNT = 1
PROM LEV 3 BIT STEP=0
PROM LEV 3 LOOP CNT = 1

TRANSFER BIT WIDTH = 4

MEMORY (512 X 16) PROM (256 X 8)
BITS BITS
0 12 15 ADDRESS 0 3 4 7
1 2 0 1 2
3 4 1 3 4
5 6 2 5 6
7 8 3 7 8
9 10
A
L
L A . - Le
- A J, P . P2
La od 7T 7_ T T ®
511 512 255 511 512

Figure 10-4. Level 2 Mapping Example

10-18 Digital Systems Division

e

o
e@ 946258-9701

Table 10-5. Level 2 Mapping Example Parameters

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
#MEM BYTES = 512 . #PROM WORDS = 256
MEM START BIT =0 PROM START BIT =0
MEM LEV 1 BIT STEP =12 PROM LEV 1 BIT STEP=4
MEM LEV 1 LOOP CNT =2 PROM LEV 1 LOOP CNT = 512
MEM LEV 2 BIT STEP = 16 PROM LEV 2 BIT STEP =0
MEM LEV 2 LOOP CNT =256 PROM LEV 2 LOOP CNT =1
MEM LEV 3 BIT STEP =0 PROM LEV 3 BIT STEP=0

MEM LEV 3 LOOP CNT =1 PROM LEV 3 LOOP CNT =1

TRANSFER BIT WIDTH = 4

10.8.3 LEVEL 3 MAPPING EXAMPLE. Figure 10-5 illustrates an example of level 3 mapping. In

. the example, the first and the last four bits of each memory word are mapped into the first 256
words of a 1024 X 8 PROM. The mapping of the memory words is then repeated three more times
to fill the 1024 words of the PROM. Table 10-6 lists the mapping parameters for both memory and
PROM to accomplish the transfer.

10.9 STANDARD CONTROL FILES

The TXPROM software includes a set of standard control files. The files contain parameters that
can be used without modification to program most PROM devices commonly used with the PROM
programming system. Table 10-7 lists the standard control files along with their contents. For
special applications, these files can also be used as the basis for building a custom control file, rather
than creating a new file. EPROM devices have two control files: the file with the letter B suffix is
for burn cycles and the file with no suffix is for reads. EPROM devices require repeated program-
ming cycles to implant the charge. The EPROM “B” files automatically repeat the programming
cycle to allow for this requirement. The standard control files reside on the same diskette as the
TXPROM software.

10.10 VARIABLE PARAMETERS

None, any, or all of the parameters in a control file can be made into variable parameters by
entering a value of * for each parameter prompt when the control file is created or modified. The
values for these parameters are not stored in the control file but must be entered in at execution
time (whenever the control file name is requested). Variable parameters allow frequently changed
parameters (like DATA FILE name) to be easily inserted, nonpermanently, into control file
parameters.

For example, the Standard Control file for 74287 bipolar TTL PROM devices was created with the
following variable parameters: DATA FILE, TSFR CODE, CMPR AFTER, MEM START ADDR,
MEM START BIT, MEM LEV 1 BIT STEP. To use the standard control file, the user must respond
to the control file prompt with:

DSC:S287(<data file><tsfr code><cmpr after>,<mem start addr>,<mem start bit>,
<mem lev 1 bit step>).

The parameters inside the angle brackets, < >, must be supplied with the desired values. If no
parameters are entered, TXPROM generates prompts to ask for the information.

10-19 Digital Systems Division

946258-9701

MEMORY (512 X 16) PROM (1024 X 8)
BITS BITS
2 o 34 7
apbpbress \°__ 3 ! 15 ADDRESS
0 1 2 o 1
2 3 4 3
al s 6 2 5 6
6 7 8
I o | o Lo |
[J A~ ® ~ ~ ~ ® / . T o . .
[] ® [)) ° j Y T
L ® ® 255 | s11 | 512
510 | 511 512 256 1 >
2857 3 4
258 5 6
o e 1 ¢ ‘L
e~ o o
o T o T o 1 .
511 511 512 a
512 1 2 ,
, 513 3 4 N
514 5 6
o | o ol
° e o
e T o 1 o T
767 511 512
768 1 2
769 3 4
770 5 6
o | o | o |
® - o o -
° o T o
1023 511 512

(A)136190

Figure 10-5. Level 3 Mapping Example

C

10-20 Digital Systems Division

[e]
@ 946258-9701

Table 10-6. Level 3 Mapping Example Parameters

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
MEM BYTES = 512 #PROM WORDS = 1024
MEM START BIT=0 PROM START BIT =0
MEM LEV 1 BIT STEP =12 PROM LEV 1 BIT STEP = 4
MEM LEV 1 LOOP CNT = 2 PROM LEV 1 LOOP CNT = 2048
MEM LEV 2 BIT STEP =16 PROM LEV 2 BIT STEP=0
MEM LEV 2 LOOP CNT = 256 PROM LEV 2 LOOP CNT =1
MEM LEV 3 BIT STEP =0 PROM LEV 3 BIT STEP=0
MEM LEV 3 LOOP CNT =4 PROM LEV 3 LOOP CNT =1

TRANSFER BIT WIDTH = 4

10.11 PROGRAMMING EPROMS

Since EPROMs are metal-oxide-semiconductor (MOS) devices, they must be programmed in a
different manner than TTL PROM devices. EPROMs are charge-storage devices that must be
programmed by repetively transferring charge to EPROM bits. This repetition may be accomplished
by looping through the programming process defined by the data configurations. The number of
required repetitions to transfer sufficient change to each bit or bit string is defined by the following
formula:

100 ms = pulse width x repetitions.

Therefore, using a pulse width of 0.5 ms, 200 repetitions must be used to successfully program the
EPROM. A delay must occur after each attempt to program a bit string before trying to program
the same bit string again. This delay allows the charge to diffuse into the EPROM device without a
buildup of charge on the surface.

Because of this delay, each bit string of the EPROM should be attempted once before repeating
the programming cycle. To ensure this delay, the number of retries parameter for programming each
bit string (defined in the control file) must be set to zero. Each bit of the EPROM will not appear
to have the correct value (0 or 1) until sufficient charge has been transferred to it.

In the early stages of programming, the bits may not have acquired sufficient charge to have the
correct value. This appears as a programming failure if the number of retries is set to a nonzero
value, and the bit string will be programmed again without the required delay time. For the same
reason, the compare after parameter (defined in the control file) should not be set during the
programming cycle, since compare errors will be found in the early stages of programming an
EPROM.

Since the programming cycle for an EPROM repeats many times, the display parameter (defined by
the control file) should not be set during the programming cycle. Setting the display parameters
prints the memory or PROM data for each repetition. Therefore, to program, compare and display,
the process must be done in two steps. First, the parameters must be set to zero to program, and
after completion of EPROM programming, the parameters may be set to enable compare and/or
display. The number of repetitions defined must be changed to one before the second step in order
to compare and/or display.

10-21 Digital Systems Division

946258-9701

Table 10-7. Standard Control Files

Standard Control File :S288 :S287 :S471 :S472 :E2704B :E2704 :E2708B :E2708 :E2716B :E2716

Data File * * * ® * * * * * *
Data Bias 0 0 0 0 0 0 0 0 0 0
TSER Code * * 1 * 1 * 1 *
CMPR After * * * * 0 * 0 * 0 *
MEM Disp 0 0 0 0 0 0 0 0 0 0
PROM Disp 0 0 0 0 0 0 0 0 0 0
MEM Start Addr * * * * * * * * * *
MEM Bytes 64 512 512 1024 1024 1024 2048 2048 4096 4096
MEM Start Bit * * * * * * * * L ® *
PROM Start Addr 0 0 0 0 0 0 0 0 0 0
#PROM Words 32 256 256 512 512 512 1024 - 1024 2048 2048
PROM Start Bit 0 0o 0 0 0 0 0 0 0 0
MEM Map Levels + ¥ ¥ £ ¥ ¥ ¥ ¥ + ¥
MEM LEV 1 BIT STEP * * * * * * * * * *
Loop Count 32 256 256 512 512 512 1024 1024 2048 2048
MEM LEV 2 BIT STEP 0 0 0 0 0 0 0 0 0 0
Loop Count 1 1 1 1 100 1 100 1 100 1
MEM LEV 3 BIT STEP 0 0 0 0 0 0 0 0 0 0
Loop Count 1 1 1 1 1 1 1 1 1
PROM Map Levels + ¥ ¥ ¥ + + 2 + ¥ k-
PROM LEV 1 BIT STEP 8 4 8 8 8 8 8 8 8 8
Loop Count 32 256 256 512 512 512 1024 1024 2048 2048
PROM LEV 2 BITSTEP 0 0 0 0 0 0 0 0 0 0
Loop Count 1 1 1 1 100 1 100 1 100 1
PROM LEV 3 BITSTEP 0 0 0 0 0 0 0 0 0 0
Loop Count 1 1 1 1 1 1 1 1 1 1
TSFR Bit Width 8 4 8 8 8 8 8 8 8 8
PROM Bits/Words 8 4 8 8 8 8 8 8 8 8
PROG 0’s, PROG 1's 1 0 1 1 0 0 0 0 0 0
Pulse Width 1 1 1 1 2 1 2 1 2 1
Duty Cycle 25 25 25 25 100 100 100 100 100 100
Number Retries 0 0 0 0 0 0 0 0 0 0
SIMUL Prog’ble Bits 1 1 1 1 8 8 8 8 8 8
CRU Base >20 >20 >20 >20 >20 >20 >20 >20 >20 >20

*Indicates variable parameters; i.e., value must be entered at execution time.
+A response is required. Enter 2 for :E27048B, :E2708B, and :E2716B. Enter 1 for all other standard control files.

10-22 Digital Systems Division

AN

%@ 946258-9701

If level n bit string mapping is used to burn an EPROM, the level (n+1)’s bit step should be set to 0
and the loop count set to the desired number of repetitions. Note that the standard control files for
EPROM burns have level 2 loop counts of 200.

10.12 PROGRAMMING EXAMPLES
The following paragraphs illustrate the control file requirements to successfully program a PROM or

EPROM using TXPROM.

10.12.1 EPROM PROGRAMMING EXAMPLE. The following example programs an 8-word data
file vertically to the first 16 locations of a 512 X 8 EPROM (2704) as illustrated in figure 10-6.,

MEMORY EPROM

- O

N

o b~ N O
w

ut

12

]
oo julnxjwin
I
N
w
IS
u
[¢)]
~
o

14

10
11

12

13
14

15

(A)136191

Figure 10-6. EPROM Programming Example

10-23 Digital Systems Division

@ 9462589701

Bits are transferred one at a time from memory to the EPROM. The user creates a control file by
modifying the E2704B standard control file. The following parameters are modified:

MEM MAP LEVELS =2
MEM START ADDR =0
MEM BYTES = 16
MEM START BIT =0
MEM LEV 1 BIT STEP =1
LOOP COUNT = 128
MEM LEV 2 BIT STEP=0
LOOP COUNT = 200
PROM LEVELS =3
PROM START ADDR =0
PROM WORDS =16
PROM START BIT=0

PROM LEV 1 BIT STEP =8 Burns 1 word of memory vertically
' LOOP COUNT =16
PROM LEV2 BIT STEP=1 Positions to next column
. LOOP COUNT =8 o
PROM LEV 3 BIT STEP=0 200 repetitions since EPROM

LOOP COUNT = 200
TRANSFER BIT WIDTH = 1

10.12.2 PROM PROGRAMMING EXAMPLE. Twenty-four 4-bit fields are arranged in 16-bit
words of a data file, as shown in figure 10-7. These 24 fields are to be programmed repetitively in
the first 384 four-bit words of a 512 X 4 PROM with characteristics similar to a TI SN74S287 (two

287s with a programming adaptor card to make them appear as a 512 X 4 device) as illustrated in
figure 10-7.) ’

The user starts with the S287 standard control file and makes the following modifications:

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
#MEM BYTES =16 #PROM WORDS = 384
MEM START BIT =0 PROM START BIT =0
MEM MAP LEVELS =3 PROM LEVELS =1
MEM LEV 1 BIT STEP =6 PROMLEV 1 BIT STEP =4
MEMLEV1 LOOPCOUNT=3 PROM LEV 1 LOOP COUNT - 384
MEM LEV 2 BIT STEP =16
MEM LEV 2 LOOP COUNT =8
MEM LEV 3 BIT-STEP =0
MEM LEV 3 LOOP COUNT =16

TRANSFER BIT WIDTH =4

10-24 Digital Systems Division

“a

@ 946258-9701

BIT
DISPLACEMENT

MEMORY
ADDRESS _’ o 5 6 ° . ‘5
1 7 /) 8" /A) MEMORY
— ,/// — ////' = (FILE IMAGE)
11 ///// 14 '/// 15
16 /) 17 Y/ /) 18
19 v/ /74 20 /L 21
14, 22 /) 23 "/ / 24
0 1 h
1 2
A~ P ~
° > REPETITION 1
- ® i
24 1 N
2
- [J LREPETITION 2
o
3 ® T
a7 24 p
- A
®
®
®
T ’ -
1
2
A ® - REPETITION 16
— ®
(A)136192 383 24

Figure 10-7. PROM Programming Example

10.12.3 CONTROL FILE CHANGE EXAMPLE. The user wishes to change the S471 standard
control file so that the parameter DATA BIAS is a variable parameter. The user does the following:

CONTROL FILE = DSC:5471<cr>
MODIFY OR EXECUTE? MO<cr>

MODIFICATION MODE
DATA FILE = *<cr> The user updates the 0 value to “*” and uses the
DATA BIAS =0 * <Acr> shift A to skip the remaining prompts.

SAVE UNDER CONTROL FILE NAME=DSC:5471/MOD <cr>
EXECUTE, BEGIN OR TERMMINATE? TERM

10-25 Digital Systems Division

(¢}
@ 946258-9701

- The modified control file DSC:S471/MOD can now be used instead of the standard control file.
The parameters that need be entered for its use are now: DATA FILE, DATA BIAS, TSFR CODE,
CMPR AFTER, MEM START ADDR, MEM START BIT, MEM LEV 1 BIT STEP.

10.12.4 EXECUTING A CONTROL FILE EXAMPLE. This example uses the control file created
in the previous example to burn a pair of S471 ROMS (256 X 8) from a 256-word relocatable
object module named DATA on the disc in drive 2. The ROMS eventually will be stationed at
address >F000 on a computer memory card.

CONTROL FILE =
DSC:S471/MOD(DSC2:DATA >F000, 1,1, 0, 0, 16)
© DSC:S471/MOD(DSC2:DATA,>F000, 1, 1, 0, 8, 16)

10.13 NONRECOVERABLE ERROR MESSAGES
The following is a list of nonrecoverable error messages issued by TXPROM. These errors cause
abortlon of all action and return to the CONTROL FILE = prompt:

DATA FILE OPEN ERROR

DATA FILE I/O ERROR

CONTROL FILE OPEN ERROR
CONTROL FILE I/O ERROR
HARDWARE MALFUNCTION
HARDWARE OFFLINE

NO. STRING COUNT ERROR
STRING ADDRESS OUT OF BOUNDS
CAN’T GET MEMORY

1026 Digital Systems Division

° 946258-9701

» SECTION XI
TXDS BNPF AND HIGH-LOW (BNPFHL) DUMP UTILITY PROGRAM

11.1 INTRODUCTION
The BNPFHL utility program provides the capability of converting a. 990 Computer module in

standard object code format (i.e., in compressed or noncompressed format) to a module in BNPF
format (figures 11-1 and 11-2) or to a module in High-Low format. The conversion from standard

object code format to BNPF format is presented in figure 11-1.

WORD 1
TAG
WORD 2
TAG
WORD 3

8 4— TAG
2

w

!

o

o

o

[

m}

0000 «— STANDARD OBJECT CODE FORMAT

BNNNNNNNNF BNNPPPNNNF BNNN:JNNNNF BNNNNQPPNF BNNNNNNNNF BNNNNNNNNF<4-BNPF FORMAT

(A)136193

Figure 11-1. Standard Object Code Format to BNPF Format Conversion

STANDARD OBJECT CODE (FULL FIRST LINE)
BYTE-LENGTH OF

INPUT FILE
?0058 LIGHTS A0000C0038C0006B80000B0200BF FFF B0O6A0C0022B0910B17FC7F1EAF LIGHO001

) CORRESPONDING
F DATA

0 BNNNNNNNNF BNNPPPNNNF BNNNNNNNNF BNNNNNPPNF BNNNNNNNNF BNNNNNNNNF

FIRST BYTE BNPF FORMAT (FULL FIRST LINE)

DECIMAL BYTE ADDRESS

OF FIRST BYTE

(ASSUMING ZERO BIAS)
(A)136194

F iglire 11-2. Standard Object Code Format to BNPF Format, Full First Line Conversion

11-1 Digital Systems Division

946258-9701

C0038C0006B0000 «— STANDARD OBJECT CODE FORMAT

LLLL LLLL LLLL<4— HIGH-LOW FORMAT

(A)136195

Figure 11-3. Standard Object Code Format to High-Low Format Conversion

00058LIGHTS A0000C0038C0006B0000B0200BFFFFB06A0C0022B0910B17FC7F1EAF LIGHO0001

CORRESPONDING
DATA

000—007 LLLL LLLL'LLLL L L HHHH LLLL LLLL LLLL

'\ HIGH-LOW FORMAT (FULL FIRST LINE)
ADDRESS OF LAST FOUR-BIT STRING
ADDRESS OF FIRST FOUR-BIT STRING
(A)136196

Figure 11-4. Standard Object Code Format to High-Low Format, Full First Line Conversion

When a module in standard object code format is converted to BNPF format, each byte of the
standard object code is converted into a string of Ns and Ps (as shown above) preceded by a B
(denoting the beginning of the byte) and followed by an F (denoting the end or finish of the byte).
Each N corresponds to a negative or zero bit value and each P corresponds to a positive or one bit
value. The output module in the BNPF format begins with the decimal byte address (up to five
digits) of the first byte contained on the line (as presented in figure 11-2). This decimal byte
address has no leading zeros and begins in column one. Each of the lines in the BNPF formatted
module contains no more than six bytes of information. An example of a full first line of standard
object code is presented in figure 11-2 with the full first line of a converted module in BNPF
format. The numbers being converted in figure 11-2 are identical to those shown in figure 11-1.

The conversion from standard object code format to High-Low format is presented in figure 11-3.

11-2 Digital Systems Division

"5\

(e}
{@ 946258-9701

When a module in standard object code format is converted to High-Low format, one of the four
hexadecimal numbers in each word of the standard object code is converted into a four-bit string
of Hs and Ls (where each H corresponds to a high or one-bit value and each L corresponds to a low
or zero bit value). The hexadecimal number in each word to be converted is selected by use of the
Position option entry. (Refer to paragraph 11.3.3.5 for a description of the Position option entry
function.) This Position option entry may be used to specify a 0, 4, 8, or 12, respectively, for the
first, second, third, or fourth hexadecimal numbers in the word. The conversion of the hexadecimal
number in the first word, into a four-bit string of Hs and Ls, is followed by a conversion of the
corresponding hexadecimal number in the same position of the second word (of the standard object
code). The process is continued for each corresponding hexadecimal number in each of the words
specified in the response to the MEMORY: prompt. (Refer to paragraph 11.3.4 below for a descrip-
tion of the response to the MEMORY: prompt). The Position option entry may also be used to
enter any one of the numbers from 0 through 12 and thereby, specify the bit position in the 16-bit
word at which the four-bit conversion is to begin. This means, for example, that specifying a 3
would result in converting bits 3, 4, 5, and 6 of the 16-bit word (which is represented in hexa-
decimal standard object code format) to a four-string of Hs and Ls. The output module in the High-
Low format begins each line with the beginning and end address (in decimal) of each of the four-
bit strings presented on the line, using three digits for the address of the first four-bit string on the
line and another three digits for the address of the last four-bit string on the line. (See figure 11-4.)
Each of the lines contains no more than eight four-bit strings. An example of full first line of stan-
dard object code is presented in figure 114 with the full first line of converted module in High-Low
format. The numbers being converted are identical to those shown in figure 11-3.

NOTE

All HILO conversions begin on a word boundary. Therefore, the
response to the MEMORY: prompt requires an even-numbered
address entry for the beginning and end address.

The following paragraphs describe how to employ this utility program.

11.2 LUNOs
The BNPFHL utility program uses LUNOs 10 and 11, which are assigned to the input and output
pathnames, respectively.

11.3 LOADING THE BNPFHL UTILITY PROGRAM
Proceed as follows:

1. Load the TXDS Control Program in accordance with the step-by-step procedure pre-
sented in Section II in this manual.

2. Place the TXDS diskette containing the BNPFHL utility program in an available disc
drive.

3. Respond to the PROGRAM:, INPUT:, OUTPUT:, and OPTIONS: prompts as fqllows:
PROGRAM: :BNPFHL/SYS . |
y INPUT: Input Pathname
OUTPUT: Output Pathname

OPTIONS: {BNPF} "DUMP
HILOf , {COMPARE} [,B<bias>,I<init>,P<pos>]
|LoAD
(TXBNPF V.R.E YY.DDD TXBNPF HI/LO UTILITY

(where a number is entered for <bias>, <unit>, or <pos>

MEMORY: <beg addr>,<end addr>

FR 11-3 Digital Systems Division

(o}
il,_@? 946;58;9701
~ (The MEMORY: prompt is printed or displayed on the system console after the BNPFHL utility
program is loaded as described in paragraph 11.3.4.) 4

The responses to the INPUT:, OUTPUT:, OPTIONS:, and MEMORY: prompts are described in
the following subparagraphs.

NOTE

All numerical input values in response to any of the prompts are
assumed to be decimal. However, another base may be specified
by using the following prefixes:

Prefix Base Example
! Octal . 123 (equals decimal 19)
> Hexadecimal >23 (equals decimal 35)

11.3.1 RESPONSE TO THE INPUT: PROMPT. The response to the INPUT: prompt is either the
pathname of a file or the pathname of a device. One of these two responses must be specified. When
a DUMP or COMPARE option is specified, the file or device should contain a standard object code
module. When a LOAD option is specified, the input file or device should contain either a BNPF of
High-Low formatted module to correspond with the BNPF or HILO response to the OPTIONS:
prompt.

11.3.2 RESPONSE TO THE OUTPUT: PROMPT. The response to the OUTPUT: prompt is either

the pathname of a file or the pathname of a device. One of these two responses must be specified.

When the COMPARE option is specified, the response to the OUTPUT: prompt should be a file

which contains a BNPF or a HILO formatted module, depending upon whether a BNPF or a HILO -
file is to be compared to the input standard object code. The output device should not be a hard “
copy device or VDT because no carriage control is included in the output.

11.3.3 RESPONSE TO THE OPTIONS: PROMPT. The response to the OPTIONS: prompt is
described in the following subparagraphs.

NOTE

All options must be separated by commas. The Bias, Initialization,
and Position options can be defaulted as explained below, but, when
used, must be specified in the following sequence: Bias, Initializa-
tion, and Position.

11.3.3.1 BNPF and HILO Options. The BNPF option specifies a BNPF formatted input or out-
put module and the HILO option specifies a High-Low formatted input or output module. Either
the BNPF or HILO option must be specified. The abbreviations BN and HI may be used, respec-
tively, instead of the full four characters. When neither the BNPF option or the High-Low option
is specified, an error results.

11.3.3.2 DUMP, COMPARE, and LOAD Options. The use of these options bis described in the i
following subparagraphs.

NOTE
1. One of these options must be specified or an error will result. (\

2. Each of the option names may be abbreviated by using the first
two letters in the option name

114 Digital Systems Division

@’@ 946258-9701

DUMP (DU) Option. The DUMP option causes the input file in 990 standard object code to be
dumped to the output file in the specified BNPF or High-Low format.

COMPARE (CO) Option. The COMPARE option is used to verify the results of a DUMP by
comparing the output BNPF or HILO formatted file to the input file in standard object code
format. ‘

When there is no discrepancy in a BNPF COMPARE, the beginning and end address of the com-
pared information or data are printed on the system console. The following printout is an example
of a BNPF COMPARE without errors:

- TXBNPF _ V.RE YY.DDD

PROGRAM: :BNPFHL/SYS
INPUT: DSC2:LIGHTS/OBJ
OUTPUT: DSC2:TEMP/OBJ
OPTIONS: BN,CO :
TXBNPF V.RE. YY.DDD TXBNPF HI/LO UTILITY
MEMORY: 0, 24
BEG ADDR=0000
END ADDR=0018
TXDS V.RE YY.DDD

) PROGRAM:
When there is no discrepancy in a HILO COMPARE, no printout or display is presented on the
system console.

When a BNPF COMPARE is discrepant, a presentation of the discrepancy is printed out or
displayed on the system console. An example of a typical printout or display of a discrepancy is:

T0064=9C MO0064=38
where:

T represents the BNPF output file; 0064 represents the decimal address of the byte; and 9C
represents the hexadecimal value of the byte, and

where:

M represents the input file in standard object code; 0064 represents the decimal address of the
byte; and 38 represents the hexadecimal value of the byte.

The discrepancy is noted by the difference in hexadecimal byte-values 9C and 38. When there
exists no discrepancy, both hexadecimal byte-values are 38 and, as a result, are not printed out or
displayed on the system console.

When a HILO COMPARE is discrepant, a presentation of the discrepancy is printed out or displayed
on the system console. An example of a typical printout or display of a discrepancy is:

M0003.<0,3>=0000 T0003.<0,3>=2000

11-5 Digital Systems Division

946258-9701

where:

M represents the input file in standard object code; 003 represents the decimal address of the
input file word; 0,3 represents the beginning and ending bit positions of the four-bit string in

the input object file; and 0000 represents the hexadecimal value of the input file word; and

where:

T represents the HILO output file; 0003 represents the decimal address of the output file

word; 0,3 represents the beginning and ending bit positions of the discrepant four-bit stringin -

the output file; and 2000 represents the hexadecimal value of the output file word.

The discrepant output is piesented in hexadecimal word format but, nevertheless, represents the
High-Low formatted output from the HILO DUMP program execution. In addition, the discrepancy
is noted by the difference in hexadecimal word-values 0000 and 2000. When there exists no dis-
crepancy, both hexadecimal word-values are 0000 and, as a result, are not printed out or displayed
on the system console.

LOAD (LO) Option. Selection of the LOAD option causes a previously created BNPF or
High-Low formatted file to be converted into an output file which can be used to program
PROMs using the PROM Programming Module (i.e. the hardware module). Refer to the TXDS
(TXPROM) Programmer Utility Program section in the TXDS Programmer.s-Guide, manual number
946258-9701.

11.3.3.3 Bias (B<bias>) Option. The Bias option supplements the DUMP and COMPARE options.
It defines the number to be added to the address of the relocatable data in the input file as well as
to the relocatable data itself for the purpose of producing the output file or for the purpose of com-
paring the input file to the output file. The BIAS option has no effect on nonrelocatable object
module data. The default-substitute produced by the utility program is 0. An example of the use of
the Bias option is presented in paragraph 11.5.5. The bias must immediately follow the B.

11.3.3.4 Initialization (I<init>) Option. The Initialization option is used to initialize the buffer
area into which the input file’s standard object code is to be read. This initialization is done prior
to converting the input file to the BNPF or HILO format so that each bit position initially contains
a 1 or 0. Unused sections of the buffer are also initialized. The default substitute provided by the
utility program for the Initialization option is 0. The operator must enter a 0 or 1 immediately after
the I. Whenever a number other than 0 or 1 is specified an error results. An example of the use of
the Initialization option is presented in paragraphs 11.5.3 and 11.5.4.

11.3.3.5 Position (P<pos>) Option. The Position option specifies the first bit of the four-bit string

from each of the input-file-words (which are in the format of standard object code) that are to be ’

converted to the HILO format. A Position option number from 0 through 12 is selected by the
operator to supplement the HILO option selection. The selected number specifies the position
number of the start-bit of the four-bit string of the 16-bit word from the input file’s standard object
code. An example of the use of the Position option is presented in paragraph 11.5.3. The bit
position parameter must immediately follow the P.

e

11-6 Digital Systems Division

Y

C

%@ 9462589701

11.3.4 RESPONSE TO THE MEMORY: PROMPT. The operator’s response to the MEMORY:
prompt is used to specify the bounds for a BNPF or HILO format. These bounds must be word ad-
dresses (even) for HILO format, but may be byte addresses for BNPF format. The first boundary is the
address of the first word or byte to be formatted. The second boundary is the address of the last
word or byte to be formatted. The boundaries must be separated by a comma. When the addresses
are hexadecimal, they must be preceded by a ‘>’ character. It is not necessary to format a whole
object module.

Following is an example of a BNPF format MEMORY: prompt. The module was assembled using an
AORG >AO0 directive which causes the assembler to generate absolute addresses starting at >AO.
The module is >6C bytes long.

MEMORY: >A0, >10B

>AQ is the address of the first byte to be formatted and >10B is the address of the last byte to be
formatted.

Following is an example of a HILO format MEMORY: prompt. The module was assembled as a
relocatable module. The module is >5E bytes long.

MEMORY: 0, >5C
The address of the first word is zero, the address of the last word is >5C.
NOTE

The starting and ending address may be obtained from an assembly
listing that is generated with the object module.

In the event the end address entered in response to the MEMORY: prompt exceeds the capacity
of memory, the CANNOT GET MEMORY error message is printed or displayed on the system
console.

11-7 _ Digital Systems Division

946258-9701

NOTE

]
1. The HILO option produces an error message when a byte
boundary is specified.
2. The MEMORY: prompt is not issued when the LOAD option
is used.
11.4 ERROR MESSAGES
The error messages that result from misuse of the BNPFHL utility are listed in table 11-1 with an
explanation of the cause of each error.
11.5 EXAMPLES OF USAGE OF THE BNPFHL UTILITY PROGRAM
Six examples of usage of the BNPFHL utility program are presented in the following subparagraphs.
The standard object code used in each of the examples is presented below.
TX990 9b 2.3.06b78.244
MEMORY SIZE (WORDS): 24576 AVAILABLE: 12844
!
.EX, 16.TE.
TXDS 1562.3.06H78.244
PROGRAM: :TXCCAT/SYS
INPUT: DSC2:LIGHTS/OBIJ
OUTPUT: LOG
OPTIONS: SLOI. LF55 -
TXCCAT 8b2.3.06b78.2445bCOPY/CONCATENATE 4
.
00058LIGHTS A0000C0039C0006B0O000B0200BFFFFB06A0C0022B0910B17FC7F1EAF LIGH0001
BO6A0C0022B0OA10B17FCB16F7B06A0C0022B10F2B020CB1 FEOB3200B06C0B32007F193F LIGH0002
B06C0B0201B1000B0601B16FEB045BA00387F840F LIGHO0003
50006 LIGHTS7FDO037 LIGHO004
LIGHTS 02/25/77 07:23:01 SDSMAC 2.3.0b LIGHO0005
i
11-8

Digital Systems Division

946258-9701

Table 11-1. BNPFHL Error Messages

Message
UNABLE TO OPEN FILE

I/0 ERROR ON INPUT
FILE

I/0 ERROR ON OUTPUT
FILE

BIT VALUE TOO LARGE.
MUST BE > C OR LESS

ILLEGAL FUNCTION COM-
MAND

REQUIRED PARAMETER
MISSING

INIT VALUE GREATER
THAN 1

UNABLE TO OPEN OUT-
PUT FILE

ILLEGAL NUMBER INPUT

ADDRESS WAS NOT ON
WORD BOUNDARY

BAD OBJECT FORMAT

ABORT; SYSTEM ERROR

FROM XOP

START ADDRESS GREATER
THAN END ADDRESS

CANNOT GET MEMORY

START GREATER THAN END
OR LENGTH > 256 WORDS

Cause
The specified input file does not exist.
The input file cannot be read.
The output file cannot be opened and/or
written to.
The position parameter exceeds Cyg.
The first parameter after the OPTIONS:
prompt is not HILO or BNPF.

The second parameter after the OPTIONS:
prompt is not DUMP, COMPARE, or LCAD.

_The initialization parameter is not O or 1.

The specified output file does not exist.

One of the numeric parameters is not a legal
number.

One of the addresses after the MEMORY::
prompt does not begin on a word boundary.
This error occurs only with the HILO option.

The input files does not contain legal object
code.

A system error flag was returned from an
XOP. The flag value is printed above the error.

The first memory parameter is larger than the
second memory parameter.

Cannot get memory to run.

The starting address after the memory:
prompt is larger than the ending address -
or the difference between the two is greater
then 256. (This applies only to HILO
format.)

11-9 Digital Systems Division

946258-9701

11.5.1 EXAMPLE OF BNPF FORMATTED DUMP USING DEFAULT SUBSTITUTE

HI/LO

PARAMETERS.
TXDS 2.3.0 78.244
PROGRAM: :BNPFHL/SYS
INPUT: DSC2: LIGHTS/OBJ
OUTPUT: DSC2: TEMP/OBJ
- OPTIONS: BN, DU
TXBNPF 2.3.0 78.244 TXBNPF
MEMORY: 0.>58
TXDS V.R.E. YY.DDD

UTILITY

0 EMMHMMMMMNFE BMHFFEMMNFE EHHMNHMMENNE BHHHMHEFHE BHMMMMMHNE BHMEMMMMMNE
E'f‘if"lf'ﬂ"ll‘if‘iFHF EMHHMMHHMME EFFFPFFPFFFF BEFFFFFFFPF

[

L e U T
Pl S NN A X]

At
G0 X e a0 T

RIRIS ISR IS IR RIS
EMMHMMFRMNFE
EMMMFPNFFFF
EMHMMMMHMMMFE
EMMMFFPFRFFF
EMMFFMMFMF
EMMMHEHMMMF
ErMHHMMHFMMF
| d8lsISIsISIRIS IS
EMMHMHMMMHMMFE
EMHAMHMMME
EMMMHMMMHMNFE
EHHMHMAHMMMNF

EMHFHHHPHF
EFHFHMMMNE
EFFFFFFNNF
EMHFHMMFHF
EFFPHMMMME
EMHHMMMHNE
EMMHMHNMNNFE
ENFNFPNFRF
ENHMMMNANF
EMMHMHMMHNE
EMMMMHNNNF
EMMHHMMMME
EMMMHNNMNME

EMMHHFPMHFF
EMHHMHMMMMNF
EMMHMFPNFFPNF
EMMMPHMMMNF
EMHMFRHNFHF
EHMMMMEFRHF
EMMHMMMFFNF
EMMMHMHMHMMNMFE
EMHMMMHMHMMMF
EMMHMMHMMMMFE
EMMHMMHMMMMF
EMMHHMMMNMF
EMMMMMMMMF

EMMHFMMMNMF
EMMHFPHMMEHF
EFFFENFPRF
EFFFFMMFMF
EMHMMHMHMMNMHMNFE
EFFMMHMMMHHF
EMHMMHMMHNEF
EMMHMMHMHNMMFE
EMMHMMHMHMME
EMMMHMHMHMMFE
EMPMMMHAMMNFE
EMHMMHMMAMMMF
EMMMHMMMMNF

EMMHFHFFFF
EMMMMHFMFNFE
EMMMHMERENF
EMMHMHMMENF
EMMHHHFPPNF
EMMHMHMHPME
EMMMHEMFRNF
EMMHMMMMMMHFE
EMHMMMMMMMF
EMHMMHMMHMMF
EMMMMMMMMF
EMMMMHMMMMF
EMMMMMHMHNF

EMMMMHMFFRMFE EFMHFHMHMNMNNF

EFFFPFFMME
EMMHFHMHAF
EFNFHHNNNF
ENMMHFFNNF
EFFPNHNNNNE
EMMHMMNNFF
EFFFPFPFNF
EMMHMMMMNFE
ENMHMMHNHNF
EMMHMMMNNE
EMMHNMMHAF
EMMHMMMHNF

11-10

4

=

Digital Systems Division

946258-9701

11.5.2 EXAMPLE OF HILO FORMATTED DUMP USING DEFAULT SUBSTITUTE.

TXDS

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

230 78.244

: BNPFHL/SYS

DSC2:LIGHTS/OBJ
DSC2:TEMP/OBJ

HI,

TXBNPF V.R.E.
MEMORY:0, >58

TXDS

PROGRAM:
INPUT:
OUTPUT:
OPT!ONS:
TXCCAT

tLLe
LLLH
LLLH
LLLH
3oLl
040-047 LLbL
042-05% LLLL
LLLL
Lo
Ll
LLeL
Ll
Lt
LLLL
LLLL
LLLL
LLLL
LLiL
LLLe
LLLL
LLLL
LLLL
LLLL

nzz-0

NSa—1s

Ll
LLLL
LLLL
LLbb
LLee
LLee
Lt
LLLL

DU

YY.DDD TXBNPF HI/LO UTILITY

2.3.0 78.244

TXCCAT/SYS
DSC2:TEMP/OBJ
LOG
SLO1,LF55

2.3.0 78.244 COPY/CONCATENATE

LLLe
LLLte
LLLL
LLLL
LLLL
LLLe
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLet
LLLL
LLLL
Lt
LLLL
LLLL
LLLL
LLLL
LLLe
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL

LLLL
LLLe
LLLH
LLLH
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLbL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL

Lol
LLLL
LLHH
LLLL
LLLL
LLLL
LLLL
LLLL
LLietb
LLee
LLLL
LLLL
LLLL
Leet
LLLL
LLLe
LLLL
LLLL
LLLL
LeLe
LLee
LLLL
LLLL
LLLL
LLLL
LLee
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL

HHHH
LLLH
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LiLL
LLLL
LLLL
LLLL

LLLL,

LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLee
LLLL
LLLL
LLLe
LLLL
LLeb
LLLL
LLLL
LLeL
LLLL
LLLL

LLLL
LLLH

LLLtL

LLLL LLebb
LLLL LLLL
LLLL LLLL
LLLL LLLL
LLLL Ll
LLLL LLLL
LLLL bLeetb
LLLL LLLL
LLLL LLLL
LLLL LLLb
LLLL LLLL
LLLL LLLL
LLLL LLLL
LLLL LLLb
LLLL LLLL
LLLL LLLL
LLLL LLiL
LLLL LLLL
LLLL bLet
LLLL LLLL
LLLL LLLL
LLLL Leetb
LLLL LLLL
LLLL LLLL
LLLL LLLL
LLLL LLLL
LLLL LLLL
LLLL LLbb
LLLL LLLL
LLLL LLLL
LLLL Liet
LLLL LLtL

1111

Digital Systems Division

946258-9701

11.5.3 EXAMPLE OF HILO FORMATTED DUMP BEGINNING AT POSITION 4 AND OF

INITIALIZING THE BUFFER TO ALL BINARY ONES

TXDS

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:
TXBNPF V.R.E.
MEMORY:0, >58

TXDS

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

TXCCAT

ooo=-0n0y7
Dos-01s

030-037
042-05S

ns x

LLLL
LHHH
LLLL
LLLL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

2.3.0 78.244

: BNPFHL/SYS
DSC2:LIGHTS/OBJ
DSC2:TEMP/OBJ
HI,DU,11,P4

230 78244

: TXCCAT/SYS

DSC2:TEMP/OBJ
LOG
SLO1, LF55

2.3.0 78.244 COPY/CONCATENATE

LLLL
LHHL
LLHL
LHHL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

LLLL
LLLL
HHHH
LHHL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

LLHL
H_HL
LLHL
LHLL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

HHHH
LHHH
LHHL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

LHHL
LHHL
LLHL
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

YY.DDD TXBNPF HI/LO UTILITY

LLLL HLLH
LHHL LLLL
LHHL LLHL
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH

11-12

Digital Systems Division

P

o
{@? 9462589701

11.54 EXAMPLE OF A HILO COMPARE WITH DISCREPANT DATA. The file generated in the
example in 11.5.3 is compared to the first hexadecimal number in the words of the standard object
code file (positions 0-3) instead of the second hexadecimal number in the words of the standard
object code file {positions 4-7) that was used in generating the file presented in paragraph 11.5.3.

TXDS 2.3.0 78.244
PROGRAM: : BNPFHL/SYS
INPUT: DSC2:LIGHTS/OBJ
OUTPUT: DSC2:TEMP/OBJ
OPTIONS: HI,CO0,I1

TXBNPF V.R.E.
MEMORY::0, <58

YY.DDD TXBNPF

ILLIGAL NUMBER INPUT
TXDS 23.0 78.244
PROGRAM: :BNPFHL/SYS
INPUT: DSC2:LIGHTS/SYS
OUTPUT: DSC2:TEMP/OBJ
OPTIONS: HI1,CO,I1
TXBNPF V.R.E. YY.DDD TXBNPF

MEMORY:0, >58

M0003. (0,3)=0000
MQ007. (0,3)=0000
M0009. (0,3)=0000
MO00GC. (0,3)=1000
MOGOE. (0,3)=0000
MO0011. (0,3)=0000
M0013. (0,3)=3000
M0015. (0,3)=3000
M0017. (0,3)=0000
MO00189. (0,3)=0000
MO0O018B. (0,3)=0000
TXDS

T0003. (0,3)=2000
T0007. (0,3)=9000
T0009. (0,3)=6000
T000C. (0,3)=7000
TOOGE. (0,3)=6000
T0011. (0,3)=2000
T0013. (0,3)=2000
T0015. (0,3)=2000
T0017. (0,3)=2000
T0019, (0,3)=6000
T0O01B. (0,3)=4000

2.3.0 78.244

HI/LO UTILITY

HI/LO UTILITY

MO0005. (0,3)=0000
M0008. (0,3)=1000
MOQGB. {0,3)=0000
MO0O0GD. (0,3)=1000
M0010. (0,3)=1000
MO0012. (0,3)=1000
MO0014. (0,3)=0000
MQ016. (0,3)=0000
MO0018 (0,3)=1000

MOO1A (0,3)=1000

T0O05. (0,3)=600C
T0003. (0,3)=7000
TOO0OB. (0,3)=A000
TOO0OD. (0,3)=6000
T0010. (0,3)=00C0
T0012. (0,3)=F000
T0014. (0,3)=6000
T0016. (0,3)=6000
T0018. (0,3)=0000
TOO1A. (0,3)=6000

11-13

Digital Systems Division

o
@ 946258-9701

11.5.5 EXAMPLE OF A BNPF FORMATTED DUMP WITH BIAS 100 @

PROGRAM: :BNPFHL/SYS
INPUT: DSC2:LIGHTS/SYS
OUTPUT: DSC2:TEMP/OBJ
OPTIONS: BN,DU,B100
TXBNPF V.R.E. YY.DDD TXBNPF HI/LO UTILITY
MEMORY:0, >58
TXDS 23.0 78.244

PROGRAM: TXCCAT/SYS
INPUT: DSC2:TEMP/OBJ
OUTPUT: LOG
OPTIONS: SLO1,LF55
TXCCAT 2.3.0 78.244 COPY/CONCATENATE

100 BMHMMHMMHHMFE EFMMFPEMHFE EMHMMHMHMMMFE BHFFHFHPNFE BENHNHHMMME BNMHMHMNMME
105 BHHHMHMPHFE BEMMMMMMMNF EPPFFRFFPRF EFFFFPPPPPF EMMMMHMPRENFE EPHFMHMHMHMMF
112 EMMHMHNMMF BRFHNHMFFNF EHMHMHMFHMFF EMHMFNMHMF - EMMMPMPFRF EFFFPFPNHF
113 BHHHMHFPMFE BPMFPMMMNME BEMMHMMMMHMMFE EFHHMHNPENFE BEMMMMEMPHFE EMMMFNMMMF
124 BHHMFHFFFPF EFFFPFPPHMF BMHMFHMFFMF BFFFFMFFPFF EHMHMMMFRNF EFPMFPHMMMME
120 BMMMHMMMHHF EPMHMHFPHE - EMMHFHMNMFE BPFRPPHHFPNF ENMMMMHNFMFE ENMNMFPPHMF
125 EMMHFRPPRF EPFFMHMMHMF ENMMFFHMFPNFE EMNMMHMMHNMFE - BHHNMMEFPNE ERPHNMNMMF
142 EMMPPMMPMF EMMMMMHMMME EHHMMNERENFE BPPNMMMHMNMF BEMMHMMMMFNFE EMMMMNMNPE
143 BHMMPHMMMF BHMMMMNMNFE BHHHHHEFNFE EMMHMHMMNPF EHMMHFHFFENF EPFPPFPPMF
154 BHHMMMFHHF BHPMPEMFEFE BHMMHEHMHNE BNHNMNHNMHFE BHMMHMMHMMNF BHHANMNMMMF
150 BHHMHMMMHNE BMHMHNMMNEE EMHMHHMHMMEMFE EMHMMNHHNE BHMMMHENMHNFE EHMMMNMNNMME
156 BHMMMMMHMNE . BHMMMMNHMFE BHHHMMNANE BHMHNNHNHNFE BNMMNHNMNE BHMMHMMMMMNFE

172 BHMHMMHHMHMF EMHMMMMMMNE BHHMMNMMNME BMNMMNHENE BEHMHMMMHNNE EMHNNNMMNNE

173 BMMMMMMMMFE BHMHMMMEHFE EHHMNMNNNFE BHHHMMNNHNE BHMMHMMNMMFE BHMNMMMMNE

1594 EMMHMHMMME BMMMMMMEME EMHNAMMNNE EHHHMMHMNE BHMMMMNMMNE

T .

N

11.5.6 EXAMPLE OF A BNPF COMPARE WITH DISCREPANT DATA. The BNPF file which is
used is the one created in paragraph 11.5.5 with Bias option 100; however, the COMPARE was
performed without the Bias option.

TXDS 23.0 78.244

PROGRAM: :BNPFHL/SYS
INPUT: DSC2:LIGHTS/OBJ

OUTPUT: DSC2:TEMP/OBJ

OPTIONS: BN,CO
TXBNPF V.R.E. YY.DDD TXBNPF HI/LO UTILITY .
MEMORY:0, >58
BEG ADDR=0064
T0064=90 M0064=38 TO0064=6A MO0064=06
T0070=86 MO0070=22 .
T0076=86 MO0076=22
T0082=86 M0082=22
END ADDR=0058
TXDS 2.3.0 78.244

* C
PROGRAM:

11-14- Digital Systems Division

é_@’? 946258-9701

TXDS IBM CONVERSION UTILITY (IBMUTL) PROGRAM

SECTION XII

12.1 INTRODUCTION _

The IBM Conversion Utility (IBMUTL) Program provides a means of transferring standard IBM
formatted diskette datasets to TX990 files and transferring TX990 files to standard IBM for-
matted diskette datasets. IBMUTL also provides a means of formatting diskettes to standard IBM
specification for a single density diskette as designated in ‘“The IBM Diskette For Standard Data
Interchange”, GA21-9182-0.

12.2 IBMUTL DESCRIPTION)
IBMUTL allows the user to read or write datasets on an IBM formatted diskette in a form that
can be read and used by systems and devices that are based on IBM sequentially sectored diskettes
using the EBCDIC character set. The IBM formatted diskette may already contain datasets created
by another process or may have been newly formatted by this utility or other means. All pre-
existing datasets will be preserved.

12.2.1 FORMATTING IBM DISKETTE. The diskette is formatted to IBM format by entering
the format command. If more than two bad tracks are found, or if track zero is bad, the diskette
is unuseable and another diskette should be used. Track zero contains the dataset headers (sectors

8-26) and other information about the diskette (sectors 1-7). The dataset headers are written to
include namne, record length, beginning of extent (BOE), end of extent (EQE), and end of data
{EOD) fields only. All others are left in the initialized state (blank).

12.2.2 TRANSFERRING TX990 FILES TO IBM DATASETS. TX990 files that are to be con-
verted to IBM format must be specified by the operator with a standard TX990 pathname. The
new dataset will begin with the first available label following the last used label in the IBM diskette
directory. Empty labels between used labels are skipped by this directory. The name of the new
dataset may be the same as an already existing dataset but the existing dataset will not be replaced.

12.2.3 TRANSFERRING IBM DATASETS TO TX990 FILES. The operator must specify the
desired dataset label and the TX990 pathname. The dataset labels from the IBM diskette are dis-
played when the transfer command is entered. If the TX990 file does not already exist,
it will be created as a noncontiguous sequential file. If two datasets have the same name,
only the first dataset may be accessed by this utility.

12.3 LUNOS AND THEIR USES

This utility uses the console device assigned to LUNO 15,4 as the interactive device. If LUNO 15,4
is not assigned, the system console is used. LUNO 11,4 is assigned to the drive in which the IBM
diskette is mounted; LUNO 10,¢ is assigned to the TX990 file.

12.4 LOADING AND EXECUTING
IBMUTL can be executed using OCP or the Terminal Executive Development System (TXDS).
If OCP is used, follow the procedure below:

1. Ready the device which contains the object program for IBMUTL.

2. Load the program into memory using OCP. IBMUTL must be loaded as a privileged
task. :

12-1 Digital Systems Division

o]
%@ 946258-9701

LP,CS1,3,P. if loading the IBMUTL object program from
cassette drive one as a privileged task

LP,.IBMUTL/SYS,3,P if loading the IBMUTL object program from
the system diskette drive, file :IBMUTL/SYS,
as a priority level 3 privileged task

3. Execute the program, and terminate OCP.

EX,10.TE.

If the IBMUTL object program is linked into the system, omit steps 1 and 2 and simply
execute the task using the task ID assigned to it at that time.

If the TXDS control program is used, follow the procedure below:
1. Ready the device which contains the object program for IBMUTL.
2. Enter the name of the device or file which contains the object program in response to
the PROGRAM: prompt. Specify IBMUTL to be loaded as a privileged task by following

the device or file name with P”

PROGRAM: CS1,P* if loading the object program on cassette drive
one and executing as a privileged task

PROGRAM::IBMUTL/SYS,P* if the object program in the file :IBMUTL/SYS
on the system diskette drive and executing as a
privileged task
12.5 OPERATOR INTERACTION

12.5.1 SPECIAL CHARACTERS. There are two special characters recognized by IBMUTL. They
are as follows:

* When entered in response to a prompt and followed by a carriage return, IBMUTL is
terminated.

& When entered in response to a prompt and followed by a carriage return, IBMUTL
restarts by requesting the IBM diskette drive name.

12.5.2 OPERATOR PROMPTS. When the task has been loaded and executed, the task name and
revision level are printed followed by a request for the IBM floppy diskette drive name.

IBMUTL V.R.EE. YY.DDD IBM DISKETTE CONVERSION UTILITY
DISKETTE DRIVE NAME:

RPG Conversion is selected by a Yes to the prompt.
ARE THESE RPGII FILES? Y/N

The required service is selected in response to the next query.

SERVICE? F=FORMAT. T=TRANSFER:

12-2 Digital Systems Division

C

@ 946258-9701 .

When format is selected, no further interaction is necessary. The format process is executed to
completion and the following messages are displayed.

FORMAT IN PROGRESS . . .
FORMAT COMPLETE.
The utility will then request the IBM diskette drive name again.

When one of the transfer services is selected, the IBM diskette is checked for proper format and a
list of the labels is displayed. When the IBM format is found to be incorrect, a message is displayed
and the diskette name request is repeated. (Operator responses are underlined; (C/R) represents a
carriage return). Upon responding with a ‘“T” for the transfer function, the following messages
are output:

- FILE1 All dataset labels on the IBM format diskette are listed.

FILE2

FILE3
NOTE

While listing the dataset labels of the IBM formatted diskette, blanks
are printed when a dataset is encountered in which the label contains
all blanks.

or,

** DISKETTE NOT IBM FORMAT ** - Specified diskette is hot an IBM formatted '
diskette.

At this point, if the format is correct, the program is ready to perform the transfer operation.
The direction of transfer is established by response to the next query.

FUNCTION? F=FILE TO DATASET, D=DATASET TO FILE: F

or D

Whether or not an “F” or a “D” is selected, the next question asked is:
CHARACTERS PER RECORD? 2 MIN. - 128MAX: 80(C/R)

When only a carriage return is entered, the default value is 80 characters per record, and the
prompts for packed decimal are skipped.

ARE THERE ANY PACKED DECIMAL DATA FIELDS? Y/N: y
n

This prompt appears if the DATASET TO FILE
function was selected.

12-3 Digital Systems Division

]
%@ 9462589701

SPECIFY STARTING POSITION IN These two prompts appear only as a result of a Y
RECORD: response to the packed decimal prompt. The user
SPECIFY ENDING POSITION IN inputs the leftmost and rightmost character posi-
RECORD: tion of the packed decimal field. The utility then

repeats these prompts until a null value is entered.
Numeric values in the range of 0-128 inclusive are

permitted. Numbers need not be justified. Leading
and trailing blanks are acceptable.

The field selected here will not be converted by
the utility. Binary fields should also be specified.

The TX990 user file pathname and IBM dataset names are requested next:

USER FILE PATHNAME: DSC2:SOURCE/ABC(C/R)

DATASET NAME: SOURCE(C/R)

FILE TRANSFER IN PROGRESS. . .

Pathname can be defaulted to the first six characters of the dataset name when transfer is dataset
to file; or when transfer is file to dataset, the dataset name can be defaulted to the file name portion |
of the pathname. The default substitute is specified by a carriage return (C/R) response to the '
query. Pathnames that are preceded by a colon are defaulted to the system diskette drive. '

When the IBM diskette is not filled at the completion of converting the specified file, IBMUTL
requests the record size again.

MOUNT NEXT VOLUME, REPLY ”C”” WHEN READY: ¢

When reading multivolume diskettes, this message
appears at the end of any volume expecting a
continuation of another volume. Reply after
changing the diskette. Multivolume diskettes
cannot be created with this utility.

Many of the preceding prompts will be requested
for succeeding volumes.

TRANSFER COMPLETE: Indicates successful completion of the transfer
function. The utility then prompts for the number
of characters per record for the next dataset.

When it is desired to reverse the transfer function or change the drive on which datasets are being
accessed, an ampersand (&) symbol reply returns the program to the point where the diskette
name is requested:

" USER FILE PATHNAME: ' &(C/R)

12-4 Digital Systems Division

20N

o
%@ 946258-9701

Responding with an ampersand (&) returns program control to the initial user prompt:
DISKETTE DRIVE NAME:
If the user enters an asterisk (*), IBMUTL terminates with the following message;
UTILITY SERVICE TERMINATED
12.6 ERROR REPORTING AND RECOVERY
Errors encountered during execution of IBMUTL are reported to the operator in accordance with

table 12-1. Whenever recovery from such errors is possible, the program returns to a logical restart
point and continues its function.

12-5 Digital Systems Division

9Tl

uossiag swesAs (eybig

Message

** DISKETTE NOT IBM FORMAT **

PATHNAME UNDEFINED

DISKETTE DIRECTORY FULL

TOO MUCH DATA

MORE THAN 2 BAD TRACKS,
FORMAT ABORTED

DISKETTE ACCESS ERROR nn

FLOPPY DISK ACCESS ERROR nn

I/O ERROR nn

DATASET NAME NOT FOUND

Table 12-1. IBMUTL Error Messages

Meaning

Specified diskette is not an IBM format diskette.

Illegal pathname has been entered.

An attempt to exceed the maximum number of

datasets (19) allowable per IBM formatted diskette.

Data capacity of IBM format diskette has been
exceeded. Last file is labeled as an empty dataset
and transfer is terminated.

Bad diskette.

Error encountered while accessing TX990 user

file. Refer to Error Appendices for error code nn.

Error encountered while accessing IBM dataset.
Refer to Error Appendices for error code nn.

I/O error encountered during program execution.

Refer to Error Appendices for error code nn.

Specified dataset name not found on diskette.

Recovery
Insert a properly formatted diskette in specified
drive, or return to diskette name request (enter

“&”’) and input correct drive name.

Validate pathname and reenter.

Program control returns to diskette drive request.

Install new IBM format diskette and retry trans-
fer function.

Program control returns to diskette drive request.

Install new IBM format diskette and retry trans-
fer function. '

Program control returns to diskette drive request.

Install new diskette and retry format function.

Program control returns to diskette drive request.

Respond according to individual error code.

Program control returns to diskette drive request.

Respond according to individual error code.

Program control returns to diskette drive request.

Respond according to individual error code.

Program control prompts for dataset name
again. Respond with correct dataset name.

. 10L6-85T9V6

o
@ 9462589701

TXDS ASSIGN AND RELEASE LUNO UTILITY PROGRAM

SECTION XIII

13.1 INTRODUCTION .

The TXDS LUNO Utility provides a means of assigning and releasing Logical Unit Numbers
(LUNOs) without having OCP linked in with the TX990 operating system. This capability is
especially necessary in order to execute FORTRAN programs without OCP.

13.2 LOADING AND EXECUTING
The LUNO utility is executed through the TXDS Control Program, by responding to the
PROGRAM: prompt in the following manner:

PROGRAM: :TXLUNO/SYS* <cr>

13.3 OPERATOR INTERACTION
When the LUNO utility starts execution, it displays the following identification message:

TXLUNO V.RE YY.DDD ASSIGN/RELEASE LUNO UTILITY

13.3.1 OPERATOR PROMPTS. After the heading is displayed, the LUNO utility displays two
prompts, in the following order:

LUNO?
PATHNAME?

The user enters the logical unit number being assigned or released in response to the LUNO?
prompt. LUNOs may range from O to 255. If the user desires to enter a hexadecimal value, it must

be preceded by a ‘>’ sign.

If the LUNO is being assigned, the user enters the pathname of the file or device to which the
LUNO is to be assigned in response to the PATHNAME? prompt. If the LUNO is to be released,
the user should enter a carriage return in response to the PATHNAME? prompt.

The following example assigns LUNO 33 to a file and releases LUNO A;¢. User responses are
underlined.

PROGRAM: :TXLUNO/SYS * <cr>

TXLUNO V.R.E YY.DDD ASSIGN/RELEASE LUNO UTILITY
LUNO? 33 <cr>

PATHNAME? VOL2:TASK1/SRC <cr>

LUNO? >A <cr>

PATHNAME? <cr>

LUNO? *<cr>

13-1 Digital Systems Division

[o]
@ 946258-9701

13.3.2 SPECIAL CHARACTERS. The LUNO utility recognizes two special characters which may
be entered in response to a prompt: ¢

=

* Terminates the utility.
& Restarts the utility at the LUNO? prompt.

13.4 ERROR MESSAGES AND RECOVERY
The LUNO utility may return the following error message:

I/O ERROR, nn
where nn is one of the I/O error codes in APPENDIX D.

To recover from the error, retry the LUNO Assign or Release operation.

C

13-2 Digital Systems Division

o
@ 946258-9701

APPENDIX A

GLOSSARY

Digital Systems Division

@ 946258-9701

APPENDIX A

GLOSSARY

Boot Program — A program that loads the Operating System into memory and starts the Operating
System executing.

COMMON — An area of memory which may be coded by use of the TXDS Control Program and
the system console keyboard (e.g., a 733 ASR, a 911 VDT) or by means of a task-specified-
code and then made accessible for use by a task through the Get COMMON Data address
supervisor call. The size of the system COMMON memory area is determined by a system
parameter specified when the system is generated.

Default-substitute — A substitute pathname, or field of a pathname, provided by some utility
programs when the program or keyboard-entry does not supply the data.

Device Name Table — A table accessed by the File Management supervisor call to obtain the address
of the Physical Device Table (PDT) corresponding to a device name. Contains all device names
defined in the system and addresses of the PDTs for the devices.

Device Service Routine — A routine of the TX990 Operating System that controls I/O operations
with a device.

DNT — Device Name Table.
DSR — Device Service Routine. -

Dynamic Task Area — The area of memory occupied by task 104¢. Task 10,4 can be loaded by
using the Operator Commur_lication Package (OCP) or the TXDS control program.

End-of-file — A record in a file (either logically or physically) that marks the end of the file. The
character sequences that denote end-of-file for the file-oriented supported devices are shown in
Appendix B.

End-of-record — A character of a record that marks the end of the record. The characters that
denote end-of-record for supported devices are shown in Appendix B.

EOF — End-of-file.

EOR — End-of-record.

GENTX - The system generation task, which obtains system parameters interactively from the
keyboard of the LOG. GENTX builds source statement files from which modules TXDATA
and TASKDF are assembled.

IDT — Program identifier of the source module.

Initial Program Load — The loading of a TX990 system placing the module in memory and starting
execution of the system.

A-1 Digital Systems Division

@ 946258-9701

I/O Supervisor — The portion of TX990 that processes I/O supervisor calls, and passes control to
the Device Service Routine (DSR) for the device. d

IPL — Initial Program Load.

Keyboard Status Block (KSB) — A data structure in TXDATA used for character mode I/O with a
VDT. TXDATA includes a KSB for each VDT.

KSB — Keyboard Status Block.

LDT — Logical Device Table.

Logical Device Table (LDT) — A table in TXDATA that contains a Logical Unit Number (LUNO)
and the address of the Physical Device Table (PDT) that corresponds to the device assigned to
the LUNO.

Logical Unit Number (LUNO) — A number by which an I/O operation specifies the device for the
operation.

LUNO — Logical Unit Number.
OCP — Operator Communication Package.

Operator Communication Package (OCP) — A package of modules that contains the routines
for the commands by which the operator or user communicates with TX990.

PC — Program Counter.

£

PDT — Physical Device Table.

Physical Device Table (PDT) — A table in TXDATA that contains device-related data required by
the Device Service Routine (DSR) in an I/O supervisor call for the device.

Program Counter (PC) — A register in the computer hardware that contains the address of the next
instruction to be executed.

Status Register — A register in the computer hardware that contains condition bits and the inter-
rupt mask.

Supervisor Call Block — A block of memory that defines a supervisor call, addressed by the super-
visor call instruction. The code of the supervisor call is in byte O of the supervisor call block.
The number of additional bytes (if any) and the content of the additional bytes are defined for
each supervisor call. .

Supervisor Call Table — A table in TXDATA in which entry points to supervisor call routines are
listed in a supervisor call code order. :

Task Data Division — One of two logical divisions within a task. The data division contains one or
more workspaces, data structures, supervisor call blocks, and data for the task. A data division
may or may not be assembled separately from the procedure division of the task, and is not
shared with any other task.

Task Management — Task Management maintains a state code for each task. The state codes are @(
listed in Appendix C. -

A2 ! Digital Systems Division

946258-9701

Task Scheduler — Initiates execution of a user task. When the currently executing task completes
a time slice, the task scheduler passes control to the oldest task on the active list for the
highest priority (0). If there is no task on the active list for priority O, the oldest task on the
active list for the next highest priority receives control.

Task Status Block (TSB) — A data structure in TXDATA used by the TX990 Operating System to
control execution of the task.

Task Time Delay — The result of a task executing a Time Delay supervisor call. The Time Delay
supervisor call suspends the calling task for a specified number of 50 ms periods.

Task Time Slice — A period of execution of a task having a maximum length defined when the
system is generated. A task time slice begins when the task scheduler passes control to the task.
A task time slice ends: (1) when the system suspends the task upon expiration of the
maximum time period allowed for a task time slice; (2) when the task executes a supervisor
call that suspends the task; (3) when the system suspends the task to await completion of an
I/O operation. To avoid completely locking out low priority tasks, there is a maximum number
of consecutive time slices (weighting factor) for each priority level. When the number of time
slices has been used by a priority level, the oldest task on the active list for the next lower
priority is allowed a time slice before the higher level again has control. The maximum number
of time slices for each priority level are system parameters defined when the system is
generated. The maximum period of a time slice may be extended by execution of a Do Not
Suspend supervisor call. The time slice is less than the maximum time period when the task
suspends itself, or is suspended awaiting completion of an I/O operation.

Task Weighting Factor — A count of task time slices for a priority level. When the number of task
time slices specified as the weighting factor for priority level has been used by tasks at that
priority level after a task at a lower level has had control, a task at a lower priority level
receives control for a time slice.

Task Area, Dynamic — Memory area where task 10 resides (see Dynamic Task Area and Task, Uses,
Loading of).

Task, Bid — To start execution of a task causing the TX990 Operating System to enter the task on
the active list according to its priority level.

Task, Debugging of a — The process of removing errors from a task.

Task, Diagnostic (DTASK) — A system task that terminates a task when fatal errors occur in the
task, and prints an error message.

Task, Executing a — Controlling the processor and the resources of the computer.

Task, Linked — Consists of separately assembled modules that have been combined by resolving
external references and definitions in the modules to form a singie executable module.

Task, LIST8080 — A utility task that copies 80-character records from one device to another.

Task, Loaded — A task copied from an external storage medium into the memory of the computer
in preparation for execution.

Tasks, Multiple — Two or more tasks concurrently active in an operating system.

A-3 Digital Systems Division

946258-9701

Task, Procedure Division — One of two logical divisions within a task. The procedure division
contains the executable code for the task. A procedure division may or may not be assembled
separately from the data division of the task and may be shared with other tasks.

Task, Suspended — A task temporarily removed from the active list and from execution as a result
of a supervisor call or during an I/O operation.

Task, Terminated — A task removed from execution and from the active list either at normal
completion or at an abnormal termination initiated by the operator or by the diagnostic task
when a fatal error is detected.

Task, User, Loading of — The task loaded into the dynamic task area using the OCP LPROG
command.

Task, Waiting — A task waiting for completion of an I/O operation or for a system function or
resource.

Workspace — A 16-word area of memory addressed as workspace registers O through 15. The active
workspace is defined by the contents of the workspace pointer register.

Workspace Pointer (WP) — A register that contains the address of workspace register 0.
Workspace Register — A memory word accessible to an instruction of the computer as a general
purpose register. It may be used as an accumulator, a data register, an index register, or an

address register.

WP — Workspace pointer register.

A4 Digital Systems Division

o]
@ 946258-9701

APPENDIX B

COMPRESSED OBJECT CODE FORMAT

Digital Systems Division

£

q/1-4

uoysialg swasAs [enbig

APPENDIX B

COMPRESSED OBJECT CODE FORMAT

The standard object code format under the TX990 Operating System is comprised basically of an ASCII tag character followed by one
or two ASCII fields. The first field is numeric in value and the optional second field contains a symbol. (For additional familiarity with
standard object code format, refer to the Model 990 Computer Assembly Language Programmer’s Guide, part number 943441-9701).
The first ASCII field in standard object code format is four characters (i.e., four bytes) in length which, when converted to com-
pressed object code format, is changed to binary, two bytes in length. The second field in standard object code format is left un-
changed when converting to compressed object code format. Records are terminated with the standard end-of-record tag character,
only. The beginning-of-module-tag-character is an ASCII zero in standard object code format and a binary one in compressed object
code format. This is used to distinguish between compressed and uncompressed modules. The end-of-module colon record, identified
by the colon at the beginning of the last line of the module, is unchanged. The diskette is the only device capable of supporting

compressed object code format.

Hexadecimal Representation of Standard Format

3030 3030 3854 4153 4B20 2020 2041
3030 4230 3030 4142 3032 3030 4330
3042 4330 3030 3746 3745 4546 2020

Hexadecimal Representation of Compressed Format

0100 0854 4153 4B20 2020 2041 0000
0A42 0200 4300 0042 CO00 4600 0000

Colon Record for Both Formats Hexadecimal Representation
3A20 2020 2020 2054 4153 4B20 2020

2030 3231 2F37 3720 2020 2031 323A
3A35 3420 2020

3030
3030
2020

4200
0000

2020
3332

ASCII Standard Object Code Format (e.g., from punched cards)

00008 TASK A0000B000AB020000000B00007F7EEF
TASK 021/77 12:32:54

ASCII Representation of Standard Format
00 00 8T AS K A 00
00 BO 00 AB 02 00 CO 00
0B Co0O 00 7F 7E EF

ASCII Representation of Compressed Format

.. . T AS K A .. B
B .. C. B .. F.
ASCII Representation
: T AS K
0o 21 /77 1 2: 32
5 4 .

10L6-85T9%6

AN

%@ 946258-9701

APPENDIX C
TASK STATE CODES

Digital Systems Division

AN

o
@ 946258-9701

APPENDIX C
TASK STATE CODES

The user-task supervisor calls which return one of the task state codes listed in table G-1 to byte 1
of the supervisor call block are:

® Bid Task Supervisor Call
® Activate Suspended Task Supervisor Call
® Activate Time Delay Task Supervisor Call

The user may code his program to read out the task state code to an output device or, using the
OCP STate (ST) command, the user can cause a terminal to print out the task state codes.

Table C-1. List of Task State Codes

Code
(Hexadecimal) Significance
00 Active task, priority level 0
04 Terminated task
0s Task in time delay
06 Suspended task
08 Task awaiting VDT character input
09 Task awaiting completion of I/O
0A Task queued for I/O
0B Task queued for file utility routine
oC ‘ Task on the diagnestic queue
oD Task waiting for file management completion
10 Task queued for file management

C-1/C2 Digital Systems Division

-

(f@"@ 9462589701

APPENDIX D

I/O ERROR CODES

Digital Systems Division

Ty

946258-9701

APPENDIX D
I/O ERROR CODES
Code
(Hexadecimal) . " Description
DSR ERRORS
00 NO ERROR
01 ILLEGAL LUNO
02 ILLEGAL OPERATION CODE
03 LUNO IS NOT YET OPENED
04 RECORD LOST DUE TO POWER FAILURE
0S5 ILLEGAL MEMORY ADDRESS
06 TIME OUT, OR ABORT
07 ILLEGAL DEVICE
11 DEVICE ERROR
12 NO ADDRESS MARK FOUND
15 DATA CHECK ERROR
19 DISKETTE NOT READY
1A WRITE PROTECT
1B : EQUIPMENT CHECK ERROR
1C INVALID TRACK OR SECTOR
1D SEEK ERROR OR ID NOT FOUND
1E DELETED SECTOR DETECTED
FILE MANAGEMENT ERRORS
20 LUNO IS IN USE
21 BAD DISC NAME
22 PATHNAME HAS A SYNTAX ERROR
23 ILLEGAL FUR OPCODE
24 BAD PARAMETER IN PRB
25 DISKETTE IS FULL
26 DUPLICATE FILE NAME
27 FILE NAME IS UNDEFINED
28 ILLEGAL LUNO
29 SYSTEM BUFFER AREA FULL
2A SYSTEM CAN’T GET MEMORY
2B FILE MANAGEMENT ERROR
2C CAN’T RELEASE SYSTEM LUNO
2D FILE IS PROTECTED
2E ABNORMAL FUR TERMINATION
2F SUPPORT FOR OPTION DOES NOT EXIST IN SYSTEM
30 NON-EXISTENT RECORD
31 EVENT KEY SVC TASK NOT IN SYSTEM
3B INVALID ACCESS PRIVILEGE
3E FILE CONTROL BLOCK ERROR
3F FILE DIRECTORY FULL

D-1 Digital Systems Division

946258-9701

I/O ERROR CODES (Continued)

Code
(Hexadecimal) Description

TASK LOADER ERROR
60 I/O ERROR, LOAD NOT COMPLETE
61 OBJECT MODULE CONTAINS NONRELOCATABLE OBJECT CODE
62 CHECKSUM ERROR LOAD ABORTED
63 LOADER RAN OUT OF MEMORY
64 TASK 10 IS BUSY

VDT ERRORS
01 ILLEGAL STATION
04 ILLEGAL CURSOR POSITION
06 - NO UNPROTECTED FIELD FOUND ON TAB OPERATION
07 NO UNPROTECTED FIELD FOUND ON READ OPERATION
80 DEVICE NOT AVAILABLE

VDT STATION NOT FOUND

Note:

Error Code >FF is a general error code.

D-2 Digital Systems Division

{—@}; 946258-9701

ALPHABETICAL INDEX

Digital Systems Division

AN

o]
{@ 946258-9701

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

Sections - References to Sections of the manual appear as “Section x”’ with the symbol
X representing any numeric quantity.

Appendixes - References to Appendixes of the manual appear as “Appendix y”’ with the
symbol y representing any capital letter.

Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

~ Tables - References to tables in the manual are represented by the capital letter T

followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a

dash (-) and a number: :
Tx-yy

Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a

dash (-) and a number:
Fx-yy

Other entries in the Index - References to other entries in the index are preceded by
the word ““See” followed by the referenced entry.

Index-1

Digital Systems Division

946258-9701

Address Parameter, PROM Starting . . . 10.7.10 Move (M) . vvive ittt eeeeene 44.7.3

After Parameter, Compare 10.7.4 Print (P).........co0 0. 448.2

Assembling Source Programs Section V Print Margin 4453 ‘4
Quit (Q) ..t v i it i i 4.49.2

Base Parameter, CRU 10.7.26 Remove (R) 4474

BNPF: Set Breakpoint (SB) 9.6.6.1
Compareovv v v i, 11.3.3.2 Set Margin (SM) 44.54
Format 11.1 Set Snapshot (SS) 9.6.11.1
HILO Options 11.3.3.1 Set Tabs (ST) 4455

OBNPFHL............. 11.1 Set Trace Definition (ST) 9.6.12.1
Error Messages Ti1-1 Set Trace Region (SR) 9.6.12.2

Beginning of Extent (BOE) 12.2.1 Set Write Protect Region (SP)9.6.13.1

Bias: Start Line Numbers (SL)......... 445.1
(B)Option 11.3.3.3 Stop Line Numbers (SN) 4452
Parameter, Data. 10.7.2 Top(T) .. i, 4463

Bit: UpUP) s 44762
Memory Starting 10.7.9 Commands:

PROM Starting 10.7.12 Debug 9.5
Bottom (B) Command 44.6.4 Operandsco0vivn.. 442
Breakpoint 9.5 TXDBUG Keyboard T9-2

TXEDITttt i i i 4.1

Change /C) Command 44.7.1 Compare:

Characters, IBMUTL Special 12.5.1 (CO)Optionvv v i v i i 11.3.3.2

Code Format: After Parameter 10.7.4
Compressed Object Appendix B BNPF 11.3.3.2
Object ittt 11.1 HILO.......... ..., 11.33.2

Code Parameter, Transfer 10.7.3 Compressed Object:

Codes: (O Option ... oo v 54.6
I/OError Appendix D Code Format Appendix B
Task State Appendix C Optiono i iii ittt it e 7.4.2

Command: Console, System 1.1
Bottom (B) 4.4.6.4 Control:

Change (C)co.... 44.7.1 File i, 105 «

Clear Breakpoint (CB) 9.6.6.2 Creationcveeuunnnn 10.5.1 \

Clear Snapshot (CS) 9.6.11.3 Execution..............0v... 10.5.3 “

Clear Trace Region (CR).. 9.6.12. 3, 9.6.13.3 Modification . . . v v v v v v vt 10.5.2

Clear Write Protect Region (CP) .. .9.6.13.2 Parameter Prompts T10-1

Down (D) 4.4.6.1 Files., 10.7

End (E) 4493 Standard 109

Execute User Program (EX)........ 9.6.1 Keys, Special Keyboard 233

Execute User Program Under Options, TXLINK 7.4

SIE or Trace (RU) 9.6.2 Program:

Find..........., 44.7.5 Error Messages, TXDS T2-3

Byte (FB)................... 9.6.4 TXDS ... e e 1.1, 2.1
Word (FW) 9.6.5 Copy/ Concatenate Utility Program,

Hexadecimal Arithmetic (HA) 9.6.3 TXDS oo Section VIII

Insert (I)o .. 4.4.7.2 Creating and Editing Program

Inspect CRU Input Lines (IC) 9.6.7.1 Source Code 4.1

Inspect Memory (IM) 9.6.8.1 Creation, Control File 10.5.1

Inspect Registers (IR) 9.6.9.1 Cross-Reference:

Inspect Snapshot (IS) 9.6.11.2 (X)Option 54.2

Inspect Workspace Registers (IW) .. .9.6.10.1 Utility Program, TXDS Section VI

Keep (K) i, 449.1 CRU Base Parameter 10.7.26

Limits (L) 448.1 CRU Register (MC) Command,

Modify: Modify o i 9.6.7.2

CRU Register (MC) 9.6.7.2
Memory (MM) 9.6.8.2 Data:
Registers (MR) 9.6.9.2 Bias Parameter 10.7.2
Workspace Registers (MW)9.6.10.2 File Name 10.7.1
C
Index-2 Digital Systems Division

946258-9701

Debug: Find:

Command Codes 9.5.1 (F) Command 4475
Commands 9.5 Byte (FB) Command 9.6.4
Modes 9.4 Word (FW) Command 9.6.5

Debugging Techniques 9.7 Fix Records (FL) Option 8.4.2

Default Value 2.3.1 Format:

Defaults, Pathname ... T5-1, T6-1, T7-1, T8-1 BNPF 11.1

Definition, Symbol 443 Compressed Object Code Appendlx B

Device Name 2.3.1 High-Low 1.1

Down (D) Command 44.6.1 Object Code 11.1

Dump (DU) Option 11.3.3.2 Formats, Trace 9.6.12

Duty Cycle Parameter 10.7.23 Free Mode Execute 94

EBCDIC 12.2 Glossaryccvvuu... Appendix A

Editor:

Link.........0.iiiiiii.. 7.1 Hexadecimal Arithmetic (HA) Command 9.6.3
Text. ..ottt i 4.1 High-Low Format 11.1

End (E) Command 4493 HILO:

End of Data (EOD) 12.2.1 Compareoovviiinennn 11.33.2

End of Extent (EOE).............. 12.2.1 Options, BNPFand 11.3.3.1

Error:

Codes, I/O Appendix D I/O Error Codes Appendix D

Messages: IBMUTL i 12.1
BNPFHL T11-1 Error Messages T12-1
IBMUTL T12-1 Special Characters 12.5.1
TXDBUG 9.8 Identifier Option, Program 7.4.3
TXDS Control Program T2-3 - Initialization (I) Option 11.3.3.4
TXEDIT T4-3 Input:
TXLINK 7.6, T7-3 File i 4.1
TXLUNO 134 Prompt............... ... 23.2.2
TXMIRA i 5.5.1 Rewind (RI) Option, No 8.4.7
TXPROM 10.13 Insert (I) Command 4472
TXXREF........... T6-2 Inspect CRU Input Lines (IC)

Errors: Command 9.6.7.1
TXCCAT 8.6, T8-3 Inspect Memory (IM) Command 9.6.8.1
TXMIRA: Inspect Registers (IR) Command 9.6.9.1

Fatal T5-4 Inspect Snapshot (IS) Command9.6.11.2
Nonfatal T5-5 Inspect Workspace Registers (IW)

Execute Free Mode 9.4 Command 9.6.10.1

EX Command 9.6.1

Execution, Control File 10.5.3 Keep (K) Command 4.49.1

Exposure Techniques 9.7 Keyboard:

EXtensionuuoveeeunenn. 2.3.1 Commands, TXDBUG T9-2

Control Keys, Special 233

Fatal Errors, TXMIRA T5-4 Keys:

File: Special 444
(LF) Option, List 844 Keyboard Control 233
Control............. 10.5 -

Creation, Control 10.5.1 Level N Bit Step Parameter, PROM .. 10.7.17
Execution, Control 10.5.3 Level N Loop Count Parameter,

Input 4.1 PROM 10.7.18
Modification, Control 10.5.2 Limits (L) Command co.... 4481
Nameciiiinnnn. 23.1 Lines (NL) Option, Number 8.4.6

Data 10.7.1 Link:

Parameter Prompts, Control T10-1 Editorc0iiiiiiinn.. 7.1
Scratch, 4.1 Utility Program, TXDS 7.1

Filename Identifiers, Utility ProgramT2-2 Linking Object Modules Section VII

Files: List File (LF) Option. 8.44
Control.............cu.. 10.7 Listing (L) Option 543
Standard Control 10.9 Listing (SL) Option, Space 8.4.5

Index-3 Digital Systems Division

%@ 946258-9701

Load: Object:

(LO)Option 11.3.3.2 (C) Option, Compressed 54.6

Map Option 7.4.5 Code .

LUNO Utility Program, TXDS 13.1 Format 11.1
LUNO Utility Special Characters, TXDS 13.3.2 Format, Compressed Appendix B

Modules, Linking Section VII
Map Option, Load 74.5 Option, Compressed 7.4.2
Memory: Operands, Commands 442

Option (M) 54.1 Option:

Overridecviiiiiieenenn 7.4.1 ANSI Formatted File (AF) 8.49
Memory (MM) Command, Modify ... 9.6.8.2 Bias(B)iiunn 11.3.3.3
Memory Display Parameter 10.7.5 Compare (CO)covvvvnnn 11.3.3.2
Memory Level N Bit Step Parameter . . 10.7.14 Compressed:

Memory Level N Loop Count Objectovviiieinennnn 7.4.2

Parameter 10.7.15 Object (C) .. v iviinininenns 5.4.6
Memory Mapping Levels Parameter . . . 10.7.13 Cross-Reference (X) 542
Memory Override Option 74.1 Dump (DU) 11.3.3.2
Memory Starting Address Parameter . ..10.7.7 Fix Records (FL) 8.4.2
Memory Starting Bit 10.7.9 Initialization (I) 11.3.34
Messages: List File (LF) 844

BNPFHL Error T11-1 Listing (L)o.0u.... 543

IBMUTL Error T12-1 Load0iiiiiuennnn 11.3.3.2

TXDBUG Error. 9.8 Map i, 7.4.5

TXDS Control Program Error T2-3 Memorycovvviinn, 54.1

TXEDIT Errorv.ovvvvennn. T4-3 Overridecvuu.. 7.4.1

TXLINK Error 7.6, T7-3 o:

TXLUNO Error 13.4 Input Rewind (RI) 8.4.7

TXMIRA Error 5.5.1 Output Rewind (RO) 8.4.8

TXPROM Error 10.13 Number Lines (NL) 8.4.6

TXXREF Error T6-2 Partial 744
Mode: Positon (P).................. 11.3.3.5

Execute Freec0v... 9.4 Predefine Registers (R) 54.7

Run........... ... 9.4 Print Text (P)c0vfvinenn.. 544
Modes, Debug 9.4 Program Identifier 7.4.3
Modification, Control File 10.5.2 Skip Record (SK) 8.4.3
Modify: Space Listing (SL) 8.4.5

CRU Register (MC) Command . 9.6.7.2 Symbol Table Listing (S).......... 545

Memory (MM) Command 9.6.8.2 Truncate (TR) 8.4.1

Registers (MR) Command 9.6.9.2 Options:

Workspace Registers (MW) BNPFand HILO.............. 11.3.3.1

Command 9.6.10.2 Prompt......... oo, 2.3.24
Modules, Linking Object Section VII TXCCAT ...ttt iiie i, T8-2
Move, (M) Command 4473 TXLINK e it ii e T7-2

Control 0., 7.4
Name: TXMIRA 5.4, T5-2

Data File 10.7.1 Output:

Devicec.c..u... 23.1 Prompt..................... 2.3.23

Filec00 .. 2.3.1 Rewind (RO) Option, No 8.4.8

Volume...................... 2.3.1 Override Option, Memory 7.4.1
No:

Input Rewind (RI) Option 8.4.7 Parameter:

Output Rewind (RO) Option 8.4.8 DataBias 0000 10.7.2
Nonfatal Errors, TXMIRA TS-5 Duty Cycle e et s e 10.7.23
Number Lines (NL) Option.......... 8.4.6 Memory Display 10.7.5
Number of Memory Bytes Parameter . . . 10.7.8 Memory Level N Loop Count 10.7.15
Number of PROM Words 10.7.11 Memory Mapping Levels 10.7.13
Number of Retries Parameter 10.7.24 Memory Starting Address 10.7.7

Index-4 Digital Systems Division

946258-9701
Number of Memory Bytes 10.7.8 Region, Traceccc... 9.5
Number of Retries 10.7.24 Registers (MR) Command, Modify 9.6.9.2
PROM: Registers (R) Option, Predefine 5.4.7
Bits Per Word 10.7.20 Remedial Techniques 9.7
Display, 10.7.6 Remove (R) Command 4474
Level NBit Step............. 10.7.17 Rewind:
Level N Loop Count 10.7.18 (RI) Option, No Input 8.4.7
Mapping Levels 10.7.16 (RO) Option, No Output 8.4.8
Starting Address 10.7.10 RU Command 9.6.2
Program Zero or Ones 10.7.21 RunMode 9.4
Prompts, Control File T10-1 -
Pulse Width 10.7.22 Scratch File 4.1
Simultaneously Programmable Bits . . 10.7.25 Set Breakpoint (SB) Command 9.6.6.1
Transfer Bit Width 10.7.19 Set Margin (SM) Command 4454
Transfer Code 10.7.3 Set Snapshot (SS) Command 9.6.11.1
Partial Option 7.4.4 Set Tabs (ST) Command 445.5
Patching 9.7.3 Set Trace Definition (ST) Command . .9.6.12.1
Pathname...................... 2.3.1 Set Trace Region (SR) Command9.6.12.2
Defaults T5-1, T6-1, T7-1, T8-1 Set Write Protect Region (SP)
Syntax Variations T2-1 Command 9.6.13.1
Position (P) Option 11.3.3.5 Simultaneously Programmable Bits
Predefine Registers (R) Option 5.4.7 Parameter 10.7.25
Preventive Techniques 9.7 Skip Record (SK) Option 843
Print (P) Command 4482 Smapshot 9.5
Print Margin Command 4453 Source Code, Creating and Editing
Print Text (P) Option 544 Programo 4.1
Program: Source Programs, Assembling Section V
Error Messages, TXDS Control T2-3 Space Listing (SL) Option 8.4.5
Filename Identifiers, Utility T2-2 Special:
Identifier Option 7.4.3 Characters, IBMUTL 12.5.1
Prompt..................... 23.2.1 Keyboard Control Keys 233
TXDS Control 1.1, 2.1 Keys . ..ot 444
TXEDIT Utility Section 1V Standalone, 9.1
TXMIRA Utility 5.1 Standard Control Files. 10.9
Zero or Ones Parameter 10.7.21 Start Line Numbers (SL) Command . . . 4.4.5.1
Programs, Assembling Source Section V State Codes, Task Appendix C
PROM: Stop Line Numbers (SN) Command . .. 4.4.5.2
Bits Per Word Parameter 10.7.20 Symbol Definition 443
Display Parameter 10.7.6 Symbol Table Listing (S) Option 54.5
Level N Bit Step Parameter 10.7.17 Syntax Variations, Pathname T2-1
Level N Loop Count Parameter . . 10.7.18 System Console 1.1
Mapping Levels Parameter........ 10.7.16 ,
Starting Address Parameter 10.7.10 Task State Codes Appendix C
Starting Bit 10.7.12 Techniques:
Words, Number of 10.7.11 Debugging...........covvnn. 9.7
Prompt: Exposure 9.7
Input i 23.2.2 Preventive, 9.7
Options vv ittt 2324 Remedial 9.7
Outputttt ittt 2323 Text Editorcc0iuun.. 4.1
Program 23.2.1 Top (T) Command 4463
Prompts, Control File Parameter T10-1 Trace:
Pulse Width Parameter 10.7.22 Formats 9.6.12
Region v 9.5
Quit (Q) Command 449.2 Transfer Bit Width Parameter 10.7.19
Transfer Code Parameter 10.7.3
Record (SK) Option, Skip 8.4.3 Truncate (TR) Option 8.4.1
Records (FL) Option, Fix........... 8.4.2
Index-5

Digital Systems Division

946258-9701

TXCCAT .. ottt ettt et i ieieeee 8.1 TXMIRA:
Errorscciieieee.n 8.6, T8-3 Error Messages 5.5.1
Optionscvvvevnnnennnn T8-2 Fatal Errors T54
TXDBUGc0iiiineenn. 9.1 Nonfatal Errors T5-5
Error Messagesov0vvvunn. 9.8 Optionscovuiivvennnn 5.4, T5-2
Keyboard Commands T9-2 Utility Program 5.1
Utility Program Section IX TXPROM i e e 10.1
TXDS: Error Messages 10.13
BNPF and High-Low Dump Utility Program 10.1
Utility Program. Section XI TXXREF....... ..., 6.1
Control: Error Messages e T6-2
Program 1.1, 2.1
Program Error Messages T2-3 Up (UP) Command e 4.4.6.2
Copy/Concatenate Utility Utility Program Filename Identifiers T2-2
Program Section VIII Utility Program: :)
CrOSs_Reference Utihty TXDBUG Sectloﬂ IX
Program Section VI TXDS:
IBM Conversion Utility Cross-Reference Section VI
Program Section XII Link ... 7.1
Link Utility Program 7.1 TXEDIT Section IV
TXEDIT ...t ininininenennn. 4.1 TXMIRAt 5.1
Commands 4.1 TXPROM 10.1
Error Messages T4-3
Utlhty Program Sectlon 1V Vah.lc,- Default 2‘31
TXLINK . . e e, 7.1 Variations, Pathname Syntax T2-1
Control Options 7'4 Volume Name 2.3.1
Error Messages 7.6, T7-3 .
Optionsovviviueeenn T7-2 Word (FW) Command, Find......... 9.6.5
TXLUNOiviiteniennnnnn 13.2 Workspace Registers (MW) Command,
Error Messagesc.... 13.4 Modify et 9.6.10.2
Write Protect Option Commands9.6.13
Index-6 Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title:_Model 990 Computer Terminal Executive Development System

(TXDS) Programmer’s Guide (946258-9701)

Manual Date:__L September 1978 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual ~ Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

FIRST CLASS

PERMIT NO. 7284
DALLAS, TEXAS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.0. BOX 2909 - AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

L m——— . e—— . —_ ——_ " —— " —— tot————— " apumtnees

FOLD

h

\J

\J

3

TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS DI ‘ON

POST OFFICE BOX 2909 AU LI, TEXAS 78769

A e,

e

