A Look into the World of the Xerox 8000 Series Products:
Workstations, Services, Ethernet, and Software Development

Revised Edition

Office Systems Technology

A Look into the World of the Xerox 8000 Series Products:

Workstations, Services, Ethernet, and Software Development

Managing Editors:
Ted Linden and Eric Harslem

Jarary 1983 XEROX

Office Systems Division
3333 Coyote Hill Road
Palo Alto, California 94304

Second Printing, 1984

All of the articles in this volume have been or will
be published in other publications (as indicated in
the Table of Contents). All articles are reprinted
with permission.

Copyright © 1982, 1984 by Xerox Corporation.

Dedication

This book is dedicated to all the hardworking and creative people
of Xerox’ Systems Development Department who have seen the
promise in the office of the future and made it into a reality.

Preface

This version of Office Systems Technology is basically identical to OSD-R8203 published in 1982,
except for a few minor corrections, and some revision of the two articles starting on pages 65 and 91.

Notice

The papers reproduced in this book were written by different authors and were originally published
at various times. Neither the original publication nor their republication implies any specific
endorsement by the Xerox Corporation. Some statements in these papers are not valid concerning
current products. Furthermore, no statement in these papers should be construed to imply a
commitment or warranty by the Xerox Corporation concerning past, present, or future products.

Introduction

The members of the Xerox Systems Development Department, while creating the Xerox 8000 Series
products, have explored many new frontiers in office systems technology. Many of their technical
breakthroughs have been recorded in the open literature. This book gathers the majority of these
publications together to make them more readily accessible.

This book is organized as follows: papers about new features that are visible to users of these products
come first; papers about underlying technology come later. The first section has the papers about the
user interface and functionality of the 8010 Workstation; the second section has papers about the
Network Services that support this and other workstations. The three succeeding sections cover:
Ethernet and Communications Protocols, Programming Language and Operating System, and
Processor Architecture. The final section has papers about the Software Engineering methodology
that was used during the development of all these products.

In the first section dealing with the 8010 workstation, the first two papers describe the dramatically
new user interface concepts that are employed-the first focusing on workstation features and the
second on the user interface design goals. The next two papers describe, respectively, the design of
the integrated graphics facility and the records processing functionality. The final paper in this
section contains a comparative evaluation of text editors.

An office system is not just a collection of workstations. Network Services provide the functionality
that make the difference between a collection of workstations and an office system. There are three
papers about Network Services. The first describes the Clearinghouse, which enables a workstation
to locate named resources in a widely distributed office system. User authentication is the
cornerstone of most security and audit controls and presents some challenging problems in a
distributed system-as discussed in the next paper. The final paper in this section describes the mail
service developed by researchers at Xerox PARC. It has served as a prototype for the Mail Service
and for other distributed services in the 8000 Series products. There are no published papers about
the 8000 Series Print Service, File Service, or External Communication Service.

The glue that holds together all of the previous functions is the Ethernet and the Xerox Network
Systems Communication Protocols. The first paper is an overview of communications and the office.
The next paper describes the evolution of the Ethernet local area network. Office communications
are not always local, and the remaining papers in this section deal with issues about building
individual local networks into an effective, geographically-dispersed internetwork. The use of
multiple local networks is covered in the third paper in this section, the fourth deals with addressing
in an internetwork using 48-bit addresses, and the fifth describes the higher-level communication
protocols.

Behind the scenes for all of these products is a programming language and operating system capable
of supporting the incremental growth of a large office system. The fourth section deals with these
topics. First there are two papers about Mesa, a practical programming language that incorporates
many recent ideas from research on programming languages. The following paper on multiple
inheritance subclassing describes the approach that was used to support object-oriented
programming in the design and implementation of the 8000 Series products. The final paper
discusses Pilot, the operating system used in all Xerox 8000 Series products.

e e e e Py

The processor architecture for the Xerox 8000 Series products is the subject of the two papers in the
fifth section. The first provides an overview of the Mesa processor architecture and the second reports
the findings from an analysis of the Mesa instruction set.

Building an integrated office system is a large software engineering project. Pilot, the operating
system in the 8000 Series products, provides one case study in software engineering which is
discussed from different viewpoints in the first and fourth papers in this section. The Mesa language
was designed to encourage the use of better software engineering methods, and that topic is examined
in the second paper in this section. The third paper describes the software engineering techniques
that were used during the development of the application code for the 8000 Series products.

This book itself exemplifies the use of the technology that it describes. The front cover design and
front matter of this book were created using 8000 Series products. All of the recent papers were
created using the Xerox 8000 Series products. While some of them were typeset for their original
publication, the following papers are reproduced exactly as they were created and printed using 8000
Series products:

Star Graphics: An Object-Oriented Implementation

The Design of Star’s Records Processing

The Clearinghouse: A Decentralized Agent for Locating Named Objects in a Distributed
Environment

Authentication in Office System Internetworks

Traits - An Approach to Multiple-Inheritance Subclassing

A Retrospective on the Development of Star

Acknowledgments

We are indebted to Paula Ann Balch and Stan Suk for many hours of work producing this collective
volume. The front cover design was created by Norman Cox of the Xerox Office Products Division.
Bill Verplank provided valuable assistance in the cover design.

No book on Xerox office systems technology would be complete without an acknowledgment of the
pioneering research in this area done by our colleagues at the Xerox Palo Alto Research Center
(PARC). Without them this book would not have been possible. The volume of PARC publications on
office systems technology has generally prohibited us from including their publications here-unless
one or more of the authors was a member of the Systems Development Department.

Office Systems Technology

Table of Contents

The 8010 Workstation

Smith, D. C.; Harslem, E; Irby, C.; Kimball, R. The Star User Interface: An
Overview. Proc. of National Computer Conference; 1982 June 7-10; Houston. [pages]
515-528.

Smith, D. C; Irby, C.; Kimball, R.; Verplank, B.; Harslem, E. Designing the Star
User Interface. Byte. 7(4): 242-282; 1982 April.

Lipkie, Daniel E.; Evans, Steven R.; Newlin, John K.; Weissman, Robert L. Star
Graphics: An Object-Oriented Implementation. Computer Graphics. 16(3): 115-
124; July 1982. [also presented at SIGGRAPH 82 conference, Boston.]

Purvy, R.; Farrell, J.; Klose, P. The Design of Star’s Records Processing.
[Submitted to ACM’s Transactions on Office Information Systems, to appear first
quarter, 1983.]

Roberts, T. L.; Moran, T. P. Evaluation of Text Editors. Proc. of the Conference on
Human Factors in Computer Systems; 1982 March 15-17; Gaithersburg, MD. [pages]
136-141.

Network Services

Oppen, D. C.; Dalal, Y. K. The Clearinghouse: A Decentralized Agent for
Locating Named Objects in a Distributed Environment. ACM Trans. Office Inf.
Syst. 1(3): 230-253; 1983 July.

Israel, J. E.; Linden, T. A. Authentication in Office System Internetworks. ACM
Trans. Office Inf. Syst. 1(3): 193-210; 1983 July.

Birrell, A. D.; Levin, R.; Needham, R. M.; Schroeder, M. D. Grapevine: An Exercise
in Distributed Computing. Comm. ACM. 25(4): 260-274; 1982 April.

Ethernet and Communications Protocols

Dalal, Y. K. The Information Outlet: A new tool for office organization. Palo
Alto: Xerox Corporation, Office Products Division; 1981 October; OPD-T8104. [A
version of this paper appeared in Proc. of the Online Conference on Local Networks
and Distributed Office Systems; 1981 May.]

Shoch, J. F.; Dalal, Y. K.; Crane, R. C.; Redell, D. D. Evolution of the Ethernet
Local Computer Network. IEEE Computer magazine. 15(8): 10-27; 1982 August.
[Also published by Xerox Corporation, Office Products Division; 1981 September,
OPD-T8102.]

Dalal, Y. K. Use of Multiple Networks in the Xerox Network System. [EEE
Computer magazine. 15(10): 82-92; 1982 October.

Dalal, Y. K.; Printis, R. S. 48-bit Absolute Internet and Ethernet Host Numbers.
Proc. of the 7th Data Communications Symposium; 1981 October 27-29; Mexico City.
[pages] 240-245. [Also published by Xerox Corporation, Office Products Division; 1981
July; OPD-T8101.]

White, J. E.; Dalal, Y. K. Higher-level protocols enhance Ethernet. Electronic
Design. 30(8): ss33-ss41; 1982 April 15.

15

29

39

59

65

91

109

124

133

150

161

167

S i TR

Office Systems Technology

Table of Contents (continued)

Programming Language and Operating System

Geschke, C. M.; Morris, J. H., Jr.; Satterthwaite, E. H. Early Experience with 177
Mesa. Comm. ACM. 20(8): 540-553; 1977 August. [A version of this paper was

presented at the Conference on Language Design for Reliable Software; 1977 March

28-30; Raleigh NC.]

Lampson, B. W.; Redell, D. D. Experience with Processes and Monitors in Mesa. 191
Comm. ACM. 23(2): 105-117; 1980 February.
Curry, G.; Baer, L.; Lipkie, D.; Lee, B. Traits - An Approach to Multiple- 204

Inheritance Subclassing. Proc. of the SIGOA Conference on Office Automation
Systems; 1982 June 21-23; location. [Also published by Xerox Corporation, Office
Systems Division; 1982 September; OSD-T8202.1.

Redell, D. D.; Dalal, Y. K.; Horsley, T. R.; Lauer, H. C.; Lynch, W. C.; McJones, P. R.; 213
Murray, H. G.; Purcell, S. C. Pilot: An Operating System for a Personal

Computer. Comm. ACM. 23(2): 81-92; 1980 February. [Presented at the 7th ACM

Symposium on Operating Systems Principles; 1979 December; Pacific Grove.]

Processor Architecture

Johnsson, R. K.; Wick, J. D. An Overview of the Mesa Processor Architecture. 225
Proc. of the Symposium on Architectural Support for Programming Languages and

Operating Systems; 1982 March; Palo Alto. [Also published in SIGARCH Computer

Architecture News 10(2) and SIGPLAN Notices 17(4).]

Sweet, R. E.; Sandman, J. G., Jr. Empirical Analysis of the Mesa Instruction Set. 235
Proc. of the Symposium on Architectural Support for Programming Languages and

Operating Systems; 1982 March; Palo Alto. [Also published in SIGARCH Computer

Architecture News 10(2) and SIGPLAN Notices 17(4).]

Software Engineering

Horsley, T. R.; Lynch, W. C. Pilot: A Software Engineering Case Study. Proc. of 245
the Fourth International Conference on Software Engineering; 1979 September;
Munich. [pages] 94-99.

Lauer, H. C.; Satterthwaite, E. H. The Impact of Mesa on System Design. Proc. of 251
the Fourth International Conference on Software Engineering; 1979 September;
Munich. [pages] 174-182.

Harslem, E.; Nelson, L. E. A Retrospective on the Development of Star. Proc. of 261
the 6th International Conference on Software Engineering; 1982 September; Tokyo,
Japan.

Lauer, H. C. Observations on the Development of an Operating System. Proc. of 269
the 8th Symposium on Operating Systems; 1981 December; Asilomar. [pages] 30-36.

The star user interface: an overview

by DAVID CANFIELD SMITH, CHARLES IRBY, and RALPH KIMBALL

Xerox Corporation
Palo Alto, California

and
ERIC HARSLEM

Xerox Corporation
El Segundo, California

ABSTRACT

In April 1981 Xerox announced the 8010 Star Information System, a new personal
computer designed for office professionals who create, analyze, and distribute
information. The Star user interface differs from that of other office computer
systems by its emphasis on graphics, its adherence to a metaphor of a physical
office, and its rigorous application of a small set of design principles. The graphic
imagery reduces the amount of typing and remembering required to operate the
system. The office metaphor makes the system seem familiar and friendly; it reduc-
es the alien feel that many computer systems have. The design principles unify the
nearly two dozen functional areas of Star, increasing the coherence of the system
and allowing user experience in one area to apply in others.

The Star User Interface: An Overview

INTRODUCTION

In this paper we present the features in the Star system with-
out justifying them in detail. In a companion paper,’ we dis-
cuss the rationale for the design decisions made in Star. We
assume that the reader has a general familiarity with computer
text editors, but no familiarity with Star.

The Star hardware consists of a processor, a two-page-wide
bit-mapped display, a keyboard, and a cursor control device.
The Star software addresses about two dozen functional areas
of the office, encompassing document creation; data pro-
cessing; and electronic filing, mailing, and printing. Docu-
ment creation includes text editing and formatting, graphics
editing, mathematical formula editing, and page layout. Data
processing deals with homogeneous databases that can be
sorted, filtered, and formatted under user control. Filing is an
example of a network service using the Ethernet local area
network.** Files may be stored on a work station’s disk (Fig-
ure 1), on a file server on the work station’s network, or on a
file server on a different network. Mailing permits users of
work stations to communicate with one another. Printing uses
laser-driven xerographic printers capable of printing both text
and graphics. The term Star refers to the total system, hard-
ware plus software.

As Jonathan Seybold has written, “This is a very different
product: Different because it truly bridges word processing

Figure 1—A Star workstation showing the processor, display, keyboard and
mouse

and typesetting functions; different because it has a broader
range of capabilities than anything which has preceded it; and
different because it introduces to the commercial market rad-
ically new concepts in human engineering.”*

The Star hardware was modeled after the experimental
Alto computer developed at the Xerox Palo Alto Research
Center.’ Like Alto, Star consists of a Xerox-developed high-
bandwidth MSI processor, local disk storage, a bit-mapped
display screen having a 72-dot-per-inch resolution, a pointing
device called the mouse, and a connection to the Ethernet.
Stars are higher-performance machines than Altos, being
about three times as fast, having 512K bytes of main memory
(vs. 256K bytes on most Altos), 10 or 29M bytes of disk
memory (vs. 2.5M bytes), a 10%2-by-13¥2-inch display screen
(vs. a 10¥2-by-8%-inch one), 1024 X 808 addressable screen
dots (vs. 606 x 808), and a 10M bits-per-second Ethernet (vs.
3M bits). Typically, Stars, like Altos, are linked via Ethernets
to each other and to shared file, mail, and print servers. Com-
munication servers connect Ethernets to one another either
directly or over phone lines, enabling internetwork commu-
nication to take place. This means, for example, that from the
user’s perspective it is no harder to retrieve a file from a file
server across the country than from a local one.

Unlike the Alto, however, the Star user interface was de-
signed before the hardware or software was built. Alto soft-
ware, of which there was eventually a large amount, was de-
veloped by independent research teams and individuals.
There was little or no coordination among projects as each
pursued its own goals. This was acceptable and even desirable
in a research environment producing experimental software.
But it presented the Star designers with the challenge of syn-
thesizing the various interfaces into a single, coherent, uni-
form one.

ESSENTIAL HARDWARE

Before describing Star’s user interface, we should point out
that there are several aspects of the Star (and Alto) architec-
ture that are essential to it. Without these elements, it would
have been impossible to design a user interface anything like
the present one.

Display

Both Star and Alto devote a portion of main memory to the
bit-mapped display screen: 100K bytes in Star, 50K bytes
(usually) in Alto. Every screen dot can be individually turned
on or off by setting or resetting the corresponding bit in
memory. This gives both systems substantial ability to portray
graphic images.

National Computer Conference, 1982

Memory Bandwidth

Both Star and Alto have a high memory bandwidth—about
50 MHz, in Star. The entire Star screen is repainted from
memory 39 times per second. This 50-MHz video rate would
swamp most computer memories, and in fact refreshing the
screen takes about 60% of the Alto’s memory bandwidth.
However, Star’s memory is double-ported; therefore, refresh-
ing the display does not appreciably slow down CPU memory
access. Star also has separate logic devoted solely to refresh-
ing the display.

Microcoded Personal Computer

Both Star and Alto are personal computers, one user per
machine. Therefore the needed memory access and CPU cy-
cles are consistently available. Special microcode has been
written to assist in changing the contents of memory quickly,
permitting a variety of screen processing that would otherwise
not be practical.®

Mouse

Both Star and the Alto use a pointing device called the
mouse (Figure 2). First developed at SRI,” Xerox’s version
has a ball on the bottom that turns as the mouse slides over a
flat surface such as a table. Electronics sense the ball rotation
and guide a cursor on the screen in corresponding motions.
The mouse is a “Fitts’s law” device: that is, after some practice

IRRETY WX T TR Rt R et oo |

Figure 2—The Star keyboard and mouse

The keyboard has 24 easy-to-understand function keys. The mouse has two
buttons on top.

you can point with a mouse as quickly and easily as you can
with the tip of your finger. The limitations on pointing speed
are those inherent in the human nervous system.®® The mouse
has buttons on top that can be sensed under program control.
The buttons let you point to and interact with objects on the
screen in a variety of ways.

Local Disk

Every Star and Alto has its own rigid disk for local storage
of programs and data. Editing does not require using the
network. This enhances the personal nature of the machines,
resulting in consistent behavior regardless of how many other
machines there are on the network or what anyone else is
doing. Large programs can be written, using the disk for
swapping.

Network

The Ethernet lets both Stars and Altos have a distributed
architecture. Each machine is connected to an Ethernet.
Other machines on the Ethernet are dedicated as servers,
machines that are attached to a resource and that provide
access to that resource. Typical servers are these:

1. File server—Sends and receives files over the network,
storing them on its disks. A file server improves on a
work station’s rigid disk in several ways: (a) Its capacity
is greater—up to 1.2 billion bytes. (b) It provides backup
facilities. (c) It allows files to be shared among users.
Files on a work station’s disk are inaccessible to anyone
else on the network.

2. Mail server—Accepts files over the network and distrib-
utes them to other machines on behalf of users, employ-
ing the Clearinghouse’s database of names and ad-
dresses (see below).

3. Print server—Accepts print-format files over the net-
work and prints them on the printer connected to it.

4. Communication server—Provides several services: The
Clearinghouse service resolves symbolic names into net-
work addresses.'” The Internetwork Routing service
manages the routing of information between networks
over phone lines. The Gateway service allows word pro-
cessors and dumb terminals to access network resources.

A network-based server architecture is economical, since
many machines can share the resources. And it frees work
stations for other tasks, since most server actions happen in
the background. For example, while a print server is printing
your document, you can edit another document or read your
mail.

PHYSICAL OFFICE METAPHOR

We will briefly describe one of the most important principles
that influenced the form of the Star user interface. The reader
is referred to Smith et al.! for a detailed discussion of all the
principles behind the Star design. The principle is to apply
users’ existing knowledge to the new situation of the com-
puter. We decided to create electronic counterparts to the
objects in an office: paper, folders, file cabinets, mail boxes,
calculators, and so on—an electronic metaphor for the phys-
ical office. We hoped that this would make the electronic
world seem more familiar and require less training. (Our ini-
tial experiences with users have confirmed this.) We further
decided to make the electronic analogues be concrete objects.

The Star User Interface: An Overview

Star documents are represented, not as file names on a disk,
but as pictures on the display screen. They may be selected by
pointing to them with the mouse and clicking one of the
mouse buttons. Once selected, documents may be moved,
copied, or deleted by pushing the MOVE, COPY, or DE-
LETE key on the keyboard. Moving a document is the elec-
tronic equivalent of picking up a piece of paper and walking
somewhere with it. To file a document, you move it to a
picture of a file drawer, just as you take a piece of paper to a
physical filing cabinet. To print a document, you move it to a
picture of a printer, just as you take a piece of paper to a
copying machine.

Though we want an analogy with the physical world for
familiarity, we don’t want to limit ourselves to its capabilities.
One of the raisons d’étre for Star is that physical objects do not
provide people with enough power to manage the increasing
complexity of their information. For example, we can take
advantage of the computer’s ability to search rapidly by pro-
viding a search function for its electronic file drawers, thus
helping to solve the problem of lost files.

THE DESKTOP

Every user’s initial view of Star is the Desktop, which resem-
bles the top of an office desk, together with surrounding fur-
niture and equipment. It represents a working environment,
where current projects and accessible resources reside. On the
screen (Figure 3) are displayed pictures of familiar office ob-
jects, such as documents, folders, file drawers, in-baskets, and
out-baskets. These objects are displayed as small pictures, or
icons.

You can “open” an icon by selecting it and pushing the
OPEN key on the keyboard. When opened, an icon expands
into a larger form called a window, which displays the icon’s
contents. This enables you to read documents, inspect the

Figure 3—A “Desktop” as it appears on the Star screen

This one has several commonly used icons along the top, including documents to
serve as “form pad” sources for letters, memos and blank paper. There is also an
open window displaying a document.

contents of folders and file drawers, see what mail has arrived,
and perform other activities. Windows are the principal mech-

_anism for displaying and manipulating information.

The Desktop surface is displayed as a distinctive grey pat-
tern. This is restful and makes the icons and windows on it
stand out crisply, minimizing eye strain. The surface is or-
ganized as an array of 1-inch squares, 14 wide by 11 high. An
icon may be placed in any square, giving a maximum of 154
icons. Star centers an icon in its square, making it easy to line
up icons neatly. The Desktop always occupies the entire dis-
play screen; even when windows appear on the screen, the
Desktop continues to exist “beneath” them.

The Desktop is the principal Star technique for realizing the
physical office metaphor. The icons on it are visible, concrete
embodiments of the corresponding physical objects. Star
users are encouraged to think of the objects on the Desktop
in physical terms. You can move the icons around to arrange
your Desktop as you wish. (Messy Desktops are certainly
possible, just as in real life.) You can leave documents on your
Desktop indefinitely, just as on a real desk, or you can file
them away.

ICONS

An icon is a pictorial representation of a Star object that can
exist on the Desktop. On the Desktop, the size of an icon is
approximately 1 inch square. Inside a window such as a folder
window, the size of an icon is approximately Y-inch square.
Iconic images have played a role in human communication
from cave paintings in prehistoric times to Egyptian hiero-
glyphics to religious symbols to modern corporate logos.
Computer science has been slow to exploit the potential of
visual imagery for presenting information, particularly ab-
stract information. “Among [the] reasons are the lack of
development of appropriate hardware and software for pro-
ducing visual imagery easily and inexpensively; computer
technology has been dominated by persons who seem to be
happy with a simple, very limited alphabet of characters used
to produce linear strings of symbols.”*' One of the authors has
applied icons to an environment for writing programs; he
found that they greatly facilitated human-computer commu-
nication.'? Negroponte’s Spatial Data Management system
has effectively used iconic images in a research setting.’> And
there have been other efforts.'*>° But Star is the first com-
puter system designed for a mass market to employ icons
methodically in its user interface. We do not claim that Star
exploits visual communication to the ultimate extent; we do
claim that Star’s use of imagery is a significant improvement
over traditional human-machine interfaces.

At the highest level the Star world is divided into two classes
of icons, (1) data and (2) function icons:

Data Icons

Data icons (Figure 4) represent objects on which actions are
performed. All data icons can be moved, copied, deleted,
filed, mailed, printed, opened, closed, and have a variety of
other operations performed on them. The three types of data
icons are document, folder, and record file.

National Computer Conference, 1982

880
Letter

o acme
Toots

Figure 4—The *‘data” icons: document, folder and record file

Document

A document is the fundamental object in Star. It corre-
sponds to the standard notion of what a document should be.
It most often contains text, but it may also include illustra-
tions, mathematical formulas, tables, fields, footnotes, and
formatting information. Like all data icons, documents can be
shown on the screen, rendered on paper, sent to other people,
stored on a file server or floppy disk, etc. When opened,
documents are always rendered on the display screen exactly
as they print on paper (informally called “what you see is what
you get”), including displaying the correct type fonts, multiple
columns, headings and footings, illustration placement, etc.
Documents can reside in the system in a variety of formats
(e.g., Xerox 860, IBM OS6), but they can be edited only in
Star format. Conversion operations are provided to translate
between the various formats.

Folder

A folder is used to group data icons together. It can contain
documents, record files, and other folders. Folders can be
nested inside folders to any level. Like file drawers (see be-
low), folders can be sorted and searched.

Record file

A record file is a collection of information organized as a set
of records. Frequently this information will be the variable
data from forms. These records may be sorted, subset via
pattern matching, and formatted into reports. Record files
provide a rich set of information storage and retrieval
functions.

Function Icons

Function icons represent objects that perform actions. Most
function icons will operate on any data icon. There are many
kinds of function icons, with more being added as the system
evolves:

File drawer

A file drawer (Figure 5) is a place to store data icons. It is
modeled after the drawers in office filing cabinets. The or-
ganization of a file drawer is up to you; it can vary from a
simple list of documents to a multilevel hierarchy of folders

Figure 5—A file drawer icon

containing other folders. File drawers are distinguished from
other storage places (folders, floppy disks, and the Desktop)
in that (1) icons placed in a file drawer are physically stored
on a file server, and (2) the contents of file drawers can be
shared by multiple users. File drawers have associated access
rights to control the ability of people to look at and modify
their contents (Figure 6).

Although the design of file drawers was motivated by their
physical counterparts, they are a good example of why it is
neither necessary nor desirable to stop with just duplicating
real-world behavior. People have a lot of trouble finding
things in filing cabinets. Their categorization schemes are fre-
quently ad hoc and idiosyncratic. If the person who did the
categorizing leaves the company, information may be per-
manently lost. Star improves on physical filing cabinets by
taking advantage of the computer’s ability to search rapidly.
You can search the contents of a file drawer for an object
having a certain name, or author, or creation date, or size, or
a variety of other attributes. The search criteria can use fuzzy
patterns containing match-anything symbols, ranges, and
other predicates. You can also sort the contents on the basis
of those criteria. The point is that whatever information re-
trieval facilities are available in a system should be applied to

L ou1E2 19:59 1198 16:85

Q1T 1988 DL 1828

12010 36 PIARET 1508

4 Objects

D) Memo Farm 1 Page ST 1B BRAVEEY 1A%
0 atoeitanes 8 Oblects GIA WD 12038 (REETEIRNE N
wp paper :T

roateriat

e

Figure 6—An open file drawer window

Note that there is a miniature icon for each object inside the file drawer.

The Star User Interface: An Overview

the information in files. Any system that does not do so is not
exploiting the full potential of the computer.

In basket and Out basket

These provide the principal mechanism for sending data
icons to other people (Figure 7). A dataicon placed in the Out
basket will be sent over the Ethernet to a mail server (usually
the same machine as a file server), thence to the mail servers
of the recipients (which may be the same as the sender’s), and
thence to the In baskets of the recipients. When you have mail
waiting for you, an envelope appears in your In basket icon.
When you open your In basket, you can display and read the
mail in the window.

Any document, record file, or folder can be mailed. Docu-
ments need not be limited to plain text, but can contain illus-
trations, mathematical formulas, and other nontext material.
Folders can contain any number of items. Record files can be
arbitrarily large and complex.

Figure 7—In and Out basket icons

Printer

Printer icons (Figure 8) provide access to printing services.
The actual printer may be directly connected to your work
station, or it may be attached to a print server connected to an
Ethernet. You can have more than one printer icon on your
Desktop, providing access to a variety of printing resources.
Most printers are expected to be laser-driven raster-scan xero-
graphic machines; these can render on paper anything that
can be created on the screen. Low-cost typewriter-based
printers are also available; these can render only text.

As with filing and mailing, the existence of the Ethernet
greatly enhances the power of printing. The printer repre-
sented by an icon on your Desktop can be in the same room
as your work station, in a different room, in a different build-

-

e
Gk
2
e
o
b
o]

5
2
Sy

«

o
R %
e et T
ettt el i
sl s
) o)
e 2 .
Poeeing)
At A * *
PERR RN i
AR
el >
EPR O e - ;
ps z‘a:,w’g'f.":‘h et » KRN %
BN ¥ % wiely]
VLIRS Y B IEIEN b 3 0 *,
S B
T e ¥ ety 1% d
RAONSE T e e ¢ 5 whela + &
Tttt L, Myt AR, * A
[OOSR S R RS NSO Aty A ey
O it iy, KTE s e OO At ettt
BODOGEN Sateilale Sty ylaianelate S e e W s
kit e iy . fat e A A N N e e ONESONN
dibtaih e e L A T L e
b OIS M N P B S NN KX MM R O S 0)
R R P R R B s 0 s e D e L O [e D Ll

Figure 8—A printer icon

ing, in a different city, even in a different country. You per-
form exactly the same actions to print on any of them: Select
a dataicon, push the MOVE key, and indicate the printer icon
as the destination.

Floppy disk drive

The floppy disk drive icon (Figure 9) allows you to move
data icons to and from a floppy disk inserted in the machine.
This provides a way to store documents, record files and fold-
ers off line. When you open the floppy disk drive icon, Star
reads the floppy disk and displays its contents in the window.
Its window looks and acts just like a folder window: icons may
be moved or copied in or out, or deleted. The only difference
is the physical location of the data.

Figure 9—A floppy disk drive icon

User

The user icon (Figure 10) displays the information that the
system knows about each user: name, location, password
(invisible, of course), aliases if any, home file and mail serv-
ers, access level (ordinary user, system administrator, help/
training writer), and so on. We expect the information stored
for each user to increase as Star adds new functionality. User
icons may be placed in address fields for electronic mail.

User icons are Star’s solution to the naming problem. There
is a crisis in computer naming of people, particularly in elec-
tronic mail addressing. The convention in most systems is to

gt PR
. "’i ".
LI *
¥ 8, L
LN 2 *
RPEE f ¥
LR X,
1L¥ *ot
e *
S ¥ "l
%t . Q'!
*, ’&'9
¢y
Aty Wl
ot b
M)
kel

»
)
2y

" -

- .“‘ ‘I“" £

o

"' - *ﬂz"ﬁ '4‘ ﬁ'

Fats

Figure 10—A user icon

National Computer Conference, 1982

use last names for user identification. Anyone named Smith,
as is one of the authors, knows that this doesn’t work. When
he first became a user on such a system, Smith had long ago
been taken. In fact, “D. Smith” and even “D. C. Smith” had
been taken. He finally settled on “DaveSmith”, all one word,
with which he has been stuck to this day. Needless to say, that
is not how he identifies himself to people. In the future, peo-
ple will not tolerate this kind of antihumanism from comput-
ers. Star already does better: it follows society’s conventions.
User icons provide unambiguous unique references to individ-
ual people, using their normal names. The information about
users, and indeed about all network resources, is physically
stored in the Clearinghouse, a distributed database of names.
In addition to a person’s name in the ordinary sense, this
information includes the name of the organization (e.g., Xe-
rox, General Motors) and the name of the user’s division
within the organization. A person’s linear name need be
unique only within his division. It can be fully spelled out if
necessary, including spaces and punctuation. Aliases can be
defined. User icons are references to this information. You
need not even know, let alone type, the unique linear repre-
sentation for a user; you need only have the icon.

User group

User group icons (Figure 11) contain individual users and/
or other user groups. They allow you to organize people ac-
cording to various criteria. User groups serve both to control

TR e e e e et
NS N I NI N o)

.
.
-
Ty

.
e,

Eh
SAAANG

e

e e
et
RSN SN

DI
-

T
Wt e et e e
PR R

B R R NS
AN

B R

Figure 11—A user group icon

access to information such as file drawers (access control lists)
and to make it easy to send mail to a large number of people
(distribution lists). The latter is becoming increasingly im-
portant as more and more people start to take advantage of
computer-assisted communication. At Xerox we have found
that as soon as there were more than a thousand Alto users,
there were almost always enough people interested in any
topic whatsoever to form a distribution list for it. These user
groups have broken the bonds of geographical proximity that
have historically limited group membership and commu-
nication. They have begun to turn Xerox into a nationwide
“village,” just as the Arpanet has brought computer science
researchers around the world closer together. This may be the
most profound impact that computers have on society.

Calculator

A variety of styles of calculators (Figure 12) let you perform
arithmetic calculations. Numbers can be moved between Star
documents and calculators, thereby reducing the amount of
typing and the possibility of errors. Rows or columns of tables
can be summed. The calculators are user-tailorable and exten-
sible. Most are modeled after pocket calculators—business,
scientific, four-function—but one is a tabular calculator simi-
lar to the popular Visicalc program.

ORI

N N I R II

T
R N N

R

Figure 12—A calculator icon

Terminal emulators

The terminal emulators permit you to communicate with
existing mainframe computers using existing protocols. Ini-
tially, teletype and 3270 terminals are emulated, with addi-
tional ones later (Figure 13). You open one of the terminal
icons and type into its window; the contents of the window
behave exactly as if you were typing at the corresponding
terminal. Text in the window can be copied to and from Star
documents, which makes Star’s rich environment available to
them.

“““ IR LI
arnes
OOOONDM

]

.

et
)

S

S

e

)
-

igkeky
.
APAAA AR

55

—
s

LY,

Dialo
EDEREIEME M VN
SENNHERM)

P

LK
ey
AN

DG
ity

BOOOO0C
BOODOOO

OO0
.
DRI DRIt

!

*

Figure 13—3270 and TTY emulation icons

Directory

The Directory provides access to network resources. It
serves as the source for icons representing those resources;
the Directory contains one icon for each resource available
(Figure 14). When you are first registered in a Star network,

The Star User Interface: An Overview

G
BE

Directory

Figure 14—A Directory icon

your Desktop contains nothing but a Directory icon. From
this initial state, you access resources such as file drawers,
printers, and mail baskets by opening the Directory and copy-
ing out their icons. You can also get blank data icons out of the
Directory. You can retrieve other data icons from file draw-
ers. Star places no limits on the complexity of your Desktop
except the limitation imposed by physical screen area (Figure
15). The Directory also contains Remote Directories repre-
senting resources available on other networks. These can be
opened, recursively, and their resource icons copied out, just
as with the local Directory. You deal with local and remote
resources in exactly the same way.

Hame

1§ e fasic Docurments, Folders, and Record Files

£ing

g Mg |
Ty soeeing

B couseort ation Device: :
M Femate Doretorie N
T

&y

- - R =

Figure 15—The Directory window, showing the categories of resources
available

The important thing to observe is that although the func-
tions performed by the various icons differ, the way you inter-
act with them is the same. You select them with the mouse.
You push the MOVE, COPY, or DELETE key. You push the
OPEN key to see their contents, the PROPERTIES key to see
their properties, and the SAME key to copy their properties.
This is the result of rigorously applying the principle of uni-
formity to the design of icons. We have applied it to other
areas of Star as well, as will be seen.

WINDOWS

Windows are rectangular areas that display the contents of
icons on the screen. Much of the inspiration for Star’s design

came from Alan Kay’s Flex machine'” and his later Smalltalk
programming environment on the Alto."® The Officetalk
treatment of windows was also influential; in fact, Officetalk,
an experimental office-forms-processing system on the Alto,
provided ideas in a variety of areas.'® Windows greatly in-
crease the amount of information that can be manipulated on
a display screen. Up to six windows at a time can be open in
Star. Each window has a header containing the name of the
icon and a menu of commands. The commands consist of a
standard set present in all windows (““?”’, CLOSE, SET WIN-
DOW) and others that depend on the type of icon. For exam-
ple, the window for a record file contains commands tailored
to information retrieval. CLOSE removes the window from
the display screen, returning the icon to its tiny size. The “?”
command displays the online documentation describing the
type of window and its applications.

Each window has two scroll bars for scrolling the contents
vertically and horizontally. The scroll bars have jump-to-end
areas for quickly going to the top, bottom, left, or right end
of the contents. The vertical scroll bar also has areas labeled
N and P for quickly getting the next or previous screenful of
the contents; in the case of a document window, they go to the
next or previous page. Finally, the vertical scroll bar has a
jumping area for going to a particular part of the contents,
such as to a particular page in a document.

Unlike the windows in some Alto programs, Star windows
do not overlap. This is a deliberate decision, based on our
observation that many Alto users were spending an inordinate
amount of time manipulating windows themselves rather than
their contents. This manipulation of the medium is overhead,
and we want to reduce it. Star automatically partitions the
display space among the currently open windows. You can
control on which side of the screen a window appears and its
height.

PROPERTY SHEETS

At a finer grain, the Star world is organized in terms of objects
that have properties and upon which actions are performed. A
few examples of objects in Star are text characters, text para-
graphs, graphic lines, graphic illustrations, mathematical sum-
mation signs, mathematical formulas, and icons. Every object
has properties. Properties of text characters include type
style, size, face, and posture (e.g., bold, italic). Properties of
paragraphs include indentation, leading, and alignment.
Properties of graphic lines include thickness and structure
(e.g., solid, dashed, dotted). Properties of document icons
include name, size, creator, and creation date. So the proper-
ties of an object depend on the type of the object. These ideas
are similar to the notions of classes, objects, and messages in
Simula® and Smalltalk. Among the editors that use these
ideas are the experimental text editor Bravo®' and the experi-
mental graphics editor Draw,? both developed at the Xerox
Palo Alto Research Center. These all supplied valuable
knowledge and insight to Star. In fact, the text editor aspects
of Star were derived from Bravo.

In order to make properties visible, we invented the notion
of a property sheet (Figure 16). A property sheet is a two-
dimensional formlike environment which shows the proper-

10

National Computer Conference, 1982

S o0 jboid fuettarsg)

IEES

Figure 16—The property sheet for text characters

ties of an object. To display one, you select the object of
interest using the mouse and push the PROPERTIES key on
the keyboard. Property sheets may contain three types of
parameters:

1. State—State parameters display an independent proper-
ty, which may be either on or off. You turn it on or off
by pointing to it with the mouse and clicking a mouse
button. When on, the parameter is shown video re-
versed. In general, any combination of state parameters
in a property sheet can be on. If several state parameters
are logically related, they are shown on the same line
with space between them. (See “Face” in Figure 16.)

2. Choice—Choice parameters display a set of mutually
exclusive values for a property. Exactly one value must
be on at all times. As with state parameters, you turn on
a choice by pointing to it with the mouse and clicking a
mouse button. If you turn on a different value, the sys-
tem turns off the previous one. Again the one that is on
is shown video reversed. (See “‘Font” in Figure 16.) The
motivation for state and choice parameters is the obser-
vation that it is generally easier to take a multiple-choice
test than a fill-in-the-blanks one. When options are
made visible, they become easier to understand, remem-
ber, and use.

3. Text—Text parameters display a box into which you can
type a value. This provides a (largely) unconstrained
choice space; you may type any value you please, within
the limits of the system. The disadvantage of this is that
the set of possible values is not visible; therefore Star
uses text parameters only when that set is large. (See
“Search for” in Figure 17.)

Property sheets have several important attributes:

1. A small number of parameters gives you a large number
of combinations of properties. They permit a rich choice
space without a lot of complexity. For example, the char-
acter property sheet alone provides for 8 fonts, from 1 to
6 sizes for each (an average of about 2), 4 faces (any

Figure 17—The option sheet for the Find command

combination of which can be on), and 8 positions rela-
tive to the baseline (including OTHER, which lets you
type in a value). So in just four parameters, there are
over 8 X2 x2*x8=2048 combinations of character
properties.

2. They show all of the properties of an object. None is
hidden. You are constantly reminded what is available
every time you display a property sheet.

3. They provide progressive disclosure. There are a large
number of properties in the system as a whole, but you
want to deal with only a small subset at any one time.
Only the properties of the selected object are shown.

4. They provide a “bullet-proof” environment for altering
the characteristics of an object. Since only the properties
of the selected object are shown, you can’t accidentally
alter other objects. Since only valid choices are dis-
played, you can’t specify illegal properties. This reduces
erTorS.

Property sheets are an example of the Star design principle
that seeing and pointing is preferred over remembering and
typing. You don’t have to remember what properties are avail-
able for an object; the property sheet will show them to you.
This reduces the burden on your memory, which is particu-
larly important in a functionally rich system. And most prop-
erties can be changed by a simple pointing action with the
mouse.

The three types of parameters are also used in option sheets.
(Figure 18). Option sheets are just like property sheets, ex-
cept that they provide a visual interface for arguments to com-
mands instead of properties of objects. For example, in the
Find option sheet there is a text parameter for the string to
search for, a choice parameter for the range over which to
search, and a state parameter (CHANGE IT) controlling
whether to replace that string with another one. When
CHANGE IT is turned on, an additional set of parameters
appears to contain the replacement text. This technique of
having some parameters appear depending on the settings of
others is another part of our strategy of progressive disclo-
sure: hiding information (and therefore complexity) until it is

The Star User Interface: An Overview

needed, but making it visible when it is needed. The various
sheets appear simpler than if all the options were always
shown.

COMMANDS

Commands in Star take the form of noun-verb pairs. You
specify the object of interest (the noun) and then invoke a
command to manipulate it (the verb). Specifying an object is
called making a selection. Star provides powerful selection
mechanisms, which reduce the number and complexity of
commands in the system. Typically, you exercise more dexter-
ity and judgment in making a selection than in invoking a
command. The ways to make a selection are as follows:

1. With the mouse—Place the cursor over the object on the
screen you want to select and click the first (SELECT)
mouse button. Additional objects can be selected by
using the second (ADJUST) mouse button; it adjusts the
selection to include more or fewer objects. Most selec-
tions are made in this way.

2. With the NEXT key on the keyboard—Push the NEXT
key, and the system will select the contents of the next
field in a document. Fields are one of the types of special
higher-level objects that can be placed in documents. If
the selection is currently in a table, NEXT will step
through the rows and columns of the table, making it
easy to fill in and modify them. If the selection is cur-
rently in a mathematical formula, NEXT will step
through the various elements in the formula, making it
easy to edit them. NEXT is like an intelligent step key;
it moves the selection between semantically meaningful
locations in a document.

3. With a command—Invoke the FIND command, and the
system will select the next occurrence of the specified
text, if there is one. Other commands that make a selec-
tion include OPEN (the first object in the opened win-
dow is selected) and CLOSE (the icon that was closed
becomes selected). These optimize the use of the
system.

TEXT AND PROPERTIES)) l
ST OF DOCLIMENT mﬂ T SELECTION, f
x

: TEXTAND PROPERTIES !CQNHRM EACH S:&&G(!

Figure 18—The Find option sheet showing Substitute options (The extra
options appear only when CHANGE IT is turned on)

The object (noun) is almost always specified before the
action (verb) to be performed. This makes the command in-
terface modeless; you can change your mind as to which object
to affect simply by changing the selection before invoking the
command.” No “accept” function is needed to terminate or
confirm commands, since invoking the command is the last
step. Inserting text does not require a command; you simply
make a selection and begin typing. The text is placed after the
end of the selection. A few commands require more than one
operand and hence are modal. For example, the MOVE and
COPY commands require a destination as well as a source.

GENERIC COMMANDS

Star has a few commands that can be used throughout the
system: MOVE, COPY, DELETE, SHOW PROPERTIES,
COPY PROPERTIES, AGAIN, UNDO, and HELP. Each
performs the same way regardless of the type of object se-
lected. Thus we call them generic commands. For example,
you follow the same set of actions to move text in a document
as to move a document in a folder or a line in an illustration:
select the object, move the MOVE key, and indicate the
destination. Each generic command has a key devoted to it on
the keyboard. (HELP and UNDO don’t use a selection.)

These commands are more basic than the ones in other
computer systems. They strip away extraneous application-
specific semantics to get at the underlying principles. Star’s
generic commands are derived from fundamental computer
science concepts because they also underlie operations in pro-
gramming languages. For example, program manipulation of
data structures involves moving or copying values from one
data structure to another. Since Star’s generic commands em-
body fundamental underlying concepts, they are widely appli-
cable. Each command fills a host of needs. Few commands are
required. This simplicity is desirable in itself, but it has anoth-
er subtle advantage: it makes it easy for users to form a model
of the system. What people can understand, they can use. Just
as progress in science derives from simple, clear theories, so
progress in the usability of computers depends on simple,
clear user interfaces.

Move

MOVE is the most powerful command in the system. It is
used during text editing to rearrange letters in a word, words
in a sentence, sentences in a paragraph, and paragraphs in a
document. It is used during graphics editing to move picture
elements such as lines and rectangles around in an illustration.
It is used during formula editing to move mathematical struc-
tures such as summations and integrals around in an equation.
It replaces the conventional “store file” and ‘‘retrieve file”
commands; you simply move an icon into or out of a file
drawer or folder. It eliminates the “send mail” and “receive
mail”’ commands; you move an icon to an Out basket or from
an In basket. It replaces the “print” command; you move an
icon to a printer. And so on. MOVE strips away much of the
historical clutter of computer commands. It is more funda-
mental than the myriad of commands it replaces. It is simulta-
neously more powerful and simpler.

11

12

National Computer Conference, 1982

MOVE also reinforces Star’s physical metaphor: a moved
object can be in only one place at one time. Most computer
file transfer programs only make copies; they leave the origi-
nals behind. Although this is an admirable attempt to keep
information from accidentally getting lost, an unfortunate
side effect is that sometimes you lose track of where the most
recent information is, since there are multiple copies floating
around. MOVE lets you model the way you manipulate infor-
mation in the real world, should you wish to. We expect that
during the creation of information, people will primarily use
MOVE,; during the dissemination of information, people will
make extensive use of COPY.

Copy

COPY is just like MOVE, except that it leaves the original
object behind untouched. Star elevates the concept of copying
to the level of a paradigm for creating. In all the various
domains of Star, you create by copying. Creating something
out of nothing is a difficult task. Everyone has observed that
it is easier to modify an existing document or program than to
write it originally. Picasso once said, “The most awful thing
for a painter is the white canvas. . . . To copy others is neces-
sary.””** Star makes a serious attempt to alleviate the problem
of the “white canvas,” to make copying a practical aid to
creation. Consider:

® You create new documents by copying existing ones.
Typically you set up blank documents with appropriate
formatting properties (e.g., fonts, margins) and then use
those documents as form pad sources for new documents.
You select one, push COPY, and presto, you have a new
document. The form pad documents need not be blank;
they can contain text and graphics, along with fields for
variable text such as for business forms.

® You place new network resource icons (e.g., printers, file
drawers) on your Desktop by copying them out of the
Directory. The icons are registered in the Directory by a
system administrator working at a server. You simply
copy them out; no other initialization is required.

® You create graphics by copying existing graphic images
and modifying them. Star supplies an initial set of such
images, called transfer symbols. Transfer symbols are
based on the idea of dry-transfer rub-off symbols used by
many secretaries and graphic artists. Unlike the physical
transfer symbols, however, the computer versions can be
modified: they can be moved, their sizes and proportions
can be changed, and their appearance properties can be
altered. Thus a single Star transfer symbol can produce a
wide range of images. We will eventually supply a set of
documents (transfer sheets) containing nothing but spe-
cial images tailored to one application or another: peo-
ple, buildings, vehicles, machinery. Having these as
sources for graphics copying helps to alleviate the ‘“white
canvas” feeling.

® In a sense, you can even type characters by copying them
from keyboard windows. Since there are many more
characters (up to 2'®) in the Star character set than there
are keys on the keyboard, Star provides a series of key-

board interpretation windows (Figure 19), which allow
you to see and change the meanings of the keyboard
keys. You are presented with the options; you look them
over and choose the ones you want.

Figure 19—The Keyboard Interpretation window

This displays other characters that may be entered from the keyboard. The

character set shown here contains a variety of common office symbols.

Delete

This deletes the selected object. If you delete something by
mistake, UNDO will restore it.

Show Properties

SHOW PROPERTIES displays the properties of the se-
lected object in a property sheet. You select the object(s) of
interest, push the PROPERTIES (PROP’S) key, and the ap-
propriate property sheet appears on the screen in such a pos-
ition as to not overlie the selection, if possible. You may
change as many properties as you wish, including none. When
finished, you invoke the Done command in the property sheet
menu. The property changes are applied to the selected ob-
jects, and the property sheet disappears. Notice that SHOW
PROPERTIES is therefore used both to examine the current
properties of an object and to change those properties.

Copy Properties

You need not use property sheets to alter properties if there
is another object on the screen that already has the desired
properties. You can select the object(s) to be changed, push
the SAME key, then designate the object to use as the source.
COPY PROPERTIES makes the selection look the “same”
as the source. This is particularly useful in graphics editing.
Frequently you will have a collection of lines and symbols
whose appearance you want to be coordinated (all the same
line width, shade of grey, etc.). You can select all the objects
to be changed, push SAME, and select a line or symbol having

The Star User Interface: An Overview

the desired appearance. In fact, we find it helpful to set up a
document with a variety of graphic objects in a variety of
appearances to be used as sources for copying properties.

Again

AGAIN repeats the last command(s) on a new selection.
All the commands done since the last time a selection was
made are repeated. This is useful when a short sequence of
commands needs to be done on several different selections;
for example, make several scattered words bold and italic and
in a larger font.

Undo

UNDO reverses the effects of the last command. It provides
protection against mistakes, making the system more forgiv-
ing and user-friendly. Only a few commands cannot be re-
peated or undone.

Help

Our effort to make Star a personal, self-contained system
goes beyond the hardware and software to the tools that Star
provides to teach people how to use the system. Nearly all of
its teaching and reference material is on line, stored on a file
server. The Help facilities automatically retrieve the relevant
material as you request it.

The HELP key on the keyboard is the primary entrance into
this online information. You can push it at any time, and a
window will appear on the screen displaying the Help table of
contents (Figure 20). Three mechanisms make finding infor-
mation easier: context-dependent invocation, help references,
and a keyword search command. Together they make the
online documentation more powerful and useful than printed
documentation.

® Context-dependent invocation—The command menu in
every window and property/option sheet contains a “?”
command. Invoking it takes you to a part of the Help
documentation describing the window, its commands,
and its functions. The “?”” command also appears in the
message area at the top of the screen; invoking that one
takes you to a description of the message (if any) cur-
rently in the message area. That provides more detailed
explanations of system messages.

® Help references—These are like menu commands whose
effect is to take you to a different part of the Help mate-
rial. You invoke one by pointing to it with the mouse, just
as you invoke a menu command. The writers of the ma-
terial use the references to organize it into a network of
interconnections, in a way similar to that suggested by
Vannevar Bush® and pioneered by Doug Engelbart in his
NLS system.’*” The interconnections permit cross-
referencing without duplication.

® The SEARCH FOR KEYWORD command—This com-
mand in the Help window menu lets you search the avail-
able documentation for information on a specific topic.
The keywords are predefined by the writers of the Help
material.

s B e dom s o B Swrch £oriemiesri I Shivee 1 abie of Costmet

Figure 20—The Help window, showing the table of contents

Selecting a square with a question mark in it takes you to the associated part of
the Help documentation.

SUMMARY

We have learned from Star the importance of formulating the
user’s conceptual model first, before software is written, rath-
er than tacking on a user interface afterward. Doing good user
interface design is not easy. Xerox devoted about thirty work-
years to the design of the Star user interface. It was designed
before the functionality of the system was fully decided. It was
designed before the computer hardware was even built. We
worked for two years before we wrote a single line of actual
product software. Jonathan Seybold put it this way: ‘“Most
system design efforts start with hardware specifications, fol-
low this with a set of functional specifications for the software,
then try to figure out a logical user interface and command
structure. The Star project started the other way around: the
paramount concern was to define a conceptual model of how
the user would relate to the system. Hardware and software
followed from this.”*

Alto served as a valuable prototype for Star. Over a thou-
sand Altos were eventually built, and Alto users have had
several thousand work-years of experience with them over a
period of eight years, making Alto perhaps the largest proto-

13

14

National Computer Conference, 1982

typing effort in history. There were dozens of experimental
programs written for the Alto by members of the Xerox Palo
Alto Research Center. Without the creative ideas of the au-
thors of those systems, Star in its present form would have
been impossible. On the other hand, it was a real challenge to
bring some order to the different user interfaces on the Alto.
In addition, we ourselves programmed various aspects of the
Star design on Alto, but every bit (sic) of it was throwaway
code. Alto, with its bit-mapped display screen, was powerful
enough to implement and test our ideas on visual interaction.

REFERENCES

1. Smith, D. C., E. F. Harslem, C. H. Irby, R. B. Kimball, and W. L.
Verplank. “Designing the Star User Interface.” Byte, April 1982.

2. Metcalfe, R. M., and D. R. Boggs. “Ethernet: Distributed Packet Switch-
ing for Local Computer Networks.” Communications of the ACM, 19
(1976), pp. 395-404.

3. Intel, Digital Equipment, and Xerox Corporations. “The Ethernet, A Lo-
cal Area Network: Data Link Layer and Physical Layer Specifications
(version 1.0).” Palo Alto: Xerox Office Products Division, 1980.

4. Seybold, J. W. “Xerox’s ‘Star.”” The Seybold Report. Media, Pennsyl-
vania: Seybold Publications, 10 (1981), 16.

5. Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D.
R. Boggs. “Alto: A Personal Computer.” In D. Siewiorek, C. G. Bell, and
A. Newell (eds.), Computer Structures: Principles and Examples. New
York: McGraw-Hill, 1982.

6. Ingalls, D. H. “The Smalltalk Graphics Kernel.” Byte, 6 (1981), pp.
168-194.

7. English, W. K., D. C. Engelbart, and M. L. Berman. “Display-Selection
Techniques for Text Manipulation.” IEEE Transactions on Human Factors
in Electronics, HFE-8 (1967), pp. 21-31.

8. Fitts, P. M. “The Information Capacity of the Human Motor System in
Controlling Amplitude of Movement.” Journal of Experimental Psy-
chology, 47 (1954), pp. 381-391.

9. Card, S., W. K. English, and B. Burr. “Evaluation of Mouse, Rate-
Controlled Isometric Joystick, Step Keys, and Text Keys for Text Selection
on a CRT.” Ergonomics, 21 (1978), pp. 601-613.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

Oppen, D. C., and Y. K. Dalal. “The Clearinghouse: A Decentralized
Agent for Locating Named Objects in a Distributed Environment.” Palo
Alto: Xerox Office Products Division, OPD-T8103, 1981.

Huggins, W. H., and D. Entwisle. Iconic Communication. Baltimore and
London: The Johns Hopkins University Press, 1974.

Smith, D. C. Pygmalion, A Computer Program to Model and Stimulate
Creative Thought. Basel and Stuttgart: Birkhauser Verlag, 1977.

Bolt, R. Spatial Data-Management. Cambridge, Massachusetts: Massachu-
setts Institute of Technology Architecture Machine Group, 1979.

. Sutherland, 1. “Sketchpad, A Man-Machine Graphical Communication

System.”” AFIPS, Proceedings of the Fall Joint Computer Conference (Vol.
23), 1963, pp. 329-346.

Sutherland, W. “On-Line Graphical Specifications of Computer Proced-
ures.” Cambridge, Massachusetts: Massachusetts Institute of Technology,
1966.

Christensen, C. “An Example of the Manipulation of Directed Graphs in
the AMBIT/G Programming Language.” In M. Klerer and J. Reinfelds
(eds.), Interactive Systems for Experimental and Applied Mathematics. New
York: Academic Press, 1968.

Kay, A. C. The Reactive Engine. Salt Lake City: University of Utah, 1969.
Kay, A. C., and the Learning Research Group. “Personal Dynamic Me-
dia.” Xerox Palo Alto Research Center Technical Report SSL-76-1, 1976.
(A condensed version is in IEEE Computer, March 1977, pp. 31-41.)
Newman, W. M. “Officetalk-Zero: A User’s Manual.” Xerox Palo Alto
Research Center Internal Report, 1977.

Dahl, O.J.,and K. Nygaard. “SIMULA-AnR Algol-Based Simulation Lan-
guage.” Communications of the ACM, 9 (1966), pp. 671-678.

Lampson, B. “Bravo Manual.” In Alto User’s Handbook, Xerox Palo Alto
Research Center, 1976 and 1978. (Much of the design and all of the imple-
mentation of Bravo was done by Charles Simonyi and the skilled pro-
grammers in his “software factory.”)

Baudelaire, P., and M. Stone. “Techniques for Interactive Raster Graph-
ics.” Proceedings of the 1980 Siggraph Conference, 14 (1980), 3.

Tesler, L. “The Smalltalk Environment.” Byte, 6 (1981), pp. 90-147.
Wertenbaker, L. The World of Picasso. New York: Time-Life Books, 1967.
Bush, V. “As We May Think.” Atlantic Monthly, July 1945.

Engelbart, D. C. “Augmenting Human Intellect: A Conceptual Frame-
work.” Technical Report AFOSR-3223, -SRI International, Menlo Park,
Calif., 1962.

. Engelbart, D. C., and W. K. English. “A Research Center for Augmenting

Human Intellect.” AFIPS Proceedings of the Fall Joint Computer Confer-
ence (Vol. 33), 1968, pp. 395-410.

Designing the Star User Interface

The Star user interface adheres rigorously to a small set of
principles designed to make the system seem friendly by
simplifying the human-machine interface.

In April 1981, Xerox announced
the 8010 Star Information System, a
new personal computer designed for
offices. Consisting of a processer, a
large display, a keyboard, and a
cursor-control device (see photo 1), it
is intended for business professionals
who handle information.

Star is a multifunction system com-
bining document creation, data pro-
cessing, and electronic filing, mailing,
and printing. Document creation in-
cludes text editing and formatting,
graphics editing, mathematical for-
mula editing, and page layout. Data
processing deals with homogeneous,
relational databases that can be
sorted, filtered, and formatted under
user control. Filing is an example of a
network service utilizing the Ethernet
local-area network (see references 9
and 13). Files may be stored on a
work station’s disk, on a file server on

About the Authors

These five Xerox employees have worked on
the Star user interface project for the past five
years. Their academic backgrounds are in com-
puter science and psychology.

Dr. David Canfield Smith, Charles Irby,
Ralph Kimball, and Bill Verplank
Xerox Corporation
3333 Coyote Hill Rd.

Palo Alto, CA 94304

Eric Harslem
Xerox Corporation
El Segundo, CA 90245

the work station’s network, or on a
file server on a different network.
Mailing permits users of work sta-
tions to communicate with one
another. Printing utilizes laser-driven
raster printers capable of printing
both text and graphics.

As Jonathan Seybold has written,
“This is a very different product: Dif-
ferent because it truly bridges word
processing and typesetting functions;
different because it has a broader
range of capabilities than anything
which has preceded it; and different
because it introduces to the commer-
cial market radically new concepts in
human engineering.” (See reference
15.)

The Star user interface adheres
rigorously to a small set of design
principles. These principles make the
system seem familiar and friendly,
simplify the human-machine interac-
tion, unify the nearly two dozen func-
tional areas of Star, and allow user
experience in one area to apply in
others. In reference 17, we presented
an overview of the features in Star.
Here, we describe the principles

behind those features and illustrate
the principles with examples. This
discussion is addressed to the
designers of other computer pro-
grams and systems—large and small.

Star Architecture

Before describing Star’s user inter-
face, several essential aspects of the
Star architecture should be pointed
out. Without these elements, it would
have been impossible to design an
interface anything like the present
one.

The Star hardware was modeled
after the experimental Xerox Alto
computer (see reference 19). Like
Alto, Star consists of a Xerox-
developed, high-bandwidth, MSI
(medium-scale integration) processor;
local disk storage; a bit-mapped
display screen having a 72-dots-per-
inch resolution; a pointing device
called the “mouse”; and a connection
to the Ethernet network. Stars are
higher-performance machines than
Altos, being about three times as fast,
having 512K bytes of main memory
(versus 256K bytes on most Altos), 10

15

16

Photo 1: A Star work station showing the processor, display, keyboard, and mouse.

Photo 2: The Star keyboard and mouse. Note the two buttons on top of the mouse.

or 29 megabytes of disk memory (ver-
sus 2.5 megabytes), a 10%:- by
13V%;-inch display screen (versus 10%2
by 8 inches), and a 10-megabits-per-
second Ethernet (versus 3 megabits).
Typically, Stars, like Altos, are
linked via Ethernets to each other and
to shared file, mail, and print servers.
Communication servers connect
Ethernets to one another either direct-
ly or over telephone lines, enabling
internetwork communication. (For a
detailed description of the Xerox Alto
computer, see the September 1981
BYTE article “The Xerox Alto Com-
puter” by Thomas A. Wadlow on
page 58.)

The most important ingredient of

the user interface is the bit-mapped
display screen. Both Star and Alto
devote a portion of main memory to
the screen: 100K bytes in Star, 50K
bytes (usually) in Alto. Every screen
dot can be individually turned on or
off by setting or resetting the cor-
responding bit in memory. It should
be obvious that this gives both com-
puters an excellent ability to portray
visual images. We believe that all im-
pressive office systems of the future
will have bit-mapped displays.
Memory cost will soon be insignifi-
cant enough that they will be feasible
even in home computers. Visual com-
munication is effective, and it can't be
exploited without graphics flexibility.

There must be a way to change
dots on the screen quickly. Star has a
high memory bandwidth, about 90
megahertz (MHz). The entire Star
screen is repainted from memory 39
times per second, about a 50-MHz
data rate between memory and the
screen. This would swamp most com-
puter memories. However, since
Star's memory is double-ported,
refreshing the display does not ap-
preciably slow down processor
memory access. Star also has separate
logic devoted solely to refreshing the
display. Finally, special microcode
has been written to assist in changing
the contents of memory quickly, per-
mitting a variety of screen processing
that would not otherwise be practical
(see reference 8).

People need a way to quickly point
to items on the screen. Cursor step
keys are too slow; nor are they
suitable for graphics. Both Star and
Alto use a pointing device called the
mouse (see photo 2). First developed
at ‘Stanford Research Institute (see
reference 6), Xerox's version has a
ball on the bottom that turns as the
mouse slides over a flat surface such
as a table. Electronics sense the ball
rotation and guide a cursor on the
screen in corresponding motions. The
mouse possesses several important
attributes:

olt is a “Fitts's law” device. That is,
after some practice you can point
with a mouse as quickly and easily as
you can with the tip of your finger.
The limitations on pointing speed are
those inherent in the human nervous
system (see references 3 and 7).

oIt stays where it was left when you
are not touching it. It doesn't have to
be picked up like a light pen or stylus.
oIt has buttons on top that can be
sensed under program control. The
buttons let you point to and interact
with objects on the screen in a variety
of ways.

Every Star and Alto has its own
hard disk for local storage of pro-
grams and data. This enhances their
personal nature, providing consistent
access to information regardless of
how many other machines are on the

network or what anyone else is do-
ing. Larger programs can be written,
using the disk for swapping.

The Ethernet lets both Stars and
Altos have a distributed architecture.
Each machine is connected to an
Ethernet. Other machines on the
Ethernet are dedicated as
“servers” —machines that are at-
tached to a resource and provide ac-
cess to that resource.

Star Design Methodology

We have learned from Star the im-
portance of formulating the fun-
damental concepts (the user’s concep-
tual model) before software is writ-
ten, rather than tacking on a user in-
terface afterward. Xerox devoted
about thirty work-years to the design
of the Star user interface. It was
designed before the functionality of
the system was fully decided. It was
even designed before the computer
hardware was built. We worked for
two years before we wrote a single
line of actual product software.
Jonathan Seybold put it this way,
“Most system design efforts start with
hardware specifications, follow this
with a set of functional specifications
for the software, then try to figure
out a logical user interface and com-
mand structure. The Star project
started the other way around: the
paramount concern was to define a
conceptual model of how the user
would relate to the system. Hardware
and software followed from this.”
(See reference 15.)

In fact, before we even began
designing the model, we developed a
methodology by which we would do
the design. Our methodology report
(see reference 10) stated:

One of the most troublesome and
least understood aspects of interactive
systems is the user interface. In the
design of user interfaces, we are con-
cerned with several issues: the provi-
sion of languages by which users can
express their commands to the com-
puter; the design of display representa-
tions that show the state of the system
to the user; and other more abstract
issues that affect the user’s understand-
ing of the system’s behavior. Many of
these issues are highly subjective and
are therefore often addressed in an ad
hoc fashion. We believe, however,

that more rigorous approaches to user
interface design can be developed. . . .

These design methodologies are all
unsatisfactory for the same basic
reason: they all omit an essential step
that must precede the design of any
successful user interface, namely task
analysis. By this we mean the analysis
of the task performed by the user, or
users, prior to introducing the pro-
posed computer system. Task analysis
involves establishing who the users
are, what their goals are in performing
the task, what information they use in
performing it, what information they
generate, and what methods they
employ. The descriptions of input and
output information should iniclude an
analysis of the various objects, or in-
dividual types of information entity,
employed by the user. . . .

The purpose of task analysis is to
simplify the remaining stages in user
interface design. The current task
description, with its breakdown of the
information objects and methods
presently employed, offers a starting
point for the definition of a corre-
sponding set of objects and methods to
be provided by the computer: system.
The idea behind this phase of design is
to build up a new task environment for
the user, in which he can work to ac-
complish the same goals as before, sur-
rounded now by a different set of ob-
jects, and employing new methods.

Prototyping is another crucial ele-
ment of the design process. System
designers should be prepared to im-
plement the new or difficult concepts
and then to throw away that code
when doing the actual implementa-
tion. As Frederick Brooks says, the
question “is not whether to build a
pilot system and throw it away. You
will do that. The only question is
whether to plan in advance to build a
throwaway, or to promise to deliver
the throwaway to customers. . ..
Hence plan to throw one away; you
will, anyhow.” (See reference 2.) The
Alto served as a valuable prototype
for Star. Over a thousand Altos were
eventually built. Alto users have had
several thousand work-years of ex-
perience with them over a period of
eight years, making Alto perhaps the
largest prototyping effort ever.
Dozens of experimental programs
were written for the Alto by members
of the Xerox Palo Alto Research

Center. Without the creative ideas of
the authors of those systems, Star in
its present form would have been im-

possible. In addition, we ourselves

programmed various aspects of the
Star design on Alto, but all of it was
“throwaway” code. Alto, with its bit-
mapped display screen, was powerful
enough to implement and test our
ideas on visual interaction.

Some types of concepts are in-
herently difficult for people to grasp.
Without being too formal about it,
our experience before and during the
Star design led us to the following
classification:

Easy Hard
concrete abstract
visible invisible
copying creating
choosing filling in

recognizing generating
editing programming
interactive batch

The characteristics on the left were in-
corporated into the Star user’s con-
ceptual model. The characteristics on
the right we attempted to avoid.

Principles Used

The following main goals were pur-
sued in designing the Star user inter-
face:

efamiliar user’s conceptual model

eseeing and pointing versus remem-
bering and typing

ewhat you see is what you get
euniversal commands

e consistency

esimplicity

emodeless interaction

euser tailorability

We will discuss each of these in turn.

17

18

Familiar User’s Conceptual Model
A user’s conceptual model is the set
of concepts a person gradually ac-
quires to explain the behavior of a
system, whether it be a computer
system, a physical system, or a
hypothetical system. It is the model
developed in the mind of the user that
enables that person to understand
and interact with the system. The first
task for a system designer is to decide
what model is preferable for users of
the system. This extremely important
step is often neglected or done poor-
ly. The Star designers devoted several
work-years at the outset of the proj-
ect discussing and evolving what we
considered an appropriate model for
an office information system: the
metaphor of a physical office.

The designer of a computer system
can choose to pursue familiar
analogies and metaphors or to in-
troduce entirely new functions requir-
ing new approaches. Each option has
advantages and disadvantages. We
decided to create electronic counter-
parts to the physical objects in an of-
fice: paper, folders, file cabinets, mail
boxes, and so on—an electronic
metaphor for the office. We hoped
this would make the electronic
“world” seem more familiar, less
alien, and require less training. (Our
initial experiences with users have
confirmed this.) We further decided
to make the electronic analogues be
concrete objects. Documents would
be more than file names on a disk;
they would also be represented by
pictures on the display screen. They
would be selected by pointing to them
with the mouse and clicking one of
the buttons. Once selected, they
would be moved, copied, or deleted
by pushing the appropriate key.
Moving a document became the elec-
tronic equivalent of picking up a
piece of paper and walking
somewhere with it. To file a docu-
ment, you would move it to a picture
of a file drawer, just as you take a
physical piece of paper to a physical
file cabinet.

The reason that the user’s concep-
tual model should be decided first

Figure 1: In-basket and out-basket icons. The in-basket contains an envelope indicating
that mail has been received. (This figure was taken directly from the Star screen.
Therefore, the text appears at screen resolution.)

when designing a system is that the
approach adopted changes the func-
tionality of the system. An example is
electronic mail. Most electronic-mail
systems draw a distinction between
messages and files to be sent to other
people. Typically, one program sends
messages and a different program
handles file transfers, each with its
own interface. But we observed that
offices make no such distinction.
Everything arrives through the mail,
from one-page memos to books and
reports, from intraoffice mail to inter-
national mail. Therefore, this became
part of Star’s physical-office
metaphor. Star users mail documents
of any size, from one page to many
pages. Messages are short documents,
just as in the real world. User actions
are the same whether the recipients
are in the next office or in another
country.

A physical metaphor can simplify
and clarify a system. In addition to
eliminating the artificial distinctions
of traditional computers, it can
eliminate commands by taking ad-
vantage of more general concepts.
For example, since moving a docu-
ment on the screen is the equivalent
of picking up a piece of paper and
walking somewhere with it, there is
no “send mail” command. You sim-
ply move it to a picture of an out-
basket. Nor is there a “receive mail”
command. New mail appears in the
in-basket as it is received. When new
mail is waiting, an envelope appears
in the picture of the in-basket (see

figure 1). This is a simple, familiar,
nontechnical approach to computer
mail. And it’s easy once the physical-
office metaphor is adopted!

While we want an analogy with the
physical world for familiarity, we
don't want to limit ourselves to its
capabilities. One of the raisons d'étre
for Star is that physical objects do not
provide people with enough power to
manage the increasing complexity of
the “information age.” For example,
we can take advantage of the com-
puter’s ability to search rapidly by
providing a search function for its
electronic file drawers, thus helping
to solve the long-standing problem of
lost files.

The “Desktop”

Every user’s initial view of Star is
the “Desktop,” which resembles the
top of an office desk, together with
surrounding furniture and equip-
ment. It represents your working en-
vironment—where your current proj-
ects and accessible resources reside.
On the screen are displayed pictures
of familiar office objects, such as
documents, folders, file drawers, in-
baskets, and out-baskets. These ob-
jects are displayed as small pictures or
“icons,” as shown in figure 2.

You can “open” an icon to deal
with what it represents. This enables
you to read documents, inspect the
contents of folders and file drawers,
see what mail you have received, etc.
When opened, an icon expands into a

larger form called a “window,” which
displays the icon’s contents. Win-
dows are the principal mechanism for
displaying and maripulating infor-
mation.

The Desktop “surface” is displayed
as a distinctive gray pattern. This
restful design makes the icons and
windows on it stand out crisply,
minimizing eyestrain. The surface is
organized as an array of one-inch
squares, 14 wide by 11 high. An icon
can be placed in any square, giving a
maximum of 154 icons. Star centers
an icon in its square, making it easy
to line up icons neatly. The Desktop
always. occupies the entire display
screen; even when windows appear
on the screen, the Desktop continues
to exist “beneath” them.

The Desktop is the principal Star
technique for realizing the physical-
office metaphor. The icons on it are
visible, concrete embodiments of the
corresponding physical objects. Star
users are encouraged to think of the
objects on the Desktop in physical
terms. Therefore, you can move the
icons around to arrange your
Desktop as you wish. (Messy
Desktops are certainly possible, just
as in real life.) Two icons cannot oc-
cupy the same space (a basic law of
physics). Although moving a docu-
ment to a Desktop resource such as a
printer involves transferring the
document icon to the same square as
the printer icon, the printer im-
mediately “absorbs” the document,
queuing it for printing. You can leave

DOCUMENT OBJECTS

XEROX STAR User-Interface:

DISPLAY

ICONS

Takle
Equatian
Te.t

wal Eraulators
Check er
Cirectory

Field

Footnote

UNIVERSAL COMMANDS

h

¢ Propertis;
v Propertie:

Unda
Help

KEYBOARD

Select Adjust

= — |

Figure 2: A Desktop as it appears on the Star screen. Several commonly used icons appear across the top of the screen, including
documents to serve as “form-pad’” sources for letters, memos, and blank paper. An open window displaying a document containing

an illustration is also shown.

19

20

documents on your Desktop in-
definitely, just as on a real desk, or
you can file them away in folders or
file drawers. Our intention and hope
is that users will intuit things to do
with icons, and that those things will
indeed be part of the system. This will
happen if:

(a) Star models the real world ac-
curately enough. Its similarity with
the office environment preserves your
familiar way of working and your ex-
isting concepts and knowledge.

(b) Sufficient uniformity is in the
system. Star’s principles and
“generic”” commands (discussed
below) are applied throughout the
system, allowing lessons learned in
one area to apply to others.

The model of a physical office pro-
vides a simple base from which learn-
ing can proceed in an incremental
fashion. You are not exposed to
entirely new concepts all at once.
Much of your existing knowledge is
embedded in the base.

In a functionally rich system, it is
probably not possible to represent
everything in terms of a single model.
There may need to be more than one
model. For example, Star’s records-
processing facility cannot use the
physical-office model because
physical offices have no “records pro-
cessing” worthy of the name.
Therefore, we invented a different
model, a record file as a collection of
fields. A record can be displayed as a
row in a table or as filled-in fields in a
form. Querying is accomplished by
filling in a blank example of a record
with predicates describing the desired
values, which is philosophically
similar to Zloof’s “Query-by-
Example” (see reference 21).

Of course, the number of different
user models in a system must be kept
to a minimum. And they should not
overlap; a new model should be in-
troduced only when an existing one
does not cover the situation.

Seeing and Pointing

A well-designed system makes
everything relevant to a task visible
on the screen. It doesn't hide things
under CODE+key combinations or

force you to remember conventions.
That burdens your memory. During
conscious thought, the brain utilizes
several levels of memory, the most
important being the ‘‘short-term
memory.” Many studies have ana-
lyzed the short-term memory and its
role in thinking. Two conclusions
stand out: (1) conscious thought deals
with concepts in' the short-term
memory (see reference 1) and (2)
the capacity of the short-term
memory is limited (see reference 14).
When everything being dealt with in
a computer system is visible, the
display screen relieves the load on the
short-term memory by acting as a sort
of “visual cache.” Thinking becomes
easier and more productive. A well-
designed computer system can actual-
ly improve the quality of your think-
ing (see reference 16). In addition,
visual communication is often more
efficient than linear communication;
a picture is worth a thousand words.

A subtle thing happens when
everything is visible: the display
becomes reality. The user model
becomes identical with what is on the
screen. Objects can be understood
purely in terms of their visible
characteristics. Actions can be
understood in terms of their effects on
the screen. This lets users conduct ex-
periments to test, verify, and expand
their understanding—the essence of
experimental science.

In Star, we have tried to make the
objects and actions in the system visi-
ble. Everything to be dealt with and
all commands and effects have a visi-
ble representation on the display

“screen or on the keyboard. You never

have to remember that, for example,
CODE+Q does something in one
context and something different in
another context. In fact, our desire to
eliminate this possibility led us to
abolish the CODE key. (We have yet
to see a computer system with a
CODE key that doesn't violate the
principle of visibility.) You never in-
voke a command or push a key and
have nothing visible happen. At the
very least, a message is posted ex-
plaining that the command doesn’t
work in this context, or it is not im-
plemented, or there is an error. It is

disastrous to the user’s model when
you invoke an action and the system
does nothing in response. We have
seen people push a key several times
in one system or another trying to get
a response. They are not sure whether
the system has “heard” them or not.
Sometimes the system is simply
throwing away their keystrokes.
Sometimes it is just slow and is queu-
ing the keystrokes; you can imagine
the unpredictable behavior that is
possible.

We have already mentioned icons
and windows as mechanisms for
making the concepts in Star visible.
Other such mechanisms are Star’s
property and option sheets. Most ob-
jects in Star have properties. A prop-
erty sheet is a two-dimensional, form-
like environment that displays those
properties. Figure 3 shows the
character property sheet. It appears
on the screen whenever you make a
text selection and push the PROPER-
TIES key. It contains such properties
as type font and size; bold, italic,
underline, and strikeout face; and
superscript/subscript positioning. In-
stead of having to remember the
properties of characters, the current
settings of those properties, and,
worst of all, how to change those
properties, property sheets simply
show everything on the screen. All
the options are presented. To change
one, you point to it with the mouse
and push a button. Properties in ef-
fect are displayed in reverse video.

This mechanism is used for all
properties of all objects in the system.
Star contains a couple of hundred
properties. To keep you from being
overwhelmed with information,
property sheets display only the
properties relevant to the type of ob-
ject currently selected (e.g.,
character, paragraph, page, graphic
line, formula element, frame, docu-
ment, or folder). This is an example
of “progressive disclosure”: hiding
complexity until it is needed. It is also
one of the clearest examples of how
an emphasis on visibility can reduce
the amount of remembering and typ-
ing required.

Property sheets may be thought of
as an alternate representation for ob-

PH|TAESETTINGS

Titan'E:-:-ld lLetterGothh:lE-:ientifi::|';7.n:ientifir:Thin l'\'e

[z] .;. 13]15]24]

|ojé—

Face

o}

IT.&.LII::«_:J

[LunoERUINE]

[sTRIKEQUT]

ane
Faosition

ORI

XX1X¥ol Xy Xy |

search for I]

By rnatching (RESAl TE<T &K D F'R-:ZJF'EHTIEEI

IGNORE CASE

In I ENTIREDOCUMENT | REST OF OOCZUREMT I CIURREMT SELECTI 'TIT'M

Change to L I

By altering TEXT ANDFROPERTIES] [CONFIRM EACH CHANGE]
N
i =l I e Kl |

Figure 4: The option sheet for the Find command showing both the Search and
Substitute options. The last two lines of options appear only when CHANGE IT is

turned on.

jects. The screen shows you the visi-
ble characteristics of objects, such as
the type font of text characters or the
names of icons. Property sheets show
you the underlying structure of ob-
jects as they make this structure visi-
ble and accessible.

Invisibility also plagues the com-
mands in some systems. Commands
often have several arguments and op-
tions that you must remember with
no assistance from the system. Star
addresses this problem with option
sheets (see figure 4), a two-dimen-

sional, form-like environment that
displays the arguments to commands.
It serves the same function for com-
mand arguments that property sheets
do for object properties.

What You See Is What You Get

“What you see is what you get” (or
WYSIWYG) refers to the situation in
which the display screen portrays an
accurate rendition of the printed
page. In systems having ‘such
capabilities as multiple fonts and
variable line spacing, WYSIWYG re-
quires a bit-mapped display because
only that has sufficient graphic power
to render those characteristics ac-
curately.

WYSIWYG is a simplifying tech-
nique for document-creation systems.
All composition is done on the
screen. It eliminates the iterations
that plague users of document com-
pilers. You can examine the ap-
pearance of a page on the screen and
make changes until it looks right. The
printed page will look the same (see
figure 5). Anyone who has used a
document compiler or post-processor
knows how valuable WYSIWYG is.
The first powerful WYSIWYG editor
was Bravo, an experimental editor
developed for Alto at the Xerox Palo
Alto Research Center (see reference
12). The text-editor aspects of Star
were derived from Bravo.

Trade-offs. are involved in
WYSIWYG editors, chiefly having to
do with the lower resolution of
display screens. It is never possible to
get an exact representation of a
printed page on the screen since most
screens have only 50 to 100 dots per
inch (72 in Star), while most printers
have higher resolution. Completely
accurate character positioning is not
possible. Nor is it usually possible to
represent shape differences for fonts
smaller than eight points in size since
there are too few dots per character to
be recognizable. Even 10-point (“nor-
mal” size) fonts may be uncomfort-
ably small on the screen, necessitating
a magnified mode for viewing text.

22

XEROX
8010 Star Information System

User-Interface Design

To moake it esay to composze text and graghies,
to do electronic filing, printing, and mailing
all at the same sworkstation, requires =
revolutionary user-interface dezign,

i Ix])

R .1- '1"1‘.- on

1r1-1tr ’4.1'1]." l.'l.lmI lr‘:-: in
STAR 111‘1 laya all fonts .md, raphics as the)
will be prmt»:d In addition, familiar office
ohjects such as l.lu.u..um»:.nt.-, folders, file
draowers and in-baskets are portrayed as
nenizable image:

]
) =N

3 ran 1.": -.11’} la"ﬂl

The mowse - & unigue pointing dewvice th at
allivwrz tl uzer to gquickly select any text,
aphic or office object on the display

See and Point

A1l Etar funetions are wvizible to the user on
the keyhboard or on the soreen, The wser does
filing and retrieval Wy zelecting them with
the mouse and touching the MOVE, COFT,
LELETE or FROPERTIES commmand keys, Text
and graphics are edited with the same keys,

lil

" DISPLAY: familiar
office objects

1] MOUSE: select
objects, menus

Productivity under the old and the new

100 —

Shorter Production Times

Experience at Herox with prototype work-
stationz haz shown shorter production times
equation

i=1
Star wsers are likely to do more of their vwn
composition and lﬂmut, controlling the entire
process ineluding printing and distribution,

Text and Graphics

To replace typesstting, Star offers a choiee of
type fonts and sizes, from 8 point to 54 point,

Heareis o santanaoe of Ggoint taet,

Hereiz a sentence of 10-point tet,

Here iz a sentence of 13-point text,

Here isasentence of Td-point tex
Hereis a sentence of 18-po nt

text.

Figure 5: A Star document showing multicolumn text, graphics, and formulas. This is the way the document appears on the screen. It
is also the way it will print (at higher resolution, of course).

WYSIWYG requires very careful
design of the screen fonts in order to
keep text on the screen readable and
attractive. Nevertheless, the increase
in productivity made possible by
WYSIWYG editors more than
outweighs these difficulties.

Universal Commands

Star has a few commands that can
be used throughout the system:
MOVE, COPY, DELETE, SHOW
PROPERTIES, COPY PROPERTIES,
AGAIN, UNDO, and HELP. Each
performs the same way regardless of
the type of object selected. Thus, we
call them “universal” or “generic”
commands. For example, you follow
the same set of actions to move text in
a document and to move a line in an
illustration or a document in a folder:
select the object, push the MOVE
key, and indicate a destination.
(HELP and UNDO don’t use a selec-
tion.) Each generic command has a
key devoted to it on the keyboard.

These commands are far more
basic than the commands in other
computer systems. They strip away
the extraneous application-specific
semantics to get at the underlying
principles. Star’s generic commands
derive from fundamental computer-
science concepts because they also
underlie operations in programming
languages. For example, much pro-
gram manipulation of data structures
involves moving or copying values
from one data structure to another.
Since Star’s generic commands em-
body fundamental underlying con-
cepts, they are widely applicable.
Each’' command fills a variety of
needs, meaning fewer commands are
required. This simplicity is desirable
in itself, but it has another subtle ad-
vantage: it makes it easy for users to
form a model of the system. People
can use what they understand. Just as
progress in science derives from sim-
ple, clear theories, progress in the
usability of computers is coming to
depend on simple, clear user inter-
faces.

MOVE is the most powerful com-
mand in the system, It is used during
text editing to rearrange letters in a
word, words in a sentence, sentences
in a paragraph, and paragraphs in a
document. It is used during graphics
editing to move picture elements,
such as lines and rectangles, around
in an illustration. It is used during
formula editing to move mathemati-
cal structures, such as summations
and integrals, around in an equation.
It replaces the conventional “store
file” and “retrieve file” commands;
you simply move an icon into or out
of a file drawer or folder. It eliminates
the “send mail” and “receive mail”
commands; you move an icon to an
out-basket or from an in-basket. It
replaces the “print” command; you
move an icon to a printer. And so
on. MOVE strips away much of the
historical clutter of computer com-
mands. It is more fundamental than
the myriad of commands it replaces.
It is simultaneously more powerful
and simpler.

Much simplification comes from
Star’s object-oriented interface. The
action of setting properties also re-
places a myriad of commands. For ex-
ample, changing paragraph margins
is a command in many systems. In
Star, you do it by selecting a
paragraph object and setting its
MARGINS property. (For more in-
formation on object-oriented lan-
guages, see the August 1981 BYTE.)

Consistency

Consistency asserts that mecha-
nisms should be used in the same way
wherever they occur. For example, if
the left mouse button is used to select
a character, the same button should
be used to select a graphic line or an
icon. Everyone agrees that consisten-
cy is an admirable goal. However, it
is perhaps the single hardest
characteristic of all to achieve in a
computer system, In fact, in systems
of even moderate complexity, con-
sistency may not be well defined.

A question that has defied consen-

sus in Star is what should happen to a
document after it has been printed.
Recall that a user prints a document
by selecting its icon, invoking
MOVE, and designating a printer
icon. The printer absorbs the docu-
ment, queuing it for printing. What
happens to that document icon after
printing is completed? The two
plausible alternatives are:

1. The system deletes the icon.
2. The system does not delete the
icon, which leads to several further
alternatives:
2a. The system puts the icon back
where it came from (i.e., where it
was before MOVE was invoked).
2b. The system puts the icon at an
arbitrary spot on the Desktop.
2c. The system leaves the icon in
the printer. You must move it out
of the printer explicitly.

The consistency argument for the
first alternative goes as follows: when
you move an icon to an out-basket,
the system mails it and then deletes it
from your Desktop. When you move
an icon to a file drawer, the syStem
files it and then deletes it from your
Desktop. Therefore, when you move
an icon to a printer, the system
should print it and then delete it from
your Desktop. Function icons should
behave consistently with one
another.

The consistency argument for the
second alternative is: the user’s con-
ceptual model at the Desktop level is
the physical-office metaphor.. Icons
are supposed to behave similarly to
their physical counterparts. It makes
sense that icons are deleted after they
are mailed because after you put a
piece of paper in a physical out-
basket and the mailperson picks it up,
it is gone. However, the physical
analogue for printers is the office
copier, and there is no notion of
deleting a piece of paper when you
make a copy of it. Function icons
should behave consistently with their
physical counterparts,

24

There is no one right answer here.
Both arguments emphasize a dimen-
sion of consistency. In this case, the
dimensions happen to overlap. We
eventually chose alternative 2a for
the following reasons:

1. Model dominance—The physi-
cal metaphor is the stronger model at
the Desktop level. Analogy with
physical counterparts does form the
basis for people’s understanding of
what icons are and how they behave.
Argument 1 advocates an implicit
model that must be learned; argu-
ment 2 advocates an explicit model
that people already have when they
are introduced to the system. Since
people do use their existing knowl-
edge when confronted with new sit-
uations, the design of the system
should be based on that knowledge.
This is especially important if people
are to be able to intuit new uses for
the features they have learned.

2. Pragmatics—It is dangerous to
delete things when users don't expect
it. The first time a person labors over
a document, gets it just right, prints
it, and finds that it has disappeared,
that person is going to become very
nervous, not to mention angry. We
also decided to put it back where it
came from (2a instead of 2b or 2c) for
the pragmatic reason that this in-
volves slightly less work on the user’s
part.

3. Seriousness—When you file or
mail an icon, it is not deleted entirely
from the system. It still exists in the
file drawer or in the recipients’ in-bas-
kets. If you want it back, you can
move it back out of the file drawer or
send a message to one of the recip-
ients asking to have a copy sent back.
Deleting after printing, however, is
final; if you move a document to a
printer and the printer deletes it, that
document is gone for good.

One way to get consistency into a
system is to adhere to paradigms for
operations. By applying a successful
way of working in one area to other
areas, a system acquires a unity that
is both apparent and real. Paradigms
that Star uses are:

o Edjting—Much of what you do in
Star can be thought of as editing. In
addition to the conventional text,
graphics, and formula editing, you
manage your files by editing filing
windows. You arrange your working
environment by editing your Desk-
top. You alter properties by editing
property sheets. Even programming
can be thought of as editing data
structures (see reference 16).

eInformation retrieval—A lot of
power can be gained by applying in-
formation-retrieval techniques to in-
formation wherever it exists in a sys-
tem. Star broadens the definition of
“database.” In addition to the tradi-
tional notion as represented by its

record files, Star views file drawers as
databases of documents, in-baskets as
databases of mail, etc. This teaches
users to think of information retrieval
as a general tool applicable through-
out the system.

e Copying—Star elevates the concept
of “copying” to a high level: that of a
paradigm for creating. In all the vari-
ous domains of Star, you create by
copying. Creating something out of
nothing is a difficult task. Everyone
has observed that it is easier to
modify an existing document or pro-
gram than to write it originally,
Picasso once said, “The most awful
thing for a painter is the white can-
vas .., To copy others is nec-
essary.” (See reference 20.) Star
makes a serious attempt to alleviate
the problem of the “white canvas” by
making copying a practical aid to
creation. For example, you create
new icons by copying existing ones.

Graphics are created by copying
existing graphic images and modify-
ing them. In a sense, you can even
type characters in Star’s 2'¢-character
set by “copying” them from keyboard
windows (see figure 6).

Figure 6: The keyboard-interpretation window serves as the source of characters that may be entered from the keyboard. The
character set shown here contains a variety of office symbols.

These paradigms change the very
way you think. They lead to new
habits and models of behavior that
are more powerful and productive.
They can lead to a human-machine
synergism.

- Star obtains additional consistency
by using the class and subclass no-
tions of Simula (see reference 4) and
Smalltalk (see reference 11). The
clearest example of this is classifying
icons at a higher level into data icons
a,n,d function icons. Data icons repre-
sent objects on which actions are per-
formed. Currently, the three types
(i.e., subclasses) of data icons are
documents, folders, and record files.
Function icons represent objects that
perform actions. Function icons are
of many types, with more being
added as the system evolves: file
drawers, in- and out-baskets,
printers, floppy-disk drives, calcula-
tors, terminal emulators, etc.

In general, anything that can be
done to one data icon can be done to
all, regardless of its type, size, or
location. All data icons can be
moved, copied, deleted, filed, mailed,
printed, opened, closed, and a variety
of other operations applied. Most
function icons will accept any data
icon; for example, you can move any
data icon to an out-basket. This use
of the class concept in the user-inter-
face design reduces the artificial
distinctions that occur in some sys-
tems.

Simplicity

Simplicity is another principle with
which no one can disagree. Obvious-
ly, a simple system is better than a
complicated one if they have the same
capabilities. Unfortunately, the world
is never as simple as that. Typically, a
trade-off exists between easy novice
use and efficient expert use. The two
goals are.not always compatible. In
Star, we have tried to follow Alan
Kay’s maxim: “simple things should
be simple; complex things should be

possible.” To do this, it was some-

times necessary to make common
things simple at the expense of un-
common things being harder. Sim-
plicity, like consistency, is not a
clear-cut principle.

One way to make a system appear
simple is to make it uniform and con-
sistent, as we discussed earlier.
Adhering to those principles leads to
a simple user's model. Simple models
are easier to understand and work
with than intricate ones.

Another way to achieve simplicity
is to minimize the redundancy in a
system. Having two or more ways to
do something increases the complexi-
ty without increasing the capabilities.
The ideal system would have a mini-
mum of powerful commands that ob-
tained all the desired functionality
and that did not overlap. That was
the motivation for Star’s “generic”
commands. But again the world is not
so simple, General mechanisms .are
often inconvenient for high-frequen-
cy actions. For example, the SHOW
PROPERTIES commiand is Star’s gen-
eral mechanism for changing prop-
erties, but it is too much of an inter-
ruption during typing. Therefore, we
added keys to optimize the changing
of certain character -properties:
BOLD, ITALICS, UNDERLINE,
SUPERSCRIPT, SUBSCRIPT,
LARGER/SMALLER (font),
CENTER (paragraph). These signifi-
cantly speed up typing, but they don't
add any new functionality. In this
case, we felt the trade-off was worth
it because typing is a frequent activi-
ty. “Minimum redundancy” is a good
but not absolute guideline.

In general, it is better to introduce
new general mechanisms by which
“experts” can obtain accelerators
rather than add a lot of special one-
purpose-only features. Star’s mecha-
nisms are discussed below under
“User Tailorability.”

Another way to have the system as
a whole appear simple is to make
each of its parts simple. In particular,
the system should avoid overloading
the semantics of the parts, Each part
should be kept conceptually clean.
Sometimes, this may involve a major
redesign of the user interface. An ex-
ample from Star is the mouse, which
has been used on the Alto for eight
years. Before that, it was used on the
NLS system at Stanford Research In-
stitute (see reference 5). All of those

mice have three buttons on top. Star
has only two. Why did we depart
from “tradition”? We observed .that
the dozens of Alto programs all had
different semantics for the mouse but-
tons. Some used them one way, some
another. There was no consistency
between syétems. Sometimes, there
was not even consistency within a
system. For example, Bravo uses the
mouse buttons for selecting text,
scrolling windows, and creating and
deleting windows, depending on
where the cursor is when you push a
mouse button. Each of the three but-
tons has its own meaning in each of
the different regions. It is difficult to
remember which button does what
where. '

Thus, we decided to simplify the
mouse for Star. Since it is apparently
quite a temptation to overload the
semantics of the buttons, we
eliminated temptation by eliminating
buttons. Well then, why didn’t we use
a one-button mouse? Here the plot
thickens. We did consider and pro-
totype a one-button mouse interface.
One button is sufficient (with a little
cleverness) to provide all the func-
tionality needed in a mouse. But
when we tested the interface on naive
users, as we '(!id'with a variety of
features, we found that they had a lot
of trouble making selections with it.
In fact, we prototyped and tested six
different semantics for the mouse but-
tons: one one-button, four two-
button, and a three-button design.
We were chagrined to find that while
some were better than others, none of
them was completely easy to use,
even though, a priori, it seemed like
all of them would work! We then
took the most successful features of
two of the two-button designs and
prototyped and tested them as a
seventh design. To our relief, it not
only .tested better than any of the
other six, everyone found it simple
and trouble-free to use.

This story has a couple of morals:

oThe intuition of designers is error-
prone, no matter how good or bad
they are.

25

26

o The critical parts of a system should
be tested on representative users,
preferably of the “lowest common
denominator” type.

eWhat is simplest along any one
dimension (e.g., number of buttons)
is not necessarily conceptually
simplest for users; in particular,
minimizing the number of keystrokes
may not make a system easier to use.

Modeless Interaction
Larry Tesler defines a mode as
follows:

A mode of an interactive computer
system is a state of the user interface
that lasts for a period of time, is not
associated with any particular object,
and has no role other than to place an
interpretation on operator input.
(See reference 18.)

Many computer systems use modes
because there are too few keys on the
keyboard to represent all the avail-
able commands. Therefore, the inter-
pretation of the keys depends on the
mode or state the system is in. Modes
can and do cause trouble by making
habitual actions cause unexpected
results. If you do not notice what
mode the system is in, you may find
yourself invoking a sequence of com-
mands quite different from what you
had intended.

Our favorite story about modes,
probably apocryphal, involves
Bravo. In Bravp, the main typing
keys are normally interpreted as com-
mands. The “i” key invokes the Insert
command, which puts the system in
“insert mode.” In insert mode, Bravo
interprets keystrokes as letters, The
story goes that a person intended to
type the word “edit” into his docu-
ment, but he forgot to enter insert
mode first. Bravo interpreted “edit”
as the following commands:

E(verything) select everything in
the document

D(elete) delete it
I(nsert) enter insert mode
t type a “t”

The entire contents of the document
were replaced by the letter “t.” This
makes the point, perhaps too strong-
ly, that modes should be introduced
into a user interface with caution, if
at all.

Commands in Star take the form of
noun-verb. You specify the object of
interest (the noun) and then invoke a
command to manipulate it (the verb).
Specifying an abject is called “making
a selection.” Star provides powerful
selection mechanisms that reduce the
number and complexity of commands
in the system. Typically, you will ex-
ercise more dexterity and judgment in
making a selection than in invoking a
command. The object (noun) is
almost always specified before the ac-
tion (verb) to be performed. This
helps make the command interface
modeless; you can change your mind
as to which object to affect simply by
making a new selection before invok-
ing the command. No “accept” func-
tion is needed to terminate or confirm
commands since invoking the com-
mand is the last step. Inserting text
does not even require a command;
you simply make a selection and
begin typing. The text is placed after
the end of the selection.

The noun-verb command form
does not by itself imply that a com-
mand interface is modeless. Bravo
also uses the noun-verb form; yet, it
is a highly modal editor (although the
latest version of Bravo has drastically
reduced its modalness). The dif-
ference is that Bravo tries to make
one mechanism (the main typing
keys) serve more than one function
(entering letters and invoking com-
mands). This inevitably leads to con-
fusion. Star avoids the problem by
having special keys on the keyboard
devoted solely to invoking functions.
The main typing keys only enter
characters. (This is another example
of the simplicity principle: avoid
overloading mechanisms with mean-
ings.)

Modes are not necessarily bad.
Some modes can be helpful by simpli-

fying the specification of extended
commands. For example, Star uses a
“field fill-in order specification
mode.” In this mode, you can specify
the order in which the NEXT key will
step through the fields in the docu-
ment. Invoking the SET FILL-IN
ORDER command puts the system in
the mode. Each field you now select is
added to the fill-in order. You ter-
minate the mode by pushing the
STOP key. Star also utilizes tem-
porary modes as part of the MOVE,
COPY, and COPY PROPERTIES
commands. For example, to move an
object, you select it, push the MOVE
key that puts the system in “move
mode,” and then select the destina-
tion. These modes work for two rea-
sons. First, they are visible. Star posts
a message in the Message Area at the
top of the screen indicating that a
mode is in effect. The message re-
mains there for the duration of the
mode. Star also changes the shape of
the cursor as an additional indication.
You can always tell the state of the
system by inspection (see figure 7).
Second, the allowable actions are
constrained during modes. The only
action that is allowed—except for ac-
tions directly related to the mode—is
scrolling to another part of the docu-
ment. This constraint makes it even
more apparent that the system is in an
unusual state.

T

Normal Move

mode

Copy
mode

Actual Size

tidde?

Double Size

i 28 e ?

Menu
selecting

Copy Properties
mode

lllegal Graphics

destination

Figure 7: Some of the cursor shapes used by the Star to indicate the state of the system. The cursor is a 16- by 16-bit map that can be

changed under program control.

User Tailorability

No matter how general or powerful
a system is, it will never satisfy all its
potential users. People always want
ways to speed up often-performed
operations. Yet, everyone is different.
The only solution is to design the sys-
tem with provisions for user extensi-
bility built in. The following mecha-
nisms are provided by Star:

eYou can tailor the appearance of
your system in a variety of ways. The
simplest is to choose the icons you
want on your Desktop, thus tailoring
your working environment. At a
more sophisticated level, a work sta-
tion can be purchased with or with-
out certain functions. For example,
not everyone may want the equation
facility. Xerox calls this “product fac-
toring.”

®You can set up blank documents
with text, paragraph, and page layoul
defaults. For example, you might set
up one document with the normal
text font being 10-point Classic and
another with it being 12-point
Modern italic. The documents need
not be blank; they may contain fixed
text and graphics, and fields for vari-
able fill-in. A typical form might be a
business-letter form with address, ad-
dressee, salutation, and body fields.

each field with its own default text
style. Or it might be an accounting
form with lines and tables. Or it
might be a mail form with To, From,
and Subject fields, and a heading
tailored to each individual. Whatever
the form or document, you can put it
on your Desktop and make new in-
stances of it by selecting it and invok-
ing COPY. Thus, each form can act
like a “pad of paper” from which new
sheets can be “torn off.”

Interesting documents to set up are
“transfer sheets,” documents contain-
ing a variety of graphics symbols
tailored to different applications. For
example, you might have a transfer
sheet containing buildings in different
sizes and shapes, or one devoted to
furniture, animals, geometric shapes,
flowchart symbols, circuit com-
ponents, logos, or a hundred other
possibilities. Each sheet would make
it easier to create a certain type of il-
lustration. Graphics experts could
even construct the symbols on the
sheets, so that users could create
high-quality illustrations without
needing as much skill.
®You can tailor your filing system by
changing the sort order in file drawers
and folders. You can also control the
filing hierarchy by putting folders in-
side folders inside folders, to any
desired level.

®You can tailor your record files by
defining any number of “views” on
them. Each view consists of a filter, a
sort order, and a formatting docu-
ment. A filter is a set of predicates
that produces a subset of the record
file. A formatting document is any
document that contains fields whose
names correspond to those in the
record file. Records are always dis-
played through some formatting
document; they have no inherent ex-
ternal representation. Thus, you can
set up your own individual subset(s)
and appearance(s) for a record file,
even if the record file is shared by
several users.

®You can define “meta operations”
by writing programs in the CUStomer
Programming language CUSP. For
example, you can further tailor your
forms by assigning computation rules
expressed in CUSP to fields. Even-
tually, you will be able to define your
own commands by placing CUSP
“buttons” into documents.

eYou can define abbreviations for
commonly used terms by means of
the abbreviation definition/expan-
sion facility. For example, you might
define “sdd” as an abbreviation for
“Xerox Systems Development De-
partment.” The expansion can be an
entire paragraph, or even multiple
paragraphs. This is handy if you

27

28

create documents out of predefined
“boilerplate” paragraphs, as the legal
profession does. The expansion can
even be an illustration or mathe-
matical formula.

eEvery user has a unique name used
for identification to the system,
usually the user’s full name. How-
ever, you can define one or more
aliases by which you are willing to be
known, such as your last name only,
a shortened form of your name, or a
nickname. This lets you personalize
your identification to the rest of the
network.

Summary

In the 1980s, the most important
factors affecting how prevalent com-
puter usage becomes will be reduced
cost, increased functionality, im-
proved availability and servicing,
and, perhaps most important of all,
progress in user-interface design. The
first three alone are necessary, but
not sufficient for widespread use. Re-
duced cost will allow people to buy
computers, but improved user inter-
faces will allow people to use com-
puters. In this article, we have pre-
sented some principles and techniques
that we hope will lead to better user
interfaces.

User-interface design is still an art,
not a science. Many times during the
Star design we were amazed at the
depth and subtlety of user-interface
issues, even such supposedly straight-
forward issues as consistency and
simplicity. Often there is no one
“right” answer. Much of the time
there is no scientific evidence to sup-
port one alternative over another,
just intuition. Almost always there
are trade-offs. Perhaps by the end of
the decade, user-interface design will
be a more rigorous process. We hope
that we have contributed to that pro-
gress.

10.

11,

12.

References
Arnheim, Rudolf. Visual Thinking.
Berkeley: University of California Press,
1971.
Brooks, Frederick. The Mpythical Man-
Month. Reading, MA: Addison-Wesley,
1975.
Card, Stuart, William English, and Betty
Burr. “Evaluation of Mouse, Rate-
Controlled Isometric Joystick, Step Keys,
and Text Keys for Text Selection on a
CRT.” Ergonomics, vol. 21, no. 8, 1978,
pp. 601-613.
Dahl, Ole-Johan and Kristen Nygaard.
“SIMULA—AN Algol-Based Simulation
Language.” Communications of the
ACM, vol. 9, no. 9, 1966, pp. 671-678.
Engelbart, Douglas and William English.
“A Research Center for Augmenting
Human Intellect.” Proceedings of the
AFIPS 1968 Fall Joint Computer Con-
ference, vol. 33, 1968, pp. 395-410.
English, William, Douglas Engelhart, and
M. L. Berman. ‘‘Display-Selection Tech-
niques for Text Manipulation.” [EEE
Transactions on Human Factors in Elec-
tronics, vol. HFE-8, no. 1, 1967, pp.
21-31.
Fitts, P. M. “The Information Capacity of
the Human Motor System in Controlling
Amplitude of Movement.’" Journal of Ex-
perimental Psychology, vol. 47, 1954, pp.
381-391.

Ingalls, Daniel. “The Smalltalk Graphics
Kernel."" BYTE, August 1981, pp.
168-194.

Intel, Digital Equipment, and Xerox Cor-
porations. The Ethernet, A Local Area
Network: Data Link Layer and Physical
Layer Specifications. Version 1.0, 1980.
Irby, Charles, Linda Bergsteinsson,
Thomas Moran, William Newman, and
Larry Tesler. A Methodology for User In-
terface Design. Systems Development
Division, Xerox Corporation, January
1977.

Kay, Alan and the Learning Research
Group. Personal Dynamic Media. Xerox
Palo Alto Research Center Technical
Report SSL-76-1, 1976. (A condensed
version is in /EEE Computer, March
1977, pp. 31-41)

Lampson, Butler. “‘Bravo Manual.” Alto
User’s Handbook, Xerox Palo Alto Re-
search Center, 1976 and 1978. (Much of
the design of all the implementation of
Bravo was done by Charles Simonyi and
the skilled programmers in his ‘‘software
factory.”)

13.

14.

15.

16.

17.

18.

20.

21.

Metcalfe, Robert and David Boggs.
“Ethernet: Distributed Packet Switching
for Local Computer Networks.”” Com-
munications of the ACM, vol. 19, no. 7,
1976, pp. 395-404.

Miller, George. ““The Magical Number
Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Informa-
tion.” In The Psychology of Communica-
tion, by G. Miller, New York: Basic Books,
1967. (An earlier version appeared in
Psychology Review, vol. 63, no. 2, 1956,
pp. 81-97.

Seybold, Jonathan. *“Xerox’s ‘Star’.” In
The Seybold Report, Media, PA: Seybold
Publications, vol. 10, no. 16, 1981.
Smith, David Canfield. Pygmalion, A
Computer Program to Model and Stimu-
late Creative Thought. Basel, Switzer-
land: Birkhauser Verlag, 1977.

Smith, David Canfield, Charles Irby,
Ralph Kimball, and Eric Harslem. “The
Star User Interface: An Overview.” Sub-
mitted to the AFIPS 1982 National Com-
puter Conference.

Tesler, Larry. Private communication; but
also see his excellent discussion of
modes in ‘“The Smalltalk Environment.”
BYTE, August 1981, pp. 90-147.

. Thacker, C. P., E. M. McCreight, B. W.

Lampson, R. F. Sproull, and D. R. Boggs.
“Alto: A Personal Computer.” In Com-
puter Structures: Principles and Ex-
amples, edited by D. Siewiorek, C. G.
Bell, and A. Newell, New York: McGraw-
Hill, 1982.

Wertenbaker, Lael. The World of
Picasso. New York: Time-Life Books,
1967.

Zloof, M. M. ‘“‘Query-by-Example.” Pro-
ceedings of the AFIPS 1975 National
Computer Conference, vol. 44, 1975, pp.
431-438.

Computer Graphics

Volume 16, Number 3

July 1982

Star Graphics:
An Object-Oriented Implementation

Dr. Daniel E. Lipkie

Xerox Corporation, El Segundo, California

Steven R. Evans, John K. Newlin, Robert L. Weissman
Xerox Corporation, Palo Alto, California

Abstract : The XEROX Star 8010 Information
System features an integrated text and graphics
editor. The Star hardware consists of a processor, a
large bit-mapped display, a keyboard and a pointing
device. Star’s basic graphic elements are points, lines,
rectangles, triangles, graphics frames, text frames and
bar charts. The internal representation is in terms of
idealized objects that are displayed or printed at
resolutions determined by the output device. This
paper describes the design and implementation of a
graphics editor using an object-oriented technique
based on a Star-wide subclassing method called the
Trait Mechanism.

CR Categories and Subject Descriptors: D.2.2 [Soft-
ware Engineering]: Tools and Techniques - User
interfaces; H.4.1 [Information Systems Applica-
tions]: Office Automation - Word processing; 1.3.6
[Computer Graphics]: Methodology and Techniques -
Interaction techniques; 1.7.2 [Text Processingl:
Document Preparation

General Terms: Design
Key Words: business graphics, subclassing
I. The Star Workstation

In 1975 Xerox started an effort to transfer research
from the Xerox Palo Alto Research Center (PARC) into
mainline office products. Central to this strategy was
the development of a top-of-the-line professional
workstation, subsequently named Star, that was to

XEROX®, 8010 and Star are trademarks of XEROX CORP.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-076-1/82/007/0115

provide a major step forward in several different
domains of office automation. A retrospective on the
development of Star is presented in [2].

A unique aspect of Star is its user interface (UI) and
the role it played in the development of Star [5, 6, 7].
About 30 work years of effort were expended in
designing the UI before the functionality of the system
was fully decided and before the computer hardware
was even built.

The hardware that supports this UI (figure 1)

W
Ethernet —4

<+— Display with

3iconsand
1 open document

Keyboard with
3 function groups

Mouse with
2 buttons

—————
- - <+— Processor with

29MB disk drive

Figure 1
Star Workstation Schematic

consists of a microprogrammable 22-bit virtual, 18-bit
real address space processor, an 808 by 1024 pixel (11”
x 14”) bit-mapped display, a keyboard, a pointing
device called a mouse and a 10 or 29M byte disk. The
workstation may be attached to a 10M bits-per-second
Ethernet for access to remote printing, filing,
communication and electronic mail services.

The mouse has a ball on the bottom that turns as
the mouse slides over a flat surface. Electronics sense
the ball rotation and displaces a cursor on the screen in

29

30

Computer Graphics

corresponding motions. There are two buttons on the
mouse, called SELECT and ADJUST, used to make and
adjust a selection as described below.

The keyboard has a conventional central part and
three groups of function keys.

The left function group contains the generic
commands: MOVE, COPY, DELETE, SHOW PROPERTIES, COPY
PROPERTIES, and AGAIN. Their meaning is defined only
in a generic sense; it is up to the currently selected
element to further define them as explained below.

The keys in the upper function group are referred to
as soft keys. Their meanings and use are discussed
below.

The right function group includes the command
KEYBOARD and others that are not of interest in this
paper. When KEYBOARD is pressed, the soft keys allow
the user to assign a new interpretation to the central
keyboard and to display a window that shows the
meaning of each keytop. Keyboards supported are
Japanese, various European keyboards, Dvorak and
keyboards with useful office and mathematical
symbols.

Central concepts to the Star Ul are what you see is
what you get, visibility (don’t hide things under
CODE +key combinations) and a physical office
metaphor.

One of the functional areas of the office addressed
by Star is document creation, which encompasses text
editing and formatting, figure editing (graphics),
mathematical formula editing and page layout. These
are all integrated. As an example of what you see is
what you get, the Star user edits on the display both
text and graphic figures, which appear exactly as they
do when the document is printed. This document was
prepared using Star; no special step was needed to
merge the figures and text. Visibility and the office
metaphor are discussed in the next section.

The design of the Star software began in the spring
of 1978 and the first release, containing 255,000 lines
of code, was completed in Oct. 1981. Over the 3.5 years
approximately 93 work years of effort were expended
and in excess of 400,000 lines of code were written.
This effort was aided by the adoption of an object-
oriented style of coding right from the start and by the
use later of a multiple-inheritance subclassing
mechanism, Traits [1], as the basis for defining and
implementing objects. An object-oriented imple-
mentation was chosen because it corresponded closely
to the UI model of interacting screen elements. In this
paper we use the term element to refer to user
perceived entities and reserve the term object for the
corresponding internal implementations.

As explained below, there is no graphics editor per -

se, but of the 255,000 lines of code in the release about

Volume 16, Number 3

July 1982

28,000 are associated with editing figures in
documents.

In Section II we describe the Star user interface.
The Trait mechanism is presented in Section III. Its
application in the Star implementation is discussed in
SectionsIVand V.

II. The Star User Interface

The Star UI differs from that of other computer
systems through its heavy use of the graphics
capabilities of a bitmap display, its adherence to a
physical office metaphor, and its rigorous application
of a small set of design principles [3]. The graphics
capabilites reduce the amount of typing and
remembering required to operate the system; the office
metaphor makes the system familiar and friendly; the
design principles unify the nearly two dozen functional
areas of Star.

One important principle is to make objects and
actions in the system visible. The system should not
hide things under obscure CODE + key combinations
or force the user to remember a lot of conventions.
When a choice had to be made between easy novice use
and efficient expert use, Alan Kay’s maxim was
followed: “Simple things should be simple; complex
things should be possible”.

As you make everything visible, the display
becomes reality, and the user model becomes identical
with what is on the screen.

Using the physical office metaphor Star creates
electronic counterparts to the physical elements in an
office: paper, folders, file cabinets, mail boxes and so
on. The Star screen represents a desktop on which are
placed small (~1” x 1”) pictograms or icons that
represent these elements, e.g. the document (paper)
and file drawer (file cabinet) icons in figure 2.

Old
Memos

Figure 2
Document and File Drawer Icons

Within a illustration the currently implemented
graphics elements are points, lines, rectangles,
triangles, graphics frames, text frames and bar charts.
Examples are shown in figure 3. A graphics frame is a

Computer Graphics

Il

Triangles

g

Text Frame with I_T;(t-fra_m;viﬁl _1
invisible border lii'sible dashed bordeil

Figure 3
Examples of Graphic Elements

rectangular area reserved for figures. Text frames
allow the user to put labels in figures.

Iconic, text and graphic elements are selected by
pointing at them with the mouse and clicking (pressing
and releasing) one of the buttons on the mouse.

Icons show that they are selected by highlighting
(video reversing) their image. Character selections
highlight themselves by inverting a rectangular
region around the characters.

The user selects a graphics element by pointing
anywhere along one of its lines or edges. When a
graphic element is selected, it inverts a small square
region around each of its control points. Lines have
control points at each end, rectangles (figure 4) and

r—==a

1 i
L—:_" Guiding Point

Figure 4
Rectangle with Inverted Control Points
(Expanded Scale)

frames at each corner and midpoint of each side and

Volume 16, Number 3

July 1982

triangles at each vertex. The inverted region around
the control point closest to the cursor is slightly larger.
This control point is called the guiding point and
becomes attached to the cursor when the element is
moved, copied or stretched.

An element highlights as if selected when the
mouse button is depressed, but it is selected only when
the button is released. The user may change the
candidate selection by moving the mouse with the
button still depressed until the desired element is
highlighted.

After an icon, character or graphics element has
been selected, it may be manipulated by one of the
generic operations. To move a document to a file
drawer, select the document icon, press MOVE, point at
the file drawer icon and click the SELECT button.
Elements may also be manipulated in other ways
described below.

The meaning of the operation is determined by the
selected element. Moving a document icon to a file
drawer icon sends the document over the Ethernet and
stores it on a file server; moving it to an out-basket
icon sends the document via electronic mail; moving it
to a printer icon makes a hardcopy of it.

Copying and deleting have similar straightforward
semantics.

The OPEN command in the left function group may
only be applied to an icon and creates a window
through which the icon’s contents are displayed and
edited. Star has a modeless editing style; there are no
start edit or end edit commands. The user merely
selects a character in a window displaying a document
and begins typing and the text is appended to the
selected character. The page content is reformatted as
the user edits. The generic operations also may be
applied inside a window; e.g. text may be moved,
copied or deleted by merely selecting, pressing the
function key and pointing to the destination.

Before discussing the other editing actions, we will '
explain how graphics elements are entered into text.

To enter a figure into a document the user selects a
character in the document and types a character that
represents a graphics frame. (The character is found
on a keyboard accessible through the KEYBOARD key.)
This non-printing, but screen-displayable, character is
inserted after the selected character. It looks like a
boat anchor and represents an anchoring point for the
graphics frame. The frame appears between two lines
of text at the same time the anchor character is typed.
As the textual content of the document is reformatted
during subsequent editing this anchor character is
shifted as any ather character and in addition its
associated graphics frame is also repositioned, e.g. the
anchor character acts like a footnote reference mark,

32

Computer Graphics

and the graphics frame moves from page to page as its
reference mark is moved.

Once the user has a graphics frame in a document,
other graphics elements may be moved or copied into
the frame. Star graphics has only two creation actions,
inserting a graphics frame as described above and
MAKE LINE described below. All other graphics
elements are made by copying. Every desktop has a
directory icon that contains a blank document and a
graphics document that has all the graphics elements.
The directory’s documents can only be copied, not
moved or deleted, so the user always has a source of
documents and graphics elements.

Pressing the SHOW PROPERTIES key opens a small
window in which a property sheet appropriate to the
current selection is displayed. The property sheet
displays the property values for the currently selected
element. The properties are changed by setting them
to the desired values and clicking at the Done
command which applies the new properties and closes
the property sheet window. For each property the
property sheet either displays an enumeratation of all
possible values or provides a box into which the value
is typed. The property sheet for a graphics line is
shown in figure 5.

Line Property Sheet|

Width

Structure

= —_——] - — =J

Left (Upper) Line End

= [—
Right (Lower) Line End
Constraint | FIXED ANGLE
Figure 5
Line Property Sheet

The ? command provides access to online
documentation about the line property sheet; Defaults
sets the properties to system defined values; Apply
applies the properties but does not close the property
sheet; Reset sets the properties to the values they had

Volume 16. Number 3

July 1982

when Show Properties was invoked.

There are three kinds of properties: choice, state and
text.

A choice-type property displays a set of mutually
exclusive values for the property which are shown
immediately adjacent to each other; e.g. a line’s width,
structure and line endings are each choice properties.
Exactly one is on at any one time and is video reversed.
To change it the user points at the desired value and
clicks a mouse button.

A state-type property may be either on or off.
Pointing at and clicking a mouse button toggles its
setting. A line may be constrained to be at a fixed
angle so that its length but not its direction may be
changed during the stretching action described below.
An unconstrained line may have its length and/or
direction changed.

A text-type property displays a box into which a
text value is typed. None of the properties on the line
property sheet are text-type. But an example is the
text-type property on the document property sheet
which determines the name of the document.

The properties of a rectangle are the width and
style of its bounding box, its interior shading and a
fixed shape constraint.

The properties of text and graphics frame include
the width and style of the border. Text frames may be
constrained to be fixed or flexible. A flexible text frame
will change shape as its text contents are edited.
Graphics frames may be positioned horizontally within
a column (flush left, centered, flush right) and
vertically within a column (top, centered, bottom or
floating). Graphics frames also have a grid that may
be displayed as dots or plus marks at each grid point or
as ticks around the edge of the frame. Grid spacing is
also variable. :

Another way to change a selected element’s
properties is to press COPY PROPERTIES and then point at
an element that is the source of the desired properties.

Associated with every text selection is a multi-click
level: character, word, sentence or paragraph.
Clicking at an unhighlighted character with the SELECT
mouse button selects the character at the character
level; clicking again with the SELECT mouse button at
the same character selects the enclosing word; clicking
at any character in a selected word selects the
enclosing sentence; clicking at any character in a
selected sentence selects the enclosing paragraph;
clicking at a character in a selected paragraph brings
the selection back to the character level and selects
that character. Clicking at a character with the
ADJUST mouse button expands or shrinks the selection
at the current level to minimally span the pre-existing
selection and the character pointed at.

Computer Graphics

There is no selection level associated with a
graphics selection, but the ADJUST button has a
graphics interpretation that is used to extend the
selection to include multiple elements. Clicking the
ADJUST button at a graphics element toggles it in/out of
the current selection. The ADJUST button may also be
used to extend the selection by adding all elements
properly contained in a bounding box. The user
presses the ADJUST button, which fixes one corner of the
bounding box, and moves the mouse with the button
depressed. The current mouse position defines the
opposite corner of the bounding box. As long as the
ADJUST button is depressed, a box is drawn on the
screen from the fixed point to the current mouse
postion and all elements properly contained are
highlighted. When the button is released (at button
up) these elements are added to the selection. An
extended selection may be moved, copied, deleted,
joined, stretched or the elements may have their
properties changed.

The elements of an extended selection may be of
different types, e.g. lines, rectangles and text frames.

Whenever there is a graphics selection the soft keys
at the top of the keyboard take on graphics meanings:
STRETCH, MAGNIFY, GRID, MAKE LINE, Join/spuT and
Tor/BOTTOM. When the current selection is textual the
soft keys take on meanings that allow the appearance
of the charaters to be changed, e.g. bold, italic,
underlined, superscript, subscript, larger font size and
smaller font size.

When STRETCH is pressed the selection is de-
highlighted and the control point furthest from the
guiding point is replaced by an X and is considered
pinned. The guiding point becomes attached to the
mouse when a button is pressed. As the mouse is
moved the selection is horizontally and vertically
scaled to conform to the pinned and guiding points and
redisplayed. On button up the element retains the new
size, the X is removed, and the selection is
rehighlighted. MAGNIFY is simlar to STRETCH except
that the same scaling factor is applied in the horizontal
and vertical directions, i.e. aspect is maintained.

The GRID soft key toggles the grid on/off for the
frame containing the selection. If the grid is active, it
controls the placement of the guiding point during
move, copy, stretch and magnify.

MAKE LINE creates a line between two successive
mouse click positions.

JOIN combines an extended selection of graphics
elements into a cluster element. Once joined, all of the
original elements behave as a single element for
purposes of selection and editing. This allows users to
define their own graphics symbols. The SPUT function
acts on a cluster and reverses the effect of JOIN.

Voiume 16, Number 3

July 1982

Graphics and text frames are opaque, that is they
obscure elements that are under them. In figure 6a the

Text Frame

Above Rectangle Below Rectangle

(6a) (6b)

Figure 6
Overlapping Elements

text frame is above the rectangle, while in figure 6b it
is below. The soft keys TOP and BOTTOM allow the user
to move the current selection to the top or bottom level
in a frame.

In keeping with Star’s style of modeless editing, the
graphics editor is not invoked in the traditional sense.
In fact, as we shall see later, there is no graphics editor
in the traditional sense. All graphics editing
capabilities are available whenever there is a
document open. The Star user may pause during
document editing and read incoming mail or use the
records processing feature or any of the other Star
functions. The responsibility for making the transition
between these editing environments resides with the
elements on the desktop, not the user. This is a major
difference between Star and other information
systems, including the Alto system [9] where the user
explicitly invokes BRAVO for text editing, SIL or
DRAW for figure editing, and LAUREL for electronic
mail.

The full text editing capabilities are available for
editing the contents of text frames within graphics
frames, e.g. text frames may contain anchor characters
and graphics frames. This means that Star must
support the virtual nested invocation of editors.

III. Traits - The Star Subclassing Mechanism

Object-orientation is a method for organizing
software such that, at any time, computation is
performed under the aegis of a particular object, not a
centralized program that handles every case from one
place. The nature of the Star UI and the user model it
fosters led to the adoption of an object-oriented method
from the beginning of the software development.

Subclassing is a refinement of the basic object-
oriented methodology that constructs objects out of
more primitive behaviors. Initial Star subclassing
efforts were in the SIMULA-67 and Smalltalk [8] style
where the specialization relations form a tree. We
found it necessary to generalize this concept to allow
specialization relations that are represented by
directed acyclic graphs. A full description of the Trait

33

34

Computer Graphics

mechanism and the generalized concept of multiple-
inheritance subclassing is beyond the scope of this
discussion but may be found in [1].

Subclassing as a way of implementing objects was
not used during initial development of Star. This was
partly because the designers had had little experience
with subclassing as a methodology for large production
software systems where performance is a primary
consideration. It was also believed, incorrectly, that
an extensible design based on subclassing would
necessitate a violation of the typing mechansim of the
implementing language, Mesa [4]. But as
implementation progressed, it became clear that
significant code-sharing was possible since we were
dealing with objects that were more similar than
different and we re-examined the subclassng problem.

We first present some of the central concepts of the
trait mechanism and then describe how it has been
applied in graphics. The initial graphics
implementation was about 17,000 lines of code and
space does not permit a full presentation of the
graphics traits and their interaction. During this
description we will refer to trait definitions
summarized in Section VI.

A trait is a characterization of a behavior and is the
primitive abstraction used to define objects. A trait
used to define an object is said to be carried by the
object, e.g. the trait TreeElement is carried by objects

Traitdefinition:
trait name
state
component traits
fixed operations
replaceable operations

that live in tree-like data structures. To implement a
behavior, an object carrying a trait remembers
information in a state defined by the trait. For example
objects carrying TreeElement have 3 state variables,
next, parent and eldest, that are pointers to the
corresponding objects or are the special value
objectNil, pointer to no object.

In a departure from SIMULA-67, traits may carry
other component traits where the carry relationship is
represented as an acyclic directed graph. This permits
behaviors to be built on multiple lower-level
abstractions. The basic imaging trait, Schema, carries
TreeElement because all imaging objects are part of an
imaging tree rooted at a Desktop Object that manages
the Star display (see figure 9 below).

A trait defines operations as a means of presenting
information to or extracting information from an
object, e.g. the operations GetParent and SetParent for

TreeElement. Operations also may be invoked for-

Volume 16, Number 3

July 1982

effect, e.g. the Schema operation Paint is a request to
an object to paint its image on the display.

An operation is invoked on an object by specifying a
trait carried by the object, an operation defined by the
trait and the object. In Mesa, an operation invocation
is implemented as a procedure call with the object
handle as the first parameter and other parameters as
needed, e.g.

Schema.Paint[object, ...]

Operations that extract information are
implemented as procedures that return values.

A trait operation has a specification (name,
parameters, return type) and a realization (an
implementing piece of code).

Fixed operations are those for which the trait
supplies the realization, e.g. the implementing code for
GetParent in TreeElement is the same for all objects
carrying the trait, it merely accesses the state variable
parent and returns its value.

Replaceable operations are analogous to SIMULA-
67 VIRTUAL procedures. The trait defines the
specification and each class supplies its own
realization that is used by all objects in the class, e.g.
the Schema trait provides the specification for Paint
but the classes Line and Rectangle each provide their
own realizations that access the object’s state to
display the appropriate image.

A class trait is a trait that provides fixed operations
for creating and destroying objects in the class.
Associated with each class is a replaceable operations
vector that is the composition of its own and its
component trait’s replaceable operations. The
realizations of replaceable operations are assigned to
the vector elements. The vector for the Line class is
shown in figure 7.

Size “4—— Schema Operations
Paint
PointedAt
Edit
RelLocChild

Contend “4— GSchema Operations

CountCp
LocCp

<+—— HasCp Operations

Figure 7
Replaceable Operations Vector for Line Class

Each object created by a class trait has an object
state vector that is the composition of the class’s state
and the class’s component trait’s states. The vector for

Computer Graphics

a Line object is shown in figure 8.

Line <+— (ClassId
next <+— TreeElement State
parent
eldest
size <4— GSchema State
locin parent
width <+—— Line State
style
line endings
constraint

Figure 8

Object State Vector for a Line Object

IV. Applying the Trait Mechanism to Star

The first release of Star defined 169 traits, 129 of
which were class traits. 99 traits required state
variables and 39 had replaceable operations.

Non-class traits we will discuss are: TreeElement,
Schema, GSchema, ListSchema and HasCp. Class
traits we will discuss are AnchoredFrame, Line and
TextBlock. Traits definitions for these traits are
summarized in Section VI.

The TreeElement trait allows objects to be
organized into tree data structures. The tree structure
corresponding to a 3 page, 3 column document
containing graphics and text is shown in figure 9. This

Desktop
[Il 1
Window Window Window
|
Document
[i _]
Page Page Page
I 'T 1
Heading Body Footing
Il
[[1
Column Column Column
1
[[1
Text Block Anchored Frame Text Block

Graphics Frame
1

[

1
Graphics Element; e Graphics Elementy

Figure 9
Desktop Imaging Tree

structure will be explained more fully after we have
introduced the Schema and ListSchema traits.

Volume 16, Number 3

July 1982

The Schema trait forms the basis for imaging,
pointing resolution, selecting and editing within Star.
It defines 22 replaceable operations but for the
purposes of this discussion we are only be concerned
with those shown in Section VI. These operations
allow an object to be asked its size (Size), to honor a
request that it paint its image (Paint), to handle a
pointing action by the mouse (PointedAt), to respond to
an editing action when it is selected (Edit), to return
the location of a child relative to itself (RelLocChild) or
relative to the upper left corner of the screen
(ScreenlLocChild).

GSchema is an extension to Schema to meet the
needs of graphics objects and is the basic trait carried
by all graphics objects. It provides state variables for
its size and location within its parent. Of the 39
replaceable operations it defines we are concerned only
with Contend which is used during pointing.

ListSchema is a trait carried by an object that has
non-overlapping children that are arranged either
vertically with left edges aligned (pages in a
document) or horizontally with top edges aligned
(columns on a page), see figure 10. These two

M — 11— 1

ey S d

—>| <4— margin —>

<4— spacing

Figure 10
Horizontal ListSchema

arrangements are embodied in the ListSchema trait
that is carried by an object that wishes to arrange its
children in this manner. The state defines the inter-
child spacing, the margin between the children and the
parent carrying this trait and the color for the areas
not covered by children. A list with color black and
non-zero spacing and margin values is a common
method for drawing lines around objects.

HasCp is a trait carried by all graphics objects that
have control points. The only graphics object that does
not have control points is the cluster object created and
destroyed by the JOIN and SPUIT functions. For a given
class the number of control points is the same so a
replaceable operation, CountCp, is defined to return
this value, e.g. 2 for line objects, 8 for rectangles. The
replaceable operation LocCp returns the object-relative
location of a control point. The fixed operation
HighlightCp highlights a control point in one of the
styles: default (small square), guiding (larger square)
or pinned (an X). ClosestCp and FurthestCp are fixed

35

36

Computer Graphics

operations that enumerate the control points for an
object and use LocCp to determine the control point
closest and furthest from a particular coordinate. They
are used to determine guiding and pinned control
points. Rectangles, graphics frames and text frames
have the same number and arrangement of control
points and so use the same realizations for CountCp
and LocCp. This increases code sharing so that only 2
realizations for 2 separate replaceable operations are
needed to implement all the control point behaviors for
3 classes of objects. This is typical of the code sharing
benefits of the trait mechanism. :

AnchoredFrame is the class trait for the graphics
frame that is associated with the anchor character.
There is no screen-visible element for this object. The
keyboard insert of an graphics frame actually creates
two objects, an anchored frame with a graphics frame
inside it. It is the graphics frame that is the visible
box. Anchored frame objects are also used to anchor
equations in text.

An anchored frame object forms the boundary
between the non-graphics and graphics domains. A
page column is a vertical list of left edge aligned text
blocks and anchored frames. The one and only child of
the anchored frame is a graphics frame that may be
aligned flush left, centered or flush right within the
anchored frame as determined by a property on the
graphics frame property sheet. Within the graphics
frame there are no restrictions on object arrangement.

Line is the class trait for graphics lines. Its state
retains the properties shown in figure 5.

TextBlock is the class trait for objects that have
textual content. Further details about this trait are
beyond the scope of this discussion. Text blocks and
anchored frames are the only objects that exist in a
document column.

Note that the Schema trait defines operations for
asking an object its size and location but does not
define corresponding state variables. Also note that
the replaceable location query is a request to a parent
object for the location within the parent of a child
object, i.e. a parent-relative location. This is done, as
we discuss below, for flexibility and economy of
storage and for performance.

It was felt best not to force all classes to store their
size in the same manner at the Schema level because
the trait is used as a component trait for a large
number of classes each with possibly quite different
behavior, e.g. a horizontal list-like object may
determine its size by summing the widths of its
children and use the height of its tallest child as its
own height while a graphics object may store this
information in its state. This judgement has been
shown correct by the diversity of methods for
determing size that now exist as the Star software has

Volume 16, Number 3

July 1982

matured and new features, objects and behaviors have
been implemented. It is quite common for a trait to
define a behavior, such as Schema Size, that requires
the cooperation of all objects that carry it in order to
complete the behavior.

For performance reasons the fundamental location
query is in terms of location within parent. Displaying
an object or changing its location on the screen should
not require changing its state.

For example, the Star workstation processor has
instructions that support moving bits from one part of
the screen to another. Scrolling a page upward is
merely a matter of moving existing screen bits and
painting new bits into the vacated portion of the
window; none of the scrolled objects needs to be told to
modify any of their state. This processor support also
aids performance because it is not necessary to invoke
the Paint operation for objects that already have their
image on the screen.

Also, changing the size of an object or deleting an
object near the front of a document does not require
changing the state of all following objects in the
document.

When the screen location of an object is needed for
an operation the object is passed its screen location as a
parameter or it invokes the operation ScreenLocChild
on it parent.

V. Two Examples

Star graphics was the first major piece of Star
software designed in terms of traits and that used the
full generality of the mechanism. Pieces of software
designed or implemented prior to graphics have
subsequently been converted to the traits mechanism.
In this section we will describe two interactions
between the traits presented in section III. We first
show how the GSchema trait completes the Schema
size and location behaviors and second show how it
extends the Schema trait for pointing behavior.

The GSchema state records a size and parent-
relative location. Fixed GSchema operations allow
this information to be accessed and changed. All
GSchema objects use the same realization for the
Schema replaceable operation RelLocChild which
invokes the fixed GSchema operation GetRellLocSelf on
the child object. Note that for a graphics object

GSchema.GetRelLocSelf[object]
returns the same value as

Schema.RelLocChild[
TreeElement.GetParent(object], object]

Objects that carry the Schema trait ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>