WISCONSIN COMPUTER SOCIETY

NEWSLETTER

MEETING NOTICE

Our meeting will be held at 1:30 p.m., Saturday, January 7, 1978, at the Waukesha Technical Institute (Room 202 - Administration Building).

PROGRAM AGENDA

Club members are invited to bring their computer systems to this meeting to demonstrate. There will be general discussions as to the scope of future club meetings as well as discussions on software and hardware exchange.

MEMBERSHIP DUES

Members are urged to send in their \$3.00 for membership thru June 1978. Better yet, bring your money to the meeting!!!!!

OTHER INFO

Julian Jetzer of Sheboygan has answered the call and has agreed to become Associate Editor and will be charge of 6800 Software Information.

Future meetings - February 4, March 18, and April 1, 1978

Next month's issue will feature lengthy article on Bill Mack's TI-990 Executive Routine.

Anyone interested in S-100 16-K Boards (TMS-4044-25 chips) Fully Static 250ns for less than \$350.00 - Group Purchase possible.

Richard Akeson (Phone 271-1840) is offerring Phi Deck Tape Systems for \$30.00 each. Available the end of January - more info at meeting.

The Milwaukee Sentinel - Tuesday, Dec. 6, 1977 issue featured an article "Computer - the Maid of Future" which featured clubmember JIM WHITE.

10-4 ~

Don Stevens, Editor Wisconsin Computer Society Newsletter P.O. Box 159 Sheboygan Falls, Wisc. 53085 Received the following note from clubmember DOROTHY DEAN regarding the info she has researched on club incorporation:

There are basically two kinds of non-profit (for tax purposes) status: 501(c)(7) and 501(c)(3). The second one is the more desirable of the two since that is the one which allows the individual to deduct from his/her income taxes the amount of their donation. The (c)(7) status provides no such benefit to the donor.

501(c)(7) is non-profit status for "Clubs organized for pleasure, recreation, and other non profitable purposes, substantially all of the activities of which are for such purposes and no part of the net earnings of which inures to the benefit of any private shareholder."

The example that is usually used for the kinds of organizations that are eligible for 501(c)(7) is a flying club where the club owns expensive equipment and the members pay a specific amount each month to maintain the equipment and to use it. The benefit in having tax exemption is that the club (which must be a corporation) pays no taxes on the money that comes in from members. It might be a sizeable amount depending on the number of members and the type, quantity and cost of the equipment. Members do not get tax deductions for their contributions to the club.

501(c)(3) organizations are those "... organized and operated exclusively for religious, charitable, scientific, testing for public safety, literary or educational purposes,..." The computer club would probably not qualify for religious status or charitable status. The definition of "scientific" applies to the kind of work done at universities toward a specific gcal. Cancer research research might qualify but from the description I don't see any way we could stretch the fefinition of what the club is to fit the IRS definition. Testing for public safety and literary are also not possible for the computer club. The only one that might be a possibility is the category "educational." In order to get this classification, it is necessary to show that the club does either of the following:

- (a) The instruction or training of the individual for the purposes of improving or developing his(sic) capabilities; or
 (b) The instruction of the public on subjects useful to the
- individual and beneficial to the community.

In order to get this designation, however, substantially all of the club's activity would have to be directed toward education in the form of lectures, forums, public discussion groups, etc. These would have to be on-going, not one-shot deals. I think that it would have to mean a major reorganization of the club.

I suggest that at this time the club incorporate as a non-profit, nonstock corporation in Wisconsin and forgo the attempt to get a taxexemption from the federal government. If, at some point in the future, some generous soul wants to donate one of the 3000 series IBM's to the club and doesn't need a tax write-off, then the club could consider applying for a 501(c)(7) as a "social club" and house and maintain the computer for the use of members and not have to pay tax on any revenue whatever the form.

		6800	Sof	twa	re	Jan.	1978
Compiled	hue		Itan	F	Totror	Shal	ougan
compiled	DY:	Ju.	Llan	L.	Jetzer	Snel	ooygar

Our thanks for this months 6800 software goes out to Stephen Heinecke of Allenton, Wis. In fact, we will be featuring four of Steve's fine 6800 programs during the next few months. His first offering is based on the Thompson Lister which appeared in the October 1976 Byte. The modifications have been extensive, however, and the result is a program which not only lists, but also allows one to program sections of memory, make corrections, make insertions and much more. Some of the other features include the ability to calculate the address for branch instructions simply by entering FF as the address of the branch and then entering the correct location while listing the program back. It also has a read and write function which allows you to type in texts as simply as you would type out a letter and then read it back. A clear function clears memory from 0020 to 0Cff...a K function will KILL the clear function or the CLEAR function KILLS itself after a cycle so you can't erase your program. Also included are transfer memory and memory search functions. The other available routines are self explanatory as you will see.

The ASCII print out strings have not been included in the listing but the location at which they are called have been marked with an *. Just program the proper ASCII characters in the locations pointed to and add 00 for a delimiter and you'll be all set. Be careful.... program of memory is not contiguous so watch your addresses as you enter the code.

If you have a problem and would like the program on KC 300 Baud cassette or paper tape just let me know or ask Don the honorable editor and he can give me your name. For cassette, a blank tape would be appreciated.

Steve has done a good job on this program and once you learn how to use it you'll save time for other projects.

A sample run of the program is included to get you started. I have also included a Mikbug (R) format Punch Dump if you wish to load that way. All Hex is included.

Happy New Year and Happy Computing

Sample Run of Programming Aid

See Code Designations in Listing for Program

PAGE 2

*L *G ENTER CODE. P ADDRESS 0100
Oloo CE OOOO Oloo BD FF Oloo CE 30 Oloo 5C 30
0109 BD EOC 6B 010C BD EOCC 010F CI 39 0111 23 FF 0113 08 0111 BD EO7E
0117 39 0118 G *G
ADDRESS 0100
0100 CE 0000 0103 8D FF 0114-0F 0105 C6 30 0107 17
0108 5C 0109 BD EOC 010C BD EOCC 010F C1 39 0111 23 FF 0107=F4 0113 08 0114 BD EO7E 0117 39
Oll8 00 Oll9 00 esc ENTER CODE. I ADDRESS OLOO
OlOO CE 0000+ OLOO CE 0118 OlOO CE 0118esc ENTER CODE. W ADDRESS 0118
A COUNTER:crlfesc NOTE: c arriage return and line feed crlf A COUNTER:crlf
OL25 ENTER CODE. K
NOTE: all underlined characters are the ones I would have entered

PAGE 3

ENTER CODE. W ADDRESS 0126 crlf THAT'S ALL.crlfesc crlf THAT'S ALL.crlf 0136 ENTER CODE. U ADDRESS 0100 A COUNTER: 0123456789 THAT'S ALL ENTER CODE. A A COUNTER: 0123456789 THAT'S ALL. ENTER CODE. S BDFF 0109 BD EOCA OLOC BD EOCC OILL BD EOTE ENTER CODE. T 0100 0200 0040 ADDRESS 0200 0200 CE 0118+ 0200 CE 0218 0200 CE 0218esc ENTER CODE. U ADDRESS 0200 A COUNTER: 0123456789 THAT'S ALL. ENTER CODE. M *

And that is how to use the programming aid

SET AQ48-A049 TO DESC

PAGE4

Locn Bl B2 B3

0D40 0D43 0D45 0D45 0D48 0D48 0D48	BD OF 53 E6 OO BD EO CA BD EO CC 86 3D BD OF 70	SRPRT	JSR E LDAB X JSR E JSR E LDAA I JSR E LDX E	LINE X+00 OUT2HS OUTS 3F TDCDR	Print the line number Save the instruction byte in B Print the instruction by e and and 2 spaces Pointer for return address Go to Thompson decoder
OD32 OD35 OD36 OD39 OD3B	BD OD 40 08 8C OC FF 26 DC 39	FOUND NOTFND	JSR E INX CPX I BNE RTS	SRPRT OCFF SRCH2	If found go print where found Increment index Is this last byte of search if not continue search if so the return to control
OD2A OD2D OD3O	7C OD 27 7C OD 21 20 ED		INC E INC E BRA	OD27 OD21 SRCH3	Increment area pointer Increment pattern pointer Go check next byte
OD1F OD22 OD24 OD26 OD28	B6 A0 20 81 FF 27 OC A1 OO 26 OB	SRCH3	LDAA E CMPA I BEQ CMPA X BNE	A020 FF FOUND X+00 NOTFND	Get a pattern byte Is this a stop byte if so then pattern has been found If not then does it match area of search if not then pattern not found
OD17 OD1A OD1C	7F OD 21 86 20 B7 OD 27	SRCH2	CLR E LDAA I STAA E	OD21 20 OD27	Clear area pointer Set pattern pointer to first byte of pattern to be searched for
ODIL	CE 00 00		LDX I	0000	Set index to start of area to be searched
ODOD OD10 OD12	BD OF 36 86 FF 26 F9	SRPATT	JSR E CMPA I BNE	BYTINN FF SRPATT	Get a byte and store it Is this a stop byte if not then continue building pattern
ODOA	CE AO 20		LDX I	A020	Set index to pattern start
0D00 0D02 0D05 0D07	86 10 BD E1 D1 86 16 BD E1 D1	SEARCH	LDAA I JSR E LDAA I JSR E	10 OUTEEE 16 OUTEEE	Print a home up Print an erase to end of frame

PAGE 5

Locn Bl B2 B3

OD60 OD62 OD65 OD67 OD6A OD6C OD72 OD75 OD77 OD7A OD7D OD77 OD7A OD77 OD75 OD75 OD75 OD75 OD75 OD75 OD75	8D 24 FF 0D 6D 8D 1F FF 0D 70 8D 1A B6 XX XX B7 XX XX 7C 0D 6E 26 03 7C 0D 6D 7C 0D 71 26 03 7C 0D 70 09 26 E7 39	TRNSFR TX2 TX3 TX4	BSR STX BSR STX BSR LDAA E STAA E INC E BNE INC E BNE INC E BNE INC E DEX BNE RTS	TADS OD6D TADS OD70 TADS ???? ???? OD6E TX3 OD6D OD71 TX4 OD70 TX2	Get the from address Store at from pointer Get the to address Store at to pointer Get the length Get a byte to be transfered Store it in the new location Increment the low from pointer If low pointer now equals zero Then increment high from pointer Increment high topointer If low to pointer eugals zero then increment high to pointer Decrement the length counter If count not zero then continue transfer.
OD86 OD89	BD EO CC 7E EO 47	TADS	JSR E JSR E	OUTS DADDR	Print a space and then get an address
ODAO ODA3 ODA5 ODA6 ODA6 ODA8 ODA0 ODA0 ODB0 ODB3 ODB6	CE OC EO 6F 1F 09 26 FB 86 6D B7 OD A3 CE OF 30 FF OE 84 FF OE 94 39	CLEAR CLR2 KILLCL	LDX I CLR X DEX BNE LDAA I STAA E LDX I STX E STX E RTS	OCEO X+2O CLR2 6D CLR2 OF 30 OE84 OE94	Clear out allmmemory below ODOO except for the first 32 bytes Kill the clear function Get the address of a RTS instruction Store it at C Store it at K Return to control

|--|

Locn Bl	B2	B 3
---------	----	------------

ODCO	BD OF 45	INSERT	JSR E	ADS1	Go get a starting address
ODC3 ODC6 ODC9 ODCB ODCE ODD1 ODD3	BD OF 53 FF AO 18 E6 OO BD OF 42 BD OF 42 BD OF 46 BD OF 70	INS2	JSR E STX E LDAB X JSR E JSR E LDAA I JSR E	LINE AO18 X+OO BYTOUT 2SPACE 3D TDCDR	Print the line number Save the line number at AO18 Save the instruction byte in B Print the instruction byte and 2 spaces Pointer for return address Go to Thompson decoder
ODD6 ODD9 ODDB	BD E1AAC 81 1B 26 01	INS3	JSR E CMPA I BNE FTS	INCEE ASCIIesc INSL	Go get a character Is it an ASCII escape if not continue if so return to control
ODDE ODEO ODE2 ODE4	81 OD 27 El 81 57 28 26 F0	INSL	CMPA I BEQ CMPA I BNE	ASCIICT INS2 ASCII INS3	Is it an ASCII carriage return If so then go to the next line Is it an ASCII """ if not then ignore it and get another
ODF6 ODEC ODEF ODF0 ODF3 ODF5 ODF8 ODF8 ODFB	FE AO 18 BD OF 53 BD OF 36 16 BD OF 4E 86 31 BD OF 70 FE AO 18 20 C6		LDX E JSR E JSR E TAB JSR E LDAA I JSR E LDX E BRA	AO18 LINE BYTINN 2SPACE 31 TDCDR AO18 INS2	Get the line number we saved Go reprint it Go get a new instruction byte and save it in B Go print 2 spaces Pointer for return address Go to Thompson decoder Get the line number again And go print it again

Locn BL B2 B3

0E00 0E03 0E06 0E08	BD OF 15 BD E1 AC 8D O2 20 F9	WRITE WRT2	JSR E JSR E BSR BRA	ADSL INEEE WRTPRC WRT2	Get a starting address Get a character Process the character And the get another
OEOA OEOC OEOE OE1O OE12 OE14	81 02 27 OC 81 OD 27 OE 81 1B 27 12	WRTPRC	CMPA I BEQ CMPA I BEQ CMPA I BEQ	O2 WRTBCK ASCIICT WRTCR ASCIIECS WTEXIT	Is this an ASCII control-B if so the do backspace routine Is this an ASCII carriage return if so do carriage return routine Is this an ASCII escape character if so do exit routin
OE16 OE18 OE19	A7 00 08 39	WRTSTR	STAA X INX RTS	X+00	Store the character Increment the index pointer And return
OELA OELB OELD	09 86 18 7E El Dl	WRTBCK	DEX LDAA I JMP E	18 OUTEEE	Back up the index pointer Print out a backspace
0E20 0E22 0E24 0E26	8D F4 66 OA 8D F0 20 F5	WRTCR W	BSR LDAA I BSR BRA	WTRSTR ASCIIII WTRSTR	Store the c arriage return Get a line feed character Store it And the print it
0E28 0E2A 0E2C 0E2F 0E30 0E31 0E31	86 OL A7 OO FE AO OC 31 31 BD EO 7E 7E OF 53	WTEXIT	LDAA I STAA I LDX E DES JSR E JMP E	ASCIIcot X+OO XHI PDATAL LINE	Get ASCII eot character and store it to end the string Get the starting address Reset the stack to return to control Reprint the string Print the last address
CE37 OE3B OE3D	BD OF 45 BD EO 7E 7E OF 53	READ	JSR E JSR E PMP E	ADSL PDATA LINE	Get the starting address Print out the string Print the last addtess

PAGE 8

Locn Bl B2 B3

*OELO	CE OE CO BD EO 7E	CONTROL LDX I	OECO	Print "crlfENTER CODE. "
UEL16	BD EL AC	JSR E	INEEE	Get a character
OE49	80 41	SUBA I	111	If it's less than A
OELB	25 F3	BCS	CONTRL	then go get another code
OELD	81 1A	CMPA I	lA	If it's greater than Z
OELF	24 EF	BCC	CONTRL	then go get another code
0E51	8B 40	ADDA I	40	Compute code address
0E53	48			
0E54	B7 OE 59	STAA E	0E59	
0E57	FE OE 96	LDX E		Select a program from our vast file
OE5A	AD 00	JSR X	X+00	go to a program
OE5C	20 E2	BRA	CONTRL	Go get another code
0E60	BD OF 45	JSR E	ADSL	Get the address of the program
OE63	6E 00	JMP X	X+00	and then go see if it does what you thought the thing would do.

r mue 7

Locn B1 B2 B3 Letter Function

OE8001	00A-	Goes to usual beginning address of most programs
0E82OF	30B-	The address of a RTS instruction (NOP)
0E84 OD	A0C-	Clears memory from OCFF down to 0020
OE86 OF	30 D	NOP
OE88 OF	30 E	NOP
OESA OF	30 F	NOP
OE8C OF	30 G	NOP
OE8E OF	30 H	NOP
0E900D	COI-	Insert: allows changes and insertinos
OE92 OF	30 J	NOP
0E911OD	A8K-	Kill the clear function above to avoid mistakes
OE96OF	OFL-	Lists a program in the memory
0E98E0	DOM-	Returns to MIKBUG monitor
OE9A OF	30 N	NOP
OE9C OF	30 0	NOP
OE9EOF	00P-	Programs a section of memory
OEAO OF	30 Q	NOP
OEA2OE	37R-	Reads back text to be printed and the last address
OEAL OD	00S-	Searches for patterns
OEA6OD	60T-	Transfers sections of memory
OEA8OE	60U-	Goes to user selected program or subroutine for testing
OEAA OF	30 V	NOP
OFACOE	00W-	Writes into memory text to be printed
OEAE OF	30 X	NOP
OEBO OF	30 Y	NOP
OEB2 OF	30 Z	NOP

main ration

PACE ... PAGE12

G

Locn	B1 B2 B3					,
OF70 OF72 Of74 OF76 OF78 OF7A OF7C OF72 OF80 OF82 OF82 OF84 OF86 OF84 OF86 OF88 OF8A OF86 OF88 OF88 OF88 OF88 OF88 OF88	C1. 8D 27 21 C1 8C 27 1A C1 8E 27 16 C1 CE 27 12 C4 FO C1 20 27 OF C1 60 25 09 C4 30 C1 30 27 02 4C	TICDR 2 BYTE	CMPB I BEQ CMPB I BEQ CMPB I BEQ CMPB I BEQ CMPB I BEQ CMPB I BCS ANDB I CMPB I BEQ INCA	8D RELTV 8C 3BYTE 8E 3BYTE CE 3BYTE FO 20 RELTV 60 1BYTE 30 30 3BYTE	If this is a BSR then go to relative address exit If this is a CPX I then go to 3 byte exit If this is a LDS I then go to 3 byte exit If this is a LDX I then go to 3 byte exit Mask off bottom 4 bits If this is a branch then go to relative address exit If this is inherently addressed go to 1 byte exit Mask off top 2 bytes If this is extendedly addressed t go to 3 byte exit Here is the 2 byte exit	hen
0F91 0F92 0F93 0F94 0F95 0F95 0F97 0F98 0F99	4c 4c 4c 4c 6 OF 36 37 39	3BYTE 1BYTE RELTV ***** NOT * *	INCA INCA INCA LDAB I PSHA PSHB RTS TE: Locati the li as lon change	OF on OF96 is ster/progr g as this d to repre	Here is th 3 byte ex it Here is the 1 byte exit Here is the relative exit **** Push the return address onto the stack and return to it part of the return address samer can be relocated anywhere (and the other) pointer is sent the proper addresses	

ANDE 10

Locn Bl B2 B3

OF9A OF9C OF9F OFA2 OFA5 OFA5 OFA7 OFAA OFAB OFAB OFAD OFB2 OFB4	E6 00 BD E0 CA FF A0 OE CE OE F8 8D C6 CE A0 OA 5C 27 1F 5A 2B OA EB 05 A6 04 E7 01	RELCMP	LDAB X JSR E STS E LDX I BSR LDX I INCB BEQ DECB BMI ADDB X LDAA X STAB X	X+00 OUT2HS TEMP OEF8 PRINT AOOA RELCAL RCMPNG X+05 X+04 X+01	Get the relative address byte Print it + a space, increment pointer Store the pointer Print an arrow set pointer for computations Is the address hex FF if so then go Calculate address Restore address If negative go to subtract section Otherwise add the address to the location And store lower half
OFB6	89 00		ADCA I	00 DOMBOT	as store lover helf and so out
OFBA OFBB OFBD	20 0A 50 A6 05	RCMPNG	NEGB LDAA X SBA	X+05	Subtract the address from the location
OFBE OFCO OFC2	A7 01 A6 04 82 00		STAA X LDAA X SBCA I	Х+01 Х+04 00	and store lower half
OFC4 OFC6 OFC9 OFCB	A7 OO BD EO C8 EE O2 39	RCMPOT	STAA X JSR E LDX X RTS	X+00 ОИТЦН S X+02	Store upper half (either computation) Print the address Restore pointer and return
OFCC OFCF OFD2 OFD4 OFD6 FFD8 OFDA	BD EO 47 CE AO OC E6 01 A6 00 E0 03 A2 02 26 05	RELCAL	JSR E LDX I LDAB X LDAA X SUBB X SBCA X BNE	BADDR AOOC X+O1 X+O0 X+O3 X+O2 NEGBRA	Get the destination Set pointer for calculations Get the destination into the accumulators and subtract the location from it If A = 0 go check negative branch
OFDC	5D		TSTB	TACTOR	If B is negative then
OFDE	2B 15		BMI	TOOFAR	Branch is too far positive
OFE	20 00	NEGBRA	TNCA	RELOIR	Ts A = hex FF
OFE2 OFE4	26 10 5D 24 0D	a tan Gidra tak	BNE TSTB BPL	TOOFAR	If not branch is too far negative Otherwise is B positive
OFE7 OFE7 OFE9	86 3D BE HI DI	RELSTR	LDAA I JSR E	ASCII = OUTEEE	Othewise, Print an "="
OFEC OFEE OFEF	EE 02 09 E7 00		DEX STAB X	X+02 X+00	Restore the pointer Back it down one Store the address
OFF1	7E EO CA		JMP E	OUT2HS	and Print it and return
★ OFF4 OFF7 OFF8	CE OE DO 31 31	TOOFAR	LDX I INS INS	OEDO	Print "TOO FAR" and the return to control
OFTO	TE EO TE		IMP E	PDATAT	

p 51130D008610BDE1D18616BDE1D1CEA020BD0F363F 51130D1081FF26F9CE00007F0D278620B70D21866E 51130D20A02081FF270CA100260B7C0D277C0D2120 S1130D3020EDBD0D40088C0CFF26DC3900000000BE 51130D40BD0F53E600BDE0CABDE0CC863DBD0F70CB 51130D50FEA00C390000000000000000000000000000 51130D608D24FF0D6D8D1FFF0D708D1AB60000B719 51130D7000007C0D6E26037C0D6D7C0D7126037CBA S1130D800D700926E739BDE0CC7EE0470000000085 51130DA0CE0CE06F1F0926FB866DB70DA3CE0F3066 51130DB0FF0E84FF0E9439000000000000000000000000 51130DC0BD0F45BD0F53FFA018E600BD0F42BD0F78 S1130DD04E863DBD0F70BDE1AC811B260139810DEE S1130DE027E1812B26F0FEA018BD0F53BD0F361648 S1130DF0BD0F4E8631BD0F70FEA01820C600000046 S1130E00BD0F45BDE1AC8D0220F98102270C810D97 51130E10270E811B2712A70008390986187EE1D105 51130E208DF4860A8DF020F58604A700FEA00C310F 51130E3031BDE07E7E0F53BD0F45BDE07E7E0F5376 51130E40CE0EC0BDE07EBDE1AC804125r3811A2405 51130E50EF8B4048B70E59FE0E96AD0020E200001D S1130E60BDUF456E00000000000000000000000000FF S1130E70BD0F45AD00BDE1AC20F6000000000000000 S1130E8001000F300DA00F300F300F300F300F3036 51130E900DC00F300DA80F0FE0D00F300F300F0032 51130EA00F300E370D000D600E600F300E000F3046 51130EC00D0A454E54455220434F44452E200400FC 51130ED00A0D0A544F4F2046415220202121210458 S1130EE01041444452455353203F2020160404002B 51130EF00D0A0400000000002D3E20043E200400E2 S1130F008D438D4F8D30168D4586318D6320F38D45 51130F1034C60EF7A0208D3BE6008D268D30863D2D S1130F208D4E7AA02026EFC610BDE1AC811B26E3CE S1130F30392003398D00BDE055A7000839205B39FD 51130F408D007EE0BF8D1B20028D1A7EE0518D0046 51130F507EE0CCFFA00C8D12CEA00CBDE0C8FEA09C S1130F600C39CE0EE08D06BDE047CL0EF07EE07E5D 51130F70C18D2721C18C271AC18E2716C1CE2712F5 S1130F80C4F0C120270FC1602509C430C130270235 51130F904C4C4C4C4CC60F363739E600BDE0CAFF0A S1130FAUA00ECE0EF88DC6CEA00A5C271F5A2B0ABF 51130FB0EB05A604E7018900200A50A60510A70145 51130FC0A6048200A700BDE0C8EE0239BDE047CE0A 51130FD0A00CE601A600E003A20226055D2B152065 51130FE0064C26105D2A0D863DBDE1D1EE0209E7CF 51130FF0007EE0CACE0ED031317EE07E00000004D7

PAG 14

North Andrews

EK	WEI GHT		DI	FFERE	INCE					S. Correll
he start and	153		0	100.00						
	149.5		-3	.5						
	147.5		-2							
	147.5		0							
Constraint (1973)	145		-2	.5						
N	144.5			5						Den tok
,	141		-3	. 5						and the second
	141.5			5						
Lange (St. 1)	139.2	5	-2	.25						
0	139.5			25						
1	137.5		-2							
2	138.5		1							
G. WEEKLY IS. TO GOA Ital Pouni	Y LOSS -1 AL 16.5 DS LOST SO	. 20833 Far	LBS -14.	•						
IGHT WAT	CHER'S GRAN	н								
100	110 120	130	140	150	160	170	180	190	200	
I +	+ +	+	+	+	+	+	+	+	+	
I I										11 1000
				-						25.00
1			*				~	~	~	\sim
			*				A LA	HOWS S TH S SP BET	THE SE FIRS	SAME DA T, BUT OUT OV ANGE.
NT A CUST AT IS THE AT IS THE 130 I + I I I I I I I I I I I I I I I I I I	OMIZED GRA S MALLEST LARGEST N	APH? YI NUMBEI JUMBER	ES R YO YOU	U WAN WANT 140 +	T(INS (INST	TEAD EAD O	QF 10 F 200 *	0)71))715	30 0 150 ↓	•

REPRINT FROM PITTSBURGH AREA NEWSLETTER

BINARY/OCTAL/DECIMAL/HEX CONVERSION TABLE

Below is a conversion table for numbers through 1111111_2 , 377_8 , 255_{10} , and ff_{16} . Thanks to the digital group who published this in their Clearinghouse

XX	0000	0001	001	00	011	0100	010	0110	0111	1000	1001	1010 A	1011 B	1100 C	1101 D	1110 E	1111 F	BINARY
0000	00	1		2	33	44		6 6	77	8	9 11	10 12	11 13	12	13 15	14 16	15 17	DECIMAL
0001	16 20	17 21	2	8	19 23	20 24	2	22	23 27	24 30	25 31	26 32	27 33	28	29 35	30 36	31	
0010	32 40	33 41	3	4	35 43	36 44	37	38	39 47	40 50	41 51	42 52	43 53	44	45	46	47 57	
0011	48 60	49 61	56	02	51 63	52 64	53	54 56	55 67	56 70	57	58 72	59 73	60 74	61 75	62 76	63 77	aw
0100	64 100	65 101	10	62	67 103	68 104	69 10	70 5 106	71	72	73	74	75	76	77	78 116	79 117	15.70
0101	80 120	81 121	8	2	83 123	84 124	8	86 126	87 127	88 130	89 131	90 132	91 133	92 134	93 135	94 136	95 137	a unn
0110	96 140	97 141	9	8	99 143	100 144	101	102	103 147	104	105	106	107	108 154	109 155	110 156	111 157	76.913
0111	112 160	113 161	11	42	115 163	116 164	117	118	119 167	120 170	121	122	123 173	124	125 175	126 176	127	
1000	128 200	129	13	0	131 203	132 204	133	3 134 206	135 207	136	137 211	138	139 213	140	141 215	142 216	143 217	4
1001	144 220	145 221	14	62	147 223	148 224	149	226	151 227	152	153	154 232	155	156	157 235	158 236	159 237	ALL N
1010 A	160 240	161 241	16	2	163 243	164 244	16	246	167 247	168	169 251	170 252	171 253	172	173	174 256	175 257	
1011 B	176 260	177 261	17	8	179 263	180 264	181	182	183 267	184	185 271	186	187 273	188	189 275	190 276	191 277	
1100 C	192 300	193 301	19 30	4	195 303	196 304	197	198	199 307	200	201 311	202	203	204	205 315	206 316	207	
1101 D	208	209	21	0	211 323	212 324	213	326	215	216	217	218	219	220	221 335	222	223 337	and a
1110 E	224	225 341	22	6	227 343	228 344	229	230	231 347	232 350	233 351	234 352	235	236	237 355	238 356	239 357	
1111 F	240 360	241 361	24	2	243 363	244 364	245	246	247 367	248 370	249	250 372	251 373	252 374	253 375	254 376	255 377	4
					-		_	POWE	RS OF	2, 8	3 & 16		1 1 1 1 1	e n er r	e crar	17 18.3	3.0	1 2 2
	20	21	22	23	24	25	26	27	28	29	210	21	1	212	213	-	214	215
×1	1	2	4	8	16	32	64	128	256	512	1 024	20	48 4	096	8 19	2 16	384	32 768
	_	80	81	8	2	83	-	84	85					1	60 10	51	162	163
	×1 ×2 ×3 ×4 ×5 ×6 ×7	1 2 3 4 5 6 7	8 16 24 32 40 48 56	1 1 2 3 3 4	64 28 92 56 20 84 48	51 1 02 1 53 2 04 2 56 3 07 3 58	2 4 6 1 8 10 2 2 2 4 2	4 096 3 192 2 288 5 384 0 480 4 576 8 672	32 7	68			× × × × × × × × × × × × × × × × × × ×		1 1 2 3 3 4 6 5 8 6 9 7 11 8 12	16 32 18 54 106 12 12 12 12 12 12	256 512 768 024 280 536 792 048	4 096 8 192 12 288 16 384 20 480 24 576 28 672 32 768
Thes mult 65,5 nary numb For bits	These tables show the powers of 2, 8 & 16 and their multiples far enough to allow conversion to decimal 65,535 (64K). This is equivalent to the 16-bit bi- nary number (111111111111111), the 6-digit octal number (17777) and the 4-digit hex number (FFFF). $\times 9$ $\times 10(A)$ 9 $\times 10(A)$ 144 $\times 2$ $\times 10(A)$ 2304 $\times 304$ 36 864 $\times 40$ $\times 960$ row ber (11111111111111) row ber (17777) For examples, see the conversions used in Beginner- $\times 9$ $\times 10(A)$ 9 $\times 10(A)$ 10 160 $\times 11(B)$ 11 1176 $\times 12(C)$ 12 192 $3 072$ 36 864 40 40 For examples, see the conversions used in Beginner- $\times 14(E)$ 14 14 224 3 208 57 344																	

To improve the readability of the graph, we can also print the week in which each weighing was made. To do this we'll reserve six spaces on the left for printing X (the week number) in column 2, and the symbol "I" in column 4. Putting all these things together gives us:

PRINT X;TAB(4);"I";TAB((W-100)/2+6);"*"

Thus for X=21 and W=150 we'd have as part of our graph:

21 T			
		 the second se	

Automatic Scaling

We can generalize this idea by using a starting weight called A (instead of 100), and a final weight called B (instead of 200). This makes the scale factor 50/(B-A) spaces per pound. The translation is now A pounds (not 100), and the starting weight at the left edge of the graph is W-A (not W-100). This gives us as a generalized print statement:

PRINT X;TAB(4);"I";TAB((W-A)*(50/(B-A))+6);"*"

It will also be necessary to generalize the headings at the top of the graph, and this is done in a similar manner.

Let's look at a program that does all this "customized" scaling in a subroutine (lines 315 to 480). The first time the subroutine is used, the weights go from 100 to 200 (line 180). But then the user is asked to supply a more personalized set of minimum and maximum weights. These are input as A and B in lines 280 to 301. This program also contains the user's "goal" weight as the first number in DATA statement 900. 'This way the program can tell the dieter how many "pounds-to-goal" there are. The -1 at the end of the DATA is used to stop the READ loop (see line 80).

This program was written for a terminal with 70 columns. On a 40 column terminal, the number 50 in lines 340, 400, and 460 should be changed to 30. A listing and sample run of the program are given on the next two pages.

Note: This program is taken from the book, "BASIC and the Personal Computer" (Addison Wesley Co., Reading MA 01867). The book won't be out until December so some excerpts are being supplied to PACC for possible use in its BASIC course.

Another course that may be of interest to PACC members is a two-day workshop called "Personal Computing" to be given at Pitt on November 12 & 19 (Saturdays), from 8:30 AM to 5 PM. For further information call the Pitt Informal Program office at 624-6829, or inquire in person at room 407 Cathedral of Learning.

```
10 PRINT" WEIGHT WATCHER'S RECORD"
20 PRINT: PRINT "WEEK", "WEIGHT", "DIFFERENCE"
30 S=0
35 REM-----CALC. & PRINT TABLE-----
40 READ G
50 FOR I=1 TO 99
60 READ W
70 IF I=1 THEN 110
80 IF W<0 THEN 140
90 D = W - W1
100 S=S+D
110 PRINT I, W, D
120 W1=W
130 NEXT I
140 PRINT: PRINT AVG. WEEKLY LOSS ";S/(I-1);"LBS."
150 PRINT"LBS. TO GOAL "; W1-G
160 PRINT TOTAL POUNDS LOST SO FAR ";S
170 PRINT: PRINT WEIGHT WATCHER'S GRAPH": PRINT
175 REM-----STANDARD SCALE(100-200)------
180 A=100 :B=200
190 GOSUB 315
250 REM----CUSTOMIZED SCALE-----
260 PRINT : PRINT WANT A CUSTOMIZED GRAPH" ; : INPUT AS
270 IF AS="NO" THEN 999
280 PRINT WHAT IS THE SMALLEST NUMBER YOU WANT (INSTEAD OF 100)";
290 INPUT A
300 PRINT"WHAT IS THE LARGEST NUMBER YOU WANT(INSTEAD OF 200)";
301 INPUT B
303 GOSUB 315
305 PRINT WANT ANOTHER GRAPH" ; : INPUT AS
307 IF AS="YES" THEN 280
309 GOTO 999
315 REM-----GRAPH SUBROUTINE-----
                                              SUBROUTINE 315-410
316 X=0
                                              IS USED FOR BOTH THE
317 REM----HEADING(LINE 1)-----
                                              STANDARD AND CUSTOM-
330 FOR I=A TO B STEP 10
                                              IZED SCALES. THE
340 PRINT TAB(X*10*(50/(B-A))+5):I:
                                              VALUES OF A AND B
350 X=X+1
360 NEXT I
                                              MAKE THE DIFFERENCE.
370 PRINT
375 REM----HEADING(LINE 2)-----
380 PRINT"
           I";
390 FOR I=0 TO (X-1)
400 PRINT TAB(1*50*(10/(B-A))+7);"+";
410 NEXT I
420 PRINT
425 RESTORE
426 READ G
428 REM ----- PRINT GRAPH-----
430 FOR I=1 TO 99
440 READ W
450 IF W<0 THEN 480
460 PRINT I; TAB(4); "I"; TAB((W-A)*(50/(B-A))+6); "*"
470 NEXT I
480 RETURN
900 DATA 122,153,149.5,147.5,147.5,145,144.5,141,141.5,139.25
910 DATA 139.5,137.5,138.5,-1
```

Club incorporation - by Dorothy Dean - continued

It is possible to get the Postal Service to designate a group as a nonprofit for postal purposes (lower) postage rate, not first class service) without getting an IRS designation as 501(c) (3). Incorporating now will solve the problem of Don Stevens personal liability.

An even simpler procedure than incorporating is to open a club bank account. The officers are then responsible for the account and any transactions. The only thing that is needed is a Federal Employer's Number which the club can request from the IRS.

This is the extent of my research, at least as much as I think makes sense to put in the newsletter. I have more info but I can give that verbally at the meeting. Notice how the networking we discussed last time fits well into the social club status. If we wanted equipment that was too expensive or if we wanted to run part of the operation like a quasi-business with certain members receiving services of the network, then the club could consider the 501(c)(7). This can be brought up at the meeting.

GOOD THINGS TO READ

Mini-Micro Systems (Nov.-Dec. 1977 issue) is devoted completely to Microcomputer Systems.

EDN (Nov. 20, 1977 issue) is also devoted completely to Microcomputer Systems.

Microcomputer Interfacing - Sample & Hold Devices (American Lab - Nov.)

Microcomputer Interfacing - Analog Multiplexers (American Lab - Dec.)

Microcomputer Interfacing - Preparing Your Programs (Computer Design - November 1977)

PAY YOUR MEMBERSHIP FEE

PAY YOUR MEMBERSHIP FEE

PAY YOUR MEMBERSHIP FEE

LAST NEWSLETTER FOR UNPAID MEMBERS - - LAST NEWSLETTER FOR UNPAID MEMBERS

The Scaling of Graphs in BASIC

REPRINT FROM PITTSBURGH AREA NEWSLETTER Margot Critchfield and Tom Dwyer

The best bet for making numerical output from a program useful is to show it in graphical form. Pictures make output easy to interpret and even easier to remember.

Most personal computer systems have an alphanumeric output device (either hard copy or CRT type) on which simple but useful graphs can be plotted by using the TAB(X) function in BASIC. The main difficulty is that the range of numbers to be plotted seldom matches the number of columns across the page (or screen) of the terminal. Also, terminals vary. Many CRT screens are limited to 40 columns, while hard copy terminals can handle 80 or even 132 columns. The solution to both these problems is to scale the numbers to be plotted to a range which fits on the terminal being used.

Scaling actually involves two operations. The first is an addition (or subtraction) of a number which <u>translates</u> all the data. The second is a multiplication by a number called a scale factor. For example, suppose you want to plot a graph of a dieter's weights, and the actual weights go from 100 to 200 pounds. But you want to squeeze the graph into 50 columns on a terminal. Terminals have columns numbered 0, 1, 2, 3, ... etc. So the first thing to do is translate (which here means move left) all the weights so that 100 pounds corresponds to column zero on the terminal. This is done by subtracting 100 from each weight W.

The next problem is to squeeze the weights from 100 to 200 into 50 terminal spaces. This can be done by multiplying each weight by a scale factor of 50/(200-100) = 1/2 terminal spaces per pound. Example: For a weight of 150 pounds, the program should first translate this weight by taking 150-100=50. It should then scale it by taking 50*1/2=25 terminal spaces. Here's a picture of what happens:

