
XEROX

ViewPoint
Programmer's Manual

610E00191
October 1988

Xerox Corporation
xoe Technical Services. MS SV403
475 Oakmead Parkway
Sunnyvale. California 94086

Copyright tC 1986, 1988, Xerox Corporation. All rights reserved.

.. ; ...

XEROX <1,8010,6085, ViewPoint, and XOE are trademarks of XEROKCQRPORA TION.

Printed in U.S. A.

-.~

Table of Contents

I. SYSTEM LEVEL INTERFACES

1 Introduction

1.1 Document Structure .. 1-2

1.2 Getting Started .. 1-2

2 Overview

2.1 What Is ViewPoint? .. 2-1

2.1.1 User Abstractions .. 2-1

2.1.2 Client Abstractions ... 2-2

2.1.3 System Structure ... 2-3

2.2 History. .. 2-3

2.3 Philosophy and Conventions .. 2-4

2.3.1 Supported Public Interfaces ... 2-4

2.3.2 Plug-ins ... 2-4

2.3.3 Don't Preempt the User ... 2-5

2.3.4 Don't Call Us, We'll Call You .. 2-5

3 Programmer's Guide

3.1 Guide ... 3-2

3.1.1 Guide to the Guide .. 3-2

3.1.2 Containee ... 3-3

3.1.3 Application Windows ... 3-3

3.1.4 Menus ... 3-4

T-l

Table of Contents

3.1.5 Managing a Body Window ... 3-4

3.1.5.1 Display ... 3-4 ~
3.1.5.2 TIP and TIPS tar ... 3-5

3.1.5.3 Context ... 3-6

3.1.5.4 Selection .. 3-6

3.1.6 Property Sheets and FormWindow 3-7

3.1.7 XString, et al. .. 3-8

3.1.8 XMessage and Attention ... 3-9

3.1.9 Containers ... 3-9

3.1.10 SoftKeys .. 3-11

3.1.11 Client-Dermed Keyboards ... 3-11

3.1.12 BackgroundProcess ... 3-12

3.2 Getting Started ... 3-12

3.2.1 Simplest Application. .. 3-12

3.2.2 Icon Application ... 3-13

3.2.3 Operational Notes ... 3-15'

3.3 Flow Descriptions ... 3-15

3.3.1 Select an Icon .. 3-15

3.3.2 PROPS of an Icon.. 3-16

3.3.3 OPEN an Icon...... 3-17

3.3.4 COpy Something to an Icon .. 3: 17 ~.
3.4 Programming Conventions .. 3-18

3.4.1 Notifier .. 3-19

3.4.2 Multiple Processes, Multiple Instances 3-20

3.4.3 Resource Management ... 3-20

3.4.4 Stopping Applications .. 3-21

3.4.5 Multinationality 3-21

3.5 Summary of Interfaces .. 3-22

4 AdjustableWindow

4.1 Overview .. . 4-1

4.2 Interface Items 4-1

4.2.1 .. . 4-1

4.2.2 Adjust and Limit Procs 4-2
4.2.3 Utilities ... , 4-2
4.2.4 Friends 4-3
4.2.5 Errors .. . 4-3

4.3 G sagelExamples+-3
4.4 Index of Interface Items .+-4 ~

T-2

'-"

'~

ViewPoint Programmer's Manual

5 ApplicationFolder
5.1 Overview ... 5-1

5.2 Interface Items .. 5-1

5.3 UsagelExamples ... 5-2

5.4 Index of Interface Items 5-5

6· Atom

6.1 Overview 6-1

6.2 Interface Items :....................... 6-1

6.2.1 Making Atoms ... 6-1

6.2.2 Error .. 6-2

6.2.3 Property ~ists .. 6-2

6.2.4 Enumerating Atoms and Property Lists 6-2

6.3 U sage!Examples ... 6-3

6.4 Index oClnterface Items .. 6-5

7 Atomic Profile

7.1 Overview ... 7-1

7.2 Interface Items • .. 7-1

7.2.1 Boolean Values '.. 7-1

7.2.2 Integer Values ... 7-1

7.2.3 String Values .. 7-2

7.3 UsagelExamples ... 7-2

7.4 Index of Interface Items 7-4

8 Attention

8.1 Overview. .. 8-1

8.2 Interface Items .. 8-2

8.3

8.4

9

9.1

9.2

9.3

8.2.1 Simple Messages ... 8-2

8.2.2 Sticky Messages .. 8-2

8.2.3 ConfIrmation Messages ... 8-2

8.2.4 System Menu .. 8-3

UsagelExamples ... 8-3

Index of Interface Items .. ',' 8-5

BackgroundProcess

Overview ... , ,."

Interface Items , ... "

Usage/Examples .. .

9.3.1 Posting Messages

9-1

9-1

9
. .,

-v

9-3

T·'3

Table of Contents

9.3.2 Aborting Processes 0............. 9-4

9.3.3 Example .. 9-4

9.4 Index of Interface Items .. 9-6

10 BlackKeys

10.1 Overview. 10-1

10.2 Interface Items ... 10-1

10.2.1 Keyboard Data Structures. 10-1

10.2.2 Getting a Handle to the Current Keyboard 10-2

10.2.3 Procedures. .. 10-3

10.2.4 Errors ... 10-3

10.3 Usage/Examples. .. 10-3

10.3.1 Defining a Keyboard Record ... 10-3

10.4 Index of Interface Items ... 10-5

11 BodyWindowParent

11.1 Overview 11-1

11.1.2 Body Windows Discussion .. . 11-1

11.2 Interface Items .. .

11.2. I Body Parent Windows

11-2
.~

11-2

11.2.2 Body Windows .. . 11-3

11.2.3 Scrolling 11-3

11.2.3.1 ScrollProcs ., 11-4

11.2.3.2 Getting and Setting ScrollProcs 11-5

11.2.3.3 Default ScrollProcs 11-6

11.2.4 Utilities .. . 11-6

11.2.5 Errors .. . 11-7

11. 3 Usage/Examples 11-7
11.4 Index of Interface Items 11-8

12 BusyIcon

12.1 Overview.. 12-1

12.2 Interface Items ... 12-1

12.3 Usage. .. 12-2

12.4 Index of Interface Items ... 12-3

T-4

~

~i

ViewPoint Programmer's Manual

13 BWSAttributeTypes

13.1 Overview. .. 13-1

13.2 Interface Items ... 13-1

13.3

14

14.1

14.2

14.3

15

15.1

15.2

15.3

16

16.1

16.2

16.3

13.2.1 Available Application Types ... 13-1

13.2.2 Viewpoint Types ... 13-2

Index of Interface Items

BWSFileTypes

Overview'

Interface Items .. .

Index of Interface I terns

BWSZone

13-3

14-1

14-1

14-2

Overview .. 15-1

Interface Items ... 15-1

Index ofInterfa~e Items ~.. 15-2

Catalog

Overview 16-1

Interface Items ... 16-1

16.2.1 Finding and Creating Files in a Catalog 16-1

16.2.2 Operating on Catalogs .. 16-2

Index of Interface Items 16-3

17 Containee

17.1 Overview. .. 17-1

17.1.1 Background.. 17-1

17.1.2 Containee.Implementation .. 17-1

17.1.3 Containee.Data .. 17-2

17.2 InterfaceItems ... 17-2

17.2.1 Items for Application Implementors 17-2

17.2.2 Items for Application Consumers 17-8

17.2.3 DefaultImplementation ... 17-8

17.2.4 Attribute Cache .. 17-9

17.3 Errors and Signals ... 17 -11

17.4 Usage/Examples ... 17 - 11

17.4.1 Sample Containee ... 17 -11

17.4.2 ChangeProc Example.. 17-14

17.4.3 Error and Signal C'sage .. 17 -15

T-5

Table of Contents

17.5 Index of Interface I terns .. 17 -16

18 ContainerCache

18.1 Overview. .. 18-1

18.2 Interface Items ... 18-1

18.2.1 Cache Allocation and Management 18-1

18.2.2 Filling the Cache ... 18-2

18.2.3 Item Operations .. 18-2

18.2.4 Item Content Operations .. 18-4

18.2.5 Marking Items in the Cache ... 18-4

18.3 UsagelExamples... 18-5

18.3.1 Example ofContainerCache Use 18-6

18.4 Index of Interface Items 18-8

19 ContainerSource

19.1 Overview 19-1

19.2 Interface Items .. . 19-2

19.2.1 Handle, Procedures, and ProceduresObject 19-2

19.2.2 Procedures That Operate on Individual Items 19-3

19.2.3 Procedures That. Operate on the Entire Source' 19-5 ~,

19.2.4 ChangeProc Types 19-7

19.2.5 Marks- 19-8

19.2.6 ContainerSource Locking and Busy Routines 19-10

19.2.7 Errors 19-10

19.2.8 Global Change Proc 19-11

19.2.9INLINES -................................ . 19-12

19.3 ContainerSource and Concurrency 19-12

19.4 UsagelExamples .. . 19-12

19.4.1 ContainerSource Example 19-12

19.4.2 Errors and Signals .. . 19-14

19.4.3 Source Locking for Concurrency 19-14

19.4 Index of Interface Items 19-18

20 ContainerWindow

20.1 Overview 20-1

20.2 Interface Items .. . 20-1

20.2.1 Create and Destroy a ContainerWindow 20-1

20.2.2 Item Operations .. _ . 20-3

20.2.3 Operations on a Container Window 20-4 ~

20.2.4 Errors .. . 20-5

20.3 usage/Examples 20-5

T-6

~.'

ViewPoint Programmer's Manual

20.4 Index of Interface Items ... 20-8

21 Context

21.1 Overview. 21-1

21.2 Interface Items ... 21-1

21.2.1 Creating/Destroying a Context .. 21-1

21.2.2 Finding a Context on a Window .. 21-2

21.2.3 Acquiring/Releasing the Context 21-3

21.2.4 Errors ... 21-3

21.3 UsagelExamples.. 21-4

21.4

22

22.1

22.2

21.3.1 Example 21-4

Index of Interface Items 21-6

Cursor

Overview 22-1

Interface Items ... 22-1

22.2.1 Major Data Structures .. 22-1

22.2.2 Setting the Cursor Picture .. 22-2

22.2.3 Getting Cursor Information ... 22-2

22.2.4 Miscellaneous,Operations .. 22-3

22.2.5 Client-Deimed CUrsors ... 22-3

22.2.6 Cursor Picture Manipulation .. 22-3

22.3 Usage/Examples. .. 22-3

22.4 Interface Item Index 22-5

23 Directory

23.1 Overview. .. 23-1

23.1.1 Predeimed Divider Structure .. 23-1

23.2 Interface Items ... 23-1

23.3

23.4

23.2.1 Adding Items toa Predefmed Divider 23-1

23.2.2 GetDividerHandle .. 23-2

Usage/Examples

Index of Interface Items

23-2

23-4

24 Display

24.1 Overview .. ,................ 24-1

24.2 Interface Items ... 24-1

24.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines 24-1

24.2.2 Painting Bitmaps and Gray Bricks 24-2

24.2.3 Painting Points, Slanted Lines, and Curved Lines 24-4

24.2.4 Painting Parallelograms and Trapezoids , ' ' 24-6

T-7

T-8

24.3

24.4

25

25.1

25.2

25.3

25.4

Table of Contents

24.2.S Painting along Trajectories, Shifting Window Contents 24-7

Usage/Examples .. 24-8

24.3.1 Special Topic: Direct painting ... 24-8

24.3.2 Example 1 ... 24-9

Index of Interface Items .. 24-12

Divider

Overview 2S-1

Interface Items ... 2S-1

25.2.1 Creating and Destroying .. 2S-1

25.2.2 ConvertProc and GenericProc 2S-2

25.2.3 Adding and Finding Entries ... 2S-3

U sagelExamples .. 2S-3

25.3.1 Fragment from Dil'ectoryImpl.mesa

Index of Interface Items

2S-3

2S-6

26 Event

26.1 Overview 26-1

26.2 Interface Items .. . 26-1

26.2.1 Registering'Dependencies .. . 26-1

26.2.2 Notification ... ' .. . 26-2

26.3 UsagelExamples 26-3

26.3.1 Example 1 .. . 26-3

26.3.2 Example 2 .. . 26-4

26.4 Index of Interface Items .. . 26-S

27 FileContainerShell

27.1 Overview. .. 27-1

27.2 Interface Items ... 27-1

27.2.1 Create a FileContainerShell ... 27-1

27.2.2 Operations on the Shell :............................ 27-2

27.3 UsagelExamples .. " 27-3

27.3.1 Example: Creating a FileContainerShell and Specifying Columns 27-3

27.4 Index of Interface Items ... 27-5

28 FileContainerSource

28.1 Overview. .. 28-1

28.2 Interface Items ... 28-1

28.2.1 Creation .. 28-1

28.2.2 Specifying Columns .. 28-2

28.2.3 Operations on Sources .. 28-3

~

ViewPoint Programmer's Manual

28.2.4 Commonly Used Columns ... 28-5

28.3 Usage/Examples .. 28-5

28.3.1 Example: Specifying Columns Using FileContainerSource 28-5

28.4 Index of Interface Items 28-8

29 Form Window

29.1 Overview. .. 29-1

29.1.1 Creating a Form Window .. 29-2

29.1.2 Making Form Items .. 29-2

29.1.3 Getting and Setting Values .. 29-2

29.1.4 "Changed" BOOLEAN ... 29-3

29.1.5 Visibility '. .. 29-3

29.1.6 Layout .. 29-3

29.1.7 Neutral Properties ... 29-3

29.2 Interface Items ... 29-4

29.2.1 Creating a FormWindow, ete. .. 29-4

29.2.2 Making Form Items, ete. .. 29-7

29.2.2.1 Boolean Items ... 29-8

29.2.2.2 Choice Items ... ~ .. 29-9

29.2.2.3 Command Items .. 29-12

29.2.2.4 Tagonly Items '. .. 29-13

29.2.2.5 Text and Number Items 29-13

29.2.2.6 Window Items .. 29-16

29.2.2.7 Destroying Items 29-17

29.2.3 Getting and Setting Values ... 29-17

29.2.3.1 Getting Values ... 29-18

29.2.3.2 Setting Values ... 29-19

29.2.4 "Changed" BOOLEAN 29-20

29.2.5 Visibility ... 29-21

29.2.6 Layout ... 29-22

29.2.6.1 Flexible Layout .. 29-22

29.2.6.2 Tabs .. 29-24

29.2.6.3 Fixed Layout. 29-25

29.2.7 Save and Restore .. ,. 29-26

29.2.8 Neutral Properties .. 29-26

29.2.9 Item Popup Menus '" " 29-27

29.2.10 Miscellaneous TYPEs 29-28

29.2.11 Miscellaneous Item Operations 29-28

29.2.12 NEXT Key .. 29-30

29.2.13 SIGNALs and ERRORs ... 29-31

29.2.14 :Vlultinational Items .. ,',. 29<~3

29.3 Usage/Examples , , .. 29-33

T-9

Table of Contents

29.3.1 Calling ChangeProcs .. 29-33

29.3.2 Creating a Simple FormWindow 29-34

29.3.3 Specifying Bitmaps in Choice Items 29-35

29.3.4 The NEXT Key and Text Items 29-36

29.3.5 Window Items (Including Interaction with the NEXT Key) 29-37

29.3.6 Hints... 29-38

29.3.7 Saving and Restoring Items .. 29-38

29.4 Index of Interface Items .. 29-39

30 FormWindowMessageParse

30.1 Overview. .. 30-1

30.2 Interface Items ... 30-1

30.3 Usage/Examples. 30-1

30.4 Index of Interface Items 30-3

31 IdleControl

31.1 Overview 31-1

31.2 Interface Items .. . 31-1

31.2.1 DesktopPlug-in 31-1

31.2.2 Greeter Plug-in 31-1 ~.

31.2.3 Idle Loop ... ~ 31-2

31.3 Usage/Examples 31-2

31.4 Index of Interface Items 31-3

32 KeyboardKey

32.1 Overview 32-1

32.2 Interface Items .. . 32-1

32.2.1 System Keyboards 32-1

32.2.2 Client Keyboards .. . 32-2

32.2.3 Setting and Enumerating Keyboards 32-2

32.2.4 Alternate Keyboard 32-3

32.2.5 Keyboard Window Plug-in 32-4

32.2.6 Errors .. . 32-4

32.3 UsagelExamples 32-5

32.3.1 AddToSystemKeyboards Example 32-5

32.3.2 Special Keyboard Example 32-5

32.3.3 Registering Multiple Client Keyboards Example 32-6

32.4 Index of Interface Items .. . 32-7
~,

T-IO

View Point Programmer's Manual

33 KeyboardWindow

33.1 Overview. 33-1

33.2 Interface Items ... 33-1

33.2.1 Default Values ... 33-1

33.2.2 Geometry Table Structure ... 33-2

33.2.3 Bitmap Structure ... 33-3

33.2.4 Getting to the Keyboard Window Handle 33-3

33.2.S The Number Lock Key State ... 33-3

33.3 Usage/Examples. .. 33-4

33.3.1 Using DefaultPictureProe ... 33-4

33.3.2 UsingdefaultGeometry ... 33-4

33.3.3 Sample Geometry Table Entries 33-S

33.4 Index of Interface Items 33-6

34 LevelIVKeys

34.1 Overview '. .. 34-1

34.2 Interface Items '.................................. 34-1

34.3 Index of Interface Items ... 34-3

~ 35 MenuData

3S.1 Overview .. 3S-1

3S.2 Interface Items ... 35-1

35.2.1 Menu and Item Creation .. 35-1

35.2.2 Menu Manipulation .. 35-2

3S.2.3 Accessing Data '............................. 3S-3

35.3 UsagelExamples .. ',' 35-4

3S.3.1 Example 1 ... 35-4

35.3.2 Example 2 ... 35-5

35.4 Index of Interface Items 35-7

36 Message Window

36; 1 Overview. .. 36-1

36.2 Interface Items ... 36-1

36.2.1 Create, Destroy, etc. .. 36-1

36.2.2 Posting Messages. .. 36-2

36.3 Usage/Examples. .. 36-2

36.4 Index of Interface Items ... 36-4

T-ll

T-12

Table of Contents

37 OptionFile

37.1 Overview. .. 37-1

37.2 Interface Items ... 37-1

37.2.1 Getting Values from a File .. 37-1

37.2.2 Current Profiles .. 37-2

37.2.3 Enumerating a File. 37-2

37.2.4 Errors ... 37-3

37.3 Usage/Examples. 37-3

37.4 Index of Interface Items

38 PopupMenu

38.1

38.2

38.3

38.4

Overview

Interface Items '

Usage/Examples ' .. .

38.3.1 Example .. .

Index of Interface Items

39 ProductFactoring

39.1 Overview _ .. ~

39.2 Interface Items ' .. .

39.2.1 Products and ProductOptions

39.2.2 Checking for an Enable Option

39.2.3 Describing an Product and an Option

39.2.4 Errors .. .

39.3 UsagelExamples

39.4 Index of Interface Items .. .

40 ProductFactoringProducts

37-5

38-1

38-1

38-1

38-1

38-3

39-1

39-1

39-1

39-1

39-2

39-2

39-2

39-4

40.1 Overview '. 40-1

40.2 Interface Items ... 40-1

40.3 Index of Interface Items ... 40-3

41 Property Sheet

41.1 Overview 41-1

41.2 Interface Items .. . 41-2

41.2.1 Create a PropertySheet (Not a Linked One) ',. 41-2

41.2.2 Menu Items and the MenuItemProc ,. 41-4

41.2.3 Linked PropertySheets , 4] -5

41.2.4 Miscellaneous 41-8

.~
1

~

ViewPoint Programmer's Manual

41.2.5 Signals and Errors .. 41-8

41.3 UsagelExamples .. -.. 41-9

41.3.1 Flow Description of Creating a Property Sheet 41-9

41.3.2 An Ordinary Property Sheet .. 41-10

41.4 Index of Interface Items .. 41-13

42 Prototype

42.1 Overview. .. 42-1

42.2 Interface I terns ... 42-1

42.3 U'sage/Examples. 42-2

42.4 Index of Interface Items ... 42-3

43 Scrollbar

43.1 Overview. .. 43-1

43.2 Interface Items ... 43-1

43.2.1 Attaching Scrollbars .. 43-1

43.2.2 Scroll Proe TYPES and PROCS .. 43-2

43.2.3 Utilities .. :.................... 43-4

43.2.4 Errors ... 43-5

43.4 Index of Interface Items ... 43-6

44 Selection

44.1 Overview. .. 44-1

44.1.1 Requestors and Managers ... 44-1

44.1.2 Essentials for a Requestor ... 44-2

44.1.2.1 Convert, Target, Value, Enumerate, CanYouConvert 44-2

44.1.2.2 Resource AllocationiDeallocation Considerations 44-3

44.1.3 Essentials for a Manager .. 44-4

44.1.3.1 Set, ConvertProc, ActOnProc, ManagerData 44-4

44.1.3.2 More on Selection. Value, ValueFreeProc, and ValueCopyMoveProc 44-5

44.1.3.3 Storage Considerations for ConvertProc 44-5

44.1.3.4 Storage Considerations for ManagerData 44-6

44.2 Interface Items ... 44-6

44.2.1 Requestor Items '.' 44-6

44.2.1.1 Convert .. 44-6

44.2.1.2 Query ... 44-10

44.2.1.3 Enumeration ... 44-11

44.2.1.4 Copy, Move, Free, etc. 44-13

44.2.2 Manager Items .. 44-! 4

44.2.2.1 Set .. 44-14

T-13

Table of Contents

44.2.2.2 Conversion 44-15

44.2.2.3 Query .. . 44-15 ~

44.2.2.4 Enumeration .. . 44-16

44.2.2.5 Free, Copy, Move, etc. 44-16

44.2.2.5.1 Free .. . 44-17

44.2.2.5.2 Copy and Move 44-18

44.2.2.6 ActOn .. . 44-19

44.2.2.7 Save and Restore, Encapsulated Selections 44-20

44.2.2.8 Miscellaneous 44-21

44.2.3 Errors 44-22

44.3 U sagelExamples .. . 44-23

44.3.1 What Selection is NOT .. . 44-23

44.3.2 Examples of Storage Allocation for Manager's ConvertProc 44-23

44.3.3 Detailed Flowchart of a Selection. Convert 44-25

44.3.4 Sample ConvertProc and Requestor 44-26

44.3.5 Sample Use of Enumeration 44-29

44.4 Index of Interface Items 44-31

45 SimpleTextDisplay

45.1 Overview ; .. . 45-1
~

45.2 Interface Items .. . 45-1

45.2.1 Simplest Way to Display Text 45-1

45.2.2 StringIntoBuffer .. . 45-2

45.2.3 Measure and Resolve .. . 45-4

45.2.4 Multinational Items 45-5

45.3 UsagelExamples 45-6

45.3.1 StringlntoWindow , 45-6

45.3.2 StringlntoBuffer .. . 45-6

45.4 Index of Interface Items 45-8

46 SimpleTextEdit

46.1 Overview 46-1

46.1.1 Creating Fields 46-1
46.1.2 Displaying a Field 46-1
46.1.3 Notifying a Field .. . 46-2

46.2 Interface Items ... -............. . 46-2
46.2.1 FieldContext .. . 46-2
46.2.2 Creating Fields 46-3
46.2.3 Displaying a Field 46-4 ~
46.2.4 ~otifying a Field .. . 46-5
46.2.5 Miscellaneous Get and Set Procedures 46-7

T-14

ViewPoint Programmer's Manual

46.2.6 ChangeSizeProc .. 46-9

46.2.7 Errors .. 46-10

46.3 UsagelExamples ... 46-10

46.3.1 Selection Management'................. 46-10

46.4 Index of Interface Items .. 46-11

47 SimpleTextFont

47.1 Overview... 47-1

47.2 Interface Items ... 47-1

47.2.1 System Font ... 47-1

47.2.2 Client-Defined Characters .. 47-2

47.2.3 Signals and Errors .. 47-2

47.3 UsagelExamples , 47-2

47.4

47.3.1 Adding a Client-Defined Character 47-3

47.3.2 Acquiring the System Font .. 47-3

47.3.3 New System Font

Index of Interface Items

47-3

47-4

48 SoftKeys

48.1 Overview ... 48-1

48.2 Interface Items ... 48-1

48.2.1 Data Structures for SoftKey Labels 48-1

48.2.2 Creating and Deleting SoftKeys "....... 48-2

48.2.3 Highlighting and Outlining a SoftKeys Key top Picture 48-3

48.2.4 Retrieving Information About a SoftKeys Window Instance 48-4

48.2.5 Errors ... 48-4

48.3 U sageiExamples .. 48-4

48.3.1 Graphics Example 48-4

48.3.2 Keyboard Manager Example .. 48-5

48.4 Index of Interface Items 48-6

49 StarDesktop

49.1 Overview ... , 49-1

49.2 Interface Items ... 49-1

49.2.1 {}eneral ... 49-1

49.2.2 Atoms ... 49-3

49.3 UsagelExamples .. ". 49-3

49.3.1 Adding a Reference to the Desktop 49-3

49.4 Index of Interface Items ... 49-4

T-15

T-l6

Table of Contents

50 StarWindowShell

50.1 Overview .. "

50.1.1 Client Overview

50.1.2 Creating a StarWindowShell, Handles, etc.

50.1.3 Body Windows .. .

50.1.4 Commands and Menus

50.2 Interface Items .. .

50.3

50.2.1 Create a StarWindowShell, etc .. .

50.2.1.1 IsCloseLegalProc

50.2.1.2 Miscellaneous Get and Set Procedures

50.2.2 Body Windows

50.2.3 Commands and Menus .. .

50.2.3.1 Pushee Commands .. .

50.2.4 TransitionProcs .. .

50.2.5 Scrolling .. .

50.2.6 Push, Pop, etc. "

50.2.7 Limit and Adjust Proes

50.2.8 Displayed StarWindowShells :

50.2.9 Errors

U sage/Examples

50.3.1 Example 1

50.3.2 Example 2

50.3.3 Example 3

50.4 Index of Interface Items

51 Subwindow Overview

50-1

50-1

50-2

50-3

50-4

50-4

50-4

50-9

50-10

50-11

50-13

50-15

50-17

50-18

50-22

50-23

50-24

50-25

50-25

50-25

50-26

50-27

50-30

51.1 Overview. .. 51-1

51.2 Summary of Interfaces .. 51-1

51.3 SubdividingaShell ... 51-3

51.4

51.5

52

51.3.1 Creating Predefined SWs .. 51-3

51.3.2 Client Defmed SWs ... 51-4

51.3.3 Inserting and Deleting SWs .. .

Independent SW s

51-4

51-5

Usage/Examples ... 51-5

Subwindower

52.1 Overview. .. 52-1

52.2 Interface Items :... 52-1

52.2.1 Making Subwindows .. 52-1

""I!!!!II!).,

~

ViewPoint Programmer's Manual

52.2.2 Creating Form Subwindows ... 52-2

52.2.3 Creating Message Subwindows 0 0 52-4

52.2.4 Creating Body Window Parent Subwindows 52-4

52.3 Usage/Examples ... " 52-6

52.4 Index of Interface Items ... 52-7

53 SubwindowFriends

53.1 Overview. .. 53-1

53.2 Interface Items ... 53-1

53.2.1 Registering Subwindow Types ... 53-1

53.2.2 Getting Subwindow Procs ... 53-2

53.2.3 Standard Procedures .. 53-2

53.2.4 Errors ... 53-3

53.3 Usage/Examples. 53-3

53.4 Index of Interface Items ... 53-5

54 SubwindowManager

54.1 Overview. .. 54-1

54.2 Interface Items 0 ••••••••••••••• , •••••••••••• ;...... 54-1

54.2.1 Making Subwindows .. 54-1

54.2.2 Adding and Removing Subwindows o. 54-2

54.2.3 Adjust, Limit, Transition Types and Proes 0 • • • • • • • • • • •• 54-4

54.2.4 Utilities ... 54-4

54.2.5 Errors ... 54-5

54.3 Usage/Examples.................................... 54-5

54.4 Index of Interface Items ... 54-8

55 TIP

55.1 Overview 55-1

55.1.1 Basic Notification Mechanism 0 •••••••••• " 55-1

55.1.2 Tables ... 55-2

55.1.3 Input Focus .. 55-2

55.1.4 Periodic Notification .. " 55-3

55.1.5 Call-Back Notification and Setting the Manager 55-3

55.1.6 Attention and User Abort .. 0 55-3

55.1. 7 Stuffmg Input into a Window .. 55-3

55.2 Interface Items ... 55-4

.~. 55.2.1 Results ... 0 • • • • • • • • • • • • •• 55-4

55.2.2 Notify Procedure ... 55-4

55.2.3 TIP Tables ... 55-5

T-17

T-18

Table of Contents

55.2.4 Associating Notify Procedures, Tables, and Windows 55-5

55.2.5 Creating and Destroying Tables 55-6

55.2.6 Input Focus 55-7

55.2.7 Character Translation 55-7

55.2.8 Periodic Notification 55-8

55.2.9 Call-Back Notification 55-8

55.2.10 Manager ... 55-9

55.2.11 User Abort ~. .. 55-9

55.2.12 Attention .. 55-10

55.2.13 Stuffing Input into a Window 55-10

55.2.14 Errors .. . 55-11

55.2.15 Miscellaneous Items 55-11

55.2.16 "Look-Ahead" 55-12

55.3 UsagelExamples ... , .. 55-12

55.3.1 Periodic Notification .. . 55-12

55.3.2 Syntax of TIP tables 55-13

55.3.3 Semantics of Tables 55-14

55.3.4 Example Table 55-17

55.3.5 Simple TIP Client Example .. . 55-17

55.3.6 Modifying an Existing TIP Client 55-19

55.3.7 Macro Package- , 55-20

55.4 Index of Interface Items 55-21

56 TIPStar

56.1 Overview. .. 56-1

56.2 Interface Items ... 56-1

56.2.1 The TIPStar Structure .. 56-1

56.2.2 Installing and Removing Tables 56-2

56.2.3 Retrieving Pointers to Installed Tables 56-3

56.2.4 Mouse Modes .. 56-3

56.3 UsagelExamples. 56-4

56.3.1 When PushTable is Called .. 56-4

56.3.2 When StoreTable is Called .. 56-5

56.3.3 When PopTable is Called .. 56-7

56.4 Index of Interface Items 56-8

57 Undo

57.1

57.2

Overview

Interface Items .. .

57-1

57-1

57.2.1 Application's Procedures .. 57,1

57.2.2 Implementation's Procedures .. 57-2

~

.,

~

ViewPoint Programmer's Manual

57.3 Usage/Examples .. 57-2

57.3.1 Example .. 57-3

57.4 Index of Interface Items 57-4

58 UnitConversion

58.1 Overview .. 58-1

58.2 Interface Items ... 58-1

58.3 U sagelExamples .. 58-1

58.3.1 Converting Font Values ... 58-1

58.4 Index of Interface Items 58-3

59 Window

59.1 Overview .. 59-1

59.1.1 Window Creation ... 59-1

59.1.2 Child Windows and the Window Tree 59-1

59.1.3 Painting into a Window ... 59-2

59.1.4 Bitmap-under .. 59-3

59.1.5 Window Panes ... 59-3

59.1.6 Linked Windows :....................... 59-3

59.1.7 Buffer Backed W'indows ... 59-4

59.2 Interface Items ... 59-4

59.2.1 Basic Data Types and Utility Operations 59-4

59.2.2 Window Creation and Initialization 59-5

59.2.3 Access to and Modification ofa Window's Properties 59-7

59.2.4 Window Tree and Window Box Manipulation 59-8

59.2.5 Causing Painting.............................. 59-10

59.2.6 Errors .. 59-11

59.2.7 Special Topic: Bitmap-Under ... 59-12

59.2.8 Special Topic: Linked Windows 59-14

59.2.9 Special Topic: Buffer Backed Windows. 59-15

59.3 Usage/Examples. 59-16

59.3.1 Display Procedures and MONITORs 59-17

59.4

59.3.2 Example 1

59.3.3 Example 2

59.3.4 Example 3

59.3.5 Example 4

Index of Interface Items

60 XChar

60.1

60.2

Overview

Interface Items .. .

59-17

59-19

59-19

59-20

59-22

60-1

60-1

T-19

Table of Contents

60.2.1 Character Representation .. . 60-1

60.2.2 JoinDirection and StreakNature 60-2 .~

60.2.3 Case 60-2

60.3 UsagelExamples 60-3

60.3.1 Creating an ASCII Character 60-3

60.3.2 Creating a Greek Character .. . 60-3

60.4 Index of Interface Items 60-4

61 XCharSets

61.1 Overview. 61-1

61.2· Interface Items ... 61-1

61.2.1 Sets ... 61-1

61.2.2 Enumeration of Character Sets .. 61-2

61.3 UsagelExamples. .. 61-2

61.3.1 Creating a Greek Character 0 •••••••••••• 0 ••••••••• 0 • • • •• 61-2

61.4 Index of Interface Items 0 0 ••••••• 0 ••••• 0 •••••• 0 0 0 •• 0 •• 0 •••• 0 • 0 •••• 0 ••• 0 0 61-3

62 XComSoftMessage

62.1 Overview. 0 ••• 0 0 •• 0 •• 0 • 0 ••• 62-1

62.2 Interface Items .. . 62-1 ~
62.2.1 Obtaining Message Handle 0 •••••• 0 • 0 • 0 0 • 0 • 0 • 62-1

62.2.2 Message Keys 0 0 ••• 0 ••••••••••••••••••••••••••••••••••• 0 ••••• 0 ••••• 0 •• 62-1

62.3 Usage/Examples 0 •••••••••••••••••••••••• 0 o ••••••• 0 ••• o. 0 •••••••• 0 ••••• 62-2

62.4 Index of Interface Items 62-3

63 XDigits

63.1 Overview 63-1
63.2 Interface Items .. 0 •••••• 0 •••••••••••••••••• 0 • 0 0 •• 0 •• 63-1

63.2.1 Representation 0 •••• 0 ••••• 0 ••• 0 •••• 0 ••• 0 •••• 0 0 • 0 • • • • •• 63-1

63.2.2 Operations .. 0 • • • • • • • • •• 63-2

63.3 U sagelExamples .. 63-2

63.3.1 Assigning Symbols .. 63-2

63.4 Index of Interface Items 63-4

64 XFormat

64.1 Overview .. " 64-1

64.1.1 Major Data Structures .. 64-1

64.1.2 Operations. 64-1 ~

64.2 Interface Items ... 64-2

64.2.1 Handles and Objects .. 64-2

T-20

ViewPoint Programmer's Manual

64.2.2 Default Output Sink .. 64-2

64.2.3 Text Operations .. 64-2

64.2.4 Number Formats ... 64-3

64.2.5 Numeric Operations .. 64-4

64.2.6 Built-in Sinks .. 64-4

64.2.7 Date Operation.. 64-5

64.2.8 Network Data Operations ... 64-5

64.2.9 NSString Operations ... 64-6

64.2.10 Errors. 64-6

64.3 U sage/Examples .. 64-7

64.4

65

65.1

65.2

64.3.1 Using Built-in Sinks ... 64-7

64.3.2 Creating New Format Procedures...................................... 64-7

Index of Interface Items 64-9

XLReal

Overview 65-1

Interface Items :..................... 65-1

65.2.1 Representation ... 65-1

65.2.2 Conversion .. 65-1

65.2.3 Input/Output .. 65-2

65.2.4 Comparison........................... 65-4

65.2.5 Operations ... 65-5

65.2.6 Special Numbers ... 65-6

65.2.7 Errors ... 65-6

65.2.8 Special Constants .. 65-6

65.3 UsagelExamples... 65-6

65.3.1 Special Numbers ... 65-6

65.3.2 Times of Common Operations.. 65-7

65.4 Index of Interface Items ... 65-8

66 XMessage

66.1 Overview. .. 66-1

66.1.1 Message Usage. 66-1

66.1.2 Message Composition and Templates 66-1

66.2 Interface Items ... 66-2

66.2.1 Handles ... 66-2

66.2.2 Getting Messages .. 66-2

66.2.3 Composing Messages ... 66-2

66.2.4 Defining Messages ... 66-3

66.2.6 Obtaining Messages from a File .. 66-4

66.2.7 Destroying Message Handles .. 66-5

T-21

T-22

Table of Contents

66.2.6 Error .. 66-5

66.3 Usage/Examples .. 66-5

66.3.1 Structuring Applications to Use Messages 66-5

66.3.2 Example of Message Usage .. 66-6

66.4 Interface Item Index

67 XString

67.1 Overview

67.1.1 Character Standard

67.1.2 Data Structures .. .

67.1.3 Operations .. .

67.2 Interface Items .. .

67.2.1 Contexts .. .

67.2.2 Readers and ReaderBodies

67.2.3 Writers and WriterBodies

67.2.4 Simple Reader Operations .. .

67.2.5 Accessing Characters ~.'

67.2.6 Errors :

67.2.7 Conversion to Readers

67.2.8 Reader Allocation '

67.2.9 Simple Writer Operations

67.2.10 Conversion to Writers .. .

67.2.11 Writer Allocation .. .

67.2.12 Comparison of Readers .. .

67.2.13 Numeric Conversion of Readers

67.2.14 Character Scanning

67.2.15 Other Reader Operations

67.2.16 Appending to Writers .. .

67.2.17 EditingWriters

67.2.18 Conversion from Readers

67.2.19 Reverse Character Operations

67.3 Usage/Examples .. .

67.3.1 Designing Interfaces with Readers

67.3.2 Using Readers

67.3.3 Simple Parser Example

67.4 Index of Interface Items

68 XTime

68.1

68.2

Overview

Interface Items .. .

68.2.1 AcquiringTime

66-8

67-1

67-1

67-1

67-2

67-2

67-2

67-3

67-4

67-5

67-5

67-6

67-6

67-7

67-8

67-8

67-8

67-9

67-10

67-11

67-12

67-12

67-14

67-14

67-14

67-15

67-15

67-16

67-17

67-19

68-1

68-1

68-1

.....

ViewPoint Programmer's Manual

68.2.2 Editing Time ... 68-2

68.2.3 Useful Constants and Variables 68-3

68.3 Usage/Examples. .. 68-3

68.3.1 ParseReader Template Definitions 68-3

68.3.2 Example ... 68-4

68.4 Index of Interface Items ... 68-6

69 XToken

69.1 Overview. 69-1

69.2 Interface Items ~. .. 69-1

69.2.1 Character Source Defmitions .. 69-1

69.2.2 Filter Defmitions ... 69-2

69.2.3 Skip Mode Definitions .. 69-2

69.2.4 Quoted Token Defmitions .. 69-3

69.2.5 Built-in Handles ... 69-3

69.2.6 Boolean and Numeric Tokens .. 69-3

69.2.7 Basic Token Routines ... 69-4

69.2.8 Signals and Errors .. 69-5

69.2.9 Built-in Filters ... 69-6

69.2.10 Built-in Quote Procedures... 69-7

69.3 Usage/Examples .. 69-7

69.3.1 Collecting Tokens ~.. 69-7

69.4 Index of Interface Items ... 69-9

II. APPLICATION INTERFACES

70 ButtonlnterchangeDefs

70.1 Overview .. 70-1
70.1.1 Creating a Button ... 70-1

70.2 Interface Items ... 70-1
70.3 Index of Interface Items ... 70-3

71 ChartDataInstallDefs

71.1 Overview .. 71·1

71.2 Interface Items ... 71-1

71.3 Usage 71-4

71.4 Index of Interface Items ... 71-5

~

T-23

Table of Contents

72 DoclnterchangeDefs ~,

72.1 Overview 72-1

72.1.1 Creating Documents .. . 72-1

72.1.2 Enumerating Documents .. . 72-2

72.2 Interface Items .. . 72-2

72.2.1 Data ty-pes 72-2

72.2.2 Creating Documents .. . 72-4

72.2.2.1 Initializing a Document , 72-4

72.2.2.2 Adding to a Document , 72-S

72.2.2.3 Releasing Storage , , 72-10

72.2.2.4 Finalizing Document , , , 72-10

72.2.2.5 Utilities , , .. 72-11

72.2.3 Enumerating Documents , ' 72-12

72.2.3.1 Open " , .. , , . , . , , , , , 72-12

72.2.3.2 Enumerate ... , .. 72-13

72.2.3.3 Close 72-1S

72.2.4 Errors .. . 72-16

72.2.5 Fill-in Order ' 72-16.

72.3 U sagelExamples .. , .. 72-17
~

72.4 Index of Interface Items ,' , , 72-27

73 DoclnterchangePropsDefs

73.1 Overview .. , , , ... , , , 73-1

73.2 Interface Items " 73-1

73.2.1 Frame Properties , , 73-1

73.2.2 Page Properties .. . 73-2

73.2.3 Field Properties , , , , .. . 73-4

73.2.4 Font Properties , , .. ,", .. ,", ... ,',. 73-S

73.2.4.1 FontDescription ., ... ,., , ,', ... ,', ... ,., , .. . 73-6

73.2.4.2 The other Fields in FontPropsRecord ' ... ' 73-7

73.2.S Font Runs .. ,",., "." .. , .. , , " , .. ,., 73-7

73.2.5.1 Meaning of Index and Context Fields in Run .. ,,',.,,', .. , 73-8

73.2,6 Paragraph Properties , , , , , , , , , ... , , , , , , 73-9

73.2.6.1 BasicPropsRecord " ... , , 73-9

73.2.6.2 Tabs 73-11

73.2.7 Mode Properties 73-11

73.2.7 Contants 73-12
~

73.2.8 Default Properties 73-14

73.3 Index of Interface Items 73-16

T-24

ViewPoint Programmer's Manual

74 EquationInterchangeDefs

74.1 Overview. .. 74-1

74.2 Interface Items ... 74-1

74.2.1 General Data Types.. 74-1

74.2.2 Equation Creation ... 74-2

74.2.3 Equation Enumeration ... 74-5

74.3 Index of Interface Items ~... 74-8

75 GraphicsInterchangeDefs

75.1 Overview. 75-1

75.1.1 Creating Graphics ... 75-1

75.1.2 Reading Graphics .. 75-2

75.2 Interface Items ... 75-2

75.2.1 Creating graphics ... 75-2

75.2.1.1 Star Routines ... 75-3

75.2.1.2 Setting Extra Frame.Properties 75-6

75.2.1.3 Adding Geo me trics to a Graphics Container 75-6

75.2.1.3 Adding Frames to a Graphics Container 75-11

75.2.1.5 Adding to a Cusp Button 75-16

75.2.1.6 Adding Miscellaneous Graphics 75-16

75.2.1.7 Release Routines .. 75-16

75.2.1.8 Finish Routines .. 75-17

75.2.2 Reading graphics .. 75-17

75.2.2.1 Enumerate and its Callbacks 75-17

75.2.2.2 Getting Extra Properties 75-20

75.2.2.3 Enumerating Cusp Button Programs 75-21

75.3 Contants. .. 75-21

75.3 UsagelExamples. 75-23

75.4 Index of Interface Items .. 75-34

76 IllustratorInterchangeDefs

76.1 Overview.. 76-1

76.1.1 Creating Pro Illustrator Graphics 76-1

76.1.2 Reading Pro Illustrator Graphics 76-2

76.2 Interface Items ... 76-2

76.2.1 Creating Pro Illustrator Graphics 76-2

76.2.1.1 Creating a Frame.. 76-:2

76.2.1.2 Creating Forms ... 76-3

Basic Forms ... 76-4

Clusters .. 76-5

T-25

Table of Contents

Trajectories and Shapes 76-5
~

Text Frames .. . 76-7

Copying a Form 76-9

76.2.1.3 Posting Forms .. . 76-9

76.2.1.4 Form Transformations 76-10

76.2.1.5 Finish Routines 76-12

76.2.2 Reading Graphics .. . 76-12

76.2.3 Pro-perties .. . 76-13

76.2.3.1 Frame Pro-perties .. . 76-13

76.2.3.2 Form Pro-perties .. . 76-14

Generic Form Properties 76-14

Specific Form Properties 76-15

Property Groups 76-16

Dash Sty les ' 76-21

76.2.3.3 Default Properties .. . 76-22

76.2.3 Errors .. . 76-24

76.3 Index of Interface Items 76-25

77 TablelnterchangeDefs

77.1 Overview. .. 77 -1 .~

77.1.1 Table Building ... 77-1

77.1.2 Table Reading..... 77-2

77.2 Interface Items ... 77-2

77.2.1 Table Properties ... 77-2

77.2.2 Column Properties ,. 77-4

77.2.3 Column Header Properties ... 77-5

77.2.4 Other Column Properties ... 77-7

77.2.5 Row Content .. 77-8

77.2.6 Table Building Operations .. 77-8

77.2.6.1 Creating a New Table .. 77-8

77.2.6.2 Opening an Existing Table 77-9

77.2.6.3 Appending Rows ... 77-10

77.2.6.4 Finishing a Table ... 77-10

77.2.6.5 Miscellaneous Utilities. .. 77-10

77.2.7 Table Reading Operations ... 77-11

77.2.8 Diagram of Table Structure. .. 77-12

77.2.9 Contants ... 77-12

77.2.10 Errors ... 77-14

77.3 Usage/Examples. .. 77-15 :~

77.4 Index of Interface Items .. 77-18

T-26

ViewPoint Programmer's Manual

~' 78 Ta bleSelectionDefs

78.1 Overview .. 78-1

78.2 Interface Items ... 78-1

78.3 Index of Interface Items ... 78-3

79 TextlnterchangeDefs

79.1 Overview .. 79-1

79.2 Interface Items ... 79-1

79.2.1 Data types .. 79-1

79.2.2 Creating an Anchored Text Frame 79-3

79.2.3 Append Operations .. 79-3

79.2.4 Enumeration .. 79-4

79.2.5 Releasing Text .. 79-5

79.2.6 Text Frame Link Order .. 79-5

79.3 Example... 79-6

79.4 Index of Interface Items 79-7

~. Appendices

A System TIP Tables

A.l Overview. .. A-I

A.2 KeyNamestrIP Name Mapping ... A-2

A.3 ViewPoint Registered TIP. Predicates .. A-4

A.4 Tables. .. A-S

A.4.1 Normal Tables ... A-5

A.4.2 Mouse Mode Tables ... A-16

A.S UsagelExamples .. A-19

A.S.l Using NormalSoftKeys.TlP when Installing Client SoftKeys A-19

A.S.2 Attaching a NotifyProc to One of the Normal Tables A-20

A.6 Index of TIP Tables ... A-2l

B References

C Listing of Atoms

C.l

C.2

C.3

Overview ... C-1

Atoms as TIP Results in the System TIP Tables C-l

Passed as the "Atom" Parameter to a Containee.GenericProc C-5

T-27

T-28

C.4

CoS

Table of Contents

Event Atoms . 0 • 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 • 0 •••• 0 •••••••••••••••••• 0 0 •• 0 0 • 0 • 0 • 0 0 C-6

AtomicProfile Atoms . 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 C-6

Co6 Other 0.00. 0000. 0 •••• 00. 0 0 0 0 0 0 0.00 ••••••• 0 ••• 0. 0 0 •••••••• 0 ••••••• 0 ••• 00 ••• 0.0 C-7

D Listing of Public Symbols

I.

SYSTEM LEVEL INTERFACES

.~.

I-I

I. SYSTEM LEVEL INTERFACES

1-2

.. ~

1

Introduction

This ViewPoint Programmer's Manual is written for programmers who are developing
applications to run on ViewPoint software. ViewPoint's open architecture philosophy
allows applications to be developed easily.

You will find this manual useful only if you are already a Mesa programmer. You should
have completed the Mesa Course and be familiar with the contents of the XDE User's
Guide (610EOOl40) and the Mesa Language Manual (610E00170). You should also be
familiar with the facilities described in the Pilot Programmer's Manual (610E00160) and
the Filing Programmer's Manual contained in the Services Programmer's Guide
(610E00180).

The ViewPoint Programmer's Manual gives you the information you will need to
implement the user interface of an application that runs on ViewPoint. This includes how
to:

• Represent applications as icons.

• Interact with the mouse and keyboard to process the user's instructions.

• Create folder-like containers.

• Create property sheets.

• Create menus.

• Paint pictures and text on the display.

• Create programmable keyboards.

• Represent and manipulate multinational text.

It does not provide you with Mesa, Pilot, or Services-specific information .

1-1

1 Introduction

1.1 Document Structure

This introductory chapter describes the physical manual itself, how it is organized, who
should read it, how it should be read, and why. Chapter 2, Overview, describes ViewPoint
and discuss its history and overall design.

Chapter 3, The Programmer's Guide, tells how to use the ViewPoint interfaces. It describes
concepts essential to understanding ViewPoint and describes the facilities that are
available. The most common interfaces are briefly discussed and grouped by application.
All of the ViewPoint interfaces, with a short summary, are listed alphabetically at the end
of the chapter.

The individual interface chapters are arranged alphabetically in Chapters 4 through 59.
These chapters give detailed descriptions of the interfaces that ViewPoint provides. Each
interface chapter begins with an overview that explains the concepts behind the interface
and the important data types that it manipulates. The second section of each chapter
describes the actual items of the Mesa interface and groups them by function. The third
section explains typical ways of using the interface and often contains programming
examples. The fourth section is the index of interface items. Within an interface chapter,
the items of the broadest interest are presented rU'St; more specialized items follow later.

Appendix A presents the system TIP Tables, references are in Appendix B, Appendix C
contains a list of well-known atoms, and Appendix D contains a listing of public symbols.

1.2 Getting Started

1-2

Chapters 1, 2, and 3 of the ViewPoint Programmer's Manual should be read in order.
Within Chapter 3, you will sometimes be guided to various sections in task-relative rather
than page-relative order. Chapters 4 through 59 (the interface chapters) can be read in any
order, depending on your need.

2

Overview

2.1 What Is ViewPoint?

ViewPoint is a collection of facilities for writing application programs that run on a
personal workstation with a high-resolution bitmap display. It supports an open-ended
collection of applications, providing a framework and a set of rules that allow these
independent applications to be integrated. It has an advanced user interface that also
allows applications to be easily adapted for users in other countries.

Throughout this document, the term user describes a person who interacts with the
applications built on ViewPoint via the mouse and keyboard. Programs cannot predict or
control user actions. The term client describes programs that use the facilities described in
this document. The client may act as a result of some user action, but the behavior of the
client is the result ofa program and under control of its implementor.

2.1.1 User Abstractions

ViewPoint uses several abstractions that are part of the advanced user interface pioneered
by the Star Workstation:

• Icons and Desktop. Icons that represent objects on a desktop are one basic abstraction.
These objects can represent either functions or data. Data icons, such as a document,
represent objects on which actions can be performed. Function icons, such as a printer,
represent objects that perform actions. In the metaphor, they are on the desktop that
also serves as the background for their display. With ViewPoint, clients may create
new icons that provide additional functions within the desktop metaphor.

• Windows. Windows are rectangular areas on the screen that display the contents of an
icon when it is opened. Each window has a header containing the name of the window's
icon and a set of commands. The window also contains scroll bars that scroll the
contents of the window vertically and horizontally.

• Property Sheets. Property sheets are displayed forms that show the properties of an
object. They contain several types of parameters, including state parameters, which

2-1

2

2-2

Overview

may be on or off; choice parameters, which have a set of mutually exclusive values; and
text parameters. ~

• Selection. The selection is an object or body of data identified by the user. It is the
target of user actions; there can be only one selection at anyone time. It can be a string
of text that the user may then delete, copy, or change the properties of. It can be an icon
on the desktop that is moved to a printer icon for printing or opened to display its
contents. In general, it can be almost any piece of data that can be represented on the
screen.

2.1.2 Client Abstractions

To implement the above user abstractions and to provide some building blocks for
developing applications, ViewPoint uses several client abstractions:

• Containee and StarDesktop. Containee is an application registration facility that
associates an application with a file type. Registering an application consists of
providing procedures that paint iconic pictures and perform various operations.
StarOesktop, using the desktop metaphor, displays the desktop window and iconic
pictures for each file found in a particular directory.

• Client Windows. The client window abstraction is more primitive than the user window
abstraction. The client window abstraction serves to isolate applications from the
physical display and each other. A window can be thought of as a quarter of an inimite ,~
plane. Within that space, the client is called upon to display the contents of the window
without regard to any other applications' windows. Windows may be linked to form a
tree structure. A user's window is typically composed of a number of small client
windows-one for the header, one for each scroll bar, and so forth.

• Menus. Menus are sequences of named commands, each consisting of a text name and a
procedure. Menus may be displayed to the user in several forms, such as in a pop-up
menu or as window shell header commands (see below).

• Window SheUs. The user window abstraction is implemented by window shells. They
provide the header, scroll bars, and body windows. The body windows are windows the
client uses to display the content of an application. The commands in the header are
menus.

• Form Windows. Form windows are the client abstraction that provides the basis for the
user property sheet. Form windows allow form items in a window to be created and
manipulated. There are several types of items: boolean items, choice items, text items,
numeric text items, command items, form and window items. Window items allow the
client to implement its own type of item. The property sheet user abstraction is
implemented by putting a form window inside a window shell.

ViewPoint Programmer's Manual 2

• Container Windows. Container windows implement a window that contains a list of
items. Clients supply the source of items and the container window handles that
display the contents in a window and interact with the user.

• Selection. The client selection abstraction is a framework in which a client can
manifest itself as the holder of the user's current selection while other clients
interrogate the selection and request that it be converted to a variety of data types.
ViewPoint deimes several selection conversion types, but the selection framework
allows clients to define additional conversion types. The selection is the principal
means by which information is transferred between different applications.

2.1.3 System Structure

ViewPoint's architecture contains a small set of public interfaces that provide the basic
facilities fot" building workstation applications. Facilities are included in ViewPoint fot"
several reasons. Some facilities implement system-wide features, such as the window
package. If several applications tried to implement their own window packages, chaos
would result. Facilities are also included in ViewPoint to provide a consistent user
interface, such as form windows and property sheets. A imal reason for including facilities
is to provide packages that are useful to many clients, such as the simple text facilities. As
ViewPoint evolves, more facilities useful to a variety of clients will be added.

The ViewPoint interfaces fall into the followin~ general categories:

Application registration: Containee

Windows and display: Context, Display, StarWindowShell, Window

Forms and property sheets: FormWindow, FormWindowMessageParse, PropertySheet

User input and keyboards: BlackKeys, KeyboardKey, KeyboardWindow, LevellVKeys,
SoftKeys, TIP, TlPStar

Strings and messages: XChar, XCharSets, XCharSetNNN, XComSoftMessage,
XFormat, XLReal, XMessage, XString, XTime, XToken

Selection: Selection

Containers: ContainerCache, ContainerSource, ContainerWindow,
FileContai nerShell, Fi leContai nerSource

Text display and editing: SimpleTextDisplay, SimpleTextEdit, SimpleTextFont

Background management: BackgroundProcess

Miscellaneous user interface: Attention, Cursor, MenuOata, MessageWindow,
PopupMenu, StarDesktop, Undo

Misee llaneous: Atom, AtomicProfile, Event, IdleControl

2.2 History

."-,, ViewPoint is the result of past experience with Star and the Xerox Development
Environment. In late 1982, the Star Performance and Architecture Project concluded that
Star's monolithic system structure, in which every piece knew about every other piece,

2-3

2 Overview

hindered its performance. The monolithic structure also made it difficult to develop new
applications. In addition, there were hundreds of interfaces in the system but no distinction
between public and private interfaces, which made it difficult for programmers to learn
how to write applications in the system.

In contrast to Star, the Xerox Development Environment had a modular system structure
with a small number of well-documented public interfaces It also encouraged an open­
ended collection of applications. While it performed well and was open, the Xerox
Development Environment did not have as consistent a user interface as Star, nor did it
support Star's multilingual requirements.

As a result of this study, ViewPoint was created. It has the system structure, documented
public interfaces, and openness of the Xerox Development Environment, yet supports
Star's user interface and multilingual requirements.

While it was initially focused on providing a new foundation for Star, ViewPoint has
become the basis for more software products from the Office Systems Division. It will
evolve to replace the current foundation of the Xerox Development Environment and will
likely support products from organizations outside the Office Systems Division.

2.3 Philosophy and Conventions

2-4

ViewPoint's philosophy and conventions apply both to applications that interact with the
user and to packages that implement a facility. Some are just good system-building
concepts. ViewPoint assumes that programs that run within it are friendly and that they I~
are not trying to circumvent or sabotage the system. The· system does not try to enforce
many of these conventions but assumes that clients will adhere to them voluntarily. If
these conventions are not followed, the system may degrade or break down altogether.

2.3.1 Supported Public Interfaces

Systems should be designed to export public interfaces that are well documen ted and
relatively stable. By derming a set of primitive facilities and stressing their stability,
applications are encouraged to depend on the existing ViewPoint facilities rather than on
other applications packages. This promotes an open architecture in which applications can
be developed and loaded with relative ease, exchanging information among themselves
while maintaining the independence of client modules. The open architecture allows
designing for unknown applications as well as the class of applications expected in Star.

In keeping with an open architecture, ViewPoint does not make far-reaching assumptions
about the applications that run above it. While ViewPoint provides facilities that make
certain styles of applications easy, it does not preclude other styles of applications.

2.3.2 Plug-ins

ViewPoint is self-contained in that it does not import procedures that it expects a client to
supply. Rather it waits, in effect, for clients to call it and state that they want to implement
some facility. This is refen"ed to as a plug-in approach: an application plugs itself in to a ~
lower layer of software.

~!

ViewPoint Programmer's Manual 2

Plug-ins encourage modularity at the client level. Because ViewPoint can be run by itself
(although it does not do much), it can also be run with just one application plugged in. Thus
each application can be implemented and debugged individually, which simplifies system
development.

Plug-ins also can break a dependency that would create a complex dependency graph. For
example, the desktop has a dependency on the applications that appear in the desktop. If
the desktop depended directly on the applications, it would have to change every time a
new application was created. By having the applications plug themselves into the desktop,
the direct dependency is broken.

2.3.3 Don't Preempt the User

Clients should avoid dictating what the user must do. The user should be free to interact
with different applications as desired. For example, the current selection is something that
the user should control. It should be changed only as a result of user actions. A background
process should not change the selection out from under the user.

2.3.4 Don't Call U St We'll Call You

Because the user is in control, a program must wait for the user to interact with it. The
method of interacting with the user that is prevalent in terminal-oriented user interfaces
is to get a command from the user and execute it, which results in the client regaining
control while it awaits user input. With potentially multiple applications active
simultaneously, the user should be free to interact 'with the one of his choosing.
ViewPoint's input facilities notify a window when the user inputs to that window.

Events are another case in which the system calls the client. For example, a client may
need to do something when the user logs in. If the client registers a procedure with the
appropriate event, the procedure is invoked when the event occurs.

2-5

2 Overn~e:w~ ________________ _

2-6

3

Programmer's Guide

This ViewPoint application programmer's guide is intended to point the programmer to the
most important parts of the most important interfaces needed for writing an application in
ViewPoint.

ViewPoint is a collection of interfaces to be used for writing application programs. It is
primarily intended to support applications like those in the ViewPoint workstation; that is,
there is support for icons, windows, property sheets, and so forth.

The first section (3.1 Guide) contains a jump table of the form, "If your application does X,
then you use interfaces A and B; also, you need to understand C and 0, and you probably
want to read section 3.l.x." The subsections (3.l.x) provide more detail about A, B, C, and
0, pointing the programmer to the most important types and procedures in an interface.
The second section (3.2 Getting Started) contains essential information for first-time
ViewPoint programmers. Section 3.3 provides some flow of control descriptions for several
common scenarios. It describes which interfaces call which client procedures when, and so
forth. Section 3.4 discuss some programming conventions specific to ViewPoint interfaces.
Section 3.5 contains a summary of all the ViewPoint interfaces.

First, we briefly define an application from the user's point of view: The user sees the icons
on the desktop and can operate on them in various ways. You can select an icon with the
mouse and open it to display its contents. Or by selecting the icon and pressing PROPS. you
can examine and change the icon's properties through a window called a property sheet.
After an icon is opened, he can examine the properties of the contents and change them by
again using the property sheet. By selecting one icon, pressing COpy or ~OVE. and then
selecting another icon, he can perform various application-specific operations. This is often
referred to as "dropping one icon onto another." Each application attaches a different
meaning to the drop-on operation. For example, the folder takes the icon dropped onto it
and adds it to the folder. The pri.nting application (printer icon) prints the icon dropped
onto it.

From the application's point of view, an icon is just a picture that represents a file. Files
have a file type, and an application operates on all files of the same type. Thus when the
user selects a folder icon, he or she is actually selecting a file with file type of folder. When
the user performs some operation on an icon, the desktop calls the appropriate application
based on the file type of the file the selected icon represents.

3-1

3 Pro~amme~sG~de

3.1 Guide

The following table can help you readily find a desired section.

3.1.1 Guide to the Guide

If your application ._

_ Appears as an icon:

- Read about icon applications in 3.2 Getting Started
- Use Containee to register the icon's behavior

_. Opens a window:

- Use StarWindowShell to create a window
- Use MenuOata to construct menus

_. Manages the contents of a window:

- Use Display and Window to display information
- Supply a np.NotifyProc to process user actions
- Use Selection to share data between applications
- Use Context to save data with the window

••• Puts up a Property Sheet:

- Use PropertySheet and FormWindow interfaces

.•• Manipulates strings:

See section

3.2.2
3.1.2

3.1.3
3.1.4

3.1.5
3.1.5
3.1.5
3.1.5

3.1.6

- Use the XString interfaces (including XFormat, XToken, XChar) 3.1.7

__ Displays messages to the user:

- Use the XMessage and Attention interfaces 3.1.8

_ Displays a list of items like a Colder:

- Use the Container interfaces (ContainerWindow, ContainerSource) 3.1.9

.... Redefines the function keys:

- Use the SoftKeys interface 3.1.10

.•• Redefines the Black Keys:

- tJ se BtackKeys and Key80ardKey interfaces 3.1.11

..• Performs operations in a background process:

- C se the BackgroundProcess interface 3.1.12

3-2

~,

ViewPoint Programmer's Manual 3

3..1.2 Containee

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type. (§3.2.2 explains how an application registers itself and is then
invoked to perform various operations). The most important items in Containee are:

Implementation

Setlmplementation

GenericProc

PictureProc

Data r DataHandle

3.1.3 Application Windows

A record containing several client procedures.

Registers an application.

Client procedure called to perform OPEN, PROPS, COPY/MOVE­

onto, and so forth.

Client procedure called to display an icon picture.

Uniquely identifies a file.

StarWindowShell allow:s a client to create a Star-like window. A StarWindowShell window
has a header that contains a title, commands, and pop-up menus. The window may have
scroll bars, both horizontal and vertical. It also has interior window space that may contain
anything the client desires. StarWindowShell also supports the notion of opening within.

A StarWindowShell is a window (see Window interface) that is a child of the desktop
window. A StarWindowShell has an interior window that is a child of the
StarWindowShell and is exactly the size of the available window space in the shell, that is,
the window shell minus its borders and header and scrollbars. The interior window may
ha ve child windows created by the client. These children of the interior window are called
body windows. The client may create an arbitrary number of body windows and may
arrange them arbitrarily. Note: Because the body windows are children of the interior
window, they are clipped by the interior window.

\

The client may manage body windows directly, including all display and notification (user
input). Body windows can also be managed by various interfaces provided by ViewPoint,
such as FormWindow and ContainerWindow. These interfaces have Create procedures
that take a body window and turn it into a particular kind of window, providing all the
display and notification handling for the window.

The most important items in StarWindowShell are:

Create Creates a StarWindowShell window.

Create Body Creates a body window.

SheliFromChild Returns the window shell, given a body window.

SetRegularCom mands Places commands in the header ofa StarWindowShel1.

3-3

3

3-4

Programmer's Guide

AddPopupMenu Adds a pop-up menu to the header ofa StarWindowShel1.

3.1.4 Menus

A menu is a list of named commands. When the user selects a menu command, a client
procedure is called. The MenuData interface allows menu items and menus to be created.
MenuData does not address the user interface for menus. Menu items may appear as
commands in the header of a star window shell (StarWlndowShell.SetReguJarCommands).
Entire menus may be accessed via a pop-up symbol in the header of a window shell
(StarWlndowShell.AddPopupMenu). Menu items may be added to the pop-up menu that is
available to the user through the attention window (Attention.AddMenultem).

The most important items in MenuData are:

Createltem

MenuProc

CreateMenu

3.1.5 Managing a Body Window

Creates a menu item.

A client procedure that is called when the user selects a
menu item.

Creates a menu from an array of menu items.

Clients can manage their own body Windows. This involves handling both display and
notification (user-input), and often includes managing the current selection. Display is
done by providing a window display procedure. Notifications are received through a client­
provided TIP.NotifyProc. The Selection interface manages the current selection. Arbitrary
data associated with a window can be saved with the window by using the Context
interface.

3.1.5.1 Display

The Window interface calls the client's display procedure to repaint the contents of the
window. It is called when the window is initially made visible. It is also called when the
window suddenly becomes more visible because an overlapping window was moved, or
when the window is scrolled so that the part of it that was invisible before becomes visible.
The display procedure should use the Display and/or SimpleTextDisplay interfaces to
display bits in the window. The display procedure can be set when a window shell's body
window is created (StarWindowSheU.CreateBody) or by callingwindow.SetDisplayProc.

The most important item in Window is the client's display procedure. There is no TYPE for
this procedure, but it is discussed in the Window interface chapter. Other important items:

Box Deflnes a rectangle in a window.

Place Defines a point in a window.

i.~

ViewPoint Programmer's Manual 3

The most important items in Display are:

Black Displays a black box.

White Displays a white box.

Invert Inverts the bits in a box.

Bitmap Oisplays an arbitrary array of bits.

The most important item in SimpleTextDisplay is:

Stringl ntoWindow Displays a string in a window.

3.1.5.2 TIP and TIPStar

np provides basic user input facilities through a flexible mechanism that translates
hardware-level actions from the keyboard and mouse into higher-level client action
requests (result lists). The acronym TIP stands for terminal interface package. This
interface also provides the client with routines that manage the input focus, the periodic
notifier, and the STOP key.

The basic notification mechanism directs user input to one of many windows in the window
tree. Each window has a TIP. Table ~nd a TlP.NotifyProc. The table is a structure that
translates a sequence of user actions into a sequence of results that are then passed to the
notify procedure of the window.

The Notifier process dequeues user events, determines which window the event is for, and
tries to match the events in the window's Table. If it finds a match in the table, it calls the
window's NotifyProc with the results specified in the table. If no match is found, it tries the
next table in the window's chain of tables. If no match is found in any table, the event is
discarded.

TIP tables provide a flexible method for translating user actions into higher-level client­
deflned actions. They are essentially large select statements with user actions on the left
side and a corresponding set of results on the right side. Results may include mouse
coordinates, atoms, and strings for keyboard character input.

ViewPoint provides a list of normal tables that contain one production for each single user
action. Client programmers can write their own table to handle special user actions and
link it to system-defined tables, letting those tables handle the normal user actions. These
system-defined tables are accessible through the nPStar interface and are described in
AppendixA.

Input Focus. The input focus is a distinguished window that is the destination of most user
actions. User actions may be directed either to the window with the cursor or to the input
focus. Actions such as mouse buttons are typically sent to the window with the cursor. Most
other actions, such as keystrokes, are sent to the current input focus. Clients may make a
window be the current input focus and be notified when some other window becomes the
current input focus.

3-5

3

3-6

Programmer's Guide

The current selection and the current input focus often go together. If the window in which
a selection is made also expects to receive user keystrokes (function keys as well as black ~
keys), TIP.SetlnputFocus should be called at the same time as Selection. Set is called. This is
also the time to call SoftKeys.Push or KeyboardKey.RegisterClientKeyboards, if necessary.

Modes. TJPStar also provides the notion of a global mode to support MOVE, COPY, and SAME.

When the user presses down and releases the MOVE, COPY, or SAME keys, the client that
currently has the input focus will receive the notification and should call TIPStar.SetMode.
This changes the mouse TIP table so that atoms specific to the mode are produced rather
than normal atoms when the user performs mouse actions. For example, in copy mode
"CopyModeDownn instead of rtPointDownn is produced when the user presses the left
mouse button. This informs the client that receives the atom that it should attempt to copy
the current selection rather than simply select something.

The most important items in TIP are:

NotifyProc Client procedure that is called to handle a user action.

Results, ResultObject Right side of the table entry that matched the user action.

SetinputFocus Sets a window to be the current input focus.

The most important items in TlPStar are:

NormalTable·

SetMode

3.1.5.3 Context

Returns the chain of system-provided TIP tables.

Sets the entire environment into MOVE, COPY, or SAMEAs

mode, thus changing the results produced for mouse clicks.

The Context interface allows arbitrary client data to be associated with a window. Client
data is usually allocated and associated with the window when the window is created. The
data may be retrieved any time, such as at the beginning of the client's display procedure
and TIP.NotifyProc.

The most important items in Context are:

Create Associates data with a window.

Find Recovers the data previously associated with a window.

3.1.5.4 Selection

The Selection interface defines the abstraction that is the user's current selection. It
provides a procedural interface to the abstraction that allows it to be set, saved, cleared,
and so forth. It also provides procedures that enable someone other than the originator of
the selection to request information relating to the selection and to negotiate for a copy of
the selection in a particular format.

~;

ViewPoint Programmer's Manual 3

The Selection interface is used by two different classes of clients. Most clients wish merely
to obtain the value of the current selection in some particular format; such clients are
called requestors. These programs call Convert (or maybe ConvertNumber, which in turn
calls Convert), or Query, or Enumerate. These clients need not be concerned with many of
the details of the Selection interface.

The other class of clients are those that own or set the current selection; these clients are
called managers. A manager calls Selection. Set and provides procedures that may be called
to convert the selection or to perform various actions on it. The manager remains in control
of the current selection until some other program calls sete<tion.Set. These clients need to
understand most of the details of the Selection interface.

A client that is managing its own body window will be both a selection requestor and a
selection manager in different parts of the code. For example, when the user selects
something in another window and copies it to the client's window, the client must call
Selection. Convert to request the value of the selection in a form appropriate to the
application. On the other hand, when the user clicks a mouse button in the client's window,
the client usually becomes the selection manager by calling Setection.Set.

The most important items in Selection are:

Convert

Value

CanYouConvert

Set

ConvertProc

ActOnProc

Request the value of the selection in some target form.

A record containing a pointer to the converted selection
value, among other things.

Returns TRUE if the selection manager can convert the
selection to a particular target type.

Called by a selection manager to become the current
manager.

Manager-supplied procedure that will be called to convert
the selection to some target type.

Manager-supplied procedure that will be called to perform
some action on the selection, such as mark, unmark, clear.

3.1.6 Property Sheets and Form Window

A property sheet shows the user the properties of an object and allows the user to change
these properties. There are several different types of properties, the most common ones
being boolean, choice (enumerated), and text.

3-7

3

3-8

Programmer's Guide

From a client's point of view, a property sheet is simply a StarWindowShell with a
FormWindow as a body window. A property sheet is created by calling PropertySheet.Create, .. ~
providing a procedure that will make the form items in the FormWi ndow (a
FormWindow.MakeltemsProc), a list of commands to put in the header of the property sheet,
such as Done, Cancel, and Apply (Propertysheet.Menultems), and a procedure to call when
the user selects one of these commands (a PropertySheet.MenultemProc). When the user
selects one of the commands in the header of the property sheet, the client's
Propertysheet.MenultemProc is called. If the user selected Done, for example, the client can
then verify and apply any changes the user made to the object's properties.

The most important items in PropertySheet are:

Create

Menultems

MenultemProc

Creates a property sheet.

U sed for specifying which commands to put in the header of
the property sheet.

Client procedure called when the user selects one of the
commands in the header.

The most important items in FormWindow are:

MakeltemsProc

MakeXXXltem

GetXXXltemValue

3.1.7 XString, et ale

Clienfprocedure called to create the items in the form.

Makes a form item. XXX can be Boolean, Choice, Text, ~
Integer, Decimal, Window, TagOnly, Command.

Returns the current value of an item. XXX can be Boolean,
Choice, Text, Integer, Decimal, Window, TagOnly,
Command.

The Xerox Character Code Standard dermes a large number of characters, encompassing
not only familiar ASCII characters but also Japanese and Chinese Kanji characters and
others to provide a comprehensive character set able to handle international information
processing requirements. Because of the large number of characters, the data structures in
XString are more complicated than a LONG STRING'S simple array of ASCII characters, but the
operations provided are more comprehensive.

Characters are 16-bit quantities that are composed of two 8-bit quantities, their character
set and character code within a character set. The Character Standard defines how
characters may be encoded, either as runs of 8-bit character codes of the character set or as
IS-bit characters where the character set and character code are in consecutive bytes. (See
the XChar chapter for information and operations on characters.)

ViewPoint provides a string package consisting of several interfaces that support the Xerox
Character Code Standard. X5tring provides the basic data structures for representing
encoded sequences of characters and some operations on these data structures. XFormat
converts other TYPEs into XStrings. XToken parses XStrings into other TYPES. XChar defines
the basic character type and some operations on it. XCharSets

ViewPoint Programmer's Manual 3

enumerates the character sets defined in the Standard. A collection of interfaces
enumerate the character codes of several common character sets (XCharSetNNN). XTime
provides procedures to acquire and edit times into XStrings and XStrings into times.

3.1.8 XMessage and Attention

XMessage supports translation into other languages of text displayed to the user. It does
not include any string constants in the code of an application. Rather, all the string
constants for an application are declared in a separate module and registered with
XMessage. Then whenever the application needs a string constant, it obtains it by calling
XMessage.Get. Several commonly used messages such as "Yes", "No", and days of the
week are dermed in XComSoftMessage.

The most important items in XMessage are:

Get Retrieves a message.

RegisterMessages Re.gisters all the messages for an application.

The Attention interface provides a global mechanism for displaying messages to the user.
Attention provides procedures to post messages to the user in the attention window, clear
the attention ,window, post a message and wait for conflrmation, and so forth.

The most important items in Attention are:

Post

Clear

formatHandle

3.1.9 Con tainers

Posts a message in the attention window.

Clears the attention window.

XFormat.Handle that may be used to format strings into the
attention window.

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user. Star
Folders are a typical example of such an application.

Figure 3-1 shows the relationships among the various interfaces and potential clients.
Each interface is described below, followed by a discussion of which interfaces an
application might need to use.

3-9

3

3-10

Programmer's Guide

FileDrawer

Folder In8asket

: Directory

..
ContainerSource: : ~ ..

..... --- DirectoryContainerSources '.
(Oefs only - no imp!)

:·········.:::::::::::1::::::::::::::::::::
... ':.

= .. , ... ! : ..

~ OirectoryContainerSourcetmpls ~ .. :

ContainerCache

~'

Figure 3.1 Container Interface Dependencies

The ContainerWindow interface takes a window and a ContainerSource and makes the
window behave like a container. It maintains the display and manages scrolling, selection,
and notifications. Note: This interface does not depend on NSFile.

A container source is a record of procedures that implement the behavior of the items in a
container and the behavior of the container itself. ContainerWindow obtains the strings of
each item by calling one of these procedures. ContainerWindow also performs user
operations on items (such as open, props, delete, insert, take the current selection, and
selection conversion) by calling other procedures in the record. A container source can be
thought of as a supply (source) of items for a container window. The ContainerSource
interface defmes each of the procedure TYPES that a container source must implement.
ContainerSource contain,s TYPES only.

ContainerCache provides the implementor of a container source with an easy-to-use cache
for storing and retrieving the strings of each item and some client-specific data about each
item.

FileContainerSource provides an NSFile-backed container source. It takes an
NSfile.Reference for a file that has children, and each child file becomes an item of the
container. Facilities are provided to specify the columns based on NSFile attributes.

The FileContainerSheil interface takes an NSFile and column information (such as
headings. widths, formatting) and creates a FileContainerSource, a StarWindowShell, and ~
a container window body window. :'Ylost NSFile-backed container applications can use this
interface, which greatly simplifes the writing of those applications.

ViewPoint Programmer's Manual 3

Each of the items in a container must behave like to a file on the desktop; that is, each item
must be able to be opened, show a property sheet, take a selection, and so forth. However,
the items need not be backed by files. If the container is backed by an NSFile that has
children, then the FileContainerShell interface is the only interface the client needs to use.
Otherwise, the client must implement a container source and make most of the calls that
the FileContainerShell implementation makes; that is, StarWindowshell.Create,
StarWindowSheU. Create Body , ContainerWindow. Create.

3.1.10 SoftKeys

, The SoftKeys interface provides for client-detlned function keys designated to be the
isolated row of function keys at the top of the physical keyboard. It also provides a
SoftKeys window whose "keytopsn may be selected with the mouse to simulate pressing the
physical key on the keyboard. Such a window is displayed on the user's desktop whenever
an interpretation other than the default SoftKeys interpretation is in effect. (The default is
assumed to be the functions inscribed on the physical keys.)

The most important items in SoftKeys are:

Labels, LabelRecord Strings to display on the key tops in the SoftKeys window.

Push Install a client-specific interpretation for the soft keys.

Remove Remove a previously installed interpretation.

3.1.11 Client-Defined Keyboards

KeyboardKey is a keyboard (the central set of black keys on the physical keyboard)
registration facility. It provides clients with a means of registering system-wide keyboards
(available all the time, like English, French, European), a special keyboard (like
Equations), and/or client-specific keyboards <those that are available only when the client
has the input focus). The labels from these registered keyboards are displayed in the
softkeys window when the user holds the KEYBOARD key down.

The BlackKeys interface provides the data structures that define a client keyboard.

The most important items in KeyboardKey are:

AddToSystemKeyboards Adds a keyboard to the system keyboards.

Regis1:erCl ientKeyboards Establishes the keyboar~s available to the user.

The most important items in BtackKeys are:

Keyboard, KeyboardObject A keyboard interpretation.

3-11

3 Programmer's Guide

3.1.12 BackgroundProcess

The BackgroundProcess interface provides basic user feedback and control facilities to
clients that want to run in a process other than the the Notifier process (see the Notifier
section below). Once registered with BackgroundProcess, the client process can use
Attention to post messages and check to see if the process has been aborted by the user. The
user can look at the messages posted by the process and abort the process. The primary
procedure in BackgroundProcess is ManageMe, which is typically the first procedure
called from a background process.

3.2 Getting Started

3-12

This section is a guide for programmers who have never used the ViewPoint interfaces. It
shows how two common types of applications are written using ViewPoint.

A user can invoke a program in the ViewPoint environment in two ways. First is to select
an icon and press a function key such as OPEN, PROPS, COPY, or MOVE. This type of program
is called an icon application. Second, the user may simply select an item in the attention
window's pop-up menu. For example, in OS 5, a Show.Size command reports on the size of
the selected icon's file. The following sections describe how to write each of these types of
programs.

3.2.1 Simplest Application

The simplest way to get a program running in the ViewPoint environment is to have the
program add an item to the attention window's pop-up menu. When the user selects that
item, the program is called. See the SampleBWSTool for an example of this type of
application. Excerpts from SampleBWSTool:

I nit: ~OCEDURE • {

sampleTool: XString.ReaderBody xString.FromSTRING["Sample Tool"L];
Attention.AddMenultem [

};

MenuData.Createttem [
zone: sysZ,
name: @sampleTool,
proc: MenuProc]];

.- Mainline code
Init(];

When the application is started, its startup (mainline) code creates a MenuOata.JtemHandle
by calling MenuOata.Createltem and then adds this item to the attention window's menu by
calling Attention.AddMenuitem. ~ow the MenuProc passed to MenuOata.Createltem is called
when the user selects the Sample Tool item in the attention window's pop-up menu. The
MenuProc can then do whatever is appropriate for the application.

,-,'

ViewPoint Programmer's Manual 3

3.2.2 Icon Application

Getting an icon application running in ViewPoint is a little more complex. The basic idea is
that an application operates on files of a particular type. When an application is started, it
registers its interest in files of that type. Whenever the user operates on a file of that type,
the application gets called. Here is a skeletal example of some application code; the full
explanation follows:

_. Constants and global data

samplelconFileType: NSFile.Type •... ;
oldlmpl, newlmpl: Containee.lmplementation +- [];

-- Containee.lmplementation procedures

GenericProc: Containee.GenericProc • {
SELECT atom FROM

canVouTakeSelection • > ...
takeSelection • > ...
takeSelectionCopy • > ...
open. > .. .
props. > .. .
ENDCASE • > .. .

PictureProc: Containee.PictureProc • {

Display.Bitmap [...);

};

-- Initialization procedures

InitAtoms: PROCEDURE. {
open +- Atom.MakeAtom("Open"l);
props +- Atom.MakeAtom("Props"l);
canVouTakeSelection +- Atom.MakeAtom("CanVouTakeSelection "L];
takeSelection +- Atom.MakeAtom("TakeSelection "L];
takeSelectionCopy 4- Atom.MakeAtom["TakeSelectionCopy"L];
};

FindOrCreatePrototypelconFile: PROCEDURE. { ... };

Setlmplementation: PROCEDURE. {
newlmpl.genericProc +- GenericProc;
newlmpl.pictureProc +- PictureProc;
oldlmpl 4-Containee.Setlmplementation [samplelconFileType. newlmpl];
};

-- Mainline code

InitAtoms[];
FindOrCreatePrototypefconfile{];
Set! m pi ementati on [];

3

:3-14

Programmer's Guide

The most important thing to note in the above example is the Setlmplementation ~
procedure and the call to Containee.Setlmplementation in particular. This call associates the
application's implementation (newlmpl) with a particular file type (samplelconFileType).
This implementation is actually a Contalnee.Jmplementation that is a record which contains
procedures. Whenever the user operates on files of type samplelconFileType, the
procedures in the Implementation record are called. An understanding of how this works
requires an understanding of how the ViewPoint desktop implementation operates.

First, some background about NSFiles. All NSFiles have:

• Aname
• A file type (LONG CARDINAL)

• A set of attributes, such as create date
• Either:

• Content, such as a document
• Children that are also NSFiles, such as a folder.

An NSFile that has children is often called a directory. Fine point: anNSfile can actually have both
content and children; however, to simplify this discussion, this point is ignored. Note: Because the children
of an NSFile can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is an NSFile that has children. An on-screen icon picture represents
each child file of the desktop's NSFile The desktop display of rows of ~iconsn is an illusion.
The word icon is in quotes because, from the programmer's point of view, there really is no ,~,
such thing as an icon. The only things that really exist are files (NSFiles), icon pictures, and
application code. .

Immediately after logging on, the desktop implementation enumerates the child files of the
desktop tile and calls an application's Containee.PictureProc for each child tile, based on the
child file's type. Each application's Containee.PictureProc should then display the icon
picture for that file. .

After logon is complete and the desktop is displayed, the desktop implementation receives
user actions such as mouse clicks and presses of the OPE~ or PROPS keys. For example,
assume the user selects an icon picture and presses OPE~. The desktop implementation
determines the tile type for the tile represented by the icon picture the user se lected and
then calls the Containee.GenericProc for the application that operates on files of that type,
requesting that the application open the icon. It also passes the application a unique
identifier for the particular file selected. At this point, the application can do whatever is
appropriate for that application. Typically, the application opens the tile, reads some data
out of it, creates a StarWindowShell, and displays the contents of the file in the window in
some application-specific form.

The desktop implementation does not call an application directly. Rather, ViewPoint
maintains a table of file-type/Containee.Jmplementation pairs. When an application calls
Containee.SetJmplementation, an entry is added to the table. When the desktop

ViewPoint Programmer's Manual 3

implementation calls an application, it obtains the Containee.lmplementation for the
application by looking it up in the table (it actually calls Containee.Getlmplementation).

3 .. 2.3 Operational Notes

To write an icon application, a programmer must obtain a unique file type. Contact your
ViewPoint consultant to obtain one.

In the example above, the application in its initialization code checks to be sure a prototype
file exists and, if not, creates one. This usually involves creating a file with the proper file
type for this application. This allows the user to get started with the application, usually by
copying the blank prototype out of a special folder of prototypes.

Note: There is a clear distinction between a prototype file for an application and a bcd file
that contains the code for the application. All bcd files are of the same type, while each
prototype file is different for each application.

3.3 Flow Descriptions

The following flow descriptions are intended to show how everything is related. For each
example scenario, the exact sequence of calls is described, including ViewPoint interfaces
and clients.

3.3.1 Select an Icon

The user points at an icon on the desktop.

• When the mouse button goes down over an icon picture, the notification goes to the
desktop implementation's T1P.NotifyProc. The NotifyProc will be passed a Window.Place
and a ~PointDown" atom. The desktop implementation determines what file is
represented by that icon picture. Fine point: The desktop implementation maintains a mapping from

icon picture locations to NSFile.References.

• The desktop implementation calls Containee.Getlmplementation, passing in the file
type of the file and getting back the Containee.lmplementation for that file type.

• The desktop implementation calls the Containee.PictureProc that is in the
Implementation; (that is, imptpictureProc), passing in;

• data: the NSfile.Reference for the file

• old: normai

• new: highlighted

• The application's PktureProc displays a highlighted version of its icon picture, perhaps
simply calling Oisplay.Jnvert.

• When the mouse button goes up (a "PointUp" atom), the desktop implementation
becomes the current selection manager by calling Selection. Set. It sets the desktop
window to be the current input focus by calling T1P.SetlnputFocus. Setting the input

3-15

3

3-16

Programmer's Guide

focus to be the desktop window ensures that keys such as OPEN, PROPS, COPY,and so
forth, will all go to the desktop's NotifyProc.

• END.

3.3.2 PROPS of an Icon

Assume an icon on the desktop is selected. The user presses PROPS. After changing some
items in the property sheet, the user selects Done.

• The desktop implementation's TlP.NotifyProc gets the notification (a ~PropsDown"
atom) and determines which icon picture is currently selected and what file is
represented by that icon picture.

• The desktop implementation calls Containee.Getlmplementation, passing in the file
type of the file and getting back the Containee.lmplementation for that file type .

.
• The des.ktop implementation calls the Containee.GenericProc that is in the

Implementation; (that is, impt.genericProc), passing in:

• data: the NSFUe.Reference for the file

• atom: "'Props'"

• changeProc: a Containee.ChangeProc that belongs to the desktop implementation

• changeProcData: a pointer to some desktop implementation data that identifies .~
the icon/file being operated on.

• The application's GenericProc creates a property sheet by calling PropertySheet.Create. It
probably also opens and retrieves some data out of the file (using various NSFile
operations) and uses that data to set the initial values of the items in the property
sheet.

• Typically, the client wants to save the NSFile.Handle for the file while the property sheet
is open. In addition, if the opening and closing of the property sheet might cause the
file's attributes to change, the application's GenericProc must save the passed
changeProc and changeProcData. A typical example is when the file's name is one of
the items in the property sheet and the user can change the name. The data is saved by
allocating a record with this data in it and passing a pointer to the record as the
dientData parameter to PropertySheet.Create. Later, when the user selects Done or
Apply, this data may be recovered (see the rest of this flow description). Note: This
data cannot be saved in a local frame (such as that of the GenericProc) because the
GenericProc must retu.rn to the notifier after creating the property sheet; when the
user selects Done or Apply that is a new call stack. The client data should not be saved
in a global frame because more than one property sheet may be open for a particular
application.

• The application's GenericProc returns the StarWindowShefl.Handle for the property sheet.

• The desktop implementation displays the property sheet by calling
StarWindowShell.Push; then the desktop's NotifyProcreturns to the Notifier.

~ ..

ViewPoint Programmer's Manual 3

• The user changes some items and then selects Done.

• The PropertySheet implementation calls the client's PropertySheet.MenultemProc that
was passed in to PropertySheet.Create, passing in:

• shell: the StarWindowShel1 for the property sheet

• formWindow: the FormWindow for the property sheet

• menultem: done

• clientData: the pointer to the client's data that was passed to PropertySheet.Create.

• The client's MenultemProc recovers the client's data <the file handle, the changeProc
and changeProcData, and any other relevant client data) from the clientData
parameter. It determines if the user made any changes and, if so, updates the file
accordingly and cans the changeProc, passing in the changeProcData, the file
reference, and a list of the changed file attributes.

• The desktop's ChangeProc causes the icon picture to be redisplayed, because changing
an attribute such as the name requires the picture to be updated with the new name.

• The client's MenultemProc returns to the PropertySheet implementation, indicating
that the property sheet should be destroyed.

• The PropertyShee"t implementation destroys the property sheet by calling
StarWindowShell.POp and returns to the N otifier.

• END.

a.3.3 OPEN an Icon

Opening an icon is similar to opening a property sheet for an icon.

3.3.4 COpy Something to an Icon

Assume something has been selected. The user presses COpy and then points at an icon.

•

•
•
•

When the user presses COPY, the NotifyProc for the window that currently has the
input focus (and the selection) is called. It calls TIPStar.SetMode [copy] to set the
environment into copy mode and then returns to the Notifier. It might also call
Cunor.Set to change the cursor shape to indicate move mode.

SetMode replaces the Norma'Mouse. TIP table with the CopyModeMouse. TIP table.

The user presses the mouse button down over an icon on the desktop.

The desktop's NotifyProc gets called with a "CopyModeDown" atom (instead of a
'·PointDowll" atom because of the TIP table switch). It determines what file is
represented by the icon picture the user is pointing at. It calls
Containee.Getlmplementation, passing in the file's type and getting back a
Containee.lmplementation. It calls the Implementation's GenericProc passing in:

• data: the NSfiie.Reference for the tile

3-17

3 Programmer's Guide

• atom: "CanYouTake"

• The application's GenericPro(calls Selection.CanYouConvert or Selection.HowHard to
deterIpine if the current selection can be converted to target type(s) that the
application can take. For example, if the icon being copied to is a printer icon, it calls
HowHard with targets of inter press Master and file.

• The Selection implementation calls the current selection manager's
Selection.ConvertProc. It returns an indication of how hard it would be to convert the
selection to the given target types.

• The application's GenericProc returns a pointer to TRUE if it determines that it can take
the current selection and FALSE if it cannot.

• The desktop implementation changes the cursor shape to a question mark if the
application's GenericProc returns FALSE. Otherwise, it leaves the cursor as it was.

• The user releases the mouse button.

• The desktop's NotifyProc gets called with a ~CopyModeUp" atom. It determines what
file is represented by the icon picture the user is pointing at. It calls
Contain ••. Getlmplementation, passing in the file's type and getting back a
containeeJmplementation. It then calls the Implementation's GenericProc, passing in:

• data: the NSFite.Reference for the file

• . atom: "TakeSelectionCopy"

• changeProc: a Containee.ChangeProc that belongs to the desktop implementation

• changeProcData: a pointer to some desktop implementation data that identifies
the icon/file being copied to

• The application's GenericProc calls Selection.Convert or (Selection.Enumerate) to convert
the selection to the desired type. The application then operates on the converted
selection value as appropriate for that application. For example, the printer icon
application converts the selection to an interpressMaster and sends the master to the
printer. (See the Selection chapter for a full flow description of the selection
mechanism.)

• The application's GenericProc returns to the desktop's NotifyProc, which returns to the
Notifier.

• END.

3.4 Programming Conventions

3-18

The ViewPoint environment assumes that the programs that run in it are friendly and that
they are not trying to circumvent or sabotage the system. The system does not enforce
many of the conventions described here but assumes that application programmers will
adhere to them voluntarily. If these conventions are not followed, the ViewPoint ~.
environment may degrade or break down altogether.

ViewPoint Programmer's Manual 3

The most important principle is that users should have complete control over their
environment. In particular, clients shall not pre-empt users. A user should never be forced
by a client into a situation where the only thing that can be done is to interact with only
one application. Furthermore, the client should avoid falling into a particular mode when
interacting with the user; that is, an application should a void imposing unnecessary
restrictions on the sequence of user actions.

This goal of user control has implications for the designs of applications. A client should
never seize control of the processor while getting user input. This tends to happen when the
client wants to use the "get a command from the user and execute it" mode of operation.
Instead, an application should arrange for ViewPoint to notify it when the user wishes to
communicate some event to the application. This is known as the "Don't call us, we'll call
you" principle.

The user owns the window layout on the screen. Although the client can rearrange the
windows, this is discouraged. Users have particular and differing tastes in the way they
wish to layout windows on the display; it is not the client's role to override the user's
decisions. In particular, clients should avoid making windows jump up and down to try to
capture the user's attention. If the user has put a window off to the side, then he does not
want to be bothered by it.

3.4.1 N otifier

ViewPoint sends most user input actions to the window that has set itself to be the focus for
user input; the rest of the actions are directed to the window containing the cursor. (See the
np interface for details on how the decision is made where to send these actions.) A process
in ViewPoin't notes all user input actions and determines which window should receive
each one. A client is concerned only with the actions that are directed to its window; it need
not concern itself with determining which actions are intended for it.

The basic notification mechanism directs user input to one of many windows in the window
tree. Each window has a np.Table and a np.NotifyProc. The table is a structure that
translates a sequence of user actions into a sequence of results that are then passed to the
notify procedure of the window.

There are two processes that share the notification responsibilities, the Stimulus process
and the Notifier process. The Stimulus process is a high-priority process that wakes up
approximately 50 times a second. When it runs, it makes the cursor follow the mouse and
watches for keyboard keys going up or down, mouse motion, and mouse buttons going up or
down, enqueuing these events for the N otifier process.

The Notifier process dequeues these events, determines which window the event is for, and
tries to match the events in the window's table. If it fmds a match in the table, it calls the
window's notify procedure with the results specified in the table. If no match is found, it
tries the next table in the window's chain of tables. If no match is found in any table, the
event is discarded.

The Notifier process is important. To avoid multi-process interference, some operations in
the system can happen only in the Notifier process. Setting the selection is one such
operation .. The ~otifier process is also the one most closely tied to the user. The ~otitler
waits until a NotifyProc finishes for one user action before processing the next user action.
If an operation takes an extended time to complete (more than three to five seconds), it

3-19

3

3-20

Programmer's Guide

should be forked from the N otifier process to run in a separate process so that the N otifier
process is free to respond to the user's actions. Of course, the application writer must take ~
great care when stepping into this world of parallel processing.

3.4.2 Multiple Processes, ~ultiple Instances

In ViewPoint, many programs can run simultaneously. The designer of a client-callable
package should bear in mind that several different asynchronous clients may invoke his
package, so the package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While one
client is using the package, all other clients block on the monitor lock. Of course, no state
should be maintained internally between successive calls to the package, because there is
no guarantee that the same client is calling each time.

This simple approach has the disadvantage that clients are simply stopped for what may be
a long time, with no option of taking alternate action. To ease this restriction, the entry
procedure can check a "busy" bit in the package. If the package is busy, the procedure can
return this result to the client. The client can then decide whether to give up, try
something else, or try again. This is less likely to tie up an application for a long period,
and the user can use the application for other purposes ..

If the package is providing a collection of procedures and cannot provide its services in a
single procedure, the package and its clients must pass state back and forth in the form of
an object. The package can use a single monitor on its code to protect the object, or it can ~
provide a monitor as part of each object. If it does the latter, then several clients can be
executing safely at the same time.

Some packages require that a client provide procedures that are called by the package. The
designer of such a package should have these client-provided procedures take an extra
parameter, a long pointer to client instance data. When the client provides the package
with the procedures, it also provides the instance data to pass to the procedures when they
are called. The client can then use this instance data to distinguish between several
different instances of itself that are sharing the same code.

3.4.3 Resource Management

Programs in the Xerox Development Environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs; there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution time,
memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible ~
for the resource. The program that is responsible for the deallocation of a resource is the
owner of that resource. One example of a resource is a file handle. If a program passes a

ViewPoint Programmer's Manual 3

file handle to another program, both programs must agree about who owns that file handle.
Did the caller transfer ownership by passing the file handle, or is it retaining ownership
and only letting the called procedure use the file handle? If there is disagreement between
the two programs, either the file will be released twice, or it will never be released at all.
All interfaces involving resources must state explicitly whether ownership is transferred.
To ease the problem of memory management when the ownership of memory can change, a
heap called the system heap is used in ViewPoint. If a piece of memory can have its
ownership transferred, it is either allocated from the system heap or a deallocation
procedure must be provided for it.

The most common resource appearing in interfaces is an XString (Reader or ReaderBody).
There must be agreement about which program is responsible for deallocating the string's
bytes. Typically, a string passed as an input parameter does not carry ownership with it;
implementors of such procedures should not deallocate or change the string. If it is
necessary for the implementor to modify the string or use it after the procedure returns,
the implementor should first copy it. Clients should be particularly careful when a
procedure returns a string to note whether ownership has come with it.

3.4.4 Stopping Applications

The ViewPoint environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that application
writers are good citizens and will design their tools to stop voluntarily when asked to stop.

An application should stop if the user aborts the application. There are two ways to
determine if the user has aborted an application. (1) An application's window can have a
TIP.AttentionProc that is called as soon as· the user presses the STOP key. (2) Procedures in
the TIP interface can check whether a user has aborted an application with the STOP key in
the application's window. An application should check for a user abort at frequent
intervals and be prepared to stop executing and clean up after itself. Because the
application controls when it checks, it can check at points in its execution when its state is
easy to clean up. Packages that can be called from several programs should take a
procedure parameter that can be called to see whether the user has aborted.

3.4.5 Multinationality

ViewPoint is designed to support easy transport of applications to other countries. The
string package (XString, XChar, XFormat, and so forth) supports the Xerox Character Code
Standard, which allows for strings in many languages to be intermixed. The XMessage
interface allows user messages to be translated into other languages because the
application programmer can put all these messages into a module separate from the rest of
the application code. The KeyboardKey interface supports the addition of keyboards for
many languages.

Application programmers are strongly encouraged to allow their application to be
multilingual. This means for example, using XString for all string operations and using
XMessage to manage any text that will be displayed to the user. It also means not making
any language assumptions about characters received from the user. An application that
ex-pects ty-ping input from the user should be prepared to receive characters from any

character set.

3-21

3 Programmer's Guide

3.5 Summary of Interfaces

3-22

Atom provides the mechanism for making TIP, Event, and Containee atoms.

AtomicProfile provides a mechanism for storing and retrieving global values.

Attention provides a means of displaying messages to the user.

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the the N otifier process.

BlackKeys provides the capability to change the interpretation of the central (black) section
of the keyboard.

Containee is an application registration facility. It allows an application to register its
implementation for files of a part~cular type.

ContainerCache provides a simple cacheing mechanism for the implementor of a container
source.

ContainerSource defines the procedures that must be implemented to provide a source of
items for a container window.

ContainerWindow creates a window that displays an ordered list of items that behave like
icons on a desktop.

Context provides a mechanism for clients to associate data with windows.

Cursor provides facilities for a client to manipulate the appearance of the cursor that
represents the mouse position on the screen.

Display provides facilities to display bits in windows.

Event provides clients with the ability to be notified of events that take place
asynchronously on a system-wide basis.

FileContainerShell creates a StarWindowSheli with a ContainerWindow as a body window
that is backed by a FileContainerSource.

FileContainerSource creates a container source that is backed by a file that has children.

FormWindow creates a window with various types of form items in it, such as text,
boolean, choice (enumerated), command, and window. FormWindow is used to create
property sheets.

FormWindowMessageParse provides procedures that parse strings to produce various
FormWindow TYP£s.

IdleControl provides access to the basic controlling module of ViewPoint.

KeyboardKey is a client keyboard (the central black keys) registration facility.

~.

ViewPoint Programmer's Manual 3

KeyboardWindow provides a particular implementation for a keyboard window.

LevellVKeys defines the names of the physical keys.

MenuData allows menus and menu items to be created.

MessageWindow provides a facility for posting messages in a window to the user.

PopupMenu allows a menu to be displayed (popped up)anywhere on the screen.

PropertySheet creates a property sheet. A property sheet shows the properties of some
object to the user and allows the user to change the properties.

Selection provides the facilities for a client to manipulate the user's current selection. It
also provides procedures that enable someone other than the originator of the selection to
request information relating to the selection and to negotiate for a copy of the selection in a
particular format.

SimpleTextDisplay provides facilities for displaying, measuring, and resolving strings of
Xerox Character Code Standard text. It can handle only nonattributed single-font text.

SimpleTextEdit provides facilities for presenting short, editable pieces of text to the user.

SimpleTextFont provides access to the default system font that is used to display
ViewPoint's text, such as the text in menus, the attention window, window names,
containers, property sheet text items, and so forth.

SoftKeys provides for client-defined function keys designated to be the isolated row of
function keys at the top of the physical keyboard.

StarDesktop provides access to the user's desktop file and window.

StarWindowShell provides facilities for creating Star-like windows.

TIP provides basic user input facilities through a flexible mechanism that translates
hardware level actions from the keyboard and mouse into higher-level client action
requests.

TIPStar provides access to ViewPoint's normal set ofTlP tables.

Undo provides facilities that allow an application to register undo opportunities, so that
when the user requests that something be undone, the application is called to do so.

Window defines the low-level window management package used by ViewPoint.

XChar defines the basic character type as defined in the Xerox Character Code Standard as
well as some operations on it.

XCharSetNNN enumerates the character codes in character set ~N~.

XCharSets enumerates the character sets defined in the Xerox Character Code Standard.

3-23

3

3-24

Programmer's Guide

XComSoftMessage defines messages for some commonly used strings, such as Yes, ~ 0,

day-of-the-week, month,and so forth.

XFormat converts various TYPEs into XStrings.

XLReal supports manipulation of real numbers with greater precision than Mesa REALS.

XMessage supports the multilingual requirements of systems that require the text
displayed to the user be separable from the code and algorithms that use it.

XString provides the basic data structures for representing encoded sequences of characters
as deflned in the Xerox Character Code Standard. It also provides several operations on
these data structures.

XTime provides facilities to acquire and edit times into XStrings and XStrings into times.

XToken parses XStrings into other TYPEs

~.

4

Adjustable Window

4.1 Overview

AdjustabteWindow makes an arbitrary window become shrinkable, growable, and/or
moveable by the user. For a comprehensive overview of all the subwindow interfaces and
their intended use, see the Subwindow Overview chapter.

4.2 Interface Items

4.2.1 . Create Proc

Create: PROC (

window: Window.Handle,
adjustProc: AdjustProc,
zone: UNCOUNTED ZONE,

IimitProc: LimitProc +-NIL.

adjustableEdges: Edges +- defaultAdjustableEdges,
topBottom, move: BOOLEAN +- FALSE,

upperCornersColor, lowerCornersColor: Display.Srick +-NIL-- NIL means Gray--)

Edge: TYPE :II {left. right. top, bottom};
Edges: TYPE :II PACKED ARRAY Edge OF BooleanFalseDefault;
BooleanFalseOefault: TYPE :II BOOLEAN +-FAlSE;

defaultAdjustableEdges; Edges = [
left: FALSE, right: TRUE, top: FALSE. bottom: TRUE);

Create makes window resizeable, moveable and/or toplbottomable. adjustableEdges
governs which edges or corners can be adjusted. defaultAdjustableEdges, for example,
means the lower right corner of window is adjustable (which means that the upper left
corner is fixed). If only bottom is TRUE the only possible resize is a "drag" of the bottom edge
of the window. The window is moveable if move is TRUE and toplbottomable if top8ottom
is TRUE. upperCornersCo!or and lowerCornersColor allow the client to specify white or
gray etc. for the adjustable quadrants. adjustProc and limitProc are the adjust and limit
procs for wi ndow.

4-1

4

4-2

Adjustable Window

4.2.2 Adjust and Limit Procs

Adj ustProc: TYPE = PROCEDURE [

window: Window.Handle,
box: Window.SOX,
when: When);

When: TYPE :I {before, after};

An AdjustProc is the proc that is called when window's box is changing. It will be called
both before and after the Window.SlideAndSize occurs.

GetAdjustProc: PROC [window: Window.Handle)
RETURNS [Adj ustProc);

Get the AdjustProc associated with window.

SetAdjustProc: PROC [

window: Window.Handle,
proc: AdjustProc)

RETURNS [old: AdjustProc);

Set the AdjustProc for window to be proc. Returns the previously set AdjustProc.

LimitProc: TYPE = PROCEDURE [

window: Window.Handle,
box: Window. Box)

RETURNS (newBox: Window.BOx);

A LimitProc is the proc that is called when window box is about to change. It allows the
client a chance to disallow (newBox <Eo- oldBox) or modify (newBox +- other Box) the
proposed new box value before the call to Window.SlideAndSize occurs.

GetLimitProc: PROC [window: Window.Handle)
RETURNS (limitProc];

Get the LimitProc associated with window.

SetLimitProc: PROC [

window: Window.Handle,
proc: LimitProc)

RETURNS [old: LimitProcl;

Set the LimitProc for window to be proc. Returns the previously set LimitProc.

4.2.3 U till ties

Isl1:: PROCEDURE [window: Window.Handlel RETURNS [yes: BOOLEAN);

Returns TRue if window is an adjustable window.

4.2.4

ViewPoint Programmer's Manual

GetZone: PROCEDURE(window: Window.Handle] RETURNS [zone: UNCOUNTED ZONE];

Returns the zone associated with window.

Friends

CaIlAncestorForTheseCorners: PROCEDURE [
window: Window.Handle,
corners: Corners +- ALL [FALSE]];

Corner: TYPE ::I {upperLeft, upperRight, lowerleft, lowerRight};
Corners: TYPE ::I PACKED ARRAY Corner OF BooleanFalseOefault;

4

CallAncestorForTheseCorners should be called if the client wishes parent windows to
receive notifications (like the shell being notified when adjustments are made to the
bottom subwindow in a subdivided shell), For example, a subwindow can be designed to fill
the lower segment of a shell and it's lower grabbers to cause the shell to resize as well as
the subwindow. SubwindowManager uses this technique.

4.2.5 Errors

Error: ERROR [type: ErrorType];

ErrorType: TYPE ::I {notAnAdjustableWindow, notAJlowed};

4.3 Usage/Examples

--from Subwindow Manager. MakeSW
--make the new sw adjustable and set the manager procs
AdjustableWindow.Create[sw, CoordinateSWAdjusts, zone,
CoordinateSWlimits, [FALSE,fALSE,horizAdjust,vertAdjust], FALSE, FALSE];
Adj ustableWi ndow. CallAncestorForTheseCorners(

SW, [FALSE,fALSE,TRUE,TRUE]];
IF SubwindowFriends.GetSWProcs(type].scroIlSWProc /I NIL THEN

sw ..- Subwi ndowFriends. GetSWProcs(type] .scrollSWProc[
sw, vertScrollbar, horizScrollbar];

4-3

4 Adjustable Window

4.4 Index of Interface Items At.

Item Page
AdjustProc: TYPE 2
Boolean FalseDefault: TYPE 1
C allAn cestor ForThese Corners: PROCEDURE 3
Corner. TYPE 3
Corners: TYPE 3
Create: PROCEDURE 1
defaultAdjustableEdges: Edges 1
Edge: TYPE 1
Edges: TYPE 1
Error 3
ErrorType: TYPE 3
GetAdj ustProc: PROCEDURE 2
GetLimitProc: PROCEDURE 2
GetZone:PRocEDURE 3
Islt:PROCEDURE 2
LimitProc: TYPE 2
SetAdjustProc:PRoCEDURE 2
SetLimitProc: PROCEDURE 2
When: TYPE 2

.~.

4-4

5

ApplicationFolder

5.1 Overview

5.2

ApplicationFolder provides access to the folder that contains all the component files of an
application. A full application is composed of one or more bcds, a message file, a description
file, and ot~er data files such as .TlP or .Icons. These components are all put together into a
folder with a specific file type, called an Application (or ApplicationFolder).

When the application is loaded and started, one of the first things it does is get its data
files. The actual file names of the data files are usually specified in the application's
description file, which is a file that may be read using the OptionFile interface. The
application gets its data files by using ApplicationFolder.FromName to obtain the
ApplicationFolder file, using ApplicationFolder.FindDescriptionFile to get the description file
from the ApplicationFolder file, and then using OptionFile.GetStringValue to get the data
files names. (See Usage/Examples.) ApplicationFolderExtra.lnitMessages makes
initializing messages much easier, just pass in an internal name and get back an
XLVlessage.Handle. No more looking for description file, finding the message file, etc.

Interface Items

FromName: PROCEDURE [internaIName: XString.Reader]
RETURNS [applicationFolder: NSFile.Reference];

Returns the folder for the given application. internalName is the section name in the
description file. Returns NSFile.nullReference if not found.

FindDescriptionFile: PROCEDURE [applicationFolder: NSFile.Handle)
RETURNS [descriptionFile: NSFile.Reference1;

Finds a file with file type = OptionFile (4385) in the applicationFolder. Returns
NSFile.nuilReference if not found.

FindDescriptionFileX: PROCEDURE [applicationFolder: NSFile.Handle, session: NSfile.Session]
RETURNS [descri ptionFile: NSfile.Reference];

5-1

5 ApplicationFolder

Finds a file with file type = OptionFile (4385) in the applicationFolder using the specified
NSFile.Session. Returns NSFile.nullRererence if not found. Fine Point: In BWS4.3, this is in

ApplicationFolderExtra.mesa.

EventData: TYPE • RECORD [

application Folder: NSFile.Reference.
internal Name: XString.Reader.
applicationADF: NSFile.Reference,
containsFontFile: BOOLEAN,
versionStamp: CARDINAL,
priority: CARDINAL];

versionStamp: CARDINAL. 2;

The application loader notifies the ApplicationLoaded event after loading and starting an
application. EventData is passed as Event.EventData for this event. applicationADF is the
description file, containsFontFile is TRUE if it contains NovaFontFile entry in the
description file. The current versionStamp is 2. If the versionStamp is 2, then the priority
is cached as an extended attribute of the application folder. The value of priority of an
application folder is specified in the ADF's priority entry. At startup time, the autorun
applications are started in the order of ascending priority number. Fine Point; In BWS4.3,

EventDatB: is in ApplicationFolderExtra2.mesa.

The application loader also notifies the following events:

AboutLoading: N otifie-s when the loader try to load an application.
LoadVetoed: Notifies when loading vetoed by the client of the AboutLoading event.
LoadedAndAboutToStart: Notifies when finished loading an application.

InitMessages: PROCEDURE [internaIName: XString.Reader, label: XString.Reader +- NIL,
domainindex: CARDINAL +- 0] RETURNS [h: xMessage.Handle] ;

Returns initialized XMessage.Handle for the specified application folder, internalName is
the section name in the description file. If label is non-NIL, then label is used as the entry
name in the description file. If label is NIL, then the entry MessageFile is used.
domainindex is XMessage.MsgDomains. Fine Point: In BWS4.3, this is in ApplicationFolderExtra.mesa.

5.3 Usage/Examples

5-2

This example code obtains the message file.

_. File: SampleMsgFiJelnitlmpl.mesa - last edit:

-- Copyright (C) 1985 by Xerox Corporation. All rights reserved.

DIRECTORY
ApplicationFolder USING [FindDescriptionFile, FromName],
Heap USING [systemZone],
NSFile USING [Close. Error, GetReference. Handle, null Handle, nullReference, OpenByNa~
OpenByReference, Reference, Type],
NSString USING [FreeString, String],
OptionFile USING [GetStringValue],

ViewPoint Programmer's Manual 5

SampleBWSApplicationOps,
XMessage USING [ClientData, FreeMsgDomainsStorage. Handle, MessagesFromReference,
MsgDomains],
XString USING [FromSTRING, NSStringFromReader, Reader, ReaderBody];

SampleMsgFilelmpl: PROGRAM
IMPORTS ApplicationFolder. Heap, NSFile, NSString, OptionFile, XMessage, XString
EXPORTS SampleBWSApplicationOps • {

•• Data

n: XMessage.Handle +- NIL;

localzorie: UNCOUNTED ZONE +- Heap.systemZone;

-- Procedures

DeleteMessages: PROCEDURE [clientData: XMessage.ClientData] =- {};

GetMessageHandle: PUBLIC PROCEDURE RETURNS [XMessage.Handle] =- {RETURN[h]};

InitMessages: PROCEDURE. {
internalName: XString.ReaderBody +- XString.FromSTRING ["SampleBWSApplication"l];
msgDomains: xMessage.MsgDomains +- NIL;
msgDomains +- XMessage.MessagesFromReference [

file: GetMessageFileRef [ApplicationFolder.FromName [@internaIName]],
clientData: NIL,
proc: DeleteMessages·1;

h +- msgOomains[O).handle;
XMessage.FreeMsgDomainsStorage [msgDomains];
};

GetMessageFileRef: PROCEDURE [folder: NSfile.Reference]
RETURNS [msgFiJe: NSfile.Reference +- NSFile.nuIlReference] =- {
folderHandle: NSfile.Handle +- NSFile.OpenByReference [folder];
internalName: XString.ReaderBody +- XString.FromSTRING ["SampleBWSApplication"L];
messageFile: XString.ReaderBody +- XString.FromSTRING ["MessageFile"L1;

FindMessageFiJeFromName: PROCEDURE [value: XString.Reader] =- {
nssName: NSString.String +- XString.NSStringFromReader [r: value, z: locaIZone];
msgFileHandle: NSFile.Handte +- NSfile.nuIiHandle;
msgfileHandle +- NSFile.OpenByName [directory: folderHandle, path: nssName !

NSfile.Error :I > {msgfiJeHandle +- NSfile.nuIiHandle; CONTINUE}];
IF msgfileHandle =- NSfile.nullHandle THEN ERROR; •• no message file!
msgFile ~ NSFiJe.GetReference [msgfileHandle]; .
NSFile.Close [msgFileHandle];
NSString.FreeString [z: loealZone, s: nssName];
};

Optionfile.GetStringValue [section: @internaIName, entry: @messageFile,
callBack: FindMessageFileFromName,
file: Appiicationfolder.findDescriptionFile [fofderHandfe]];

5-.3

5

5-4

ApplicationFolder

NSFile.C!ose [folderHandle];
};

... Mainline code

InitMessages[];

} ...

ViewPoint Programmer's Manual

5.4 Index of Interface Items

Item

EventData: TYPE

FindDescriptionFile: PROCEDURE

FindDescriptionFileX: PROCEDURE

FromName: PROCEDURE

InitMessages: PROCEDURE

versionStamp: CARDINAL

Page

1
1
1
1
2
2

5

5-5

5 ApplicationFolder

5-6

6

Atom

6.1 Overview

6.2

Although it is often convenient to name an object using a textual name, XStrings are
somewhat clumsy to compare and pass around. An atom is a one-word datum that has a
one-to-one correspondence with a textual name. Using atoms, objects may be named
textually without having to store, copy, and compare the strings themselves. Atoms were
made popular by the Lisp language.

The textual name associated with an atom is called its PName, just as it is in Lisp. If two
atoms are equal, they correspond to the same PN arne and vice ver~a. An atom may also
have properties associated with it; a property is a [name, value] pair.

Interface Items

6.2.1 Making Atoms

ATOM: TYPE[1];

null: ATOM=- LOOPHOlE[O].

An ATOM is a one-word datum that has a one-to-one correspondence with a textual name,
or PN arne. If two ATOMs are equal, they correspond to the same pName. If two pNames are
equal, they correspond to the same ATOM.

Make: PROCEDURE [pName: xString.Reader] RETURNS [atom: ATOM];

MakeAtom: PROCEDURE [pName: LONG STRING1 RETURNS [atom: ATOM);

MakeAtom and Make return the ATOM corresponding to pName, creating one if
necessary. In pName, uppercase and lowercase characters are different and result in
different ATOMs. The atom returned is valid for the duration of the boot session, and the
pName is remembered for the duration of the boot session.

GetPName: PROCEDURE [atom: ATOM] RETURNS (pName: XString.Reader];

6-1

6

6-2

Atom

GetPName returns the name of atom, returning NIL if atom is null. It raises the error
NoSuchAtom if atom is not valid.

6.2.2 Error

NoSuchA tom: ERROR;

NoSuchAtom may be raised by GetPName, PutProp, GetProp, or RemoveProp. It is raised
when an operation is presented with an ATOM for which no Make or MakeAtom operation
has been done in the boot session. Such atoms are called invalid atoms.

6.2.3 Property Lists

Pair: TYPE :II RECORD [prop: ATOM, value: Ref Any);

Ref Any: TYPE :I LONG POINTER;

Ref Pair: TYPE :I LONG POINTER TO READONLY Pair;

Pair dermes the [name, value] pair for a property. Properties are named by atoms and have
long pointers as values. Property pairs are referenced by a read-only pointer.

PutProp: PROCEDURE [onto: ATOM, pair: Pair);

PutProp adds a property pair to onto. If the property already exists, the value is updated. If ~
onto is null, no action takes place. PutProp raises the error NoSuchAtom if onto is not
valid. •

GetProp: PROCEDURE [onto, prop: ATOM] RETURNS [pair: Ref Pair};

GetProp returns the property pair whose property name is the atom prop from atom onto.
If onto does not have a property whose name is prop or onto is null, NIL is returned.
GetProp raises the error NoSuchAtom if onto is not valid. Note: The client may not change
the property pair.

RemoveProp: PROCEDURE [onto, prop: ATOM];

RemoveProp removes the property pair whose property name is the atom prop from atom
onto. If onto is null, no action takes place. RemoveProp raises the error NoSuchA tom if
onto is not valid.

6.2.4 Enumerating Atoms and Property Lists

MapAtomProc: TYPE :II PROCEDURE [ATOM] RETURNS [BOOLEAN];

MapAtomProc is used by MapAtom to enumerate atoms. When it returns TRUE, the
enumeration stops.

MapAtoms: PROCEDURE [proc: MapAtomProc] RETURNS [lastAtom: ATOM];

ViewPoint Programmer's Manual 6

MapAtoms enumerates the atoms, calling proc once for each atom. If proc returns TRUE,

MapAtoms returns that atom. If proc never returns TRUE, MapAtoms returns null.

MapPlistProc: TYPE. PROCEDURE [Ref Pair] RETURNS [BOOLEAN];

MapPlistProc is used by MapPlist to enumerate property lists. When it returns TRUE, the
enumeration stops. Nate: The client may not change the property pair.

MapPlist: PROCEDURE [atom: ATOM, proc: MapPlistProcl RETURNS [lastPair: Ref Pair];

MapPlist enumerates the property list of atom, calling proc once for each pair. If proc
returns TRUE, MapPlist returns that pair. If proc never returns TRUE, MapPlist returns NIL.

6.3 Usage/Examples

Atom is most appropriately used for communicating names and permanent data between
separate applications or between far-flung parts of a single application. The AtomicProfile
interface is an example of this use.

However, ATOMs and atom property lists add to the working set of every application, and
thus degrade system performance as a whole. This happens because Atom must make a
copy of the atom name in its (permanent) database, and every client of Atom uses that
database. It is much better to keep an application's data separated from other data.

Property lists are a shared, global resource and should be used for sharing other global
resources. They should not be used for transient data. For example, consider the chaos that
would ensue if several instances of an application were running simultaneously and each
assumed that the property list of a particular atom was its to read and write. (Of course,
this interference could also result from different applications running at different times.)

ATOMs take a significant amount of time to create. Applications interested in good
performance will only use ATOMs if they need a runtime-extendable enumeration; a
simple compile-time enumeration is much more efficient.

If you want an atom with a property list for a private or transient usage (a bad idea in any
case) you must make sure that the atom is unique, so as not to interfere with other
applications using the same atom. Code such as

mylist: Atom.ATOM • Atom.MakeAtom["string list"L]; - WRONG

must be replaced by code that gives an atom name that is unique to the application or
module (or instance, if multiple instances may be running).

Two of the major uses of atoms are in the Event and TIP interfaces. In the Event interface,
atoms name events. In the TIP interface they are used in TIP tables and TIP results to name
actions. (See those interfaces for more information.)

6-3

6

6-4

Atom

The names of atoms are case sensitive. For example, atom1 and atom2 are not equal, while
atom1 and atom3 are equal. ~!

atom1: ATOM. MakeAtom[H Atom"Ll;
atom2: ATOM. MakeAtom[H ATOM"L];
atom3: ATOM • Make[GetPName[atom1]];

The value of an atom is a function of the characters of its name and the names of the atoms
that have been previously created. Atoms may not be pickled (put in a permanent
representation that may be filed and recovered later) or transmitted to another system.
The atom is just a convenient way to represent and manipulate the name, which is the
permanent representation.

ViewPoint Programmer's Manual 6

6.4 Index of Interface Items
~

Item Page

ATOM: TYPE 1
GetPName: PROCEDURE 1
GetProp: PROCEDURE 2
Make: PROCEDURE 1
MakeAtom: PROCEDURE 1
MapAtomProc: TYPE 2
MapPList: PROCEDURE 3
MapPListProc: TYPE 3
MapAtoms: PROCEDURE 2
NoSuchAtom: ERROR 2
null: ATOM 1
Pair: TYPE 2
PutProp:PROCEDURE 2
Ref Any: TYPE 2
Ref Pair: TYPE 2
RemoveProp: PROCEDURE 2

6-5

Atom

~,

6-6

7

AtomicProfile

7.1 Overview

The AtomicProfile interface provides a general mechanism for storing and retrieving
global values, such as user name and password. Values are named by atoms and may have
a type of either boolean, long integer, or string. Only one value is associated with each
atom, regardless of type.

Boolean and long integer values are simple values, unlike string values, which are passed
by reference. The value of strings may be gotten by calling the GetString routine, in which

.~. case .they must be returned to the implementation usL?lg DoneWithString. They may be
gotten by using a callback procedure in EnumerateString.

7.2 Interface Items

7.2.1 Boolean Values

GetBOOLEAN: PROCEDURE [atom: Atom.ATOM] RETURNS [BOOLEAN];

GetBOOLEAN returns the boolean value associated with atom. If no boolean value is
associated with atom, GetSOOLEAN returns FALSE.

SetSOOLEAN: PROCEDURE [atom: Atom.ATOM, boolean: BOOLEAN];

SetSOOLEAN associates the boolean value boo~ean with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

7.2.2 Integer Values

GetLONGINTEGER: PROCEDURE [atom: Atom.ATOM] RETURNS [LONG INTEGER];

GetLONG)NTEGER returns the long integer value associated with atom. If no long integer
value is associated with atom, GetLONGJNTEGER returns O.

7 AtomicProfile

SetLONGINTEGER: PROCEDURE [atom: Atom.ATOM, int: LONG INTEGER];

SetLONGINTEGER associates the long integer value int with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

7.2.3 String Values

GetString: PROCEDURE [atom: Atom.ATOM] RETURNS [XString.Reader];

GetString returns the string value associated with atom. The string is reference-counted,
and the client must return the string by calling OoneWithString. If there is no string value
associated with atom, GetString returns NIL.

DoneWithString: PROCEDURE {string: XString.Reader];

A reader obtained by using GetString must be returned via DoneWithString so that the
implementation's use-count will be correct. Failure to do so results in a storage leak if the
value of the atom is replaced (see the example below).

EnumerateString: PROCEDURE [
atom: Atom.ATOM, proc: PROCEDURE [xString.Reader]];

EnumerateString provides an alternate method of examining the string value of an atom. If
atom has a string value,. proc is called with the string value. proc is called from within the
monitor of the implementation. The reader is valid for the duration of the callback, but
proc must not call any of the operations in the implementation. If atom has no string
value, proc is not called.

SetString: PROCEDURE [atom: Atom.ATOM, string: XString.Reader,
immutable: BOOLEAN +- FALSE];

SetString associates the string value string with atom. If atom previously had another
value associated with it, that value is replaced. If immutable is FALSE, SetString copies
string's body and byte sequence; otherwise, it only copies the reader body. The client must
not deallocate the byte sequence in this case. The event AtomicProfiJeChange is notified,
with event data being a long pointer to atom.

'.~

7.3 Usage/Examples

7-2

AtomicProfile provides a general mechanism for storing and retrieving values. Actual use
by a client depends on knowing the names and expected types of values. ViewPoint dermes
some basic values, such as user name and password. Other systems may define other
values.

In the following example, a client keeps track of the user name, which depends on the
AtomicProfileChange event. UserNameChanged is called when any AtomicProfile value is
changed. By examining the event data of the agent procedure, the example can act on
changes to the user name. ~

ViewPoint Programmer's Manual

atomicProfileChange: Atom.ATOM ::a Atom.MakeAtom{n AtomicProfileChange"L];
fulJUserName: Atom.ATOM ::a Atom.MakeAtom["FuIlUserName"L];
debugging: Atom.A TOM ::a Atom.MakeAtom[HDebugging"L];

UserNameChanged: Event.AgentProc • {
atomChanged: LONG POINTER TO Atom.A TOM • eventData;
IF atomChanged t • fuliUserName THEN {

name: xstring.Reader • GetString[fuIlUserName);
< < do processing of new name> >
IF GetBooLEAN[debugging] THEN {< < do debugging only code> >};
OoneWithString[name]} };

Event.AddDependency[
agent: UserNameChanged, myOata: NIL, event: atomicProfileChange];

7

7-3

7 AtomicProfile

7.4 Index of Interface Items ~
Item Page

DoneWithString: PROCEDURE 2
EnumerateStri"g: PROCEDURE 2
GetBOOLEAN: PROCEDURE 1
GetLONGI NTEGER: PROCEDURE 1
GetStri ng: PROCEDURE 2
SetBOOLEAN: PROCEDURE 1
SetLONGINTEGER: PROCEDURE 2
SetStri ng: PROCEDURE 2

7-4

~'

8

Attention

8.1 Overview

The Attention interface provides a means for displaying messages to the user. It
implements a single window into which messages are displayed. In addition to displaying
messages, the Attention window has a menu to which clients can add system-wide
commands.

There are .three types of messages: simple messages, sticky messages, and confirmed
messages. Simple messages have no special semantics. Sticky messages are redisplayed
when a' non-sticky message is cleared. Attention keeps track of one sticky message.
Confirmed messages ask for confirmation by the user.

Attention allows messages to be logically appended. Each of the posting operations, Post,
PostSticky, and PostAndConfirm, contains a boolean parameter clear. If clear is TRUE, the
window is cleared before the message is displayed. If not, the message is appended to the
currently displayed message. This allows the client to use Attention to construct complex
messages.

~ote that Attention works in concert with BackgroundProcess. If Attention is called from
the Notifier process, the message is posted immediately in the attention window. If
Attention is called from a non-Notifier process that has registered itself with the
background manager by calling BackgroundProcess.ManageMe, then the background
manager intercepts these messages and allows the user to see them later upon request (see
SadcgroundProcess for more details). This means that Attention can be called from any
process at any time without worry. Fine point: In ViewPoint 1.0. there was no background manager and

the following restriction applied: The Attention interface could only be called from the N'otifier process.

To facilitate message construction, an Xformat.Handle is provided whose format procedure
will post a simple message without clearing the window. See the example below and the
XFormat chapter for more information.

The Attention window has a global system menu. Operations are provided so that clients
may add menu items to this menu, remove items from the menu, or swap items in the
menu.

8 Attention

8.2 Interface Items .,~

8-2

8.2.1 Simple Messages

Post: PROCEDURE [s: XString.Reader, clear: BOOLEAN +- TRUE, beep: BOOLEAN +- FALse,

blink: BOOLEAN +-FALse];

Post displays the message s in the Attention window. If clear is TRUE, it clears the Attention
window before displaying s; otherwise, it displays s after whatever text is currently
showing. Attention makes its own copy of the reader body and bytes of s. beep and blink
stipulate that the corresponding feedback be presented to the user.

Clear: PROCEDURE;

Clear clears the Attention window of any simple message. If a simple message is being
displayed and there is a current sticky message, the sticky message is displayed. Clear has
no effect if a sticky message is being displayed.

formatHandle: XFormat.Handle;

formatHandle is an xformat.Handle provided by the Attention window that clients can use
to post simple messages. Its format procedure logically calls Post with clear being FALse.

(See below for an example.)

8.2.2 Sticky Messages

Sticky messages are redisplayed when a non-sticky message is cleared. Attention keeps
track of one sticky message.

PostSticky: PROCEDURE [s: XString.Reader, dear: BOOLEAN Eo-TRUE,

beep: BOOLEAN +- FALSE, blink: BOOLEAN +- FALSE];

PostSticky appends s to, or replaces, the current sticky message and then displays the new
message in the window. Its operation is: (1) if the window has a simple message or clear,
then clear the window; (2) if the window is clear, then clear the current sticky message; (3)

append s to the current sticky message; and (4) display the new current sticky message.
Attention makes its own copy of the reader body and bytes of s. beep and blink are the
same as in Post above.

ClearSticky: PROCEDURE;

ClearSticky clears any current sticky message. If a sticky message is being displayed, the
window is cleared. ClearSticky has no effect if there is no sticky message.

8.2.3 Confirmation Messages

PostAndConfirm: PROCEDURE [

S: XString.Reader, clear: BOOLEAN Eo- TRUE, confirmCnoices: ConfirmChoices Eo- (NIL. NIL]. ~

timeout: Process. Ticks ~ dontTimeout,

ViewPoint Programmer's Manual

beep: BOOLEAN ~ FALSE, blink: BOOLEAN +- FALSE]
RETURNS [confirmed, timedOut: BOOLEAN];

ConfirmChoices: TYPE = RECORD [yes, no: XString.Reader];

dontTimeout: Process.Ticks - 0;

8

PostAndConfirm acts like Post in displaying the message s but waits for confirmation by
the user. The confirmChoices messages are displayed, and the user should select one of the
choices with the mouse. If the user selects yes, confirmed is returned TRUE; if no is selected
or the STOP key is depressed, confirmed is returned FALSE. If confirmChoices.yes # NIL and
confrmChoices.no = Nil, then only confirmChoices.yes is posted and confirmChoices.no is
ignored. This is useful for posting a message that the user must see, but for which the user
gets no choice, such as "Unable to communicate with the printer: CONTINUE".
PostAndConfirm absorbs all user input except the STOP key and mouse actions over the yes
and no messages. The client may specify a timeout value, which causes PostAndConfirm to
return confirmed FALSE and timedOut TRUE if the user does not act within timeout ticks. The
default value dontTimeout disables this timeout feature. Attention makes its own copy of
the reader body and bytes of s.

8.2.4 System Menu

AddMenultem: PROCEDURE [item: Menuoata.ltemHandle);

AddMenultem adds item to the global system menu.

RemoveMenultem: PROCEDURE [item: MenuData.JtemHaodle];

RemoveMenultem removes item from the global system menu. There is no effect if item is
not in the menu.

SwapMenuJtem: PROCEDURE [old, new: MenuData.ltemHandle];

SwapMenultem swaps new for old in the global system menu. SwapMenultem[old: NIL,
new: item] is equivalent to AddMenultem[item: item] and SwapMenultem[old: item,
new: Nll1 is equivalent to RemoveMenultem[item: item].

8.3 Usage/Examples

The following example has a client displaying the name and size of a file. The example uses
the NSFile interface to access the file and get the name and size attributes. See the Services
Programmer's Guide (610E00180): Filing Programmer's iYfanual for documentation on the
NSFile interface.

PostNameAndSize: PROCEDURE [file: NSfile.Handle 1 :II {

nameSelections: NSFile.Selections :II [interpreted: [name: TRue]];
attri butes: NSFile.A ttri butes Record;
rb: XStTing.ReaderBody ~ Message[theFile];
Attention.Post[s: @rb, clear: TRUE); - start a new message
NSFile.GetAttributes [file, nameSe/ections, @attributes];
XFormat.NSString(Attention.formatHandle, attributes.name1;
NSfile.ClearAttributes [@attributes1;

3-3

8

8-4

Attention

XFormat.ReaderBody[h: Attention. formatHandle, rb: Message{contains]];
Xformat.Decimal[h: Attention.formatHandle, n: NSFile.GetSizelnBytes[file]];
rb +- Message[bytes);
Attention.POst[s: @rb]}; .- clear defaults to FALSE

Message: PROCEDURE [key: {theFile, contains, bytes}] RETURNS [XString.ReaderBody] • {
... };

An example of the resulting message displayed in the Attention window is

The file Foo contains 53324 bytes

The example intermixes use of the format handle and use of the Post procedure. A client
could clear first, using the Clear procedure, and then display the message by just using the
format handle. Note: In a multilingual environment constructing a sentence from pieces
like this is not recommended because the grammar of other languages could cause this
sentence to be rather confusing.

ViewPoint Programmer's Manual 8

8.4 Index of Interface I terns

Item Page

AddMenultem: PROCEDURE 3
Clear: PROCEDURE 2
CJearSticky: PROCEDURE 2
ConfirmChoices: TYPE 3
dontTimeout: PrtXess.Ticks 3
formatHandle: XFormat.Handle 2
Post: PROCEDURE 2
PostAndConfi rm: PROCEDURE 2
PostSticky: PROCEDURE 2
RemoveMenultem: PROCEDURE 3
SwapMenultem: PROCEDURE 3

8-5

8 Attention

8-6

9

BackgroundProcess

9.1 Overview

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the the Notifier process (see §3.4.1). Once registered with
BackgroundProcess, the client process can use Attention to post messages, and check to see
if the process has been aborted by the user. The user can look at the messages posted by the
process, and abort the process. Fine Point: The implementation of BackgroundPr~cess is a plugin. so the

user interface is up to a particular background manager. See ViewPoint friends level documentation for details on

how to build a background manager.

9.2 Interface Items

ManageMe: ManageProc;

ManageProc: TYPE = PROCEDURE [
name: XString.Reader,
callBackProc: CallBackProc.
window: Window.Handle NIL~
icon: Containee.DataHandle NIL,

context: LONG POINTER +- NIL.

abortable: BOOLEAN FALSE

]
RETURNS [finaIStatus: FinaIStatus];

CallBackProc: TYPE:: PROCEDURE [context: LONG POINTER]
RETURNS [finaIStatus: FinaIStatus];

FinalStatus: TYPE:: MACHINE DEPENOENT{
importantFailure(O), failure, quietSuccess, success, aborted, firstFree, last(15)};

quietJfNoUnreadMsg: FinalStatus :: firstFree;
quietlfNoUnreadlmportantMsg: FinalStatus = succ(firstFree];

A client process that wishes to be managed calls ManageMe. The client should <llready be
in the process that it wishes to have managed~ lithe client starts in the ~otifier, the client
should do a FORK and call ManageMe from the forked process. name is a string that may be

9-1

9

9-2

BackgroundProcess

used by the background manager to identify the process to the user; the bytes in name are
copied by the background manager. After ManageMe is called, the background manager ~
will call call BackProc with context to give control back to the client process. If the process is
prepared to catch ABORTED, then abortable should be TRUE. If the process is not prepared to
catch ABORTED, then abortable should be FALSE. (see §9.3.2). window and icon may be
provided for use by the background manager; if the process is tied to a particular window or
icon, the background manager may use these to allow the user to manipulate the process
via the window or icon. When the client process is completed or aborted, it should return
from callBackProc with a finalStatus indicating the outcome of the process.
importantFailure indicates that the user should be warned that the process terminated in a
way that might need the user's attention. failure indicates that the process failed in some
way but that we don't need to inform the user in any special way. quietSuccess indicates
that the process should go away without any final notice to the user. success indicates that
process succeeded and that a final status message may be posted. aborted indicates that
the process was aborted by the user. quietlfNoUnreadMsg tells the background manager
that if there are no unseen messages for this process, terminate as it would with a status of
quietSuccess. If messages remain to be read, the termination is treated as a status of
success. quietlfNoUnreadlmportantMsg tells the background manager to terminate as a
quietSuccess if there are no flagged messages (see FlaglmportantMsgL Fine point:

quiettfNoUnreadMsg and quietlfNoUnreadlmportantMsg are defined in BackgroundPro<essExtra.

UserAbort: PROCEDURE [process: PROCESS .. nullProcess] RETURNS [BOOLEAN];

ResetUserAbort: PROCEDURE [process: PROCESS .. nuIiProcess];

AbortProc: TYPE :II PROCEDURE [context: LONG PO!NTER];
SetAbortProc: PROCEDURE [abortProc: AbortProc. process: PROCESS +- NIL];

nullProcess: PROCESS.: LOOPHOLE[O];

Clients of the background manager have a choice about how they are notified when the
user tries to abort a background task. See §9.3.2 for more details about how these choices
interact.

UserAbort returns TRUE if the user has requested that the process be aborted.
ResetUserAbort clears any pending abort; if the user has requested an abort, UserAbort
will return TRUE until ResetUserAbort is called or the process terminates .. The client can
also call SetAbortProc to specify an AbortProc that will be called when the user tries to
abort a process. The AbortProc will be passed the context pointer that was passed into
ManageMe~ therefore, SetAbortProc can only be called after the client has ca lled
ManageMe .. Fine point: AbortProc and SetAbortProc are defined in Ba(kgroundPro(e~sExtra.

For SetAbortProc, UserAbort, and ResetUserAbort, process is defaulted to nullProcess. All
three procedures assume that the current process is the process that called ManageMe.
process should only be used if the process calling UserAbort, ResetUserAbort, or
SetAbortProc is different from the process that called ManageMe. Fine point: nullPro(ess is

equivalent to Nil. nullProcess wul be removed from future versions of the interface.

FlaglmportantMsg: PROCEDURE [message, comment: XString.Reader <!- NIL, PROCESS <!- NIL]; ,....

This procedure lets the background manager know that there is a message t~J.t the user
should see. If the client process terminates with a status of quietlfNoUnreadErrorMsg

ViewPoint Programmer's lVlanual 9
----_._---

before the message is read, the background manager will make sure that task is still
available to allow the user to read the message. The background manager may also use
this call to may some kind of visual notification to the user that an important message is
available. The background manager supplied by the Basic Workstation displays a
property sheet and waits for the user to respond. If message is NIL, the message posted is
the current message available in the background manager. If message is non-NIL, that
message will be posted instead. If comment is non-NIL, an extra string will be posted at
the end of the sheet which may be used to indicate error recovery. If comment is ~IL, this
part of the psheet is not visible. FlaglmportantMsg is synchronous: it will not return until
the user bugs done on the property sheet. Since the background manager is a pI ugin, other
background mangers may behave differently. Fine point: This procedure is currently exported by

BackgroundProcessExtra.

GetName: PROCEDURE [process: PROCESS +- NIL] RETURNS [name: XString.ReaderBody);
SetName: PROCEDURE {newName: XString.Reader, process: PROCESS +- NIL];

These procedures allow the client to manipulate the name of the task. The name is
originally set by the name parameter to ManageMe; these procedures allow the client to
change that name. The name is typically used by the background manger to label the task
for the user. SetName copies the bytes in newName. The bytes from GetName belong to
the background manager and should.be copied if the client wishes to use them.

Mode: TYPE :s {foreground, background};
mode: READONLY Mode;

mode indicates whether applications should FORK 'background processes or not. Before
FORKing a background process, applications should check mode and if it is foreground, do
not do the FORK, but rather do the operation in the foreground process. This is primarily
used during Cusp programs to synchronize each Cusp statement.

backgroundCount: READONL Y CARDINAL;

backgroundCount is the current number of background activities registered with the
background manager.

cusplsRunning: BOOLEAN;

Cusp sets this to TRUE during execution of a Cusp program. Applications can interpret
this in whatever way is appropriate, for example by not posting option sheets.

9.3 Usage/Examples

9.3.1 Posting Messages

Once a client process has called ManageMe, it can freely post messages using Attention.
Fine point: the exact method the messages will be displayed is up to the background manager. :\150. only the

client process that originally called ManageMe can call Attention directly. If a background process bas any

associated subprocesses that need to use Attention to post messages, it must use a friends level Attention mterface

to associate the subprocess with the client's main background process.

9-3

9

9-4

BackgroundProcess

9.3.2 Aborting processes

A client of the background manager can be notified when the user tries to abort a
background task. There are three ways that the client can be notified.

If the client calls ManageMe with abortable =- TRUE, the background manager will call
Process.Abort on the process that called ManageMe. That process should be prepared to
catch ERROR ABORTED.

The client may also call SetAbortProc with a procedure that will be called if the user tries
to abort. This procedure will be called only if ManageMe was called with abortable =
FALSE; if abortable = TRUE, the manager will call Process.Abort instead of calling the
AbortProc.

Finally, the client may also call UserAbort at any time. If the client does not enable the
use of Process.Abort or set an AbortProc, it is the client's responsibility to periodically call
UserAbort to see if the user has tried to abort the process. If the client does not check
UserAbort, user attempts at stopping the process will have no effect. The client may call
UserAbort from inside an AbortProc.

9.3.3 Example

This example program fragment illustrates the structure of a typical use of
BackgroundProcess. In this example, a MenuProc is provided that can be called from the
attention window. The MenuProc immediately forks a process, which reduces its priority
and then calls BackgroundProcess. The example program posts four messages, pausing
between each, and checking UserAbort on each pass.

backgroundName: XString.ReaderBody t- XString.FromSTRING["Background PostttL];
abortedString: XString.ReaderBody t- XString.FromSTRING["Process canceled ... tt];

Init: PROCEDURE = {
Attention.AddMenultem [

MenuOata.Createltem [
zone: z, -- some priva te zone
name: @backgroundName,
proc: BackgroundProcessPost]];

BackgroundProcessPost: MenuOata.MenuProc = {
Process. Detach (FORK DoBackgroundProcessPost{s: @backgroundName]]);

DoBackgroundProcessPost: PROCEDURE (S: X5tring.Reader] :II {

Dolt: Bad(groundProcess.CaIiBackPro(:I {

FOR i: CARDINAL IN [1 .. 4] DO
If Ba<kgroundProcess.UserAbort[] THEN {

Attention.Post(@abortedString];
RfTURN(abortedl} ;

Attention.Post Is: S];
Attention. formatHandle.Blanks(2];
Attention. formatHandle.Decimal[i];
Process.PauSe (Pro<ess.SecondsToT1cks[1 0]];

ViewPoint Programmer's Manual

ENOLOOP;

RETURN [success]};

Process.SetPriority[Process.priorityBackground];
[] ~BackgroundProce$s.ManageMe [name: @backgroundName, callBackProc: Dolt]};

9

9-5

9 BackgroundProcess

9.4 Index of Interface Items
~

Item Page

AbortProc: TYPE 2
backgroundCount: READONL Y CARDINAL 3
CaIIBackProc: TYPE 1
cusplsRunning: BOOLEAN 3
FinalStatus: TYPE 1
F1aglmportantMsg: PROCEDURE 2
GetName: PROCEDURE 3
ManageMe: PROCEDURE 1
ManageProc: TYPE 1
Mode: TYPE 3
mode: Mode 3
nullProcess: PROCESS 2
quietlfNoUnreadMsg: FinalStatus 1
quietlfNoU nreadl mportantMsg: FinalStatus 1
ResetUserAbort: PROCEDURE 2
SetName: PROCEDURE 3
SetAbortProc~ PROCEDURE 2
UserAbort: PROCEDURE 2

.......

9-6

10

--.--

BlackKeys

10.1 Overview

The BfackKeys interface changes the interpretation of the main (central) section of the
physical keyboard. It includes the data structures that define a keyboard record as well as
the procedures used to manipulate the keyboard stack.

The average client uses only the data structures that the BlackKeys interface provides. The
procedures are reserved for a keyboard manager interested in interfacing between the user
and the blackkeys stack of keyboards.

10.2 Interface Items

10.2.1 Keyboard Data Structures

The BlackKeys data structures provide the framework for client-defined keys in the main
(central) section of the physical keyboard. This includes interface to a keyboard picture
whose key tops may be selected with the mouse to simulate pressing the physical key on the
keyboard.

Keyboard: TYPE :II LONG POINTER TO KeyboardObject +- NIL;

KeyboardObject; TYPE = RECORD {

table: TIP.Table +-Nll,

charTranslator: T1P.CharTranslator +-{pro(; NIL. data: NILl.

pictureProc: PictureProc +- Nil,

label: XString.ReaderBody +-xString.nuIIReaderBody,
c1ientData: LONG POINTER +- Nil];

KeyboardObject is the keyboard interpretation data structure. The client may provide its
own TIP.Table or default it to NIL, in which case the NormaIKeyboard.Tl? table is used. (See
Appendix A for productions returned by NormalKeyboard. np). A TIP. CharTranslator may be
provided to handle CHAR and BUFFEREOCHAR productions from a TIP. Table. A PictureProc may
be provided to be called when installing or removing this keyboard. Absence of such a
procedure assumes no picture is associated with this keyboard. label is the string that
appears in the SoftKeys window when the KEYBOARD key is pressed down. Pressing (or

10-1

10

10-2

BlackKeys

selecting) the key marked label invokes this keyboard. clientOata is provided to associate
any other information the client might need to keep with the keyboard.

PictureProc: TYPE = PROCEDURE [

keyboard: Keyboard,
action: PictureAction]
RETURNS [

picture: Picture ~ nuliPicture,
geometry: GeometryTable +-NIL];

PictureProc is a client-provided procedure that is called by a keyboard window application
when the client's keyboard is being installed (action = acquire) or removed (action =
release) from the top of the blackkeys stack of active keyboards. The client may use this
opportunity to map or unmap the picture and geometry table that the keyboard window
application uses.

PictureAction: TYPE = {acquire, release};

acquire. client's keyboard is being installed at the top of the keyboard stack (becoming
the current keyboard).

release :8 client's keyboard is being removed from the top of the keyboard stack.

PictureType: TYPE = {bitmap, text};

Picture: TYPE = RECORD [

variant: SELECT type: PictureType FROM

bitmap = > [bitmap: LONG POINTER],

text = > [text: XString.Reader]
ENOCASEl;

The variant of the record, Picture, allows the client to present its keyboard window in either
bitmap or textual form. (See the KeyboardWindow interface for a discussion of the
structure behind a keyboard bitmap.) text is pointed to by an XString.Reader. The text is not
copied.

nullPicture: bitmap BlackKeys.Picture = [bitmap{NILll;

The variable nullPicture represents a null entry to the keyboard window.

GeometryTable: TYPE = LONG POINTER;

A geometry table allows access to the data structure. (See the KeyboardWindow interface
chapter for discussion of the structure of a geometry table.)

10.2.2 Getting a Handle to the Current Keyboard

BlackKeysChange: eIJent.EventType; -- ATOM defined as "BlackKeysChange"

ViewPoint Programmer's Manual 10

Changing the keyboard at the top of the blackkeys stack of keyboards resul ts in the
notification BlackKeysChange through the Event mechanism. The eventData supplied by
the Event.Notify is the current keyboard handle.

GetCurrentKeyboard: PROCEDURE RETURNS [current: Keyboard];

GetCurrentKeyboard returns the current keyboard from the top of the blackkeys stack.

10.2.3 Procedures

The following procedures are ~OT expected to be used by Applications programmers.
Instead see KeyboardKey.SetKeyboard.

Push: PROCEDURE (keyboard: Keyboard1;

The Push procedure installs a black key interpretation at the top of the blackkeys stack of
keyboards. The TIP.Table and/or TIP.CharTranslator are registered with TIP and the event
BlackKeysChange is broadcast.

Remove: PROCEDURE [keyboard: Keyboard];

The Remove proc~dure removes the keyboard from the stack of acti ve keyboards and resets
the TIP.Table and TIP.CharTranslator as applicable. The event BlackKeysChange is broadcast
if keyboard is on the top of the blackkeys stack.

May raise the ERROR ~la~kKeys.lnvalidHandle.

Swap: PROCEDURE [old:Keyboard, new:Keyboard];

The Swap procedure is designed to change black keys' interpretations without returning to
some previous or other default value in between. It is essentially the equivalent of a
Remove followed by a Push. The event BlackKeysChange is broadcast if the keyboard being
removed was on top of the stack.

May raise the ERROR BlackKeys.JnvalidHandle.

10.2.4 Errors

InvalidHandle: ERROR;

This error is raised if the keyboard passed to Remove or Swap (old) is not in the set of
active BlackKeys keyboards.

10.3 Usage/Examples

10.3.1 Defining a Keyboard Record

DefineKeyboard: PROCEDURE =
BEGIN

nameString: X5tring.ReaderBody ~ XString.FromSTRJ NG{"SwahiIiMLj

10-3

10

10-4

BlackKeys

swahiliKeyboardRecord: Blacl<Keys,KeyboardObject ~(
table: NIL,

charTranslator: [MakeChar, NILl,

pictureProc: MapBitmapFile,
label: XString.CopyToNewReaderBody{@nameString, Heap.systemZone)];

-·Save the pointer to the record somewhere for future use--
END: -.DefineKeyboard-.

MapBitmapFile: BlackKeys.PictureProc :II

BEGIN

pixPtr: BJackKeys,Picture.bitmap ~ BlackKeys.nuIIPicture;
SELECT action FROM
acquire:: >

{--Do the right thing to map the bitmap. Uses the default geometry table. -­
RETURN[pixPtr, KeyboardWindow.defaultGeometrYI };

release = > {--Do the right thing to unmap the bitmap--
RETURN[BlackKeys.nuIIP;cture. NIL]} -

END; _. MapBitmapFile

MakeChar: TtP.KeyToCharProc ::
BEGIN

--Map bufferedChar to desired XString.Character -­
END; -- MakeChar

ViewPoint Programmer's Manual 10

10.4 Index of Interface Items
~

Item Page

BlackKeysChange: Event.EventType 2
GeometryTable: TYPE 2
GetCurrentKeyboard: PROCEDURE 3
InvalidHandJe: ERROR 3
Keyboard: TYPE 1
KeyboardObject: TYPE 1
nullPicture:bitmap Picture 2
Picture: TYPE 2
PictureAction: TYPE 2
PictureProc: TYPE 2
PictureType: TYPE 2
Push: PROCEDURE 3
Remove: PROCEDURE 3
Swap: PROCEDURE 3

10-5

10~ ______ ~B~la:c:k:K=e~y_s __________ ~

10-6

~.;...---­--_._-

----~-....,...-----

11.1 Overview

11

BodyWindowParent

BodyWindowParent provides a facility for creating body windows in a subwindow. The
client may provide several procs for dealing with scrolling multiple body windows within
the parent viewing region. For a comprehensive view of all the subwindow interfaces and
their intended use, see the Subwindow Overview chapter.

11.1.1 Body windows Discussion

A body?arent window has an interior window that is a child of the bodyParent and is
exactly the size of the available window space in the bodyParent (that is, the bodyParent
minus its scrollbars). The interior window may have child windows created by the client.
These children of the interior window are called body windows. The client may create an
arbitrary number of body windows and arrange them in an arbitrary fashion. ~ ote: Since
the body windows are children of the interior window, they are clipped by the interior
window. A client could, for example, create a body window that is very much taller than
the interior window and accomplish scrolling by simply sliding the body window around
inside the interior window. (This is actually what the default scrolling does; for more
detail, see this Chapters section on scrolling).

Body windows are created by calling BodyWindowparent.CreateBody. This returns a
Window.Handle. The client can create an arbitrary number of body windows. Each body
window is a child of the body Parent's interior window. The body windows may overlap or
not. They can be in any arrangement the client finds useful. Some common arrangements
of body windows are as follows:

• One very long body window.
This is easy to scroll by simply sliding the body window, which is what the default
scrolling does.

• One body wi.ndow with BodyWindowJustFits =a TRUE.

This is one way to display an infinite amount of data, such as a Tajo-like editor. The
client must keep track of what is currently in the window, use adjust procs, do
scrolling, and so forth. This is difficult to impiement.

11- 1

11 Body Window Paren t

• Several body windows about the size of the interior, adjacent, non-overlapping.
This is another way to display an infinite amount of data. The client lets ~
BodyWindowPtlrent do default scrolling, which slides the body windows up or down
and then calls the client to supply more body windows when it runs out. The client
might put one page of text into each body window, supplying pages to
BodyWindowParent scrolling as needed.

• Several body windows smaller than the interior, adjacent, non-overlapping.

Note: Body windows can themselves have child windows, and so on. A client might
implement frames in a document editor by making each frame a child of a body window.

11.2 Interface Items

11-2

11.2.1 BodyParent window

Create: PROCEDURE [
parent: Window.Handle,
verticalScrolibar: BOOLEAN +- TRue,
horizontalScrollbar: BOOLEAN 4- TRue,
adjustProc: AdjustableWindow.AdjustPrO(+- N!L,
garbageCollectBodiesProc: GarbageCollectBodiesProc +-NIL,
moreScrollProc: MoreScrollProc +- NIL, .
scroll ba rt nfoProc: Scrollbar .Scroll ba rl nfoPro(+- NIL.
thumbFeedbackProc: Scrollbar.ThumbFeedbackPro(+- NIL.
thumbScroliProc: Scrol1bar.ThumbScrollProc +- DefaultThumbScroll,
zone: UNCOUNTED ZONE];

Takes a window and makes it a body parent window. An interior window is created (child
of the body parent) that becomes the viewing region for future body windows.
verticalScrollbar and horizontalSc:rollbar are attached as instructed by the client provided
BOOLEANS. The scrollbarlnfoProc will be called when the user thumb scrolls and then the
appropriate feedback (like the ViewPoint diamond or the tajo bar) will be painted in the
thumbing region of the scrollbar. Fine Point: The client should call GetlnteriorDims when deterimining

the offset and portion. moreScrollProc and garbageCollectBodiesPro(are described in §2.3.

IsJt: PROCEDURE]
parent: Window.Handle
RETURNS [BOOLEAN];

Determines if parent is indeed a bodyParent created by calling BodyWindowParent.Create.
Returns TRUE if it is, FALSE if not.

Destroy: PROCEDURE [parent: Window.Handle1;

Destroy destroys the parent window, its descendents and any associated data.

Adj ust: AdjustableWindow .Adj iJstProc;

Adjust should be called when the body parent is being resized (before and after the
SlideAndSize).

ViewPoint Progralnmer's Manual

SetAdj ustProc; PROCEDURE [
parent: Window.Handle,
new: AdjustableWindow.AdjustPrOC)
RETURNS fold: AdjustableWindow.AdjustPrOC);

new will be called whenever parent is changing size.

11.2.2 Body windows

Create Body: PROCEDURE [
p·arent: Window.Handle +- NIL.

box: Window.Box +- [to,o]' [O,INTEGER.LASTll,
displayProc: Window.DispiayPro(,
notifyProc: T1P.NotifyProc,
dearingRequired:BooLEAN +- TRUE,
windowPane: BOOLEAN +- FALSE,
under, cookie, color: BOOLEAN +- FALSE 1
RETURNS [body: Window.Handle);

11

Creates a body window that is a descendent of parent. If parent is NIL, body will be an
orphaned window that can be installed at a later date. (See InstallBody below.) If
box.dims. w = 0 THEN box.dims. w - size of parent's interior. If box.dims.h = 0 THEN
box.dims.h - size of parent's interior. notifyProc will be attached to body and
TIPStar.NormaITable{]. clearingRequired, windowPane, under, cookie, and color are
described in the Window chapter. If a body is created within a visible parent, the client
must call Window.ValidateTree[body] to effect the change on the screen.

InstallSody: PROCEDURE{body: Window.Handle, parent: Window.Handle];

Installs the body window in the tree of parent as the eldest sibling.

DestallBody: PROCEDURE[body: Window.Handle);

Removes the body from its parent's window tree.

DestroyBody: PROCEDURf [body: Window.Handle);

Destroys the body window and associated data.

11.2.3 Scrolling

Only part of an object is usually visible to the user at anyone moment in the interior of a
bodyParent. The user can request to see more of the object by scrolling the contents up or
down inside the bodyParent. The user can perform three kinds of scrolling by using the
scrollbars. (1) He can move the contents a little at a time by PDinting at the arrows (up,
down, left, right) in the scrollbars. (2) He can move the contents a page or screenful at a
time by pointing at the plus (+-) and minus (-) signs. (3)He can jump to any arbitrary place
within the entire extent of the object being viewed by pointing in the blank part of the
vertical scrollbar (this latter operation is called thumbing).

BodyWindowParent provi.des various levels of support to a client for performing these
scrolling operations. The dient can allow BodyWindowParent to do all the scrolting

11-3

11

11-4

BodyWindowParent

functions, the client can do some of them and leave the rest to BodyWindowParent, or the
client can do all scrolling operations. :'.1uch of this decision will be based on how the client ~,
chooses to arrange body windows within the bodyWindowParent (see the section on body
windows above and more discussion below). First, we will describe the various types of
scrolling and scrolling procedures that a client can supply; then we will describe the
default scrolling procedures provided by BodyWindowParent.

In the simplest (for the client) case, one body window con.tains the entire extent of the
object being viewed. BodyWindowParent can handle all scrolling in this case. The client
simply does nothing. When the user points at an arrow, BodyWindowParent moves the
body window a small amount. When the user point at plus or minus, BodyWindowParent
moves the body window by one interior window's height. When the user thumbs,
BodyWindowParent will move the body window to an appropriate place based on its
overall height.

In a slightly more complex case, body windows are butted up against one another. When
the llser points at an arrow, BodyWindowParent moves all the body windows a small
amount. When the user point at plus or' minus, BodyWindowParent moves all the body
windows by one interior window's height. When the user thumbs, BodyWindowParent
moves all the body windows to an appropriate place based on the combined overall height
of the body windows. However, in this case the client often does not ~ave t~e entire extent
of t}:le object displayed in these body windows but rather wants to tack new body windows
on each end as these body windows are scrolled off. The client can do this by providing a
MoreScrollProc for the shell. BodyWindowParent calls the client's MoreScrollProc
whenever it runs out of body windows. ~

In the most complex case, the client has a single body window that "just fits" (see
SetBodyWindowJustFits in the section on body windows), and only part of the entire object
is displayed at anyone time. The client must provide all the scrolling functions for this
case. This means providing a Scrollbar.SingleScrollProc (to handle the user's pointing at
the arrows, plus, and minus) and a Scrollbar.ThumbScrollProc (to handle the user's
thumbing). See the Chapter on Scrollbar for further information on setting the
Si ngleScrol1 Proc.

Of course, the client may provide its own scrolling procedures for any of the above cases,
even the simple one, to override the type of scrolling that BodyWindowParent provides.
But at some point it would be wiser to register a new subwindow type instead. If
BodyWindowParent type AttachScrollbars and Adjustment are desireable then the client
should use the Standard subwindow procs exported by SubwindowFriends when creating
their own unique type.

11.2.3.1 ScrollProcs

The following ScroliProc types are passed in by the client when creating a body Parent
window. Any or all of them may be defaulted to)IlL.

MoreScrollProc: TYPE = PROCEDURE [

parent: Window.Handle,
type: Scrollbar.Type,
flavor: MoreFlavor.
amount: CARDINALI;

~'

ViewPoint Programmer's Manual 11

MoreFlavor: TYPE = (before, after};

The MoreScrollProc is called when we run out of body windows during scrolling. (See
discussion above) .amount is pixels.

The client's moreScroll procedure is responsible for adding and deleting body windows from
the body Parent. The case being handled is that in which the client has a large number of
pages to display to the user and wishes to manifest only a few. Then we need to handle the
case in which system scrolling would make a non-manifest page visible, and there is no
body window for it. Whenever the system is about to perform a scroll function, it checks to
see if the scroll action would move the visible portion of the bodies off the end of the
existent body windows. If so, it calls a non-nil client MoreScrollProc, indicating how much
more body window may be displayed. The client may augment the collection of body
windows or not. The system routines will not scroll past the end of the body windows.

GarbageCollectBodiesProc; TYPE = PROCEDURE [

parent: Window.Handle,
body: Window.Handle,
type: S(rollbar.Type):

Called when body is no longer visible. Allows client a chance to destroy or reuse the body.

11.2.3.2 Getting and Setting ScrollProcs

The following procedures Get and Set the ScollProcs associated with parent.

GetScrollProcs: PROCEDURE [parent: Window.Handle]
RETURNS [

garbageCollectBodiesProc; GarbageCollectBodiesProc,
moreScrollProc: MoreScrollProc.
scrollbarlnfoProc: Scrollbar.ScrollbarlnfoProc
thumbFeedbackProc: Scrollbar.ThumbFeedbackProc,
thumbScrolIProc: SCTolibar. ThumbScroIlProc];

SetMoreScrollProc: PROCEDURE [

parent: Window.Handle,
new: MoreScrollProc]
RETURNS [old: MoreScroIlProc];

SetScroilbarlnfoProc: PROCEDURE [

parent: Window.Handle,
new: ScroUbar.ScrollbarlnfoPro'cJ
RETURNS [old: Sc(ollbar.Scroll bart nfoProcl;

SetGarbageCollectBodiesPro(: PROCEDURE [

parent; Window.Handle,
new: GarbageCollectBodiesPro(l
RETURNS [old: GarbageCollectBodiesProc];

11-5

11

11-6

BodyWindowParent

SetThumbFeedbackProc: PROCEDURE [
parent: Window.Handle,
new: Scrollbar.ThumbFeedbackProc)
RETURNS rold: Scrollbar.ThumbFeedbackProc];

SetThumbScrollProc: PROCEDURE [
parent: Window.Handle,
new: Scrollbar.ThumbScroIlProc]
RETURNS [old: S(rollbar.ThumbScroIlProc];

11.2.3.3 Default ScrollProcs

DefaultSingleScroll: scrollbar.SingleScroIIProc;

DefaultScrollbartnfo: S<:rollbar.ScrollbarlnfoProc;

DefaultThumbScroll: Scrollbar.ThumbScroIIProc;

Calling DefaultSingleScroll, DefaultScroltbartnfo or DefaultThumbScroll will invoke
standard scrolling of window in specified flavor and amount. Can be used to set the
desired Procs or called independently. The type of scrolling provided is as described in the
General Discussion Simple Case in Sections 1.1 and 2.3

11.2.4 Utilities

GetZone: PROCEDURE [parent: Window.Handle] RETURNS[zOne: UNCOUNTED ZONEj;

Returns the zone associated with the bodyParent window.

ParentFromBody: PROCEDURE [body: Window.Handle]
RETURNS [parent: Window.Handle);

Given a body window returns its body parent subwindow.

GetBody: PROCEDURE [parent: Window.Handle)
RETURNS [body: Window.Handle);

Returns the first body window in parent.

GetScrollbar: ROCEDURE [window: Window.Handle, type: Scrollbar.Type]
RETURNS [scrollbar: Window.Handle);

Given a body window or bodyParent window, returns the associated scrollbar of type.

GetlnteriorOims: PROCEDURE [parent: Window.Handle)
RETURNS [dims: Window.Dims);

Returns the dimensions of the viewing region of the body parent subwindow.

IsBodyWindowOutOflnterior: PROCEDURE [body: Window,Handle]
RETURNS {aOOLEAN1;

ViewPoint Programmer's Manual 11

Returns TRUE If all of body is sticking out of the viewing region, FALSE if any part of body is
within the viewing region.

EnumerateBodies: PROCEDURE [
parent: Window.Handle,
proc: BodyEnumProe)
RETURNS [Window.Handle);

EnumerateBodiesJnDecreasingY:PROCEDURE (
parent: Window.Handle,

proc: BodyEnumProc)
RETURNS (Window.Handle];

EnumerateBodieslnlncreasingY :PROCEDURE [
parent: Window.Handle,
prot: BodyEnumProc)

RETURNS [Window.Handle];

The EnumerateBodiesxxx procedures enumerate all the body windows in parent, calling
proc for each body window until proc returns stop = TRUE. EnumerateBodies enumerates
the bodies in the order in which they appear in the parent tree.
EnumerateBodieslnlncreasingY enumerates the body windows in in~reasing order of
bodyBox.place.y, and EnumerateBodic:;;lnDecreasingY enumerates the body windows in
decreasing order of place.y. Each procedure returns the last body window enumerated or
NIL if all body windows were enumerated. These procedures are especially handy for clients
that do their own scrolling. To minimize repainting when scrolling a set of body windows
upward, it is important to move the upper ones first, and vice versa.

BodyEnumProe: TYPE = PROC [body: Window.Handle)
RETURNS [stop: BOOLEAN +-FALSE];

stop:: TRUe will terminate the enumeration. Fine Point: destalling or destroying body within the

BodyEnumProc is allowed.

11.2.5 Errors

Error: ERROR [code: ErrorCodeJ;

ErrorCode: TYPE = {noBodieslnParent, notASodyWindowParent};

11.3 Usage/Examples

--In ir:tpl/or Body subwindows:
AttachScrollbarsToBodySW:SubwindowFriencis.AttachScrollbarsProc = {
BodyWindowParent.Create(...]. }

11- 7

11 BodyWindowParent

11.4 Index of Interface I terns
.~

Item Page
Adjust: PROCEDURE 2
BodyEnumProc: TYPE 5
Create: PROCEDURE 1
CreateBody: PROCEDURE 2
OefaultScrollbartnfo: Scrollbar.ScrollbarlnfoProc 4
OefaultSingleScroll: Scrollbar.SingleScrollProc 4
OefaultThumbScroll: Scroll bar . ThumbScrollProc 4
DestallBody: PROCEDURE 2
Destroy: PROCEDURE 2
DestroyBody: PROCEDURE 3
EnumerateBodies: PROCEDURE 5
EnumerateBodies InDecreasingY: PROCEDURE 5
EnumerateBodies InlncreasingY: PROCEDURE 5
Error: ERROR 5
ErrorCode: TYPE 5
GarbageCollectBodiesProc: TYPE 3
GetBody: PROCEDURE 4
Getl nteriorOi ms: PROCEDURE 4
GetScrollbar: PROCEDURE 4
GetScrollProcs: PROCEDURE 3"
GetZone: PROCEDURE 4
Install Body: PROCEDURE 2 ~
IsBodyWindowOutOflnterior: PROCEDURE 4
Islt: PROCEDURE 2
MoreFlavor: TYPE 3
MoreScrollProc: TYPE 3
ParentFromBody: PROCEDURE 4
SetAdjustProc:PROCEDURE 2
SetGarbageCollectBodiesProc: PROCEDURE 3
SetMoreScrollProc: PROCEDURE 3
SetScrol1 bart nfoProc: PROCEDURE 3
SetThumbFeedbackProc: PROCEDURE 4
SetThumbScrollProc: PROCEDURE 4

11-8

12
-------.-.... -
-_ ... _-----------,-
----,-
--~--... ----
---"".~ ----
~., ""'-~--"""-.<'!II-

--'-_-.-.. -----

~-

12.1 Overview

Busylcon provides the client with a way to make file-backed icon object "busy." An object
that is busy cannot be operated on by the user. The notion of an object being busy is a user­
interface level notion; clients are still responsible for obtaining any necessary locks on an
object. :Making an object busy insures that normal user operations (open, drop-on, props,
and so forth) cannot be invoked. If an object to be made busy is visible on the desktop or in
a container, the appearance of that object will change to make the object appear busy to the
"user. Whether or not the object is visible, the object is still marked as busy in the
Containee cache so that the next time the object is visible, it will appear busy. See the
Containee chapter for documentation on the GetiSetCachedBusy' operations.

12.2 Interface Items

IsBusy: PROCEDURE [ref: NSFile.Reference, w: Window.Handle +-Nll]

RETURNS [yes: BOOLEAN];

Returns TRUE i.f ref is busy. If non-nil, w is used as a hint for whei'e to look: either the
desktop window or a FileContainerSource-backed container window that ref might be
found in. If ref is not found in w, IsBusy will search the desktop and all open
FileContainerSources for ref. If ref is still not found, IsSusy will check the Containee cache
to see if the object is busy (see the Containee chapter for more information.)

IsSusy will only find files in container windows backed by a File<:ontainerSource or a
source built on FileContainerSource.

BusyStatus: TYPE :I {succeeded, notFound, stateNotChanged, notAllowed};

MakeBusy: PROCEDURE [ref: NSfile.Reference, w: Window. Handle +- NIL]

RETURNS [result: BusyStatus];

MakeUnbusy: PROCEDURE [ref: NSFile.Reference, w: Window.Handle +-NIL]

RETURNS [result: BusyStatus];

MakeBusy looks for ref on the desktop or in an open container windo',v bac~-\.ed by a
FileContainerSource. w is a hint that ref is in that window; w may be the desktop window

12-1

12 Busylcon

12.2 Usage

12-2

or a container window. If w is NIL, MakeBusy and MakeUnbusy look in all open
FileContainerSource-backed container windows and on the desktop. Both operations ~.
return result to indicate the outcome of the operation. If ref is part of the selection, the
selection is cleared (but see notAllowed status below.)
succeeded indicates that the icon for ref was found and the icon picture was changed.
notFound means that an object for ref was not found. The icon picture was not changed, but
the Containee cache was updated.
stateNotChanged means that ref was found but was already in the desired state.
notAliowed is returned if the operation is not allowed at the moment. This can occur if the
user calls MakeSusy from the background but the object is part of the user's selection.
MakeBusy will not make the object busy, but instead will return a status of natAlia wed.

IsBusy will only find tiles in container windows backed by a FileContai nerSaurce or a
source built on FileContainerSource. Files in other types of container sources will not have
their picture changed by these procedures.

Clients are responsible for making sure an object is properly locked before making the
object busy. If an object is just made busy without acquiring any other locks, there is
nothing to stop some other program that has a reference to a file from operating on that
file.

A typical way to use this interface may to do some background operation on an icon. The
flow would look something like this. . ~

• The user selects an icon and invokes a menu command.

• In the menu command (and thus in the foreground) the command does a Selection.Convert

to get a reference to the file.

• The menu command opens the file and get an NSFile lock on

• The command calls MakeBusy to make sure the user cannot operate on the file.

• The command FORKS some operation.

• When the operation is done, the client would unlock the file and closes the file handle

• To finish up, the client calls MakeU nbusy to return the icon the the user's control.

In this example, the client does not need to worry about whether the icon was on the
desktop or inside a folder. Busylcon took care of making the icon busy.

ViewPoint Programmer's Manual

12.3 Index of Interface Items

Item

BusyStatlJs: TYPE

IsBusy: PROCEDURE

MakeBusy: PROCEDURE

MakeUnbusy: PROCEDURE

Page

1
1
1
1

12

1') ,~
",-'J

12

12-4

13

BWSAttributeTypes

13.1 Overview

BWSAttributeTypes dermes the NSFUe.ExtendedAttributeTypes that are used by ViewPoint
as well as the rlI'St NSFile.ExtendedAttributeType available for client use.

The only extended attributes dermed here are the ones that can. be attached to any file,
such as mailing and filing application attributes. Attributes that are unique to a particular
application's files should be deimed privately within that application. Several applications
can use the same extended attributes because application A should never be reading the
attributes from application Bfs files and vice versa. Fine point: Several application-specific attribute

types are included in this interface for compatibility.

The extended attributes that can be attached to any file, leaving a few spare ones for future
use. are defined here. Also defined are the first available "application attribute"
(firstAvailableApplicationType). Caution: An application should not use an extended
attribute smaller than this one, nor should an application use an extended attribute larger
than lastBWSType.

13.2 Interface Items

13.2.1 Available Application Types

firstAvaiiableApplicationType: NSFUe.ExtendedAttributeType •... ;

lastBWSType: NSFile.ExtendedAttri buteType • . .. ;

Applications should only use the types in the range [firstAvailableApplicationType ..
lastBWSType]. firstAvailableApplicationType is the first extended attribute type that
applications can use to store application-specific attributes. Caution: An application
should not use an extended attribute smaller than firstAvailableApplicationType.
lastBWSType is the last extended attribute type that applications can use to store
application-specific attributes. Caution: An application should not use an extended
attribute larger than lastBWSType.

13-1

13

13-2

BWSAttributeTypes

If a Viewpoint client needs more attributes than the number in this range~ see the ~
NSFiling group to obtain a range specific to that client.

13.2.2 Viewpoint Types

Consult the Mesa interface for the exact assignment of ViewPoint-specific types.

ViewPoint Programmer's Manual 13.

13.3 Index of Interface Items

Item Page

firstAvaiiableApplicationType: NSFileGExtendedAttributeType 1
lastBWSType: NSF.Ie.ExtendedAttributeType 1

'-'""

13-3

13 BWSAttributeTypes

13-4

14

BWSFileTypes

14.1 Overview

BWSFileTypes deimes several NSFileeTypes used by ViewPoint. Applications should not use
these types. (Also see the catalog and Prototype interfaces.)

ViewPoint clients must manage all file types that they use. Ranges of file types may be
obtained from the Filing group.

14.2 Interface Items

root: NSFile. Type • . .. ;

The root file of the volume has this type. The root has children that are called (by
convention) catalogs.

desktop, desktopCatalog: NSFile.Type ••.. ;

The desktop catalog contains all the desktops on a workstation. An individual desktop has
the same type as the desktop catalog.

prototypeCatalog: NSFile.Type •... ;

The prototype catalog contains prototype files for each application. A prototype file is a
blank application file that the user can make copies of, such as Blank Folder, or Blank
Document. (See the Prototype interface.)

systemFileCatalog: NSFile.Type •... ;

The system file catalog contains system files, such as the beds for an application, message
files, font files, TIP files,and so forth. (See the Catalog interface.)

14-1

14 BWSFUeTypes

14.3 Index of Interface Items

14-2

Item

desktop: NSF'''. Type
desktopCatalog: NSF'''. Type
prototypeCatalog: NSFi ... Type
root: NSFi ••• Type
systemFi leCatalog: NSFi ••• Type

Page

1
1
1
1
1

15

BWSZone

15.1 Overview

BWSZone defines several zones, each with di:.ff'erent characteristics, that ViewPoint clients
may use, as appropriate.

15.2 Interface Items

All zones are created at boot time and exist for the duration of the boot session.

permanent: UNCOUNTED ZONE;

Permanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

permanent is intended for nodes that are never deallocated. It has infinite threshold.
Permanent returns permanent.

logonSession: UNCOUNTED ZONE;

LogonSession: PROCEDURE RETURNS [UNCOUNTED ZONE];

logonSession is intended for nodes that last for a logon/logoff session. logonSession is
emptied of all nodes at each logoff (that is, H.ap.Flush). LogonSession returns
logonSession. logon Session is created at boot time and is flushed at logoff.

shortLifetime: UNCOUNTED ZONE;

ShortLifetime: PROCEDURE RETURNS [UNCOUNTED ZONE];

shortLifetime is intended for nodes that are allocated for a very short time, such as during
a notification. ShortLifetime returns shortLifeti me.

semiPermanent: UNCOUNTED ZONE;

SemiPermanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

semiPermanent is intended for nodes that are allocated for a very long time but that might
occasionally have to be expanded. SemiPermanent returns semiPermanent.

15-1

15 BWSZone

1503 Index of Interface Items ~
" .~~!

Item Page

LogonSession: PROCEDURE 1
logonSession: UNCOUNTED ZONE 1
Permanent: PROCEDURE 1
penmanent:UNCOUNTEDZONE 1
SemiPermanent: PROCEDURE 1
semiPermanent: UNCOUNTED ZONE 1
ShortLifeti me: PROCEDURE 1
shortLifetime: UNCOUNTED ZONE 1

15-2

16

Catalog

1801 Overview

catalog manipulates files called catalogs that are direct descendants of the root file on a
NSFiling volume. Each catalog is uniquely identified by its file type. Files can be opened
and created within a catalog. Catalogs can be opened, created, and enumerated.

Viewpoint creates a system file catalog and a prototype catalog (see the Prototype
. interface) at boot time. The system file catalog typically holds font files, TIP files, icon
picture files, message files,and sO forth .

......., 18.2 Interface Items

18.2.1 Finding and Creating Files in a Catalog

GetFile: PROCEDURE [
. catalogType: NSFile. Type 8WSFileTypes.systemFilecatalog,

name: XString.Reader,
readonly: BOOLEAN +-FALSE,
session: NSFile.Session +-NSFue.nuIiSession)
RETURNS [file: NSFile.Handle);

GetFile finds a file with name name in the catalog with type catalogType. If the file cannot
be found, NSFile.nuliHandle is returned.

CreateFile: PROCEDURE [
catalogType: NSFile. Type BWSFileTypes.systemFilecatalog,
name: xString.Reader,
type: NSFile.Type,
isDirectory: BOOLEAN ~ FALSE,
size: LONG CARDINAL +- 0,
session: NSFile.Session ~ NSFile.nuIiSession]
RETURNS [file: NSFile.Handle];

CreateFile creates a file with the specified attributes (name, type, isDirectory, size in bytes)
in the catalog with type catalogType.

16-1

16

16--2

Catalog

18.2.2 Operating on Catalogs

Open: PROCEDURE [
catalogType: NSF.Ie. Type.
session: NSF.Ie.Session .-NSFile.nuIiSession)
RETURNS [catalog: NSFiIe.Handle);

Opens the catalog with type catalogTypeo If the catalog cannot be opened, it returns
NSF'Ie.nuIiHandle.

Cleate:PROCEDURE[
name: xString.Reader.
catalogType: NSF.Ie. Type.
session: NSF.Ie.Session ... NSFile.nuIiSession)
RETURNS [catalog: NSFile.Reference);

Creates a catalog with the specified name and type. If the Catalog already exists or cannot
be created, it returns NSFiIe.nuIlReference. Note: Even though the' file can be identified by
type only, the name should be logical (such as "System Files") so that any tools written to
manipulate catalogs can display these nameso

Enumerate: PROCEDURE [proc: CatalogProc);

CatalogProc: TYPE • PROCEDURE [catalogType: NSF.Ie. Type)
RETURNS [continue: BOOLEAN ... TRUE);

Enumerate calls the client-supplied proc for each existing catalog or until proc returns
FALSE.

beforeLogonSession: NSFile.Session;

beforeLogonSession is a session that can be used when calling a Catalog procedure before
any user has logged on, such as at boot time. It is set to be the default session until a user
logs on.

ViewPoint Programmer's Manual

16.3. Index of Interface Items

Item

beforeLogonSession: NSF'Ie.Session
catalogProc: TYPE

Create: PROCEDURE

CreateFile: PROCEDURE

Enumerate: PROCEDURE

GetFile: PROCEDURE

Open: PROCEDURE'

Page

2
2
2
1
2
1
2

16

16-3

16 Catalog

16-4

17

Containee

17.1 Overview

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type.

17.1.1 Background

All NSFiles have:

• aname
• ~ file type (LONG CARDINAL)

• a set of attributes, such as create date
• either:

- content, such as a document
- children that are also NSFiles, such as a folder

An NSFile that has children is often called a directory. Fine Point: An NSFUe can actually have both

content and children. that is ignored for now to simplify this discussion. Since the children of an NSFile
can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is backed by an NSFile that has children. Each child file of the
desktop's NSFile is represented on the screen by an iconic picture.

Each application operates on NSFiles of a particular file type. For exaIilple, ViewPoint
documents operate on NSFiles with file type of 4353. Each document icon is actually an
NSFile of type 4353. Each application needs a way to register its ability to operate on files of
a particular type. Containee is such a facility.

17.1.2 Containee.Implementation

An application's ability to operate on files of a particular type includes such operations as:

• Display of the iconic picture (full size and tiny).
• Open, performed when the user selects an icon and presses OPEN.

• Properties, performed when the user selects an icon and presses PROPS.

17-1

17 Containee

• Take the current selection, performed when the user drops an object onto an icon by ~
Copying or MovEing a selected object to an icon.

An application registers itselfby calling Containee.Setlmplementation, supplying a file type
and a Contain ... lmplementation. A Containee.Jmplementation is a record that contains two
important procedures:

• A procedure for displaying an icon picture (Contain ... PictureProc).
• A procedure for performing various operations on an icon, such as open, create a

property sheet, and take the current selection (Containee.GenericProc).

This application registration allows the ViewPoint desktop implementation to be open­
ended. The desktop implementation itself does not know how any file behaves. Rather it
depends on applications registering their ability to operate on particular file types. The
desktop implementation, at logon, simply enumerates the child files of the desktop's NSFile
(using NSFile.List), obtaining the file type for each child. For each child file, the desktop
implementation gets an application's Containee.lmplementation by using the child file's file
type (and Containee.Getlmplementation) and then calls that application's
Containee.PictureProc to actually display an·icon picture. Similarly~ when the user selects an
icon on the desktop and presses OPEN, the desktop implementation uses the file type of the
file at that place on the desktop to get the application's Containee.lmplementation and then
calls the application's Contain ••• GenericProc to get a StarWindowShell created. The
implementations of Folders and File Drawers are similar to the desktop implementation in
this respect.

17.1.3 Containee.Data

An application needs to distinguish one file from another. Two different documents may be
the same file type, but probably have different names and different contents. Whenever an
application's Containee.DisplayProc or Containee.GenericProc is called, the particular file
being operated on by the user is passed to .the procedure through the Containee.DataHandle
parameter. A Contain.e.DataHandle is a pointer to a Containee.Data that is simply a record

. with an NSFile.Reference in it. An NSFile.Reference uniquely identifies a particular file and
allows the application to utilize various NSFile file-accessing procedures for manipulating
the file.

17.2 Interface Items

17-2

17.2.1 Items for Application Implementors

Setlmplementation: PROCEDURE (NSFile.Typer Implementation]
RETURNS (Implementation];

Setlmplementation associates an Implementation record with a particular file type and
returns the previous Implementation that was associated with that file type. An
application calls Setlmplementation to register its ability to operate on files of a particular
type.

When an application calls Setlmplementa,tion, it is convention to save the old .~
implementation to backstop operations that the new implementation does not support. For

ViewPoint Programmer's Manual 17

example, most GenericProcs have an endcase that calls the old application's GenericProc
for atoms it does not understand.

Implementation: TYPE. RECORD [
implementors: LONG POINTER +- NIL"
name: XString.ReaderBady +- XString.null ReaderBody,
smaliPictureProc: SmaliPictureProc +- NIL"
pictureProc:PictureProc +- NIL,
convertProc: Selection.ConvertProc +- NIL.
genericProc:GenericProc +-NIL];

When an application registers its ability to operate on files of a particular type (Le, calls
Setlmplementation), it supplies an Implementation record. The Implementation record
defines the behavior of all tiles of that type.

implementors is provided for the convenience of clients that may want to associate some
application-specific data with the Implementation record. Note: This data is one per
application, not one per file.

name is a user-sensible name for the objects that the Implementation manipulates, such as
"Document" or "Spreadsheet." This string typically comes from XMessage. The bytes of
name are not copied-the storage for mime must be allocated forever (which is easy to do
using XMessage). . .

smaliPictureProc is a proceduFe of type SmaliPictureProc that returns a character. This
procedure is describe below.

pictureProc is called whenever the file's full-sized icon picture needs to be painted. (See
PictureProc.)

convertProc is called to convert the file into another form, such as an Interpr~ss master.
This procedure is used when the owner of the current selection is a container, such as a
folder, and the selection is actually a file (row) in the container. The owner of the selection
(i.e., the container implementation) may be called to convert the selected file (row), but
only the application that implements that file's type can do the conversion. The
convertProc allows the owner of the selection to pass the conversion request along to the
application. The data parameter to the convertProc is a Containee.DataHandle. This
convertProc does not need to be able to convert to a target type offile or fileType, but rather
should call Containee.DefaultFileConvertProc for these target types. If the application does
not perform conversion to any target types, Containee.DefaultFileConvertProc should be
provided as the convertProc.

genericProc is where most of the application's real implementation resides. genericProc is
called, for example, to open an icon, to produce a property sheet for an icon, to drop
something on an icon, etc. See GenericProc.

SmaliPictureProc: TYPE • PROCEDURE [
data: DataHandle +- NIL.
type: NSFile. Type +- ignoreType.
normalOrReference: PictureState]
RETURNS [smaliPicture: XString.Character];

17-3

17

17-4

Containee

PictureState: TYPE. { garbage. normal. highlighted, ghost.
reference. referenceHighlighted};

ignoreType: NSFile. Type. LAST(LONG CARDINAL];

The SmaliPictureProc should return a character for the application, which should be
obtained by passing a 13x13-bit icon picture to SimpieTextFont.AddClientDefinedCharacter.
This character is used when the file is inside a folder. normalOrReference will be either
normal orreferenee, and the appropriate small picture should be returned. The
SmaliPictureProc should try to use the type parameter first if it is not Containee.ignoreType.
If it is ignoreType, the SmaliPictureProc should use the data parameter. This change is
necessary for allowing the reference icon application to work properly. Fine Point: The picture

for normalOrReference = reference/referenceHlghlighted will not normally be used by the folder

application directly. but rather would be used by a generic reference icon application.

Data: TYPE • RECORD [
reference: NSFile.Reference NSFile.nuliReference];

DataHandle: TYPE • LONG POINTER TO Data:

nuIiData:Data;

Data uniquely identifies a file. An application needs to distinguish one file from another.
Two documents may be the same file type, but probably have different names and different
contents. Whenever an application's PictureProc or GenericPro(or
Implementation.convertProc is called,. the particular file being operated on by the user is' ~
passed to the procedure through the DataHandle parameter. An NSFile.Reference uniquely
identifies a particular file and allows the application to utilize various NSFile file-accessing
procedures for manipulating the file. null Data is a constant that should be used to
represent a null Containe •. Data.

GenericProe: TYPE. PROCEDURE [
atom: Atom.ATOM.
data: DataHandle.
changeProc:ChangeProc NIL.
changeProcData: LONG POINTER NIL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is a procedure supplied by an application as part of an Implementation. The
GenericProc will be called to perform one of several operations that a user can invoke. atom
tells the GenericProc what operation to perform. For example, when the user selects an
icon and presses the OPEN key, the application's GenericProc is called with an atom of
Open.

data identifies the particular NSFile to be operated on. The NSFile's file type will be the one
for which this application has registered its Implementation.

A GenericProc must return a value. The type of the return value depends on the atom
passed in. Some atoms, their meaning to the GenericProc, and the expected return values
are as follows:

Atom Return Value and Meaning

'-".'

ViewPoint Programmer's Manual 17

CanYouTakeSelection LONG POINTER TO BOOLEAN

Can YouTakeSelectionBackground

FreeMenu

Menu

Open

If the application is willing to have the current selection
dropped onto it, the GenericProc should return TRUE. This occurs
when the user has selected something, pressed COpy or MOVE,

and then selected one of this application's files. While the user
has the mouse button down, the cursor changes to a question
mark if the GenericProc returns FALSE; otherwise, the cursor
stays the same and the icon picture highlights. This operation
should be efficient and usually involves calling
Selection.CanYouConvert or Selection.HowHard or Selection. Query
to determine what Selection.Targets the selected object can be
converted to. For example, the printing application's
GenericProc returns TRUE if the current selection can be
converted to an Interpress Master.
The changeProc need not be called for this atom.

LONG POINTER TO BOOLEAN

This is only called after the GenericProc returns TRU E to
CanYouTakeSelection. This atom asks if the GenericProc can
support a background take using an encapsulated selection.
The CanYouTakeSelection call is always called first to find out
if the selection type is one that the GenericProc can take. The
CanYOuTakeSelectionBackground atom need not query the
selection again; all that's needed i~ to return TRUE if it supports
background take operations. If this atom returns TRUE, the
caller wiU call Selectionx.Encapsulate (see the Sele'ction
chapter), do a FORK, and call the GenericProc with
TakeSelectionBackground or TakeSelectionCopyBackg rou nd.
If this atom returns FALSE, the client will not FORK and will do a
foreground TakeSelection or TakeSelectionCopy.
The changeProc need not be called for this atom.

None
The application should free the menu that was created for the
Menu atom, if any. The MenuData.MenuHandle that was
returned for the Menu atom will be passed as the
changeProcData. This atom will not be passed to the
GenericProc if the Menu atom returned NIL. The changeProc
need not be called for this atom.

MenuData.MenuHandle
The application may create a menu. The menu will displayed
by the system, as a popup menu. This atom is passed when the
user requests a popup menu for an icon, e.g. by pressing both
mouse buttons simultaneously while the mouse is over an icon
on the desktop or in a container window. If the application
returns a menu, then it should be prepared to free the menu
when the FreeMenu atom is passed to the GenericProc. The
chang~Proc need not be called for this atom.

StarWindowShell.Handle
The application should create a StarWindowShel1. Usually, the
content displayed in the StarWindowSheli will be derived from
the contents of the file. For example, the ViewPoint document

17-5

17

17-6

Containee

Props

TakeSelection

TakeSelectionBackground

TakeSelectionCopy

TakeSelectionCopyBackground

editor application displays the text and graphics contained in
~

the file, thus making the file ready for viewing and/or editing.

StarWindowSheU.Handle
The application should create a PropertySheet. Usually, the
properties shown reflect some attributes of the file. For
example, the Folder property sheet shows the name of the
folder, how it is sorted, and how many objects it contains. These
properti~s are all NSFile attributes of the file.

LONG POINTER TO BOOLEAN
The action performed for this atom is highly dependent on the
particular application. This atom is. passed when the user has
selected something, pressed MOVE, then selected one of this
application's files. For some applications, this means the
selected object should be moved into this application; for
example, the Folder application converts the selected object to a
file and 'adds the file to the folder. For other applications, this
means the selected object should be operated on in some
application-specific fashion; for example, the printing
application converts the selected object to an Interpress Master
(rue or stream) and then se~ds the master to a printer. The
GenericProc should return TRUE if the operation was successful,
FALSE otherwise.

LONG POINTER TO BOOLEAN
The same as TakeSelection except that the GenericProc is~\
called from a background process so the GenericPro(must use
an encapsulated selection rather than the user's selection. To
get the encapsulated selection, the GenericProc should raise the
signal GetContaineeDataContext which will will be caught by
the caller and will RESUME with a LONG POINTER TO

Selectfonx.Saved (see the Selection chapter). The GenericProc
can then call Selectionx.ConvertX to get the value of the selection
followed by Selection.CopyOrMove. The client ,should always
call the GenericProc with canYouTakeSelection-Background
before calling with this atom.

LONG POINTER TO BOOLEAN
This atom has the same meaning as TakeSelection, except it
corresponds to the COpy key being pressed rather than MOVE.

Again, the meaning of this is highly application dependent.

LONG POINTER TO BOOLEAN
This atom has the same meaning as TakeSelectionCopy, except
it corresponds to the COpy key being pressed rather than MOVE.

See TakeSelectionBackground for more details.

The changeProc must always be called, passing in changeProcData and an indication of
which NSFile attributes have changed, if any. If the execution of the, GenericProc causes
any change to the NSFile's attributes, calling the changeProc allows containers (such as ~
Desktop, Folders> to update the display to reflect the changes. For example, when the atom
is Props, the GenericProc must save the changeProc and return the StarWindowShell.Handle

View Point Programmer's Manual 17

for the property sheet. Then later, if the user changes the file's name, for example, the
application's Propertysheet.MenultemProc gets control when the user is done and must then
retrieve the changeProc and call it. (See the section on Usage/Examples for more detail.)

If the client's GenericProc is called with an atom that it does not recognize, it should call
the previous GenericProc (using the old Implementation that was returned when it called
containee.Setimplementation). The original system-supplied GenericProc acts to backstop
all possible atoms.

ChangeProc: TYPE • PROCEDURE [
changeProcData: LONG POINTER .-NIL.
data: DataHandle,
changedAttributes: NSFile.Selections .- []
noChanges: BOOLEAN .-FALSE];

A ChangeProc is a callback procedure that is passed to a GenericProc. It must always be
called by the client regardless of whether an attribute of the file being operated has
changed. The reason for always calling the changeProc is to allow deallocation of the
changeProcData. The noChanges boolean indicates the effect on the relevant file's
attributes. The changeProcData parameter must be correctly supplied even for the
noChanges = TRUE case. This is used, for example, when the user changes the name of a file
by using a property sheet. When the property sheet is taken down, the application changes
the file's name and the ChangeProc that was passed to the GenericProc must then be called
by the application. (See more detail in the section on UsagelExamples).

PictureProc: TYPE • PROCEDURE [
data:DataHandle,
window: Window. Handle,
box: Window. Box,
old, new: PictureState];

PictureState: ~PE • {garbage, normal, highlighted, ghost, reference, referenceHighlighted};

A PictureProc is a procedure supplied by an application as part of an Implementation. The
PictureProc is called whenever the desktop implementation needs to have the application's
icon picture repainted or painted differently.

data identifies the particular NSFile whose picture should be painted. The NSFile's file type
will be the one for which this application has registered its Implementation. Even though
all files of the same type will have the same PictureProc and therefore the same-shaped
picture, each picture will differ because the name of the NSFile is often displayed on the
picture. An application's PictureProc can obtain an NSFile's name by using NSFile operations,
but may more easily obtain it using Containee.GetcachedName. This is one of the primary
intended uses for GetCachedName. (See the section on Attribute Cache).

window and box should be passed to any display procedures used to paint the icon picture,
such as Display.Bitmap and SimpleTextDisplay.StringlntoWindow.

The old and new arguments describe the current and desired states of the icon picture.
garbage is the unknown state. PictureProc will be called with new. garbage before
moving or otherwise altering the icon; this lets an application remember an icon's
placement. The application can thus continually update the icon (for example, to represent
time-of-day) or can force a repaint by using Window.lnvalidate (to change the shape of an

17-7

17

17-8

Containee

InBasket icon, for example), normal is the picture displayed when the icon is not selected.
highlighted is the picture displayed when the icon is selected. ghost is the picture
displayed when the icon is currently open. reference is the picture displayed to represent a
remote file. referenceHighlighted is the highlighted version of reference. The desktop
implementation will never use these last two states, but a generic reference icon
application might.

DefaultFi leConvertProc: SeIection.ConvertProc;

DefaultFileConvertProc is a Selectlon.ConvertProc that knows how to con vert to
Sektctlon. Targets of file and fileType. DefaultFileConvertProc should be called from an
application's Implementation.convertProc for these targets, or should be provided as the
application's Implementation.convertProc if the application has no convertProc of its own.
No file-backed application's convertProc should need to worry about these target types.

GetContaineeDataContext: SIGNAL [dataHandle:DataHandle]
RETURNS [context: LONG POINTER];

This allows the client to pass some client data to the GenericProc. For certain atoms that
the GenericProc and its clients agree upon, the GenericProc may raise this signal. The
caller should catch the signal and resume with a long pointer to some mutually agreed
upon data. One example of where this is used is in doing a background take. See the
comments on the TakeSelectionBackground atom for how it uses
GetContaineeDataContext. Flne point:. GetContain .. DataContext is defined in ContaineeExtra .

. 170202 Items for Application Consumers

These items would not ordinarily be used by an application implementation (provider), but
rather by a consumer such as the Desktop or Folder implementation.

Getlmplementation: PROCEDURE [NSFile.Type] RETURNS [Implementation];

Getlmplementation returns the current Implementation for a particular file type.

17.2.3 DefaultImplementation

Contain .. supports a single global default Implementation. This default Implementation is
used when the user operates on an NSFile for which no Implementation has yet been
registered.

GetDefaultlmplementation: PROCEDURE RETURNS [Implementation];

GetDefaultlmplementation returns the current default Implementation.

SetDefaultlmplementation: PROCEDURE [Implementation]
RETURNS [Implementation];

The default implementation provides a dummy display and appropriate "Sorry, Desktop is
Unable to Open That Object" complaints in the absence of a particular implementation. ~,
Most clients will not call SetDefaultlmplementation.

ViewPoint Programmer's Manual 17

1702.4 Attribute Cache

Clients often want to use several common NSFile.Attributes, but it is awkward to pass the
attributes around in calls, because the attributes are long, of variable length, and
frequently not needed by the called routine. Therefore, Containee provides a cache
mechanism that can remember and supply popular attributes. Currently, the name and
file type attributes are supported, as well as the run-time busy attribute. Containee
decouples the management of in-memory copies of a file's name from parameter-passing
arrangements.

GetCachedBusy: PROCEDURE [data: Containee.DataHandle) RETURNS [busy: BOOLEAN);

Returns TRUE if the file was made busy with SetcachedBusy, FALSE otherwise. 'Busyiness'is
not actually an attribute stored with the file, but is actually a run-time bit maintained by
Containee. See the Busylcon chapter for a general interface to busy icons. Fine point:

G.tCach.dBusy is defined in ContaineeExtra.

GetCachedName: PROCEDURE [data:DataHandle]
RETURNS [name: XString.ReaderBody. ticket:Ticket);

GetcachedNameX: PROCEDURE [
data: DataHandle,
handle: NSFile.Handle NsFiI •. nuIiHandle,
session: NSFUe.Session" NSFiI •. nuIiSession)
RETURNS [name: XString.ReaderBody. ticket:Ticket);

GetCachedName returns the name attribute of the NSFile referred to by data. If the name
is not in the cache, it is looked up and added to the cache. ticket must be returned (by using
ReturnTicket) when the client is through with the name. The ticket is to prevent one client
from changing the name while another is looking at it. GetcachedNameX is identical to
GetCachedName, but takes a handle and a session. If handle is non-null, Containee will
use the handle instead of opening its own handle if it needs to fetch attributes from the file.
session is used for any filing operations including opening the file if necessary, which is
done if handle is nuliHandle. handle and session are needed if the client has data (or its
parent) open in a session other than the default session. Fine point: GetCachedNameX is defined

in Contain.eExtra.

GetcachedType: PROCEDURE [data: DataHandle)
RETURNS (type:NSFile. Type];

GetCachedTypeX: PROCEDURE [
data: DataHandle,
handle: NSFile.Handle NSFile.nuIiHandle,
session: NSFile.Session NSFile.nuIiSession)
RETURNS [type:NSFile.Type];

GetCachedType returns the type attribute of the NSFile referred to by data. If the type is
not in the cache, it is looked up and added to the cache. GetCachedTypeX is identical to
GetCachedName, but takes a handle and a session. If handle is non-null, Containee will
use the handle instead of opening its own handle if it needs to fetch attributes from the file.
session is used for any filing operations including opening the file if necessary, which is
done if handle is nuIiHand~e. handle and session are needed if the client has data (or its

17-9

17

17-10

Containee

parent) open in a session other than the default session Fine point: GetCachedNameX is defined in

ContaineeExtra. Fine point: GetCachedTypeX is defined in ContaineeExtra.

InvalidateCache: PROCEDURE [data:DataHandle) ;

InvalidateCache clears any information about the NSFile from the cache. It is typically
called when the attributes of an NSFile are changed by an application. An application
rarely needs to call1nvalidateCache, because calling the ChangeProc takes care of it.

InvalidateWholeCache: PROCEDURE;

InvalidateWholeCache clears the entire cache. Information about all files is cleared.

ReturnTicket: PROCEDURE [ticket: Ticket);

ReturnTicket should be called after 'calling GetCachedName, when the client no longer
needs the string.

SetCachedBusY:PROCEDURE[
data: Contain"cDataHandle,
busy: BOOLEAN);

Mark the file "busy." The status of the file can later be queried with GetCachedBusy.
c-ausyines~' is not an attribute stored with the file, but is a run-time status maintained by
Containee. For a more general busy icon interfac~, see the Busylcon chapter. Fine point:
SetCachedBusy is defined. in ContaineeExtra.

SetCachedName: PROCEDURE [data:DataHandle, newName: XString.Reader);

SetCachedName allows a client to change a cached name. Care should be taken to keep the
filed name consistent with the cached name. An application rarely needs to call
InvalidateCache, because calling the ChangeProc takes care of it.

SetCachedType: PROCEDURE [data: DataHandle, newType:NSFile.Type);

SetCachedType allows a client to change a cached type. Care should be taken to keep the
filed type consistent with the cached type.

Ticket: TYPE[2];

A Ticket is returned when GetCachedName is called. When the client is done using the
cached name, the ticket must be returned by calling ReturnTicket. This is to prevent one
client from changing the name while another is looking at it.

""'I!!'.,,.,.

View Point Programmer's Manual

17.3 Errors and Signals

Error: ERROR [msg: xString.Reader ... NIL. error: ERROR +- NIL.
errorData: LONG POINTER TO UNSPECIFIED ... NIL];

Signal: SIGNAL [msg: xString.Reader ... NIL. error: ERROR +-NIL.
errorData: LONG POINTER TO UNSPECIFIED +-NIL];

17

An application's GenericProc (and PictureProc and ConvertProc) should never assume that
it has been called by a desktop, and therefore should never call such facilities as
Attention.Post or UserTerminal.BlinkDisplay. (The application might be called by CUSP, for
example.) Rather, the application should raise comainee.Error or Signal with an appropriate
message. Containee will not catch these errors. The caller of the application's GenericProc
should catch them and do the appropriate thing. In the' typical case, the ViewPoint desktop
calls the application's GenericProc; it catches the error and calls Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file.

msg is the message to display to the user. error is the actual lower-level error that occurred
that caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower-level error.'

17.4 UsagelExamples

17.4.1 Sample Containee

The folder application is used as an example of a simple application that implements a
particular file type.

_. Constants and global data

folderFileType: NSFile. Type •••• ;
oldlmpl: Containee.lmplementation 4- [];

_ .. Containee.lmplementation procedures

FolderGenericProc: Containee.GenericProc •
< < (atom: Atom.A TOM,

data: Containee.DataHandle,
changeProc: Contain ... ChangeProc ... NIL,

changeProcData: LONG POINTER ... NIL}

RETURNS (LONG UNSPEOFIED} > >
BEGIN
SELECT atom FROM

open. > RETURN [MakeFolder[data, changeProc, changeProcData]];
props. > RETURN [MakePropertySheet[data, changeProc, changeProcData1];
canYouTakeSelection • > RETURN [IF CanlTake[changeProc, changeProcData]

THEN @true ELSE @false];
canYouTakeSelectionBackground • > RETURN [@TRUE]
takeSelection, takeSelectionBackground • >

17-11

17

17-12

Containee

RETURN [
IF Take(data. move, changeProc, changeProcData w

atom. takeSelectionCopyBackground]
THEN @true ELSE @false];

takeSelectionCopy, takeSelectionCopyBackground • >
RETURN [

IF Take(data. copy, changeProc, changeProcData.,
atom. takeSelectionCopyBackground]

THEN @true ELSE @false];
menu. >

BEGIN
run: XString.ReaderBody XString.FromSTRING ["AltOpen"L];
name: XString.ReaderBody xString.FromSTRING ["Folder"L);
title: MenuData.JtemHandle MenuData.Createltem[

zone: NIL, name: @name, proc,: NIL];
items: ARRAV(O •• 1) OF MenuData.ltemHandle [

MenuData.Createltem[zone: NIL, name: @run, proc: AltOpen]];
menu: MenuData.MenuHandle MenuData.CreateMenu[

zone: NIL, title: title, array: DESCRIPTOR[items]];
RETURN (menu);
END:

freeMenu • >
BEGIN
menu: MenuData.MenuHandle changeProcData;
MenuData.DestroyMenu [NIL, menu];
RETURN[menu] ;
END;

ENDCASE • > RETURN [
oldlmpl.genericProc [atom, data, changeProc~ changeProcData]];

END;

AltOpen: MenuData.MenuProc • { ••• };

CanlTake: PROCEDURE [
changeProc: Containee.ChangeProc ~ NIL,
changeProcData: LONG POINTER ~ NIL]
RETURNS [yes: BOOLEAN] • {
< < Use Selection. Can YouConvert to see if the current selection can convert to a

file. If so, then return TRUE, else FALSE. > >
};

MakeFolder: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc ~ NIL.
changeProcData: LONG POINTER ~ NIL]
RETURNS [shell: StarWlndowShell.Handle] • {
< < Create and return a StarWindowShell containing a list of the files in this folder.

Use FileContainerShell. Create. > >
};

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle,

ViewPoint Programmer's Manual

changeProc: Containee.ChangeProc +- NIL,
changeProcData: LONG POINTER +- NIL]
RETURNS (psheet: StarWindowSheU.Handle) • {
< < Create and retum a property sheet, using PropertySheef. Create. > >
};

Take: PROCEDURE [
data: containee.DataHandle,
copyOrMove: Selection.CopyOrMove,
changeProc: containee.ChangeProc +- NIL,
changeProcData: LONG POINTER 4-NIL]
RETURNS [ok: BOOLEAN] • {

v: Selection. Value;
manager: LONG POINTER TO Selection. Saved +- @mgr;
mgr: Selection. Saved +- SelectionX.nul iMaF'lager: > >
IF background THEN

manager 4-ContaineeExtra.GetContaineeDataContext(data];
< < If this is a background take, get the encasu/ated selection

Convert the current selection to a file using SelectionX. Convert or
SelectJonX.Enumerate with mgr I and copy or move that file into this folder. > >

};

.- Initialization procedures

InitAto.ms: PROCEDURE·. {
open 4-Atom.MakeAtom["Ope""L];
props 4- Atom.MakeAtom["Props"l];
can YouTakeSelection 4- Atom.MakeA tom["Can YouTakeSelection "l];
canYouTakeSelectionBackground 4-
Atom.MakeAtom["canYouTakeSelectionBackground"l];
takeSelection 4-Atom.MakeAtom["TakeSelection"l];
takeSelectionCopy 4-Atom.MakeAtom["TakeSelectionCopy"l];
takeSelectionCopyBackground 4-
Atom.MakeAtom["TakeSelectionCopyBackground"l] ;
menu 4-Atom.MakeAtom["Menu"l];
freeMenu 4-Atom.MakeAtom["FreeMenu"l];
};

Setlmplementation: PROCEDURE. {
newlmpl: Containee.lmplementation 4-Containee.Getimplementation [

folderfileType);
newl mpl.genericProc 4- FolderGenericProc;
oldlmpl 4-Containee.Setlmplementation [folderFileType, newlmpl];
};

_. Mainline code
InitAtoms[];
Setl mplementation[];

17

17-13

17

17-14

Containee

17.4.2 ChangeProc example

The folder property sheet is used to demonstrate a callback to a ChangeProco

DataObject: TYPE • RECORD [
fh: NSFile.Handle.
changeProc: Contain ... ChangeProc +-NIL.
changeProcData: LONG POINTER ~ NIL];

Data: TYPE • LONG POINTER TO DataObject;

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle.
changeProc: Contain ••• ChangeProc +-NIL.
changeProcData: LONG POINTER+- NIL]
RETURNS (pSheetShell: StarWindowShell.Handle] - {

... Pass changeProc to Makeltems through clientData ..

mydata: Data ~ zone.NEW(DataObject ~ [
fh: NSFile.OpenByReference[@data.reference).
changeProc: ~hangeProc.
changeProcData: changeProcData]];

pSheetShell ~.Propertysh.et.Create [
formWindowttems: Makeitems.
menultemProc: MenultemProc,

};

menultems: [done: TRUE, cancel: TRUE, defaults: TRUEt,
title: XMessage.Get [•••].
formWindowltemsLayout: Do Layout,
display: FALSE,
dientData: mydata];

Makeltems: FormWindow.MakeltemsProc - {
•• Make property sheet items with calls to FormWindow.MakeXXXltem.
};

MenultemProc: Propertysheet.MenultemProc - {
< < [shell: StarWIndowSheJI.Handle, form Window: Window.Handle,

menultem: Propel1yShHt.Menultem Type, clientData: LONG POINTER]

RETURNS [destroy: BOOLEAN ... FALSE] > >
mydata: Dat~ - clientData;
SELECT menu.tem FROM

done - > RETURN[destroy: ApplyAnyChanges[formWindow, mydata).ok];
cancel - > RETURN[destroy: TRUE];
defaults - > ...
ENDCASE;

RETURN[destroy: FALSE];
};

View Point Programmer's Manual

ApplyAnyChanges: PROC [fw: Window.Handle, mydata: Data) RETURNS [ok: BOOLEAN] • {
-- Collect any changes in the property sheet items.
NSFile.ChangeAttributes [mydata.fh, •••];

BEGIN .- call the changeProc.
data: containee.Data ... [NsFile.GetReference [mydata.fh));
IF mydata.changeProc /I NIL THEN

mydata.changeProc[mydata.changeProcData, @data, changedAttributes];
END;

RETURN [ok: TRUE];
};

17.4.3 Error and Signal Usage

17

This client catches an NSFile.Error and raises Contain ... Error, passing along the ERROR and the
NSFile.ErrorRecord:

message: XString.ReaderBody;
errorRecord: NSFile.ErrorRecord;

. signal: ·-GENERIC·- SIGNAL ... NIL;
file ... NSFile.OpenByReference [reference: ••• !

NSFile.Errar • > {
errorRecord ... error;
signal ... LOOPHOLE[NSFile.Error, SIGNAL];
GOTO ErrorExit}];
< < Operate on the file. > >
NSFile.Close[file] ;
EXITS

ErrorExit • > {
message XString.FromSTRING["NSFile.Error"L);
Contain ••• Error [msg: @message, error: signal, errorData: (lerrorRecord);

17-15

17 Containee

17.5 Index of Interface Items ~

Item Page

ChangeProc: TYPE 7
Data: TYPE 4
DataHandle: TYPE 4
DefaultFileConvertProc: S.,ection.ConvertProc 8
Error: ERROR 11
GenericProc: TYPE 4
GetCachedBusY:PROCEDURE 9
GetCachedName: PROCEDURE 9
GetCachedNameX: PROCEDURE 9
GetCachedType:PRocEDURE 9
GetCachedTypeX:PROCEDURE 10
GetCo,ntaineeDataContext: SIGNAL 8
GetDefaultlmplementation: PROCEDURE 9
Getlmplementation: PROCEDURE 8
ignoreType:NSFile 4
Implementation: TYPE 3
InvalidateCache: PROCEDURE 10
-lnvalidateWholeCache: PROCEDURE 10
nuliData:Data 4
PictureProc: TYPE 7
PictureS tate: TYPE 4.7)~
ReturnTicket:PRocEDURE 10
SetCachedBusY:PROCEDURE 10
SetCachedName: PROCEDURE 10
SetCachedType:PRocEDURE 10
SetDefaultlmplementation: PROCEDURE 9
Setlmplementation: PROCEDURE 2
Signal :SIGNAL 11
SmallPictureProc:TYPE 3
Ticket: TYPE 10

~
,

17-16

18

ContainerCache

18.1 Overview

The ContainerCache interface provides the writer of a ContainerSource with a cache for
the container's items. ContainerCache supports storing strings and client data with each
item.

18.2 Interface Items

18.2.1 Cache Allocation and Management

Handle: TYPE. LONG POINTER TO Object;

Object: TYPE;

AliocateCache2:PROCEDURE [useProcessAbort: BOOLEAN TRUE] RETURNS [Handle];

AliocateCache2 returns a handle on a cache that can be filled with BeginFil1. The client
should call Reseteache before calling BeginFili. useProcessAbort indicates whether
Process.Abort should be raised by ContainerCache when the fill process is aborted--for
example, when the cache is destroyed while still filling. It is intended to accommodate
clients that cannot properly handle ABORTED. AliocateCache2 is actually in
ContainerCacheExtra2.mesa.

AliocateCache: PROCEDURE RETURNS [Handle];

AliocateCache returns a handle on a cache that can be filled with BeginFili. The client
should call ResetCache before calling BeginFill.

GetLength: PROCEDURE [cache: Handle] RETURNS [cacheLength: CARDINAL];

GetLength returns the number of items in the cache. GetLength is actually in
ContainerCacheExtra. mesa.

ResetCache: PROCEDURE [Handle];

18-1

18

18-2

ContainerCache

Reseteache clears the cache so that, for' example, the' cache can be refilled by calling
BeginFili.,

Freecache: PROCEDURE [Handle);

Frees the resources used by a cache.

18.2e2 Filling the Cache

The client initially tills a cache with items by calling BeginFili with a FiliProc. The FiliProc
adds items to the cache by repeatedly calling Appendltem.

FiliProc: TYPE. PROCEDURE [cache: Handle]
RETURNS [errored: BOOLEAN FALSE);

The client provides a FiliProc to the BeginFili procedure. The FiliProc should fill the cache
by using Appendltem. errored is an indication of whether an error occurred during the
filling of the cache (errored • TRUE).

BeginFiII: PROCEDURE [

cache: Handle~
fillProc: FiIIPrpc.
clients: LONG POINTER.

fork: BOOLEAN TRUE];

Clients: PROCEDURE [cache: Handle]
RETURNS [clients: LONG POINTER];

BeginFili begins filling the cache. filiProc is called to add items to the cache. Iffork is TRUE,

then filiProc is forked as a separate process. clients is stored with the cache and may be
retrieved by calling Clients.

cacheFiliStatus: TYPE. {no. inProgress. inProgressPendingAbort.
inProgressPendingJoin. yes. yesWithError. spare};

StatusOfFiII: PROCEDURE [cache: Handle)
RETURNS [eacheFiliStatus];

StatusOfFili returns the current status of the cache fill. yes indicates that the fill has
successfully completed; no means the cache has not been filled yet; inProgress indicates
that the fill is running right now. inProgressPendingAbort indicates that an abort has
been received but the filiProc has not yet returned. inProgressPendingJoin, yesWithError,
and spare are not currently used.

18.2.3 Item Operations

ItemHandle: TYPE. LONG'POINTER TO ItemObject;

ItemObject: TYPE;

~'

View Point Programmer's Manual

AddData: TYPE a RECORD[
c1ientData: LONG POINTER, -- TO ARRA Y [0 •• 0) OF WORD
c1ientDataCount: CARDINAL,
clientStrings: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody);

18

An Add Data record is passed to the Appendltem, Insertltem, and Replaceltem procedures.
clientData should contain any data that the client wants to cache with the item, usually
some type of reference to the actual item. c1ientDataCount is the size (in words) of the
~lientData. clientData is copied into the cache; therefore the dientData should contain no
pointers to other data. dientStrings should contain the strings to be displayed for the item.
clientStrings are also copied into the cache, allowing the client to free them.

The standard use of c1ientStrings is to implement the ContainerSource.StringOfltemProc,
which can be accessed efficiently by using ItemNthString. (See the section on item content
operations for more details on accessing the contents of items.) Caution: There are
restrictions on the total length of an item (strings plus client data> that may be added to a
cache~ Currently, no item should be Jonger than 512 bytes. . '

Appendltem: PROCEDURE [
cache: Handle.
add Data : Add Data]
RETURNS [handle:ltemHan'dle];

Appendltem appends an item to the end or" cache. It is usually called repeatedly from
within a FiIIProc. handle is a pointer that can be used to access the new item.

DeleteNltems: PROCEDURE [
cache: Handle,
item: CARDINAL,
nitems: CARDINAL~1];

DeleteNltems deletes one or more consecutive items from cache, s~rting at item. Fine point:

Because the cache is maintained as a contiguous string of bits. this operation is likely to be slow compared to

Appendttem and GetNthttem.

GetNthltem: PROCEDURE [cache: Handle, n: CARDINAL]
RETURNS [ltemHandle];

GetNthltem returns the nth item in cache. The items are numbered from zero. It returns NIL
if no such item exists. The ItemHandle returned is not guaranteed to be valid after any
operation that modifies the cache (DeleteNltems, Insertltem, Replaceltem). If the cache
status is inProgress (if someone is in the process of filling the cache), GetNthltem does not
return until the nth item has been appended to the cache or until the fill is complete.

18-3

18

18-4

ContainerCache

InserUtem:PROCEDURE[
cache: Handle.
before: CARDINAL.
addData: AddData)
RETURNS [handle: ItemHandle);

Insertltem inserts an item in cache. The new item is inserted before the item before. Note
that all the items after this item will be renumbered. Fine point: Because the cache is maintained as

a contiguous string ofbi~ this operation is likely to be slow compared to Appendltem and GetNthltem.

Replaceltem: PROCEDURE [
cache: Handle~
item: CARDINAL.,
addData: Add Data)
RETURNS [handle: ItemHandle];

Replaceltem replaces the contents of item in cache with the information in addData. Fine

point: This operation is implemented as DeletaNltams followed by Insertltam. and so is likely to be slow compared

to Appendltem and GetNthltem.

18.2.4 Item Content Operations

Itemlndex: PROCEDURE [item: ItemHandle) RETURNS [index: CARDINAL];

Given the handle item, Itemlndex returns its index in the cache.

ItemClients: PROCEDURE [item: ItemHandle] RETURNS [clientData: LONG POINTE~d;

Returns the client. data associated with item. If the client data passed in was Nil,
clientData is NI L.

ItemClientsLength: PROCEDURE [item: ItemHandle] RETURNS [dataLength: CARD.NAL];

Returns the length of the client data passed in with item.

ItemStringCount: PROCEDURE [item: ItemHandle] RETURNS [strings: CA.RD.NAL];

Returns the number of client strings associated with item.

ItemNthString: PROCEDURE [item: ItemHandle. n: CARD.NAL] RETURNS [XString.ReaderBody];

Returns the nth client string associated with item. This operation can be used to
implement a ContainerSource.StringOfitemProc.

18.2.5 Marking Items in the Cache

Whenever items are deleted or inserted in a ContainerCache, all the items are renumbered.
This allows a client to keep track of items by marking them. ContainerCache keeps track of
the marked items across any changes to the cache. A mark is a handle on a cache item that ~
tracks the item when the item number changes. This facility is handy for

ViewPoint Programmer's Manual 18

container source implementations that use ContainerCache and want to perform all the
various combinations of moving and copying items within the source.

Mark: TYPE • LONG POINTER TO MarkObject;
MarkObject: TYPE;

SetMark:PROCEDURE[
cache: ContainerCache.Handle, in.dex: CARDINAL]
RETURNS [mark: Mark];
-- set a mark at index

IndexFromMark: PROCEDURE [mark: Mark]
RETURNS [index: CARDINAL1;
-- get the current value of this mark

MoveMark: PROCEDURE [mark: Mark, newlndex: CARDINAL];
-- allows the resetting of a mark without using a new one

FreeMark: PROCEDURE [mark: Mark);
-- mark no longer needed

18.3 U sage/Examples

After the client allocates a cache, the client starts filling the cache by calling BeginFiII with
a FiIIProc. BeginFili immediately calls the FiliProc. Inside the FiliProc, the client usually
does some kind of enumeration on the source backing (for example, if the· source is backed
by files, the client does an NSFUe.List). For each item enumerated by the FiliProc, the client
builds the required strings for that item and then passes the strings along with any item
data to Appendltem. The item data is usually some information that is needed to identify
the item uniquely (for the file example, this might be a file ID). This process continues
until all the items in the source have been enumerated, at which time the FIIIProc returns.

The call to BeginFili may indicate that the FiliProc should be forked into a separate process.
This allows the enumeration of the source's items to go on in the background, which is an
advantage it the source has a large number of items. If the source is being displayed in a
ContainerWindow while this background fill is taking place, the window displays each
new item as it is appended to the cache. Fine point: ContainerWindow can display the items as they are

added because GetNthltem will wait during the tUling of the cache until the requested item is in the cache instead

of returning with an indication that the requested item is not available.

Once the cache has been created, operations on the container source that owns the cache
may cause items in the cache to become invalid. One way to bring the cache back into
synch is to invoke BeginFili and rebuild the cache. Ifreenumerating the items in the source
is expensive, items in the cache can be updated with the operations DeleteNltems,
Insertltem, and Replaceltem. The disadvantage of these operations is that they may cause
performance degradation. Fine Point: The current implementation tries to maintain the cache as a

contiguous series of strings of bits to minimize swapping. Using these operations may move large amounts of data

around or fragment the cache data. If a large number of changes are to be made. it may pay to rebuild the cache.

18-5

18

18-6

.-

ContainerCache

Use of Containereache may not always be appropriate. In some cases, the structure of
items in a source may be simple enough that a simple data structure may suffice to hold all ~,
the information necessary to respond to source operations .

18 .. 3.1 Example of ContainerCache Use

The following example is taken from the implementation of FileContainerSource. It gives
an example FiIIProc that uses Appendltem to build the cache.

ReaderSeq: TYPE • RECORD [SEQUENCE length: CARDINAL O. XString.ReaderBody);
ReaderSeqPtr: TYPE • LONG POINTER TO ReaderSeq;

WriterSeq: TYPE. RECORD [SEQUENCE length: CARDINAL OF XString.WriterBody);
WriterSeqPtr: TYPE • LONG POINTER TO WriterSeq;

FiliCachelnBackground: ContainerCache.FiIIProc •
< < [cache: Handle] RETURNS [e"ored: BOOLEAN 4- FALSE] > >
BEGIN
f5: FS ContainerCache.Clients[cache); co. get container source context
parentHandle: NSFile.Handle;
writers: WriterSeqPtr AliocateWriters [fs.columns.length);
readers: ReaderSeqPtr z.NEW [ReaderSeq(fs.column5.length]);

Enumerator: NS'ile.AttributesProc •
BEGIN
itemData: ItemFileData;
add Data : ContainerCache.AddData;

addData +- BuildRow [fs" writers, readers, @itemData, attributes];
[] +- ContainerCache.Appendltem [cache, addData];
RETURN;
END;

BEGIN
parentHandle +- NSFile. Open ByReference [fs.parentReference];
Process.SetPriority [Procass.priorityBackground);
NSFile.List [directory: parentHandle, proc: Enumerator,

selections: fs.selections, scope: fs.SCOpe];
NSFUe.Close [parentHandle];

END;
z.FREE [@readers];
FreeWriters [writers];

RETURN;
END;

BuildRow: PROCEDURE [
fs: FS.
writers: LONG POINTER TO WriterSeq,
readers: LONG POINTER TO ReaderSeq,
itemData: ItemFileDataHandle.
attributes: NSfile.Attributes]

~,

View Point Programmer's Manual

RETURNS [addOata: Container(ache.AddOata] •
BEGIN
attr: NSFUe.Attribute;
ei: Contain mplementation:

ei ... Containee.Getimplementation [attributes. type];
FOR i: CARDINAL IN [O •• fs.columns.length) DO

xstring.ClearWriter [@writers(i]J;
_. Dec/de the type of column we have (passed in as Column info to

FileContainerSourca.Create) and call proper format proc to format attribute(s)
into a string _.

WITH column: fs.columns[i) SELECT FROM
attribute • > {

attr +- AttributeFromAttributeRecord [
attributes. column.attr];

column. ~ormatPro~ (d. attr, @writers(i]];};
extendedAttribute • > {

attr+- ExtendedAttributeFromAttributeRecord [
attributes. column.extendedAttr);

column.formatProc (Ci, attr. @writers[i]];};
multipleAttributes • >

column.formatProc (ei. attributes. @writers(i]];
ENDCASE;

ENDLOOP;

itemOata f +- (id: attribtrtes.fileIO. type: attributes.type];

FOR i: CARDINAL IN [O •• writers.length) DO
readers(i] +- (XString.ReaderFromWriter [@writers(i]]) f ;
ENDLOOP;

addOata +-(
clientOata: itemData.
clientDataCount: slzE(ltemFileOata].
clientStrings: DESCRIPTOR(readers]];

RETURN[addOata];
END;

18

18-7

18 ContainerCache

18.4 Index of Interface Items ~

Item Page

AddData: TYPI 3
AliocateCache2: PROCEDURE 1
AllocateCache: PROCEDURE 1
Append.tem: PROCEDURE :3
BeginFiII: PROCEDURE 2
cacheFiliStatus: TYPE 2
Clients: PROCEDURE 2
DeleteN.tems: PROCEDURE 3
FiIIProc: TYPE 2
Freecache:PROCEDURE 2
FreeMark:PROCEDURE 5
Ge'tLength: PROCEDURE 1
GetNthltem: PROCEDURE 3
Handle: TYPE 1
IndexFromMark:PRocEDURE 5
Inserdtem:PROCEDURE 4
ItemClients: PROCEDURE 4
ItemClientsLength: PROCEDURE 4
ItemHandle: TYPE 2
Itemlndex: PROCEDURE 4
ItemNth~tring: PROCEDURE 4 .. .-,
ItemObject: TYPE 2
ItemstringCount: PROCEDURE 4
Mark:TYPE 5
MarkObject:TYPE 5
MoveMark:Procedure 5
Object: TYPE 1
Replaceltem: PROCEDURE 4
Reseteache: PROCEDURE 1
setMark:PRocEDURE 5
Status OfFill : PROCEDURE 2

18-8

19

ContainerSource

19.1 Overview

Tht;! Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache> provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user.
ViewPoint Folders are a typical example of such an 'application. ContainerWindow
provides the user interface for containers. It displays each item as a list of strings and.
handles selection highlighting, scrolling, and so forth. When a ContainerWindow is
created, a record of procedures is passed in. ContainerWindow obtains the strings of each
item by calling one of these procedures. ContainerWindow also performs user operations
on items, such as open, props, delete, insert, take the current selection, and selection
conversion by calling other procedures in the record. This record of procedures and their
implementation is called a container source. A container source can be thought of as a
supply (source) of items for a ContainerWindow. A container source is responsible for
imple.menting container source operations on its underlying representation of the items in

. the source.

The ContainerSource interface contains the procedure TYPES that make up the record of
procedures that a container source must implement. These procedure definitions
encompass all the operations that a source of items must be able to perform.
ContainerSource also provides a place to save data specific to a particular container source.

The procedure TYPES defined by ContainerSource fall into three categories:

• ActOnProc, canYouTakeProc, GetLengthProc. and TakeProc are operations on the
source as a whole.

• ConvertltemProc, DeleteltemsProc, ItemGenericProc, and StringOfltemProc are
operations on the individual items within the source.

• SetGlobalChangeProcProc, GetGlobalChangeProcProc, IsBusyProc, SetBusyProc,
SetMarkProc, FreeMarkProc, IndexFromMarkProc, and MoveOrCreateMarkProc are
housekeeping kinds of operations that support background (concurrent) move and
copy operations within a source.

Note that the items in a container must p.xhibit behavior similar to the behavior defined by
the Containee interface, such as open, props, take selection, convert. However, also note
that the Containee interface defines the behavior of NSFiles, whereas ContainerSource is

19-1

19 Con tainerSource

totally independent of NSFile. The items in a container may be backed by anything. The
FileContainerSource interface is an example of a container source that is backed by
NSFiles. The ViewPoint Directory application contains examples of container sources that
are backed by Clearinghouse. entries (such as the Filing and Printing dividers) and by
simple strings in virtual memory (such as a domain divider).

The ContainerCache interface provides a mechanism for caching the strings and item~
specific data for the items in a container source. The implementor of a container source
might flOd ContainerCache to be handy.

19.2 Interface Items

19.2.1 Handle, Procedures, and ProceduresObject

Handle: TYPE. LONG POINTER TO Procedures;

Procedures: TYPE. LONG POINTER TO ProceduresObject;

ProceduresObject: TYPE • RECORD [
actOn: ActOnProc,
canYouTake: canYouTakeProc,
columnCount: ColumnCountProc,
convertltem: ConvertltemProc,
defeteltems:· DefeteltemsProc,
getLength: GetLengthProc,
itemGeneric: ItemGenericProc,
stringOfltem: StringOfltemProc.
take: TakeProc);

ContainerSourceExtra.Procedures: TYPE.
LONG POINTER TO ContainerSourceExtra.ProceduresObject;

ContainerSourceExtra.ProceduresObject: TYPE • RECORD [
canYouTakeX: canYouTakeProcX,
takeX: TakeProcX,
setGlobalChangeProc: SetGlobalChangeProcProc,
getGlobalChangeProc: GetGlobalChangeProcProc,
isBusy: IsBusyProc,
setBusy: SetBusyProc.
setMark: SetMarkProc ... NIL,
freeMark: FreeMarkProc ... NIL,
indexFromMark: IndexFromMarkProc ... NIL.
moveOrCreateMark: MoveOrCreateMarkProc ... NIL];

Handle identifies a particular container source. Handle is a pointer to a pointer
(Procedures) to a record of procedures (ProceduresObject) that are implemented by the
container source. A container source typically EXPORTs a Create procedure that return a
Handle. This Handle is then passed to ContainerWindow.Create. Whenever
ContainerWindow needs the container source to do something, it calls the appropriate ~,
procedure in the ProceduresObject by using Handle f f , and passing in the Handle. Note:
Every procedure in the ProceduresObject takes a Handle as its first parameter. Fine Point:

,....",'

ViewPoint Programmer's Manual 19

Actually, ContainerWindow will call the INLINE procedures described in the INUNE section, which in turn call

the procedures in the ProceduresObject.

Handle is a pointer to a pointer (rather than just a pointer to the ProceduresObject) to
allow a container source to save data specific to the source. For example, a file-backed
source would need to keep a pointer to the file. See the section on Usage/Examples for an
explanation of how this is done.

ContainerSourceExtra.ProceduresObject are extra procedures to support concurency in
containers. These procedures logically belong in the ContainerSource.ProceduresObject. ~ 0

ContainerSourceExtra.Handle is provided because these procedures are auxiliary to the
main ContainerSource. Procedu res. A source that supports...these operations will export a Create
operation that returns a Containersource.Handle and a ContainerSourceextra.Procedures.
ContainerWindowExtra4. Create XX takes both a ' ContainerSource. Hand I e and a
ContainerSourceExtra.Procedures. This procedure must be used when the client wants to create
a container that uses ContainerSourceExtra.Procedures.

19.2.2 Procedures That Operate on Individual Items

Itemlndex: TYPE. CARDINAL:

nullltem: Itemlndex. Itemlndex.LAST;

All the procedures that operate on individual items take a Handle and an Itemlndex. An
Itemlndex is simply a CARDINAL that uniquely identifies an item in the source. Note: A
container source is an ordered list of items. An Itemlndex of"n" indicates the "nth" item in
the source. An Itemlndex of zero corresponds to the rust source item. An Itemlndex should
be thought of as a loose binding: the index of a particular item may change as a result of
changes to the source. For example, if an item is deleted, all the items below it will be
renumbered. nullitem is a constant used to represent no item or unknown item.

If concurrency is supported within the source, each of the procedures that take an
Itemlndex as a parameter (StringOfltemProc, ItemGenericProc, ConvertltemProc,
DeleteltemsProc, and TakeProcITakeProcX) must be able to support a "between calls lock"
on the source that lasts from the time the client calls IndexFromMarkProc to the time one
of the following procedures is entered. See §19.2.S for a discussion of IndexFromltem,
§19.2.6 for a discussion of locking, and the example in §19.4.3 for one way to implement
this locking.

StringOfltemProc: TYPE :II PROCEDURE [
source: Handle,
itemlndex: Itemlndex,
stringlndex: CARDINAL]
RETURNS [XString.ReaderBody];

The source's StringOfltemProc should return the string stringlndex of item itemlndex in
source. Each item's display is composed of strings, one for each column of the container
window. For example, an open F'older shows four columns: the icon picture, the name, the
size, and the date. stringlndex will be IN [O .. source.columnCount[]) (see also
ColumnCountProc in the next section). If there is no such item (if itemlndex is greater than
the number of items in the source, for example), StringOfltemProc should raise
Error[noSuchltem]. StringOfltemProc is used extensively and its implementation should

19-3

19

19-4

Con tainerSource

be efficient. If the source supports concurrency, this procedure must support the ffbetweenJlI.~!!
calls lock" convention. See §19.2.5 for more details.

ItemGenericProc: TYPE • PROCEDURE [

source: Handle.
itemlndex: Itemlndex.
atom: AtomoATOM.
changeProc: ChangeProc ~ NIL.

changeProcData: LONG POINTER ~ NIL]

RETURNS [LONG UNSPECIFIED);

The source's ItemGenericProc is invoked to perform an operation on one of the items in the
container. itemlndex indicates which item to operate on. The operation is specified by
atom. Some of the typical atoms are: Open, Props, CanYouTakeSelection, TakeSelection,
TakeSelectionCopy. This procedure is just like the genericProc that a
Containee.lmplementation must provide, see the Containee interface for a complete
description of the atoms and their return values. changeProc must be called if the
ItemGenericProc causes the source to change. changeProc and changeProcOata are
described in more detail below in the section on changeProc types.

If the source supports concurrency, this procedure must support the f~etween calls lock"
convention~ See § 19.2.5 for more details.

ConvertitemProc: TYPE • PROCEDURE [

source: Handle.
itemlndex: Itemlndex.
n: CARDINAL ~ 1 ,
target: Selection. Target.
zone: UNCOLNTEDZONE.

info: Selection.Conversionlnfo 4- [convert(]] , .
changeProc: ChangeProc ~NIL.
changeProcData: LONG POINTER ~ NIL]

RETURNS [value: Selection.Value];

The source's ConvertltemProc is invoked to convert one or more of the items in source,just
as if the item was the current selection and Selection.COnvert had been called. itemlndex
indicates the first item to convert. n indicates how many consecutive items to convert.
target. zone. info. and value are all'identical to the parameters for Selection.ConvertProc
(see the Selection interface). Ifn> 1, then info is the enumeration variant; otherwise, it is
the convert variant. changeProc must be called if the ConvertltemProc causes the source to
change, for example, when an item is moved out of the source. changeProc and
changeProcData are described in more detail in the section on changeProc types.

If the source supports concurrency, this procedure must support the f'between calls lock'P
convention. See §19.2.5 for more details.

DeleteltemsProc: TYPE • PROCEDURE [

source: Handle,
itemlndex: Itemlndex,
n: CARDINAL 4- 1,

ViewPoint Programmer's Manual

changeProc: ChangeProc NIL,
changeProcData: LONG POINTER NIL];

19

The source's DeleteltemsProc is invoked to delete consecutive items from source.
itemlndex is the rust item to delete. n is the number of items to delete. changeProc must
be called if the DeleteltemsProc causes the source to change, that is, if the deletion is
successful. changeProc and changeProcData are described in more detail in the section on
changeProc types.

If the source supports concurrency, this procedure must support the "between calls lock"
convention. See §19.2.5 for more details.

19.2.3 Procedures That Operate on the Entire Source

ColumnCountProc: TYPE=- PROCEDURE [source: Handle] RETURNS [columns: CARDINAL];

The source's ColumnCountProc should return the number of columns in source, that is, the
number of strings in each item. Fine point: typically. the number of columns is the same as COUNT
[ContainerWindow.ColumnHeadersl.

GetLengthProc: TYPE =- PROCEDURE [~ource.: Handle]
RETURNS [length: CAROINAL,10taIOrPartial: TotalOrPartial_ total);

TotalOrPartial: TYPE=- {total, partial};

The source's GetLengthProc should return the total" number of items currently in the
source. This operation is performed often and should be efficient. Some container sources
have indeterminate length until after an initial enumeration has completed (for example,
clearinghouse enumerations). These sources may return [totaIOrPartial: partial] while the
initial enumeration is in progress. This lets the ContainerWindow display mechanism

-know that there are more items coming, while giving it some information along the way.
Once a source knows how many items are in the source, (or for those sources that know
right from the start how many items are in the source, (such as NSFile-backed sources), the
GetLengthProc should return [totaIOrPartial: total).)

ActOnProc: TYPE. PROCEDURE [source: Handle, action: Action];

Action: TYPE = {destroy, reList, sleep, wakeup};

The source's ActOnProc is invoked to request some action of the source. Action indicates
what the source should or can do.

destroy

sleep

The term destroy means that the source should destroy itself,
freeing all storage and releasing all resources associated with the
container source instance.

The term sleep means that the source should release whatever
resources it can without losing information; it is a hint that the
container source will not be used for a while.

19-5

19

19-6

ContainerSource

wakeup

reList

The term wakeup means that the source is going to be used and :~

should resume its normal state, undoing whatever was done for
sleep.

The term reList means that the source should re-enumerate itself
because its backing store has been changed.

canYouTakeProc: TYPE a PROCEDURE [
source: Handle,
selection: Selection.ConvertProc .-NIL]
RETURNS [yes: BOOLEAN];

canYouTakeProcX: TYPE. PROCEDURE [
source: Handle,
background: BOOLEAN of-FALSE]
RETURNS [yes: BOOLEAN];

The source's canYouTakeProc is invoked to determine if the container source can take the
current selection. selection is an obsolete parameter that is not used. If the
CanYouTakeProc returns yes • TRUE, then the source's TakeProc may be called.
canYouTakeProcX takes a parameter background that asks if the source can take the
current se'lection in the background. CanYouTakeProcX is exported by
ContainerSourceExtra. Fine point: Supplying a canYouTakeProcX is optional. However. if· the source

supplys the canYouTakeProcX. it must also still provide a a canYouTakeProc. even though the implementation of

one may call the other.

This routine is intended to provide an efficient check on the compatibility of the objects
being copied or moved. The common use of this routine is to provide feedback to the user. If
a CanYouTakeProc returns TRUE, the client may choose to highlight the target. This is
normally at the level of a file-type check. More elaborate checking is not necessary; for
example, a file-backed container source would not want to check the source for protection
or uniqueness violations. These should be handled by the TakeProc.

TakeProc: TYPE • PROCEDURE [
source: Handle,
copyOrMove: Selection.COpyOrMove,
afterHint: Itemlndex.- nullltem,
withinSameSource: BOOLEAN .-FALSE,
changeProc: ChangeProc 4- NIL,
changeProcData: LONG POINTER 4- NIL,
selection: Selection.ConvertProc .-NIL]
RETURNS [ok: BOOLEAN);

TakeProcX: TYPE • PROCEDURE [
source: Handle,
copyOrMove: Selection.COpyOrMove,
afterHint:ltemlndex 4-Mullltem,
withinSameSource: BOOLEAN 4- FALSE,
changeProc: ChangeProc 4- NIL,
changeProcData: LONG POINTER 4- NIL,

ViewPoint Programmer's Manual

mgr: SelectionX.Saved SelectionX.nuIIManager]
RETURNS [ok: BOOLEAN);

beforeltemZero: Itemlndex • Itemlndex.LAST· 1;

19

The source's TakeProc is invoked to add items to the container source. copyOrMove tells
the source whether to do a move or a copy of the current selection (which can be obtained
by Selection. Convert). afterHint indicates the item the new item should be inserted after.
Fine point: This is only a hint to the container source, since the ultimate position of the new item may depend on a

sort order built in to the source. afterHint defaults to nullltem, which indicates that the caller
doesn't care where the new item goes. If afterHint • beforeltemZero, the source should
insert the new item before the rust item. changeProc must be called if the TakeProc causes
the source to change. withinSameSource • TRUE indicates to the source that the item(s)
being moved or copied into the source are also in that same source; such as when the user
moves or copies something from one place in a container to another place in the same
container. This case usually involves some special case processing by the source (especially
for move). changeProc and changeProcData are described in more detail in the next
section. selection is an obsolete parameter that is not used. ok indicates whether the
TakeProc was successful or not. The use of this routine is usually be preceded by a call to
the source's canYouTakeProc.

TakeProcX is the same as TakeProc with the addition of the mgr parameter that indicates
the source of the items to be copied or moved. If mgr • SelectionX.nuIlMgr, the source is the
current selection. Otherwise, mgr is an encapsulated selection that can be converted with
SelectionX.ConvertX. See the Selection chapter for more information on encapsulated

"selections. Fine point: Supp"lying a TcakeProcX is optional. However, if the source supplies the TakeProcX. it
must also still provide a a TakeProc, even though the implementation of one may call the other.

If the source supports concurrency, these procedures must support the ~'between calls lock"
convention. See § 19.2.5 for more details.

19.2.4 ChangeProc Types

A source's ConvertProc, Del,eteltemsProc, ItemGenericProc, and TakeProc all take a
ChangeProc as an input parameter. This ChangeProc must be called by the source
whenever any item or items in the source changes. This allows the ContainerWindow
display code to keep the display up to date with the source. For example, a call to the
source's ItemGenericProc with an atom of Props will cause a property sheet to be displayed
for an item. If the user then edits, for example, the name of the item, and then closes the
property sheet, the source must detect this change, update its backing, and call the
ChangeProc that was passed into the ItemGenericProc. This ChangeProc (supplied by
ContainerWindow) then causes the changed item(s) to be redisplayed.

ChangeProc: TYPE ill PROCEDURE [
changeProcData: LONG POINTER,
changelnfo: Changelnfo];

A ChangeProc and changeProcData are passed to a source's ConvertProc,
DeleteltemsProc, ItemGenericProc, and TakeProc. Since the changeProcData had to be
allocated from someplace the changeProc must always be called, even if there wer~ no

19-7

19

19-8

ContainerSource

changes to the source. The source must call the ChangeProc with the changeProcData and
any changelnfo. ~

Changelnfo: TYPE • RECORD [

var: SELECT changeType: ChangeType FROM

replace. > [item: Itemlndex],
insert. > [insertlnfo: LONG DESCRIPTOR FOR ARRAY OF Editlnfo],
delete • > [deletelnfo: EditlnfoJ,
all. noChanges • > NULL,

ENDCASE];

ChangeType: TYPE. {replace. insert. delete. all, noChanges};

Changelnfo is passed to the ChangeProc to tell the display code exactly what changed. A
container source can be smart and pass specific Changelnfo (for example, ff3 items were
inserted after item 4 and 2 items were inserted after item 6" may be constructed with the
insert variant), or be dumb and simply pass the all variant, which causes a total repaint of
the container display. replace indicates that a single item has changed. insert indicates
that one or more items have been inserted. delete indicates that one or more items have
been deleted. all indicates that the entire source has been changed.

Editlnfo: TYPE • RECORD (

afterltem: Item. ndex.
nltems: CARDINAL];'

Editlnfo is used with the insert and delete variants of Changelnfo to indicate how many ~
items have been inserted or deleted, and where they were inserted at or deleted from.

19.2.5 Marks

A container source is defined as a sequence of items from [O . .length). Every time a item is
inserted or deleted in the source, the rest of the items in the source are effectively
renumbered. This causes trouble for ContainerWindow. If the user selects the flfth item,
the container window must be able to continue to tie the selection to the object the user
pointed at, even if other items have been added or deleted by concurrent operations.

We define marks to get around this problem. A mark is a handle on a item in the source
that tracks that item when its item number changes.

The ContainerCache interface supports marks which can be used to implement
ContainerSource marks. See the ContainerCache chapter for more information.

Mark: TYPE. LONG POINTER;

SetMarkProc: TYPE =- PROCEDURE [

source:Handle.
index :Itemlndex]
RETURNS [mark: Mark];

~!

~i

View Point Programmer's Manual 19

To mark an item, the client calls the SetMarkProc for a source and supplies an index to
indicate the item to be marked. This creates a new mark. Mark and SetMarkProc are
defined in ContainerSourceExtra.

IndexFromMarkProc: TYPE • PROCEDURE [

source: Handle.
mark: Mark.
lockSource: BOOLEAN ... FALSE]

RITURNS [index:ltemlndex]:

IndexFromMarkProc ~es a mark created with SetMarkProc or MoveOrCreateMarkProc
aDd returns the current item index for mark as index.

A typical use of marks is to get the value of a mark and then call one of the source procs
that takes an item index (Le. StringOfltemProc, ItemGenericProc, ConvertltemProc,
DeleteltemsProc, SetBusy, and TakeProcITakeProcX). But with concurrency, the item
index for a particular mark could change inbetween the time we call1ndexFromMarkProc
and when we call the source procedure. We establish a "between-calls lock" convention to
address this problem. Calling IndexFromMarkProc with lockSource ... TRUE tells the
container source to lock itself until client calls back to a procedure that takes an item-Index
or until the client unlocks the source with SetBusy (see §19.2.6)' Thus the name "between­
calls lock": the container'Source is only locked inbetween the call to IndexFromMarkProc
and the next procthat takes an item~ndex. The other approach to use would be to lock the
source, call1ndexFromMarkProc, call source proc with the index, and unlock the source.
This would result in the source being locked for the call to the source proc. This may be a
undesirable if source proc might take a long time. Using lockSource unlocks the source
again as soon as the source proc is called. Important point: if IndexFromMarkProc is
called with locksource • TRUE and a source proc is not called, the client must call SetBusy
to unlock the source.

IndexFrommarkProc is defined in ContainerSourceExtra.

FreeMarkProc: TYPE • PROCEDURE [

source: Handle.
mark: Mark];

FreeMarkProc frees mark when the client is done with it. FreeMarkProc is defined in
ContainerSourceExtra.

MoveOrCreateMarkProc: TYPE • PROCEDURE [

source: Handle,
mark: Mark,
newl ndex :Itemlndex]
RETURNS [newMark: Mark];

MoveOrCreateMarkProc is useful for pointing an existing mark at another item newlndex.
I! mark is NIL, the effect is the same as calling SetMark: a new mark is created. newMark is
either the old mark updated, or the newly created mark. Even if mark is non-nil, the client
must reassign mark to newMark because the value of mark may have changed.
MoveOrCreateMarkProc is defined in ContainerSourceExtra.

19-9

19

19-10

ContainerSource

19.2.6 ContainerSource locking and Busy routines

If a container source supports concurrency ~ it must support locking individual items and
locking the entire container source. ContainerWindow locks individual items (or makes
them 'busy?) in response to user operations such as background copy out or background
drop-on. The container source is responsible for knowing that a particular item is busy and
responding with a busy status if queried.

SetBusyPrac: TYPE • PROCEDURE [

source: Handle,
item:ltemlndex, - if Item Index is null/tem, refers to whole source,
newBusyState: BOOLEAN]

RETURNS [succeeded: BOOLEAN];

IsBusyPrac: TYPE • PROCEDURE [

source: Handle.
item:ltemlndex - if Item Index is null/tem, refers to whole source
]
RETURNS [busy: BOOLEAN];

SetBusyProc changes the state of item. If newBusyState is TRUE, item should be made busy,
if FALSE, item should be made unbusy. IsBusyProc gets the state of item. If the item is busy,
it returns TRUE.

Ifitemlndex is nullltem, SetllsBusyProc refe~ to the entire sourc~ rather than an individual ~
item. When the entire source is locked, no items should be added or deleted to the source
until the source is unlocked again. If. the source is already locked when SetBusyProc is
called, the call should wait until the source is unlocked.

Important implementation point: Because of the callback design of containers,
SetBusyProc may be called in a nested fashion to lock a source: i.e., ContainerWindow may
call SetBusyProc[newBusystate: TRUE) and later make the same call again with call with
newBusyState: FALSE in the mean time to unlock the source. The container source should
implement source locking such that nested calls to SetBusyPrac from the same process do
not lock, but a call from a different process will lock. Thus the first call from a given
process locks the source for that process. §19.4.3 gives one example of how to implement a
source locking scheme that will support these conventions. Fine point: if possible. this procedure

should be relatively cheap. ContainerWindow will call it frequently: it will be called while tracking the selection

for the user, for example.

19.2.7 Errors

A container source may raise Error or Signal as appropriate.

Error: ERROR [code: ErrorCode. msg: XString.Reader +-NIL.

errar: ERROR +- NIL. errorData: LONG POINTER TO UNSPECIFIED +- NIL];

Signal: SIGNAL [code: ErrorCode. msg: XStri ng.Reader +- NIL.

error: ERROR +-NIL. errorData: LONG POINTER TO UNSPECIFIED +-NIL];

A source's ItemGenericProc (and ConvertltemProc and DeleteltemsProc) should never
assume that it has been called by a ContainerWindow, and therefore should never call

ViewPoint Programmer's Manual 19

such facilities as Attention.Post or UserTerminal.BlinkDisplay. (The application might be
called by CUSP, for example.) Rather, the source should raise ContainerSource.Error or
Signal with an appropriate message. The caller of the source's ItemGenericProc should
catch these errors and do the appropriate thing. In the typical case, the ContainerWindow
will call the source's ItemGenericProc and catch the error and call Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file. msg is the
message to display to the user. error is the aetuallower-Ievel error that ocurred that caused
Error or Signal to be raised. errorData points to any additional data that· accompanied the
lower level error.

ErrorCode: TYPE. MACHINE DEPENDENT {invalidParameters(O), access Error, fileError,
noSuchltem, other, last(15)};

invalidParameters

accessError

fileError

noSuchltem

other

indicates that some parameters were invalid; for example, the
source was not the correct type (the Procedures did not match).

indicates an attempt to perform an operation that violates the
created access option (for sources that implement access
controls).

indicates a file system error (for sources that are backed by files).

A container source implementation should raise
Error[noSuchltem] if one of the container source's procedures is
called with an Itemlndex for an item that is not in the source.

may be raised to indicate any other problem._

Fine point: Error and Signal are EXPORTed by the FileContainerSource implementation since ContainerSource has
no implementation.

19.2.8 Global change proc

GetGlobalChangeProcProc: TYPE • PROCEDURE [
source: ContainerSource.Handle]
RETURNS [

changeProc: ChangeProc,
data: LONG POINTER"
window: Window.Handle];

SetGlobalChangeProcProc: TYPE =- PROCEDURE [
source: Handle,
changeProc: ChangeProc,
data: LONG POINTER,
window: Window.Handle .-NIL];

If SetGlobalChangeProcProc is supplied by the source, container window will call this
procedure during the ContainerWindow.Create call to supply a global change proc and data
that the source can call anytime to update the container window. The container window
may also give the source the Window. Handle for the container window so that clients of the
source can get at the window if necessary. window may be NIL if the client of the source is

19-11

19 Con tainerSource

not ContainerWindow. GetGlobalChangeProcProc allows any client of the source to get
this information.

One example of where this is used is in the Busylcon implementationo FileContainerSource
provides a way for Busylcon to xmd all the file-backed sources, and once Busylcon finds the
source a particular file is in, it calls the SetBusyProc to make the file, the calls
GetGlobalChangeProcProc to get the change proc to allow it to update the container
window display.

GetGlobalChangeProcPro~ and SetGlobalChangeProcProc are defined in
ContainerSoufceExtra.

19.2.9 INLINES

The following IN LINE procedures are provided as a convenience' to clients who wish to use
object notation when calling a container source. ContainerWindow is the main client of
these procedures.

ActOn: ActOnProc =- INUNE { ••• };
"canYouTake: canYouTakeProc • INUNE {no};
ColumnCount: ColumnCountProc =- INUNE {no};
Convertltem: ConvertitemProc =- INUNE { ••• };

Deleteltems: DeleteltemsProc =- INUNE {n.};
GetLength: GetLengthProc • INUNE { ••• };

ItemGeneric: ItemGenericProc • INUNE { ••• };

StringOfltem: StringOfltemProc • INUNE { ••• };

Take: TaKeProc =- INUNE { ••• };

19.3 ContainerSource and concurrency

The ContainerSourceExtra interface defines a number of new container source procedures
necessary to make concurrent move and copy work in a container source. If a particular
type of container source does not create a ContainerSourceExtra.Procedures, the container
window will realize from the absence of these procedures that it cannot support
concurrency and will not start background operations to or from the source.

19.4 Usage/Examples

19-12

The reason that Handle is a pointer to a pointer (rather than just a pointer to the
ProceduresObject) is to allow a container source to save data specific to the source. For
example, a file-backed source would need to keep a pointer to the file. This is done in the
following example.

19.4.1 ContainerSource Example

1. Declare a ContainerSource.ProceduresObject in the global frame of the module and fill it
with the appropriate procedures.

mySourceProcs: ContainerSource.ProceduresObject +- [
actOn: MyActOn,
canYouTake: CanlTake.

~

View Point Programmer's Manual

columnCount: MyColumnCount.
convertltem: ConvertMyttem,
deleteltems: DeleteMyltems,
getLength: GetMyLength,
itemGeneric: MyltemGeneric,
stringOfitem: StringOfMyltem,
take: MyTake]; .

19

2. Declare a record that has a ContainerSource.Procedures (Procedures, not
ProceduresObject!) as its first field and initialize this field to point to the
ProceduresObject declared in the global frame. The rest of the record should contain
whatever data the source needs in order to perform all the operations it will be
requested to perform. Also declare a pointer to this record.

MySource: TYPE. LONG POINTER TO MySourceObject;

MySourceObject: TYPE • RECORD [
procs: ContainerSource.Procedures +- @mySourceProcs,
otherStuff: •••);

3. When creating the source, allocate the MySourceObject record. and fill it with any
relevant data. Return a pointer to the Procedures field of the record (@ms.procs
below). Note: This return value is a pointer to a ContainerSource.Procedures, which is a
ContainerSource.Handle.

Create: PUBLIC PROCEDURE [otherStuff: •••) RETURNS [source: ContainerSource.Handle] • {
ms: MySource +- Z.NEW [MySourceObject [otherStuff: otherStuff]];
RETURN [@ms.procs];
};

4. The ill'St thing that every procedure in the Procedures Object should do is LOOPHOLE the
ContainerSource.Handle that was passed in into a pointer (MySource) to the source's data
record (MySourceObject). After the LOOPHOLE, the fields of the source's data record can
be directly accessed, e.g., ms.otherStuff. This all works because the first field in the
source's data ~ecord is a Procedure~. Note that the LOOPHOLE is actually performed in a
procedure that also checks to be sure that the Procedures field of the passed source
actually points to this source's procedures (IF source i # @mySourceProcs THEN).

ActOnFile: ContainerSource.ActOnProc • {
ms: MySource • ValidMySource[source);

••• ms.otherStuff .••

};

ValidMySource: PROCEDURE [source: ContainerSource.Handle] RETURNS [ms: MySource] =- {
IF source. NIL THEN ContainerSource.Error [invalidParameters] ;
IF source i # @mySourceProcs THEN ContainerSource.Error(invalidParameters];
}:

19-13

19 ContainerSource

19.4.2 Errors and Signals

For example, this client catches an NSFile.Error and raises Containee.Error #I passing along the
ERROR and the NSFile.ErrorRecord:

message: xstring.ReaderBody;
errorRecord: NSFUe.ErrorRecord;
signal: -·GENERIC-· SIGNAL +- NIL;
file +-NsFile.OpenByReference [reference: .•. !

NSFile.Error • > {
errorRecord ~ error;
signal +- LOOPHOLe(NSFile.Error, SIGNAL];
GOTO ErrorExit}];

_. Operate on the file.-·
NSFile.Close[file] ;
EXITS

ErrorExit • > {
message +- XString.FromSTRING{"NSFile.Error"L];
ContainerSource.Error [

code: file Error, msg: @message, error: signal, errorData: @errorRecord];

19 .. 4.3 Source locking for concurrency

-If a source supports background move and copy via the procedures defined in
ContainerSourceExtra, it must also provide a .means of locking the container source. As .~.
described in §19.2.5 and §19.2.6, this locking must support a number of conventions:

1. ContainerWindow must be able to lock the entire source by calling SetltemBusyProc .
This lock prevents any items from being added or deleted in the source except by the
calling process.

2. This locking must be reentrant: one process must be able to call by into the same source
without getting monitor locked. Other processes must be locked out.

3. We must be able to support the "between calls" locking convention described in §19.2.5
·under the discussion oflndexFromltemProc.

This can be a tricky set of constaints to satisfy. Number 2 is particularly tricky because
conventional Mesa object locking doesn't do what we want: if we call an ENTRY procedure
from within another ENTRY procedure, we deadlock. Number 1 implies the container source
must lock itself whenever it modifies the source so that another call to lock the source will
block until the modification is complete.

The example we present is taken from the FileContainerSource implementation. It
provides a locking scheme that has proved easy to use and satisifies the requirements
given above. This example shows code from from the implementation that has been
modified slightly for clarity.

FSOps.FileSourceObject: TYPE :II MACHINE DEPENDENT RECORD [
procs (0:0 • .31): ContainerSource.Procedures r

monitorLock (2:0 .• 15): MONITORLOCK r •• object lock field for the source implementation ~

_. other source specific fields ...

19-14

ViewPoint Programmer's Manual

lock (21 :0 .. 79): RECORD [

);

process (0:0 .. 15): PROCESS +- NIL.
entryCount (1 :0 .. 15): CARDINAL +-0,

lockedBetweencalis (2:0 .. 15): BOOLEAN FALSE.
exiting(3:0 .. 31): CONDITION]

Enter: PUBLIC PROC [f5: FS, how: EnterType +- normal) ;
Exit: PUBLIC PROC [f5: FS);

EnterType: TYPE. {
normal. -- just do normal enter
getBetweencalislock. -- set betweenCalls boolean
locklfNotBetweencalis .. - if betweencalls boolean not set, lock; otherwise nothing
};

19

To implement our locking, we defme two procedures: Enter and Exit. We also defme a lock
record as part of the source specific data to support these two procedures. Every procedure
we would normally make an ENTRY procedure now calls Enter and Exit around the critical
code. For any particular source fs, Enter allows a process into the monitor if there are no
other processes running in the monitor. Once a particular process has the monitor, it can
call Enter as many times as' it wants so long as all Enters and Exits are paired. Any other
process trying to get into the monitor waits until the running process has done its last Exit.

To support the ~between calls" convention, we add a parameter to Enter to give some
infomation about what our situation is. Most ordinary clients call with how. normal,
which says 'I want to lock the source.'

Clients that take an itemlndex and must support ~'between call" locks call Enter with
how. locklfNotBetweenCalis. This says "if IndexFromltemProc was just called and the
client wanted a between calls lock, don't lock the monitor again; otherwise, acquire the
monitor." The logic here is that at the end of the ItemIndex procedure we call Exit. If we
were not in the between calls case, the Exit unlocks the Enter at the beginning of the
procedure. If we were in the between.calls case, the Exit unlocks the Enter done in the
IndexFromltemProc.
Finally, to set up the between calls state, IndexFromltemProc calls Enter with
how. getBetweenCalislock.

The implementation below give the implementation for Enter and Exit. Much of the logic is
dedicated to making sure the between calls logic works correctly. Exit includes some
debugging code to raise a signal if the number of Exits is more than the number of Enters.
The entire module is an object monitor on the monitorlock field of the source object.

FileContainerSourcelmpl: MONITOR LOCKS fs.monitorlock USING fs: FSOps.FS :a BEGIN

Enter: PUBLIC ENTRY PROC [fs: FS, how: EnterType +- normal] •
BEGIN ENABLE UNWIND • > {};
me: PROCESS. Process.GetCurrent[];
SELECTfs.lock.process FROM

me .>
{IF -(how • locklfNotBetweenCalls AND fs.lock.lockedBetweenCalls) THEN {

fs.lock.entryCount +- fs.lock.entryCount + 1;

19-15

19

19-16

ContainerSource

IF -fs.lock.lockedBe.tweenCalis AND how =- getBetweenCaiisLock THEN {

fs.lock.lockedBetweenCalis ~ TRUE;
};

}
ELSE fs.lock.lockedBetweenCalis ~ FALSE
RETURN};

NIL. > NUU;

ENDCASE • > {
waitCount .-waitCount + 1 ;
WHILE fs.Jock.process # NIL DO WAITfs.lock.exiting; ENDLOOP:
waitCount .-waitCount .. ' ;
};

fs.lock.process.- me;
fs.lock.entryCount .- 1 ;
fs.lock.lockedBetweenCalls.- how. getBetweenCalisLock;
END;

UnbalancedFileContainerSourceLocks: SIGNAL a CODE;

Exit: PUBUC ENTRY PROC [15: FS] •
BEGIN ENABLE UNWIND • > {};
me: PROCESS. Process.GetCurrent[);
IFfsclock.entryCount • 0 THEN SIGNAL UnbalancedFileContainerSourceLocks(] ;
15.lock.entryCount +- fs.lock.entryCount '" 1 ;
IF fs.lock.entryCount • 0 THEN

{fs.lock.process +-NIL;
NOTIFY fs.lock.exiti ng};
--must not be BROADCAST; only the next process on the queue should be allowed

to run
END;

ConvertFileltem is an example of a typical procedure that takes an Itemlndex and
supports the between calls. convention.

ConvertFileltem: ContainerSource.ConvertltemProc •
BEGIN
fs: FS • ValidFileSource[source);

Enter[fs.locklfNotBetweenCalls);
BEGIN ENABLE UNWIND. > Exit(fs);

IF inLock THEN Exit(fs);
-- implement Convertltem

Exit(fs);
END; -- enable

END; -- ConvertFileltem

.- get a lock if we don't have one

IndexFromMark also supports the between calls convention.

IndexFromMark: ContainerSourceExtra.lndexFromMarkProc • {
f5: FS • ValidFileSource[source);
IF lockSource THEN Enter[fs, getBetweenCaIl5Lock];

ViewPoint Programmer's Manual

index ~ IF mark # NIL THEN ContainerCache.lndexFromMark[mark]
ELSE ContainerSource.nullltem;

_. don 't unlock: that will be done in callbacks.
};

SetBusy has the dual function of lacking individual items (which uses the between calls
logic) and lacking the entire source.

SetBusy: ContainerSourceExtra.SetBusyProc •
IEGIN
IF item II ContainerSource.nullltem THEN {

Enter[fs,locklfNotBetweenCalls];
IEGIN ENAILE UNWIND. > Exit[fs];

. }

-- set busy status for item
Exit[fs,2100];
END;-- enable

ELSE -- lock source
IF newBusyState THEN Enter[fs) ELSE Exit[fs]};

END;

19

19-17

19 ContainerSource

19.5 Index of Interface Items
~

Item Page

Action: TYPE 5
ActOn: ActOnProc 12
ActOnProc: TYPE 5
beforeltemZero: Itemlndex 7
(anYouTake:(anYouTakeProc 12
canYouTakeProc: TYPE 6
canYouTakeProcX: TYPE 6
Changelnfo: TYPE 8
ChangeProc: TYPE 8
ChangeType: TYPE 8
ColumnCount: ColumnCountProc 12
ColumnCountProc: TYPE 5
Convertltem: ConvertltemProc 12
ConvertltemProc: TYPE 4
Deleteltems: DeleteltemsProc 12
DeleteltemsProc: TYPE 5
Editlnfo: TYPE 8
Error: ERROR 11
ErrorCode: TYPE 11
FreeMarkProc: TYPE 9
GetGlobalChangeProcProc: TYPE 11 ~
GetLength: GetLengthProc 12 -1\

GetLengthProc: TYPE 5
Handle: TYPE 2
IndexFromMarkProc: TYPE 9
IsBusyProc: TYPE 10
ItemGeneric: ItemGenericProc 12
ItemGenericProc: TYPE 4
Itemlndex: TYPE 3
Mark: TYPE 9
MoveOrCreateMarkProc: TYPE 10
nullltem: Itemlndex 3
Procedures: TYPE 2
ContainerSourceExtra.Procedures: TYPE 2
ProceduresObject: TYPE 2
ContainerSourceExtra.ProceduresObject: TYPE 2
SetBusyProc:TYPE 10
SetGlobalChangeProcProc: TYPE 12
Signal: SIGNAL 11
StringOfltem: StringOfltemProc 12
StringOfltemProc: TYPE 3
Take: TakeProc 12
TakeProc: TYPE 7
TotalOrPartial :TYPE 5

~

19-18

.~.

20

ContainerWindow

20.1 Overview

The ContainerWindow interface supports the creation of ViewPoint-like container
windows. A container window provides a user interface that operates on a list of objects.
The objects are displayed in rows. Eacn container window has one or more columns, with
all rows displaying the same number of columns.

The ContainerWindow implementation maintains the display and manages user-invoked
actions such as scrolling, selection, notifications, open within, show next/previous, and so
forth. COlitainerWindow takes a body window, a ContainerSource, and a specification of
the columns and makes the window behave like a container. Note: This interface does not
depend on NSFile: the objects represented by rows in the container do not have to be backed
by NSFiles.

20.2 Interface Items

20.2.1 Create and Destroy a ContainerWindow

Create: PROCEDURE [
window: Window. Handle,
source: ContainerSource.Handle,
columnHeaders: ColumnHeaders,
firstltem: ContainerSource.ltemlndex 0)
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle];

CreateX: PROCEDURE [
window": Window. Handle,
source: ContainerSource.Handle,
columnHeaders: ColumnHeaders,
firstltem: ContainerSource.ltemlndex 0,
access: Access ... fuliAccess]
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle);

CreateXX: PROCEDURE [
window: Window.Handle,

20-1

20

20-2

ContainerWindow

source: ContainerSource.Handle,
sourceX: ContainerSourceExtra.Procedures ..
columnHeaders:ColumnHeaders.
firstltem: ContainerSource.ltemlndex 4-C)r

access:Access +-fuliAccess]
RETURNS [regularMenultems, topPusheeMenultems: Menuoata.ArrayHandl"e];

ColumnHeaders: TYPE. LONG DESCRIPTOR FOR ARRAY OF ColumnHeaderlnfo;

ColumnHeaderinfo: TYPE. RECORD [
width: CARDINAL,
wrap: BOOLEAN.
heading: xstring.ReaderBody);

Access: TYPE. PACKED ARRAY AccessType OF BooleanFalseDefault;

BooleanFalseDefault: TYPE. BOOLEAN +-FALSE;

AccessType: TYPE. {open, dropOn, convert, add, delete. props};

fuliAccess: Access. ALL [TRUE];

readOnlyAccess: Access. [open: TRUE~ convert: TRUE, props: TRUE];

dividerAccess: Access. [open: TRUE, dropOn: TRUE, convert: TRUE, props: TRUE];

Create turns an ordinary window into a container window. wi ndow must be a
StarWindowShell body window. source supplies a source of items to be displayed and
manipulated (see the ContainerSource and F~leContainerSource interfaces).

CreateX is just like Create, but with the additional access parameter. ContainerWindow
displays an appropriate message to the user if slhe tries to do something for which proper
access is not provided. open, delete, and props access give the user the capability to open
icons, delete them, or open a property sheet on them. dropOn allows the user to drop
something on an item, convert controls whether the ContainerWindow supports
Selection.Convert (and thus copy and move out). add controls whether the user is allowed to
add anything to the container display itself.
CreateX, Access, AccessType, fullAccess, readOnlyAccess, and dividerAccess are defined in
ContainerWindowExtra3. mesa.

CreateXX is just like Create and CreateX, but adds the sourceX parameter to provide extra
container source procedures needed for concurrency. (See the ContainerSource chapter for
more information on concurrency in containers.) CreateXX is defined in
ContainerWindowExtra4.mesa.

columnHeaders describes the column widths and supplies column headings. The columns
will be displayed in the order given by this array. For each column, width is the number of
bits the column should take, and heading is a string that will be displayed at the top of the
column. wrap indicates what to do when a string that the container window wants to
display is wider than width. If wrap :I TRUE, the string should be wrapped around, ~.
otherwise, it will be truncated. Fine Point: coiumnHeaders is copied by Create. so this structure may be in

the client's local frame.

ViewPoint Programmer's Manual 20

firstltem indicates the item that should be displayed first when the container window is
initially displayed.

regularMenultems and topPusheeMenultems are the menu items that the container
window needs to have in the StarWindowSheli. They should be added (by the client) to the
menu that is installed in the StarWindowShell which this container window is a part of
(these contain menu items such as Show Next and Show Previous).

Destroy: PROCEDURE [window: Window. Handle);

Destroys the data associated with the container window. Does not destroy the window
itself. May raise Error [notAContainerWindow].

20.2.2 Item operations

The individual containees in a container window are referred to as items (from
ContainerSource.ltemlndex) They are sequentially numbered starting with zero.

DeleteAndShowNextPrevious: PROCEDURE [
window: window.Handle,
item: ContainerSource.lteml ndex.
direction: Direction 4- next);

DeleteAndShowNextPrevious: PROCEDURE [
window: Window. Handle.
item: ContainerSource.lteml ndex.
direction: Direction 4- next)
RETURNS [newOpenShell: StarWindowShell.Handle];

Direction: TYPE. {next. previous};

DeleteAndShowNextPrevious deletes item from the container source and the display, then
displays the next or previous item. When this proc is called, the container window shell is
expected to be on top. In particular, the shell of the item named in the item parameter
should have been destroyed. So to implement this, if this item is opened within the
container window, the client should call StarWindowShell.POp until the shell returned from
that call is equal to the container window shell. The second DeleteAndShowNextPrevious
is defined in Conta!nerWindowExtra2.mesa. It is identical to the first one, but
additionally returns the shell just opened. May raise Error[notAContainerWindow] or
Error[noSuchltem] •

GetOpenltem: PROCEDURE [window: Window. Handle]
RETURNS [item: Containersource.ltemlndex 4- ContainerS~urce.nullltem];

Returns the item that is currently open within the container. If no item is open, returns
ContainerSource.nullltem. May raise Error[notAContainerWindow].

20-3

20

20-4

ContainerWindow

GetSelection: PROCEDURE [window: Window.Handle]
RETURNS [first, lastPlusOne: ContainerSource.ltemlndex];

Returns the items currently selected in the ContainerWindow. first. last.
ContainerSource.nuliltem means there is no selection.

SelecUtem: PROCEDURE [window: Window.Handle,
item: ContainerSource.ltemlndex];

Selects the specified item and implicitly calls MakeltemVisible. MakeltemVisible is in a
friends-level interface. Note: MakeltemVisible Forces item to be visible in window. If there
is more than a screenful of items left following item, it is put at the top of the window. If
less than a screenful remains, item is put at the bottom of the window with as many items
as will fit before it. May raise Error(notAContainerWindow] or Error(noSuch.tem).

20.2.3 Operations on a Container Window

Islt: PROCEDURE [window: Window.Handle] RETURNS [yes: BOOLEAN);

Returns TRUE if the window passed in is a ContainerWindow.

GetSource: PROCEDURE [window: Window. Handle]
RETURNS [source: ContainerSource.Handle];

Returns the ContainerSource associated with this window. May raise
Error(notAContainerWindClw]. SetSource allows the client to change the source and the ~.
SourceModifyProc allows the client to modify the source.

KeepWindowOpen: PROCEDURE [window: Window.Handle];
WindowCanClose: PROCEDURE [window: Window.Handle];

KeepWindowOpen prevents the use from closing the container window. If the user tries to
close the window, the message "Can't close that container while background operations are
going on inside it." is posted. WindowcanClose allows the user to close the window again.
In BWS 4.3. these procedures in are ContainerWlndowEztra6.

SetSource:PROCEDURE[
window: Wlndow.Handle, newSource: ContainerSource.Handle]
RETURNS [oldSource: Handle];

SourceModifyProc: TYPE • PROCEDURE [
window: Window.Handle, source: ContainerSource.Handle]
RETURNS [changelnfo: Changelnfo);

ModifySource: PROCEDURE [window: Window.Handle, pro·c: SourceModifyProc];

ModifySource calls the source modification proc from within its monitor.

Update: PROCEDURE [window: Window. Handle];

Called when the correspondence between the source and the display is invalid. Items in the
display will be redisplayed to reflect any changes in the source. May raise

ViewPoint Programmer's Manual 20

Error(notAContainerWindow]. Fine Point: Clients will not normally need to call this routine unless they

manipulate the source directly. All user-initiated operations on a ContainerWindow cause the display to be

updated automatically.

2002.4 Errors

Error: ERROR (code: ErrorCode];

ErrorCode: TYPE. MACHINE DEPENDENT {notAConta;nerWindow(O). noSuchltem.last(7)};

Any operations that operate ona container window may raise this error.
notAContainerWindow is raised if the window passed in is not a container window (Le.,
was not passed to Create). noSuchltem may be raised if an operation specifies a non­
existent item.

20.3 Usage/Examples

The following example is taken from the implementation of the FileContainerShell
interface. It illustrates the steps involved in creating a container window: creating a
container source, creating a StarWindowSheli. creating a body window inside the shell,
creating the container window, and finally merging the menu items returned by
ContainerWindow.Create with its own menu commands and installing those commands in the
shell. It also gives a sample StarWindowSheli. transition procedure that will destroy the
container source and the container window.

- From FileContainerShelllmpl.mesa

MenultemSeq: TYPE. RECORD [
SEQUENCE length: CARDINAL OF MenuData.ltemHandle);

Create: PUBLIC PROCEDURE [
file: NSfue.Reference.
columnHeaders: ContainerWindow.ColumnHeaders,
col umnContents: FileContainerSource.Col umnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle 4- NIL,
scope: NSfile.ScOpe 4- [],

position: ContainerSourca.ltemlndex 4- 0,
options: FileContainerSource. Options 4- []]

RETURNS [shell: StarWindowShell.Handle] •

BEGIN
body: Window.Handle 4- NIL;
source: ContainerSource.Handle 4- NIL;
cwRegularMenultems. cwTopPusheeMenultems: ManuData.ArrayHandle;
mergedMenultems: LONG POINTER TO MenultemSeq 4- NIL;
menu: MenuData.MenuHandle;
name: XString.ReaderBody;
ticket: Containee.Ticket;
data: Containee.Data 4- [file];
type: NSFile. Type;
smaliPicture: XString.Character;

20-5

20

20-6

ContainerWindow

IF file. NSFUe.nuliReference THEN RETURN [[NIL]];
source +- FileContainerSource.Create [

file: file,
columns: col.umnContents,
scope: scope,
options; options];

[name. ticket) +- Contain ... GetCachedName [@data];
type +- Contain ... GetCachedType[@data];
smaliPicture ContainH.Getlmplementation[type].smaIiPicture;

shell +- StarWindowShell.Create [
name: @name,
namePicture: small Picture,
sleeps: FALSE,
transitionProc: DestroyProc];

Containee.ReturnTicket [ticket];

body StarWindowsh~n.CreateBody [sws: shell, box: [[0,0],(700,29999]]];

[cwRegularMenultems, cwTopPusheeMenultems] +- ContainerWindow.Create [
window: body,
source: source,
column Headers: columnHeaders,
firstltem: position];

mergedMenultems +- MergeMenuArrays [cwRegularMenultems, regularMenultems];
IF mergedMenultems /I NIL THEN

BEGIN
menu +- MenuData.CreateMenu [

zone: StarWindowShell.GetZone(shell],
title: NIL,
array: DESCRIPToR[mergedMenultems],
copyltemslntoMenusZone: TRUE];

StarWindowShell.SetRegularCommands [shell, menu];
z.FREE[@mergedMenultems]; .
END;

mergedMenultems +- MergeMenuArrays [cwTopPusheeMenultems,
topPusheeMenultems] ;
menu +- MenuData.CreateMenu [

zone: StarWindowShell.GetZone[shell],
title: NIL,
array: DESCRIPToR(mergedMenultems],
copyltemslntoMenusZone: FALSE];

StarWindowshell.SetTopPusheeCommands [shell, menu];
RETURN [shell]; .
END;

~.

ViewPoint Programmer's Manual

DestroyProc: StarWindowShell.TransitionProc •
< < [sws: StarWindowShell.Handle., state: StarWindowShell.State) > >

BEGIN
IF state. dead THEN {

cw: Window.Handle ~ GetContainerWindow[sws);
source: ContainerSourca.Handle ~ GetContainerSource{sws];
ContainerSourca.ActOn [source. destroy);
ContainerWindow.Destroy{cw); };

RETURN;
END;

MergeMenuArrays: PROC (itemArray1, itemArray2: MenuOata.ArrayHandle)
RETURNS [mergedSeq: LONG POINTER TO MenultemSeq] •

BEGIN
i: CARDINAL ~ 0;
IF itemArray1 • NILAND itemArray2 • NIL THEN RETURN(NIL);
mergedSeq ~ z.NEW [MenultemSeq(itemArray1.LENGTH + itemArray2.LENGTH]];
FOR j: CARDINAL IN [O • .itemArray1.LENGTH) DO

mergedSeq(i] ~ itemArray1 (il;
i ~i + 1;
ENDlOOP;

FOR j: CARDINAL IN [O • .itemArray2.LENGTH) DO
mergedSeq(i) ~ itemArray2(j);
i~i + 1;
ENDLOOP;

RETURN(mergedSeq);
END;

20

20-7

20 ContainerWindow

20.4 Index of Interface Items
~

Item Page

Access: TYPE 2
AccessType: TYPE 2
BooleanFalseDefault: TYPE 2
ColumnHeaderinfo: TYPE 2
ColumnHeaders: TYPE 1
Create: PROCEDURE 1
CreateX: PROCEDURE 1
CreateXX: PROCEDURE 1
DeieteAndShowNextPrevious: PROCEDURE 3
Destroy: PROCEDURE 3
Direction: TYPE 3
dividerAccess: Access 2
Error: ERROR 5
ErrorCode: TYPE 5
fullAccess: Access 2
GetOpenltem: PROCEDURE 3
GetSelection:PRocEDURE 4
GetSource: PROCEDURE 4
Islt: PROCEDURE 4
MakeltemVisi ble: PROCEDURE 3
ModifySource:PRocEDURE 4 ~,
readOniyAccess: Access 2
Selectltem: PROCEDURE 4
SetSource : PROCEDURE 4
SourceModifyProc:PROCEDURE 4
Update: PROCEDURE 4

20-8

21

Context

21.1 Overview

In performing various functions, an application may wish to save and retrieve state from
one notification to the next. This is an immediate consequence of the notification scheme,
for a tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus the application must explicitly store its state in data. Because
most notification calls to the application provide a window handle, it is natural to associate
these contexts with windows. The context mechanism provides an alternative to the
application's having to build its own associative memory to retrieve its context, given a
window handle.

Typically, an application obtains a unique Type for its context data by calling UniqueType
in the startup code for the application. Whenever a window is created, the client allocates
some context data and calls Create to associate that data with the window. Whenever the
client is. called to perform some operation on the window (for example, to display the
contents of the window or to handle a notification), it calls Find to retrieve the data saved
with the window. Finally, when the window is being destroyed, the client (orViewPoint)
calls Destroy, which calls the client's DestroyProcType to give the client an opportunity to
free the data.

21.2 Interface Items

21.2.1 Creating/Destroying a Context

UniqueType: PROCEDURE RETURNS [type: Type];

The procedure UniqueType is called if a client needs a unique Type not already in use
either by ViewPoint or by another client. If no more unique types are available, the ERROR

Error[tooManyTypes] is raised.

Create: PROCEDURE [

type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

21-1

21

21-2

Context

The procedure Create creates a new context of type type that contains data. The context is ~
associated with window; it is said to "hang" on the window. If window already has a
context of the specified type, it raises the ERROR Error(duplicateType]. If the window is NIL,

it raises the ERROR Error[windowlsNIL). The proc is supplied so that when the window is
destroyed, all of the context can be destroyed (deallocated).

Type: TYPE. MACHINE DEPENDENT{

all(O). first(1).lastAliocated(37737B).last(37777B)};

Type is unique for each client of the context mechanism. An argument of this type is passed
to most of the procedures in this interface so that the correct client data can be identified.

Data: TYPE • LONG POINTER TO UNSPECFIED;

Data is the value that a client may associate with each window. It is typically a pointer to a
record containing the client's state for some window.

DestroyProcType: TYP! :II PROCEDURE (Datag Window.Handle];

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. This may be the result of the window being destroyed.

Destroy: PROCEDURE [type-: Type, window: Window~Handle];

The procedure Destroy destroys a context of a specific type on window. If the ·context
exists on the window, it calls the DestroyProcType for the context being destroyed.

DestroyAII: PROCEDURE [window: Window.Handle);

The procedure DestroyAIl destroys all the contexts on window. Fine point: DestroyAll can be

very dangerous because ViewPoint keeps its window-specific data in contexts on the window. DestroyAll should

not be used except in special circumstances. It is called by the routines that destroy windows.

NopDestroyProc: DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients that
do not want to create their own do-nothing DestroyProcType to pass to Create.

SimpleDestroyProc: DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

21 .. 2.2 Finding a Context on a Window

Find: PROCEDURE [type: Type. window: Window.Handle] RETURNS [Data);

_~l

The procedure Find retrieves the data field from the specified context for window. NIL is .~
returned if no such context exists on the window.

ViewPoint Programmer's Manual 21

FindOrCreate: PROCEDURE [

type: Type, window: Window.Handle, createProc: CreateProcType1 RETURNS [Data];

The procedure FindOrCreate resolves the race that exists when creating new contexts in a
multi-process environmente If a context of type type exists on window, it returns the
context's data; otherwise, it creates a context of type by calling createProc and then
returns data. Itthe window is NIL, it raises the ERROR Error{windowlsNIL].

CreateProcType: TYPE. PROCEDURE RETURNS [Data, DestroyProcType1;

CreateProcType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot be
found.

Set: PROCEDURE [type: Type, data: Data, window: Window.Handle];

The procedure Set changes the actual data pointer of a context. Subsequent Finds will
return the new data. Note: The client can change the data that the data field of a context
pOints to at any time. This could lead to race conditions if multiple processes are doing
Finds for the same context and modifying the data. It is the client's responsibility to
MONITOR the data in such cases. lIthe window is NIL, it raises the ERROR Error[windowlsNIL).

21.2.3 Acquiring/Releasing the Context

Acquire: PROCEDURE [type: Type, window: Window.Handle1 RETURNS [Data];

The procedure Acquire retrieves the data field from the specified window. It returns NIL if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release.

Release: PROCEDURE [type: Type, window: Window.Handle];

The procedure Release releases the lock on the specified context object for window that
was locked by the call on Acquire. It the specified context cannot be found or if it is not
locked, Release is a no-op.

21.2.4 Errors

ErrorCode: TYPE. {duplicateType, windowlsNIL, tooManyTypes, other};

duplicateType is raised by Create if a context of the given type already exists on the
window passed as an argument .

. windowlsNIL is raised if the client has passed in a NIL window.

tooManyTypes is raised ifUniqueType has been called too many times.

Error: ERROR [code: ErrorCode];

Error is the only error raised by any of the Context procedures.

21-3

21 Context

21~3 Usage/Examples

21-4

Acquire and Release can be used in much the same way as a Mesa MONITOR (See the Mesa
Language Manual: 610E00150). It is important that the client call Release for every
context that has been obtained by Acquire; this is not done automatically. The cost of doing
an Acquire is barely more than entering a MONITOR and doing a Find. Using this technique
allows the client to monitor its data rather than its code.

If sever~l tools must share global data, it is possible to place a context on
Window.rootWindow that is never destroyed, even when the bitmap is turned off. To share
a Type without having to EXPORT a variable, use one in the range (lastAliocated . .last).
Contact the support organization to have one allocated to you.

21.3.1 Example

myContextType: Context. Type ~Context.UniqueTypen;

MyContext: TYPE • LONG POINTER TO MyContextObject;

MyContextObject: TYPE • RECORD [•••);

sysZ: UNCOUNTED ZONE ~ Heap.systemZone;

MakeSheliAndBodyWindow: PROCEDURE. {
myContext: MyContext ~ SYSZ.NEW [MyContextObject ~[
. initialize fields of MyContextObject .]];
.- Note: If some field of MyContextObject were a pointer to some more allocated
storage, then the Context.SimpleDestroyProc would not be used. A client-supplied
DestroyProcType that freed both MyContextObject and the storage pointed to by
MyContextObject would have to be provided.

shell: StarWindowShell.Create [.••);
body: StarWindowShell.CreateBody [sws: shell,

repaintProc: MyRepaint,
bodyNotifyProc: My Notify] ;

Context. Create [type: myContextType,
data: myContext,

};

proc: Context.SimpleDestroyProc,
window: .body];

ViewPoint Programmer's Manual

MyRepaint: PROCEDURE [window: Window.Handle] • {
myContext: MyContext +- FindContext [window];

};

MyNotify: np.NotifyProc • {
myContext: MyContext ~ FindContext [window];

};

FindContext: PROCEDURE [window: Window.Handle]
RETURNS [myContext: MyContext] • {
myContext +-Context.Find [myContextType. wi ndow];
IF myContext • NIL THEN ERROR;
}; .

21

21-5

21 Context

21.4 Index of Interface Items .~

Item Page

Acquire: PROCEDURE 3
Create: PROCEDURE 1
CreateProcType:TYPE 3
Data: TYPE 2
Destroy: PROCEDURE 2
DestroyAII: PROCEDURE 2
DestroyProcType: TYPE 2
Error: ERROR --- 3
ErrorCode: TYPE .3
Find: PROCEDURE 2
FindOrCreate: PROCEDURE 3
NopDe~royProc: PROCEDURE 2
Release: PROCEDURE 3
Set: PROCEDURE 3
SimpleDestroyProc: PROCEDURE 2
Type: TYP~ ·2.
Unique Type: PROCEDURE 1

21-6

22

Cursor

22.1 Overview

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. This interface dermes several cursor shapes as well as
operati~ns for client-dermed cW'SOrs. Because there is a single global cursor, it should be
manipulated only through this interface and only from the notifier process.

The ,major data structure defined in this interface is the Object, which defines not only the
array of bits that represents the picture of the cursor but also its hot spot. The hot spot of a
cursor consists ol the coordinates within the 16-by':'16 arr~y that indicate the screen
position pointed to by the mouse. The hardware position of the cursor is always in the
upper-left comer of the bit array. For many cursor shapes, this position is not where the
cursor points. For example, the pointRight cursor shape is a right-pointing arrow whose
hot spot is at the tip of the arrow. .

There can be up to 256 diff'erent cW'SOrs, limited by the size of the Type enumeration. The
first several types are system-defmed. Clients may call UniqueType to allocate an unused
type Cor their own use.

This interface is typically used to change the cursor either by calling Set to set it to one of
the system-defmed cursors or by calling Store. To restore the cursor, save it into an Object
by calling Fetch before it is changed.

22.2 Interface Items

22.2.1 Major Data Structures

Handle: TYPE :I LONG POINTER TO Object;

Object: TYPE :I RECORD [info: Info, array: UserTerminal.CursorArray];

Info: TYPE :I RECORD [type: Type, hotX: [0 .. 16), hotY: [0 .. 16)];

22-1

22

22-2

Cursor

Type: TYPE a' MACHINE DEPENDENT{
blank(O). bullseye(1), confirm(2). ftpBoxes(3). hourGlass(4), Iib(S), menu(6),
mouseRed(7), pointDown(8). pointLeft(9). pointRight(10). pointUp(11).
questionMark(12). scroIiDown(13). scroIlLeft(14). scroll LeftRight(1 5), scroIiRight(16),
scroIlUp(17). scroIiUpDown(18). textPointer(19). groundedText(20), move(21).
copy(22). sameAs(23). adjust(24). row(25). column(26). last(377B)};

Object defmes the type and hot spot of the cursor as well as the lS-bya l6 array of bits that
represent the cursor's picture.

Info contains the type and the hot spot of a cursor.

Defined: TYPE a Type(blank •• column];.

Defined is the subrange of Type that contains the system-defined cursors.

22.2.2 Setting the Cursor Picture

Set: PROCEDURE (type: Defined);

Set sets the displayed cursor to. be on~ of the system-defined cursors.

Store: PROCEDURE [h: Handle];

Store sets the displayed cursor to the cursor described by h.

StoreCharacter: PROCEDURE [c: XChar.Character];

StoreCharacter stores the system font picture of character c into the cursor. The info is set
to (type: column.succ, hotX: 8, hotY: 8).

StoreNumber: PROCEDURE [n: CARDINAL];

StareNumber sets the cursor picture to be the number n MOD 100. If n is less than 10, the
single digit is centered in the cursor. The info is set to (type: column.succ.succ, hotX: 8"
hotY: 8].

212.3 Getting Cursor Information

Fetch: PROCEDURE [h: Handle];

Fetch copies the current cursor object into the object pointed to by h.

Getlnfo: PROCEDURE RETURNS [info: Info];

Getlnfo returns the hot spot and type of the current cursor.

FetchFromType: PROCEDURE [h: Handle, type: Defined];

FetchFromType copies the system-defined cursor object corresponding to type into the .~.
object pointed to by h.

ViewPoint Programmer's Manual 22

22.2.4 Miscellaneous Operations

MovelntoWindow: PROCEDURE [
window: Window. Handle. place: Window.Place];

MovelntoWindow moves the cursor to the window-relative place in window.

Swap: PROCEDURE [old. new: Handle);

Swap places the displayed cursor object in old i and Stores the new. It is equivalent to
Fetch(old); Store(new).

22.2.5 Client-Defined Cursors

UniqueType: PROCEDURE RETURNS [Type];

UniqueType lets clients assign a unique type to their defined cursors. It returns a Type
that Is different from all predeimed types and from any that have previously been returned
by Unique~ype. The value is only valid during the current boot session.

22.2.8 Cursor Picture Manipulation

Invert: PROCEDURE RETURNS [BOOLEAN];

Invert inverts each bit of the cursor picture and inverts the positjve/negative state of the
picture. It returns TRUE if the new state of the cursor is positive.

MakeNegative: PROCEDURE;

Mak.eNegative is equivalent to MakePositive followed by Invert. It sets the
positive/negative state of the cursor to negative.

MakePositive: PROCEDURE;

MakePositive sets the positiVe/negative state of the cursor to positive. The state is set to
positive whenever Set or Store is invoked.

22.3 Usage/Examples

The following example shows a client setting the cursor to an hourglass while performing
some time-consuming action. It first saves the current cursor and restores it when it is
done, if the action did not change the cursor. If the client knew what the cursor should be,
the cursor would not have ,to be saved but could be unconditionally set.

savedCursor: cursor.Objed;

cursor.Fetch[@savedCursor];
Cunor .Set(hourGlass]
•• Do action -.
IF Cursor.Getlnfo[].type • hourGlass THEN Cursor.Store[@savedCursor);

22-3

22

22-4

Cursor

StoreCharacter is typically used to put small pictures in the cursor by using characters
obtained from SimpleTextFont.AddCI ientDefinedCharactef.

ViewPoint Programmer's Manual

22.4 Interface Item Index

Item

Defined: TYPE

Fetch: PROaOURE

FetchFromType: PROCEDURE

Getlnfo: PROCEDURE

Handle: TYPE

Info: TYPE

Invert: PROCEDURE

MovelntoWindow: PROCEDURE

MakeNegative: PROCEDURE

MakePositive: PROCEDURE

Object: TYPE

Set: PROCEDURE

Store: PROCEDURE

StoreCharacter: PROCEDURE

StoreNumber: PROCEDURE

Swap: PROCEDURE

Type: TYPE

UniqueType: PROCEDURE

Page

2
2
2
2
1
1
3
3
3
3
1
2
2
2
2
3
2
3

22

22-5

22 Cursor

22-6

23

Directory

23.1 Overview

Directory allows for clients to add dividers to the directory icon. Directory maintains a
directory divider containing three top-level dividers: the workstation divider, containing
those objects that· exist on a per-workstation basis; the user divider, containing those
objects that exist on a per-user or per-desktop basis; and the network divider, containing
those objects that exist in the internet. (See the Divider and CHDivider interfaces for more
information about dividers.) .

23.1.1 Predefined Divider Structure

Directory automatically . creates a top-level divider that backs the directory icon. To this
divider it adds the workstation divider, the user divider, and the network divider. It adds
three entries to the workstation divider: the prototype folder, the office aids divider, and
the local devices divider. The user divider is emptied at each logout. Clients of the user
divider should add their entries atCeach logon. Directory also automatically adds the
organization' divider to the network divider and the domain divider to the organization
divider. Clients can add entries to the domain divider (see Figure 23.1). (See the Prototype
interface for details of how to add prototype icons to the prototype folder and the Divider
interface for details of how to add entries to the office aids, local devices, and user dividers.)

23 .. 2 Interface Items

23.2.1 Adding Items to a Predefined Divider

DividerType: TYPE. {top, ws, user, domain, localDevices, afficeAids};

A parameter of type DividerType is passed to AddDividerEntry to specify one of the
predefmed dividers. A value of tap specifies adding a new top-level divider.

AddDividerEntry: PROCEDURE [

divider: DividerType,
type: NSFlle.Type,

23-1

23 Directory

label: XString.Reader,
data: LONG POINTER +- NIL,

convertProc: Dlvider.ConvertProc +- NIL,

genericProc: Divider.GenericProc +- NIL];

AddOividerEntry adds an entry to the divider specified by dividers If divider is equal to top,
a new top-level divider is added. type specifies the NSF.Ie.Typa oC the entry. It is used to
obtain the Conta'nee.,lmplementation Cor the entry. label is used to label the entry when it
appears in the divider's container window. The xstrlng.Reader bytes are copiect data is an
optional data pointer to be supplied in subsequent calls to the GenericProc and the
ConvertProc. convertProc is a Div.der.ConvertProc for the entry, and genericProc is a
Dhrider.GenericProc for the entry. (See the Divider interface for details.) Fine point: The
predeftned dividers are actually implemented by uaing the DIvider interface. AddDlviderEntry is actually the

same 88 DIvWer.AddEntry, with the handle arguement replaced by a DlNCtory.DividerType.

23.2.2 GetDividerHandle

-
GetDividerHandle: PROCEDURE [divider: DividerType] RETURNS [handle: Divider.Handle];

GetDividerHandle returns the Divider.handle for the predefmed divider specified by divider.
Clients can use this handle to manipulate the predefined divider with the Divider
interface. (See the Divider chapter for more inlormation.)

23.3 U sage/Examples

23-2

See the Divider and CHDivider interfaces for examples of how to add entries to the
directory. The Divider interface also shows the implementation of AddDividerEntry.

~!

ViewPoint Programmer's Manual 23

-rI

, """"'I

Directory

! ! 1
EJ Workstation U Network EJ User

~ ! I!J

U Basic Documents, EJ Folders, and Organizations

Recor.d Files

D EI rII ! l!m
~

U OfflceAids U Domains

ImI I:

~

U Local Oevices

~ ~

Figure 23. 1 Predefined Divider Structure

23-3

23 Directory

2304 Index of Interface Items

23-4

Item

AddDividerEntry: PROCEDURE

GetOividerHandle: PROCEDURE

DividerType: TVPE

Page

1
2
1

~'

24

Display

24.1 Overview

The Display interface provides elementary routines for painting into windows on the
display screen. Procedures are provided for painting points; lines; bitmaps; repeating
patterns; boxes tilled with black, gray, white, or small patterns; circles; circular arcs;
ellipses; conics; as weli as for painting a brush as it moves along an arbitrary trajectory.
Another procedure allows shifting the current content of a window. Procedures for painting
text are available in the SimpleTextDisplay interface.

The Window interface supplies faciliti~s for managing windows. The introduction section
of the Window chapter describes the window coordinate system and the process of painting
into a window. The reader should be familiar with that material.

As described in the Window chapter, the display background color, which is represented by
a pixel value of zero, is commonly called white, and a value of one, called black. Note
however, that the display hardware can also render the picture using zero for black and one
for white. Clearing or erasing an area of the screen means setting all of its pixels to zero, or
white.

The Display interface currently contains procedures that apply to text--namely Block,
MeasureBlock, ResolveBlock, Character, Text, and Textlnline. They (]',re not supported. The
SimpleTextDisplay interface provides text painting operations.

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to he
painted, and then call a Window. Validate routine. Window responds by calling back into the
client's display procedure to do the painting. Nonstandard ways of painting are discussed
in the UsagelExamples section of this chapter.

24.2 Interface Items

24.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines

Handle: TYPE • Window.Handle;

24-1

24

24-2

Display

Black: PROCEDURE [window: Window.Handle, box: Window.Box];

Invert: PROCEDURE [window: Window.Handle, box: Window.Box];

White: PROCEDURE [window: Window.Handle, box: Window.Box);

Black and White paint black and white boxes. Invert changes all black pixels to white and
all white pixels to black in the box. These procedures perform their operation on the
specified box in window. Horizontal and vertical black lines can be painted by using Black
with a box that is one pixel wide or tall .

. Dlsplay.Handle is provided for backward compatibility.

24.2.2 Painting Bitmaps and Gray Bricks

The procedures in this section allow the client to paint bitmaps and gray bricks into a
window. Bitmaps and gray bricks are described in the Mesa Processor Principles of
Operation.

The rlrSt items below deime some convenience' types and constants that are used with
bitmaps and painting.

BitAddress: TYPE • E~ronm.nt.BitAddress;

DstFunc: TYPE • BitBIt.DstFunc;

BitBltFlags: TYPE. BitBlt.BitBltFlags;

A BitBlt.BitBltFlags is an argument of the Bitmap and Trajectory operations. These flags
control how source pixels and existing display pixels are combined to produce the final
display pixels. The flag constants defined below cover most of the common cases.
BitBIt.BitBltFlags are described in detail in the Mesa Processor Principles of Operation.

replaceFIags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceFlags paints opaque black and opaque white from a bitmap. Source pixels from the
bitmap overwrite the previous display pixels. .

textFlags, paintFlags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: or, reserved: 0);

textFlags and its synonym paintFlags paint opaque black and transparent white from a
bitmap source. Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xorFlags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0);

,,-,,'

.".

ViewPoint Programmer's Manual 24

xorFlags is used with a source bitmap to selectively video invert existing display pixels.
Video inverting is the process of changing white to black and black to white. Black source
pixels invert the existing display pixels. White source pixels leave display pixels
unchanged.

paintGrayFlags, bitFlags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
sreFune: null, dstFune: or, reserved: 0);

paintGrayFlags paints opaque black and transparent white from a gray brick source. Black
source pixels cause black display pixels. White source pixels leave display pixels
unchanged.

replaeeGrayFlags, bOxFlags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
sreFune: null, dstFune: null, reserved: 0];

replaeeGrayFlags paints opaque black and opaque white from a gray brick source. Source
pixels overwrite the previous display pixels.

xorGrayFlags, xorBoxFlags: BitBltFlags • [
direction: forward, disjoint: TRUE, disjointltems: TRUE, gray: TRUE,
sreFune: null, dstFune: xor, reserved: 0);

xorGrayFlags is used. with a sou~ce gray brick to selectively video invert existing display
pixels. Black source pixels invert the existing display pixels. White source pixels leave
display pixels unchanged. .

eraseFlags: BitBltFlags • [
direction: forward, disjoint: FALSE, disjointltems: FALSE, gray: FALSE,
sreFune: complement, dstFune: and, reserved: 0];

eraseFlags erases objects. Previous display pixels are overwritten.

Bitmap: PR~CEDURE [
window: Wlndow.Handle, box: Wlndow.Box, address: Environment.BitAddress,
bitmapBitWidth: CARDINAL, flags: BitBIt.BitBltFlags paintFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in wi ndow,
using flags to control the interaction with pixels already being displayed. Bitmap may be
used to display a gray pattern that is not aligned relative to the window origin. box.dims.w
must be less than or equal to bitmapBitWidth; this is not checked. flags.gray is ignored.

BitAddressFromPlace: PROCEDURE [
base: Environment.BitAddress, x, y: NATURAL, raster: CARDINAL]
RETURNS [Environment.BitAddress];

BitAddressFromPlace returns the Environment.BitAddress of the pixel at coordinates x and y
in the bitmap described by base. raster is the number of pixels per line in the bitmap. This
procedure is useful for calculating the address parameter of Bitmap .

24-3

24

24-4

Display

Brick: TYPE :. LONG DESCRIPTOR fOR ARRA Y OF CARDINAL;

Bricks are used by Gray and Trajectory to describe a repeating pattern to fill an area. The
maximum size of a Brick is 16 words; each word is one row of the pattern.

fiftyPercent: Brick;

fiftyPercent is a brick containing a 50% gray pattern.

Gray: PROCEDURE [

window: Wlndow.Handle. box: Window.Box. gray: Brick ... fiftyPercent,
dstFunc: BIt8It.DstFunc ... null);

Gray uses the source gray brick to completely till box in window. If the content of the brick
to be displayed is not aligned with the window origin, use Bitmap instead. The table below
describes the effect of dstFunc.

dstFunc resulting display pixels

null Source pixels overwrite display pixels.

or Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xor Black source pixels cause the existing display pixels to be inverted. White
source pixels leave display pixels unchanged.

and Black source p~els cause black display pixels wh~r&ver the display pixels are
already black. All other display pixels will be made white.

24.2.3 Painting Points, Slanted Lines, and Curved Lines

The procedures below paint points, oblique straight lines, and circular arcs and conics.

Point: PROCEDURE [window: Wlndow.Handle, point: Wlndow.Place];

Point makes the single pixel at point in window black.

LineStyle: TYPE • LONG POINTER TO LineStyleObject;

LineStyleObject: TYPE • RECORD [

widths: ARRAY [O •• DashCnt) OF CARDINAL ..

thickness: CARDINAL];

DashCnt: CARDINAL • 6;

LineStyle describes the style of lines for the Line, Circle, Ellipse, Arc, and Conic operations.
thickness defines the width of the line in pixels. widths defines the dash structure. Each
pair of elements is the number of pixels of black followed by the number of pixels of white.
For example [widths: [4.2.0.0.0.0]. thickness: 2] dermes the style for a dashed line two
pixels thick, where the dashes are four pixels on and two off.

~,

~i

ViewPoint Programmer's Manual

Line: PROCEDURE [

window: Window.Handle, start, stop: Window.Place, IineStyle: LineStyle +- NIL,

bounds: Window.BoxHandle +- NIL];

24

Line paints a line from start to stop in window. If bounds /I NIL, the line is clipped to the
box bounds. IflineStyle is defaulted, the line is solid and is a single pixel wide.

Cirde: PROCEDURE [

window: Wlndow.Handle, place: Wlndow.Place, radius: INTEGER,

IineStyle: LineStYle +-NIL, bounds: Wlndow.BoxHandle 4-NIL);

Carde paints a circle centered at place in window, with the given radius. If bounds /I NIL,

the circle is clipped to the box bounds. If IineStyle is defaulted, the circle is solid and is a
single pixel wide.

Ellipse: PROCEDURE [

window: window.Handle, center: Wlndow.Place, xRadius, yRadius: INTEGER,

IineStyle: LineStyle 4-NIL, bounds: Window.BoxHandle 4-NIL];

Ellipse paints an ellipse with axes centered at center with an x radius of xRadius and a y
radius of yRadius in window. The axes of the ellipse are parallel to the x-y coordinate
system. Ellipses with oblique axes may .be displayed by using Conic. If bounds /I NIL, the
ellipse is clipped to the box bounds. If IineStyle is defaulted, the ellipse is solid and is ·a
single pixel wide.

Arc: PROCEDURE [

window: Window.Handle, place: Window.Place, radius: INTEGER,

startSeetor, stopSeetor: CARDINAL, start, stop: Window.Place,
IineStyle: LineStyle 4-NIL, bounds: Window.BoxHandle 4-NIL);

Arc paints a portion of a circular arc centered at place in window, with the given radius.
The arc goes from the angle defined by start in the startSeetor to stop in the stopSeetor.
Sectors are simply octants numbered from 1 to 8, with northeast being 1 and increasing
clockwise. If bounds /I NIL, the arc is clipped to the box bounds. IflineStyle is defaulted, the
arc is solid and is a single pixel wide.

Conic: PROCEDURE [

window: Wlndow.Handle, a, b, c, d, e, errorTerm: LONG INTEGER,

start, stop, errorRef: Window.Place,
sharpCornered, unboundedStart, unboundedStop: BOOLEAN,

IineStyle: LineStyle 4-NIL, bounds: wlndow.BoxHandle +-NIL];

Conic paints the portion of the curve of the equation ax2 + by2 + exy + d% + ey + f = 0 in
window from start to stop. Instead of passing in the last coefficient f, this p~ocedure takes
the errorTerm resulting from substituting start into the equation. If the conic contains
points whose radius of curvature is less than or equal to two pixels, it must be displayed by
using multiple calls with sharpCornered set to TRUE; otherwise ,sharpCornered should be
FALSE. These "sharp-cornered" conics must be broken up into segments where the corners
become a new segment's start and stop points. For example, a very long skinny ellipse must
be displayed in two pieces. errorRef, unboundedStart, and unboundedStop are

24-5

24

24-6

Display

ignored. If bounds # NIL, the conic is clipped to the box bounds. IflineStyle is defaulted, the
conic is solid and is a single pixel wide. ~

24.2.4 Painting Parallelograms and Trapezoids

These types and procedures are used to paint parallelograms and trapezoids:

FixdPtNum: TYPE • MACHINE DEPENDENT RECORD [

SELECT OVERLAID" FROM

wholeThing • > [Ii: LONG INTEGER],

parts • > [frac: CARDINAL, int: INTEGER],

ENDCASE];

A FixdPtNum is a ilXed-point integer with 16 bits of fraction and 16 bits of integer part.
These numbers can be added and subtracted in a straightforward manner, while division
and multiplication are more difficult. By using the overlaid record, the fraction and integer
part may be obtained without shifting or dividing. FixdPtNum can express all practical
slopes with only small errors.

I nterpolator: TYPE • RECORD [

val, dVal: FixdPtNum];

Interpolator is used to deime parallelograms and trapezoids. The dVal term is the
derivative with respect to y; for example, x.dVal is dxIdy .

.. BlackParalielogram: PROC [

window: Handle, p: Parallelogram, dstFunc: DstFunc +- null);

Parallelogram: TYPE. RECORD [

x: Interpolator, y: INTEGER, -- upper left
w: NATURAL, -- across top, must be positive
h: NATURAL];

BlackParalielogram paints the parallelogram deimed by p in window. dstFunc acts as in
the procedure Gray. The parallelogram is defined as below with the slope of the
parallelogram being p.x.dVal. In Figure 24.1 the slope is two rlfths. BlackParalielogram

(p.x.val, p.y)
~114--4 -. - p.w ~I

p.h

1
Figure 24.1 Parallelogram definition

optimizes a common case (such as diagonal lines) and runs about twice as fast as

ViewPoint Programmer's Manual 24

GrayTrapezoid by avoiding the second interpolation, the noninteger width, and the gray
alignment calulations:

GrayTrapezoid: PROC [

window: Handle, t: Trapezoid, gray: Brick +-fiftyPercent, dstFunc: DstFunc +- null];

Trapezoid: TYPE • RECORD [

x: Interpolator, y: INTEGER,·- upper left
w: Interpolator, -- across top; must be positive
h : NATURAL];

GrayTrapezoid paints the trapezoid deimed by t in window. gray and dstFunc act as in the
procedure Gray. The trapezoid is deimed in Figure 24.2 with the slope of the left side of the
trapezoid beingt.x.dVal and the slope of the right side of the trapezoid being t.x.dVal minus
t.w.dVal. In Figure 24.2, t.x.dVal is minus one half and t.w.dVal is nine tenths.

(t.x.val, t.y)
t.w.val ~I

t.h

1
Figure 24.2 Trapezoid definition

24.2.5 Painting Along Trajectories, Shifting Window Contents

Shift: PROCEDURE [window: Window.Handle, box: Window.Box, newPlace: Window.Place]; .

Shift does a block move of a rectangular portion of window's current content. This
operation does not invoke any client display procedures. box describes the region of
window to be moved to newPlace. If Display does not have the pixels for a visible area of
the destination box, that area is filled with trash and marked invalid. The client should
validate the window when it has rmished altering the window content. Shift does not
invalidate the areas vacated by the move; if they are repainted, the client should invalidate
them. If Shift is executed from within a display procedure, it does not clip the region
painted to window's invalid area list. Invalid area lists are explained in the Wi ndow
chapter.

24-7

24 Display

Trajectory: PUBLIC PROCEDURE [
window: Window.Handle, box: Window. Box Window.nuIiBox, proc: TrajectoryProc. .~.
source: LONG POINTER NIL, bpi: CARDINAL ~ 16, height: CARDINAL 16,
flags: BltBIt.BitBltFlags bitFlags, missesChiidren: BOOLEAN +-FALSE,
brick: Brick +-NIL];

TrajectoryProc: TYPE. PROCEDURE [Handle] RETURNS [Window. Box, INTEGER];

Trajectory repeatedly calls proc and paints a brush where proc specifies. The brush may be
either a gray brick or a portion of the bitmap source. Trajectory avoids much of the
overhead of successive calls to the normal Display routines. box is the window region in
which painting may occur. The client must not try to paint outside box; this is not checked.
flags controls the type of painting performed. If flags.gray • TRUE, the gray brick is painted;
otherwise, a bitmap is painted. Trajectory repeatedly calls proc for instructions. If proc
returns a box having dims.w • 0 (such as Window.nuIlBox), iteration ceases and Trajectory
returns. Otherwise dims.w :/I 0; Trajectory paints the brush and then loops to call proc
again. The brush paints the returned Box in the window as follows. If a gray brick is being
painted, the brick completely fills. the returned Box. If a bitmap is being painted, the
bitmap starts at a bit offset of < INTEGER> from source, is Box.dims.h high, and has bpi
pixels per lineD The client may wish to alter the brush content along the trajectory by
having source be a large bitmap con-taining several different brush patterns and having
pro~ return the bit offset and Box.dims of the desired portion. (BitBlt.BitBltFlags are
described in §24.2.~.) height and missesChiidren are unused. pro(must not call any
procedures in Display or Window; doing so will result in a deadlock.

24.3 Usage/Examples

24-8

24.3.1 Special Topic: Direct Painting

As described in the Window chapter, the standard way for a client-to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a Window.Validate routine. Window responds by calling back into the
client's display procedure to do the painting.

The client may also paint directly into a window without going through Window. Validate.
However, this direct-painting approach is subject to several pitfalls and system bugs.
Clients commonly choose direct painting only when high painting performance is required, -
such as dynamically extending an inverted selection while tracking the mouse or
implementing a blinking caret.

Pitfall 1: One consequence of doing direct painting is that the window's display procedure
must not depend on Window clearing invalid areas f~r it. As described in the Window
chapter, if c1earingRequired • TRUE, Window guarantees that when the display procedure
is called to paint the window, all of the window's pixels that should be white indeed are
white. In that situation, the window might contain any combination of its previous
contents and erased areas. Notice that the following sequence of events might occur:
Window clears invalid area; then the client direct paints into some part of the invalid area;
then Window calls the window's display procedure. In this situation, the parallel direct-
paint activity has voided Window's guarantee of the content of the invalid area. To ~

ViewPoint Programmer's Manual 24

handle this case, the display routine must erase or otherwise completely overpaint the
invalid areas itself.

Pitfall 2: A client can get into trouble when it wishes to change the state of the backing
data being displayed within a display procedure and attempts to make the change by
painting from the display procedure rather than by invalidating the affected area and
painting later. The display procedure's paint is clipped to its invalid area list and thus fails
to achieve the desired effect. There are several ways to solve this problem:

• Do not change the backing data inside a display procedure. This approach matches
nicely with the intended function of a display procedure. Do not expect a display
procedure to change data-its job is to repaint.

• Have the display procedure just invalidate the' areas affected by the data being
changed. Because a validate is already in progress, it is not necessary to call
Window. Validate. When the display procedure returns, it is called back with any new
invalid areas that are waiting for it.

• Have the display procedure call Wlndow.FreeBadPhosphorlist before changing the
data. This allows paint from the display procedure to affect the entire window, not
just the invalid areas.

24.3.2 Example 1

The program fragments below demonstrate the use of Display in a window's display
procedure_

-- Enumerated TYPEs for displaying the games background.
Background: TYPE - {gray. white};
background: Background +- gray;

DisplayBoardSW: PROC [window: Wlndow.Handle] • {
-- This is the body window's display procedure.
vline, hline: Wlndow.Box;
left. right, top, bottom: INTEGER;

FindBounds: PROC [window: Wlndow.Handle, box: Window. Box) - {
left +-MIN(left, box.place.x);
top +-MIN(tOP, box.place.y];
right +-MAx(right, box.place.x + box.dims.w];
bottom +-MAx[bottom, box.place.y + box.dims.h]};

-- Paint borders and background.
Display.Black(window: window, box: boardAndBorderBox);
PaintBackground[window: window, box: boardBox);
vLine +- [upperleft, (IineWidth, (boardSize ·1)*unitH + 1]];
hLine +- [upperleft, [(boardSize • 1)*unitW + 1, IineWidth]];
THROUGH [firstDimboardSize] DO

Display.Black[window, vLine];
Display.Black[window, hLine];
vline.place:x +- vline.place.x + unitW;

24-9

24

24-10

Display

hLine.place.y +- hLine.place.y + unitH;
ENDLOOP;

left +- top +-INTEGER.LAST;
right +- bottom +-INTEGER.FIRST;
window.EnumeratelnvalidBoxes[FindBounds)

};

PaintBackground: PROC [window: window.Handle, box: Window.Box) • {
SELECT background FROM

};

gray. > Display.Gray[window, box];
white. > Display.White[window, box];
ENDCASE

PaintStone: PUBUC PROC [who: BlackWhite, u, v: Dim, play: CARDINAL] • {
center: Window.Place;
staneBox: Window.Box;
numStr: S11UNG +- [3];

IF -ValidCoords(u, v] THEN RETURN:
center +- BoardToPlace(u, v];
stone Box +- [
place: [center.x· stoneRadius, center.y .. stoneRadius],
dims: [stoneSize, stoneSize));

-- paint a bitmap that represents game pieces.
Display.Bitmap(

window: boardSW, box: stoneBox, address: outerStone,
bitmapBitWidth: stoneBpl, flags: Display.paintFlags);

IFwho • whiteTHEN
Display. Bitmap[

};

window: boardSW, box: stoneBox, address: innerStone.
bitmapBitWidth: stoneBpl, flags: eraseFlags];

CreateGoSWS: PUBUC PROCEDURE [
reference: NSFile.ReferenceRecord, name: Environment.Block]
RETURNS [StarWindowShell.Handle) • {
-- This procedure Is invoked via a system menu.
sz: StarWindowShell.Handle;

StarWindowShell.SetPreferredDims [sz. [592. 661));
-- The display procedure is set here.
boardSW +- StarWindowShell.CreateBody [

sws: sz,

~,

ViewPoint Programmer's Manual

};

repaintProc: DisplayBoardSW,
bodyNotifyProc; TlPMe];

24

24-11

24 Display

24.4 Index of Interface Items
~i

Item Page

Arc: PROCEDURE 5
BitAddress: TYPE 2
BitAddressFromPlace: PROCEDURE 3
BitBltFlags: TYPE 2
bitFlags: BitBIt.BitBltFlags 3
Bitmap: PROCEDURE 3
Black: PROCEDURE 2
BlackParalielogram: PROCEDURE 6
boxFlags: BitBIt.BitBltFlags 3
Brick: TYPE 4
Circle: PROCEDURE 5
Conic: PROCEDURE 5
DashCnt:PROCEDURE 4
DstFunc: TYPE 2
Ellipse: PROCEDURE 5
eraseFlags: 8itB1t.BitBltFlags 3
fiftyPercent: Brick 4
FixdPtNum: TYPE 6
Gray: PROCEDURE 4
GrayTrapezoid: PROCEDURE 7
Handle: TYPE 1 ~
Interpolater:TYPE 6
I nvert: PROCEDURE 2
Line: PROCEDURE 5
LineStyle: TYPE 4
LineStyleObject: TYPE 4
pai ntBitFlags: Bit8lt.BitBltFlags 3
pai ntFlags: 8itBIt.BitBltFlags 2
paintGrayFlags: 8itBIt.BitBltFlags 3
Parallelogram: TYPE 6
Point: PROCEDURE 4
replaceboxFlags: 8it81t.BitBltFlags 3
replaceFlags: BitBIt.BitBltFlags 2
replaceGrayFlags: 8it8It.BitBltFlags 3
Shift: PROCEDURE 7
textFlags: 8itBIt.BitBltFlags 2
Trajectory: PROCEDURE 8
TrajectoryProc: TYPE 8
Trapezoid: TYPE 7
White: PROCEDURE 2
xorBoxFlags: BitBIt.BitBltFlags 3
xorFlags: BitBIt.BitBltFlags 2
xorGrayFlags: 8itBlt.BitBltFlags 3

~,

24-12

25

Divider

25.1 Overview

Divider maintains a table of entries in memory, each representing an icon. The entries may
or may not be backed by files. Divider does not operate on these entries directly; it uses a
Divid ConvertProc and a Divider. GenericProc associated with each en-try.

Also associated with eacn entry is an NSFile.Type used to identify the entry's
Contain ... lmplementation, a label, and a pointer to instance-specific data for the entry.

Associated with each divider when it is created is an NSFUe. Type. Divider automatically sets
a Containee.lmplementation for this file type that supports converting the divider to a file
and opening the divider as a container window displaying the entries.

Also associated with each divider is a cH.Pattern specifying a clearinghouse domain and
organization. It is inherited from a parent divider and is passed to all entries through the
Divider.ConvertProc and the Divider.GenericProc associated with each entry. When the
divider is converted to a file, the pattern is automatically encoded in an attribute of the file.

25.2 Interface Items

25.2.1- Creating and Destroying

Handle: TYPE. LONG POINTER TO Object;

Object: TYPE;

Create: PROCEDURE [
type: NSFile. Typer
name: XString.Reader.
initialSize: CARDINAL +- Divider.defaultinitialSizer
increment: CARDINAL +-Divider.defaultlncrementr
zone: UNCOUNTED ZONE +- NIL]
RETURNS [handle: Handle];

25-1

25

25-2

Divider

Create creates a divider. type specifies the NSFileo Type the divider has if it is converted to a
file. A Containee.Jmplementation is automatically set for this type. name specifies the name
of the divider. It appears in the window header when the divider is opened, and it is the
name of the file if the divider is converted to a file. The xstring.Reader bytes are copied. The
divider is created with a table large enough to hold initialSize entries. If an entry is added
when the table is full, the table grows by increment entries. Storage for the divider is
allocated from zone. If zone is defaulted, storage is allocated from a heap maintained by
Divider.

Destroy: PROCEDURE (handle: Handle];

This releases all storage associated with the given divider. handle is no longer valid when
this procedure returns~

25.2.2 ConvertProc and GenericProc

ConvertProc: TYPE • PROCEDURE (
data: LONG POINTER,
pattern: cH.Pattern,
target: Selectiono Target,
zone: UNCOUNTED ZONE,
info: SeIectionGConversi~nlnfo ... [convertDll
REruRNS [value: Selection. Valuel;

A ConvertProc is the s~me as a S.,ection.ConvertProc except that it has the extra argument, ~
pattern, that specifies a clearinghouse domain and organization. (See the Selection ... """
interface for the defmition of the other arguments.) Whenever the divider is requested to
convert one of its entries, it calls the ConvertProc associated with an entry, with pattern
set to the domain and organization associated with the divider,

GenericProc: TYPE • PROCEDURE (
atom: AtGmoATOM,
data: LONG POINTER,
pattern: cH.Pattern,
changeProc: Contain ... ChangeProc "'"NIL,
changeProcData: LONG POINTER ... NIL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is the same as a contain ... GenericProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. (See the Containee
interface for the definition of the other arguments.) Whenever the divider is requested to
operate on one of its entries, it calls the GenericProc associated with an entry, with pattern
set to the domain and organization associated with the divider.

DividerConvertProc: ConvertProc;

DividerGenericProc: GenericProc;

These proce4ures may be associated with entries that themselves are dividers. In this case
the Handle associated with the divider should be provided as the instance-specific data ~
handle. See below for an example of a divider contained In another divider.

ViewPoint Programmer's Manual

25.2.3 Adding and Finding Entries

AddEntry: PROCEDURE [
handle: Handle,
type: NSF.Ie. Type,
label: Xstring.Reader,
data: LONG POINTER +-NIL,
convertProc: ConvertProc +-NIL,
genericProc: GenericProc +-NIL];

25

AddEntry adds an entry to the divider specified by handle. type obtains the
Contain .. .lmplementation for the entry. label is used to label the entry in the divider's
container window. The XString.Reader bytes are copied. data is item-specific data for the
entry that is passed to the ConvertProc and GenericProc associated with the entry. If
convertProc or genericProc is defaulted, the divider uses the corresponding procedure in
the entry's Contain ... lmplementation.

FindEntry: PROCEDURE [handle: Handle, type: NSFile. Type,
label: XString.R,ader]
RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindEntry finds the entry in the divider handle with the specified type and label. found
indicates whether the item was in the divider. entryData is the data associated with the
entry, if it was found. FindEntry is dermed in DividerExtra.mesa.

FindOrAddEntry:' PROCEDURE [handle: Handle, type: NSFile.Type,
label: XString.Reader, data: LONG POINTER +- NIL,
convertProc: ConvertProc +- NIL,
genericProc: GenericProc +- NIL]
RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindOrAddEntry finds the entry in the divider handle with the specified type and label,
and adds an entry if it was not found. found indicates whether the item was in the divider.
entryData is the data associated with the entry, if it was found. FindOrAddEntry is defined
in DividerExtra.mesa.

25.3 Usage/Examples

25.3.1 Fragment from DirectoryImpl.mesa

This fragment is from Directorylmpl.mesa, which implements the Directory interface. It
shows the implementation of Directory.AddDividerEntry and the mainline code to create the
top-level directory dividers. See the CHDivider interface for more examples.

- File types for the directory implementation -­
directory: StarfileTypes.FileType •.•• ;
folder: StarFileTypes.FileType •••• ;
workstation: StarFileTypes.FileType •.•• ;
user: StarfileTypes.FileType •.•. ;
domain: StarFileTypes.FileType •.•• ;

25-3

25 Divider

..., The reference for the prototype folder-­
prototypeReference: NSFile.Reference +- .•• ;

- Handles for the top-level dividers ...
dividers: ARRAY Directory.DividerType OF Divider.Handle +- AU [NIL];

AddDividerEntry: PUBUC PROCEDURE [
divider: Directory.DividerType,
type: NSF'''~ Type,
label: xstring.Reader,
data: LONG POINTER +-NIL,
convertProc: Divider .ConvertProc +- NIL,
genericProc: Divider.GenericProc +- NIL] •

BEGIN
Dlvider.AddEntry [

END;

handle: dividers[eJivider],
type: type,
label: label,
data: data,
convertProc: convertProc,
genericProc: genericProc];

. - Create the top-level dividers (top will back the directory icon) .'"
dividers[top) +- Divider.Create [directory, stringDirectory);
dividers(ws] +-Dlvider.Create [workstation, stringWorkstation); .
dividers[user] +-Divider.Create [user, stringUser);

.... Insert the workstation divider into the directory· ..
Directory.AddDividerEntry [

divider: top,
type: workstation,
label: stri ngWorkstation,
data: dividers(ws],
convertProc: Divider .DividerConvertProc,
GenericProc: Divider .DividerGenericProc];

-Insert the user divider into the directory • ..,
Directory.AddDividerEntry [

divider: top,
type: user,
label: stringUser,
data: dividers[user],
convertProc: Divider.DividerConvertProc,
genericProc: Divider .DividerGenericProc];

- Insert the prototype folder into the workstation divider--
•• (Note: this is an actual file that will use the folder implementation) ...
Directory.AddDividerEntry [

divider: ws,

~.

ViewPoint Programmer's Manual

type: folder,
label: stringPrototypes,
data: @prototypeReference);

25

25-5

25 Divider

2504 Index of Interface Items

25-6

Item

Add Entry : PROCEDURE

ConvertProc: TYPE
Create: PROCEDURE

Destroy: PROCEDURE

Divider .ConvertPrOC:TYPE
DividerConvertProc: ConvertProc
DividerGenericProc: GenericProc
FindEntry: PROCEDURE

FindOrAddEntry: PROCEDURE

GenericProc: TYpe
Handle: TYpe
Object: TYpe

Page

3
2
1
2
2
2
2
3
3
2
1
1

26

Event

26.1 Overview

ViewPoint provides a facility that permits clients to register procedures that are to be
called when specified events occur. For example, a client may wish to be notified whenever
a document is closed, or perhaps just the next time a document is closed. Clients need not
'know which module can cause the event. .

26.2 Interface Items

26.2.1 Registering Dependencies

A client wishing to be notified of some future event calls either AddDependency or
Add Dependencies, specifying the EventType and an AgentProcedure to be called when the
event occurs. Note: ViewPoint need not know in advance what EventType is implemented,
nor which modules implement them.

AddDependency: PROCEDURE [

agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,

event: EventType,
remove: FreeDataProcedure ~ NIL]

RETURNS [dependency: Dependency];

Add Dependencies : PROCEDURE [

agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,

events: LONG DESCRIPTOR FOR ARRA Y OF EventType,
remove: FreeDataProcedure ~ NIL]

RETURNS [dependency: Dependency];

AgentProcedure: TYPE. PROCEDURE [

event: EventType,
eventData, myOata: LONG POINTER TO UNSPECIFIED]

RETURNS [remove, veto: BOOLEAN FALSE];

26-1

26

26-2

Event

FreeDataProcedure: TYPE. PROCEDURE [mydata: LONG POINTER TO UNSPECIFIED];

Dependency: TYPE [2]; _. Opaque-·

A dependency may be added to an event or an entire set of events by calling
AddDependency or AddDependencies. Both of these procedures return a private type,
Dependency, that uniquely identifies that set of dependencies. The value returned may be
saved and subsequently used in a call to RemoveDependency, which removes the
dependency or dependencies associated with the earlier AddXXX call. The AgentProcedure
may also remove the dependency, as discussed below.

When the specified event occurs, agent is called with the EventType, the eventData for the
event, and the client data passed as myData. If a client wishes to veto the event (for
instance, to disallow a world-swap), its AgentProcedure should return veto: TRUE. This
aborts the notification; that is, no other clients dependent on the event are notified.
However, there is no guarantee of the order in which multiple clients are notified. If any
client vetoes the event, the call to Notify returns TRUE. There is no way to prevent a client
from vetoing; instead, implementors of events that should not be vetoed should raise an
ERROR if Notify returns TRUE. To remove its dependency on an event, a client's
AgentProcedure should return remove: TRUE. If the dependency is removed and a
FreeDataProcedure was providedp it is called· at this time to allow the client to free any
private d~ta.

EventType: TYPE. Atom.ATOM;

The ATOM (strings) used to identify different ev.ents must of 'course be distinct .. The
following examples are possibilities of how this could be managed. (1) By a central
authority whose job it is to guarantee uniqueness of EventTypes. This could be the same
person in charge of other such allocations, such as NSFile types. (2) By a hierarchical
naming structure, managed by a distributed authority. (3) By a file that lists all known
EventTypes within a given system; this file is managed by the Librarian to ensure against
parallel allocation of new EventTypes. (In effect, this is the same as case 1, but the
Librarian takes the place of the central authority.)

RemoveDependency: PROC [dependency: Dependency];

NoSuchDependency: ERROR;

If RemoveDependency is called with a Dependency that is invalid (possibly because the
dependency has already been removed), it raises the error NoSuchDependency.

26.2.2 Notification

Notify: PROCEDURE [event: EventType, eventData: LONG POINTER TO UNSPECIFIED ~ NIL]

RETURNS [veto: BOOLEAN];

When the event occurs, the implementor calls Notify, giving it the EventType for the event
and any implementation-specific data (eventData) required by the client. (Presumably it is
uncommon for a single operation to wish to Notify more than one event; this is why Notify ~
does not take an ARRAY argument.) The Event interface then invokes each AgentProcedure
that is dependent on the EventType. Each AgentProcedure is given the

ViewPoint Programmer's Manual 26

EventType causing the notification, the client data provided when the dependency was
created, and the eventData given by the implementor in the call to Notify.

26.3 U sage/Examples

The Event database is monitOred to disallow changes while a Notify is in progress. An
AgentProcedure is allowed to call Notify; that is, one event may trigger another. However,
an AgentProcedure must not call Add Dependency or RemoveDependency, or deadlock
will result. Because it is relatively common for an AgentProcedure to wish to remove its
own dependency, the AgentProcedure can return remove: TRUE to cause the dependency to
be removed. If the dependency was added via AddDependencies, then all of the
dependencies created by that call are removed. The dependency is removed even though
some later client of the same event might choose to veto the event. (If an earlier client has
already vetoed, of course, then this AgentProcedure never gets called.) If an application
requires that a dependency be removed only if the event is not vetoed, the implementor can
notify a second event that informs clients whenever the rust event is vetoed.

Three notes regarding the preceding paragraph: First, an AgentProcedure may get called
twice even if it always returns remove: TRUE because two separate processes may be doing
parallel calls to Notify. Once an AgentProcedure returns remove: TRUE, no subsequent
calls to Notify invoke that dependency, but any parallel calls in progress complete
normally. Second, because an AgentProcedure might be invoked at any time, it is a bad
idea to call Add/RemoveDependency from within a private monitor, lest it lock trying to
modify the Event database while a Notify is inside the AgentProcedure trying to grab the
lock. Ho~ever, the Notify call may very well be within the implementor's monitor, which
means the AgentProcedure's use of the eventData is typically limited. Finally, if an
AgentProcedure needs to call Add/RemoveDependency, it may get the desired effect by
FORKing the call so that it takes place shortly after the Notify already in progress.

26.3.1 Example 1

_. Module interested in an event
eventType: Event.EventType 4- Atom. Ma keAtom [NSampleEventNL);

EventAction: Event.AgentProcedure • {
- Do appropriate thing for eventType -- };

Event.AddDependency [
agent: EventAction,
myData: NIL,

event: eventType);

-- Module that signals the event
eventType: Event.EventType 4-Atom.MakeAtom ["SampleEventNL];
eventData: -- Relevant info, a record, a window handle, etc ... -;

[] +- Event.Notify [event: eventType, eventData: eventData];

26-3

26 Event

26.3.2 Example 2

..... Declare event and eventData _.
desktopWindowAvailable: Event.EventType;
desktopWindowHandle: Window.Handle, NIL;

... Declare AgentProcedure··
StartUp: EventaAgentProcedure • {

If eventData • NIL THEN RETURN [veto: TRUE];

desktopWindowHandle +- eventData };

... Register event·· this is mainline code ...
[] +- Event.AddDependency [StartUp, NIL, desktopWindowAvailable];

•• In Desktop code, another module, notify occurrence of the event-·
Q +-Event.Notify [desktopWindowAvailable, window];
_. Window is desktop window··

ViewPoint Programmer's Manual

26.4 Index of Interface Items

Item

AddDependencies: PROCEDURE

AddDependency: PROCEDURE

AgentProcedure: TYPE

Dependency: TYPE

EventType: TYPE

FreeDataProcedure: TYPE

NoSuchDependency: ERROR

Notify: PROCEDURE

RemoveDependency: PROCEDURE

Page

1
1
1
2
2
2
2
2
2

26

26-5

26 Event

26-6

27

FileContainerShel1

27.1 Overview

FileContainerShell provides a simple way to implement a container application that is
backed by an NSFile. FileContainerShell takes an NSFile and column information (such as
headings, widths, formatting) and creates a FileContainerSource, a StarWindowShell, and
a ContainerWindow body. (See also the FileContainerSource, ContainerSource,
StarWindowShell, and ContainerWindow interfaces). Most NSFile-backed container
applications can use this interface, thereby greatly simplifying the writing of applications
such as Folders and File Drawers.

27 .. 2 Interface Items

27.2.1 Create a FileCon tainerShell

CreateX3:PROCEDURE[
file: NSFile.Reference,
columnHeaders: ContainerWindow.ColumnHeaders,
columnContents: FiI~Contain.rSource. Col umnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle +- NIL,
scope: NSFile.Scope +- [],
position: ContainerSource.ltemlndex +- 0,
options: FileContainerSource.Options +- [],
access: ContainerWindowExtra3.Access +-ContainerWindowExtra3. fullAccess,
considerShowingCoverSheet: BOOLEAN.)
RETURNS [shell: StarW'ndowSheU.Handle];

CreateX: PROCEDURE [
file: NSFile.Reference,
columnHeaders: ContainerWindow.ColumnHeaders,
col umnContents: FileContainerSource. Col umnContents,
regularMenultems, topPusheeMenu.tems: MenuData.ArrayHandle +- NIL,
scope: NSFile.Scope +- [],
position: ContainerSource.ltemlndex +- 0,
options: FileContainerSource.Options +- [],

27-1

27

27-2

FileCon tainerShell

access: ContainerWindowExtra3.Access ,... ContainerWindowExtra3. fuliAccess]
RETURNS [shell: StarWindowShell.Handle);

Create: PROCEDURE [
file: NSFUe.Reference,
columnHeaders: ContainerWindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: Menuoata.ArrayHandle ~ NIL.
scope: NSFile.Scope ~ [],
position:ContainerSource.ltemlndex ~ 0,
options: FileContainerSource.Options ~ [])
RETURNS [shell: StarWindowShell.Handle);

Create, CreateX, and CreateX3 create a StarWindowShell with a container window as the
body window. file is the backing for the container; it must be an NSFile with children.
columnHeaders ,and columnContents specify all the necessary information about the
columns to be displayed for the open container. (See· the ContainerWindow and
FileContainerSource interfaces for the specifics of the headers and contents.) scope
specifies ordering, filtering, and direction, if any. position indicates the item that should be
displayed IlrSt. access specifies the ContainerWindow access. (See the ContainerWindow
interface for details. regularMenultems and topPusheeMenultems are the menu items
that the client would like to put in the header of the StarWindowShell. Create puts these

. items in the header along with its own menu items, such as Show Next and Show Previous.
considerShowingCoverSheet specifies,whether the resulting shell will be allowed to have
a coversheet. TRUE means that the shell will have a coversheet if one is define; FALSE means
that the coversheet will not be shown and the menu item "Show Coversheet" is not ~
displayed. Fine point: The client is responsible for putting any bottomPusheeCommands in the window

header. CreateX is defined in FileContainerSheIlExtra.mesa, CreateX3 is defined in
Fi leContai nerShel1 Extra3.mesa

27.2.2 Operations on the Shell

GetContainerWindow: PROCEDURE [shell: StarWindowShell.Handle]
RETURNS [window: window.Handle];

Returns the container window that was created by the Create procedure. May raise
ContainerWindow.Error[notAContainerWindow] if the 'shell does not have a container
window in it.

GetContainerSource: PROCEDURE [shell: StarWindowShell.Handle]
RETURNS [source:Container50urce.Handle];

Returns the container source that was created by the Create procedure. May raise
Containerwindow.Error[notAContainerWindow] if the shell does not have 3. container
window in it.

.• ~

ViewPoint Programmer's Manual 27

27.3 Usage/Examples

27.3.1 Example: Creating a FileContainerShell and Specifying Columns

The foliowing example presents the procedure CreateFileSWS, which takes an
NSFile.Reference and creates a file container shell with two columns: the name of the file
and a version date. (See the CoritainerSource interface for details on columns.) The name
column uses the predeimed ContainerSource.NameColumn; the version column is given in the
example. The version column differs from the standard ContainerSource.DateColumn in that
it displays the last modified date for directories instead of --.

ContentSeq: TYPE • RECORD [
SEQUENCE cols: CARDINAL OF FileContai~erSource.ColumnContentslnfo);

HeaderSeq: TYPE • RECORD [
SEQUENCE cols: CARDINAL OF ContainerWindow.ColumnHeaderlnfo);

NumberOfColumns: CARDINAL • 2;
Z: UNCOUNTED ZONE • • •• ;

CreateFileSWS: PROCEDURE [reference: NSFUe.Reference]
RETURNS [StarWindowShell.Handle] •
'BEGIN
shell: StarWindowShell.Handle;
headers: LONG POINTER TO Header$eq +- MakeColumnHeaders[];
contents: LONG POINTER TO ContentSeq +- MakeColumnContents[);
shell +- FileContainerShelJ.Create(

file: reference,
columnHeaders: OESCRIPToR[headers],
columnContents:.DESCRIPToR[contents]];

z.FREE[@headers];
z. FREE[@contentsl;
RETURN[shell] ;
END;

DateFormatProc: FileContainerSource.MultiAttri buteFormatProc •
BEGIN
:.. If non-directory, show createdOn date. For directory, show last date modified

(the last time anything was changed in directory) --
template: XString.ReaderBody +-

XString.Frof11STRING["<2>-<6>-<4> <8>:<9>:<10>"L];
XTJme.Append(

displayString,
If attrRecord.isDirectory THEN attrRecord.modifiedOn ELSE attrRecord.createdOn,
@template)};

END;

MakeColumnContents: PROCEDURE
RETURNS [columnContents: LONG POINTER TO ContentSeq] •
BEGIN
dateSelections: NSFile.Selections +- [interpreted: [

isDirectory: TRUE, createdOn: TRUE, modifiedOn: TRUE]];

27-3

27 FileContainerShell

columnContents .- z.NEW[ContentSeq[NumberOfColumns);
columnContents[OI .- FileContainerSoufce.NameColumn(];
columnContents(1] +- [multipleAttributes [attrs: dateSelections. formatProc:

DateFormatProc]] ;
RETURN [columnContents];
END;

MakeColumnHeaders: PROCEDURE
RETURNS [columnHeaders: LONG POINTER TO He.aderSeq] •
BEGIN
columnHeaders +- z.NEW(HeaderSeq(NumberOfColumns]];
columnHeaders(O] +- (

width: 367,
heading: XString.promSTRING["NAMEtI

]];

columnHeaders(1] +- [
width: 135,
heading: XString.FromSTRING["VERSION OF"]];

RETURN [columnHeaders];
END;

.~.

ViewPoint Programmer's Manual

27 .. 4 Index of Interface Items

Item

Create: PROCEDURE

CreateX: PROCEDURE

GetContainerSource: PROCEDURE

GetContainerWindow: PROCEDURE

Page

1
1
2
2

27

27-5

27 FileContainerShell

27-6

~.

28

FileContainerSource

28.1 Overview

FileContainerSource supports the creation of NSFile-backed container sources (see
ContainerSource). It also provides facilities for specifying the columns that will be
displayed for each item in the source.

FileContainerSource implements all of the procedure types described in the
ContainerSource interface, as well as all the procedures described below.

28.2 Interface Items

28.2.1 Creation

Options: TYPE. RECORD [
readOnly: BOOLEAN ~ FALSE);

Cleate:PROCEDURE[
file: NSFile.Reference.
columns: ColumnContents,
scope: NSFile.Scope ~ [].
options: Options ~ []]
RETURNS [source: ContainerSource.Handle];

CleateX: PROCEDURE [
file: NSFue.Reference,
columns: ColumnContents,
scope: NSFile.Scope ~ [],
options: Options ~ []]
RETURNS [source: Containersource.Handle, sourceX: ContainerSourceExtra.Proceduresl;

Creates a container source backed by file, which must be an NSFile with children. columns
de~cribes the information that should be displayed for each entry in the container. columns
is copied by this procedure, so the client may release any storage associated with columns
after calling Create. scope specifies the range of files that will be displayed. The caller of
Create is responsible for the storage in the scope parameter; FileContainerSource will not
copy it. It can be destroyed at the same time the source is destroyed. Typically the client

28-1

28

28-2

FileConUrlnerSource

will save the pointer to scope storage in same place as source handle. options specifies
global information about the container source. Display formatting is managed by the .~
container window. (See the ContainerWindow and FileContainerShell interfacesJ CreateX
is identical to Create, except that it returns the additional (ontainerSourceExtra.Procedures
needed for concurrency. (See the ContainerSource chapter for details on these procedures).
FIne point: ereateX is ezported by FileContainerSourceExtra3.

28.2.2 Specifying Columns

When a file container source is created, columns may be specified. Each column represents
information that will be displayed for each item. The container window requests the
columns one at a time in the form of strings. In a file container source, each column must be
based on some combination of NSFile attributes. For each column, the creator of file
container source specifies which attributes are required to format a string for that column
and supplies a procedure that will be called with the specified attributes. When the files in
the source are enumerated, the procedure for a particular column is called with the values
of the specified attributes for each file, which should be used to generate the string for that
tile.

ColumnContents: TYPE.
LONG DESCRIPTOR FOR ARRAY OF ColumnContentslnfo;

ColumnContents destribes a set of columns, where each column is some information that is
displayed "for each item in the container display. The columns are !lisplayed in the order
given by this array. ~

ColumnType:TYPE • {attribute, extendedAttribute, multipleAttributes};

ColumnContentslnfo: TYPE • RECORD [
info: SELECTtype: ColumnType FROM

attribute • > [
attr: NSFUe.AttributeType ..
formatProc: AttributeFormatProc +- NIL],

needsDataHandle: BOOLEAN +- FALSE],
extendedAttribute • > [
extendedAttr: NSFile.ExtendedAttributeType,
formatProc: AttributeFormatProc +- NIL,

extendedAttribute • > [
extendedAttr: NSFile.ExtendedA ttribute Type,
formatProc: AttributeFormatProc +- NIL],

multipleAttributes • > [
attrs: NSFUe.Selections,
formatProc: MultiAttri buteFormatProc +- NIL],

ENDCASE];

ColumnContentslnfo describes a single column of information that can be displayed for
each item in a container display. Each column may be backed by one of three things: an
NSFile interpreted attribute (the attribute variant), and NSFile extended attribute (the
extendedAttribute variant), or some combination of several attributes (the ~
multipleAttributes variant). The attribute and extendedAttribute variants both take a
specification of what attribute is being described (attr and extendedAttr) and an
AttributeFormatProc that is called to render the attribute as a string. If needsDataHandle

ViewPoint Programmer's Manual 28

• TRUE, then a valid Containee.DataHandle is passed to the format procedure as the
containeeData parameter, else the containeeData parameter is Nil. If the column needs a
Containee.DataHandle in order to format it, then needsDataHandle should be TRUE. This
addition is for performance: obtaining a Containee.DataHandle requires an extra access to
the file, thus slowing up the enumeration. The multipleAttributes variant is for columns
that may require more than one attribute. (The typical example is the SIZE column in
folders, in which some items display the numberOfChildren attribute and others display
the sizelnPages attribute, depending on the isDirectory attribute.) attrs specifies all the
attributes required for this column. formatProc is the procedure that will be called to
format the column.

See the common types of columns provided below in the section on commonly used columns.

AttributeFormatProc: TYPE • PROCEDURE [
containeelmpl: Containee.lmplementationr

containeeData: Containee.DataHandle.
attr: NSFile.Attribute.
displayStri ng: Xstring. Writer];

When the container display mechanism displays a column that represents an NSFile
attribute, it calls the AttributeFormatProc specified for that column. attr contains the
attribute to be formatted for display. displayString is used to return a formatted -string that
represents the desired attribute. containeelmpl may be used to make calls on the
underlying implementation of the item being displayed.

MultiAttributeFormatProc: TYPE. PROCEDURE [
containeelmpl: Containee.lmplementationr

containeeData: Containee.DataHandler

attrRecord: NSFile.Attributesr _. LONG POINTER TO NSFile.AttributesRecord
displayString: Xstring.Writer];

When the container display mechanism displays a column that represents multiple NSFile
attributes, it calls the MultiAttributeFormatProc specified for that column. attrRecord
contains the attributes to be formatted for display. displayStri ng is used to return a
formatted string that represents the desired attribute. containeelmpl may be used to make
calls on the underlying implementation of the item being displayed.

28.2.3 Operations on Sources

Getltemlnfo: PROCEDURE [
source: ContainerSource.Handle, itemlndex: ContainerSource.ltemlndex]
RETURNS [file:NSFile.Reference, type: NSFile.Type);

Returns an NSFile.Reference and type for the specified item.

Info: PROCEDURE [source: ContainerSource.Handle]
RETURNS [
file: NSFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope,
options: Options];

28-3

28

28-4

FileContainerSource

InfoX: PROCEDURE[
source: ContainerSource.Handlel
RETURNS [sourceX: ContainerSourceExtra.Procedures);

The Info procedure returns information about a file container source; the information
returned is the same information that was used to create the source (see the Create
procedure). If the source was created using CreateX, InfoX returns the extra procedures
defmed in ContalnerSourceExtra.Procedures. Fine point: InfoX is deimed in ContainerSourceExtra.

Islt: PROCEDURE [source: ContainerSource.Handle] RETURNS [aOOLEAN];

Islt returns TRUE if source is a file container source.

ChangeScope: PROCEDURE [source: ContainerSource.Handle, newScope: NSFile.Scope];

Allows the scope (passed in to Create) to be changed. A call to ChangeScope is typically
followed by a source.ActOn[relist], then ~ ContainerWindow.Update.

Rebuildltem: PROCEDURE [source: ContainerSource.Handle, item: ContainerSource.ltemlndex];

Rebuildltem causes the FileContainerSource to rebuild item, for example after a client has
changed an attribute that is displayed in a column of the source. Note that the client must
call the appropriate ChangeProc in order to get the ContainerWindow to repaint properly.
FIne point: Rebuildltem is exported by FileContainerSourceExtra2.

SourceEnumProc: TYPE. PROCEDURE [source: ContainerSource.Handle] .
RETURNS [stop: BOOLEAN FALSE);

EnumerateSources: PROCEDURE [enumProc: SourceEnumProc);

EnumerateSources will enumerate all existing FileContainerSources and call enumProc
with each source. The enumerate will stop early if the enumProc sets stop to TRUE. Fine

poiDt: EnumerateSources and SourceenumProc are defined in FileContainerSourceextra3.

TakeFilterProc: TYPE. PROCEDUER [fs: ContainerSource.Handle, aboutToTake: NSFile.Reference]
RETURNS [ok: BOOLEAN];

SetTakeFilterPro~ PROCEDURE: [fs,: ContainerSource.Handle, p: TakeFilterProc);

Clients can use SetTakeFilterProc to set a TakeFilterProc that will be called just before each
rue is about to be moved or copied into the source. The TakeFilterProc returns a boolean; if
ok is TRUE, the move or copy goes ahead, otherwise that file is not copied/moved into the
source and the enumeration continues on to the next file. No message is posted if the
TakeFilterProc vetos the copy, so feedback is up to the client. This procedure is provided to
allow clients some control over what files are copied into the source; clients may use this to
make sure their source only gets files of certain types. This proc has no effect on copies onto
the closed container; clients must set up a separate filter mechanism for that case. For BWS

4.3, these two procedures are in FileContainerSourceExtra4.

~'

View Point Programmer's Manual 28

28.2.4 Commonly Used Columns

These predeimed procedures can be used in building a ColumnContents array.

IconColumn: PROCEDURE

RETURNS [attribute ColumnContentslnfo];

IconColumn represents a column with a small icon picture in it. The small picture is
obtained from the containeelmpl.smaliPicture that is passed in.

NameColumn: PROCEDURE

RETURNS [attribute ColumnContentslnfo];

NameColumn represents a column with the file's name in it.

SizeColumn: PROCEDURE

RETURNS [multipleAttributes ColumnContentslnfo];

SizeColumn represents a column with the file's size in it, as follows: If the file has the
isOirectory attribute, the numberOfChildren attribute is displayed with the label
"Objects»; if the file does not have the isOirectory attribute, the sizelnPages attribute is
displayed with the label "Disk Pages».

OateColumn: PROCEDURE

RETURNS [multipleAttri butes Col umnContentsl nfo];

OateColumn represents a column with the file's creation date in it, as follows: If the file
has the isOirectory attribute, dashes (---) are displayed; if the file does not have the
isOirectory attribute, the createOate attribute is displayed.

VersionColumn: PROCEDURE

RETURNS [attribute ColumnContentslnfo];

VersionColumn represents a column with the file's version in it. VersionColumn is defined
in FileContainerSourceExtra.mesa.

NameAndVersionColumn: PROCEDURE

RETURNS [multipleAttributes ColumnContentslnfo];

NameAndVersionColumn represents a column with the file's name and version appended
together with an exclamation point in between, e.g. Fool3. NameAndVersionColumn is
deimed in FileContainerSourceExtra. mesa.

28.3 Usage/Examples

28.3.1 Example: Specifying Columns using FileContainerSource

The following example presents the procedure MakeFolderLikeShell, which takes an
NSFile.Reference (Containee.OataHandle) and creates a file container shell with the
number of columns dependent on some internal procedures. (See the ContainerSource

28-5

28

28-6

FileConurlnerSource

interface for details on columns.) The columns use the predefined coll;lmns such a~
Containersource.NameColumn.

Columns: TYPE • {icon, name, version, nameAndVersion, size. createDate};
HeaderSeq: TYPE • RECORD [SEQUENCE cols: CARDINAL OF ContainerWindow.ColumnHeaderlnfo);
ContentSeq: TYPE • RECORD (

SEQUENCE cols: CARDINAL OF FileContainerSource.ColumnContentslnfo);
ColumnArray:TYPE • ARRAY {icon, name" version, size, date} OF CARDINAL;
,columnWidths: LONG POINTER TO ColumnArray Z.NEw[ColumnArray NULL];

ClientsGenericProc: Containee.GenericProc •
< < [atom: Atom.A TOM,
data: Containee.DataHandle,
changeProc: Containee.ChangeProc NIL,
changeProcData: LONG POINTER NIL]
RETURNS [LONG UNSPECIFIED] > >
BEGIN

SELECT atom FROM
open • > RETURN [

MakeFolderLi keShell [
data: data,
changeProc: changeProc"
changeProcData: changeProcOata]]; .

ENDCASE • > RETURN [oldFolder.genericProc [atom, data]];
END;

FreeColumnContents: PUBLIC PROCEDURE [columnContents: LONG POINTER TO ContentSeq] •
BEGIN
ZoFREE[@columnContents];
END;

FreeColumnHeaders: PUBLIC PROCEDURE [columnHeaders: LONG POINTER TO HeaderSeq] •
BEGIN
Z.FREE[@columnHeaders];
END;

MakeFolderLikeShell: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc NIL,
changeProcData: LONG POINTER NIL]
RETURNS [shell: StarWindowShell.Handle] • {
file: NSFUe.Reference;
columnHeaders: LONG POINTER TO HeaderSeq MakeColumnHeaders[];
columnContents: LONG POINTER TO ContentSeq MakeColumnContents[];

mydata: Data Z.NEW [DataObject [
cd: data,

~

~,

. ...,.

View Point Programmer's Manual

changeProc: changeProc,
changeProcData: changeProcData));

isLocal: BOOLEAN;
BEGIN ENABLE

UNWIND. > {
Z.FREE[@mydata];
FreeColumnHeaders [columnHeaders];
FreeColumnContents [columnContents];
};

shell +-FileContainerShell.Create [
file: file,
columnHeaders: DESCRIPTOR(columnHeaders),
columnContents: DESCRIPTOR(col umnContents),
regularMenultems: IF -isLocal THEN remoteRegularMenultems ELSE NIL];

IF shell. NIL THEN RETURN [shell]; .

StarWindowShell.SetisCloseLegalProc [shell, Closing];
context.Create[context, mydata, DestroyContext, s~ell];
FreeColumnHeaders [columnHeaders};
FreeColumn~ontents [columnContents];
StarWindowShell.SetPreferredDims [shell, [700, 0]];

RETURN [shell];
END; .. • ENABLE
}

MakeColumnContents: PUBLIC PROCEDURE RETURNS [columnContents: LONG POINTER TO
ContentSeq] •

BEGIN
i: INTEGER +--1:
columnContents +- Z.NEw[ContentSeq [Cou ntCol umns(]]);
IF Showlcon(] THEN

columnContents[i +- i + 1] +-FUeContainerSource.lconColumn(];
-. Procedures called below are not neccessary to the example.
columnContents[i +- i + 1] +-

IF ShowNameAndVersion(]
THEN FileContainerSourceExtra.NameAndVersionColumn(]

ELSE FileContainerSource.NameCol umn(];
IF ShowVersion(] THEN

columnContents[i +- i + 1] Eo-FileContainerSourceExtra.VersionColumn(];
IF ShowSize[] THEN

columnContents(i Eo- i + 1] +-FileContainerSource.SizeColumn(];
IF ShowCreateDate(] THEN

columnContents[i E- i + 1] Eo-FileContainerSource.DateColumn(];
RETURN [columnContents1;
END;

28

28-7

28 FileContainerSource

28.4 Index of Interface Items ~

Item Page

AttributeFormatProc: TYPE 3
ChangeScope:PROCEDURE 4
ColumnContents: TYPE 2
ColumnContentslnfo: TYPE 2
ColumnType: TYPE 2
Cleate:PROCEDURE 1
CreateX: PROCEDURE 1
DateColumn: PROCEDURE 5
EnumerateSources: PROCEDURE 4
Getltemlnfo: PROCEDURE 3
IconColumn: PROCEDURE 4
Info: PROCEDURE 3
InfoX: PROCEDURE 4
Islt: PROCEDURE 4
MultiAttributeFormatProc: TYPE 3
NameColumn: PROCEDURE 4
NameAndVersionColumn: PROCEDURE 5
Options: TYPE 1
Rebuildltem: PROCEDURE 4
SizeColumn: PROCEDURE 5
SourceEnumProc: PROCEDURE 4 ~

VersionColumn: PROCEDURE 5

28-8

29

FormWindow

29.1 Overview

The FormWindow interface provides clients the ability to create and manipulate form
items in a window..

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained and set by the client and user. The user obtains the current value of an
item by simply looking at it and sets the current value "of an item by pointing at it
appropriately with the mouse. The client obtains and sets the value of items by calling
appropriate FormWindow procedures.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item's value is of type BOOLEAN.

A choice item has an en~merated list of choices, only one of which can be selected at any
point in time. A choice item's value is of type FormWindow.Choicelndex.

A multiplechoice item is a choice item th~t can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A
multiplechoice item's value is of type LONG DESCRIPTOR FOR ARRAY O"F CARDINAL.

A text item is a user-editable text string. It contains nonattributed text only. A text item's
value is of type XString.ReaderBody.

A decimal item is a text item that has a value of type XLReal.Number.

An integer item is a text item that has a value of type LONG INTEGER.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow. It can contain whatever
the client desires. A window item's value is a Window.Handle. A client must provide its own
TIP.NotifyProc and window display proc for the window item.

29-1

29

29-2

FormWindow

29.,1..1 Creating a Form Window

A client creates a FormWindow by calling FormWindow.Create. Create does not actually
create a window, but rather it takes an already existing window and turns it into a
FormWindow. Windows are usually created by callingStarWindowShell.CreateBody.

The client supplies a MakeltemsProc and optionally a LayoutProc to FormWindow.Create.
Create calls these two client procedures, first the MakeltemsProc, then the LayoutProc. In
the MakeltemsProc, the client creates the individual items in the form by calling
FormWindow procedures that make items (see §29.1.2 and §29.2.2). In the LayoutProc, the
client specifies where each created item should be positioned in the window by calling
Form Window procedures that specify layout (see the sections labeled Layout in this
chapter).

29.1.2 Making Form Items

There is a procedure for making each type of item: MakeBooleanltem, MakeChoiceltem,
MakeCommandltem, MakeDecimalitem, Makelntegerltem, MakeMultipleChoiceltem,
MakeTagOnlyltem, MakeTextltem, MakeWindowltem. Each item must have a unique
"key", a FormWindow.ltemKey. This is a CARDINAL supplied by the client to each
MakeXXXltem call. This key is then used in any future calls to manipulate that item, such
as to get the value of the item. The key must be unique within the FormWindow.

All items have some common characteristics and some type-unique characteristics. The
common ones are described here. Every item' can have a tag, that will appear to the left of ~
the item and a suffix that will appear to the right of the item. An item can have a box
drawn around it or not. The' default is to draw the box. Items can be read-only, that is the
user cannot change the, value of the item. Items can be visible or invisible, and invisible
items caq either take up white space in the window or not. See §29.2.2 for more details.

29.1.3 Getting and Setting Values

Every item that has a value that the user can change (all except tagonly and command
items) also has procedures for the client to get and set the value. These are:

GetBooleanltemValue DoneLookingAtTextltemValue
GetChoiceltemValue SetBooleanltemValue
GetDecimalltemValue SetChoiceltemValue
GetintegerltemValue SetDecimalltemValue
GetMultipleChoiceltemValue SetintegerltemValue
GetTextltemValue SetMultipleChoiceltemValue
GetWindowltemValue SetTextltemValue
LoookAtTextltemValue

~J

ViewPoint Programmer's Manual 29

Note: All allocation of storage for values of items is handled by FormWindow. The client
need not keep copies of item values while the FormWindow exists. Obtaining the current
value of an item is a simple call to one of the GetXXXltemValue procedures. This makes it
easy to ensure that the internal value of an item is always in sync with the display. (See
§29.2.3 for more details.> Fine Point: This storage allocation scheme is opposite to the one used by XDE's

FormSW, where the client owns the storage for items.

29.1.4 "Changed" BOOLEAN

Every item that has a value that the user can change (all except tagonly, command, and
window items) has a ~changed" boolean associated with it. All items are created with this
boolean set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the
user changes the item. This allows the client to determine which items have changed
when, for example, the user selects "Done" or "Apply" on a property sheet. The client is
responsible for resetting the changed boolean to false by calling ResetChanged or
ResetAliChanged after examining the changed boolean with HasBeenChanged or
HasAnyBeenChanged. See §29.2.1 for more detail.

Boolean and choice items can have a client-supplied procedure that will be called whenever
the item's value changes (see BooleanChangeProc and ChoiceChangeProc in §29.2.1 and
29.2.2. The client may also supply a GlobalChangeProc that will be called whenever any
item changes (see §29.2.1).

29.1.5 Visibility

Each item. is either displayed in the form window or not. If an item is displayed in the form
window, it is visible. If an item is not currently displayed, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on the screen, that is any
items below it move up to take its screen space. If an item is invisibleGhost, the space that
it would occupy were it visible is white on the screen. An item's visibility can be changed at
any time by calling SetVisibility (see §29.2.S.)

29.1.6 Layout

The exact layout of items in a form window is done by calling various layout procedures
after creating the items to be laid out. If an item is not explicitly laid out, it will not appear
in the form window at all. A DefaultLayout procedure is provided that places each created
item on a separate line.

A form window consists of horizontal lines with zero or more items on each line. Each line
may be a different height. Any desired vertical spacing may be accomplished by using
appropriate heights for lines. Any desired horizontal spacing may be accomplished by
using appropriate margins between items. Items may be lined up horizontally by using
TabStops. Lines are created by calling AppendLine or InsertLine. Items are placed on a line
by calling Appendltem or Insertltem. (See §29.2.6 for more detail.)

29.1.7 Neutral Properties

Any item (except command items) can take on a neutral state, which indicates that the
item has no value at all. This property makes it possible for a client to indicate to the user
that the item's value is no longer valid in the current context of the form window, or that

29-3

29 FormWindow

the value for this item is obtained from somewhere other then this form window. Items in
the neutral state appear without any indications of value and have their tag, suffix, and ,~
value box fields painted over with gray diagonal stripes. Since the item actually has no
value, client calls to GetXXXltemValue for an item in the neutral state result in an error.

Items can he placed into (and removed from) a neutral state by calls to SetltemNeutralness.
A neutral item automatically returns to a normal state when the user selects a value for
that item, or when the item receives the text input focus (in the case of text, integer, and
decimal items). (See §29.2.8 for more detail.)

29.2 Interface Items

29-4

29.2.1 Creating a FormWindow, etc.

Create: PRocEDuRe[
window: window.Handle,
makeltemsProc: MakeltemsProc,
layoutProc: LayoutProc +- NIL,
windowChangeProc: GlobalChangePro(f- NIL,
minDimsChangeProc: MinDimsChangeProc +- NIL~
zone: UNCOUNTED ZONE NIL,
clientData: LONG POINTER +- NIL];

Create takes an ordinary window and makes it a form window.

window is a window created by the client. Windows are usually created by calling "~
StarWindowShell.CreateBody.

makeltems is a client-supplied procedure that is called to make the form items in the
window. makeltems should call various FormWindow.MakeXXXltem procedures (see
§29.2.2). Fine Point: makeltems is not called after Create returns, so makeltems can be a nested procedure.

layoutProc is a client-supplied procedure that is called to specify the desired position of the
items in the window. layoutProc is called after makeltems has been called. layoutProc
should call various layout procedures (see §29.2.6), such as AppendLine and Appendltem.
If the default is taken, the DefaultLayout of one item per line will be used.

windowChangeProc is the global change proc for the entire window. Any time any item in
the window changes, this procedure is called.

zone is the zone from which storage for the items will be allocated. FormWindow uses a
private zone if none is supplied.

dientData is passed to makeltems, layoutProc, and windowChangeProc when called.

May raise Error[alreadyAFormWindow].

DefaultLayout: LayoutProc;

The default for the Create layoutProc parameter. Specifies a layout of one item per line.

Destroy: PROCEDURE [window: Window.Handle];

,

ViewPoint Programmer's Manual 29

Destroy destroys all FormWindow data associated with window, turning it back into an
ordinary window. All form items are destroyed, but the window itself is not destroyed. May
raise Error(notAFormWindow].

GetClientOata: PROCEDURE [window: Window.Handle]
RETURNS [e1ientOata: LONG POINTER];

GetClientOata returns the clientOata that was passed to Create. May raise
Error[notAFormWindow].

GlobalChangeProc: TYPE • PROCEDURE [

window: Wlndow.Handle.
item: Item Key.
caliedBecauseOf: ChangeReason.
e1ientOata: LONG POINTER];

The client may supply a GlobalChangeProc to (reate. Any time the value of any item in the
window is changed, the GlobalChangeProc is called with the key of the item that was
changed. If more than one item was changed at one time (such as by a client call to
FormWindow. Restore) , nullltemKey will be passed in and the client must examine the
"changed" boolean of all items to see what was changed (see §29.2.4). caliedBecauseOf
indicates what kind of action caused the GlobalChangeProc to be called. clientOata is the
LONG POINTER that was passed to Create.

GetGlobalChangeProc: PROCEDURE [w'indow: Window.Handle]
RETURNS [proc: GlobaIChangeProc);

GetGlobalChangeProc returns the GlobalChangeProc that was passed to Create. May raise
Error[notAFormWi ndow].

SetGlobalChangeProc: PROCEDURE [window: Window.Handle,
proc: GlobalChangeProc) RETURNS [old: GlobaIChangeProc);

SetGlobalChangeProc changes the GlobalChangeProc that was passed to Create. May raise
Error[notAFormWindow].

MinOimsChangeProc: TYPE. PROCEDURE [window: window.Handle,
old, new: window.Dims];

Whenever the minimum dimensions of the FormWindow change, the client supplied
MinOimsChangeProc is called. This is useful for form windows that are nested as window
items inside another outer form window. Whenever the dimensions of the nested form
window change (due to items being made visible or invisible or a text item growing or
shrinking or new items being added or ...), the client that created the window item and the
nested form window can be called so that it can make the window item bigger or smaller for
the nested form window to be completely visible. See also NeededOims.

SetMinDimsChangeProc: PROCEDURE [window: Window.Handle,
proc: MinDimsChangeProc) RETURNS [old: MinDimsChangeProc);

29-5

29

29-6

FormWindow

SetMinDimsChangeProc changes the MinDimsChangeProc that was passed to Create. May
raise Error [notAFormWindow]. SetMinDimsChangeProc is defined in ~
Form WindowExtra2.mesa.

GetZone: PROCEDURE [window: Window.Handle]
RETURNS [zone: UNCOUNTED ZONE];

GatZa"e returns the zone associated with the FormWindow. May raise
Error[notAFormWindow].

Islt: PROCEDURE [window: Window.Handle] RETURNS [yes: BOOLEAN];

Islt is used to determine if a window is a form window. If window was made into a form
window by calling Formwindow.Create, then Islt returns TRUE, else FALSE.

LayoutProc:TYPE • PROCEDURE [window: Window.Handle, clientData: LONG POINTER];

The client supplies a LayoutProc to Create to specify the location of items created by the
MakeltemsProc. See §29.2.6 for"details of layout.

MakeltemsProc: TYPE • PROCEDURE [
window: Window.Handle,

. cI ientData: LONG POINTER];

The client supplies a' MakeltemsProc to Create to make the form items in the '.¥indow.
Create will call the client's Ma~eltemsProc, and it should call various MakeXXXltem ~
procedures (see §29.2.2) to make the items. window should be passed to the various
MakeXXXltem. clientData is the same as that passed to Create. Fine point for clients of

PropertySheet: dlentData can be passed to PropertySheet.Create and will be passed on to FormWindow.Create
and the MakeltemsProc.

NeededDims: PROCEDURE [window: Window.Handle]
RETURNS [Window.Dims];

NeededDims returns the minimum dimensions required for a window to hold all the
currently visible items in the form.

NumberOfltems: PROCEDURE [window: Window.Handle] RETURNS [CARDINAL];

NumberOfltems returns the current number of form items in window. This count will
include visible and invisible items. This is useful for clients that create additional items
dynamically after the form has been created. May raise Error[notAFormWindow].

Repaint: PROCEDURE [window: Window.Handle];

Repaint causes a Window. Validate on window. This is used in conjunction with the
SetXXXltemValue, SetVisibil.ity, Appendltem, and Insertltem procedures. All these
procedures take a repaint: BOOLEAN parameter. To minimize screen flashing while
changing several items at the same time, the client may call these procedures with repaint
• FALSE, then call FormWindow.Repaint. The form window will not be repainted until Repaint
i3 called. Warning: After calling any procedure with repaint. FALSE, FormWindow.Repaint

29.2.2

View Point Programmer's Manual 29

must be called. Otherwise, the 'screen will be inconsistent with the internal values. May
raise Error[notAFormWindow].

Making Form Items, etc.

Create procedures are provided for each type of item. These MakeXXXltem routines are
used to originally create items in a form window as well as to add items to an existing
window.

A number of parameters to each MakeXXXltem procedure are identical and are described
here, rather than with each procedure. If all of the defaults are taken for an item, it will be
boxed, with no tags and not read-only. All of these may raise Error[notAFormWindow];

window is the form window the item is contained in. It should be the same as the window
passed to the client's MakeltemsProc.

myKey is a client-defined key (ItemKey) for the· item. The item key uniquely identifies the
item and should be used· to make calls on other FormWindow procedures, such as
GetXXXltemValue. Caution: The key must be unique within this form window.

tag is the text to be displayed before (to the left of) the item on the same line. (To put a tag
on a separate line, use MakeTagOnlyltem.)

suffix is the text to be displayed after (to the right of) the item on the same line.

visibility indicates whether the item should be displayed on the screen.

bOxed indicates whether the item should have a box drawn around it or not.

readOnly • TRUE indicates that the item can not be edited by the ·user. The item can still be
changed by calling a SetXXXltemValue procedure.

ItemKey: TYPE • CARDIN.AL;

Item Key uniquely identifies an item. An ItemKey is supplied by the client whenever an
item is made (MakeXXXltem) and should be used thereafter to identify the item to
FormWindow, such as then calling GetXXXltemValue or SetVisibility.

ItemType: TYPE. MACHINE DEPENDENT {choice(O), multiplechoice, decimal, integer, boolean,
text, command, tagonly, window, last(15)};

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained (GetXXXltemValue) and set (SetXXXltemValue).

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item's value is of type FormWindow.Choicelndex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A multiple
choice item's value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string, and contains only nonattributed text. A text
item's value is of type XString.ReaderBody.

A decimal item is a text item that has a value of type XLReal.Number.

An integer item is a text item that has a value of type LONG INTEGER.

29-7

29

29-8

FormWindow

A boolean item is an item with two- states (on and off, or TRUE and FALSE). A boolean
item's value is of type BOOLEAN. ~

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow and can contain whatever
the client desires. A window item's value is a Wlndow.Handle. A client must provide its own
TlP.NotifyProc and window display procedure for the window item.

nullltemKey: ItemKey;

nullltemKey is used to indicate no item.

29.2.2.1 Boolean Items

MakeBooleanltem: PROCEDURE [
window: Window.Handle,
myKey: Item Key,
tag: XString.Reader ... NIL.
suffix: XString.Reader ... NIL.
visibility: Visibility ... visible.
boxed: BOOLEAN ... TRUE.
readOnly: BOOLEAN ... FALSE,
changeProc: BooleanChangeProc .,;.. NIL.
label:- BooleanltemLabel,
initBoolean: BOOLEAN ... TRUE];

MakeBooleanltem creates a boolean item. A boolean item value is of type BOOLEAN. When
the value is TRUE, the item is highlighted. When FALSE, it is not highlighted. When the user
clicks over the label part of a boolean item, the value toggles.

Tag I LABEL I suffix

Unhighlighted boolean item, value. FALSE

changeProc is a client-supplied procedure that will be called whenever the value of the
item changes.

label is the string or bitmap that the user points at to toggle the item's value. If label is a
string, the string is copied. If label is a bitmap, the bits are not copied, so the client must
ensure that the bitmap pointer is valid for the lifetime of the form window.

initBoolean is the initial value of the item.

May raise Error[notAFormWindow, duplicateltemKey).

BooleanltemLabel: TYPE • RECORD [
var: SELECT type: BooleanltemLabelType FROM

string. > [string: XString.ReaderBody],

. ...,.

ViewPoint Programmer's Manual

bitmap. > [bitmap: Bitmap]
ENDCASE);

BooleanltemLabelType: TYPE. {string, bitmap};

29

A BooleanltemLabel is passed to MakeBooleanltem. It is the part of the item that the user
points at and is or is not highlighted, depending on the value of the item. A label may be
either a string or a bitmap. (See §29.2.10 on Miscellaneous TYPEs for the definition of
Bitmap). If label is a string, the string is copied. If label is a bitmap, the bits are not copied,
so the client must ensure that the bitmap pointer is valid for the lifetime of the form
window.

BooleanChangeProc: TYPE • PROCEDURE [
window: Window.Handle,
item: ItemKey,
caliedBecauseOf: ChangeReason,
newVafue: BOOLEAN];

The client may provide a BooleanChangeProc to MakeBooleanltem. Whenever the item's
value changes (TRUE to FALSE or FALSE to TRUE), this procedure is called. window is the form
window that the item is in. item is the key of the boolean ite~ to which this
BooleanChangeProc is attached. caliedBecauseOf indicates what kind of action caused the
change proc to be called. newValue is'the vew value 6fthe item. The item w:ill already have
the new value when this procedure is called.

Caution: If a BooleanChangeProc does a SetXXXltemValue, the client should take extreme
care to prevent inflnite recursi(>n. (See §29.3.1.)

29.2.2.2 Choice Items

MakeChoiceltem: PROCEDURE [
window: Window.Handle,
myKey: ItemKey,
tag: XString.Reader NIL,
suffix: XString.Reader ~IL,
visibility: Visibility visible,
boxed: BOOLEAN TRUE,
readOnly: BOOLEAN +- FALSE,
values: Choiceltems,
initChoice: Choicelndex,
fullyOisplayed: BOOLEAN TRUE,
verticallyOisplayed: BOOLEAN +- FALSE,
hintsProc: ChoiceHintsProc +-NIL,
changeProc: ChoiceChangeProc NIL,
outlineOrHighlight: OutlineOrHighlight 4- highlight];

MakeChoiceltem creates a choice item. A choice item is an enumerated list of choices, only
one of which can be selected at any time. The choices can be displayed to the user as either
strings or bitmaps, or some of each. The current choice is highlighted. When the user clicks
on a choice, it becomes the current choice and is highlighted. Each choice has a client-

29-9

29

29-10

FormWindow

defined Choicelndex associated with it that uniquely identifies that choiceo The value of a
choice item is of type Choicelndex. ~

values is the list of all the possible choices. An indication of where to wrap the display
around to the next line can be made by specifying a wraplndicator variant in the
appropriate place in the values array. If a choice is a string, the string is copied. If a choice
is a bitmap, the bits are not copied, so the client must ensure that the bitmap pointer is
valid for the lifetime of the form window.

initChoice is the value of the initial choice.

fullyDisplayed indicates whether all the choices should be displayed or noto If
fullyDisplayed • TRUE, all the choices are displayed. If fullyDisplayed • FALSE, only the
current choice is displayed, with the rest of the choices being accessed via a popup menu.
Caution: bitmaps cannot appear in popup menus, so fullyDisplayed • FALSE should not be
used if the choices are bitmaps.

verticallyOisplayed indicates whether the choices should be displayed vertically or
horizontally. If fullyDisplayed • FALSE, the value of verticallyOisplayed is ignored. Any
wraplndicators are skipped over when choices are displayed vertically.

If hintsProc is supplied, it is called to make a popup hint menu. If the default is taken, the
form window will make a hint menu with all choices. Note: Since menus can only contain
strings (not bitmaps), a bitmap choice will appear in the hints menu as a number
indicating the choice's position. Note: This is not the same as the Choicelndex for that
choice.

If changeProc is supplied, i.t is called whenever the choice changes.

May raise Error(notAFormWindow,duplicateltemKey, invalidChoiceNumber).

OutlineOrHighlight: TYPE. {outline, highlight};

Normally the selected choice for a choice item is indicated by highlighting the choice. The
outlineOrHighlight parameter allows the selected choice to be indicated by outlining the
choice with a black box. This is intended to support the Shading choice item on, for
example, the triangle and ellipse property sheets in the ViewPoint editor.

Choiceltems: TYPE. LONG DESCRIPTOR FOR ARRAY Choicelndex oFChoiceltem;

Choiceltems is the list of possible choice for a choice item. A Choiceltems ARRAY is passed to
MakeChoiceltem. The choices are displayed in the order they appear in the Choiceltems
ARRAY.

Choiceltem: TYPE • RECORD [
var: sELECTtype: ChoiceltemType FROM

string. > (
choiceNumber: Choicelndex,
string: Xstring.ReaderBody),

bitmap. >[
choiceNumber: Choicelndex,
bitmap: Bitmap].

wraplndicator • > NULL];

ChoiceltemType: TYPE. {string, bitmap, wraplndicator};

~,

ViewPoint Programmer's Manual 29

Choicelndex: TYPE. CARDINAL [0 .• 37777B];

A choice item consists of an array of choices (Choiceltems). Each choice (Choiceltem)
consists of a unique number that identifies the choice (Choicelndex) and either a string or a
bitmap to display to the user. In addition, the Choiceltems array ca~ contain a
wraplndicator wherever the client desires the choices be wrapped around to begin another
line of choices. A wraplndicator Choiceltem is not a real choice and serves only as
additional layout information for the FormWindow. IfChoiceltem is a string, the string is
copied. If Choiceltem is a bitmap, the bits are not copied, so the client must ensure that the
bitmap pointer is valid for the lifetime of the FormWindow.

The client must construct a Choiceltems array before calling MakeChoiceltem. This can be
simplified if all the choices are strings by using the FormWindowMessageParse interface.
This allows all the choices for a choice item to be stored as a single XMessage with
embedded syntax indicating individual choice strings and choice numbers. (See
Form WindowMessageParse for more detail.)

ChoiceChangeProc: TYPE • PROCEDURE [

window: Window.Handle,
item: ItemKey,
caliedBecauseOf: ChangeReason,
oldValue, newValue: Choicelndex);

The client may provide" a ChoiceChangeProc to MakeChoiceltem. Whenever the choice
changes, this procedure is called. window is the form window that the item is in. item is
the ~ey· of the choice ite~ to which this ChoiceChangeProc is attached. caliedBecauseOf
indicates what kirid of action caused the change proc to be called. oldValue and newValue
correspond to the choice numbers assigned to the choices in MakeChoiceltem. The item will
have the new value when this procedure is called.

Caution: If a ChoiceChangeProc does a SetXXXltemValue, the client should take extreme
care to prevent inimite recursion. See §29.3.1, Calling ChangeProcs.

ChoiceHintsProc: TYPE. PROCEDURE [

window: Window.Handle,
item: ItemKey]
RETURNS [

hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
freeHints: FreeChoiceHintsProc];

FreeChoiceH i ntsProc: TYPE • PROCEDURE [

window: Window.Handle,
item: ItemKey,

. hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

The client may provide a ChoiceHintsProc to MakeChoiceltem. Whenever the user points
at the mouse menu for a choice item, this procedure is called and the hints returned are
used to construct a popup menu that is displayed. If the user selects one of the choices from
the popup menu, that choice becomes the current choice.

window is the form window that the item is in.

item is the key of the choice item to which this ChoiceHintsProc is attached.

29-11

29 FormWindow

hints is an array of choice numbers for the choices that the client wants to appear in the
menu. This allows a client to show a subset of all the choices to the user for situations in ~,

which not all the choices make sense. hints must be allocated by the client.

freeHints is a procedure that will be called after the hint menu has been taken down to
allow the client to free any storage that was allocated when creat~g the hints array.

MakeMultipleChoiceltem: PROCEDURE [
window: Wlndow.Handle,
myKey: ItemKey,
tag: XString.Reader NIL,
suffix: XString.Reader NIL,
visibility: Visibility visible,
boxed: BOOLEAN TRUE,
readOnly: BOOLEAN FALSE,
values: Choiceltems,
initChoice: ~ONG DESCRIPTOR FOR ARRAY OF Choicelndex,
verticallyDisplayed: BOOLEAN FALSE,
hintsProc: ChoiceHintsProc NIL,
changeProc: MultipleChoiceChangeProc NIL];

May raise Error[notAFormW,indow, duplicateltemKey].

MultipleChoiceChangeProc: TYPE • PROCEDURE [
window: Window.Handle,
item: ItemKey,
caliedBecauseOf: ChangeReason,
oldValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
newVal ue: LONG DESCRIPTOR FOR ARRA Y OF Choicel ndex];

A multiple choice item is identical to a choice item, except that it may have more than one
initial value. See MakeChoiceltem above for details of choice items. A multiple choice item
is useful for showing the properties of a heterogenoUs selection, such as the font property of
a text selection that has more than one font.

29.2.2.3 Command Items

29-12

MakeCommandltem: PROCEDURE [
window: Wlndow.Handle,
myKey: Item Key,
tag: XString.Reader NIL,
suffix: XString.Reader NIL,
visibility: Visibility visible,
boxed: BOOLEAN TRUE,
readOnly: BOOLEAN FALSE,
commandProc: CommandProc,
commandName: XString.Reader,
c1ientData: LONG POINTER +-NIL];

Creates a command item. A command item allows a user to invoke a command. When the
user clicks over the commandName, commandP,roc is called. If boxed is TRUE, the
commandName appears with a rounded corner box drawn around it (rather than a square-

View Point Programmer's Manual 29

cornered box, to distinguish a command item from a boolean item). May raise
Error(notAFormWindow, duplicateltemKey).

NewMakeCommandltem: PROCEDURE (

window: Window.Handle,
myKey: Item Key.
tag: xstring.Reader ... NIL,

suffix: xstring.Reader ... NIL,

visibility: Visibility ... visible,
boxed: aOOLEAN ... TRUE,

readOnly: aOOLEAN ... FALSE,
commandProc: CommandProc,
label: CommandltemLabel,
c1ientData: LONG POINTER NIL];

CommandltemLabel: TYPE • RECORD [

var: SELECT type: CommandltemLabelType FROM

string. > [string:'XString.ReaderBody],
bitmap • > [bitmap: Bitmap],
ENDCASE];'

CommandltemLabelType: TYPE. {string. bitmap};

NewMakeCommandltem is just like MakeCommandltem, but allows the label to be a
bitmap. If label is the bitmap variant, the client muSt leave the storage for the bitmap
allocated as long as the item exists. NewMakeCommandltem is defined in
Form WindowExtra3.mesa.

CommandProc: TYPE • PROCEDURE [

window: Window.Handle,
item:ltemKey, clientData: LONG POINTER];

A CommandProc is supplied by the client to MakeCommandltem. It is called whenever the
user selects the command item. window is the FormWindow that the item is in. item is the
key of the command item to which this CommandProc is attached.

29.2.2.4 Tagonly items

MakeTagOnlyltem: PROCEDURE [

window: Window.Handle,
myKey: ItemKey,
tag: XString.Reader,
visibility: Visibility ... visible];

Creates a tagonly item. Tagonly items are displayed as uneditable, nonselectable text. May
raise Error[notAFormWindow. duplicateltemKey].

29.2.2.5 T~xt and Number Items

MakeTextltem: PROCEDURE [

window: Window.Handle.
myKey: Item Key.

29-13

29

29-14

FormWindow

tag: XString.Reader .-NIL.
suffix: XString.Reader .-NIL.
visibility: Visibility .- visible.
boxed: BOOLEAN TRUE.
readOnly: BOOLEAN FALSE,
width: CARDINAL" _. in screen dots
initString: XString.Reader NIL,
wrapUnderTag: BOOLEAN FALSE,
passwordFeedback: BOOLEAN FALSE,
hintsProc: TextHintsProc .-NIL.
nextOutOfProc: NextOutOfProc NIL.
SPECALKeyboard: BlackKeys.Keyboard 4- NIL];

Creates a text item. Text items are user-editable text strings. The value of a text item is of
type XString.ReaderBody. The user may select text, extend the selection, insert text, delete
text, move and copy text, etc. Text items are fixed width but may grow and shrink
vertically as the user enters and deletes text. A text item will contain nonattributed text
only. FormWindow handles all storage allocation for the backing string.

width is the number of screen dots wide that the item should be. The item may grow
arbitrarily long as the user enters text, but it will always retain the same width.

initString is the initial string to place in the text item. The bytes are copied by
FormWindow.

wrapUnderTag specifies whether any text wider than the width of the text item should
appear underneath the tag (wrapUnderTag • TRUE) or start at the left edge of the text jtem ~
(wrapUnderTag • FALSE). Note: This feature is not yet implemented; that is, items always
behave with wrapUnderTag • FALSE.

password Feedback indicates that the text should be displayed in an unreadable form (e.g.
asterisks> rather than as normal characters. The correct value of the string is maintained
internally, so that a call to GetTextltemValue will return the proper value. If any part of a
passwordFeedback field is copied or moved, the underlying string is NOT copied.

If hintsProc is supplied, it is called to make a list of strings to be displayed to the user as a
popup hint menu. (See TextHintsProc below.)

If nextOutOfProc is supplied, it is called when the user presses the NEXT key while the
input focus is in this text item. This gives the client an opportunity to create more text
items. After calling the nextOutOfProc or if no nextOutOfProc is supplied, the NEXT key
causes the selection and input focus to move to the next text or window item in the form.
See NEXT key in this chapter for further explanation.

If SPEOALKeyboard is supplied, it allows clients to make a special keyboard available to
the user when typing into a text or number field.

May raise Error(notAFormWindow, duplicatelt~mKey].

MakeDecimalitem: PROCEDURE [
window: Window.Handle,
myKey: Item Key,
tag: XString.Reader .-NIL,
suffix: XString.Reader.- NIL,
visibility: Visibility.- visible,
boxed: BOOLEAN .-TRUE,

,,-,,'

View Point Programmer's Manual

readOnly: BOOLEAN +- FALSE,
signed: BOOLEAN +- FALSE,
width: CARDINAL, .. - in screen dots _.
initDecimal: XLReal.Number +- XLReal.zero,
wrapUnderTag: BOOLEAN +- FALSE,
hintsProc: TextHintsProc +-NIL.
nextOutOfProc: NextOutOfProc +- NIL,
displayTemplate: XString.Reader +- NIL,
SPECALKeyboard: BlackK.ys.Keyboard +- NIL];

29

Creates a' decimal item. A decimal item is a text item that has a value of type
XLReal.Number. (See MakeTextitem above for details of text items.) The user can type any
text into the decimal item, but when the client calls GetDecimalltemValue to retrieve the
value, FormWindow converts the string to XLReal.Number. initDecimal is the initial
decimal value to place in the item. displayTemplate parameter is defined as in the
XLReal.PictureReal. XLReal.PictureReal is used to display the value of the decimal item. The
client may provide a keyboard interpretation with the SPECJALKeyboard parameter (see
BlackKeys chapter). May raise Error[notAFormWindow, duplicateltemKey].

Makelntegerltem: PROCEDURE [
window: wlndow.Handle,
myKey: Item Key,
tag: XString.Reader +-NIL,
suffix: XString.Reader +-NIL,
visibility: Visibility +- visible,
boxed: BOOLEAN +- TRUE,
readOnly: BOOLEAN +-FALSE,
signed: BOOLEAN +-FALSE,
width: CARDINAL, in screen dots
initlnteger: LONG INTEGER +- 0,
wrapUnderTag: BOOLEAN +-FALSE,
hintsProc: TextHintsProc +-NIL,
nextOutOfProc: NextOutOfProc +- NIL,
SPECALKeyboard: BlackKeys.Keyboard +- NIL];

Creates an integer item. An integer item is a text item that has a value of type LONG
INTEGER. (See MakeTextltem above for details of text items.) The user can type any text into
the integer item, but when the client calls GetlntegerltemValue to retrieve the value,
FormWindow converts the string to a LONG INTEGER. initlnteger is the initial number to
place in the item. The client may provide a keyboard interpretation with the
SPECIALKeyboard parameter (see BlackKeys chapter). May raise Error[
notAFormWindow, duplicateltemKey].

TextHintAction: TYPE. {replace, append, nil};

TextHintsProc:TYPE ~ PROCEDURE [
window': Window.Handle,
item: Item Key]
RETURNS [
hints: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody,

29-15

29 FormWindow

freeHints: FreeTextHintsProc,
hintAction: TextHintAction 4- replace);

FreeTextHintsProc: TYPE. PROCEDURE [
window: Window.Handle,
item": ItemKey,
hints: LONG DESCRIPTOR FOR ARRA Y OF XString.ReaderBody];

The client may provide a TextHintsProc to MakeTextltem, MakeDecimalitem, and
Makelntegerltem. Whenever the user points at the mouse menu for a text item, this
procedure is called and the hints returned are used to construct a popup menu that is
displayed.

When the user selects one of the strings from the popup menu, one of three things will
happen, depending on the hintAction returned by the TextHintsProc. If hintAction •
replace, the selected string will replace the current value of the text item. If hintAction •
append, the selected string will be appended to the current value of the text item. If
hintAction • nil, the current value of the text item will not change. hintAction • nil is
useful for displaying "help-like" information to the user for text items that do not have a
finite number of possible values, such as a file name.

freeHints is a procedure that will be called after the hint menu has been taken down to
allow the client to free any storage that was allocated when creating the hints array.

29.2.2.6 Window Items

29-16

MakeWindowltem: PROCEDURE [
window: Window.Handle,
myKey: ItemKey.
tag: XString.Reader 4-NIL,.
visibility: Visibility 4- visible,
boxed: BOOLEAN TRUE,
size: Window.Dims,
nextl ntoProc: Nextl ntoProc NIL]
RETURNS [clientWindow: Window.Handle];

Creates a window item. A window item is a window (Window.Handle) that is a child of the
FormWindow and can contain anything the client desires. A window with dimensions size
is created and returned as clientWindow. It is expected that the client will associate a
display proc (see Window.SetDisplayProc) and a TIP. NotifyProc with the window. The window
may be treated just like any other window, except FormWindow.SetWindowltemSize must be
used to change the size of the window rather than calling Window.SlideAndSize directly.
This allows FormWindow to move any other items, if necessary, to accomodate the
different-sized window item.

If nextlntoProc is supplied, it is called when the user presses the NEXT key in an item just
before this window item. This gives the window item an opportunity to gain control of the
NEXT key by setting the input focus to be the window item's window. The window item' may
then retain control of the NEXT key within the window item. When the window item no
longer wants to process the, NEXT key (for instance, when the NEXT key should move the
selection outside the window item), the window item client must call ~
Formwindow.TakeNEXTKey, which returns the NEXT key processing to the form window. <See
§29.2.10 for an explanation of the NEXT key.)

View Point Programmer's Manual

May raise Error[notAFormWindow, duplicateltemKey) .

. SetWindowltemSize: PROCEDURE [
window: Wlndow.Handle,
windowltemKey: Item Key,
newSize: Wlndow.Dims];

SetWindowltemSizeExtra: PROCEDURE [
window: Wlndow.Handlew
windowltemKey: Item Key,
newSize: Wlndow.Dims,
repaint: BOOLEAN TRUE];

29

SetWindowltemSize (or SetWindowltemSizeExtra) should be used to change the size of a
window item's window. The client should neuer call Window.SlideAndSize directly. Any
items below the window item are moved down or up to accommodate the new dimensions.
window is the form window that the window item is in. windowltemKey must be. the key
of a window item. newSize indicates the new dimensions. SetWindowltemSizeExtra is
defined in FormWindowExtra.mesa. May raise Error[notAFormWindow, invalidltemKey,
wrongltemType].

29.2.2.7 Destroying I terns

Destroyltem: PROCEDURE [
window:Window.Handlew
item: ItemKeyw
repaint: BOOLEAN TRUE];

Destroyltem destroys item. Most clients will not need to use this procedure, since
FormWindow.Destroy destroys all the items in the FormWi ndow. May raise
Error[notAFormWi ndow, i nval idltemKey].

Destroyltems: PROCEDURE [
window:wfndow.Handlew
item: LONG DESCRIPTOR FOR ARRAY OF Item Key ,
repaint: BOOLEAN TRUE];

Destroyltems destroys several items at once. Most clients will not need to use this
procedure, since FormWindow.Destroy destroys all the items in the FormWindow. :May raise
Error[notAFormWindoww invalidltemKey).

29.2.3 Getting and Setting Values

The client may examine or change the value of an item. All GetXXXltem procedures return
the current value of an item. All SetXXXltem procedures take a given new value and
change the value internally, as well as updating the screen if necessary.

In all these procedures, window is the FormWindow the item is in. item uniquely
identifies the item to get/set the value of.

Note: There are two ways to get the value of a text item. GetTextltemValue copies the
bytes of the string so that the storage for the returned value is owned by the client.

29 FormWindow

LookAtTextltemValue simply returns a pointer to the FormWindow-owned backing string.
This value is therefore read-only and must be released when the client is done examining ,~,
it by calling DoneLookingAtTextltemValue.

All of these may raise Error(notAFormWindowr invalidltemKey, wrongltemType). If the
item is in a neutral state (see § 29.2.8), these will raise ItemError(neutralltem].

29 .. 2.3.1 Getting Values

29-18

GetBooleanltemValue: PROCEDURE [
window: Wlndow.Handler

item: Item Key]
RETURNS [value: BOOLEAN];

GetChoiceltemValue: PROCEDURE [
window:Window.Handler

item: Item Key]
RETURNS [value: Choicelndex];

GetDecimalltemValue: PROCEDURE [
window: Window.Handler

item: Item Key]
RETURNS [value:XLReal.Number];

May raise XLReal.Error [notANumber].

GetlntegerltemValue: PROCEDURE [
window: Window.Handle,
item: Item Key)
RETURNS [value: LONG INTEGER];

May raise XString.lnvalidNumber or XString.Overflow.

GetMultipleChoiceltemValue: PROCEDURE [
window:Window.Handler

item: ItemKey. zone: UNCOUNTED ZONE]
RETURNS [values: LONG DESCRIPTOR fOR ARRAY OF Choicelndex);

The zone parameter is added. The storage for the DESCRIPTOR will be allocated out of zone
and the storage must be freed by the client.

GetTextltemValue: PROCEDURE [
window: Window.Handle,
item: Item Key.
zone: UNCOUNTED ZONE]
RETURNS [value: XString.ReaderBody];

GetTextltemValue copies the string. Storage for the bytes is allocated out of zone. The
client should free the storage using XString.FreeReaderBytes and zone.

GetWindowltemValue: PROCEDURE [
window: Window.Handle,

ViewPoint Programmer's Manual

item: Item Key]
RETURNS [value: Window.Handle];

LookAtTextltemValue: PROCEDURE [
window: Window. Handle,
item: Item Key]
RETURNS (val ue: xString.ReaderBody];

DoneLookingAtTextltemValue: PROCEDURE (
window: Window.Handle,
item: ItemKey];

29

LookAtTextltemValue does not copy the string but returns a pointer to it. value should not
be changed by the client. Clients using LookAtTextltemValue must call
DoneLookingAtTextltemValue when done examining it. During the time between these
calls, if another client calls LookAtTextltemValue or SetTextltemValue for the same text
item, the second client's process will WAIT.

GetNextAvaiiableKey: PROCEDURE [window: Window.Handle]
RETURNS [key: ItemKey];

Returns the next available item key: MAx[usedKeys] + 1.

29.2.3.2 Setting Values

All the SetXXXltem proCedures take a repaint: BOOLEAN. If repaint • TRU~ and the ite~ is
currently visible, it will be repainted with the new value. If repaint • FALSE, the item· will
not be repainted until FormWindow.Repaint is called. This allows the client to change the
values of several items at once without the screen flashing for each item. Warning: After
calling any procedure with repaint. FALSE, FormWindow.Repaint must be called. Otherwise,
the screen will be inconsistent with the internal values.

Caution: If a change proc does a SetXXXltemValue, the client should take extreme care to
prevent infInite recursion. (See §29.3.1.)

SetBooleanltemValue: PROCEDURE [
window: Wlndow.Handle,
item: Item Key,
newValue: BOOLEAN,
repaint: BOOLEAN +-TRUE];

SetChoiceltemValue: PROCEDURE [
"vindow: Window. Handle,
item: Item Key,
newValue: Choicelndex,
repaint: BOOLEAN +-TRUE];

May raise FormWindow.Error[invalidChoiceNumber].

SetDecimalltemValue: PROCEDURE [
window: Window.Handle,
item: ItemKey,

29-19

29 FormWindow

newValue:XLReal.Number,
repaint: BOOLEAN TRUE];

SetlntegerltemValue: PROCEDURE [
window: Window.Handle,
item: ItemKey,
newValue: LONG INTEGER,
repaint: BOOLEAN ... TRUE];

SetMultipleChoiceltemValue: PROCEDURE [
window:Window.Handle,
item: Item Key,
newValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
repaint: BOOLEAN TRUE];

May raise FormWindow.Error[invalidChoiceNumber].

SetTextltemValue: PROCEDURE [
window: Window.Handle,
item: Item Key r
newValue: XString.Reader,
repaint: BOOLEAN TRUE);

29.2D4 "Changed" BOOLEAN

29-20

Every item that has a value that the user can change (al~ except tagqnly and command ~~
items) has a "changed" boolean associated with it. All items are created with this boolean
set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the user
changes the item or when a client calls one of the SetXXXltemValue procedures. This
allows the client to determine which items have changed when, for example, the user
selects "Done" or "Apply" on a property sheet. The client is responsible for resetting the
changed boolean to false by calling ResetChanged or ResetAliChanged after' examining the
changed boolean with HasBeenChanged or HasAnyBeenChanged.

HasAnyBeenChanged:PROCEDURE[
window: Window.Handle)
RETURNS [yes: BOOLEAN];

HasAnyBeenChanged returns true if any item's changed boolean is TRUE. May raise
Error(notAFormWindow].

HasBeenChanged:PROCEDURE[
window: Window.Handle,
item: ItemKey]
RETURNS [yes: BOOLEAN];

HasBeenChanged returns TRUE if the user has changed item. The client may reset the
changed boolean to FALSE by using ResetChanged or ResetAliChanged. If item is tagonly or
command, HasBeenChanged returns FALSE. May raise Error[notAFormWi ndow,
invalidltemKey]. ~,

ViewPoint Programmer's Manual 29

ResetChanged: PROCEDURE [window: Window.Handle. item: ItemKey];

ResetChanged sets the changed boolean of item to FALSE. May raise Error[
notAFormWindow, invalidltemKey].

ResetAliChanged: PROCEDURE [window: Window.Handle];

ResetAliChanged sets the changed boolean of all items to FALSE. May raise Error[
notAFormWindow].

SetChanged:PROCEDURE[
window: Window.Handle,
item: ItemKey];

SetChanged sets the changed boolean of item to TRUE. May raise Error[notAFormWi ndow,
invalidltemKey).

SetAIiChanged:PROCEDURE[
window: Window.Handle];

SetAIiChanged sets the changed boolean of all items to TRUE. May raise Error[
notAFormWindow].

29.2.5 Visibility

Visibility: TYPE. {visible, invisible,.invisibleGhost};

An item either is or is not displayed in the form window. If an item is displayed in the form
window, it is visible. If an item is not currently displayed, it is either invisible or
invisibleGhost. Ifit is invisible, it does not take up any space on the screen; any items below
it move up to take its screen space. If an item is invisibleGhost, the space that it would
occupy were it visible is white on the screen. An item's visibility can be changed anytime
by calling SetVisibility.

GetVisibility: PROCEDURE [
window: Window.Handle,
item: Item Key]
RETURNS [visibility: Visibility];

GetVisibility returns the current visibility of item. May raise Error[notAFormWindow,
invalidltemKey].

SetVisibility: PROCEDURE [
window: Window.Handle,
item: ItemKey,
visibility: Visibility,
repaint: BOOLEAN ... TRUE);

SetVisibility sets the visibility of item. If repaint • TRUE and the item's visibility is
changing, the form window will be repainted. If repaint • FALSE, the form window will not
be repainted until FormWindow.Repaint is called. This allows the client to change the
visibility of several items at once without the screen flashing for each item. Warning:

29-21

29 FormWindow

After calling SetVisibility with repaint • FALSE, FormWindow.Repaint must be called.
Otherwise, the screen will be inconsistent with internal values. May raise ~,
Error(notAFormWindow, invalidltemKey].

29.,2.8 Layout

The exact layout of items in a form window is done by calling various procedures specified
below t after creating the items to be laid out. If an item is not explicitly laid out~ it will not
appear in the form window at all. Note that FormWindow.DefaultLayout may be used when
the client is not concerned with the exact placement of items, but wants a functional form
window.

There are two different types of layout. The most common is flexible layout, which allows
text, decimal, integer, and window items to grow and shrink (and all other items are moved
around accordingly) as the user or client changes their values. Flexible layout is done by
calling such procedures as AppendLine and Appendltem. The other is flXed layout, which
allows the client to specify exactly where items will go by calling SetitemBox, but does not
allow text, decimal, integer ~ and window items to grow or shrink. All items stay where they
are laid out unless the client calls SetltemBox again.

29.2.8.1 Flexible Layout

A form window with flexible layout consists of horizontal lines with zero or more items on
each line. Lines now are always just tall enough to hold the items on that line. The
spaceAboveLine parameter specifies the amount of white spae to leave above each line. ~
Any desired horizontal spacing may be accomplished by using appropriate margins
between items. Items may be lined up horizontally by using TabStops (see §29.2.S.2 below).

Lines are created by calling AppendLine or InsertLine. Items are placed on a line by calling
Appendltem or Insertltem. The Append routines are used to add items after the previously
created line or item. The Insert routines are used to add items between previously created
items or lines.

AppendLine: PROCEDURE [
window: Window.Handle,
spaceAboveLine: CARDINAL +- 0]
RETURNS [line: Line];

Apper,dLine creates a new line and appends it to the bottom of the form window. All items
must be placed on a line, so AppendLine must be called before any calls to Appendltem.
The line returned by AppendLine should be passed to Appendltem or Insertltem. window
is the FormWindow the line is being appended to. May raise Error[notAFormWindow].

Line: TYPE;

Line uniquely identifies a line and is returned by AppendLine and InsertLine. A Line must
be passed to Appendltem and I nsertltem.

Appendltem: PROCEDURE [
window: Window.Handle,
item: Item Key,
line: Line,

29-22

~'

. .,.,..

ViewPoint Programmer's Manual 29

preMargin: CARDINAL 0,
tabStop: CARDINAL nextTabStop,
repaint: BOOLEAN TRUe];

Appendltem appends item to line.

preMargin is the number of pixels of white space to place before the left edge of this item. If
tabs have been set, preMargin is added after placing the item at its tab stop.

tabStop is the ordinal number of the tab stop at which to place this item. If the default is
taken, the next tab stop on the line after the previous item is used. If no tabs have been
defined (i.e., SetTabStops has never been called), tabStop is ignored. See §29.2.6.2 for
more detail on tabs.

repaint specifies whether the screen should be repainted after the Appendltem is done.
When called from the client's LayoutProc, repaint is ignored and the items are not painted
until the LayoutProc returns. When not called from the client's LayoutProc, and repaint =
TRUE, the form window will be repainted immediately after appending the item. When not
called from the client's LayoutProc, and repaint:::: FALSE, the form window will not be
repainted until FormWindow.Repaint is called. This allows the client to add several items at
once without the screen flashing for each new item. Warning: After calling Appendltem
with repaint = FALSE, FormWindow.Repaint must be called. Otherwise, the screen will be
inconsistent with internal values.

May raise Error(notAFormWindow, invalialtemKey, nOSuchLineJ.

InsertLine: PROCEDURE [
window: Window.Handle,
before: Line,
spaceAboveLine: CARDINAL +- 0]
RETURNS [line: Line);

InsertLine inserts a new line before (above) an existing line. The spaceAboveLi ne
parameter indicates how much space (in screen dots) to leave between the previous line
and this line. This allows clients to leave white space at the top of the form before the first
line and also provides an easy way to put white space in a form. (See AppendLine for
details of creating a line.) May raise Error(notAFormWindow, noSuchLine].

Insertltem: PROCEDURE [
window: Window.Handle.
item: ItemKey.
line: Line.
beforeltem: Item Key,
preMargin: CARDINAL 0,

. tabStop: CARDINAL nextTabStop,
repaint: BOOLEAN TRUE];

Insertltem inserts item to the left of beforeltem on line. See Appendltem for details of
placing an item on a line. May raise Error [notAFormWindow, invalidltemKey,
nOSuchLine. itemNotOnLine].

RemoveltemFromLine: PROCEDURE [
window: Window.Handle,
item: Item Key.

29-23

29 FormWindow

line: Line,
repaint: BOOLEAN +- TRUE1;

RemoveltemFromLine will "unlayout" an item that has been previously laid out. This
allows clients to move an item from one place on the form to another without destroying
and recreating the item, by calling RemoveltemfromLine followed by a call to Appendltem
or InsertJtem. RemoveltemFromLine will not destroy the item. The item will be "in limbo"
until it is laid out again using Appendltem or Insertltem.

Layoutln'foFromltem: PROCEDURE [
window: Window.Handle, item: Item Key)
RETURNS [line: Line, margin: CARDINAL, ,
tabStop:CARDINAL, box: Window.Box1;

Layoutln'foFromltem returns various layout characteristics of item. May raise
Error(notAFormWindow, invalidltemKey).

LineUpBoxes: PROCEDURE [window: Window.Handle,
items: LONG DESCRIPTOR FOR ARRAY OF Item Key +- NIL];

Calling this procedure will force the boxes of the specified items to line up vertically, as in
most ViewPoint property sheets. If no items are specified, and a fixed-pitch font is used, the
Ilrst item on every line will line up as shown in Figure 29.1.

Itag1 boxed boolean item

I tagOnline2 boxed choice item

boxed text item

I veryLongTagline4 boxed boolean item

Fig\Jr~ 29.1 LineUpBoxes

The specified items must be the first item on their line. The longest tag is measured; then
the boxed part of each item appears at the next available tab stop after the longest tag. This
also works for non-boxed items.

29.2.6.2 Tabs

29-24

TabType: TYPE. {fixed, vary};

TabStops: TYPE. RECORD [
variant: SELECT type: Tab Type FROM
fixed. > [interval: CARDINAL],

ViewPoint Programmer's Manual

vary=- > [list: LONG DESCRIPTOR FOR ARRAY OF CARDINAL]

ENDCASE];

29

The client may specify tab stops to facilitate lining up items one directly below the other.
Tabs may be specified two ways: fixed and varying. Fixed tab stops are specified by a single
CARDINAL (interval) ,that indicates a tab stop at each interval pixel, such as if interval = 10,
there will be tab stops at 10, 20, 30, etc. Varying tab stops are specified by an ARRAY OF

CARDINAL, each element of the ARRA v indicating the number of pixels from the left edge of the
window. Typically, a client will call SetTabStops at the beginning of the LayoutProc, then
call AppendLine and Appendltem repeatedly, taking the nextTabStop default for each
item. -

noTabStop: CARDINAL. CARDINALLAST-1;

Can be used with Appendltem and Insertltem to indicate that this item should ignore tab
stops completely.

defaultTabStops: TabStops • [fixed[interval: 100]];

SetTabStops: PROCEDURE [window: Window.Handle, tabStops: TabStops);

SetTabStops sets the tab stops for window. Any items laid out before to this call will now
,be moved to conform to these tab stops. May raise Error(notAFormWindow].

nextTabStop: CARDINAL •••• ;

Used for item layout, it is the default for the tabStop parameter for Appendltem and
Insertltem. Indicates that the next item should be placed at the next tab stop.

GetTabStops: PROCEDURE [window: window.Handle]
RETURNS [tabStops: TabStops]; .

GetTabStops returns the current tab stops for window. If no tab stops have been set for
window, tabStops will be fixed with an interval ofO. May raise Error(notAFormWindow].

29.2.6.3 Fixed Layout

Setltem Box: PROCEDURE-[

window: Window.Handle,
item: Item Key,
box: Window~Box];

SetltemBox is used to set the exact position of an item for fixed layout. With fixed layout,
all items stay right where they are laid out unless the client calls SetltemBox again. With
fixed layout, text, decimal, integer, and window items will not grow or shrink. SetltemBox
is incompatible with flexible layout (such as. AppendLine, Appendltem, SetTabStops, etc).
Note: Either all layout must be flexible, or all layout must be fixed. Attempting to mix
them will raise Error(notAFormWindow, invalidltemKey].

29-25

29 FormWindow

29.2.7 Save and Restore

Restore: PROCEDURE [window: Window.Handle];'

Save: PROCEDURE [window: Window.Handle];

Restore and Save deal with restoration of a form window to a previous state. Save causes
the current item values to be saved. Restore causes the previously saved values to be copied
back into the form. A Restore done before a Save is a no-op. Save done after Save (but
before a Restore) over~rites the first Save. These procedures support the Reset function of
property sheets. May raise Error[notAFormWindow].

29.2.8 Neutral Properties

There are times when the client wants to indicate to the user that a particular item no
longer has a meaningful value. One way of achieving this is to remove the item completely
from the display by setting its visibility. If the client wishes the item to remain visible,
however, a different mechanism can be used. All items (except Command items) can be
placed into a neutral state, indicating that they no longer have a specific value. When an
item becomes neutral, it's display is changed such that any value indications are removed
and uniform diagonal· gray stripes are painted over the item'.s tag, suffix, and value box.
Setting an item to orfrom the neutral state is done by calling SetltemNeutralness.

Items will return to a normal state whenever the user selects a value for that item. In the
case of text, integer, and decimal items, the item will return to a normal state whenever
the item receives the text input focus. This can be done either by the user POINTing up
inside the item value box or by NEXTing into the item. In addition, an item will return to a
normal state whenever a client calls SetXXXltemValue.

When a text or number item becomes neutral, it's value is cleared before the gray stripes
are painted over the value box. For boolean and choice items, the value boxes are
dehighlighted before the stripes are painted. When boolean and choice items are returned
to a normal state, the values they had prior to changing to neutral are restored. Text and
number items, however, lose their previous values and are returned to a no~mal state with
their values fields empty.

When an i~em is in the neutral state, it actually has no value at all. Because of this, calling
GetXXXltemValue for a neutral item will raise ItemError[neutralltem). In addition, since
the neutral state is not defined for command items, calling SetltemNeutralness for a
command item will raise Error[wrong.temType].

SetltemNeutralness: PROCEDURE [

window: Window.Handle,
item: Item Key,
neutral: BOOLEAN,

repaint: BOOLEAN +-TRUE];

The fleutral parameter is used to indicate whether the item should become neutral, or
return to a normal state and appearance. window is the FormWindow containing the
item, and item is the specific ItemKey uniquely identifying the item. repaint indicates
whether the client wishes the display to be updated. If this value is FALSE, the item will not

29-26

ViewPoint Programmer's Manual 29

change appearance, but the internal state of the item will be changed. The next time the
FormWindow is repainted, the display will be changed to reflect the current state of the
item.

NeutratDisptayProc: PROCEDURE [
window: Window. Handle.
box: Window. Box 4-Window.nuIlBox];

When a window item is set to neutral, only the item's tag and suffix will be painted with
gray stripes. Painting the interior of the window is the responsibility of the client. For the
convenience of clients who wish the item to have a uniform neutral appearance,
NeutratDisplayProc will display the neutral gray stripes in box for a given window. If the
default value for box is used, then stripes will be painted over the entire window.

IsNeutrat: PROCEDURE [
window: Window.Handle,
item: Item Key)
RETURNS [yes: BOOLEAN);

IsNeutral indicates whether a given item is in the neutral state. Will raise
Error(wrongltemType) if the item is a command item.

All of the procedures listed in this section and Item Error are defined in
FormWindowExtraS.

29.2.9 Item Popup Menus

SetPopupProc:PROCEDURE[
window: Window.Handle,
proc: PopupProc]
RETURNS [old: PopupProc1;

PopupProc: TYPE • PROCEDURE [
window: Window.Handle,
item: FormWindow.ltemKey)
RETURNS [menu: MenuOata.MenuHandle 4- NIL,
freeProc: MenuFreeProc 4-NIL1;

MenuFreeProc: TYPE • PROCEDURE [
window: Window.Handle,
menuHandle: Menuoata.MenuHandle];

A PopupProc provides the client with a mechanism for attaching a popup menu to any item
in a FormWindo~. If a PopupProc exists for a FormWindow, it will be called whenever the
user CHORDs over any item in the window. If menu is non NIL, the popup menu described
by it will be put up. freeProc is a procedure which will be called when the popup menu is
taken down so that the client can free any storage allocated for the MenuHandle. The
PopupProc is set for a FormWindow by calling SetPopupProc. If a PopupProc does not
exists for a FormWindow, the CHORDing action will be ignored. SetPopupProc may raise
Error(notAFormWindowl.

29-27

29 FormWindow

If the PopupProc returns a NIL value for menu, the popup menu will not be put up and the~,
CHORDing action will be ignored.

The sensitive area for the CHORDing action over an item is the entire area covered by the
item's tag, sufilx, and value box.

NeutralPopupProc: PopupProc;

NeutralPopupProc is provided for the convenience of those clients that wish to provide a
popup menu for setting items to a neutral state. The popup menu for this Popu pProc
consists of a single command which will be used to set that item to a neutral state. This
procedure will return a MenuHandle and MenuFreeProc for text, integer, decimal, boolean,
choice, and window items. A popup menu is not provided for readOnly, tag, or command
items.

All of these types and procedures are defined in FormWindowExtraS.

29.2.10 Miscellaneous TYPEs

Bitmap: TYPE • RECORD(
height, width: CARDINAL,
bitsPerLi ne: CARDINAL,
bits: Environment.BitAddress];

A Bitmap is the data structure that is passed to MakeBooleanltem and MakeChoiceltem ~
for items that are to be displayed as bitmaps. height is the height in pixels, of the bitmap.
width is the width in pixels, of the bitmap. bits is a pointer to the actual bits in the bitmap.
bitsPerLine is the number of bits in each line of bits. bitsPerLine is usually greater than or
equal to width, and is often a multiple of 16.

ChangeReason: TYPE. {user, client, restore};

A Change Reason is passed to a GlobalChangeProc, BooleanChangeProc, and
ChoiceChangeProc. It indicates whether the change was caused by the user, or by the client
calling SetXXXltemValue, or by the client calling Restore.

29.2.11 Miscellaneous Item Operations

GetReadOnly: PROCEDURE [window: Window.Handle, item: Item Key]
RETURNS [readOnly: BOOLEAN);

GetReadOnly returns the current value of the readOnly BOOLEAN for item. May raise
Error[notAFormWindow, invalidltemKey).

GetTag:PROCEDURE[
window: Window.Handle,

item: Item Key]
RETURNS [tag: XString.Reader];

GetTag returns the tag associated with item. May raise Error[notAFormWindow,
invalidltemKey].

29-28

View Point Programmer's Manual

SetSelection: PROCEDURE [

. window: Window.Handle,
item: ItemKey,
firstChar: CARDINAL +- 0,
lastChar: CARDINAL +- CARDINALLAST1;

29

SetSelection sets the current selection to be item. This is useful for helping the user correct
an incorrect user entry. item must be a text, decimal, or integer item. firstChar is the fIrst
character of the portion of the string to be selected and highlighted. lastChar is the last
character of the portion of the string to be selected and highlighted. The defaults for
firstCha'r and lastChar causes the entire string to be selected. May raise
Error[notAFormWindow, invalidltemKey, wrongltemType).

SetlnputFocus: PROCEDURE [

window: Window.Handle,
item: ItemKey,
beforeChar: CARDINAL +- CARDINALLAST];

SetlnputFocus sets the current input focus to be in item. This is useful for highlighting an
incorrect user entry. item must be a text, decimal, or integer item. beforeChar is the
character before which the input focus should go. The default causes the input focus to be at
the end of the string. May raise Error[notAFormWindow, invalidltemKey,
wrongltemType]. .

SetReadOnly: PROCEDURE [

window: Window.Handle,
item: ItemKey,
readOnly: BOOLEAN]

RETURNS [old: BOOLEAN];

SetReadOnly sets the current "readOnly-ness" of item and returns the old value. May raise
Error[notAFormWindow, invalidltemKey).

SetltemWidth: PROCEDURE [window: window.Handle, item: ItemKey,
width: CARDINAL]; •

This procedure sets the width of an item. Normally, items are as wide as they need to be to
display the text of the item (except text, decimal, and integer items whose width is
specified when the items are created). SetltemWidth overtides the normal width of the
item and thus could result in the text of the item being truncated. SetltemWidth should
therefore be used with great caution. In particular, programmers should keep in mind that
applications are intended to be multinational and strings in other languages are often
longer than their English equivalents. This layout procedure can only be used with a
flexible layout.

SetltemFont: PROCEDURE [

window: Window.Handle,
item: ItemKey,
newFont: SimpleTextFont.MappedFontHandle +-NIL,

repaint: BOOLEAN +- TRUE];

29-29

29 FormWindow

Setltemfont changes the font of a text or number item. It does not affect the tag or suffix.
If newFont is NIL, the system font is used. May raise Error[notAFormWindow,
invalidltemKey]. Setltemfont is defined in FormWindowExtra4.mesa.

SetLosingFocusProc:PROCEDURE[
window: Window.Handle,
item: ItemKey,
proc: LosingfocusProc);

LosingFocusProc: TYPE. PROCEDURE [window: Window.Handle. item: ItemKey];

SetLosingFocusProc associates proc with item. proc is called whenever item loses the
input focus, allowing clients to undo things that were done when the input focus was set,
e.g. clear some SoftKeys. item must be a text or number item. May raise
Error[notAFormWindow. invalidltemKey]. SetLosingfocusProc and LosingfocusProc are
defmed in Form WindowExtra6.mesa.

SetTookfocusProc: PROCEDURE [window: Window.Handle. proc: LosingfocusProc1;

TookFocusProc: TYPE. PROCEDURE [window: Window.Handle. item: ItemKey];

SetTookFocusProc associates proc with window. proc is called whenever the form window
takes the input focus. item is the item that took the input focus, and will be a text or
number item. May raise Error[notAFormWindow, invalidltemKey). SetTookFocusProc
and TookFocusProc are defined in FormWindowExtra6.mesa.

29.2.12 NEXT Key

29-30

When the user presses the NEXT key while the input focus is in a form window (more
exactly: in a text, decimal, or integer item in a form window), the form window does the
following:

1. If the item with the input focus has a NextOutOfProc,it is called. This gives the client
an opportunity to, for example, add another blank text item after this one.

2. Find the next text, decimal, integer, or window item. Note: If the client added another
text item after the one that had the input focus, that new item will be the one found by
form window.

3a. If the next item is a text, decimal, or integer item, the input focus and selection are
moved to that item.

3b. If the next item is a window item and the window item has a NextlntoProc, it is called,
giving the window item an opportunity to take the input focus. For example, if the
window item contains a table of values, the NEXT key could be used to step from entry
to entry through the table, but the window item's TIP.NotifyProc would have to do this.
Note: If a NextlntoProc is supplied for a window item, it MUST call TIP.SetlnputFocus
so that all further NEXT key notifications will go to the window item. When the window
item no longer wants the NEXT key (such as the user has NEXTed out of the last entry of
the table), it must call FormWindow.TakeNEXTKey. TakeNEXTKey proceeds as in steps 2
and 3.

ViewPoint Programmer's Manual 29

3c. If the next item is a window item, but the window item does not have a NextlntoProc,
the form window repeats steps 2 and 3.

NextlntoProc: TYPE. PROCEDURE [

window: Window.Handle,
item: ItemKey];

A NextlntoProc can be provided by the client with window items. If provided, the
NextlntoProc will be called when the user NEXTs into the item using the NEXT key. (See the
discussion above.)

NextOutOfProc: TYPE • PROCEDURE [

window: Window.Handle,
item: ItemKeyl;

A NextOutOfProc can be provided by the client with text, decimal, and integer items. If
provided, the NextOutOfProc is called when the user hits the NEXT key while the input
focus is in an item just before this one. See the discussion above.

SetNextOutOfProc: PROCEDURE [

window: Window.Handle,
item: Item Key ,
nextOutOfProc: NextOutOfProc]
RETURNS [old: NextOutOfProc];

SetNextOutOfProc sets the NextOutOfProc for a text, decimal, or integer item. This is
useful when the'NextOutOfProc for a text item creates another text item after itself. After
creating the new item, the client will probably want to set the NextOutOfProc for the old
item to NIL, so that next time the user NEXTs out of the old item, the selection and input
focus will simply move to the new item rather than creating yet another new item.

GetNextOutOfProc: PROCEDURE [

window: Window.Handle,
item: Item Key]
RETURNS [NextOutOfProc];

GetNextOutOfProc returns the NextOutOfProc for item.

TakeNEXTKey: PROCEDURE [

window: Window.Handle,
item: ItemKey);

TakeNEXTKey informs form window that the window item which was handling the NEXT
item is done with it and the input focus should be passed on to the next item that can take
it. item identifies the window item that is involved. May raise Error(notAFormWindow,
wrongltemType).

29.2.13 SIGNALs and ERRORs

Error: ERROR [code: ErrorCode);

29-31

29

29-32

FormWindow

ErrorCode: TYPE=- MACHINE DEPENDENT {notAformWindow(O), wrongltemType,
invalidChoiceNumber, nOSuchline. alreadyAformWindow,
invalidltemKey, itemNotOnLine. duplicateltemKey,
incompatiblelayout. alreadyLaidOut.last(15)};

notAFormWindow

wrongltemType

invaJidChoiceNumber

noSuchLine

alreadyAFormWindow

invalidltemKey

itemNotOnline

duplicateltemKey

incompatibleLayout

alreadylaidOut

The term notAFormWindow means the window passed in to
the procedure is not a form window. Any FormWindow
procedure, except Create and Islt, may raise this error.

The term wrongltemType means the item passed in to the
FormWindow procedure is the wrong type. For example,
GetChoiceltemValue must be passed a choice item.

The term invalidChoiceNumber means the choice number
supplied does not match any of the choice numbers in the
Choiceltems.

The term noSuchline means the line supplied to
Appendltem or Insertltem was not previously created.

The term alreadyAFormWindow means the window passed
in is already a form window. Raised if a FormWindow is
passed into Create.

The term invalidltemKey means. an ItemKey was used for
which there was no item created.

The term itemNotOnLine means an attempt was made to .. ~
insert an item on a line before an item that is not on that
line. See Insertltem.

The term duplicateltemKey means an item was created with
the key of another item. Item Keys must be unique.

The term incompatibleLayout means the client is
attempting to intermix fixed and flexible layout styles.

The term alreadyLaidOut means an attempt was made to
specify the layout for an item more than once.

LayoutError: SIGNAL [code: LayoutErrorCode);

LayoutErrorCode: TYPE. {onTopOfAnotherltem. notEnufTabsDefined};

The following ERROR and ErrorCode are found in FormWindowExtraS.

Item Error: ERROR [errorCode: ErrorCode1;

ErrorCode: TYPE. MACHINE DEPENDENT {neutralltem(O), mixedltem.last(15)};

neutral Item

mixedltem

The term neutralltem means that a call to GetXXXltemValue
was made on an item in the neutral state.

mixedltem presently has no meaning.

ViewPoint Programmer's Manual

29.2.14 Multinational items

Flushness: TYPE. SimpleTextDisplay.Flushness;

StreakSuccession: TYPE. SimpleTextDisplay.StreakSuccession;

GetFlushness: PROCEDURE [
window: wlndow.Handle.
item: Item Key]
RETURNS [old: Flushness];

SetFlushness: PROCEDURE [
window: window.Handle.
item: Item Key.
new:Flushness]
RETURNS [old:Flushness);

GetStreakSuccession: PROCEDURE [
window: Window.Handle.
item: ItemKey]
RETURNS (old: StreakSuccession];

SetStreakSuccession: PROCEDURE [
window: Window.Handle.
item: Item Key.
new:StreakSuccession]
RETURNS [old:StreakSuccession];

29.3 Usage/Examples

29.3.1 Calling ChangeProcs .

29

There are three ways for a client to determine if an item has been changed. (1) The client
may supply a GlobalChangeProc that governs the entire window, (2) it may supply a
XXXChangeProc for certain items (such as choice and boolean), and (3) it may examine the
«changed" boolean associated with each item.

An item can change because the user changes the item, or because a client calls
SetXXXltemValue, or because a client calls Restore.

The two kinds of change procs are called whenever the f~changed" boolean goes from false to
true (whether that is caused by user actions or client actions). The following describes the
exact order of events for each source of change:

• User action

1. Change value of item and set "changed" boolean.
2. Call local change proc, if any.
3. Call global change proc, ifany.

29-33

29 FormWindow

• Client call to SetXXXltemValue

1. Change value of item and set t'changed" boolean.
2. Call local change proc, if any.
3. Call global change proc, if any.

• Client call to Restore

1. Change value of item and set "changed" boolean.
2. Call global change proc, ifany, with nuJlltemKey.

Note: If a change proc does a SetXXXltemValue, the client should take extreme care to
prevent inflnite recursion.

29.3.2 Creating a Simple Form Window

29-34

Myltems: TYPE. {boolean, choice. text};

sheU: StarWindowshell.Handle +- StarWindowSheU.Create [•••];
formWindow: Window.Handle +- StarWindowShell.Cr~ateBody [shell);
FormWindow.Create [window: formWindow. makeltems: Makeltems.

layoutProc: DoLayout];

Makeltems: FormWindow.MakeltemsProc • {
«[window: Window.Handle, cJientData: LONG POINTER}»
tag: XString.ReaderBody;

•• Make a boolean item
BEGIN

booleanLabel: FormWindow.BooleanltemLabeJ +- [string[
XString.FromSTRING ["This is a boolean item"l]]];

tag +-XString.FromSTRING ["Tag"l];
FormWindow.MakeBooleanltem [

window: window, myKey: Myltems.boolean.oRD,
tag: @tag.label: booleanLabel,
initBoolean: FALSE];

END;

- Make a choice item
BEGIN

choice1: XString.ReaderBody +- XString.FromSTRING{"Choice Oneill];
choice2: XString.ReaderBody +- XString.FromSTRING{"Choice 2"l];
choices: ARRAY [0 •• 2) OF FormWindow.Choiceltem +- [

[string[O, choice1] 1.
[string[1. choice2]]];

tag +-XString.FromSTRING ["Choice item"L];

ViewPoint Programmer's Manual

FormWindow.MakeChoiceltem [
window: window, myKey: Myltems.choice.oRD,
tag: @tag, values: DESCRIPTOR(choicesl.
initChoice: 0];

END;

-- Make a text item
tag ~XString.FromSTRING ["Text item"l);
Form Window. Make Textltem(
window: window, myKey: Myltems.text.ORD,
tag: @tag, width: 30);
};

DoLayout: FormWindow.LayoutProc :. {
< < [window: Window. Handle, clientData: LONG POINTER}»

FormWindow.SetTabStops [window: window, tabStops: [fixed [1001]];

line: FormWindow.Line FormWindow.AppendLine [window];

-- Put boolean and choice item on line 1
FormWindow.Appendltem(window, Myltems.boolean.ORD, line);
FormWindow.Appendltem(window. Myltems.choice.oRD, Ii ne];

-- Put text item on line 2
line FormWindow.AppendLine [window];
FormWindow.Appendltem[window, Myltems.text.oRD, line];
};

29.3.3 Specifying Bitmaps in Choice Items

29

This example creates a choice item with three possible values. Two of them are bitmaps,
one is a string. The initial value to be highlighted is #2, the string.

--The bits. (These are in a global frame or a file. They MUST be around for the duration of
the Form Window since the bits are NOT copied.)
bm1 :FormWindow.Bitmap ~(height:48, width:64, bitsPerLine:64, bits:[@bitmap1[0].0, 0]];
bm2:FormWindow.Bitmap (height:48, ~idth:64, bitsPerLine:64, bits:[@bitmap2[0],0, 0]];
bitmap1: ARRAY [0 .• 192) OF WORD [--some bits--];
bitmap2: ARRAY [0 .• 192) OF WORD [--some bits-];
choiceOther: XString.ReaderBody ~ XString.FromSTRING[" OTH ERn];
choices: ARRAY [0 •• 3) OF FormWindow.Choiceltem [

[bitmap(O. bm1]].
[bitmap(1, bm2]],
[string[2, choiceOther]]
];

FormWinduw.MakeChoiceltem(
window: window,
tag: @tag.
myKey: Myltems.choice.oRD,
values: DESCRIPTOR(choices].

29-35

29 FormWindow

changeProc: ChoiceChangeProc.
initChoice: 2];

29.3.4 The NEXT Key and Text Items

29-36

This example creates a text item that inserts a new item after itself every time the user
presses the NEXT key.

--Make the text item
. Makeltems: FormWindow.MakeltemsProc •

SEGIN

FormWindow.MakeTextltem[
window: window,
myKey: Myltems. text. ORO,

width: SO,
tag: @tag,
initString: @initStringLong,
nextOutOfProc: TextNextOut);

END;

TextNextOut: FormWindow.NextOutOfProc a

BEGIN

tag: XString.ReaderBody +- XString.FromSTRING["lnserted Item: ilL];
initString: XString.ReaderBody +-XString.FromSTRING["1 DARE you! Edit ME!"L];

--create a new line on which to display the new item
nextLine: FormWindow.line +- FormWindow.LayoutlnfoFromltem

[wi ndow, Myltems. testChoice2.oRD].1 i ne;
line: FormWindow.Line +-FormWindow.lnsertline[window, nextLine, 60];

--create the new item.
FormWindow.Make Textltem(

window: window,
myKey: cntr,

-·cntr is a counter to keep track of the next available
-- key number since all Item Keys are unique

width: SO,
tag: @tag,
initString: @initString ,
nextOutOfProc: TextNextOut);

--put the new item on the line
FormWindow.Appendltem[

window: window,
item: cntr,
line: line];

cntr +- cntr + 1 ;

ViewPoint Programmer's Manual

--set the last item's NextOutOfProc to NIL
[] Formwindow.SetNextOutOfProc[window, item, NIL1;
END;

29.3.5 Window Items (Including Interaction with the NEXT Key)

29

This example creates a window item that wishes to be given control when a user NEXTs into
it.

--create the item
MakeltemS"$,FormWindow.MakeltemsProc •

BEGIN

dims: Window.Dims [200,200];

rriyWindow FormWindow.MakeWindowltem(
window: window,
myKey: Myltems.window.oRD,
tag: @tag,
size: dims,
destroyProc: NIL,
nextintoProc: MyNextlnto];

--set the display and notify procs
[] Window.SetDisplayProc(myWindow, Wi ndowltemDisplayProc);
[] +-TlP.SetTableAndNotifyProc [window·: myWindow,

table: TIPStar.NormaITable[], ..,otify: MyNotify];

END;

--MyNextlnto is called when a user presses the NEXT key "into" the window item
MyNextlnto: FormWindow.NextlntoProc -

BEGIN

--set the input focus so the window item gets all of the notifications
TlP.SetlnputFocus [w: my Window, takeslnput: TRUE];
END;

--Form Window is notified so the window item no longer requires the NEXT key so
Form Window can pass it along to the appropriate item

MyNotify: TIP . NotifyProc •
BEGIN

FOR input: TIP.Results results, input.next UNTIL input. NIL DO
WITH z: input SELECT FROM

atom • > SELECT z.a FROM
nextDown • >

FormWindow. TakeNEXTKey
[window: my Window. Get Parent, item: Myltems.window.oRD];

EHDCAse;

ENDCAse;

29-37

29 FormWindow

29.3.6 Hints

ENDLOOP;

END;

This example creates a text item that has a popup menu associated with it:

Makeltems: FormWfndow.MakeltemsProc •
BEGIN

Form Window. Ma keTextltem[
window: window,
myKey: Myltems.text.oRD,
width: SO,
tag: @tag,
initString: @initString,
hintsProc: TextHints];

END;

--Every time TextHlnts is called, specify the strings to put into the popup menu. The
hintAction specifies that when a string is selected from the hints menu, it should replace
the string in the text item

TextH ints: FormWindow. TextH i ntsProc •
BEGIN
hintsArray ~ --some computation--;
RETURN [hints: DESCRIPToR[hintsArray], freeHints: FreeHints, hintAction: replace];
END;

FreeHints: FormWindow.FreeTextHintsProc =­
BEGIN

--free the strings and whatever other storage here
END;

29.3.7 Saving and Restoring Items

The following example saves the original values of the items in a form window and restores
them when the user presses RESET.

--When creating the Form Window also call
FormWindow.Save(window];

--user changes some values
--user decides he wants the original values back; presses Reset
FormWindow.Restore{window];

29-38

ViewPoint Programmer's Manual 29

29.4Index of Interface Items
~

Item Page Item Page

Appendltem: PROCEDURE 22 HasAnyBeenChanged: PROCEDURE 20
AppendLine: PROCEDURE 22, HasBeenChanged:PRocEDURE 20
Bitmap: TYPE 26 InserHtem:PRocEDURE 23
BooleanChangeProc: TYPE 8 InsertLine: PROCEDURE 23
BooleanltemLabel: TYPE 8 Islt: PROCEDURE 5
BooleanltemLabelType: TYPE 8 IsNeutral: PROCEDURE 27
ChangeReason: TYPE 26 item:ltemKey 5
ChoiceChangeProc: TYPE 11 Item Error: ERROR 29-
ChoiceHintsProc: TYPE 11 ItemKey: TYPE 7
Choicetndex: TYPE 10 ItemType : TYPE 7
Choicettem: TYPE 10 LayoutError: SIGNAL 29
Choiceltems: TYPE 10 LayoutErrorCode: TYPE 29
ChoiceltemType: TYPE 10 LayoutlnfoFromltem: PROCEDURE 24
CommandltemLabel: TYPE 13 LayoutProc: TYPE 6
CommandltemLabelType: TYPE 13 Line: TYPE 22
CommandProc: TYPE 13 LineUpBoxes: PROCEDURE 24
Create: PROCEDURE 4 LookAtTextltemValue: PROCEDURE 18
DefaultLayout: LayoutProc 4 LosingFocusProc: TYPE 28
defaultTabStops: TabStops 25 MakeBoolean.tem: PROCEDURE 8
Destroy: PROCEDURE 4 MakeChoiceltem: PROCEDURE 9
Destroy.tem: PROCEDURE 17 MakeCommandltem: PROCEDURE 12

~ Destroy'tems: PROCEDURE 17 MakeDecimalitem: PROCEDURE 14
DoneLookingAtTextltemValue: PROCEDURE 19 Makel ntegerltem: PROCEDURE 15
Error: ERROR 29 MakeltemsProc: TYPE 6
ErrorCode: TYPE 29 MakeMultipleChoiceltem: PROCEDURE 11
Flushness: TYPE 30 MakeTagOnlyltem: PROCEDURE 13
FreeChoiceHintsProc: TYPE 11 MakeTextltem: PROCEDURE 13
FreeTextHintsProc:TYPE 15 MakeWindowltem: PROCEDURE 16
GetBoolean.temValue: PROCEDURE 18 MenuFreeProc: TYPE 27
GetChoiceltemValue: PROCEDURE 18 MinDi msChangeProc:TYPE 5
GetClientData: PROCEDURE 4 MultipleChoiceChangeProc: TYPE 12
GetDecimalltemValue: PROCEDURE 18 NeededDims: PROCEDURE 6
GetFlushness: PROCEDURE 30 Neutral DisplayProc: PROCEDURE 27
GetGlobalChangeProc: PROCEDURE 5 NeutralPopupProc: PROCEDURE 28
GetlntegerltemValue: PROCEDURE 18 NextlntoProc: TYPE 29
GetMultipleChoiceltemValue: PROCEDURE 18 NextOutOfProc: TYPE 29
GetNextAvailableKeY:PRocEDURE 19 nextTabStop: CARDINAL 25
GetNextOutOfProc: PROCEDURE 29 NewMakeCommandltem: PROCEDURE 12
GetReadOnly: PROCEDURE 26 noTabStop:CARDINAL 25
GetStreakSuccession: PROCEDURE 31 nullltemKey: Item Key 7
GetTabStops: PROCEDURE 25 NumberOfltems: PROCEDURE 6
GetTag: PROCEDURE 26 OutlineOrHighlight:TYPE 10
GetTextltemValue: PROCEDURE 18 PopupProc: TYPE 27
GetVisibility: PROCEDURE 21 Repaint: PROCEDURE 6
GetWindowltemValue: PROCEDURE 18 RemoveltemFromLine:PRocEDURE 23
GetZone:PRoCEDURE 5 ResetAllChanged: PROCEDURE 21
GlobalChangeProc: TYPE 4 ResetChanged:PRocEDURE 20

--
29-39

29 FormWindow

Item Page
.~

Re5tore:PRocEDURE 26
Save: PROCEDURE 26
SetAliChanged: PROCEDURE 21
SetBooleanltemValue: PROCEDURE 19
SetChanged:PROCEDURE 21
SetChoiceltemValue: PROCEDURE 19
SetDecimalltemValue: PROCEDURE 19
SetFlushness: PROCEDURE 30
SetGlobalChangeProcs :PROCEDURE 5
Setl n putFocus: PROCEDURE 27
SetlntegerltemValue: PROCEDURE 19
SetltemBox: PROCEDURE 2S
SetltemFont: PROCEDURE 27
SetltemNeutral ness: PROCEDURE 26
SetltemWidth: PROCEDURE 27
SetLosingFocusProc:PROCEDURE 28
SetMinOimsChangeProc: PROCEDURE 5
SetMultipleChoiceltemValue: PROCEDURE 20
SetNextOutOfProc: PROCEDURE 29
SetPopupProc: PROCEDURE 27
SetReadOnly: PROCEDURE 27
SetSelection: PROCEDURE 26
SetStreakSuccession: PROCEDURE 31

~ SetTabStops:PROCEDURE 2S
SetTextltemValue: PROCEDURE 20
SetTookFocusProc:PRoCEDURE 28
SetVisibility: PROCEDURE 21
SetWindowltemSize: PROCEDURE 16
SetWindowltemSizeExtra: PROCEDURE 16
StreakSuccession: TYPE 30
TabStops: TYPE 24
TabType: TYPE 24
TakeNEXTKey: PROCEDURE 29
TextHintAction: TYPE 1S
TextHintsProc:TYPE 1S
TookFocusProc:TYPE 28
Visibility: TYPE 21

~"

29-40

30

FormWindow MessageParse

30.1 Overview

The FormWindowMessageParse interface provides procedures that parse strings to
produce various FormWindow TYpes. These strings are usually acquired from a message
file. Currently, only FormWindow.Choiceltems are supported.

30.2 Interface Items

ParseChoiceltemMessage: PROODURE (
choiceltemMessage: XString.Reader,
zone: UNCOUNTED ZONE]

RETURNS [choiceltems:FormWindow.Choiceltems];

Parses a choiceltemMessage (presumably retrieved using xMessage.Get) with the following
syntax: "choi ceStri ng: choi ceN um ber@choiceStri ng: choi ce N u m be r@I", where
choiceString is the string to be displayed for that choice, choiceNumber is the fixed number
associated with that choice, @ is the separator between choices, and I indicates the point at
which to wrap the choices. The choices are displayed in the order they appear in the
message. choiceltems is a' descriptor for an array that must be freed by using
FreeChoiceltems.

FreeChoiceltems: PROCEDURE [
choiceltems:FormWindow.Choiceltems,
zone: UNCOUNTED ZONE];

Frees the array and everything it points to (strings).

30.3 Usage/Examples

The following example is taken from the folder implementation. The message acquired by
XMessage.Get looks like "Sorted: O@Unsorted: 1".

choices: FormWindow.Choiceltems +- FormWindowMessageparse.ParseChoiceltemMessage [
XMessage.Get[mh, FolderOps.kpsSorted], z];

30-1

30

30-2

Form WindowMessageParse

FormWindow.MakeChoiceltem [
window: window,
myKey: MyltemType.sorted.ORD,
values: choices.
initChoice: sorted.ORD.
changeProc: SortedChanged];

FonnWindowMessagePane.FreeChoiceltems(choices. z);

~,

ViewPoint Programmer's Manual

30.4 Index of Interface Items

Item

FreeChoiceltems: PROCEDURE

ParseChoiceltemMessage: PROCEDURE

Page

1
1

30

30-3

30 FormWindowMessageParse

,~,.

30-4

31

IdleControl

31.1 Overview

The IdleControl interface provides access to ViewPoint's basic controlling module.

ViewPoint's control loop is organized as a series of two out-calls to a IP."eeter procedure and
a desktop procedure. Each procedure is implemented as a procedure variable, initialized to
an appropriate no-op.

Interface procedures allow the client to plug in its own greeter and desktop procedures. A
plugged-in procedure is then called the next time that the control routine goes around the
loop.

31.2' Interface Items

IdleControl keeps track of one GreeterProc and a list of DesktopProcs. A client may plug in
a number of DesktopProcs and specify the one to be called by the value of the Atom.ATOM

returned by the GreeterProc.

31.2.1 DesktopPlug-in

.DesktopProc: TYPE • PROCEDURE;

SetDesktopProc: PROCEDURE [~tom: Atom.ATOM, desktop: DesktopProc] RETURNS [old:
DesktopProc) ;

SetDesktopProc allows the client to specify the desktop procedure to be called in the
contr~lloop. desktop is the procedure to be called. atom is the Atom.ATOM associated with
desktop. old is the previously plugged-in desktop procedure.

GetDesktopProc: PROCEDURE [atom: Atom.ATOM] RETURNS [DesktopProc];

31.2.2 Greeter Plug-in

GreeterProc: TYPE • PROCEDURE RETURNS [Atom.A TOM);

31-1

31 IdleControl

SetGreeterProc: PROCEDURE [new: GreeterProc) RETURNS [old: GreeterProc);

SetGreeterProc allows the client to specify the greeter procedure to be called in the control
loop. new is the procedure to be called. old is the previously plugged-in greeter procedure.

GetGreeterProc: PROCEDURE RETURNS [GreeterProc);

DoTheGreeterProc: GreeterProc;

DoTheGreeterProc calls the currently plugged-in GreeterProc.

31.2.3 Idle Loop

The control loop is the logical equivalent of:

DO

atom: Atom.ATOM +- pluggedlnGreeterProc [];
pluggedlnOesktopProc +- GetDesktopProcWithAtom(atom];
pluggedinOesktopProc[];
ENDLOOP;

Idle: PROCEDURE

Idle is called or FORKed to enter the idle state. Only clients who· start the world should call
Idle.

31.3 Usage/Examples

31-2

In the following example, the GreeterProc (ldleProc) displays a bouncing square on the
screen. The GreeterProc is set in the mainline code of the module. The DesktopProc and
GreeterProc can be initialized in different modules as long as they agree on the Atom.ATOM
(in this case StarDesktop).

starDesktopAtom: Atom.ATOM +- Atom.MakeAtom("StarDesktop"L);

IdleProc: IdleControl.GreeterProc • BEGIN --Display a bouncing square until the user
presses any key

RETURN (starDesktopAtom);
END;

StarDesktop: PROCEDURE • BEGIN
--Do Star logon
-·Initiallze and display Stat" desktop
_. Wait until Logoff
END;

Init: PROCEDURE.
BEGIN
[] +-ldleControl.SetGreeterProc(ld leProc];
[] +-ldleControl.SetDesktopProc [starDesktopAtom, StarDesktop);
END; .- of Init

View Point Programmer's Manual

31.4 Index of Interface Items

Item

DesktopProc: TYPE
DoTheGreeterProc: GreeterProc
DoTheGreeterPrOC:PROCEDURE
GetDesictopProc
GetGreeterPrOC:PROCEDURE
GreeterProc:TYPE
Idle: PROCEDURE
SetDesktopProC:PROCEDURE
SetGreeterProc:PROCEDURE

Page

1
2
2
1
2
1
2
1
2

31

31-3

31 IdleControl

~"

31-4

32

KeyboardKey

32.1 Overview

KeyboardKey is a keyboard registration facility. It provides clients with a means of
registering "system-wide" keyboards (available all the time, like English, French,
European), a special keyboard (like Equations), and/or client-specific keyboards (such as
these available only when the client has the input focus). The labels from these registered
keyboards are displayed in the soft keys when the user holds down the KEYBOARD key.

The client adds system keyboards by calling AddToSystemKeyboards. The client registers
a special keyboard by calling RegisterClientKeyboards with the SPECIALKeyboard
parameter. The client registers client-specific keyboards by calling
RegisterClientKeyboards with the keyboards parameter.

32.2 Interface Items

32.2.1 System Keyboards

A system keyboard is a one that is available to all clients who wish to recognize some
general set of keyboards. (The default case is for a client to recognize system keyboards.)
Examples of system keyboards are the various language keyboards--English, French,
European,and so forth, and the general-purpose keyboards--Math, Office, Logic, and
Dvorak.

AddToSystemKeyboards: PROCEDURE (keyboard: BlackKeys.Keyboardl;

The AddToSystemKeyboards procedure registers a client's keyboard interpretation with
the keyboard key manager. The client is expected to provide a pointer to a keyboard record.
This keyboard is made available whenever system keyboards are available.

May raise Error(alreadylnSystemKeyboards).

RemoveFromSystemKeyboards: PROCEDURE [keyboard: BlackKeys.Keyboardt;

32-1

32 Key boardKey

Removes a Keyboard from the list of system keyboards.

May raise Error(notlnSystemKeyboards).

32.2.2 Client Keyboards

A client keyboard is one that is specific to the application and has no meaning in a different
context. Examples are the special keyboards (such as equations and fields) and
Spreadsheet and 3270 keyboards.

A client registers its keyboards with the keyboard manager when it gets control (gets the
input focus). RegisterCJientKeyboards tells the keyboard manager what keyboards should
be made available to the user when the KEYBOARD key is held down. When the client loses
control (releases the input focus) it should call RemoveCJientKeyboards to release its
keyboards. Only 0-1 set of client keyboards is registered at any given time. If no clierit is
registered, then all system keyboards are available to the user.

RegisterClientKeyboards: PROCEDURE [
wantSystemKeyboards: BOOLEAN ... TRUE.
SPECJALKeyboard: Black Keys. Keyboard ... NIL
keyboards: LONG DESCRIPTOR FOR ARMY OF BlackKeys.KeyboardObject ... NIL];

RegisterClientKeyboards establishes a list of client keyboards with the keyboard manager.
This should occur at the same time the client takes the input focus. wantSystemKeyboards
specifies whether the client wishes to recognize system keyboards. SPECIALKeyboard~,
denotes the keyboard to be invoked by pressing the key combination of KEYBOARD key and
the soft key labeled "Special". The keyboards array contains any other client keyboards. A
client typically provides only a Special keyboard and wantSystemKeyboards :I TRUE. If
wantSystemKeyboards :II FALSE ,the client should set one of his keyboards using
SetKeyboard (see section 32.2.3),

RemoveClientKeyboards: PROCEDURE;

RemoveClientKeyboards removes the client's keyboards from the keyboard manager's list.
This list of available keyboards reverts to system keyboards only. The "Set" keyboard is
the last system keyboard that was set (either by the user or a call to SetKeyboard). It is the
client's responsibility to make sure his keyboards are removed when relinquishing control.
It is appropriate for this to be done as part of a TIP.LosingFocusProc.

32.2.3 Setting and Enumerating Keyboards

Note: Most clients will probably not need to use the information in this section.

SetKeyboard: PROCEDURE [keyboard: BlackKeys.Keyboardl;

SetKeyboard sets the current keyboard to keyboard. This keyboard remains the current
keyboard until the user presses a KEYBOARD key/SoftKeyOptioniSet combination, which
chooses a new keyboard, or until another SetKeyboard command is encountered.

SetKeyboard is provided for those clients who have reason to set a keyboard
programmatically. The usual case is for the user to set a keyboard by pressing the key
combination KEYBOARD key/SomeSoftKeyDesignatingAKeyboard. However, for a client

ViewPoint Programmer's Manual 32

calling RegisterCJientKeyboards with wantSystemKeyboards :I FALSE it is appropriate to
call SetKeyboard[@oneOfClientKeyboards) . (Otherwise the user could not type until he
made a keyboard choice through the KEYBOARD key/SoftKey routine.) The other primary
reason for calling SetKeyboard is to set an initial keyboard at boot time.

EnumerateKeyboards: PROCEDURE [class: KeyboardCJass, enumProc: EnumerateProcl;

EnumerateProc: TYPE :I PROCEDURE(keyboard: BlackKeys.Keyboard, class: KeyboardCJassl
RETURNS(stOP: BOOLEAN +- FALSE);

EnumerateKeyboards calls the specified EnumerateProc until the Stop boolean becomes
TRUE or until there are no more keyboards to enumerate. When calling
EnumerateKeyboards. the client may specify which keyboards he wants enumerated:
system, client, special, or aU of the registered keyboards. When the keyboard manager calls
the client's EnumerateProc, the keyboard returned is qualified by class: client, system, or
the special keyboard ..

KeyboardClass: TYPE :I {system, client, special, all, none};

system. A system keyboard is one that is available to all clients who wish to recognize
some general set of keyboards. Examples of system keyboards are the varIous
language keyboards - English, French, European, etc., and the general-purpose
keyboards--Math, Office, Logic, and Dvorak.

client • A client keyboard is one that is specific to the application. These are the
.keyboards registered in the keyboards array by the client calling
RegisterCJientKeyboards.

special. A client-specific keyboard is invoked by pressing the combination of KEYBOARD

key and the soft key labeled "Special". Specifically, this is the keyboard
registered by the client as SPECI A lK eyboa rd w he n call ing
RegisterCJientKeyboards.

aU • All keyboards: system, client, and special.

32.2.4 Alternate Key board

SetFirstAltKb: PUBLIC PROC (
class: KeyboardKey.KeyboardClass +- client, r: XString.Reader +- NIL);

Allows clients to establish a first alternate keyboard selection that will be installed when
the user presses the keyboard key. r is the name of the keyboard

There are two alternate keyboard possibilities:
(1) system = > The BasicWorkstation scans the User Profile at each logon for a

[System] First Alternate Keyboard entry. The system first alternate keyboard will be set
based on this entry (none if no entry is found).
Client code can also set the system first alternate keyboard by calling
SetFirstAltKb(system, reader). Though this should be done thoughtfully in a way that
does not interfere with the user or the systems intentions.

32-3

32

32-4

KeyboardKey

Since the special keyboard is a special kind of client keyboard that is known to the system,
calling SetFirstAltKb(special1 will set the system first alternate keyboard to the special
keyboard.

(2).client = > The client may set a client first alternate keyboard by calling
SetFirstAltKb{client, reader). Note in the paragraph above that the special keyboard can
be set as a system frrst alternate as well as a client frrst alternate.

When the user presses the keyboard key if there is a client first alternate keyboard it will
be installed else if there is a system first alternate keyboard it will be installed.

When the user releases the keyboard key (assuming no action was taken to change or set a
keyboard) any alternate keyboard that was installed will be removed leaving the keyboard
in the same state as it was before the keyboard key was pressed.

GetFirstAltKb: PUBLIC PROC [
class: KeyboardKey.KeyboardClass client)
RETURNS [r: XString.Reader NIL);

Returns the name of the first alternate keyboard of class. Any client wishing to
temporarily set the system rrrst alternate keyboard should rust get the current one so that
it may be reset at the appropriate time.

32.2.5 Keyboard Window Plug-in

~:

This section pertains only to those clients interested in implementing a keyboard window .~
facility.

ShowKeyboardProc: TYPE :I PROCEDURE;

SetShowKeyboardProc: PROCEDURE [ShowKeyboardProc);

GetShowKeyboardProc: PROCEDURE RETURNS [ShowKeyboardProc);

SetShowKeyboardProc and GetShowKeyboardProc provide an interface between a
keyboard window application and KeyboardKey's "Show" key. The clients
ShowKeyboardProc is called whenever the user presses the key combination KEYBOARD

key/Show. This gives the client the opportunity to display a keyboard window.

32.2.6 Errors

Error: ERROR(code: ErrorCode);

ErrorCode: TYPE. {alreadylnSystemKeyboards. notlnSystemKeyboards.
insufficientSpace};

View Point Programmer's Manual 32

32.3 Usage/Examples

32.3.1 AddToSystemKeyboards Example

In this application, a keyboard that will be useful across all applications has been defined.
Registering it as a system keyboard will make it available globally.

useful Keyboard: BlackKeys.KeyboardObject ...
[charTranslator: [proc: MyCharTrans, data: Nil),

pictureProc: MapPicture,
label ... XString.FromStri ng(-Useful Keyboard -l)];

KeyboardKey.AddToSystemKeyboards(@myUsefuIKeyboard);

The keyboard manager adds the keyboard usefulKeyboard to the list of registered system
keyboards and a key labeled Useful Keyboard to its labels for the KeyboardKey soft keys.
When the user pushes the soft key labeled Useful Keyboard, MyCharTrans will be
registered as the TIP.CharTransJator, and if the keyboard window is open, MapP;cture is
called so that the picture and geometry table can be mapped.

32.3.2 Special Keyboard Example

This example contains a keyboard that' is specific to a particular application and is
available to the user through the Special key. The user should also be able to use the
system keyboards in this application. Notice that it is appropriate to default the label when
specifying a Special keyboard, because this keyboard is presented to the user as the current
Special keyboard and is labeled as such. .

AddMyCJientKeyboards: PROCEDURE =
BEGIN
special Keyboard: BlackKeys.KeyboardObject;
fileName: XString.ReaderBody ... XString.FromSTRING[" JSpeciaI.TIP"L);
table: TIP.Table ... TIP.CreateTable(@fileName);
D ... TIP.SetNotifyProcForTable[table, NotifyProc];
special Keyboard ... [table: table);
KeyboardKey.RegisterCJientKeyboards[
wantSystemKeyboards: TRUE,
SPEOALKeyboard: @$peciaIKeyboard);

END; - AddMyCJientKeyboards

LosingFocusProc: TIP.LosingFocusProc :I

< <[w: Window.Handle, data: LONG POINTER» >
BEGIN
KeyboardKey.RemoveClientKeyboardsU;
--release any data structures I don't want to keep around

END: -- LosingFocusProc

32-5

32

32-6

KeyboardKey

32.3.3 Registering Multiple Client Keyboards Example

This example deals with a client who has a special keyboard and several client-specific
keyboards and does not plan to allow the user to use any system keyboards while in this
application.

keyboardRecords: ARRAY (0 .. 3) OF BlackKeys.KeyboardObject:
special Keyboard: Bl'ackKeys.Keyboard;

AddClientKeyboards: PROCEDURE =­
BEGIN
KeyboardKey.RegisterCI ientKeyboards(

wantSystemKeyboards: FALSE,
SpeCALKeyboard: specialKeyboard,
keyboards: OESCRIPTOR(keyboardRecords)):

KeyboardKey.SetKeyboard(@keyboardRecords(Oll
END: - AddClientKeyboards

Losing FocusProc: TIP.Losi ngFocusProc =-
< <[w: Window.Handle, data: LONG POINTER) > >
BEGIN
KeyboardKey.RemoveClientKeyboardso;
-·release any data structures I don't want to keep around

END; -- LosingFocusPro-·

-- Records filled in
-- elsewhere

ViewPoint Programmer's Manual 32

32.4 Index of Interface Items

Item Page

AddToSystemKeyboards: PROCEDURE 1
EnumerateKeyboards: PROCEDURE 3
EnumerateProc: TYPE 3
Error: ERROR 4
ErrorCode: TYPE 4
GetFirstAltKb: PROCEDURE 3
GetShowKeyboardProc: PROCEDURE 4
KeyboardCJass: TYPE 3
RegisterCJientKeyboards: PROCEDURE 2
RemoveCJientKeyboards: PROCEDURE 2
RemoveFromSystemKeyboards: PROCEDURE 1
SetFi rstAltKb: PROCEDURE 3
SetKeyboard:PRocEDURE 2
SetShowKeyboardProc: PROCEDURE 4
ShowKeyboardProc: TYPE 4

32-7

32 KeyboardKey

32-8

33

KeyboardWindow

33.1 Overview

The BlackKeys and KeyboardKey interfaces provide the framework for including a
keyboard window in ViewPoint. The window implementation is a plug-in (see
KeyboardKey.SetShowKeyboardProc). This KeyboardWindow interface and its
implementation provide one such keyboard window. This KeyboardWindow interface also
provides a number lock key state.

33.2 Interface Items

33.2.1 Default Values

defaultPkture: BlackKeys.Picture;

defaultGeometry: BlackKeys.GeometryTable;

The default values provided by this keyboard window implementation correspond to the
standard English keyboard.

DefaultPictureProc: Black Keys.Pi ctureProc;

DefaultPictureProc returns defaultPicture and defaultGeometry to the caller when'
action aacquire. Clients may specify pictureProc: KeyboardWindow.DefaultPictureProc in
their BlackKeys.KeyboardObject if they wish to display the default picture in the keyboard
window while their keyboard is in effect.

picture a BlackKeys.nuliPicture or BlackKeys.PictureProc a NIL will result in the keyboard
window displaying only gray in the viewing region.

33-1

33

33-2

KeyboardWindow

33.2.2 Geometry Table Structure

GeometryTableEntry: TYPE = RECORD(
box: Box, key: KeyStations, shift: ShiftStatel;

Box: TYPE a RECORD(place: Window.Place, width: INTEGER, height: INTEGER);

Area within the bitmap that generates a particular keystroke when selected with the
mouse.

KeyStations: TYPE • MACHINE DEPENDENT (
k1, k2. k3. k4, k5, k6, k7, k8. k9, k10, k11, k12, k13, k14, k15, k16, k17,
k18,k19,k20,k21,k22,k23,k24,k25,k26,k27,k28,k29,k30,k31,k32,
k33,k34,k35,k36,k37,k38,k39,k40,k41,k42,k43,k44,k45,k46,k47,
k48, a1, a2, a3. a4, as, a6, a7, as, a9, al0, al1, a12,last(96)};

The following is a translation to LeveIlVKeys.KeyName:
kl = > One;
k2 = > Q;
k3 = > A;
k4 = > Two;
k5 = > Z;
k6 => W;
k7 = > S;
k8 = > Three;
kg = > X;
klO=.>E;
kIt = > D;
kl2 = > Four;
kl3 = > C~
kl4 = > R;
k15 = > F~
k16 = > Five;
k17 => V;
k18 = > T;
k19 = > G;
k20 = > Six;
k21 => B;
k22 = > Y;

. k23 = > H;
k24 = > Seven;
k25 = > N;
k26 = > U;
k27 = > J;
k28 = > Eight;
k29 => M;
k30 = > I;
k3t = > K;
k32 = > Nine;
k33 = > Comma;
k34 = > 0;
k35 = > L;

,~,

~'

ViewPoint Programmer's Manual

k36 = > Zero;
k37 = > Period~
k38 = > P;
k39 = > SemiColon;
k40 = > Minus;
k41 = > Slash;
k42 = > LeftBracket;
k43 = > CloseQuote;
k44 = > Equal;
k45 = > RightBracket;
k46 = > OpenQuote;
k47 = > Key47;
k48 = > Tab;
a1 = > ParaTab;
a2 = > BS;
a3 = > Lack;
a4 = > NewPara;
a5 = > LeftShift;
a6 = > RightShift;
a7 = > Space;
as = > A8;
a9 = > A9;
a10 = > A10;
all = > All;
a12 = > A12;

ShiftState: TYPE :8 {None, One. Two. Both};

Simulates the position of the shift keys associated with the keystroke.

33.2.3 Bitmap Structure

33

8IackKeys.Picture.bitmap is a LONG POINTER. It is further defined within this keyboard window
implementation as follows: bitmap points to the bits of the keyboard bitmap where dims
= [505, 1451 and bitmapBitWidth = 32*16.

33.2.4 Getting to the Keyboard Window Handle

GetDisplayWi ndow: PROCEDURE RETURNS [Window.Handle);

Returns handle to the body window of the keyboard window.

33.2.5 The Number Lock Key State

NumLockState: TYPE. {set. reset};

numLockState: NumLockState;

SetNumLockState: PROCEDURE (newNumLockState: NumLockState);

33-3

33 KeyboardWindow

The number lock key is typically found on the ten key pad. NumLockState indicates the
states the number lock key can exist. set means the ten key pad is in number mode. reset
means the ten key pad is in cursor" key mode. numLockState is the current state of the
number lock key. Clients who wish to change the value of numLockState can utilize
SetNumLockState.

33.3 Usage/Examples

33-4

33.3.1 Using DefaultPictureProc

DefineKeyboard: PROCEDURE •
BEGIN
nameString: XString.ReaderBody ..-XString.FromSTRING(IIZulu-L)

zuluKeyboardRecord: BlackKeys.KeyboardObject ..- (
table: NIL.

charTranslator: [MakeChar. NIL),

pictureProc: KeyboardWindow.DefaultPictureProc,
label: XString.CopyToNewReaderBody(@nameStri ng, Heap.systemZonel];

-·Save the pointer to the record somewhere for future use _.
END: -.DefineKeyboard·-

33.3.2 Using defaultGeometry

DefineKeyboard: PROCEDURE.
BEGIN
nameStri ng: XString.ReaderBody ..- XString.FromSTRI NG(IISwahi I i ilL)

swahiliKeyboardRecord: BlackKeys.KeyboardObject..-(
table: NIL.

charTranslator: [MakeChar. NIL),

pictureProc: MapBitmapFile.
label: xString.CopyToNewReaderBody(@nameString, Heap.systemZonel];

--Save the pointer to the record somewhere for future use ••
END: --DefineKeyboard-.

MapBitmapFile: BlackKeys.PictureProc •
BEGIN
pixPtr: BlackKeys.Picture.bitmap ..-BlackKeys.null Picture:
SELECT action FROM
acquire. >

{--Do the right thing to map the bitmap. Uses the default Geometry table
RETURN(pixPtr. KeyboardWindow.defaultGeometryl };

release • > {-·Do the right thing to unmap the bitmap
RETURN(BlackKeys.nuIiPicture, NIL)}

END; -- MapBitmapFile

ViewPoint Programmer's Manual 33

33.3.3 Sample Geometry Table Entries

box: [place: [x: XXX, y: XXX], width: XXX, height: XXX], key: XXX, shift: XXX
[[19, 11],27,27], k48, None _. 'tab' key, dims: whole key picture
[[51, 11],27, 14], k1, One _. shifted '1' key, dims: upper half key
[[51,24],27, 141, k1, None -- '1' key, dims: lower half key
[[83, 11],27, 14), k4, One •• shifted '2' key, dims: upper half key
[[83,24],27, 14], k4, None _. '2' key, dims: lower half key

33-5

33 KeyboardWindow

33.4 Index of Interface Items

33-6

Item

bitmap structure
Box: TYPE

defaultGeometry: BlackKeys.GeometryTable
defaultPicture: BlackKeys.Picture
DefauitPictureProc: BlackKeys.PictureProc
GeometryTableEntry: TYPE

GetDisplayWindow: PROCEDURE

numLockState: TYPE

NumLockState
KeyStations: TYPE

SetNumLockState: ~OCEDURE
ShiftS tate: TYPE

Page

3
2
1
1
1
2
3
3
3
2
3
3

34

LevelIVKeys

34.1 Overview

LevellVKeys is documented. in the Pilot Programmer's Manual (610E00160); however, the
names of several keys were changed for ViewPoint. The key names now more closely match
the names on the physical keys.

34.2 Interface Items

OPEN ks: KeyboardWindow.KeyStations;

DownUp: TYPE :I ks.DownUp;

Bit: TYPE :I ks. Bit;

KeyBits: TYPE :I PACKED ARRAY KeyName OF DownUp;

KeyName: TYPE :I MACHINE DEPENDENT (

notAKey(O),
Keyset1 (ks.KS 1), Keyset2(ks.KS2). Keyset3(ks.KS3), Keyset4(ks.KS4),
Keyset5(ks.KS5),
MouseLeft(ks.M1), MouseRight(ks.M3), MouseMiddle(ks.M2),
Five(ks.k16). Four(ks.k12), Six(ks.k20), E(ks.k1 0), Seven(ks.k24)~
D(ks.k11). U(ks.k26). V(ks.k17). Zero(ks.k36), K(ks.k31). Minus(ks.k40),
p(ks.k38). Slash(ks.k41). Font(ks.R8), Same(ks.L8), BS(ks.A2),
Three(ks.k8), Two(ks.k4). W(ks.k6), Q(ks.k2), S(ks.k7), A(ks.k3),
Nine(ks.k32). l(ks.k30), X(ks.k9). O(ks.k34), L(ks.k3S), Comma(ks.k33),
CJoseQuote(ks.k43), RightBracket(ks.k4S), Open(ks.L 11), Keyboard(ks.R11),
One(ks.k1), Tab(ks.k48), ParaTab(ks.A 1), F(ks.k1S), Props(ks.L 12),
C(ks.k13), J(ks.k27), B(ks.k21), Z(ks.kS), LeftShift(ks.AS),
Period(ks.k37), SemiColon(ks.k39), NewPara(ks.A4),
OpenQuote(ks.k46), Delete(ks.L3), Next(ks.R1), R(ks.k14), T(ks.k18),
G(ks.k19), Y(ks.k22), H(ks.k23), Eight(ks.k28), N(ks.k2S), M(ks.k29),
Lock(ks.A3), Space(ks.A7), LeftBracket(ks.k42), Equal(ks.k44),

34-1

34 Le.velIVKeys

34-2

RightShift(ks.A6), Stop(ks.R12), Move(ks.l9), Undo(ks.R6), Margins(ks.RS),
R9(ks.R9), l10(ks.l1 0), l7(ks.l7), l4(ks.l4), l1(ks.l1), A9(ks.A9),
R1 0(ks.R1 0), A8(ks.A8), Copy(ks.l6), Find(ks.lS), Again(ks.l2),
Help(ks.R2), Expand(ks.R7), R4(ks.R4), D2(ks.D2), D1(ks.D1),
Center(ks.T2), T1(ks.T1), Bold(ks.T3), Italics(ks.T4), Underline(ks.T5),
Superscript(ks. T6), Subscript(ks. T7), Sm~lIer(ks. T8), T10(ks. T10),
R3(ks.R3), Key47(ks.k47), A 1 O(ks.A 10), De'faults(ks. T9), A 11 (ks.A 11),
A 12(ks.A 12)};

.~
.,

View Point Programmer's Manual 34

34.3 Index of Interface Items

DownUp: Type 1
Bit: TyPl 1
K~~~:~PI: 1
KeyName: Type 1
OPEN ks:KeyboardWindow,KeyStations 1

34-3

34 LevelIVKeys

34-4

35

MenuData

35.1 Overview

The MenuData interface defines the data abstraction that is a titled list of named
commands. It defines the object formats for a menu item and a menu as well as how to
create and manipulate these objects. It is not concerned with how a menu might be
displayed to a user.

35.2 Interface Items

36.2.1 Menu and Item Creation

Items and menus are the two primary data objects in the MenuData interface. Items are a
name-procedure pair that constitute a command. Menus are an abstraction representing a
collection of items to be presented to the user. These objects can be built and deallocated
through this interface.

Createltem: PROCEDURE (
zone: UNCOUNTED ZONE,
name :XString.Reader,
proc: MenuProc,
itemData: LONG UNSPECIFIED 4- 01
RETURNS [ltemHandle);

ItemHandle: TYPE. LONG POINTER TO Item;

Item: TYPE. Privateltem;

MenuProc: TYPE • PROCEDURE [
window: Window.Handle, menu: MenuHandle, itemData: LONG UNSPECIFIED);

Createltem builds an item record in the indicated zone to be added to a menu. The name
parameter is copied so it can be in the client's local frame. The proc parameter is the
command procedure that is associated with a command name in an item. Client data that

35-1

35

35-2

MenuData

must be available when the MenuProc is called can be passed via the item Data parameter.
zone can be NIL, in which case MenuData supplies its own zone (see PublicZone below).

An Item is the representation for a {command-name, command-procedure} pair. The
ffname Width" field, if non-zero, is the display width of the name. It may be set by a module
that computes the width using SetitemNameWidth (see §35.2.3). Except for that, an item is
read-only.

Destroyltem: PROCEDURE [zone: UNCOUNTED ZONE, item: ItemHandle];

This procedure destroys the item, recovering the space. zone must be the zone in which the
item was created, and item is the ItemHandle returned by Createttem. The item should not
be in use when this procedure is called.

Create Menu : PROCEDURE (

zone: UNCOUNTED ZONE,

title: ItemHanale,
array: ArrayHandle,
copyltemslntoMenusZone: BOOLEAN +- FALSE]

RETURNS [MenuHandle);

ArrayHandle: TYPE • LONG DESCRIPTOR FOR ARRA Y OF Item Handle ;

MenuHandle: TYPE • LONG POINTER TO MenuObject;

MenuObject: TYPE. PrivateMenu;

CreateMenu builds a menu record in zone. title is an item containing the menu's title.
array contains the collection of items that make up the menu. The items pointed to by the
array and the title parameters are copied only if copyltemslntoMenusZone is TRUE.

Because item records are read-only, an item can be in several menus without copying. The
procedure associated with the title item is currently unused and should be NIL for future
compatibility. zone can be NIL, in which case MenuData supplies its own zone (see
PublicZone below).

DestroyMenu: PROCEDURE [zone: UNCOUNTED ZONE, menu: MenuHandle]

DestroyMenu destroys the menu, recovering the space. zone must be· the zone in which the
menu was created; menu is the MenuHandle returned by CreateMenu. It should only be
called when the menu is not in use. There is no explicit way to test if a menu is in use.

PublicZone: PROCEDURE RETURNS [UNCOUNTED ZONE];

PublicZone returns the zone used by Me.nuData when Createltem or CreateMenu is called
with zone :a NIL.

35.2.2 Menu Manipulation

Addltem: PROCEDURE [menu: MenuHandle, new: ItemHandle] •
INLINE {menu.swapltemProc [menu: menu, old: NIL, new: new]};

ViewPoint Programmer's Manual

Subtractltem: PROCEDURE [menu: MenuHandle, old: ItemHandle] •
INUNE {menu.swapltemProc [menu: menu, old: old, new: NIL]};

Swapltem: PROCEDURE [menu: MenuHandle, old, new: ItemHandle] •
INUNE {menu.swapltemProc [menu: menu, old: old. new: new)};

35

These procedures alter a menu in the obvious ways. They call through the swapltemProc
field in the menu object. This allows a module that posts a menu to "plant" a procedure in
the swapltemProc field and thus get control on addlsubtractJswap requests. With control,
data can be monitored appropriately.

SetSwapltemProc: PROCEDURE [menu: MenuHandle. new: SwapltemProc)
RETURNS [old: SwapltemProc);

SwapltemProc: TYPE. PROCEDURE [menu: MenuHandle, old, new: ItemHandle];

The SwapltemProc is the work horse for manipulating menus, as evidenced by the INLINE
calls above. It can be changed by calling SetSwapltemProc.

UnpostedSwapltemProc: SwapltemProc;

This procedure is the standard one that is placed in a menu's swapltemProc when the
menu is created. It is in the MenuData implementation, and it can handle altering a menu
when it is not posted. As discussed above, ita routine that posts a menu wants to get
control of attempted menu alterations, it should alter the swapltemProc in the menu.
When it has fInished posting the menu, it should store MenuData.UnpostedSwapltemProc as
the swapltemProc. Alternatively, it can call MenuData.UnpostedSwapltemProc from within
its own swapltemProc to perform the actual alteration of the menu object.

35.2.3 Accessing Data

The following provide procedural access to the internal data structures for an item or
menu.

ItemData: PROCEDURE [item: ItemHandle] RETURNS [LONG UNSPECIFIED);

ItemName: PROCEDURE [item: ItemHandle1
RETURNS [name: XString.ReaderBody);

SetitemNameWidth: PROCEDURE [item: ItemHandle, width: CARDINAL] •
INUNE {item.nameWidth width};

ItemNameWidth: PROCEDURE [item: ItemHandle] RETURNS [CARDINAL] •
INUNE {RETURN [item.nameWidth)};

ItemProc: PROCEDURE [item: ItemHandle] RETURNS [proc: MenuProc) :II

INUNE {RETURN [item.proc]};

MenuArray: PROCEDURE [menu: MenuHandle] RETURNS [array: ArrayHandle] :II

INUNE {RETURN [menu.array)};

35-3

35 MenuData

MenuTitle: PROCEDURE [menu: MenuHandle) RETURNS [title: ItemHandle1:11
INLINE {RETURN [menu.title]};

Note: MenuObjects and Items are private records that are of use to menu posters but not of
interest to general clients. The private records shown below are purely informative.

Privateltem: TYPE. PRIVATE RECORD [
proc: MenuProc.
nameWidth: NATURAL"
nameBytes: NATURAL,
body: SELECT hasltemData: BOOLEAN fROM

FALSE a > [name xString.ByteSequence).
TRUE. > [itemData: LONG UNSPECIfiED, name: XString.ByteSequence)
ENDCASE);

PrivateMenu: TYPE. PRIVATE RECORD [
zone: UNCOUNTED ZONE,
swapltemProc: SwapltemProc,
title: Item Handle NIL,
array: ArrayHandle NIL.
arrayAliocatedltemHandles: NATURAL +-0,
itemslnMenusZone: .BOOLEAN FALSE];

35.3 Usage/Examples

35-4

A mechanism outside the scope of this interface displays a menu to the user. A given menu
instance cannot ordinarily be displayed more than once at the same time.

When the user asks that a command be executed, the command item's procedure is called.
The window argument is a pointer that is dependent on the display mechanism; it might
be the StarWindowShell.Handle that the menu is posted in.

3S.3.1 Example 1

sysZ: UNCOUNTED ZONE • Heap.systemZone;

Init: PROC • {
sampleTool: XString.ReaderBody XString.FromSTRING("Sample Tool "L]; -
Attention.AddMenultem [

MenuData.Createltem [
zone: sysZ.
name: @sampleTool,
proc: MenuProc]] };

MenuProc: MenuData.MenuProc • {
another: XString.ReaderBody XString.FromSTRING[" Another"L];
repaint: XString.ReaderBody XString.FromSTRING["Repaint"L];
post: XString.ReaderBody XString.FromSTRING("Post A Message"L);
sampleTool: XString.ReaderBody XString.FromSTRING["Sample Tool"L);

.- Create the StarWindowShel'. _.

ViewPoint Programmer's Manual

shell: StarWindowShell.Handle • StarWindowShell.Create [name: @sampleTool];

_. Create some menu items. -.
Z: UNCOUNTED ZONE +- StarWindowShell.GetZone [shell);
items: ARRAY [0 •• 3) OF Menuoata.JtemHandle +- [

MenuOata.Createltem [zone: z, name: @another, proc: MenuProc],
MenuOata.Createltem [zone: z, name: @repaint, proc: RepaintMenuProc],
MenuOata.Createltem [zone: z, name: @post, proc: Post]];

myMenu: MenuOata.MenuHandle • Menuoata.CreateMenu [
zone: z,
title: NIL,
array: DESCRIPTOR (items]];

StarWindowShell.SetRegularCommands [sws: shell, commands: myMenu);

};

Post: MenuOata.MenuProc • {
msg: xstring.ReaderBody +-xString.FromSTRING ["This is a sample attention window
message. "L];
Attention.Post [@msg1 };

RepaintMenuProc: MenuData.MenuProc • {
body: Window.Handle • StarWindowShell.GetBody[[window]];
Window.lnvalidateBox(body, [[0,0], [30000, 30000)]];
Window. Validate[body] };

-- Mainline code _.

Init(];

35.3.2 Example 2

-- Declare and create an item title and command array to be placed in a menu -­
mouseMenuTitle: Menuoata.ltemHandle +-lnitMouseMenuTitle [];
mouseMenuCmnds: ARRAY [0 •• 10) OF MenuData.ltemHandle;

_. Create the menu --
mouseMenu: MenuData.MenuHandle +- MenuData.CreateMenu [

zone: MenuData.PublicZone [l,-- could be a client-supplied zone-­
title: mouseMenuTitle,
array: DESCRIPTOR [@mouseMenuCmnds(O], 1]];

CommandProc: MenuData.MenuProc • {
--Does something reasonable for the corresponding item -- };

35

35-5

35

35-6

MenuData

InitMouseMenuTitle: PROCEDURE RETURNS [MenuData.JtemHandle) - {
zone: UNCOUNTED ZONE +- MenuData.PublicZone [];
mouseBitMap: ARRA v (0 •• 15) OF WORD +- [-- ••• octal code --];
mouseSymbolChar: xString.Character +-

SimplerextFont.AddClientDefinedCharacter [-- ••• parameters --];
mouseString: XString.ReaderBody +- XString.FromChar [@mouseSymboIChar];
cmndTitle: XString.ReaderBody +-XString.FromSTRING ["Command-];
mouseMenuCmnds(O] +- MenuData.Createltem [zone, @cmndTitle, CommandProc];
RETURN [MenuOata.Createltem [zone, @mouseString, NIL]] };

The above example is just one technique for' initializing a menu. The routine
InitMouseMenuTitle places variables that don't need to be global in the local frame. Pay
close attention to placement of variables to prevent dangling references.

View Point Programmer's Manual 35

35.4 Index of Interface Items

Item Page

Addltem: PROCEDURE 2
ArrayHandle: TYPE 2
Createltem: PROCEDURE 1
Create~enu:PRocEDURE 2
Destroyltem: PROCEDURE 2
Destroy~enu: PROCEDURE 2
Item: TYPE 1
ItemData: PROCEDURE 3
ItemHandle: TYPE 1
ItemName: PROCEOURE 3
ItemNameWidth: PROCEDURE 3
ItemProc: PROCEDURE 3
MenuArray: PROCEDURE 3
MenuHandle: TYPE 2
MenuObject: TYPE 2
MenuProc: TYPE 1
MenuTitle: PROCEDURE 4
Privateltem: TYPE 4
PrivateMenu: TYPE 4
PublicZone: PROCEDURE 2

~
SetitemNameWidth: PROCEDURE 3
SetSwapltemProc: PROCEDURE 3
Subtractltem: PROCEDURE 3
Swapltem: PROCEDURE 3'
SwapltemProc: TYPE 3
UnpostedSwapltemProc: SwapltemProc 3

35-7

35 Menu Data

35-8

.~.

36

Message Window

36.1 Overview

MessageWindow provides a facility for posting messages in a window to the user. This is
similar to posting messages using the Attention interface, but many message windows can
be on the screen at once, while there is only one attention window. A message window is
usually a short window with less than 10 lines of text in it. As more messages are posted,
previous messages scroll off.

MessageWindow.Create takes a "plain" window, typically obtained by calling
StarWindowShen.CreateBody or FormWindow.MakeWindowltem, and turns it into a message
window. Messages may then be posted· by calling Post. To clear the window, call Clear.
Various TYPES may be formatted into messages to be posted in the window by using the
XFormat.Object returned by XFormatObject.

36.2 Interface Items

38.2.1 Create, Destroy, etc.

Create: PROCEDURE [window: Window.Handle.
zone: UNCOUNTED ZONE +-NIL. lines: CARDINAL+-10);

Create turns window into a message window. zone will be used for storage of any strings
posted. If zone is NIL, a private zone is used. lines is the number of lines of text to display.
After more than lines of text are posted, the oldest lines are scrolled out of the window. Fine

point: The current ViewPoint implementation does not support user scrolling.

Destroy: PROCEDURE [Window.Handle);

Destroy turns the window back into an ordinary window, destroying any MessageWindow
specific context associated with the window. It does not destroy the window.

Islt: PROCEDURE [Window.Handle] RETURNS [yes: BOOLEAN];

Islt returns TRUE if the window was made into a message window by a call to Create.

36-1

36 Message Window

38.2.2 Posting messages

Post: PROCEDURE [window: Window.Handle.
r: xString.Reader. clear: BOOLEAN TRUE);

Post displays r in window. If clear is TRUE, r starts on a new line. If clear is FALSE, r is
appended to the last line posted.

PostSTRING; PROCEDURE [window: Window.Handle.
S: LONG STRING. clear: BOOLEAN TRUE) • INUNE

BEGIN
r: xstring.ReaderBody +- XString.FromSTRING [51;
MessageWindow.Post [window, @r. cfear);
END;

PostSTRING posts s in window. If cfear is TRUE, r starts on a new line. If clear is FALSE, r is
appended to the last line posted.

Clear: PROCEDURE [window: Window. Handle);

Clear clears the entire window.

XFormatObject: PROCEDURE [window: Window.Handle] RETURNS [0: XFormat.Object);

XFormatObject returns an xFormat.Object that can be used to post messages in window. ~
The format procedure logically calls Post with clear • FALSE. (See examples.)

36.3 Usage/Examples

36-2

In the following example, a client displays the name and size of a file. It uses the NSFile
interface to access the file and get the name and size attributes. See the Services
Programmer's Guide (610E00180)-Filing Programmer's Manual for documentation on the
NSFile interface. The example intermixes use of the format handle and use of the Post
procedure.

msgW: Window.Handle +-FormWindow.MakeWindowltem [•••];
MessageWindow.Create [window: msgW, lines: 5);

PostNameAndSize [file. msgW);

PostNameAndSize: PROCEDURE [file: NSFile.Handle, msgW: Window.Handle] a {

nameSelections: NSFile.Selections a [interpreted: [name: TRUE]];
attri butes: NSFila.Attri butesRecord;
msgWFormat: XFormat.Object +- Messagawindow.XFormatObject(msgW];
rb: XString.ReaderBody +- Message(theFile];
MessageWindow.Post(window: msgW, s: @rb, cfear: TRUE); - start a new message
XFormat.NSString(@msgWFormat, attributes.name];
XFormat.ReaderBody(h: @msgWFormat. rb: Message(contains)];
XFormat.OecimaJ[h: @msgWFormat. n: NSFila.GetSizelnBytes(file)];

~'

View Point Programmer's Manual

rb ~ Message{bytes];
MessageWindow.Post(window: msgW, 5: @rb]}; •• dear defaults to TRUE

Message: PROCEDURE [key: {theFile. contains. bytes}] RETURNS [xString.ReaderBody] • {
... };

An example of the resulting message displayed in the message window is

The file Foo contains 53324 bytes

36

36-3

36 Message Window

36.4 Index of Interface Items
~

Item Page

Clear: PROCEDURE 2
Create: PROCEDURE 1
Destroy: PROCEDURE 1
Islt: PROCEDURE 1
Post: PROCEDURE 2
PostSTRI NG: PROCEDURE 2
XFormatObject: PROCEDURE 2

36-4

37

OptionFile

37.1 Overview

OptionFile reads values from profile files (text files) with the following format:

[Section]
Entry1: TRUE - a boolean entry
Entry2: A string value
Entry3: 123 - an integer entry

These files are primarily used for keeping user options across logon and boot sessions (thus
the name profile (11.e). Applications typically read various options out of the current user
profile file at logon. These options often specify default values for properties, the behavior
of the application, or both.

37.2 Interface Items

37.2.1 Getting Values from a FDe

Each GetXXXValueprocedure takes a section name and an entry name that identifies the
entry. It is expected that the section and entry strings are obtained from XMessage. Each
also takes a file. Itfile is defaulted, the current user profile is used (see the Current Profiles
section below). All these procedures may raise Error [invalid~arameters,
inconsistentValue, notFound, syntaxError].

GetBooleanValue: PROCEDURE [section, entry: XString.Reader,
file: NSFile.Reference ~NSFile.nuIiReference]
RETURNS [value: BOOLEAN];

GetBooleanValue returns the value of a boolean entry. The entry must contain either
"TRUE" or "FALSE" or the translated string for TRUE or FALSE as defined in the message
files.

GetlntegerValue: PROCEDURE [section, entry: XString.Reader,
index: CARDINAL ~ 0, file: NSFile.Reference ~ NSFile.nuIiReference]

. RETURNS [value: LONG INTEGER];

37-1

37

37-2

OptionFile

GetlntegerValue returns the value of an integer entry. The entry must contain a number
that can be parsed by Xstring.ReaderToNumber. index causes the indexth entry to be read,
for repeating entries.

GetStringValue: PROCEDURE [section. entry: xstring.Reader.
callBack: PROCEDURE [value: xstring.Reader). index: CARDINAL O.
file: NSFi ... Reference NSFile.nuIiReference);

GetStringValue calls callBack with the value of a string entry. index causes the indexth
entry to be read, for repeating entries.

37.2.2 Current Profiles

ViewPoint supports a current user profile file and a workstation profile file. The current
user profile is automatically changed whenever a user logs on or off. The workstation
profile contains entries specific to the workstation rather than specific to each user. There
is one workstation profile on each workstation.

GetUserProfile: PROCEDURE RETURNS [file: NSFile.Reference);

GetUserProfile returns the current User proille file. Note: Each of the Get and Enumerate
procedures uses this file as the file parameter is defaulted.

GetWorkstationProfile: PROCEDURE RETURNS [file: NSFile.Reference);

GetWorkstationProfile returns the current workstation profile file.

37.2.3 Enumerating a File

EnumerateXXX are useful for applications that look for the same entry in all sections.

EnumerateSections: PROCEDURE [callBack: SectionEnumProc.
file: NSFile.Reference NsFi ... nuIiReference);

SectionEnumProc: TYPE. PROCEDURE [section: xString.Reader]
RETURNS [stop: BOOLEAN FALSE];

EnumerateSections calls callBack for each section in file, until stop • TRUE. If file is
defaulted, the current user profile is used.

EnumerateEntries: PROCEDURE [section: XString.Reader. callBack: EntryEnumProc.
file: NSFile.Reference NSFile.nuIiReference];

EntryEnumProc: TYPE • PROCEDURE [entry: xstring.Reader]
RETURNS [stop: BOOLEAN FALSE];

EnumerateEntries calls callBack for each entry in section in 'file, until stop • TRUE. If file is
defaulted, the current user profile is used.

View Point Programmer's Manual 37

37.2.4 Errors

Error: ERROR [code: ErrorCode];

ErrorCode: TYPI • {invalidParameters, inconsistentValue, notFound, syntaxError};

such as passing in a NIL string. invalidParameters

inconsistantValue calling GetBooleanValue for an entry that does not have TRUE
or FALSE as its value, or calling GetintegerValue for an entry
that will not parse as number.

notFound

invalidFila

syntaxError

NotAProfileFile: SIGNAL;

asking for an entry that is not in the file.

reading from a file that is not a profile file.

garbage in the file.

The passed file is not a profile rue; it has the wrong rue type. RESUMEing will read the file
anyway.

37.3 Usage/Examples

-- In global frame
displayMessaga: aOOLEAN TRUE;
whereToDisplay: SampleBWSApplicationops. WhereToDisplay window;
messageToDisplay: XString.Reader-.... NIL;

-- Called from initialization code
GetOptionsAtLogon: PROCEDURE. {

logon: Atom.ATOM Atom.MakeAtom["LogonftL];
desktopRef: NSFile.Reference;
[] Event.AddDependency [agent: LogonEvent, myData: NIL, event: logon];
IF (desktopRef StarDesktop.GetCurrentDesktopFile []) /I NSFile.nuIlRef~rence THEN {

- If the desktop is NOT null, then a user's already logged on,
--i.e., we got loaded after logon.
_. So we go read the options immediately by calling our
-·lvent.AgentProcedure directly. -.
desktop: NSFile.Handle NSFile.OpenByReference [desktopRef];
[] LogonEvent [event: logon, eventData: LOOPHOLE [desktop], myData: NIL];
NSFIIe.C1ose [desktop];
};

};

LogonEvent: Event.AgentProcedure • {
< < [event: Event.EventType, eventData: LONG POINTER,
myData: LONG POINTER]
RETURNS [remove: BOOLEAN FALSE, veto: BOOLEAN FALSE] > >
OPEN Ops: SampleBWSApplicationOps;
mh: XMessage.Handle • ops.GetMessageHandle[];

37-3

37

37-4

Option File

CopyMessageToDisplay: PROCEDURE [value: XString.Reader) • {
messageToDisplay XString.CopyReader [value. sysZ]};

GetWhereToDisplay: PROCEDURE [value: XStrfng.Reader) • {
window: xstrfng.ReaderBody +- XMessage.Get [mh. ops.kwindow);
attention: xstrfng.ReaderBody XMessage.Get (mh. Ops.kattention);
both: X5trfng.ReaderBody +- XMessage.Get [mh. ops.kboth);
whereToDisplay +- SELECT TRUE FROM

};

xstring.Equivalent [value. Clwindow] • > window,
xstring.Equivalent [value. Oattention] • > attention,
xstring.Equivalent (value, (lboth] • > both.
ENDCASE • > window:

section: XString.ReaderBody xMessage.Get [mh. ops.kAppUcationName];

entry: xStrfng.ReaderBody XMessage.Get [mh, ops.kDisplayMessage];
display Message OptionFUe.GetBooleanValue [@section, @entry!

OptionFUe.Error • > CONTINUE];

entry +- XMessage.Get [mh. ops.kMessageToDisplay);
OptionFile.GetStringValue [@lsection. (lentry, CopyMessageToDisplay !

OptionFlle.Error • > CONnNUE];.

entry +- XMessage.Get (mh. ops.kWhereToDisplay);
optionFlle.GetStringValue [(lsection,(lentry, GetWhereToDisplay !

OptionFIIe.Error • > CONnNUE);
};

.~.

ViewPoint Programmer's Manual

37.4 Index of Interface Items

Item

EntryEnumProc: TYPE

EnumerateEntries: PROCEDURE

EnumerateSections: PROCEDURE

Error: ERROR

ErrorCode: TYPE

GetBooleanValue: PROCEDURE

GetintegerValue: PROCEDURE

GetStringValue: PROCEDURE

GetUserProfile: PROCEDURE

GetWorkstationProfile: PROCEDURE

NotAProfileFile: SIGNAL

SectionEnumProc: TYPE

Page

2
2
2
3

·3
1
1
2
2
2
3
2

37

37-5

37 Option File

37-6

38

PopupMenu

38.1 Overview'

The PopupMenu interface provides a single procedure that posts a pop-up menu.

38.2 Interface Items

Popup: PROCEDURE [

menu: MenuOata.MenuHandle,
clients:window.Handle,
showTitle: BOOLEAN +- TRUE,

place: Window.Place +- [·1,-1]];

This procedure causes the display of the client's menu at or near the indicated place in the
rootWindow; if the place [-1,-1] is given, the current cursor position is used. If the point
button goes up while the cursor is over one of the menu items, then that item's
MenuOata.MenuProc is called. clients is passed to the MenuOata.MenuProc as the window
parameter. The showTitle field indicates whether the menu's title should be displayed
above its command:strings.

The implementation assumes that the point button is down; consequently, the menu is
displayed until the point button goes up. Popup does not return until the menu is taken
down, regardless of whether a menu item is selected.

38.3 Usage/Examples

Much of the complication in using the PopupMenu interface stems from its reliance on
MenuData. A thorough understanding of how to create a menu is needed before using this
interface (see the MenuData chapter for details).

38.3.1 Example

•• Create the menu:
myMenu: MenuOata.MenuHandle +-MenuOata.CreateMenu [

38-1

38

38-2

PopupMenu

-- ... -- Pass in miscellaneous parameters; see the MenuData interlace for details --]; ~,

PopupMenu.POpup(
menu: myMenu.
clients: currentWindowl;
- showTitie and place are defaulted in this call.

~,

View Point Programmer's Manual

38.4 Index of Interface Items

Item

Popup: PROCEDURE

Page

1

38

38-3

38 PopupMenu

38-4

39

ProductFactoring'

39.1 Overview

ProductFactoring allows an application to determine whether the customer has purchased
a particular application. ProductFactoring maintains a record of the applications that have
been purchased (enabled) on the workstation's disk. Tools are provided to customers for
enabling various applications (options). The enabling of an application is outside the scope
of this interface.

ProductFactoring also allows an application to register a name for its product option, thus
allowing th~ product factoring tools to display meaningful names to their users.

39.2 Interface Items

39.2.1 Products and ProductOptions

Product: TVPE • CARDINAL [0 •• 16);

A Product refers to a large set of software. (Also see the ProductFactoringProducts
interface.)

ProductOption: TYPE. CARDINAL [0 •• 28);

A ProductOption refers to a particular piece of software that a customer can buy within a
Product, such as Spreadsheets, Advanced Star Graphics, or Print Service. To obtain a
ProductOption for a particular application, see your Xerox Sales Represenative.

Option: TVPE • RECORD [product: Product, productOption: ProductOption];

nullOption: Option •••• ;

An Option uniquely identifies a ProductOption within a Product.

39.2.2 Checking for an Enable Option

Enabled: PROCEDURE [option: Option] RETURNS [enabled: BOOLEAN];

39-1

39 Product~actoring

Enabled returns TRUE if option is enabled on this workstation, otherwise FALSE. Typically, ~,
an application calls Enabled every time it is called to perform some user operation such as
opening an icon. Enabled is fast; it does not read the file every time it is called. It may raise
Error(notStarted] if there is no product factoring file on the workstation.

39.2.3 Describing a Product and an Option

DescribeProduct: PROCEDURE (product: Product. desc: xstring.Reader);

Provides a name !or product. desc is copied to an internal zone. May raise
Error(illegalProduct) if the value of product is out of range.

DescribeOption: PROCEDURE [option: Option, desc: XString.Reader,
prerequisite: Prerequisite ... nuIiPrerequisite];

Prerequisite: TYPE - RECORD (
prerequisiteSpec: BOOLEAN ... FALSE,

option: Option);

nuliPrerequisite: Prerequisite - [FALSE, nuIiOption];

Describes option. desc is a name for the option. prerequisite specifies any other options
that this option depends on. All data is copied to an internal zone. Use of this procedure
overrides any earlier de!inition with the same option value. May raise
Error(iliegalProduct] if the value of option.product is out of range. May raise ~
Error(illegaIOption] if the value of option.productOption is out of range. May raise
Error(missingProduct] if option.product has not yet been defined.

39.2.4 Errors

Error: ERROR [type: ErrorType);

ErrorType: TYPE - {
dataNotFound, notStarted, illegal Product, illegal Option,
missingProduct, missingOption};

dataNotFound The product data file is missing.

notStarted Start proc has not been called yet.

iIIegalProduct Not a legal Product value.

iIIegalOption Not a legal ProductOption value.

missingProduct The Product specified has not yet been deimed.

missingOption The ProductOption specified has not yet been deimed.

39.3 U sagelExamples

-- In global frame --
sampleApplicationPFOption: ProductFactoring.ProductOption - 27;

39-2

ViewPoint Programmer's Manual

_. 27 was chosen arbitrarily for this sample. _.
-. A real application should obtain a real ProductOption! _.

-- Called during initialization _.
InitProductFactoring: PROCEDURE. {

mh: XMessage.Handle • SampleBWSApplicationops.GetMessageHandle(];
rb: xstring.ReaderBody +- XMessag •• Get [mhw

SampleBWSApplicationops.kApplicationName);
"oductFactoring.Descri beOption (

};

option: [product: ProductFactoringProducts.Starw
productOption: sampleApplicationPFOption),

desc: @rb);

-. GenericProc _.
GenericProc: Containee.GenericProc • {

If ""oductFactoring.Enabled (option: [
product: ProductFactoringProducts.Star,
productOption: sampleApplicationPFOption]] THEN {

mh: XMessag •. Handle +- SampleBWSApplicationops.GetMessageHandle(];

39

rb: xString.ReaderBody +-XMessage.Get [mhw SampleBWSApplicationops.kNotEnabled);
ERRORContaine •. Error [@rb];
};

SELECT atom FROM

};

39-3

39 ProductFactoring

39.4 Index of Interface Items ~.

Item Page

Desai beProduct: PROCEDURE 2
DescribeOption:PRoCEDURE 2
Enabled: PROCEDURE 1
Error: ERROR 2
ErrorType: TYPE 2
nuliOption: Option 1
null Prerequisite: Prerequisite 2
Option: TYPE 1
Prerequisite": TYPE 2
Product: TYPE 1
ProductOption: TYPE 1

39-4

40

ProductFactoringProducts

40.1 Overview

ProductFactpringProducts dermes the ProductFactoring.Product5 for various Xerox products.
(See the ProductFactoring interface).

40.2 Interface Items

Product: TYPE • ProductFactoring.Product;

Star: Product' • 0;

Star defines the Xerox Star (aka ViewPoint) workstation product.

Services: Product. 1;

Services defines the Xerox network servic~s product.

DFonts: Product. 3;

DFonts defines the product for Xerox display fonts.

PFonts: Product • 4;

PFonts defines the product for Xerox printer fonts.

ViewPoint: Product • 5;

ViewPoint defines a product for Xerox ViewPoint applications.

ViewPointApps: Product. 6;

ViewPointApps defines a product for Xerox ViewPoint applications.

Converter: Product. 7;

Converter defines the product for Xerox ViewPoint converter icon applications.

40-1

40

40-2

Prod uctFactoringProd ucts

Services2: Product • 8;

Services2 defines another Xerox network services product.
ProductFactoringProductsExtras.mesa.

I t is defined in

Languages: Product. 9;

Languages defines the Xerox languages product.
ProductFactoringProductsExtras2.m,esa.

FujiUnique: Product. 10;

Fuji2Unique: Product • 11;

It is defined in

FujiUnique and Fuji2Unique define Fuji Xerox products. These are defined in
ProductFactoringProductsExtras3. mesa.

OahuUnique: Product. 12;

OahuUnique defines the Xerox Oahu product.
ProductFactoringProductsExtras4.mesa.

RankUnique: Product. 13;

RankUnique defines the Rank Xerox product.
ProductFactoringProductsExtras4. mesa.

It is defined in

It is defined in ~I

ViewPoint Programmer's Manual 40

40.3 Index of Interface Items,.,
Item Page

Converter: Product 1
DFonts: Product 1
FujiUnique: Product 2
Fuji2Unique: Product 2
Languages: Product 2
OahuUnique: Product 2
PFonts: Product 1
Product: TYPE 1
RankUnique: Product 2
Services: Product 1
Services2: Product 2
Star: Product 1
ViewPoint: Product 1
ViewPointApps: Product 1

40-3

40 ProductFactoringProducts

40-4

41

Pro pertySheet

41.1 Overview

The Property Sheet interface allows clients to create property sheets. A property sheet
shows the user the properties of an object and allows the user to change these properties.
Several different types of properties are supported. The most common ones are boolean,
choice (enumerated), and text. (See Figure 41.1.)

Tag I BOOLEAN I Suffix

Tag I Text item I
Form Window

Figure 41.1. A Property Sheet

From a client's point of view, a property sheet is a Star window shell with a form window as
a body window. See the StarWindowShell and FormWindow interfaces. The FormWindow
interface especially must be understood in order to create a property sheet.

A property sheet is created by calling PropertySheet.Create, providing a procedure that will
make the form items in the form window (a FormWindow.MakeltemsProc), a list of
commands to put in the header of the property sheet, such as Done, Cancel, and Apply
(Prow:ertySheet.Menultems), and a procedure to call when the user selects one of these
commands (a Propertysheet.MenultemProc). PropertySheet.Create returns the
StarWindowShell.Handle for the property sheet. When the user selects one of the commands in

41-1

41 Prop erty Sheet

the header of the property sheet, the client's PropertySheet.MenultemProc is called. If the ~
user selected Done, for example, the client can then verify and apply any changes the user
made to the object's properties.

Property Sheet also provides the capability to create linked property sheets. Several
property sheets may be logically linked together in the same property sheet shell. This is
accomplished by changing form windows within a property sheet's Star window shell; and
by having an additional choice item that specifies which form window is currently
displayed. Linked property sheets are furth~r described in the section on Linked Property
Sheets below.

41.2 Interface Items

41-2

41.2.1 Create a PropertySheet (Nota Linked One)

Create: PROCEDURE [
formWindowltems: FormWindow.MakeltemsProc,
menultemProc: MenultemProc,
size: Window.Dims,
menultems: Menultems ... propertySheetDefaultMenu,
title: XString.Reader ... NIL,
placeToDisplay: Wlndow.Ptace ... nuliPtace,
formWindowltemsLayout:FormWindow.LayoutProc ... NIL,
windowAttachedTo: StarWlndowShell.Handle ... [NIL),
globalChangeProc: FormWindow.GlobalChangeProc ... NIL,
display: BOOLEAN ... TRUE.
c1ientData: LONG POINTER ... NIL,
afterTakenOown: MenultemProc ... NIL,
zone: UNCOUNTEDZONE ... NIL]
RETURNS [shell: StarWindowShell.Handle];

Create creates a property sheet.

formWindowltems is a client-supplied procedure that is passed a body window of the
property sheet. It should fill the window with the form items that make up the main body of
the property sheet. (See the FormWindow interface for a full description of how to create
form items in a window.)

menultemProc is a client-supplied procedure that is called whenever the user selects one of
the menu items in the header of the property sheet window. (See §41.2.2 below.)

size is the preferred size of the property sheet star window shell.

menultems specifies the menu items that are displayed in the header of the property sheet.
The default is ? (help), Done, and Cancel.

title is the title to be displayed in the header of the property sheet.

placeToOisplay is the preferred location on the screen of the property sheet. If the default is
taken, Create will calculate the place to display.

formWindowltemsLayout specifies the desired position of the form items in the
FormWindow. <See FormWindow.LayoutProc for a full description.). If

.~.

ViewPoint Programmer's Manual 41

formWindowltemsLayout is NIL, then FormWindow.DefaultLayout of one item per line is
used

windowAttachedTo is the StarWindowShell that this property sheet is showing properties
for. If windowAttachedTo is not NIL, then the user will not be able to close
windowAttachedTo until this property sheet is closed. (See also
StarWindowSheU. Create. host.)

globalChangeProc is called if any item in the main form window is changed. (See
F~rmWindow.GlobaIChangeProc for a full description).

display indicates whether the property sheet should actually be displayed on the screen
(inserted into the visible window tree) or just created but not actually painted on the screen
(not inserted into the visible window tree). If this is a property sheet for a file (Le., if it is
being created as the result of a call to a Containee.GenericProc [atom: Props)), then display
should be FALSE and the StarWindowSheU.Handle should be returned from the GenericProc so
that, for example, the desktop implementation can put the property sheet on the display by
calling StarWindowShell.Push.

ctientData will be passed to formWindowltems, formWindowttemsLayout, and
menultemProc. ~ine Point: formWindow.tems will not be called after Create returns and therefore may be

nested.

The afterTakenDown is called after the property sheet has been removed from the screen.
The return parameter of the MenultemProc is ignored in this case. Note: Clients must still
provide a regular MenultemProc.

Clients may pass in a zone to be used instead of the default zone created by the
StarWindowShell implementation.

shell is the property sheet. shell will be a bitmap-under window if storage space is
available. Clients who desire a property sheet without a bitmap-under should use
CreateWithBitmapUnderOption. The typical property sheet should be a bitmap-under
window since bitmap-under windows are moved and deleted faster than non bitmap-under
windows.

nuliPlace: Window.Place;

nuliPtace defines the default for placement of a property sheet. If the default is used, the
property sheet is placed at an appropriate place on the screen.

CreateWithBitmapU nderOption: PROCEDURE. [
formWindowltems: FormWindow.MakeltemsProc,
menultemProc: MenultemProc,
size: Window.Dims,
menultems: Menultems +- propertySheetDefaultMenu,
title: XString.Reader +- NIL,
placeToDisplay: Window.Place +- nuliPlace,
formWindowltemsLayout:FormWindow.LayoutProc +- NIL,
windowAttachedTo: StarWindowShell.Handle +-{NILJ,
globalChangeProc: FormWindow.GlobalChangeProc +-NIL,
display: BOOLEAN +- TRUE.
cI ientData: LONG POINTER +- NIL,
afterTakenDown: MenuttemProc +-NIL,
bitmapOption: StarWindowShellExtraS.BitmapU nderOption +- noBitmapU nder,

41-3

41

41-4

Property Sheet

zone: UNCOUNTED ZONE +-NILl
RETURNS [shell: StarWindowShell.Handle);

CreateWithBitmapUnderOption is identical to Create except for the additional parameter
bitmapOption. If bitmapOption is noBitmapUnder, no attempt is made to make the
property sheet a bitmap-under. If bitmapOption is bitmapUnder or maybeBitmapUnder,
the property sheet will be a bitmap-under window if enough storage space is available.
Clients must use CreateWithBitmapUnderOption to create a property sheet without a
bitmap-under since a property sheet created through Create is automatically a bitmap­
under window if storage space is available. Clients of CreateWithBitmapUnderOption
need not be concerned with managing the bitmap-under storage. Fine Point: This procedure is

currently exported through PropertySheetExtra.

41.2.2 Menu Items and the MenultemProc

MenultemType: TYPE =- {done, apply, cancel, defaults, start, reset};

Menultems: TYPE =- PACKED ARRAY MenultemType OF BooleanFalseOefault;

BooleanFalseOefault: TYPE =- BOOLEAN +-FALSE;

propertySheetOefaultMenu: Menu.tems =- [done: TRUE, apply: TRUE, cancel: TRUE];

optionSheetOefaultMenu: Menultems a [start: TRUE, cancel: TRUE);

The client specifies a set of commands to be placed in the header of the property sheet.
MenultemType specifies all of the poss~ble commands. Menultems specifies a set of these
commands and is passed to PropertySheet.Create. propertySheetOefaultMenu and
optionSheetDefaultMenu specify two common sets of commands.

MenultemProc: TYPE =- PROCEDURE [
shell: StarWindowShell.Handle,
formWindow: Window.Handle,
menultem: MenultemType]
RETURNS [ok: BOOLEAN +-FALse];

The client supplies a MenultemProc when a property sheet is created. It is called whenever
the user selects one of the- menu items in the header of the property sheet. formWi ndow is
the main form window of the property sheet. menultem is the type of menu item that the
user selected. The client typically (when the user selects Done or Apply) retrieves the
values of the items that the user edited (using FormWindow.HasChanged and
FormWindow.GetXXXltemValue procedures), verifies that the values are meaningful (for
example, numbers that are within proper range), and applies the new values to the
properties of the object this property sheet represents.

The return parameter ok has slightly different meanings in the following two cases:

1. For an ordinary property sheet (not a linked property sheet), the MenultemProc is
caned when the user selects a command and the return parameter indicates whether ~ ..
the property sheet should be destroyed.

2. For a linked property sheet, the Menultem~roc is called both when the user selects a
command in the header (in which the case above applies) and when the client calls

ViewPoint Programmer's Manual 41

SwapExistingFormWindows or SwapFormWindows with apply=- TRUE. In this case
the MenultemProc is called to allow the client to apply any changes made to the form
window sheet being linked from. The menultem parameter will be ndone"; the return
parameter indicates whether to allow the swap to actually occur. ok. FALSE indicates
that there is something invalid in the form window and the client does not want the
swap to occur (the client typically posts a message before returning). If ok. TRUE, the
swap occurs.

Note: The client need not worry about these cases when writing the MenultemProc, but
can simply write the "done" code as usual. If the user selects Done and the MenultemProc
returns ok • TRUE, the property sheet is destroyed. If the user links to another sheet on a
linked property sheet and the MenultemProc returns ok. TRUE, the sheets are swapped,
rather than the whole property sheet being destroyed.

41.2.3 Linked PropertySheets

Several property sheets may be logically linked together in the same property sheet. This
is accomplished by changing form windows within a property sheet's Star window shell,
and having an additional choice item that specifies which form window is currently
displayed. See Figure 41.2 below.

Display I SHEET 1 1~~$.H$($ID:~~lsHEET 31

Tag I BOOLEAN I Suffix !

Tag I Text item 1

Form Window i
I- -t

Figure 41.2 A Linked Property Sheet

41-5

41

41-6

Property Sheet

This additional choice item actually resides in an additional form window, called a link
window. This link window is another body window of the Star window shell. The link
window remains visible all the time, while the main form window may be swapped. The
client does this by supplying a FormWindow.ChoiceChangeProc for the single choice item in
the link window. Then when the user selects a new choice for that item, the client (in the
ChoiceChangeProc) calls SwapFormWindows or SwapExistingFormWindows to change
the main form window. Note: Only one main Corm window is installed in the Star window
shell at a time. A linked property sheet is created by calling CreateLinked.

CreateLinked: PROCEDURE [

formWindowltems: FormWindow.MakeltemsProc.
menultemProc: Menu.temProc.
size: wlndow.Dims,
menu.tems: Menu.tems propertySheetDefaultMenu,
title: XString.Reader NIL,

placeToDisplay: Window.Pface nullPtace,
formWi ndowltemsLayout:FormWindow.L~youtProc NIL,

windowAttachedTo: StarWindowSheU.Handle [NILJ.

globalChangeProc: FormWindow.GlobalChangeProc NIL,

display: BOOLEAN TRUE,

linkWindow.tems: FormWindow.MakeltemsProc.
Ii nkWindowltemSLayout:FormWindow.LayoutProc NIL,

clientData: LONG POINTER NIL,

afterTakenDownProc: MenultemProc NIL,

zone: UNCOUNTED ZONE NIL]

RETURNS (shell: StarWindowShell.Handhit];

CreateLinked creates a linked property sheet. Creating a linked property sheet is almost
identical to creating an ordinary property sheet, (see Create above for a full description of
all the parameters), except CreateLinked has the additional parameters IinkWindowltems
and linkWindowltemsLayout. linkWindowltems is called to make the choice item in the
link window. It should create a single choice item with a FormWindow.ChoiceChangeProc.
IinkWindowltemsLayout is called to specify the position of the choice item in the link
window. The default places the item appropriately in the link window, so most clients will
want to take the deCault for linkWindowltemsLayout. Note: formWindowltems and
formWindowltemsLayout specify the main form window that is initially visible in the
property sheet.

CreateLinkedWithBitmapUnderOption: PROCEDURE [

formWi ndow.tems: FormWindow.MakeltemsProc.
menultemProc: MenultemProc.
size: Window.Dims.
menultems: Menultems propertySheetDefaultMenu,
title: XString.Reader NIL,

placeToDisplay: Window.Pface null Place,
formWi ndowltemsLayout: FormWindow.LayoutProc NIL.

windowAttachedTo: StarWindowShell.Handle [NIL).

globalChangeProc: FormWindow.GlobalChangeProc NIL,
display: BOOLEAN TRUE, .

linkWindowltems: FormWi~dow.MakeltemsProc.
linkWi ndow,temsLayout: Formwindow.LayoutProc NIL,

clientData: LONG POINTER NIL,

,..-.. 1I '''--------''''1

ViewPoint Programmer's Manual

afterTakenDownProc: MenultemProc ~ NIL.
bitmapOption: StarWindowSheUExtra5. BitmapU nderOption ~ noBitmapU "der,
zone: UNCOUNTED ZONE +- NIL]
RETURNS (sheU: StarWindowSheU.Handle];

41

CreateLinkedWithBitmapUnderOption is identical to CreateLinked except for the
additional parameter bitmapOption. See CreateWithBitmapUnderOption for an
explanation of the bitmapOption parameter. Fine Point: This procedure is currently exported

through PropertySheetEztra.

SwapFormWindows: PROCEDURE [
shell: StarWindowSheU.Handle.
newFormWindowltems: FormWindow.MakeltemsProc.
newFormWi ndowltemslayout: FormWindow. LayoutProc ~ NIL,
apply: BOOLEAN +- TRUE.
destroyOld: BOOLEAN +- TRUE,
newMenultemProc: MenultemProc +- NIL.
newMenultems: Menultems +- ALL(FALSE].
newTitle: XString.Reader NIL.
newGlobalChangeProc: FormWindow.GlobalChangeProc NIL.
newAfterTakenDownProc: MenultemProc +-NILJ
RETURNS (old: Window.Handle];

SwapFormWindows swaps the main form window of a property sheet with a new one. This
will usually be called from the FormWindow.ChoiceChangeProc of the choice item in the link
window. May raise Error [notAPropSheet).

shell is the property sheet.

newFormWindowltems supplies the items for the new window.

newFormWindowltemsLayout specifies the layout for the items in the new form window.

apply specifies whether any changes to the current form window should be applied before
the swap. If apply • TRUE, the current MenultemProc for shell is called with menultem •
apply. If apply • FALSE, the MenultemProc is not called.

The destroyOld parameter indicates whether the old form window should be destroyed or
not. If destroyOld • FALSE, then the return parameter is the old form window, else the
return parameter is NIL. This allows clients to perform the following typical sequence of
events:

1. Create a linked property sheet using CreateLinked.

2. The first time the user links to another sheet, call SwapFormWindows with
destroyOld • FALSE and save the old form window.

3. When the user goes back to the first sheet, call SwapExistingFormWindows, supplying
the previously saved old form window, and thus avoiding having to create the first form
window again.

newMenultemProc allows the client to install a different MenultemProc than the one that
was supplied with CreateLinked.

newAfterTakenDownProc allows the client to install a different takedown MenultemProc
than the one that was supplied with CreateLinked.

41-7

41

41-8

PropertySheet

newMenultems, newTitle, and newGlobalChangeProc allow the client to change these as
well.

If the default newMenultemProc, newMenultems, newTitle, or newGlobalChangeProc is
taken, the current values are retained.

SwapExistingFormWi ndows: PROCEDURE [
shell: StarWindowSheU.Handle,
new: Window. Handle,
apply: BOOLEAN TRUE,
newMenultemProc: MenultemProc NIL,
newMenultems: Menultems ALL[FALSE).
newTitle: XString.Reader NIL.
newAfterTakenOownProc: MenultemProc NIL]
RETURNS [old: Window.Handle];

SwapExistingFormWindows swaps the main form window of a property sheet with a new
one. The new form window must already exist. If it does not, use SwapFormWindow. new
is the new form window. apply, newMenultemProc, newMenultems, and newTitle are the
same as in SwapFormWindow. old is the previous main form window. ~ay raise Error
[notAPropSheet] .

41.2.4 Miscellaneous

GetFormWindows: PROCEDURE [shell: StarWindowShell.Handle]
RETURNS [form, link: Window.Handle];

GetFormWindows returns the current form windows of shell. If shell is not a linked
property sheet, link is NIL. May raise Error [notAPropSheet].

InstallFormWindow: PROCEDURE [
shell: StarWindowShell.Handle,
menultemProc: MenultemProc.
menultems: Menultems propertySheetDefaultMenu,
title: XString.Reader NIL,
formWindow: Window.Handle,
afterTakenOownProc: MenultemProc NIL];

InstaliFormWindow installs formWindow in shell. May raise Error [notAPropSheet).

41.2.5 Signals and Errors

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE :I {notAPropSheet};

Error [notAPropSheet] is raised if a StarWindowSheU.Handle that is not a property sheet is
passed to a Property Sheet procedure.

~,

ViewPoint Programmer's Manual 41

41.3 Usage/Examples

41.3.1 Flow Description of Creating a Property Sheet

The following describes the sequence of calls involved in creating and taking down a
property sheet, including ViewPoint interfaces and clients.

1. Client calls Propertysh.et.Create, supplying a FormWindow.MakeltemsProc, a
FormWlndow.LayoutProc (optional), and a Propertysheet.Men,ultemProc.

2. Propertysh.et.Create creates a Star window shell and a body window inside the
StarWindowSheli. It then calls FormWindow.Create, passing in the body window.

3. FormWindow.Create calls the client's FormWindow.MakettemsProc.

4. The client's FormWindow.MakeltemsProc creates the items in the property sheet by
calling various FormWindow.MakeXXXltem procedures.

5. Form Window. Create calls the client's FormWindow.LayoutProc. If the client did not provide
one, a default LayoutProc provided by FormWindow is called.

6. The FormWindow.LayoutProc makes calls to FormWindow.AppendLine and
FormWindow.Appendltem to .specify the layout of the items created by the
FormWindow.MakettemsProc.

7. FormWindow.Create returns to Property Sheet. Create. PropertySheet.Create returns to the
client. The client returns to the notifier process.

8. The property sheet is now on the screen and the notifier process is waiting for the user.

9. The user changes some values in the property sheet. This is all managed by
FormWindow; the client gets called only if there is a FormWindow.BooleanChangeProc
or FormWindow.ChoiceChangeProc or FormWindow.GlobaIChangeProc.

10. The user selects Done in the header of the property sheet.

11. A procedure inside of PropertySheet is called. PropertySheet calls the client's
Propertyshe.t.MenultemProc.

12. The client's PropertySh.et.MenultemProc checks for any changed val ues
(FormWindow.HasBeenChanged and FormWindow.HasAnyBeenChanged) and calls the
appropriate FormWindow.GetXXXltemValue to obtain the new values. The client
validates and applies these new values, then returns an indication of whether the
property sheet should be taken down.

13. PropertySheet takes down the property sheet and returns to the notifier.

14. END.

41-9

41 Property Sheet

41.3.2 An Ordinary Property Sheet

41-10

This example creates a property sheet from some arbitrary properties and then applies the
user's changes to those properties. It uses a rather contrived set of properties described by
Properties and PropertiesObject. In general, a real property sheet would get its properties
from some real object. This example will produce the property sheet shown in Figure 41.1.

... PropertySheetExamp/e .. mesa

DIRECTORY
FormWindow USING [

Choicettem, GetBooleanttemValue. GetChoicettemValue, GetTextltemValue.
HasAnyBeenChanged, HasBeenChanged, Item Key. MakeBooleanttem,
MakeChoiceltem, MakeltemsProc, MakeTextltem, SetBooleanltemValue.
SetChoiceltem Val ue, SetTextltem Value],

Property Sheet USING [Create. MenultemProc],
StarWindowShell USING [Handle),
XString USING [FreeReaderBytes. FromSTRING, ReaderBody].
Window USING [Handle1;

PropertySheetExample: PROGRAM IMPORTS FormWindow, PropertySheet, XString • {

Properties: TYPE • LONG POINTER TO PropertiesObject;

PropertiesObject: TYPE. RECORD [
boolean: BOOLEAN,
choice: Choices,
text: XString.ReaderBody];

Items: TYPE. {boolean. choice, text};

Choices: TYPE. {choice1, choice2, choice3};

zone:UNCOUNTEDZONE+- ••• ;

MakePropertySheet: PROCEDURE [props: Properties]
RETURNS [shell: StarWindowShell.Handle) • {
title: XString.ReaderBody +-XString.FromSTRING ["Title"L];

shell +- PropertyShftt. Create [
formWindowltems: Makeltems,
menultemProc: MenultemProc.

};

menultems: [help: TRUE. done: TRUE, cancel: TRue.
apply: TRUE. defaults: TRUE],

size: [w: 300, h: 200].
title: @title,
clientData: props];

ViewPoint Programmer's Manual

Makeltems: FormWindow.MakeltemsProc a {

props: Properties ~ clientData;

};

tag: XString.ReaderBody ~ XString.FromSTRING["Tag"l];

BEGIN

label: xstring.ReaderBody +-XString.FromSTRING("BOOLEAN"l);
suffix: xstring.ReaderBody +- XString.FromSTRING[" suffix nl];
Fonnwindow.MakeBooleanltem (

window: window,
myKey: Items.boolean.oRD,
tag: @tag,
suffix: @suffix,
label: [string [label]],
initBoolean: props.boolean];

END;

BEGIN

c1 : XString.ReaderBo~y ~ XString.FromSTRING{"CHOICE , "l);
c2: XString.ReaderBody ~XString.FromSTRING{"CHOICE 2"l);
c3: XString.ReaderBody ~ XString.FromSTRING{"CHOICE 3"l);
choices: ARRAY [0 .. 3) OF FormWindow.Choiceltem +- [

[string[Choices.choice1.oRD, c1]],
[string[Choices.choice2.0RD, c2]],
[string[Choices.choice3.0RD, c3]]];

FormWindow.MakeChoiceltem [
window: window,
myKey: Items. choice. ORO,
values: OESCRIPTOR[choices],
initChoice: props.choice.oRD];

END;

FOrmWindow.MakeTextltem [
window: window,
myKey: Items. text. ORO,
tag:@tag,
width: 40,
initString: @props.text];

MenultemProc: Propertysheet.MenultemProc • {
props: Properties ~ clientData;
SELECT menultem FROM

help. > ... ;
done. > RETuRN[destroy: ApplyAnyChanges(formWindow, props].ok];
cancel a > RETURN[destroy: TRUE];
apply. > [] ~ ApplyAnyChanges(formWindow, props];
defaults. > SetDefaults[formWindow, props);
ENDCASE a > ERROR;

RETURN(destroy: FALSE];
};

41

41-11

41

41-12

PropertySheet

ApplyAnyChanges: PRoe [window: Window.Handle, props: Properties]
RETURNS [ok: BOOLEAN] =- BEGIN
IF ·FormWindow.HasAnyBeenChanged [window] THEN RETURN [ok: TRUE];
FOR eachltem: Items IN Items DO

itemKey: FormWindow.ltemKey =- eachltem.ORO;
IF -FormWindow.HasBeenChanged [window, itemKey] THEN LOOP;
SELECT eachltem FROM

boolean=- > props.boolean +-FormWindow.GetBooleanltemValue{window, itemKey];
choice. > props. choice VAL[FormWindow.GetChoiceltemValue[window, itemKey]];
text. > {

XString.FreeReaderBytes [r: @props.text, z: zone];
props.text FormWindow.GetTextltemValue [window, item Key, zone]};

ENOCASE:
ENOLOOP;

RETURN [ok: TRUE];
ENO;- ApplyAnyChanges

SetDefaults: PRoe [window: Window.Handle, props: Properties) =­
BEGIN
defaultText: XString.ReaderBody XString.FromSTRING["Text item"L1;
FormWindow.SetBooleanltemValue [

window: window,
item: Items.boolean.oRo,
newValue: FALSE];

FormWindow.SetChoiceltemValue [
window: window,
item: Items. choice. ORO,
newValue: Choices.choice2.oRD];

FormWindow.SetTextltemValue [
window: window,
item: Items.text.oRD,
newValue: @defaultText];

END;

} ...

ViewPoint Programmer's Manual 41

41.4 Index of Interface Items

Item Page

BooleanFalseDefault: TYPE 4
Cleate:PRocEDURE 2
CleateLinked: PROCEDURE 6
CreateWithBitmapUnderOption: PROCEDURE 3
CleateLinkedWithBitmapUnderOption: PROCEDURE 6
Error: 'ERROR 8
ErrorCode: TYPE 8
GetFormWindows: PROCEDURE 8
InstaliFormWindow: PROCEDURE 8
MenultemProc: TYPE 4
Menultems: TYPE 4
MenultemType: TYPE 4
nuliPIace: Window.Place 3
optionSheetDefaultMenu: Menu.tems 4
propertySheetDefaultMenu: Menultems 4
SwapExistingFormWindows: PROCEDURE 8
SwapFormWindows: PROCEDURE 7

41-13

41 PropertySheet

41-14

42

Prototype

42.1 Overview

Prototype manipulates prototype flIes. A prototype file is a blank copy of an application's
file that the user can copy. Prototype files are in the Directory icon under f'B lank
Documents, Folders, ete. "

A prototype file resides in the prototype catalog (see the catalog interface) and is uniquely
identified by it is file type, subtype, and version. The subtype distinguishes between objects
of the same file type, such as the blank document and the basic graphics transfer
document. Subtype is stored in an extended attribute on the prototype rue. A nonexistent
subtype is equivalent to subtype o.

Version is stored in the BWS-standard version extended attribute (see
BWSAttributeTypes). The intent is that clients need only examine the version to determine
if the prototype is current. A nonexistent version attribute is equivalent to version o.

Prototype provides Find and Create procedures. A client typically calls Find and if it
returns NSFile.nuIiReference, then call Create.

42.2 Interface Items

Versi_on: TYPE. CARDINAL;

Subtype: TYPE. CARDINAL;

Find: PROCEDURE [type: NSF.ie.Type, version: Version,
subtype: Subtype +-0, session: NSFile.Session +-NsFile.nuIiSession]
RETURNS [reference: NSFile.Reference];

Find returns a reference for the file with the specified type, version, and subtype. If the file
does not exist, NSFile.nuliReference is returned.

Create: PROCEDURE [
name: Xstring.Reader,
type: NSFile. Type,

42-1

42 Prototype

version: Version.
subtype: Subtype ... 0,
size: LONG CARDINAL ... O.
isDi rectory: BOOLEAN ... FALSE ..
session: NSFile.Session ... NSFile.nuIiSession)
RETURNS [prototype: NSFIIe.Handle);

Creates a file in the prototype catalog with the specified name, type, version, subtype, size
in bytes, and isDirectory attribute.

Add: "'OCEDURE [file: NSFile.Handle .. version: Version.
subtype: Subtype ... O. session: NSFile.Session 4-NSFile.nuIISession];

Moves an already existing file into the prototype catalog, assigning it the given version
and subtype. Fine point: This is in PrototypeExtra in ViewPoint.

PurgeOldVersions: PROCEDURE [type: NSFile.Type .. current: Version. subtype: Subtype ... 0);

Deletes any versions of the given prototype that are older (smaller number) than current.
PurgeOldVersions assumes that higher version numbers are more recent than lower
version numbers. It this is not true for your version numbers, do not call this operation.

42.3 UsagelExamples

42-2

This is an example of a procedure that an application probably calls at initialization time. ~

samplelconFileType: NSFile. Type •••• ;

version: CARDINAL • • •• ;

FindOrCreatelconFile: PROCEDURE. {
name: xString.ReaderBody ... xstring.FromSTRING{ftSample Icon"L];
_. This name should really come from XMessage.
IF (Prototype.Find [

};

type: samplelconFileType .. version: version] • NSFile.nuIiReference) THEN
NSFile.CJose [Prototype. Create [

name: @name .. type: samplelconFileType. version: version]];

ViewPoint Programmer's Manual

42.4 Index of Interface Items

Item

Add: PROCEDURE

Create: PROCEDURE

Find: PROCEDURE

PurgeOldVersions: PROCEDURE

Subtype: TYPE

Version: TYPE

Page

2
1
1
2
1
1

42

42-3

42 Prototype

42-4

43

Scrollbar

43.1 Overview

Scrollbar provides the means of attaching scrollbars to windows. Clients provide a
number of procedures that perform various scrolling actions. For a comprehensive view of
all the subwindow interfaces and their intended use, see the Subwindow Overview chapter.

43.2 Interface Items

43.2.1 Attaching Scrollbars

Attach: PROCEDURE {

window: Window.Handle,
vertical" horizontal: BOOLEAN TRUE,

single: SingleScrollProc NIL,

jump: J umpScrollProc +- NIL.

scrollbarInfo: ScrollbarInfoProc +-NIL,

thumb: ThumbScrollProc +- NIL,

feedback: ThumbFeedbackProc +-NIL,

zone: UNCOUNTED ZONE1;

Type: TYPE :II {horizontal. vertical};

Attach will attach a scrollbar of type to window. Scrollbars are younger siblings of the
viewer (window) they are attached to.' single is the proc that will be called when the user
invokes scrolling in one of the arrows or paging symbols (+ -). jump scrolling is currently
not implemented. thumb is called when the user points down in the thumbing region.
feedback is called for each mouse action to allow the client to provide interim feedback like
a sideways arrow. scrollbarlnfo will be called after thumb to get the percentage and offset
information needed to paint the thumbing feedback in the scrollbar.

43-1

43

43-2

Scrollbar

Adjust: PROCEDURE [window: Window. Handle);

Should be called when window is changing size to allow the attached scrollbars to adjust
their size accordingly. Should also be called after the call to Attach to establish initial size.

Destroy: PROCEDURE [window: Window.Handle. type: Typel;

Destroys the context associated with the scrollbar of type that is attached to window.

43.2.2 Scroll proc TYPES and PROes

In each of the following procedure types, window refers to the viewer of the subwindow
that the scrollbars are attached to. type refers to the specific scrollbar on the viewer,
horizontal or vertical.

SingleScroliProc: TYPE :8 PROC [

window: Window.Handle,
flavor: SingleScrollFlavor,
amount: NATURAL,

arrowScroliAction: ArrowScroliAction 4- go,
type: Typel;

SingleScrollFlavor: TYPE :a {pageFwd, page8wd, forward, backward};

ArrowScroliAction: TYPE :a {start. go, stop};

defaultSmoothScrollAmount: NATURAL;

A SingleScroliProc is the basic scrolling proc that should provide for forward, backward
continuous scrolling, and pageFwd, page8wd paging. It is called whenever the user points
at an arrow or the plus or minus sign in a scrollbar. Scroll distance will be determined by
amount. If flavor is forward or backward then amount is in screen dots.
(defaultSmoothScroliAmount can be used by the caller if desired). If flavor is pageFwd or
page8wd then amount is in pages. A SingleScroliProc is called with arrowScroliAction =­
start when the user begins the scrolling action. SingleScrollProc is caHed with
arrowScrollAction • go for each successive call until the user terminates scrolling. At
termination arrowScroliAction • stop. The SingleScroliProc will be called repeatedly as
long as the user has the mouse button down over one of the arrows, thus producing
continuous scrolling.

JumpScroliProc: TYPE :a PROC [

window: Window.Handle,
direction: JumpScrollFIavor,
percent: Percent],
type: Type;

JumpScroliFlavor: TYPE = {forward, backward};

Percent: TYPE = [0 .. 100);

ViewPoint Programmer's Manual 43

The client may provide a JumpScroUProc for Tajo-like jump scrolling. percent is relative to
window. Currently not implemented.

ScrolibarinfoProc: TYPE =- PROC (

window: Window.Handle.
type: Typel
RETURNS [offset. portion: Percent);

The clients ScrolibarlnfoProc is called to get information to properly paint the thumbing
region whenever the user has scrolled to a new position in the window. This is true
whether the user is thumbing, paging or continuous scrolling. The client returns the
offset from the beginning of the object and portion (percentage of the entiI:e object) that is
visible in the viewer. The scrollbar display will be updated using this information to
properly paint the thumbing region (tajo gray bar, star diamond, etc.)

ThumbWithin: TYPE =- {all. page, other}; .

ThumbAction: TYPE ~ {down. track, up};

In the following procedures within equates percent with an extent:
all ::I> percent is relative to the entire object.
page ::I> percent is relative to a client deimed page.
other = > is currently u~used.

ThumbFeedbackProc: TYPE • PROC [

window: Window.Handle.
percent: Percent.
within: ThumbWithin +- all.
type: Type.
action: ThumbAction);

The ThumbFeedbackProc is provided to allow the client an opportunity to display his own
feedback to the user concerning the relative location of the thumbing action DURING
thumbing. Traditionally this feedback has been in the form of page numbers or a sideways

. arrow in the cursor, and/or information in the scrollbar itself (such as the Star diamond).
ThumbFeedbackProc is first called when thumbing is invoked (user points down in the
thumbing region of the scrollbar) with action • down. If the user moves the cursor the
proc will be called again with action • track. When the user buttons up the proc will be
called with action •• up. 'Clients should be aware that it is possible to never get the last
call. The user may abort the thumb activity by either performing the pointUp outside of
the serollbar or by pressing the STOP key. The scrollbar code will be prepared to reset the
Cursor but no other clean up will be provided.

ThumbScroliProc: TYPE ~ PROC (

window: Window.Handle.
percent: Percent.
within: ThumbWithin +- all.
type: Type];

The ThumbScroliProc is the procedure that actually performs the scroll. It is called when
the user completes the thumb activity by pointing up in the thumbing region. The

43-3

43

43-4

Scrollbar

procedure is expected to make the appropriate calls to Window.SlideAndSize to cause the
scro 11 to happen.

GetScroUProcs: PROCEDURE (window: Window.Handle, type: Typel
RETURNS [

single: SingleScroliProc.
jump:JumpScroIIProc.
scrollbarlmo: ScrolibarinfoProc.
thumb: ThumbScroIiProc),
feedback: ThumbFeedbackProc);

Returns the client scrollProcs associated with the viewer window and scro11bar type.

SetSingleScrollProc: PROCEDURE (

window: window.Handle, type: Type. scroll: SingleScroliProc) .
RETURNS [old: SingleScroIiProc);

SetJumpScroliProc: PROCEDURE (

window: Window.Handle. type: Type. scroll: JumpScroliProc)
RETURNS [old: JumpScroIiProc);

SetScroll barl nfoProc: PROCEDURE [

window: Window.Handle, type: Type, scroll: ScrolibarlnfoProc)
RETURNS (old: ScrolibarlnfoProc)i

SetThumbScrollProc: PROCEDURE [

window: Window.Handle, type: Type. scroll: ThumbScrollProc)
RETURNS [old: ThumbScroIiProc);

SetThumbFeedbackProc: PROCEDURE [

window: Window.Handle, type: Type. scroll: ThumbFeedbackProc)
RETURNS [old: ThumbFeedbackProc);

Sets the various scrollProcs for window.

43.2.3 Utilities

GetScrollba~: PROCEDURE [window:Window.Handle, type: Typel
RETURNS [scroll bar: window.Handle);

Returns the scroll bar of type associated with window. Returns NIL if there isn't one.

GetScrolibarThickness: PROCEDURE RETURNS [INTEGER);

Returns the thickness of a scrollbar, Le. the width of a vertical scrollbar or the height of a
, horizontal scroll bar. Useful for determining the overall size requirements for subwindows
or shells.

GetZone: PROCEDURE [window:Window.Handle)
RETURNS [zone: UNCOUNTED ZONE);

.~
i

~
I

ViewPoint Programmer's Manual 43-

Returns the zone associated with window where window is the window the scrollbars are
attached to.

PercentOf: PROCEDURE [V: INTEGER, p: Percent)
RETURNS [INTEGER);

expresses p in terms of v
example: m PercentOf[OutOfN. offset)

Percentage: PROCEDURE [part, full: INTEGERI

RETURNS [Percent);

returns the percentage of part to full
example: offset Percentage[m. OutOfN1

43.2.4 Errors

Error: ERROR [code: ErrorCod'e);

ErrorCode: TYPE :I {alreadyExists, doesNotExist};

43-5

43 Scrollbar

43.4 Index of Interface Items ~

Item Page
Adjust: PROCEDURE 2
ArrowScrollAction: TYPE 2
Attach: PROCEDURE 1
defaultSmootScroliAmount: NATURAL 2
Destroy: PROCEDURE 2
Error 4
ErrorCode: TYPE 4
GetScrolibar: PROCEDURE 4
GetScroU Procs: PROCEDURE 3
GetScroUThickness: PROCEDURE 4
GetZone: PROCEDURE 4
JumpScrollFlavor: TYPE 2
JumpScroliProc: PROCEDURE 2
Percent: TYPE 2
Percentage: PROCEDURE 4
PercentOf: PROCEDURE 4
Scroll bart nfoProc: TYPE 3
SetJumpScrollProc: PROCEDURE 3
SetScrolibarfnforProc: PROCEDURE 4
SetSi ngfeScroliProc: PROCEDURE 3
SetThumbFeedbackProc: PROCEDURE 4
SetThumbScroliProc: PROCEDURE 4 ~
SingfeScrol1 Flavor: TYPE 2
SingleScrollProc: TYPE 2
ThumbAction: TYPE 3
ThumbFeedbackProc: TYPE 3
ThumbScroliProc: TYPE 3
ThumbWithin: TYPE 3
Type: TYPE 1

43-6

44

Selection

44.1 Overview

The Selection interface defines the abstraction that is the user's current selection. It
provides a procedural interface to the abstraction that allows it to be set, saved, cleared,
and so forth. It also provides procedures that enable someone other than the originator of
the selection to request information relating to the selection and to negotiate for a copy of
the selection in a particular format.

44.1.1 Requestors and Managers

The Selection interface is used by two different classes of clients. Most clients wish merely
to obtain the value of the current selection in some particular format; such clients are
called requestors. These programs call Convert (or ConvertNumber, which in turn calls
Convert), Query, or Enumerate. These clients need not be concerned with many of the
details of the Selection interface.

The other class of clients consists of those who wish to own or set the current selection;
these clients are called managers. A manager calls Selection. Set and provides procedures
that may be called to convert the selection or to perform various actions on it. The manager
remains in control of the current selection until some other program calls Selection. Set.
These clients do need to understand most of the details of the Selection interface.

The goal of the Selection interface is that the requestor need never know, and should never
care, what module is managing the selection. All that matters is whether the selection can
be rendered in a suitable form. For example, suppose the user presses COpy and selects. a
printer icon as the destination. The printer implementation needn't know what is printable
and what isn't. It simply queries the selection to determine whether it can be rendered as
an Interpress master, and if so it obtains it and sends it. Otherwise, it queries whether the
selection can be enumerated as a sequence of Interpress masters (as would be true of a
folder, for instance). If this also fails, the object is rejected.

The selection is the expression of the user indicating the datum to be operated on. As such,
it is conceptually owned by the user. The selection manager is a slave following the user's
instructions.

44-1

44

44-2

Selection

To maintain this user interface model, the selection must only be changed at the explicit ~
direction of the user. Software must allow the user to change the selection at will. To
implement this user model, the selection is only changed from within the user process or
noti/ier. The notifier is the system process that passes the user's actions, encoded as TIP
results, to application software.

Software that wishes to read the selection must deal with the fact that the selection may be
changed at any time that the notifier process is running. The way to synchronize with this
potentially asynchronous activity is to only read the selection in the notifier process. This
guarantees that the selection will not be altered while it is being read. Application
software running in the notifier process can be assured that the selection will not change
until after the application returns to the system. Thus the first rule for dealing with the
selection is:

The selection may only be read or changed in the notifier process.

Once an application returns to the notifier, any knowledge it retains about the selection
may be invalidated at any instant when the user subsequently changes the selection~
Similarly, if an application running in the notifier passes some information about the
selection to another process, that information may similarly be invalidated at any time. In
these circumstances, the application must copy the selection's value, using Copy, Move, or
CopyMove, to assure that its data remains valid. Thus the .second rule for dealing with the
selection is: .

Copy the selection's value before returning to the system or before passing it to another ,~
process.

Copying the value of selection may not always be desirable. For example, if a selection
requestor would like to copy a selection of files in the_ background, the requestor would not
want to do a Copy before leaving the notifier; doing so would defeat the purpose of doing
the filing operations asynchronously. To deal with the problem, Selection supports the
notion of an encapsulated selection. While in the notifier, the requestor may ask that the
selection be encapsulated. Doing so clears the user's selection, and saves the selection in a
form that the selection manager can operate on .from a non-notifier process. The requester
can then call standard Selection requestor procedures passing in the encapsulated
selection.

44.1.2 Essentials for a Requestor

Clients that need the value of the current se lection.

44.1.2.1 Convert, Target. Value, Enumerate, CanYouConvert

The fundamental operation performed by a selection requestor is to obtain the value of the
current selection by calling Selection. Convert. Convert takes a Selection.Target and returns a
Selection.Value. The Target specifies what TYPE of data the selection should be converted to.
The Value contains a pointer to the converted selection. For example, Selection.Convert
[target: string) will return a pointer to a string, i.e., an XString.Reader. ~

Not all selections can be converted to all Targets; in fact most selections can be converted to
only a small number of Targets. For example, if the selection is a text string. it can be

ViewPoint Programmer's Manual 44

converted to Target string and perhaps to integer, but probably not to file or fileType. Note:
Converting to some Targets is not so much requesting the value of the selection as
requesting some general information about the selection or its environment. For example,
Selection.Convert [target: window) is a request for the window that the selection is in,
Selection. Convert [target: help) is a request for user help information about the selection,
etc. Note that Target is an open-ended enumeration and that clients can create new
Targets by using Selection.UniqueTarget. The TYPE associated with each Target is
determined by system-wide convention. Several of these TYPE/Target conventions are
defined below under the description of Target. Other TYPE/Target conventions are
documented in §44.2.1.1, Convert.

A requestor can also enumerate the selection if it is more than a single item or if it can be
split into smaller pieces. This is done by calling Selection. Enumerate.

Finally, a requestor can determine what Targets the selection can be converted to without
actually doing the conversion by calling Selection.CanYouConvert, Selection.Query, or
Selection.H owH ard.

If a requestor would like to be able to operate on the selection from outside the notifier, it
can call Selectionx.Encapsulate. This clears the user's selection. Some managers may often
lock the object(s) in the selection so that the user can't operate on them while they are
encapsualated. Once the requestor has an encapsulated selection, all of the standard
operations are' available: ConvertX, Enumer~teX, CanYouConvertX, QueryX, and
HowHardX (all presently in the SelectionX interface). These operations are identical to the
standard operations (Convert, etc.) but take an additional parameter for the encapsulated
selection. Typically a requestor would do the Encapsulate in the notifier process, then fork
a process to operation on the encapsulated selection.

44.1.2.2 Resource Allocation/Deallocation Considerations

It is a strict rule that the Values produced by Selection.Convert and Selection.Enumerate
describe objects owned by the selection manager. The requestor may examine the data
referenced by the value field, but must not alter it. Furthermore, the requestor must free
the Value (using Selection. Free) once he no longer needs it.

If the requestor wishes to (1) keep the value after it returns to the system, or (2) pass the
value to another process it must call Selection. Copy, Selection. Move, or Selection.CopyMove.
These in turn invoke a procedure supplied by the selection manager that modifies the
Value such that the requestor may then make changes to value f without affecting the
selection manager. Fine Point: The procedure supplied by the manager is returned by the managel" as part of

the Value record. If a Move is performed, the item is also deleted from the manager's domain.
After the Move or Copy, any storage associated with the Value is now owned by the
requestor. This storage may be freed by calling Selection. Free.

For example, if the current selection is a document icon, then Convert(file) yields a Value
containing a LONG POINTER TO NSFile.Reference for the file containing the document. If the
requestor were to create a new document and associate it with the same file, it would
probably have undesirable effects. Instead, the requestor should call Copy, passing in
data:LONG POINTER TO NSFile.Reference for the destination directory of the new file. When
Copy returns, the Value contains a reference to a copy of the original file, and the I"equestor
can use this freely.

44-3

44

44-4

Selection

As a second example, suppose the selection manager uses a Mesa STRING as the internal
selection representation. Then Convert(string] simply builds the string pointer into an
XString.Reader using XString.FromSTRING. If the requestor wants to save the string for very
long, he should call Copy, and the manager will allocate a copy of the original string using
the zone passed to Convert. An alternative, somewhat simpler, is for the requestor to call
XString.CopyReader or XString.CopyToNewReaderBody or XString.CopyToNewWriterBody to
copy the bytes, and then call Selection. Free to dispose-of the original Reader.

An alternative to copying the selection before using it in another process is encapsulating
the selection. See the discussion in §44.2.2.7.

44.1.3 Essentials for a Manager

Clients that own and manage the current selection.

44.1.3.1 Set, ConvertProc9 ActOnProc. ManagerData

The implementor of a selection manager needs to know everything that the implementor of
a selection requestor knows, plus more (see the previous section Essentials for a
Requestor).

The fundamental operation performed by a selection manager is to become the current
manager by calling Selection. Set. Set takes a ConvertProc, an ActOnProc, and a LONG POINTER

(ManagerData).

The ConvertProc is called to obtain the value of the selection, whenever a requestor calls
Selection. Convert or Selection. Enumerate. The ConvertProc is also called to determine what
Targets the selection can be converted to, whenever a requestor calls
Selection.CanYouConvert, Selection. Query, or Selection.HowHard. Conversionlnfo is a variant
record passed to the ConvertProc that indicates which operation to perform: convert,
enumeration, or query.

The ActOnProc is called to perform various Actions on the selection, such as mark, unmark,
clear, and encapsulate.

The ManagerData passed to Set is passed back to the ConvertProc and the ActOnProc.
Typically, the ManagerData identifies exactly what portion of the manager's domain is
currently selected. For example, if the current selection is some text in a document, the
actual manager is the document application, which has some ManagerData that indicates
exactly which characters are currently selected.

When a manager calls Selection.Set, the previous manager is told to ActOn [clear], and
Selection forgets about the previous manager. Hence, there is only one selection at a time.
However, Selection also supports the notion of a tfsaved" selection. A client can become the
current manager by calling Selection.SaveAndSet, which does a Set but also saves the
previous selection. Later, the manager that did the SaveAndSet can do a Selection. Restore,
which restores the previous selection.

Related to the notion of a saved selection is an encapsulated selection. The difference ~.
between the two is that a saved selection cannot be operated on until it is restored. An
encapsulated selection can be operated on using the ConvertX, EnumerateX, etc. operations
that all take a parameter for the encapsulated selection. To encapsulate the selection, the

ViewPoint Programmer's Manual 44

requestor calls Selectionx.Encapsulate which calls the managers's ActOnProc with action
unmark followed by ActOn(encapsulate). The manager is expected to modify its manager
data that was passed into Set to note that the selection is saved. Th manager should also
lock down the objects in the selection if necessary or do whatever is necessary to insure that
the objects in the selection will remain accessible until the encapsulated selection is freed.
When the requestor later operates on the encapsulated selection, the manager's ActOnProc
and ConvertProc will be called with the manager data that was originally passed into
Selection. Set.

44.1.3.2 More on Selection. VaIue. VaIueFreeProc. and VaIueCopyMoveProc

The Value produced by a manager's ConvertProc contains more than simply a pointer to
the converted selection. It also contains a pointer to two procedures, a ValueFreeProc and a
ValueCopyMoveProc. The ValueFreeProc is called when the requestor calls Selection. Free so
that the manager can release any resources that were allocated when the selection was
converted. The manager's ValueCopyMoveProc is called when the requestor calls Copy,
Move, or CopyMove. The ValueCopyMoveProc should copy or -move the converted
selection value so that the manager no longer owns the resources associated with the
value. A third field in the Value record is a LONG UNSPECIFIED that may be used to store data
for the ValueFreeProc and the ValueCopyMoveProc.

IT the converted selection value can be copied or moved, the manager must return a
ValueCopyMoveProc with the Value. For example, Targets string and file can be moved or
copied, while it does not make sense to move or copy Targets window and fileType. The
ValueC9PyMoveProc modifies the Value such that the requestor may then make changes
to value f without affecting the selection manager. IT a Move is performed, the item is also
deleted from the manager's domain. (Some managers may implement Copy but raise
Error(invalidOperation) if asked to do a Move.) The interpretation of the data given to a
ValueCopyMoveProc depends on the manager; the typical use is to specify a destination for
the object.

44.1.3.3 Storage Considerations for Can vertProc

As stated above, it is a strict rule that the Values produced by the ConvertProc describe
objects owned by the manager. If the manager allocated any resources to produce the
converted selection value, then a ValueFreeProc must be returned with the Value so that
the resources can be released. If a ValueCopyMoveProc was returned with the Value, after
the converted selection value has been copied or moved, the manager must ensure that the
correct things will happen when the Value's. ValueFreeProc is called (Le., when the
requestor calls Selection.Free). This may involve replacing the original ValueFreeProc.

The manager's ConvertProc takes a zone that Selection guarantees is valid (except for the
query operation). The manager should allocate any storage for the converted selection
value from that zone. The ConvertProc can store the zone in the context (LONG UNSPECIFIED)

field of the Value record (or in a record pointed to by the context field). The ValueFreeProc
and ValueCopyMoveProc can then retrieve this zone to free the storage. ~

Numerous defaults are provided by Selection to ease the manager's task of proper storage
management: In practice, the ConvertProc can simply default the context field and
Selection will place the zone there. Also, procedures such as FreeStd and FreeContext are

44-5

44 Selection

provided that perform the LOOPHOLES, FREE the storage, and store null and/or no-op values ~
such as NopFree in the Value record.

44.1.3.4 Storage Considerations for ManagerData

The ManagerData that identifies exactly what part of the manager's domain is currently
selected should be allocated whenever a Selection.Set is done and deallocated whenever
ActOn [clear) is requested. In particular, a manager should not assume that there will be
only one selection at a time in his domain. The existence of SaveAndSet and Restore and
Encapsulate implies that the same manager code could have several pushed selections at
once and therefore would have several ManagerData records allocated 'at once.

A manager that supports encapsulated or saved selections must carefully manage storage
and access to the objects represented by the encapsulated selection. The saved selection
case is slightly easier; the manager can assume that the ManagerData will not be operated
on unless it is the user's selection. When the saved selection is restored, the manager must
make sure all the objects in the saved selection still exist. The encasulated case is
somewhat harder. One approach is to save enough data about the selection to work
properly if some of the objects disappear. For example, a folder application may normally
maintain a selection as a span of objects: rows 1-5 are selected. To encapsulate the
selection, the folder· might have convert the selection into a list of fileIds so it can later
access each file. Another approach (and the one used currently in the BWS) is to lock all of
the objects in the encapsulated selection so that that user cannot modify them unto the
requestor calls Selection. Di sea rd.

44.2 Interface Items

44-6

44.2.1 Requestor items

44.2.1.1 Convert

Convert: PROCEDURE [target: Target. zone: UNCOUNTED ZONE +- NIL1
RETURNS [value: Value];

ConvertX:PROCEDURE[
target: Target.
zone: UNCOUNTED ZONE +- NIL.
manager: Saved +- null Manager]
RETURNS [value:Valuel;

Value: TYPE. RECORD [value: LONG POINTER, ..•];

nuliValue: Value. [value: NIL, ... 1;

Convert is a request to the current selection manager to produce the selection as a TYPE
specified by target, ifpossible. value.value will be a LONG POINTER TO the converted selection.
The TYPE of object pointed to by value.value depends on target and is described below under
Target. If the conversion requires that storage be allocated, it will be allocated out of zone.
If zone is defaulted, the system heap is used.

ViewPoint Programmer's Manual 44

The value returned is read-only; it belongs to the manager. If the requestor wishes to (1)
keep the value after it returns to the system, or (2) pass the value to another process, it
must call Copy, Move, or Copy Move to make a copy of the value, which is then owned by
the requestor. rfCopy, Move, or CopyMove is called, the requestor must still call Free.

If Copy, Move, or Copy Move is not called, the requestor must call Free after calling
Convert. This allows the manager to free any resources that were allocated to perform the
conversion. If Copy, Move, or CopyMove is called, the requestor then owns any resources
and may retain them indeflnitely and/or may free them by calling Free.

There are other fields in the Value record, but the requestor need not be concerned wi.th
them. They are described in the section on Manager Items

nuliValue is returned if the selection manager does not implement the desired conversion,
or if the particular selection is incompatible with the target (e.g., Convert(integer] when
non-numeric characters are selected).

ConvertX adds an addition manager parameter to support encapsulated selections.
manager is obtained by doing a Selectionx.Encapsulate. If manager is defaulted, the
operation applies the the global user's selection; otherwise the manager is called to convert
the encapsulated selection represented by manager. ConvertX is exported by SelectionX.

Target: TYPE • MACHINE DEPENDENT{
window(O), shell, subwindow, string, length, position,
integer, interpressMaster, file, fileType, token, help,
interscriptScript, interscriptFragment, serializedFile, name, firstFree, last(1777B)};

. fileWithFeedback:Target;

Target describes the type of data to which a selection may be converted (see Convert),
Modules that manage the current selection may choose not to implement conversion to
some (or even most) of these types. The values described below are those stored in the value
field of the Selection.Value returned by Convert. fileWithFeedback is a target presently
exported by SelectionX.

Special note for Targets that produce a Stream.Handle: The Stream.Object pointed to by the
Stream.Handle is read-only. Thus the requestor cannot even read the stream because that
alters the stream state and thus the Stream.Object. Before using the stream, the requestor
must do a Copy, after which the ownership of the storage for the Stream.Object and any of its
ancillary data moves to the requestor. Note also that the stream itself is read-only even
after the Copy. The requestor should never attempt to write to the stream. Mter reading
the stream, the requestor can free the stream and any associated resources by calling
Stream.Delete. Thus a typical stream requestor will do Convert(stream); Copy[]; < read
stream>; Stream.Delete(]; Note for selection managers: this last point means that the
Stream.Delete must be able to free any ancillary data associated with the stream.

Note that some Target values refer to types that are not defmed within the context of
ViewPoint. Such targets so far include pieceList, help, interscri ptScri pt, and
interscriptFragment. Popular target types are included in the Selection interface as a
convenience for clients. New target types will be put either into a SelectionExtras interface
or, for little-used types, into' private interfaces negotiated between managers and
requestors and using Selection.UniqueTarget. The TYPE associated with each Target is
determined by system-wide convention. Several of these TYPE/Target conventions are

44-7

44

44-8

Selection

defined here. Other TYPE/Target conventions are documented elsewhere, see §44.2.2.8,
UniqueTarget.

Fine Point: This Selection interface is intended to support both XDE and ViewPoint clients. so there may be

Targets that do not make sense in one domain or the other. Targets that only make sense in one domain show that

domain in parentheses.

window

shell

subwindow

string

length

position

pieceList

integer

interpress~aster

file.

fileWithFeedback

yields a Window.Handle for the window containing the
selection.

yields a StarWindowSheU.Handle for the window containing the
selection. (ViewPoint)

yields a Window.Handle for the subwindow containing the
selection. (XDE)

yields a LONG POINTER TO XString.ReaderBody (an
XString.Reader) representing the text of the selection. If the
current selection is too large, the manager of the selection
may return nuliValue when asked to convert to a string. The
requestor should then ask to enumerate the selection as a
sequence of smaller strings. Note: The requestor must copy
the ReaderBody before altering it.

yields a LONG POINTER TO LONG CARDINAL containing the length
of the selection in characters.

yields a LONG POINTER TO LONG CARDINAL containing the position
within the source.

yields a list of pieces, understood by the internals of XDE's
PieceSource interface. (XDE)

yields a LONG POINTER TO LONG INTEGER containing the result of
converting the contents of the selection to a number.

yields a Stream.Handle onto an Interpress master, according
to the Interpress standard.

yields a LONG POINTER TO NSFile.Reference for the file (if any)
associated with the selection, e.g., the backing file for a Star
document icon. When calling Copy, Move, or Copy Move, the
data parameter must be a LONG POINTER TO NSFile.Reference of
the parent directory to where the file should be copied or
moved. Mer calling Copy, the value.value is replaced by a
LONG POINTER TO NSFile.Reference of the newly copied file.
(ViewPoint)

same as file but tells the manager's CopyMoveProc to post
the names of the objects to the attention window as they are
copied or moved. (ViewPoint)

ViewPoint Programmer's Manual 44

fileType

token

help

i nterscri ptScri pt

yields a LONG POINTER TO NSFile. Type for the file (if any)
associated with the selection. (ViewPoint)

yields a LONG POINTER TO XString.ReaderBody (an
XString.Reader) that contains the flrst token of the current
selection. Note: The requestor must copy the ReaderBody
before altering it.

yields a LONG POINTER to a value or data structure that
specifies what should happen if the HELP key is pressed.
Consult the Help documentation (not in this manual) for the
exact TYPE.

yields a Stream.Handle onto a complete script, according to
the Interscript standard. It begins with the "Interscript 1.0 ..
. ", and is in machine code.

interscriptFragment yields a Stream.Handle onto a single Interscript nocie, in
machine code.

serializedFile A Target of serializedFile results in a Stream.Handle.

name

firstFree

Stream.GetXXX operations can be performed on the stream.
This is useful tor retrieving flIes from non-NSFile mediums
such as a floppy disk.

A Target of name results in a XString.Reader that contains
the name of the object.

is used internally by Unique Target and should not be used
by clients.

ConvertNumber: PROCEDURE [target: Target)
RETURNS [ok: BOOLEAN, number: LONG UNSPECJFIED);

This procedure lets the requestor streamline his code in many cases. ConvertNumber calls
Convert and assumes that the resulting value.value references a 32-bit object. (This is true
of the targets length, position, integer, and fileType, and may also be true of targets
defined using UniqueTarget.) The object is returned as number, and the Value is then
freed (Selection.Free). If the selection manager does not support the desired conversion (that
is, it returns nuIiValue), or if the selection could not be converted to a number,
ConvertNumber returns Ok:FALSE; otherwise, it returns Ok:TRUE.

Free; PROCEDURE [v: ValueHandle];

ValueHandle: TYPE. LONG POINTER TO Value;

Free allows the manager to free any storage associated with v. Free should always be
called after calling Convert (but if Copy or Move is going to be called, don't call Free until
after calling Copy or Move). Fine point: after calling Copy or Move, Free is a no-op since
the manager should have handed over any storage ownership to the requestor, but it is
easier for the requestor to simply remember the rule, "Always call Free." The manager
will take care of ensuring that an extraneous Free is harmless.

44-9

44 Selection

44.2.1.2 Query

44-10

A requestor can determine exactly which Targets the current selection can be converted to
and how difficult the conversion would be. The most common way to do this is
CanYouConvert, which takes a Target and returns a BOOLEAN indicating whether the
selection can be converted to that Target. HowHard is similar to CanVouConvert but
returns a· Difficulty. Query allows a requestor to determine the Difficulty of conversion for
an ARRAY of Targets.

Note: For all these queries, the manager is indicating how hard it would be to attempt to
convert the selection to that target type. Attempt is a key word. The manager might be
willing to attempt to convert the selection to~ an Interpress master and yet run out of disk
space when the conversion is actually requested. Likewise, the manager might support
conversion to integer, but the conversion could still fail if the selection contains invalid
characters.

CanVouConvert: PROCEDURE (target: Target, enumeration: BOOLEAN FALse]

RETURNS [yes: BOOLEAN) -INLINE {

RETURN [HowHard (target. enumeration 1 # impossible l};

CanYouConvertX: PROCEDURE [

target: Target,
enumeration: BOOLEAN FALSE,

manager: Saved nuliManager)
RETURNS [yes: BOOLEAN) - INLlNE{

RETURN(HowHardX[target. enumeration. manager] # impossible) };

CanYouConvert determines whether the selection manager supports conversions to the
specified target. enumeration - TRUE means the requestor wants to know if the manager
supports enumerating the selection in the specified target form. (See the section on
Enumeration below.) CanVouConvertX is the same procedure but can operate on an
encapsulated selection manager. If manager is defaulted, the operation uses the default
global selection. CanYouConvertX is exported by SelectionX.

HowHard: PROCEDURE [target: Target. enumeration: BOOLEAN FALSE]

RETURNS [difficulty: Difficulty];

HowHardX: PROCEDURE [

target: Target,
enumeration: BOOLEAN FALSE,

manager: Saved nuliManager]
RETURNS [difficulty: Difficulty];

Difficulty: TYPE - {easy, moderate, hard, impossible};

HowHard determines the difficulty the selection manager would have attempting to
convert to the specified target. enumeration • TRUE means the requestor wants to know
the difficulty of enumerating the selection in the specified target form. (See the section on
Enumeration below.) HowHardX is the same procedure but can operate on an
encapsulated selection manager. If manager is defaulted, the operation uses the default
global selection. HowHardX is exported by SelectionX.

ViewPoint Programmer's Manual 44

The difficulty ratings are interpreted roughly as follows:

easy Requires virtually no computation (other than allocating
storage for the Value). Example: length when the selection
is being maintained as two character indices wi thin a
string.

moderate Requires some amount of computation but nothing
outrageously time-consuming. Example: converting the
above-mentioned substring representation to a stri ng or
integer target.

hard Requires extensive computation. Example:
i nterpressMaster.

impossible The selection manager does not support this conversion.

Query: PROCEDURE [targets: LONG DESCRIPTOR FOR ARRAY OF QueryEJement);

QueryX: PROCEDURE [

targets: LONG DESCRIPTOR FOR ARRAY OF QueryEJement,
manager: Saved +- nuIIManager);

QueryElement: TYPE • RECORD [

target: Target,
enumeration: BOOLEAN ... FALSE,

difficulty: Difficulty ... TRASH];

Query allows a requestor to determine the difficulty of conversion for several Targets. The
requestor should construct the ARRAY OF QueryElement, filling in target and enumeration
for each QueryEJement. The manager will then store a Difficulty in each QueryElement
indicating how hard it would be to attempt to convert the selection to that target. The
requestor can then examine the difficulty field of each QueryEJement after the call to
Query. QueryX is the same procedure but can operate on an encapsulated selection
manager: If manager is defaulted, the operation uses the default global selection. QueryX
is exported by SelectionX.

44.2.1.3 Enumeration

The selection is sometimes a collection of items (for example, several rows of a folder) or a
single large item that can be split up (for example, a long string can be broken into several
smaller ones). A requestor can request that each item or part of such selections be
converted to some Target by calling Selection.Enumerate. Enumerate is logically similar to
calling Convert for each item and the same storage ownership rules apply (see Convert).
Not all selection managers support enumerating the selection; for example, they do not
support a selection that is more than one item. Often a requestor will call Convert and if
that fails (returns nuIlValue), call Enumerate.

Enumerate: PROCEDURE [

proc: EnumerationProc. target: Target, data: RequestorData ... NIL,

zone: UNCOUNTED ZONE ... NIL]

RETURNS [aborted: BOOLEAN];

44-11

44

44-12

Selection

EnumerateX: PROCEDURE [
proc: EnumerationProc. target: Target, data: RequestorOata +- NIL.

zone: UNCOUNTED ZONE +- NIL.

manager: Saved +- null Manager]
RETURNS [aborted: BOOLEAN);

EnumerationProc: TYPE. PROCEDURE [element: Value, data: RequestorOata)
RETURNS [stop: BOOLEAN +- FALSE];

RequestorOata: TYPE • LONG POINTER;

Enumerate is a request to the selection manager to enumerate the current selection,
converting each element to target. proc is called for-each element. data is passed back to
proc each time it is called. As with the Value returned by Convert, the requestor must
consider each element to be read-only until Copy, Move, or Copy Move is called, and the
requestor must free the value by calling Free for each element. Free allows the manager
to free any storage associated with element. Free should always be called for each element
(but if Copy or Move is going to be called, don't call Free until after calling Copy or Move).
Fine point: after calling Copy or Move, Free is a no-op since the manager should have
handed over any storage ownership to the requestor, but it is easier for the requestor to
simply remember the rule, "Always call Free." The manager will take care of ensuring
that an extraneous Free is harmless.

stop is returned from proc by the requestor and indicates whether the enumeration should
be stopped. aborted indicates whether the enumeration completed normally or terminated
prematurely.

If the manager cannot convert the selection to the target type or if the manager does not
implement enumeration, proc will not be called.

EnumerateX is the same procedure but can operate on an encapsulated selection manager.
If manager is defaulted, the operation uses the default global selection. EnumerateX is
exported by SelectionX.

Warning: the requestor must not do anything inside of proc that would cause Selection to
be called (Clear, for example) since this will result in a monitor lock.

Reconversion: SIGNAL [

target: Target, zone: UNCOUNTED ZONE] RETURNS [Value];

ReconvertOuri ngEnumerate: PROCEDURE [

target: Target, zone: UNCOUNTED ZONE +- NIL1 RETURNS [Value];

A requestor may wish to reconvert the current item during an enumeration of the
selection. The requestor should call ReconvertOuringEnumerate, which will raise the
signal Reconversion. If the manager supports reconversion, it should catch the signal and
return the reconverted value. If the manager does not support reconversion, it should
ignore the signal. Enumerate will catch the signal and return nullValue.
ReconvertOuringEnumerate acts like Convert with respect to zone.

maxStringLength: CARDINAL=- ••• ;
~.

ViewPoint Programmer's Manual 44

maxStringLength is obsolete.

44.2.1.4 Copy, Move, Free, etc.

The Values produced by Convert and Enumerate are strictly read-only. The storage is
owned by the manager. The requestor may examine the data referenced by the val~e field
but must not alter it.

lithe requestor wishes to (1) keep the value pas~ when it returns to the system, or (2) pass
the value to another process, it must call Copy, Move, or CopyMove. These in turn invoke
a procedure supplied by the selection manager that modifies the Value such that the
requestor may then make changes to value.value f without affecting the selection
manager. Fine Point: This procedure is returned by the manager as part of the Value record. but the requestor

never needs to know about these details. If a Move is performed, the item is also deleted from the
manager's domain. After the Move or Copy, any storage associated with the Value is now
o~ned by the requestor. This storage may be freed by calling Free.

For example, if the current selection is a document icon, then Convert(file1 yields a Value
containing a LONG POINTER TO NSFile.Reference for the file containing the document. If the
requestor were to create a new document and associate it with the same file, it would
probably have undesirable effects. Instead, the requestor should call Copy, giving it a LONG

POINTER TO NSFile.Reference for the destination directory of the new file. When Copy returns,
the Value contains a reference to a copy of the original file, and the requestor can use this
freely. Furthermore, whereas calling Free with the o~ginal Value might have deleted the
file (since the file then belonged to the manager, who might have created it solely for the
Convert request), calling Free for the new Value frees only the NSFile.Reference storage
(since the file is now a permanent object belonging to the requestor).

Copy: PROCEDURE [v: ValueHandle. data: LONG POINTER] • INLINE {

CopyMove[v, copy. data]};

Move: PROCEDURE [v: ValueHandle, data: LONG POINTER] • INUNE {

CopyMove(v, move, data)};

CopyMove: ValueCopyMoveProc:

ValueCopyMoveProc: TYPE • PROCEDURE (

v: ValueHandle, op: CopyOrMove. data: LONG POINTER];

CopyOrMove: TYPE. {copy, move};

Copy, Move, and CopyMove request the manager to make a copy of the converted selection
value (v.value f) and, for Move, also delete the selection from the manager's domain. A
requestor may call these procedures after calling Convert or from an EnumerationPro(
while doing an Enumerate. data will be passed to the manager; what it points to depends
on the particular Target. data often points to a destination container for the copied value.
For example, for Target file, data is a LONG POINTER TO NSFile.Reference for the destination
directory. The exact meaning of data for each target is specified in the description of that
target under Target above. Copy, Move, and Copy Move may raise Error
[i nvalidOperation].

44-13

44 Selection

Encapsulated selections also work with Copy and Move: if a requestor has an encapsulated ~
selection and obtains a value with ConvertX or EnumerateX, they can use all of the
standard operations that work with a Value.

44.2.2 Manager Items

44.2.2.1 Set

Set: PROCEDURE [pointer: ManagerData, conversion: ConvertProc, actOn: ActOnProc1;

ManagerData: TYPE • LONG POINTER;

The Set procedure allows a client to become the manager of the current selection by
supplying the Selection interface with a pair of procedures. The ActOnProc is called to
modify or manipulate the current selection. The ConvertProc is called to get the val ue of
the current selection. The value of pointer passed to Set is used as the data argument in
calls to conversion or actOn. pointer typically points to a record that describes what part of
the manager's domain is currently selected. If there is already a selection manager when
Set is called, Set first calls that manager with ActOn[unmark1 and ActOn[clear]. Set
automatically calls the new ActOnProc with an action of mark.

Either conversion or actOn can be explicitly NIL. If conversion is NIL, then Convert always
returns nuliValue, Enumerate is a no-op, and Query will always respond impossible. If
actOn is NIL, then ActOn is a a no-op for all actions. ,~

ConvertProc: TYPE • PROCEDURE [

data: ManagerData,
target: Target,
zone: UNCOUNTED lONE,

info: Conversionlnfo +- [convert(]]]
RETURNS [value: Value1;

Conversionlnfo: TYPE • RECORD [SELECT type: ." FROM

convert • > NUU,

enumeration. > [proc: PROCEDURE [Value] RETURNS [stop: BOOLEAN]],

query. > [query: LONG DESCRIPTOR FOR ARRAY OF QueryElement],
ENOCASE);

A ConvertProc is provided by a manager when becoming the manager; that is, when
calling Set or SaveAndSet. The manager's ConvertProc is called when a requestor calls
Convert, Enumerate, or Query. The ConvertProc should perform the conversion, the
enumeration, or the query. info is a variant record indicating which operation to perform:
it contains data appropriate to each operation. The ConvertProc should use WITH info SELECT

to determine which operation is requested. Each operation is described in detail in the
following sections. data is the pointer that was passed to Set or SaveAndSet and typically
points to a record that describes what part of the manager's domain is currently selected.
target indicates the TYPE of object that the selection should be converted to and is
meaningful only for conversion and enumeration. zone should be used to allocate any .~
storage for the converted selection value and is meaningful only for conversion and
enumeration.

44-14

~'

ViewPoint Programmer's Manual

ActOnProc: TYPE. PROCEDURE [data: ManagerData. action: Action)
RETURNS [cleared: BOOLEAN +- FALSE]; .

44

An ActOnProc is provided by the manager of the selection to perform various actions on the
selection. ActOnProc is fully described later in this chapter.

44.2.2.2 Conversion

Conversionlnfo: TYPE. RECORD [SELECT type: * FROM

convert • > NUU.

ENDCASEj;

Value: TYPE. RECORD [

value: LONG POINTER.

ops: LONG POINTER TO ValueProcs +- NIL,

context: LONG UNSPECJFIED +- 0];

Convert calls the manager's ConvertProc with convert Conversionlnfo to perform the
requested conversion. The ConvertProc returns a value: Value. If the conversion can be
performed, value. value should point to the converted selection value; value.ops should
point to a pair of procedures, a ValueFreeProc that will release any resources that were
allocated to perform the conversion and a ValueCopyMoveProc that will copy or move the
converted value; value.context can be used to save any information that the pair of
procedures might need. value.ops and value.context are des~ribed in much more detail
later. If the manager does not support the requested Target or there is some problem with
the conversion, the ConvertProc should return nuJlValue. See Target for the effect of
different conversion targets.

If the conversion requires that an object be allocated, the ConvertProc should allocate it out
of zone. If the requestor passed a NIL zone to Convert, Convert passes the system zone to
ConvertProc. The ConvertProc can assume that it is always given a valid zone.

44.2.2.3 Query

Conversionlnfo: TYPE. RECORD [SELECT type: * FROM

.....
query. > [query: LONG DESCRIPTOR FOR ARRAY OF QueryElement],
ENDCASE);

QueryElement: TYPE. RECORD [

target: Target.
enumeration: BOOLEAN +- FALSE.

difficulty: Difficulty +- TRASH);

Query, HowHard, and CanYouConvert call the manager's ConvertProc with query
Conversionlnfo. The ConvertProc should examine the target and enumeration fields of
each QueryElement (these were filled in by the requestor) and fill in the difficulty field
indicating how hard it would be to attempt to convert the selection to that target
(enumeration • FALSE) or to convert the selection to an enumeration of that target
(enumeration • TRUE).

44-15

44 Selection

All managers are expected to implement queries; the assumption is that most difficulty ~
ratings can be determined simply by indexing into a constant array. The Value actually
returned by the ConvertProc in response to a query is ignored; nuliValue or TRASH may be
returned.

Note that the manager is indicating how hard it would be to attempt to convert the
selection to that target type. Attempt is a key word. The manager might be willing to
attempt to convert the selection to an Interpress master, and yet run out of disk space when
the conversion is actually requested. Likewise, the manager might support conversion to
integer, but the conversion could still fail if the selection contains invalid characters.

44.2.2.4 Enumeration

Conversionlnfo: TYPE. RECORD [SELECT type: * FROM

... ,
enumeration • > [proc: PROCEDURE [Value1 RETURNS [stop: BOOLEAN)],

ENOCASE);

Enumerate calls the manager's ConvertProc with enumeration Conversiontnfo. The
ConvertProc should convert each element or part of the selection according to target and
call proc for each element. The Value passed to proc is just as it is for conversion (see the
section on Conversion above and the fo.1lowing section). If proc returns stop • TRUE, the
ConvertProc should stop the enumeration and return. The Value returned by the
ConvertProc after an enumeration is ignored; nuliValue or TRASH may be returned. Not all
selection owners are expected to implement enumerations; if an enumeration is requested
and not supported, the ConvertProc should simply return and take no other action. Fine

Point: The ConvertProc does not call the requestor's EnumerationProc directly; rather, proc is inside_ Enumerate

and Enumerate calls the requestor's EnumerationProc. This lets Enumerate insert the zone into the Value.context

ifit is zero,just as Convert does for Values produced by a simple conversion.

maxStringLength: CARDINAL •••• ;

maxStringLength is obsolete.

44.2.2.5 Free, Copy, Move, etc.

ValueHandle: TYPE. LONG POINTER TO Value;

Value: TYPE. RECORD [

value: LONG POINTER,

0PS: LONG POINTER TO ValueProcs +- NIL,

context: LONG UNSPECIFIED +- 0];

The selection manager provides the value of the selection', or other'selection-related
information, to the requestor by means of Value records. These records are typically either
returned by a ConvertProc or passed as elements to the requestor's EnumerationProc. The
ops field defines the effect of Free, Copy, Move, and CopyMove. The context field may be ;_.
used to store data for use by the OpS procedures. If the context field is defaulted (zero) by
the selection manager, Selection stores the zone that was passed to the ConvertProc therp.
before the Value is handed to the requestor ..

44-16

~'

ViewPoint Programmer's Manual

ValueProcs: TYPE • RECORD [
free: ValueFreeProc +- NIL,
copyMove: ValueCopyMoveProc +- NIL);

44

ValueProcs are returned by the manager as part of a Value record. If the manager allocated
any resources to produce the converted selection value, then a ValueFreeProc must be
returned with the Value so that the resources can be released. free is called when the
requestor calls Free. If the converted selection value can be copied or moved, the manager
must return a ValueCopyMoveProc with the Value. For example, Targets string and file
can be moved or copied,' while it does not make sense to move or copy Targets wi ndow and
fileType. copyMove will be called when the requestor calls Copy, Move, or CopyMove.

44.2.2.5.1 Free

ValueFreeProc: TYPE. PROCEDURE [v: ValueHandle);

If any resources were allocated to produce the converted selection value, they should be
released in the manager's ValueFreeProc. The ValueFreeProc is returned, as part of the ops
field of a Value. The ValueFreeProc will' be called when the requestor calls Free. v points to
the Value that represents the converted selection.

Defaults are provided such that for the most co~mon case when the ConvertProc simply
allocates one node of storage from the passed zone, the manager need not supply a
ValueFreeProc. Selection takes care of freeing the storage when the requestor calls Free.
The details of how this works are as follows:

The manager's ConvertProc takes a zone that Selection guarantees is valid. The manager
should allocate any storage for the converted selection value from that zone. The
ConvertProc can store the zone in the context field of the Value record (or in a record
pointed to by the context field); then the ValueFreeProc can retrieve this zone to free the
storage. Selection stores this zone in the context field if context is zero (the default) in the
Value returned by the ConvertProc (or passed to the EnumerationProc). v.value points at
the converted selection object to be freed. Now, Free calls FreeStd if the Value passed to
Free has ops • NIL or ops.free • NIL. FreeStd treats v.context as a ZONE and calls
v.context.fREE[@v.value].

If there are in fact no resources that should be freed (for example, after Convert(window]),
the selection manager should use NopFree as theValueFreeProc. (See also
nopFreeValueProcs.)

FreeStd: ValueFreeProc;

FreeStd assumes the resources of the Value can be freed by treating v.context as a ZONE and
calling v.context.fREE[@v.value]. If a Value has ops • NIL or ops.free =- NIL, Free will call
FreeStd.

NopFree: ValueFreeProc;

The NopFree procedure should be used as the ops.free for a Value involving no temporary
resources owned by the selection manager. Thus, a Value created by Convert(window]

44-17

44 Selection

would probably use NopFree, as would Convert(string] if the Value.value pointed to a
permanent XString.ReaderBody belonging to the manager. (See also nopFreeValueProcs.)

44.2.2.5.2 Copy and Move

44-18

ValueCopyMoveProc: TYPE. PROCEDURE [
v: ValueHandle, op: CopyOrMove, data: LONG POINTER);

CopyOrMove: TYPE • {copy, move};

The manager's ValueCopyMoveProc is called to copy or move the converted selection
value. A ValueCopyMoveProc is returned by the manager's ConvertProc as part of the ops
field ofa Value. The ValueCopyMoveProc is called when the requestor calls Copy, Move, or
CopyMove. The ValueCopyMoveProc should modify the Value such that it no longer
involves any manager-owned storage. Ifa Move is performed, the item is also deleted from
the manager's domain. (Some managers may implement Copy but raise
Error(invalidOperation) if asked to do aMove.) data is the data parameter that the
requestor passed to copy or move. It is often a pointer to the destination container for the
copied value. The interpretation of data depends on the Target; it is specified in the
description of each target under Target above. v points to the Value representing the
converted selection. op indicates whether to do a copy or move. Note: v.context can be used
by the manager to save information between the ConvertProc and the
ValueCopyMoveProc.

The ValueCopyMoveProc should ~elease (or perhaps simply turn over control 00 any .~
resources that were allocated by the ConvertProc to produce the original converted value.
Conceptually, the ValueCopyMoveProc makes a copy of the converted value, then releases
any resources that were used to produce the original converted value. If the original
converted value itself was a copy produced by the conversion process, this effect might be
achieved by doing nothing -- the requestor just becomes the owner of the copy.

If the converted value can only be copied once (the typical case), the ValueCopyMoveProc
should also set v.ops.copyMove to NIL to prevent the manager's ValueCopyMoveProc from
being called again. If the requestor does call Copy or Move again, Selection raises Error
[invalidOperation).

The ValueCopyMoveProc should also ensure that v.ops.free and v.context have
appropriate values so that when the requestor calls Free, the right thing happens. For
example, if the newly copied selection was allocated from a zone, v.ops~free should free it
from that zone (see ValueFreeProc and FreeStd); or if the newly copied selection has no
storage allocated for it, v.ops.free should be NopFree.

nopFreeValueProcs: READONLY LONG POINTER TO ValueProcs; - @[NopFree, NIL]

This is provided for use as the ops vector in Values that require no temporary storage and
that cannot be moved or copied. The window and subwindow Targets typically produce
such values.

FreeContext: PROCEDURE [v: ValueHandle, zone: UNCOUNTED ZONE] • INLINE {
zone.FREE[LOOPHOLE[@v.context, LONG POINTER TO LONG POINTER]];
v .context ~ LOOPHOLE(zone]};

ViewPoint Programmer's Manual 44

When the requestor calls Copy or Move, the manager's ValueCopyMoveProc is expected to
modify the Value that it no longer involves any manager-owned storage. If the manager
has been using the context field as a pointer to additional private data, this private data
must be freed. This would normally require merely a zone.FREE(@v.context1; however,
since the context is a LONG UNSPECIFIED, a LOOPHOLE is needed. FreeContext hides this
LOOPHOLE from the implementor and does the required zone.FREE. It also stores the zone in
place oiv.context, for possible later use by FreeStd.

44.2.2.6 ActOn

ActOnProc: TYPE. PROCEDURE [data: ManagerData, action: Action]
RETURNS [cleared: BOOLEAN ... FALSE);

An ActOnProc is provided by the manager of the selection to perform various actions on the
selection. data is the pointer that was passed to Set or 5aveAndSet and typically points to a
record that describes what part oi the manager's domain is currently selected. action
indicates what action to perform (see Action below). An ActOnProc should return cleared:
TRUE if the action resulted in the selection being cleared; that is, the manager is no longer
respon~ible for the selection. (This should always be the case for action: clear and may also
occur for delete or clearlfHaslnsert.) clear should also be set for encapsulate to let Selection
know that the manager actually supports encapsulate.

Action: TYPE. MACHINE DEPENOENT{
clear(O), mark, unmark, delete, clearlfHaslnsert, save, restore, firstFree, last(25S)};

encapsulate: Action;

encapsulate is exported by SelectionX.

clear

mark

unmark

delete

clearlfHaslnsert

save

unselects the current selection by freeing any associated
private data, undoing TIP notification changes, etc.

highlights the current selection. If the selection is already
highlighted, this is a no-op.

dehighlights the current selection. If the selection is not
already highlighted, this is a no-op.

deletes the contents of the current selection. The selection
manager may decide against actually deleting it.

same as unmark plus clear, but only if the insertion point
(input focus) is in the selection. This action is used when a
secondary selection has been completed (for copy-from); if
the place to which the secondary selection is to be copied
(the insertion point) is within the selection itself, the
selection is cleared after obtaining its contents and before
the insertion takes place.

unselects the current selection, but does not necessarily free
any associated private data, because the selection is
expected to be restored later. This action will often be a no-

44-19

44 Selection

restore

encapsulate

firstFree

op, but the manager might need to undo a special TIP ~.

notifier, for example.

restores a previously saved selection.

much like save. unselects the current selection but does not
clear it. Always preceeded by an unmark. The manager is
expected to do whatever is necessary to allow the selection to
be operated on from the background. This may involve
changing the manager data structure so that the manager
procs can know that they are operating on an encapsulated
selection. The manager may also lock objects down by
making them ffhusy" or otherwise prevent them from being
operated on while they are encapsulated. The manager
must set clear to TRUE to indicate that the encapsulate
completed successfully. See §44.2.2·.7 for more discussion of
encapsulated selections. encapsulate is exported by
SelectionX.

is used internally by UniqueAction and should not be used
by clients.

Observe that, contrary to the interpretations usecl in the XDE Selection interface, the dear
action does not dehighlight the selection. Selection.Clear (usually) does an explicit unmark
before clearing the selection. Likewise, save does not imply unmark, nor does restore imply i~
mark. This lets a client choose to leave a primary selection highlighted while a secondary
selection is being made.

44.2.2.7 Save and Restore. Encapsulated selections

44-20

SaveAndSet: PROCEDURE [

pointer: ManagerData, conversion: ConvertProc, actOn: ActOnProc,
unmark: BOOLEAN 4-TRUE]

RETURNS [old: Saved);

SaveAndSet is the same as Selection. Set except that the existing selection, if any, is told to
ActOn[save] rather than ActOn[dear]. That is, the existing selection is expected to retain
any private state so that it can later be restored via Selection. Restore. If it subsequently
turns out that the saved selection is never going to be restored, it should be given to
selection.Discard so that the former selection manager will have a chance to discard any
associated private data. A saved selection must always be given eventually to either
Restore or Discard; furthermore, once that has been done, the Selection. Saved must not be
used for anything else.

It is perfectly acceptable to call SaveAndSet when there is no selection. If the reSUlting
Selection. Saved is passed to Selection. Restore, it acts like Selection.Clear. Also, unlike for CJear,
ClearOnMatch, and Restore, it is quite reasonable to call SaveAndSet with unmark: FALSE,

thereby requesting that the saved selection remain highlighted while a .,econdary selection
is performed. If this is done, the caller will usually wish to specify mark: FALSE when the
saved selection is restored. Note: Calling SaveAndSet with unmark: FALSE does not
necessarily mean that the old selection is marked. The selection manager, or some other
client, might have unmarked it. The present caller is simply saying, "Do not change the

ViewPoint Programmer's Man ual 44

highlighting on my account," but has no way of knowing whether the saved selection is in
fact highlighted. That is why it is always up to the selection manager to decide whether
ActOn[mark] or ActOn(unmark] is a no-oPe

Encapsulate: PROCEDURE RETURNS (Saved];

An encapsulated selection is much like a saved selection that can be operated on from
outside the notifier process. Calling this procedure tells the selection manager to
encapsulate the current selection and return it so it can be operated on at a later time.
Calling Encapsulate clears the user's selection; the implementation calls ActOn[unmark]
followed by Acton(encapsulate). If the selection manager does not support the encapsulate
action, Encapsulate will raise Error[operationFailed). An encapsulated selection may be
passed to any of the standard requestor operation~ that have the eextra manager
parameter: ConvertX, EnumerateX, and so forth. An encapsulated selection must always
be cleared .with Discard. A requestor calling Encapsulate should be aware that the
encapsulated selection may be locked to prevent the user from operating on those objects;
the requestor should not hold an encapsulated selection for any longer than necessary.
Encapsulate is exported by SelectionX.

Saved: TYPE [6];

Objects of this type are created by se.ection.SaveAndSe1: and Se.ectionx.Encapsulate to
encapsulate a selection that is to be restored later (SaveAndSet) or operated on from
another process (Encapsulate). It is opaque to prevent requestors from invoking the
manager directly.

Restore: PROCEDURE [saved: Saved, mark, unmark: BOOLEAN +- TRue];

This procedure re-institutes a previously saved selection as the current manager. The
existing selection, if any, is requested to ActOn[unmark] (unless unmark is FALSE~ see
Selection.Clear) and then ActOn[cJear]. The selection being restored is asked to
ActOn[restore) and then ActOn{mark] (unless mark is FALSE).

Discard: PROCEDURE [saved: Saved, unmark: BOOLEAN +-TRUE);

If a client, having saved somebody else's selection (see SaveAndSet), determines that it
should never be restored, he should call this procedure to free the associated resources. The
current selection is not affected. The ActOnProc of the saved selection is called with action:
unmark (unless unmark is FALSE; see Clear) and again with action: -clear. Thus the
ActOnProc must be prepared to handle these operations while the corresponding selection
is saved. Callers of Encapsulate must call Discard to free the encapsulated selection. The
ActOnProc is not called to unmark the selection in this case because Encapsulate always
unmarks the selection first.

44.2.2.8 Miscellaneous

On all of the procedures below, use unmark: FALSE only if you know the area of the screen
containing the selection is going to be repainted soon anyway; for example, if the window is
going away.

Clear: PROCEDURE [unmark: BOOLEAN +- TRUE];

44-21

44 Selection

The Clear procedure requests that the current selection be cleared. It is equivalent to ~
calling ActOn(clear), preceded by ActOn(unmark) if unmark is TRUE. The only time unmark
should be FALSE is if the caller knows the area of the screen containing the selection is going
to be repainted soon anyway; for example, if the window containing the selection is going
away.

ClearOnMatch: PROCEDURE [pointer: ManagerData. unmark: BOOLEA.N TRUE];

It is sometimes difficult to determine if you are the manager of the current selection. The
ClearOnMatch procedure is the same as Clear except that no action is taken unless poi ntel"
matches the ManagerData of the current selection. ClearOnMatch is equivalent to IF
Se'ection.Match(pointer) THEN Selection.Clear(unmark].

ActOn: PROCEDURE [action: Action1;

The ActOn procedure communicates a request for an action to the manager of the current
selection. (See also UniqueAction.) Calling ActOn(cJear] is not recommended, since there
would be a tendency to forget to unmark first. Use Selection.Clear instead.

Match: PROCEDURE [pointer: ManagerData) RETURNS [match: BOOLEAN];

This procedure returns TRUE if the caller is the current selection manager, which is
assumed to be the case if and only if pointer is equal to the ManagerData associated with
the current selection (as specified by Set, SaveAndSet, or Restore). Note: A selection
manager may opt to have NIL as the ManagerData. In this case, the manager should not use ~
Match since it would not be able- to distinguish itself from other managers using NIL. '""'. ,
However, Match(NIL] always returns FALSE if there is no selection; that is, after
Selection.Clear.

UniqueTarget: PROCEDURE RETURNS [Target];

The UniqueTarget procedure allows a client to define its own private conversion type. It
returns a new Target in [firstFree •• Jast). May raise Error [tooManyTargets). The use of
private target types severely limits the exchange of information between applications and
should be avoided ifpossible.

UniqueAction: PROCEDURE RETURNS [Action];

The UniqueAction procedure allows an application to define its own private operations on
the selection. It returns a new Action in [fi rstFree .• last]. May raise Error
[tooManyActions]. -

44.2.3 Errors

44-22

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE • {
tooManyActions, tooManyTargets. invalidOperation.
operationFailed, didntAbort. didntClear};

tooManyActions may be raised by UniqueAction.

ViewPoint Programmer's Manual 44

tooManyTargets may be raised by UniqueTarget.

i nvalidOperation raised if Copy or Move is called with a Value that does not
implement the operation.

operationFailed may be raised by a ValueCopyMoveProc if the operation is
permitted but nevertheless fails, for example due to an NSFile error.

didntAbort and didntCJear are never raised.

44.3 Usage/Examples

44.3.1 What Selection Is NOT

The trash bin and insertion features of the Mesa interface are not supported. If they are
needed, a separate (smaller) interface should be create<:i for them, as they do not really
require the generality available for actual selections.

44.3.2 Examples of Storage Allocation for Manager's ConvertProc

Here the various storage allocation cases are discussed that arise, depending on Target,
how the selection is maintained by the manager, etc.

• Simplest case: no storage associated with this Target, no copy/move.

• Example: selection is a string in a window and Target. window.

• Manager's ConvertProc should have:

RETURN [[value: window, ops: Selection.nopFreeValueProcs]]

There is nothing allocated, nothing to free, so ops.free is Selection.NopFree. It makes no
sense to copy or move a window this way, so ops.copyMove is NIL.

• Slightly more complex case: no storage associated with this Target, allow copy/move.

• Example: selection is a piece of a larger backing string and is maintained as an
XString.ReaderBody and Target. string.

• Manager's global frame:

•

myValueProcs: Selection.ValueProcs ... [
free: Selection.NopFree, copyMove: CopyMoveString);

SelectionData: TYPE. RECORD (substring: XString.ReaderBody •...];
-- substring points at the same bytes as the backing string

Manager's ConvertProc:

OPEN selectionData: NARROW [data, LONG POINTER TO SelectionData);
RETURN ((value: @selectionOata.substring. ops: @myValueProcsl];
-- Selection will put zone into the context field.

44-23

44

44-24

Selection

Here the requestor points directly at the SelectionData.substring. The value.value i ~
cannot be changed by the requestor until after the CopyMoveString is called.

• Manager's CopyMoveS~ring:

v.value +- XString.CopyReader [r: NARROW (v.value. XString.Reader].
z: NARROW (v. context. UNCOUNTED ZONE));

v.ops.free +-NIL;

After doing the copy, v.ops.free is replaced with NIL, which causes Free to call FreeStd,
which frees the copied ReaderBody. and bytes. Note: CopyReader allocates both the
ReaderBody and the bytes from a single allocation unit.

Note: The storage for the SelectionData is allocated when he Selection. Set is done and
deallocated when ActOn [clear] is called.

• Typical case: some storage associated with this Target, allow copy/move

• Example: selection is a piece of a larger backing string and is maintained as an
Environment.Block and Target. string.

• Manager's global frame:

myValueProcs: Selection.ValueProcs +- [free: NIL, copyMove: CopyMoveString];
SelectionData: TYPE. RECORD (block: En~ironment.Block ••••];
- block represents the selection.
-- block.pointer points to the backing string.

• Manager's ConvertProc:

OPEN selectionData: NARROW [data. LONG POINTER TO Selection Data);
RETURN ([

value: zone.NEW [XString.ReaderBody +-
xString.From Block [selectionData.block],

ops: @myValueProcs)];
.- Selection will put zone into the context field •
• - ops. free • NIL means that FreeStd will be called.

Here we allocate a ReaderBody that points directly into our backing string. Free will call
FreeStd, which will free the ReaderBody.

• Manager's CopyMoveStri ng:

OPEN zone: NARROW [v.context. UNCOUNTED ZONE] ;
OPEN seledionSubstring: NARROW [v.value, XString.Reader] ;
v.value XString.CopyReader [selectionSubstring. zone];
zone.FREE [@selectionSubstring]; .- frees the ReaderBody

CopyReader copies both the ReaderBody and the bytes. After doing the copy, we free the
ReaderBody. Note: After the copy, Free will still call FreeStd, which will free the copied
ReaderBody and bytes.

ViewPoint Programmer's Manual 44

44.3.3 Detailed Flowchart of a Selection. Con vert

Following is the exact sequence of events that takes place in performing a Selection. Convert,
showing what the requestor does, what the manager does, and what Selection does.
Various storage allocation cases arise, depending on the Target, what the requestor wants
to do, etc.Most of the cases are covered here. This will be most useful to managers, but
anyone desiring an overall understanding of Selection will benefit from following these
details.

• Requestor calls Selection.Convert.

• Convert calls the manager's ConvertProc. If the requestor provided a NIL zone, Convert
passes Heap.systemZone.

• Manager constructs a Value, potentially allocating storage for value.value i and/or for
value.context f . value.ops mayor may not be provided, depending on the selection
Target and the manager. Manager returns value to Convert.

• If value.context is defaulted, Convert puts zone into value.context and returns to
requestor.

• If requestor just wants to look at the converted value (not copy o.r move it):

• Requestor looks at value. value f .

• Requestor calls Selection. Free [@value);

• Ifvalue.ops is NILor value.ops.free is NIL:

• Free calls FreeStd.

• FreeStd recovers the zone from value.context, does a zone.FREE
[@value.value), and replaces value.ops with [free: NopFree, copyMove: NIL].

• Ifvalue.ops.free is not NIL:

• Free calls value.ops.free [@value] (that is, the manager's ValueFreeProc).

• The manager's ValueFreeProc recovers the zone from value.context (possibly a­
field in a record pointed to by value.context) and releases any resources that
were allocated in the ConvertProc. This inchides not only the obvious freeing of
storage from the zone (zone.fREE [@value.value) and/or Selection.FreeContext
[@value, zone)), but also, for example~ closing or deleting any files that were
created.

• END

• If the requestor wants to move or copy the selection:

• Requestor calls Selection. Move, Selection. Copy, or Selection.CopyMove, perhaps
passing in data: LONG POINTER. which points to a destination for the move/copy.

44-25

44 Selection

• If value.ops is NIL or value.ops.copyMove is NIL, Copy Move raises Error ~
[lnvalidOperation]. Otherwise, CopyMove calls value.ops.copyMove [@value,
{copy, move}, datal (that is, the manager's ValueCopyMoveProc).

• The manager's ValueCopyMoveProc recovers the zone from value.context, gets
the destination of the move/copy from data (if appropriate), does the move or copy,
calls s.'.ction.FreeContext [@value, zone] if necessary, does a zone.FREE
[@oldValue.value) if necessary. Note: This is freeing the original value.value, not
the copied one! Now the manager can either leave value.ops.free as is, or replace
value.ops.free with SelectiOl1.FreeStd (if the newly copied value was allocated from
zone and zone is in value.context), or replace value.ops.free with Selection.NopFree
(if there is nothing left to free).

• Copy Move replaces value.ops.copyMove with NIL to prevent another copy or move
from being done.

• Requestor may retain the copied value indefinitely and/or call Selection. Free to free
the copied value after using it (see above).

• END

44.3.4 Sample ConvertProc and Requestor

44-26

In this example of a simple selection manager, the selection is represented internally as a
pair of indices within a single Mesa STRING. The string is inside a window 0 The indices
designate the first character selected and the position beyond the last character selected. It
isassume that there are several windows of this type, and that each contains a single string.
within which selections may be made. It is also assumed that the manager's module
contains a procedure TextForWindow that obtains the string associated with a window,
and various other obvious utilities and signals. The procedure Select makes a new
selection.

A ConvertProc is shown that implements the common targets. Observe the extremely
heavy use of the defaults for the ops and context fields in the Value records. Since the
Selection interface detects these defaults and applies the most common interpretations for
Copy, Move, and Free, both the requestor and the manager are spared much of the coding
effort.

- use dynamic storage for data; global variables make save/restore awkward
myZone: UNCOUNTED ZONE •••• ;
Selection Data : TYPE • RECORD [

w: Wlndow.Handle, - window containing this selection
left, right: CARDINAL,
marked: BOOLEAN 4- FALse];

ValueContext: TYPE • RECORD [•• for use in Value. context fields
zone: UNCOUNTED ZONE,
W: Window.Handle);

Select: PROCEDURE [w: Window.Handle, left. right: CARDINAL] • {
text: LONG STRING. TextForWindow[w];
IF text. NIL OR left> text.length OR right NOT IN [Ieft •• text.length] THEN

ViewPoint Programmer's Manual

ERROR BogusSelection;
Se'ection.Set(

myZone.NEw[SelectionData ~ [w, left, right)],
ConvertSelection. ActOnSelection]};

ConvertSelection: s •• ection.ConvertProc • {

44

< < [data: ManagerData. target: Target, zone: UNCOUNTED ZONE, info: Conversionlnfo}
RETURNS [value: Value}»

OPEN selectionData: NARROW [data, LONG POINTER TO SelectionData);
WITH i:info SELECT FROM

query. >
FOR c: CARDINAL IN [O •• LENGTH{i.query)) DO

Lquery[c].difliculty ~
IF -i.query[cl.enumeration THEN SELECT i.query[cl.target FROM

window, string, length, position. > easy,
integer. > moderate,
ENDCASE • > impossible

ELSE -enumerated·· IF Lquery[cl.target • string THEN moderate
ELSE impossible;

ENDLOOP;
convert. >

SELECT target FROM
window. > RETURN[[selectionData.w, Se'ection.nopFreeValueProcs));
length • > RETURN[[zone.NEW(LONG CARDINAL ~

selectionData.right • selectionData.Jeft]]);
position=- > RETURN[[zone.NEW[LONG CARDINAL ~ selectionData.Jeftll];
string. integer • >

IF selectionData.right - selectionData.left > Se'ection.maxStringLength THEN
RETURN[Sefection.nuIlValue]

ELSE {
blk: Environment.Block • [LOOPHOLe[@TextForWindow[rec.w].textl,

seiectionData.left. selection Data. right];
r: XString.ReaderBody XString.FromBlock(blk];
IF target. integer THEN {

bad: BOOLEAN FALSE;
num: LONG INTEGER;
num XString.StringToNumber[@r

! xString.lnvalidNumber, XString.Overflow • >
{bad TRUE; CONTINue}];

RETURN(IF bad THEN Selection.nullValue ELSE
[zone.NEW[LONG INTEGER num]]]};

-- target = string
RETURN[[

ENDCASE;

value: ZOne.NEW[XString.ReaderBody r].
ops: @stringOps,
context: zone.NEw[ValueContext ~ [zone, selectionData.w]]]n;

enumeration • > IF target=- string THEN {
blk: Environment.Block +- [LOOPHoLE(@TextForWindow[selectionData.w].text],

selectionData.Jeft, TRASH]; .
WHILE block.startlndex < selectionData.right DO

block.stoplndexPlusOne

44-27

44

44-28

Selection

MIN[block.startlndex + Selection.maxStringLength, selectionData.right]; ~

IF i.proc([
value: zone.NEw[XString.ReaderBody +- XString.FromBlock[blk]],
ops: @stringOps,
context: zone.NEw[ValueContext +- [zone, seteaionData.w]]]
].stop THEN EXIT;

block.start. ndex +- block.stop' ndexPI usOne;
ENDLOOP};

ENDCASE;
RETURN(Selection.nuIIValue]};

stringOps: Se.ection.ValueProcs +- [FreeString, CopyString];

FreeString: se.ection.ValueFreeProc -- [v: Va/ueHandle] -- • {
context: LONG POINTER TO ValueContext • v.context;
context.zone.fREE(@v.value); •• free the ReaderBody, but not the text bytes
Selection.FreeContext(v, context.zone)};

CopyString: Se'ection.ValueCopyMoveProc =- (
< < [v: Va/ueHandle, op: CopyOrMove, data: LONG POINTER] > >
context: LONG POINTER TO ValueContext • v.context;
old: XString.Reader • v.value;
IF op • move THEN ERROR selection.Error(invalidOperation];
v.value +- XString.CopyReader[old, context.zone];
context.zone.fREE[@old1;
selection.FreeContext(v, context.zone);
v.ops.free+- NIL};

ActOnSelection: Se'ection.ActOnProc • {
< < [data: ManagerOata, action: Action] RETURNS [cleared: BOOLEAN FALSE} > >
OPEN setectionData: NARROW [data, LONG POINTER TO SelectionData];
SELECT action FROM

mark, unmark • > IF selectionData.marked # (action. mark) THEN
InvertHighlighting(rec];

save, restore • > NULL; - no special action need be taken
delete • > NULL; - deletion is not allowed via this interface
clearlfHaslnsert =- > NULL; - assume that this tool never has the insertion point
clear. > {myZone.FREE(@data); cleared +- TRUE};
ENDCASE};

Here are three sample requestors that might invoke the above manager code. The first
requestor wishes to interpret the selection, if possible, as a string of digits and obtain the
corresponding integer value. The second wishes to open a file whose name is the current
selection. (Assume the existence of an NSFile routine that deals with XString-format file
names.) The third wishes to copy the current selection to a Stream unless the selection
comprises more than 10000 characters. Since copying an NSFile to an arbitrary Stream is
awkward at best, it does not use Convert(file], but rather attempts to get the selection as
one or more strings to send to the Stream.

- Example 1: obtain selection as an integer and do something with it
num: LONG INTEGER;
ok: BOOLEAN;
[ok. num] +- Selection.ConvertNumber(integer] ;

ViewPoint Programmer's Manual

IFok THEN-{
< < do whatever it was we wanted to do with num > > }

ELSE {
< <report error, or ignore it> >};

- Example 2: use current selection as name of file to open
v: SeIectlon.Value Selection.Convert(string);
file: NSFile.Handle NSFile.nuIiHandle;
- if v. value is NIL it means there's no selection, or it can't be converted to a string,
- or the string would be so long it's not a reasonable name anyway
IF v.value # NIL THEN { -

file NSFile.OpenByName{v.value ! NSFile.Error - > CONTINUE);
Selection.Free[@v]};

- Example 3: copy selection to a Stream (handle is in sH) unless length > 10000
bytes: LONG CARDINAL; ok: BOOLEAN;
v: Selection.Value;
[ok, bytes) selection.ConvertNumber[length) ;
IF ok AND bytes < • 10000 THEN {

V Selection.Convert[stri ng];
IF v.value # NIL THEN PutReader(v, sH]
ELSE [] Selection.Enumerate[PutReader, string, sH]};

PutReader: Selection.EnumerationProc - {
< < [element: Value, data: RequestorOata] RETURNS [stop: BOOLEAN of- FALSE} > >
sH: Stream.Handle - data;
sH..PutBlock(xString.Block(element.value).block

! Stream.TimeOut, vOlume.lnsufficientSpace • > {stop +- TRUE; CONTINue}];
Selection.Free{@element)};

44.3.5 Sample Use of Enumeration

44

In this example of the use of the enumeration facility, the user has asked to COpy or MOVE

the selection to the desktop. The desktop does not particularly care what the selection is; it
simply requires that it be rendered as one or more files. If the operation is a MOVE, it is
better not to do it as a copy-then-delete; instead, obtain the existing files and relocate them.

op: Selection.CopyOrMove 4- ••• ;- setting is determined by the TIP table interpretor
IF Selection.Enumerate[CopyMoveFileToDesktop, file, @op).aborted THEN { - error -- };

CopyMoveFileToDesktop: Selection.EnumerationProc - {
op: LONG POINTER TO Selection. Copy Or Move - data;
file: LONG POINTER TO NSFile.Reference 4- element. value; •• this is readonly until Copied or
Moved
Selection.CopyMove{@elemant. op f , handleForOesktop

! Selection. Error - > SELECT code FROM
- owner will not let us have it for some reason
invalidOperation,operationFailed - > {stop 4- TRUE; CONTINUE};
ENIKASE - > REJECT];

IF stop THEN {SeleCtion.Free{@element]; RETURN};

44-29

44

44-30

Selection

file element. value; .- the value was probably changed by Copy/Move ~,

- file is now a Reference to a file that is of no interest to the selection manager
< < create any associated structures necessary for keeping track of the icon> >
< < might also need to set position attributes, etc.; it would be more efficient

to set the attributes as part of the Copy or Move, but this would probably
require an awkward structuring of CopyMove's data parameter> >

Selection.Free(@efement); - free the storage associated with the Reference
};

Here are two cases where th4[! above code might be invoked. First, assume the selection is a
set of documents in an open folder. The folder's conversion proc calls
CopyMoveFileToDesktop once for each document, with element being the
NSFile.References for the already existing files. The ops.copyMove provided by the folder
implementation either does an NSFUe.Copy or an NSFUe.Move to transfer the file to the
desktop directory, and updates element.value if necessary to refer to the new file. If the
operati()n is a move, copy Move also reflects the deletion in the folder's window. It might
also update the selection data if, for instance, the selection is represented internally as a
range of positional indices within the directory.

If the selection is a set of printers in the Star directory icon, no files exist for them until
they are copied to the desktop. For each printer, the conversion procedure creates a file
from scratch and passes it to CopyMoveFileToDesktop. This time, however, ops.copyMove
calls NSFILE.Move regardless of the operation requested, since it is not actually possible to
remove objects from the Star directory. (Alternatively, it could call NSFile.Move to do a copy
and raise Error(invalidOperation] if asked to do a move.) Meanwhile, the ops.free~,
originally included with each element is Selection.NopFree; if the user chooses not to do
anything with the printer, the Star directory enumeration code simply changes the
attributes of the file to refer to the next printer in the enumeration and uses the same file
again. Thus ops.copyMove must also set a flag indicating that a new dummy file must be
created if there are any more elements in the enumeration.

The important thing to note is that, in the first example, doing a copy involved creating a
new file, whereas in the second example it didn't. (Instead, it needed to ensure that the file
not be re-used when the enumeration continued.) There was no way for the requestor to
decide whether the object needed to be copied. The decision was left up to the selection
manager by means of the ops procedure.

ViewPoint Programmer's Manual

44.4 Index of Interface Items

~. Letters in parentheses indicate a description for a
requestor (R) or a manager (M).

Item.

Action: TYPE

ActOn: PROCEDURE

ActOnProc: TYPE

Can YouConvert: PROCEDURE

Can YouConvertX: PROCEDURE

Clear: PROCEDURE

ClearOnMatch: PROCEDURE

Conversionlnfo: TYPE

Convert: PROCEDURE

ConvertX: PROCEDURE

ConvertNumber: PROCEDURE

ConvertProc: TYPE

Copy: PROCEDURE

CopyMove: ValueCopyMoveProc
CopyOrMove: TYPE

Difficulty: TYPE

Discard: PROCEDURE

Encapsulate: PROCEDURE

encapsulate: Action·

Enumerate: PROCEDURE

EnumerateX: PROCEDURE

EnumerationProc: TYPE

Error: ERROR

ErrorCode: TYPE

filewithFeedback: Target
Free: PROCEDURE

FreeContext: PROCEDURE

FreeStd: ValueFreeProc
HowHard: PROCEDURE

HowHardX: PROCEDURE

ManagerData: TYPE

Match: PROCEDURE

maxStringLength: CARDINAL

Move: PROCEDURE

Noprree: ValueFreeProc
nopfreeValueProcs:

LONG POINTER TO ValueProcs
nuliValue: Value
Query: PROCEDURE

QueryX: PROCEDURE

QueryElement: TYPE

Reconversion: SIGNAL

ReconvertD~ri ngEnumerate:
PROCEDURE

Page

19
21
15,19
10
10
21
21
14,15, 16
6
6
9
14
13
13
13(R), 18(M)
10
20
20
20
11
11
12
22
22
7
9
19
17
10
10
14
21
12(R), 16(M)

13
17

18
6
11
11
11 (R), 15(M)
12

12

Item

RequestorData: TYPE

Restore: PROCEDURE

SaveAndSet: PROCEDURE

Saved: TYPE

Set: PROCEDURE

Target: TYPE

UniqueActio": PROCEDURE

UniqueTarget: PROCEDURE

Value: TYPE

ValueCopyMoveProc: TYPE

ValueFreeProc: TYPE

ValueHandle: TYPE

ValueProcs: TYPE

Page

12
20
20
20
14
7
21
21

44

6(R), 15 (M) 16(M)
13(R), 18(M)
17
9(R),16(M)
1

44-31

44 Selection

44-32

45

Sim pleTextDisplay

45.1 Overview

The SimpleTextDisplay interface provides facilities for displaying, measuring, and
resolving strings of Xerox Character Code Standard text. SimpleTextDisptay deals with
text in a single font-normally the standard system font--and does not support boldface,
italic, sub- and superscript, and other text properties. SimpleTextDisplay does not
implement editable or selectable text, but it provides the building blocks that can be used
to implement such things. (See SimpleTextEdit.)

Most clients will be interested mainly in the procedure StringlntoWindow, which simply
displays one or more lines oft~xt at a given location in a window.

More sophisticated clients may want to use StringlntoBuffer, which formats text into a
special bitmap buffer rather than painting it into a window; MeasureString, which
determines how wide a string would appear if painted into a window without actually
painting it; or Fill ResolveBuffer, which computes the position of each character of an
already displayed line of text.

All width values taken or returned by SimpleTextDisplay procedures are in terms of screen
pixels (bits).

45.2 Interface Items

45.2.1 Simplest Way to Display Text

StringlntoWindow: PROCEDURE [
string: XString.Reader,
window: Window.Handle.
place: Window.Ptace,
lineWidth: CARDINAL ... CARDINALLAST,
maxNumberOfLines: CARDINAL ... 1,
IineToLineDeltaY: CARDINAL ... 0, - default: systemFontHeight
wordBreak: BOOLEAN ... TRUE.

flags: BitBlt.BitBltFlags ... Oisplay.paintFlags]
RETURNS [lines.lastLineWidth: CARDINAL];

45-1

45

45-2

Simp leTextDisp lay

Displays string in window, starting at place. place refers to the upper-left corner of the ~.
first character. Each line is no more than IineWidth pixels wide, and there will be no more
than maxNumberOflines lines. If wordBreak is TRUE, StringlntoWindow tries to break
lines between, rather than within, words. The flags determine what BitBlt function is used
to place the new bits in the window; the default is to OR them into the window's existing
bitmap. When a new line is started, its y-position is IineTolineDeitaY below the y-position
of the previous line; if IineTolineDeitaY is defaulted to 0, each line is systemFontHeight
pixels below the previous one. lines is the number of lines that were actually painted.
lastLineWidth is the width of the last line displayed. If the string ends with a carriage
return and maxNumberOflines are not exceeded, then lastLineWidth is 0 and lines include
an empty line following that carriage return. If the string is empty, StringlntoWindow
returns [lines: 0, lastlineWidth: 0).

StringlntoWindow always uses the standard system font, a Flushness of fromFirstChar,
and a StreakSuccession of fromFirstChar. (See §45.2.4 for an explanation of Flushness and
StreakSuccession.)

systemFontHeight: READONL Y CARDINAL;

systemFontHeight is the height (in pixels) of the system font.

If systemFontHeight changes due to a runtime addition to the system font, the event
NewSystemFontHeight will be raised with eventData a pointer to the systemFontHeight.

45.2.2 StringIntoBuffer

StringlntoBuffer: PROCEDURE [
stri ng: XString.Reader,
bufferProc: BufferProc,
IineWidth: CARDINAL ... CARDINAL.i.AST,
wordBreak: BOOLEAN ... TRUE,
streakSuccession: StreakSuccession ... fromFirstChar,
font: SimpleTextFont.MappedFontHandle ... NIL)
RETURNS [lastLineWidth: CARDINAL, result: Result, rest: XString.ReaderBody];

Formats string into a bitmap buffer using font and calls bufferProc for each line. (See
BufferProc below for a description of the parameters passed to bufferProc.) If font is NIL, the
system font is used. StringlntoBuffer stops reading characters in the string and calls
bufferProc when one of the following events occurs:

• A character whose TextBlt flags are [stop: TRUE, pad: FALse) is encountered7 such as a
carriage return. bufferProc is called with a result of stop. The string passed to
bufferProc ends with the carriage return.

• The IineWidth (measured in pixels) would be exceeded by formatting the next
character. bufferProc is called with a result of margin. The string passed to bufferProc
ends with the last character that did fit (if wordBreak is FALSE) or with the last
character before the beginning of the word that did not fit (if word Break is TRUE).

ViewPoint Programmer's Manual 45

• There are no more characters to be read. bufferProc is called with a result of normal.
The string passed to bufferProc ends with the last character of the string passed to
StringlntoBuffer.

Result: TYPE. {normal, margin, stop};

If result • normal, or bufferProc returns continue • FALSE, StringlntoBuffer returns the
following values: result • the result last passed to bufferProc, rest • a substring
containing characters not yet processed (rest.offset will be the string. Ii mit last passed to
bufferProc), lastLineWidth • the dims.w last passed to bufferProc.

If result is not normal, and bufferProc returns continue • TRUE, StringlntoBuffer continues
processing the remainder of string and calls bufferProc again.

If string is empty, StringlntoBuffer returns [width: 0, result: normal, rest:
XString.nuliReaderBody) and does not call bufferProc at all.

BufferProc: TYPE • PROCEDURE [
result: Result,
string: XString.Reader,
address: Environment.BitAddress,
dims: Window.Dims,
bitsPerLine: CARDINAL]
RETURNS [continue: BOOLEAN);

A BufferProc is called once on each line of text processed by StringlntoBuffer. The
procedure should return TRUE if it wants StringlntoBuffer to process the remaining text
(and to call the BufferProc again). The parameters should be interpreted as follows:

result explains why StringlntoBuffer decided to end the current line of text:

stop

normal

margin

if the line ends with a carriage return character.

if there are no more characters to be processed after this line. In this case,
StringlntoBuffer ignores the continue boolean that the BufferProc
returns.

if the line was broken to avoid exceeding the lineWidth passed to
Stri ngl ntoBuffer.

string is a substring of the string passed to StringlntoBuffer, which contains exactly those
characters on this line. If the line ends with a carriage return, the carriage return is the
last character in string.

address is the address of the bitmap buffer into which the current line's characters have
been formatted.

dims is the dimensions of the formatted part of the bitmap buffer. dims.h is always equal to
the height of font passed to StringlntoBuffer (or to systemFontHeight if font was NIL).
dims.w is always < = the lineWidth passed to StringlntoBuffer.

bitsPerLine is the number of bits per bitmap line in the buffer (that is, how many bits to
add to address to reach the beginning of the next bitmap line). It is always a mUltiple of 16.

45-3

45

45-4

SimpleTextDisplay

Fine point: If the string passed to StringlntoBuffer ends in a carriage return, and the BufferProc returns TRUE, the

BufferProc is called one last time with an empty string (offset and limit both equal to the passed string.limit), an

empty bitmap (dims.w a 0), and result = norma"

46.2.3 Measure and Resolve

GetCharWidth: PROCEDURE [char: XChar.Character,
font: SimpleTextFont.MappedFontHandle ~ NIL]
RETURNS [width: CARDINAL];

Returns the width of the specified character in the specified font. Iffont is NIL, the
system font is used.

MeasureString: PROCEDURE [
string: XString.Reader,
lineWidth: CARDINAL ~CARDINAL.LAST,
wordBreak: BOOLEAN ~ TRue,
streakSuccession: StreakSuccession ~ fromFirstChar,
font: SimpleTextFont.MappedFontHandle ~ NIL]
RETURNS [width: CARDINAL, result: Result, rest: XString.ReaderBody];

MeasureString determines the number of horizontal pixels that displaying string in the
specified font would take up. If font is NIL, the system font is used. If wordBreak is TRUE and
the string will not fit into IineWidth pixels, MeasureString attempts to end the line
between words. result is one of the following: ~

stop If a carriage return character is encountered in the string before IineWidth
pixels have been measured. In this case, width is the pixel width of those
characters up to and including the carriage return, and rest begins with the first
character following the carriage return.

margin If the string will not fit within IineWidth horizontal pixels. In this case, width is
the pixel width of those characters that do fit (possibly backed up to the end of
the last word that entirely fits on the line, if wordBreak is TRUE), and rest begins
with the rlrSt character that does not fit.

normal If the string contains no carriage returns and fits entirely within lineWidth
horizontal pixels. In this case, rest is empty.

If string is empty, MeasureString returns [width: 0, result: normal, rest:
XString.null ReaderBody].

FiliResolveBuffer: PROCEDURE [
stri ng: XString. Reader,
Ii neWidth: CARDINAL ~ CARDINAL.LAST,
wordBreak: BOOLEAN ~TRUE,
streakSuccession: StreakSuccession ~ fromFirstChar,
resolve: ResovleBuffer,
font: SimpleTextFont.MappedFontHandle ~ NIL]
RETURNS [width: CARDINAL, result: Result, rest: XString.ReaderBody];

FiliResolveBuffer measures the x-offset of the left edge of each character of string relative
to the left edge of the leftmost character and stores the measurements in the resolve array.
The measurements are in units of pixels. The offset of the leftmost character is zero. There

ViewPoint Programmer's Manual 45

is one element in the resolve array for each of the bytes (not characters) of string. The
measurement stored for each byte of string is the measure for the character that the byte is
a part of. The measure stored for character set shift codes is that of the next actual
character in the string. (For the meaning of the return values, see the description of
MeasureString.)

The resoive buffer must be string.limit-string.offset + 1 words long to avoid smashing
memory.

Ifstring.context.suffixSize -1 and the string contains no character set shifts (377Bs) (that
is,if there is one byte per character), then:

resoive(O] is assigned x-offset of the character string.bytes(string.offset) ,
resolve(1] is assigned the x:-offset of the character string.bytes[string.offset + 1],
.... ,
resolve[string.Jimit-string.offset-1] is assigned the x-offset of the character
string.bytes(string.limit-1].

If the string does contain 377Bs, then any character set shift bytes ([3778, chsetl or [3778,
3778,0]) are assigned the same resolve value as the following character code byte.

In any part of the string that is in Stringiet16 format (2 bytes per character), both bytes of
each character are assigned the same resolve value.

If a sequence of characters would be displayed as a ligature-a single graphic representing
several adjacent characters--then all of those characters are assigned the same resolve
value.

In all cases,resolve(string.Jimit-string.offset] is assigned the pixel width of the string-- the
same value that is given to the returned value width.

If string is empty, FiliResolveBuffer returns [width: 0, result: normal, rest:
xString.nuIiReaderBody] and does not write into the resolve buffer at all.

ResolveBuffer: TYPE. LONG DESCRIPTOR FOR ARRAY [0 .. 0) OF CARDINAL;

NewResolveBuffer: PROCEDURE [words: CARDINAL] RETURNS [ResolveBuffer);

Allocates a resolve buffer of the specified length for later use by Fill ResolveBuffer. Non­
SimpleTextDisplay clients of TextBlt are also encouraged to obtain their resolve buffers by
calling this procedure, because SimpleTextDisplay caches resolve buffers for efficiency.

FreeResolveBuffer: PROCEDURE [ResolveBuffer];

Frees a resolve buffer allocated by NewResolveBuffer.

40.2.4 Multinational Items

Flushness: TYPE. {flushLeft. flushRight. fromFirstChar};

A Flushness determines where to display a line of text that does not fill the entire bitmap
width allotted to it. flushLeft places the leftmost character at the left edge of the bitmap.
flushRight places the rightmost character at the right edge of the bitmap. fromFirstChar is
equivalent to flushLeft if the first character of the text has XChar.JoinDirection •
nextCharToRight (for example, Latin and most other alphabets); it is equivalent to

45-5

45 SimpleTextDisplay

flushRight if the first character of the text has JoinDirection • nextCharToLeft (for ~
example, Arabic and Hebrew letters).

PeekForFlushness: PROCEDURE [requestedFlushness: Flushness, string: XString.Reader]
RETURNS [Flushness];

Returns a real flushness (either flushLeft or flushRight, not fromFirstChar) appropriate for
the passed requestedFlushness and string.

StreakSuccession: TYPE. {leftToRight,'rightToLeft, fromFirstChar};

PeekForStreakSuccession: PROCEDURE [
requestedStreakSuccessi on: StreakSuccession, stri ng: XString. Reader]
RETURNS [StreakSuccession];

Returns a real streak succession (either leftToRight or rightToLeft, not fromFirstChar)
appropriate for the passed requestedStreakSuccession and string.

45.3 Usage/Examples

45-6

The only non-Xerox Character Code that is significant to SimpleTextDisplay is Carriage
Return. No other control. characters a~e recognized.

All width values taken or returned by SimpleTextDisplay procedures are in terms of screen
pixels (bits). If the client passes its own font to SimpleTextDisplay, its mica widths should
be equal to its pixel widths. Fonts passed to SimpleTextDisplay should have no
measurements actually in micas.

45.3.1 StringInto Window

rb: XString.ReaderBody ... XString.FromSTRING ["This is an example. "l];
U ... SimpleTextDisplay.StringlntoWindow [

string: @rb,
window: window,
place: [10,10)];

45.3.2 StringIntoBuffer

This example shows an implementation of String Into Window using StringlntoBuffer.

MyStringlntoWindow: PROCEDURE [
string: XString.Reader,
window: Window.Handle,
place: Window.Place,
lineWidth: CARDINAL ... CARDINAL.LAST,
maxNumberOfLines: CARDINAL ... 1,
IineToLineDeltaY: CARDINAL"'O,
wordBreak: BOOLEAN ... TRUE,
flags: BitBlt.BitBltFlags ... Oisplay.paintFlags]
RETURNS [lines: CAROINAL, lastLineWidth: CARDINAL] • {

ViewPoint Programmer's Manual

MyBufferProc: SimpleTextDisplay.BufferProc =- {
Display.Bitmap [window, [place, dims), address, bitsPerline, flags];
lines +-lines + 1;
place.y +- place.y + lineTolineDeltaY;
RETURN [continue: lines < maxNumberOflines);
};

45

IF IineTolineDeitaY • 0 THEN IineTolineDeltaY +-SimpleTextDiStJlay.systemFontHeight;
lines +-0;

[lastlineWidth: lastlineWidth] +- SimpleTextDisplay.StringlntoBuffer [
string: @rb,

};

bufferProc: MyBufferProc,
IineWidth: lineWidth,
wordBreak: wordBreak);

45-7

45 SimpleTextDisplay

45.4 Index of Interface Items ~,

Item Page

BufferProc: TYPE 3
GetCharWidth: PROCEDURE 4
FiliResolveBuffer: PROCEDURE 4
Flushness: TYPE 5
FreeResolveBuffer: PROCEDURE 5
MeasureStri ng: PROCEDURE 4
NewResolveBuffer: PROCEDURE 5
NewSystemFontHeight: EVENT 2
PeekForFlushness: PROCEDURE 6
PeekForStreakSuccession: PROCEDURE 6
Result: TYPE 3
ResolveBuffer: TYPE 5
StreakSuccession: TYPE 6
StringlntoBuffer: PROCEDURE 2
StringlntoWindow: PROCEDURE 1
systemFontHeight: REAOONL Y CARDINAL 2

45-8

46

SimpleTextEdit

46.1 Overview

The SimpleTextEdit interface provides facilities for presenting short editable pieces of text,
known as fields, to the user. The user can select, move, copy, delete, and edit the text. Such
text can contain any sequence of characters supported by the Xerox Character Code
Standard.

All the text in a SimpleTextEdit field is displayed in a single font. SimpleTextEdit does not
provide multiple fonts, boldface, italics, subscript, superscript, paragraph and character
properties, and other elaborate editor features.

SimpleTextEdit fields are most appropriate for short pieces of text, preferably less than 30
lines long. They are not appropriate for editing entire files, for example.

SimpleTextEdit is primarily intended to support text items in the higher-level
FormWindow interface but is also provided as a public interface for those clients who may
need it. Most clients will use FormWindow rather than SimpleTextEdit. FormWindow
provides support for general forms, including choice, boolean. and command items.
FormWindow also .automatically adjusts the position of other fields when a text field
becomes taller or shorter. The client of SimpleTextEdit must provide its own procedure for
this.

46.1.1 Creating Fields

Fields are created by calling CreateField~ Before creating any fields, however, a
FieldContext must rrrst be created by calling CreateFieldContext. There must be one
FieldContext for each window that will contain Fields. The FiefdContext returned by
CreateFieldContext should be passed to CreateField for each field to be created. When a
field is created, only the desired Window.Dims of the field need to be supplied.

46.1.2 Displaying a Field

A field is displayed by calling RepaintFiefd. Before a field can be displayed, it must be given
a Window.Place by calling SetPIace. Failure to call SetPlac2 before displaying a field results
in Error [fiefdlsNoPlace). .

46-1

46 SimpleTextEdit

46.1.3 Notifying a Field

Notifications are passed to a field by calling TlPResults. SimpleTextEdit attaches neither a
window displayProc nor a TIP.NotifyProc to a window. The client provides these procedures
and then calls RepaintField for display and TlPResults for notifications. If there is more
than one field in a window or a single field does not occupy an entire window, the client
must resolve mouse buttons to determine which field should get the notification.

,46.2 Interface Items

46-2

46.2.1 FieldContext

FieldContext: TYPE • LONG POINTER TO FieldContextObject;

FieldContextObject: TYPE;

CreateFieldContext: PROCEDURE [z: UNCOUNTED ZONE, window: Window.Handle,
changeSizeProc: ChangeSizeProc, font: SimpleTextFont.MappedFontHandle +- NIL]

RETURNS [fc: FieldContext);

A FieldContext holds information that is common to all Fields in a given window. There
must be exactly one FieldContext associated with any window containing Fields. The
FieldContext contains such information as the fields' font, the current input focus, the field
containing the current selection, and so forth.

CreateFieldContext creates a FieldContext for window, which can be later used to create
individual Fields (see CreateField). Only one FieldContext should be created for any
window. All storage associated with the FieldContext and its Fields is allocated from z. The
ehangeSizeProc is called whenever any field's height is changed (see ChangeSizeProe
below). All text in the FieldContext's fields will be displayed with the supplied font. If font
is defaulted (the usual case), the standard system font is used.

Destr~yFieldContext: PROCEDURE [fc: FieldContext];

DestroyFieldContext destroys a FieldContext. If any of fe's fields has the input focus, it
clears the input focus and turns off the blinking caret. If any of fe's fields contains the
current selection, it clears and dehighlights the selection. DestroyFieldContext does not
destroy each field. The client should either call DestroyField on each field before calling
DestroyFieldContext or else dispose of the associated UNCOUNTED ZONE after calling
DestroyFieldContext. The client should not call DestroyField after calling
DestroyFieldContext.

SetMoveNotifyProc: PROCEDURE [fc: FieldContext, proc: MoveNotifyProe];

MoveNotifyProc: TYPE a PROCEDURE [f: Field];

~,

A client may set a MoveNotifyProc and it will be called whenever part of the text of field f
has been moved out of the field. Note that these two items are defined in ~:
SimpleTextEditExtra3. mesa.

.. ~

ViewPoint Programmer's Manual

46.2.2 Creating Fields

Field: TYPE. LONG POINTER TO FieldObject;

FieidObject: TYPE;

CreateFieid: PROCEDURE [
clientData: LONG POINTER,
context: FieldContext,
dims: Window.Dims,
initString: XString.Reader +-NIL,
flushness: SimpleTextOisplay.Flushness +- fromFirstChar,
streakSuccession: SimpleTextOisplay.StreakSuccession +- fromFirstChar, .
readOnly, password: BOOLEAN +-FALSE,
fixedHeight: BOOLEAN +- FALSE,
font: SimpleTextFont.MappedFontHandle +- NIL,
backi ngWriter: XString. Writer +- NIL,
SpeOALKeyboard: BlackKeys.Keyboard +- NIL]
RETURNS [f: Field];

46

A Field is an area within a window that contains editable text. It is the primary object
manipulated by this interface.

CreateField creates a field with appropriate attributes. The field uses the window, font,
zone, and ChangeSizeProc of the passed FieldContext .

clientData is a pointer that is not interpreted but is returned by GetClientData. Clients
may use it to associate their own data with each individual field.

dims are the initial dimensions of the field. As the field's contents change, its height may
change as well (unless fixedHeight is TRUE). However, the height never becomes smaller
than dims.h.

initString is the initial contents of the field, if any. CreateField copies the string; the caller
continues to own it when CreateField returns.

flushness controls where to place lines of text that do not fill the entire width of the field. If
flushness. flushLeft, the leftmost character is next to the field's left edge. Ifflushness ~
flushRight, the rightmost character is next to the field's right edge. If flushness ..
fromFirstChar, the field is flushLeft if its first character has XChar.JoinDirection •
nextCharToRight (for example, Latin and most other alphabets), and flushRight if the first
character has JoinDirection • nextCharToLeft (for example, Arabic and Hebrew letters).

streakSuccession indicates·whether the text of the field flows leftToRight or rightToLeft.
The default (fromFirstChar) causes the streakSuccession of the field to be determined from
the first character in the field. Latin and most other alphabets flow leftToRight. Arabic and
Hebrew flow rightToLeft.

IfreadOnly is TRUE, the user cannot change the field's contents. SetlnputFocus is a no-op on
a readOnly field, and any call on TIPResults that normally sets the input focus to this field,

46-3

46

46-4

SimpleTextEdit

or change the field's contents does not do so. However, SetValue still works on a readOnly ,~,

field.

If password is TRUE, each character of the field is displayed as a :41. If a selection is made
within a password field, and that selection is moved or copied, :41 characters are moved or
copied rather than characters from the field's actual backing string. Sejection.Convert also
produces a string of" characters. The only way to access a password field's actual content is
to call GetValue.

IffixedHeight is TRUE, the field's height never changes regardless of the field's content. The
context's ChangeSizeProc is never called with this field as an argument.

font allows each field to be a different font. If font is NIL, then the system font is used. Note:
This does not provide for general attributed text in Simph!TextEdit fields. The entire field
is all the same. font.

If backingWriter is NIL (the usual case), SimpleTextEdit allocates the field's backing string
from the context's zone, expands it as needed, and deallocates it when the field is destroyed.
If backingWriter is non-NIL, SimpleTextEdit uses it as the backing string and does not
deallocate it when the field is destroyed. If backingWriter.zone is NIL, TIPResults raises
Error [noRoomlnWriter] whenever it tries to do an operation that would overflow the
backing string.

SPEOALKeyboard allows a client-specified interpretation of the central keypad.

DestroyField: PROCEDURE [f: ,Field];

Destroys the passed field. If the field has the input focus, it clears the input focus and turns
off the blinking caret. If the field contains the current selection, it clears and dehighlights
the selection. DestroyField must not be called after the field's context has been destroyed.

GetValue: PROCEDURE [f: Field] RETURNS [XString.ReaderBody];

Returns the field's current contents. The returned string points directly into the field's
backing storage; it is not copied.

SetValue: PROCEDURE [f: Field, string: XString.Reader, repaint: BOOLEAN TRUE];

Change the contents of the field. Copies the string, which the caller continues to own after
SetValue returns. Repaints the field unless repaint is FALSE. In that case, the caller should
call RepaintField before returning to the notmer. If the field has the input focus, it clears
the input focus and turns off the blinking caret. If the field has the selection, it clears and
de highlights the selection. If repaint is TRUE, the field may become taller or shorter,
triggering a call on the ChangeSizeProc.

46.2.3 Displaying a Field

RepaintField: PROCEDURE [f: Field];

Repaints the field.

View Point Programmer's Manual 46

SetPlace: PROCEDURE [f: Field. place: Window.Place);

Changes the window-relative location of the field. This procedure must have been called at
least once before calling GetBox, RepaintField, or TlPResults; otherwise, calling those
procedures raises Error [fieldlsNoplace). Does not repaint the field. SetPtace is intended for
two primary uses: to set the initial location of a field and to change it from within a
ChangeSizeProc when another field gets taller or shorter.

48.2.4 Notifying a Field

TlPResults: PROCEDURE [f: Field. results: TIP.Results]
RETURNS [tooklnputFocus. changed: BOOLEAN];

Passes results to the specified field. The field is changed as appropriate. For example, if
results contains a PointDown atom, the character closest to the cursor is highlighted.
Details of the exact processing performed for each possible result are described be low. If the
field's contents are changed while processing the results, changed will be TRUE. If the input
focus was set to this field, tooklnputFocus will be TRUE. Both boo leans start out FALSE but
may become TRUE when strings or atoms are encountered in results. Any TIP.Results that
change the field's contents also cause the field to be repainted; this may cause the field to
become taller,or shorter, triggering a call on its ChangeSizeProc.

If a string is encountered in results, the string is inserted into the field at the current
insertion point. This clears the selection if the current insertion point is at either end of the
selection. The passed field must be the current input focus and not readOnly; otherwise,
the string is ignored.

The following atoms in results cause actions to be taken. An ,. indicates that the passed
field must be the current input focus; if not, the atom is ignored. Unless otherwise
indicated, tooklnputFocus and changed remains unaffected after this atom is processed.

AdjustDown (should be preceded by a coords result): Extends or contracts the current
selection, depending on coords earlier in results. If there is no current selection, creates
one extending from the current insertion point to a place determined by coords. This is a
no-op if the passed field is not the current input focus or selection.

AdjustMotion (should be preceded by a coords result): Same effect as AdjustDown,
although a different algorithm is used to determine which endpoint of the selection is being
moved.

BackSpace·: If the field is notreadOnly, deletes the character before the insertion point
and sets changed to TRUE. This clears the selection if the current insertion point is at either
end of the selection.

BackWord·: If the field is not readOnly, deletes the word before the insertion point and
sets changed to TRUE. This clears the selection if the current insertion point is at either end
of the selection. If the field is a password field, acts like a BackSpace.

CopyDown: Calls TIPStar.SetMode [copy].

CopyModeDown (should be preceded by a coords result): If the field is not readOniy,
places the caret at an appropriate place in the field, depending upon coords earlier in

46-5

46

46-6

SimpleTextEdit

results, but leaves the selection alone. tooklnputFocus will be TRUE. If the field is readOnly,
this is a no-op and tooklnputFocus is unchanged.

CopyModeMotion (should be preceded by a coords result): Same effect as
CopyModeDown.

CopyModeUp*: If the field is not readOnly, inserts the current selection at the current
insertion point, sets the selection to be the newly inserted text, and calls TlPStar.SetMode
[normal). If the selection is not empty, repaints the field and sets changed to TRUE. If the
field is readOnly, this is a no-op and changed remains unaffected.

DeleteDown: Calls Selection.ActOn [delete). changed becomes TRUE.

MoveDown: Calls TlPStar.SetMode [move].

MoveModeDown (should be preceded by a coords result): Same effect as CopyModeOown.

MoveModeMotion (should be preceded by a coords result): Same effect as
CopyModeDown.

MoveModeUp*: Same effect as CopyModeUp, except that it does a Selection.ActOn [delete]
on the currentselection before setting the selection to be the newly inserted text. Note that
if the current selection is in a readOnly field, no deletion occurs, and it acts exactly like a
CopyModeUp.

NewLine*: If the field is not readOnly, inserts an Asdi.CR at the current caret position. This ~,
clears the selection if the current insertion point is at either end of the selection. changed
will be TRUE. If the field is readOnly, is a no-op and changed is unaffected.

NewParagraph*: Same effect as Newline.

PointDown (should be preceded by a coords result and a time result): Sets the current
selection to be in the passed field. The location of the selection depends upon coords earlier
in results; the extent (character, word, paragraph) depends on its current extent and time
earlier in results. tooklnputFocus is TRUE unless the field is readOnly.

PointMotion (should be preceded by a coords result): Moves the current selection within
the field. If the current selection is not in the field, it sets it there. The location of the
selection depends upon coords earlier in results. The extent of the selection (character,
word, paragraph) remains unchanged. tooklnputFocus is TRUE unless the field is readOnly.

PointUp (should be preceded by a time result): Sets the last-click time,which determines
whether a subsequent PointDown represents a multiple click.

Stop: Calls TIPStar.SetMode [normal] .

ViewPoint Programmer's Manual 46

46.2.5 Miscellaneous Get and Set Procedures

GetBox: PROCEDURE [f: Field] RETURNS [box: Window.BOx];

Returns the box (dimensions and place) currently occupied by f. box. place is relative to
the field's window and is always the last value passed to SetPtace. Raises Error
[fieldlsNoplace] if SetPIace has never been called on this field.

GetCJientData: PROCEDURE [f: Field] RETURNS (clientData: LONG POINTER];

Returns the clientData that was passed to CreateField.

GetFieldContext: PROCEDURE [f: Field] RETURNS (FieldContext);

Returns the field context that was passed to CreateField.

GetFlushness: PROCEDURE [f: Field) RETURNS [SimpteTextDisplay.FI ushnessl;

Returns the current Flushness off.

GetFont: PROCEDURE [f: Field]
RETURNS [SimpleTextFont.MappedFontHandle];

GetinputFocus: PROCEDURE [fc: FieldContext) RETURNS (Field);

If some field associated with fc has the input focus, it returns that field; otherwise, it
returns NIL.

GetCaretPIace: PROCEDURE [context: FieldContext)
RETURNS [place: Window.Place);

If any field in the FieldContext contains the current type-in point, this procedure returns
the location of that point. If not, place=[-l,-l]. This is useful for determining that the
window must be scrolled to make the caret visible to the user.

GetReadOnly: PROCEDURE [f: Field) RETURNS [BOOLEAN];

Returns the current value of readOnly for f.

GetStreakSuccession: PROCEDURE [f: -Field) RETU~NS [SimpleTextDisplay.StreakSuccession];

Returns the current StreakSuccession off.

GetWindow: PROCEDURE [fc: FieldContext] RETURNS [window: Window.Handle];

Returns the window that was passed to CreateFieldContext.

GetZone: PROCEDURE [fc: FieldContext] RETURNS [UNCOUNTED ZONE];

Returns the UNCOUNTED ZONE that was passed to CreateFieldContext.

SetDims: PROCEDURE [f: Field, dims: Window.Dims];

46-7

46

46-8

SimpleTextEdit

SetOims sets the dimensions for f.

SetFixedHeight: PROCEDURE [f: SimpleTextfdit.Field,
fixedHeight: BOOLEAN1;

Allows setting the fixed-height attribute for a field.

SetFlushness: PROCEDURE[f: Field, new: SimpteTextDisplay.Flushness]
RETURNS' (old: SimpleTextDisplay.Flushness1;

Changes the field's flushness and returns the old flushness. Does not repaint the field.

SetFont: PROCEDURE [f: Field,
font: SimpleTextFont.MappedFontHandle tf- NIL);

Iffont • NIL, the system font is used.

SetlnputFocus: PROCEDURE [f: Field, beforeChar: CARDINAL tf-CARDINAL.LAST);

Sets the current input focus to be in this field and places the blinking caret before the
specified character. If beforeChar is 0, puts the caret before the first character; if it is
CARDINAL.LAST or otherwise larger than the length of the backing string, the caret is placed
after the last character in the field. Does not affect the current selection.

SetReadOnly: PROCEDURE [f: Field, readOnly: BOOLEAN1 RETURNS [old: BOOLEAN1;

Changes the field's readOnly attribute and returns its old value. If this field has the input
focus and readOnly is TRUE, it clears the input focus and turns off the blinking caret. If this
field has the selection and readOnly is FALSE and old is TRUE, it sets the input focus to this
field and places the caret after the last character in the selection.

SetSelection: PROCEDURE [f: Field,
firstChar: CARDINAL tf- 0, lastChar: CARDINAL tf-CARDINAL.LAST];

Sets the current selection to be in this field, covering the specified range of characters. If
firstChar is 0, the selection begins with the first character of the field. If lastChar is
CARDINAL LAST or otherwise larger than the length of the backing string, the selection
extends to the end of the string. Highlights the selection if it is not empty. Does not affect
the input focus or car~t.

SetStreakSuccession: PROCEDURE [f: Field, new: SimpleTextDisplay.StreakSuccession]
RETURNS [old: SimpleTextDisplay.StreakSuccession];

Changes the field's StreakSuccession and returns the old StreakSueeession. Does not
repaint the field.

SetLosingFocusProc: PROCEDURE [fe: FieldContext, proe: LosingFoeusProe];

LosingFoeusProc: TYPE. PROCEDURE [f: Field1;

SetLosingFocusProc sets the LosingFocusProc for fe. proc is called whenever a field in fe
loses the input focus. f is the field that is losing the input focus. This allows the client to

ViewPoint Programmer's Manual ·46

undo things that were done when the input focus was set, such as clear softkeys. These
items are defined in SimpleTextEditExtra.mesa.

SetUseFinalRenderingForms: PROCEDURE [fc: FieldContext,
useFinalRenderingForms: BOOLEAN];

GetUseFinalRenderingForms: PROCEDURE [fc: FieldContext)
RETURNS [useFinalRenderingForms: BOOLEAN];

useFinalRenderingForms has meaning for languages in . which characters are rendered
difi"erently at the end of a word than in the middle of a word, such as in Arabic. These items
are deimed in SimpleTextEditExtra2.mesa.

SetCursorKeys: PROCEDURE [field: Field, enable: BOOLEAN1 RETURNS [oldEnable: BOOLEAN];

SetCursorKeys is for clients that want to enable or disable cursor movement keys in a field.
Note this is defmed in SimpleTextEdit4.mesa.

LineFromY: PROCEDURE (f: Field, .'1: INTEGER1

RETURNS [line: CARDINAL, Ii neReaderBody: XString.ReaderBody];

LineFromY will flnd the line of text which is y pixels down from the top of the field f, and
will return the line number and the ReaderBody describing the line. IineReaderBody
points directly into the SimpleTextEdit fleld's backing string and should therefore NOT be
freed by the client. Note this is defined in SimpleTextEdit5.mesa.

AppendReader: PROCEDURE [f: Field. string: XString.Reader, repaint: BOOLEAN +- TRUE];

AppendReader is used by the client to a append string to the end of the backing store for
field f. The field does not need to have the input focus, and the selection and the input focus
remain unchanged. If repaint is FALSE, the affected area will be invalidated but not
validated. If repaint is TRUE, the display will reflect all the changes after returning from
AppendReader. Note this is defined in SimpleTextEdit5.mesa.

48.2.8 ChangeSizeProc

ChangeSizeProc: TYPE • PROCEDURE [f: Field, oldHeight, newHeight: INTEGER,

repaint: BOOLEAN);

Each FieldContext has a ChangeSizeProc associated with it. This procedure is called
whenever any of its fields is redisplayed and the number of lines of text being displayed has
changed. It may be called as a result of calling either RepaintField. nPResults, or SetValue.
The client is expected to update any affected data structures (such as the Window.Place of
other fields) and then optionally repaint any part of the window that is invalid. (There are
two exceptions: the ChangeSizeProc is never called on a field for which CreateField was
called with fixedHeight • TRUE, and it is not called if both the old and new number of text
lines require fewer vertical pixels thart the height dims.h that was specified to
CreateField.)

The oldHeight and newHeight parameters are in vertical pixels. inOisplayProc is TRUE if
the ChangeSizeProc is being called as a result of calling RepaintField with repaint • TRUE

(that is, is being called indirectly by Window. Validate).

46-9

46 SimpleTextEdit

If repaint is TRUE, the ChangeSizeProc should not do a Window.Validate, because this would
cause undesirable recursion.

46.2.7 Errors

Error: ERROR [type: ErrorType);

ErrorType: TYPE. {fietdlsNoplacer noRoomlnWriterr lastCharGTfirstChar};

Error [fietdlsNoplace] is raised by GetBox, RepaintFietd, and TIPResults if SetPtace has
never been called on the passed field. Error [noRoomlnWriter] is raised by CreateFiefd,
SetValue, and TIPResults if a non-NIL backingWriter was passed to CreateFiefd, the
backingWriter has a NIL zone, and the desired operation would overflow the string.

46.3 Usage/Examples

46.3.1 Selection Management

46-10

If certain atoms (PointDown, PointMotion, AdjustDown, AdjustMotion, CopyModeUp,
MoveModeUp) are in the TIP.Results passed to TIPResults, SimpleTextEdit may become the
manager of the current selection. The procedure SetSelection also causes SimpleTextEdit to
manage the curent selection.

While SimpleTextEdit is managing the current selection, it supports conversions to the
following Selection.Targets: shell, subwindow, length, and string. It also supports
Selection.Enumerate with a target of string. .

SimpleTextEdit implements the following Selection.Actions:mark, unmark, clear, delete,
c1earlfHaslnsert, restore, and save. All other Actions are ignored.

Selection.ActOn [delete] automatically repaints the field that contained the current
selection; the field may become taller or shorter, triggering a call on its ChangeS;zeProc.
Selection.ActOn [delete] is a no-op if the current selection is in a readOnly field.

ViewPoint Programmer's Manual 46

46.4 Index of Interface Items
'"...,.

Item Page

AppendReader: PROCEDURE 9
ChangeSizeProc: TYPE 9
CreateField: PROCEDURE 3
CreateFieidContext: PROCEDURE 2
DestroyField: PROCEDURE 4
DestroyFieldContext: PROCEDURE 2
Error: ERROR 9
ErrorType: TYPE 9
Field: TYPE 3
FieldContext: TYPE 2
FieldContextObiect: TYPE 2
FieldObject: TYPE 3
GetBox: PROCEDURE 6
Ge.tCaretPIace: PROCEDURE 7
GetClientOata: PROCEDURE 6
GetFieldContext: PROCEDURE 6
GetFlushness: PROCEDURE 7
GetFont: PROCEDURE 7
GetinputFocus: PROCEDURE 7
GetReadOnly: PROCEDURE 7
GetStreakSuccession: PROCEDURE 7

.~ GetUseFinalRenderingForms: PROCEDURE 8
GetValue: PROCEDURE 4
GetWindow: PROCEDURE 7
GetZone:PRocEDURE 7
LineFromY: PROCEDURE 9
LosingFocusProc: TYPE 8
MoveNotifyProc: TYPE 3
RepaintField: PROCEDURE 4
SetCursorKeys:PROCEDURE 9
SetDims: PROCEDURE 7
SetFixedHeight: PROCEDURE 7
SetFlushness: PROCEDURE 7
SetFont: PROCEDURE 8
SetlnputFocus: PROCEDURE 8
SetLosi ngFocusProc: PROCEDURE 8
SetMoveNotifyProc: PROCEDURE 3
SetPIace: PROCEDURE 4
SetReadOnly: PROCEDURE 8
SetSelection: PROCEDURE 8
SetStreakSuccession: PROCEDURE 8
SetUseFi nal Renderi ngForms: PROCEDURE 8
SetValue: PROCEDURE 4
TIPResults: PROCEDURE 5

~

46-11

46 SimpleTextEdit

~\

46-12

47

SimpleTextFont

47.1 Overview

The SimpleTextFont interface provides access to the default system font that is used to
display ViewPoint's text, such as the text in menus, the attention window, window name
stripes, containers, property sheet text items, and so forth. This interface is a specialization
of the regular font management subsystem.

47.2 Interface Items

47.2.1 System Font

MappedFontDescriptor: TYPE;

MappedFontHandle: TYPE. LONG POINTER TO MappedFontDescriptor;

MappedFontDescriptor is an opaque type that contains all of the information about a font.
(All metrics, including the width of each character, are in screen dots, not micas.)

MappedOefaultFont: PROCEDURE RETURNS [MappedFontHandle];

MappedOefaultFont returns the client a handle onto the system default font. May raise
FontNotFou~d or Problem(badFont]. The implementation of SimpleTextFont expects that
the default font is available in the system file catalog, with the name System.~ovaFont.

MappedFont: PROCEDURE [name: XString.Reader+- NIL]
RETURNS [MappedFontHandle];

MappedFont returns a handle onto the named system font. The file must be a child of the
system file catalog. Supplying NIL is the equivalent of calling MappedOefaultFont. May
raise FontNotFound or Problem{badFont1.

MappedFontFromReference: PROCEDURE [NSFile.Reference1
RETURNS [MappedFontHandle);

47-1

47 SimpleTextFont

MappedFontFromReference returns a handle onto the specified font file. May raise
Probtem[badFont). This is defined in SimpleTextFontExtra2.mesa.

UnmapFont: PROCEDURE [MappedFontHandle);

Unmaps a font that was mapped with MappedFont or MappedFontFromReference.
Unmapfont is deimed in SimpleTextFontExtra.mesa.

47.2.2 Client-Defined Characters

AddCJientDefinedCharacter: PROCEDURE [
width. height: CARDINAL.
bitsPerLine: CARDINAL.
bits: LONG POINTER.
offsetlntoBits: CARDINAL +- 0)
RETURNS [XString.Character);

AddClientDefinedCharacter adds the client's bitmap to the system font as a new character
and returns the 16-bit value of the character position it is assigned. offsetlntoBits is a byte
offset. The n~w character's TextBlt flags indicate that it is neither a stop nor a pad
character. At start· up time, at least 100 slots are available for these new characters. [0,26)
normally displays as the blob character. May raise Problem(clientCharacterBitsExhausted]
or Problem(clientCharacterCodesExhaustedl. If RESUMEd, the character [0,26] is returned.

The Xerox Character Code Standard sets aside a block of character codes for user ~
deimition. (See the Xerox Rendering Code Standard, XSIS 068208, page 6.) In Star, it is
often useful to include a· small picture, for example, a 13x13 icon drawing, within a
message or other text.

The AddCJientDefinedCharacter procedure provides a convenient way of presenting such
small.pictures within formatted system text. You create a character for the picture, say in
initialization code, and then simply use that (l6-bit> character within ordinary text
sequences, such as window titles.

47.2.3 Signals and Errors

FontNotFound: SIGNAL [name: XString.Reader);

If FontNotFound is resumed, the system font is used.

Problem: SIGNAL [code: ProblemCode);

ProblemCode: TYPE :I

{badFont. clientCharacterCodesExhausted. clientCharacterBitsExhausted};

47.3 Usage/Examples

47·2

SimpleTextFont is a specialization of the regular font management subsystem.

The font file format is easily parsed, it can be mappable into read-only virtual memory for
use, and it can be extended. A single file defines the bitmaps for the Xerox characters in

~'

View Point Programmer's Manual 47

one font face and one font size, such as Bodoni Italic 10. Fine point: In the case in which several

different font face/sizes have the same pictures, as can occur with some printwheel fonts. use the same file for more

than one font/face. This subject is outside the scope of this specialized interface. because we are only dealing with

one font.

The font file begins with a header that identifies the font and describes the subsequent
sections. Each subsequent section then contains TextBlt·style information about one
character set's characters. Fine point: Descriptions of the font management subsystem and the ViewPoint

font format are to be found elsewhere.

47.3.1 Adding a Client-Defined Character

The following example creates a small (13x13) icon and displays it as part of a string:

myBits: ARRAY [0 .. 13)-OF WORD [•• some bits-);
wb: XString.WriterBody xString.WriterBodyFromSTRING{" is an icon."];
smaIiPicture:xString.Character SimpleTextFont.AddCJientDefinedCharacter [

width: 13,
height: 13,
bitsPerline: 16,
bits: @myBits,
offsetlntoBits: 0);

XString.AppendChar[to: @wb, c: smaIiPicture);

a SimpleTextDisplay.StringlntoWindow [
string: XString.ReaderFromWriter[@wb),
window: window,
place: place);

47.3.2 Acquiring the System Font

The following example acquires a handle to the system font:

system Font: SimpleTextFont.MappedFontHandle • SimpleTextFont.MappedFont(];

47.3.3 New System Font

If the system font changes during runtime the event NewSystemFont will be raised with
the eventData SimpleTextFont.MappedFontHandle.

47-3

47 SimpleTextFont

47.4 Index of Interface Items -~

Item Page

AddClientDefi nedCharacter: PROCEDURE 2
FontNotFound: SIGNAL 2
MappedDefaultFont:PROCEDURE 1
MappedFont:PROCEDURE 1
MappedFontDescri ptor:TYPE 1
MappedFontFromReference:PROCEDURE 1
MappedFontHandle:TYPE 1
NewSystemFont: EVENT 3
Problem: SIGNAL 2
ProblemCode:TYPE 2
UnmapFont: PROCEDURE 2

47-4

,-,'

48

SoftKeys

48.1 Overview

The SoftKeys interface provides for client-defined function keys designated to be the
isolated row of function keys at the top of the physical keyboard. It also provides a SoftKeys
window whose "key tops" may be selected with the mouse to simulate pressing the physical
key on the keyboard. Such a window will be displayed on the user's desktop whenever an
interpretation other than the default SoftKeys interpretation is in effect. (The default is
assumed to be the functions inscribed on the physical keys.)

48.2 Interface Items

48.2.1 Data Structures for SoftKey Labels

numberOfKeys: CARDINAL •••• ; -- This number is dependent on the physical keyboard.

Represents the number of keys in the soft key row. Important: in SoftKeys.mesa,
numberOfKeys is defined as a constant 8. This constant should not be used. Use the
SoftKeysExtra.mesa numberOfKeys public variable.

LabelRecord: TYPE :II RECORD(
unshifted: XString.ReaderBody +- XString.null ReaderBody,
shifted: XString.ReaderBody +- XString.null ReaderBody);

LabelRecord provides a record of two XString.ReaderBody arrays so that both the shifted and
unshifted key meanings may be labeled. It is expected that any individual key will have
either a single unshifted label centered on the picture of the appropriate key top, or both
shifted and unshifted labels painted in two lines on the key top, or no label at all
(XString.nuliReaderBody for both shifted and unshifted).

Labels: TYPE :II LONG DESCRIPTOR FOR ARRAY OF LabelRecord;

Client-owned array of strings to be ~sed as labels on the SoftKeys virtual key tops. The
SoftKeys procedures expect an array of up to numberOfKeys LabelRecord's at a time.

48-1

48

48-2

SoftKeys

Clients should see to it that string deallocation does not occur between calls to create and ,~
delete a Soft Keys instance.

Bitmaps may be specified for individual labels by using
SimpIeTextFont.AddClientDefinedCharacter. The current SimpleTextFont implementation
has a somewhat limited number of available slots for client-defined keys. (See the
SimpleTextFont interface for more information.)

48.2.2 Creating and Deleting SoftKeys

Push: PROCEDURE [
table: np.Table ... NIL.
notifyProc: np.NotifyProc ... NIL.
labels: Labels ... NIL.
highlightedKey: CARDINAL +- nutl Key.
outlinedKey: CARDINAL ... null Key)
RETURNs(window: Window.Handle);

Push installs the SoftKeys interpretation in the following way: (1) If there is a non-NIL
table. it is installed in the np watershed (see TlPStar); (2) if there is a non-NIL notifyProc, it
is attached to Norma.Keyboard.TlP. The latter has the effect of passing all productions
matched in Norma'Keyboard. TIP to your notifyProc. (See Appendix A for a complete listing of
NormalKeyboard. TIP.)

A SoftKeys window is displayed by using labels to "inscribe" the key top pictures with the ~,
new names of the keys. Both the shifted and unshifted state' of a key may be labeled. If only
the unshifted state is relevant, the shifted state may be defaulted to
XString.nuIiReaderBody. If there are fewer strings than key tops n'eeding them, the
remaining keys are left blank. Extra strings are ignored. Fine point: Bitmaps may be placed on the

keytops by using simpl.r •• tFont.AddClientOefinedCharacter. Storage for the label strings is the
responsibility of the client. Care should be taken to ensure that this storage is kept intact
between a Push and a Remove of any given SoftKeys interpretation.

outlinedKey and highlightedKey appear highlighted and/or outlined ~when the window is
initialized. The default is no outlining or highlighting. Key values assume zero indexing
[O .. SoftKeysExtra.numberOfKeys). (That is, the key marked Center is key 0, Bold is key
1 ,and so forth.)

Push returns a handle to the client's SoftKeys window. Note: There may be more than one
SoftKeys window, with each client holding the handle to his own. The last Pushed
interpretation is the one in effect until it is Removed or superseded by another Push.

Remove: PROCEDURE [window: Window.Handle);

The Remove procedure removes the SoftKeys interpretation and associated SoftKeys
window. The client is responsible for removing its SoftKeys interpretation when it
relinquishes control of the selection/input focus [see Selection interface descriptions of
ActOn and Clear] or the user's attention (as in the case of the keyboard and font keys). A
Soft Keys window and its associated SoftKeys interpretation constitute a unique SoftKeys ~
instance. Any SoftKeys instance may be removed from the stack of SoftKeys instances in
an order other than the order pushed.

ViewPoint Programmer's Manual 48

Attempts to Remove without the corresponding valid window handle from a Push result in
the error InvaHdHandle.

Fine point: Remove. rather than Pop, was chosen to describe the function opposite Push to clarify that this is not a

true stack. While Push. as the name implies.. acts on the top of the stack, Remove does not. It is possible to Remove
a SoftKeys window from other than the top oithe stack.

Swap: PROCEDURE [
window: Window.Handle,
table: n~.Table ... NIL.
notifyProc: np.NotifyProc ... NIL"
labels: Labels NIL.
HighlightedKey: CARDINAL ... nuIlKey"
outlinedKey: CARDINAL ... null Key];

The Swap procedure is a way to exchange SoftKeys interpretations without changing the
SoftKeys instance. Current examples of use include the keyboard key implementation
where pressing the More key brings up another group of SoftKeys choices. It is strongly
suggested that a client utilizing a More key place it on the first soft key (the key marked
CENTER on the physical keyboard) for a consistent user interface.

At the time when no SoftKeys interpretation is desired, a single Remove corresponding to
the original Push is expected. Any number ()f Swaps may occur in between. Attempts to
Swap without the corresponding valid window handle from a Push result in the error
InvalidHandle.

48.2.3 ffighlighting and Outlining a SoftKeys Key top Picture

HighlightThisKey: PROCEDURE [
window: Window.Handle
key:CARDINAL ... nuIlKey];

OutlineThisKey: PROCEDURE [
window: Window.Handle" .
key: CARDINAL ... nuIlKey];

These procedures are provided for those clients where permanent highlighting and/or
outlining of certain soft keys is desired. (Do not confuse these procedures with the·
highlighting done when a key is selected with the mouse. That highlighting is done
without client participation.) The first parameter, window, refers to the client's SoftKeys
window returned from a Push. The CARDINAL corresponds to the key (zero indexing) to be
outlined or highlighted whenever the chosen key changes. A key value of null Key undoes a
key that is currently highlighted (or outlined). A number other than null Key or
[O .. SoftKeysExtra.numberOfKeys) results in NoOp.

Attempts to call HighlightThisKey or OutlineThisKey without a valid handle from a Push
result in the error InvalidHandle.

null Key: CARDINAL:. LAST(CARDINAL);

A default value meaning no key, to be used for outlinedKey and highlightedKey.

48-3

48 SoftKeys

48.2.4 Retrieving Information About a SoftKeys Window Instance

Info: PROCEDURE [
window: window.Handle]
RETURNS [
table: TIP. Table,
notifyProc: TlP.NotifyProc.
labels: Labels,
highlightedKey:CARDINAL,
outli nedKey: CARDINAL);

The Info procedure returns information relevant to the SoftKeys instance related to
window. If the window handle is not valid, the errorlnvalidHandle is returned.

48.2.5 Errors

InvalidHandle: ERROR:

This error is raised if the SoftKeys window handle passed to Remove, Swap, Info,
HighlightThisKey, or OuttineThisKey is invalid.

48.3 Usage/Examples

48-4

48.3.1 Graphics Example

-. When the selection is such that the graphics code takes control,
-. the initial graphics code should put up the graphics soft keys:

graphicsSoftKeysWindow ... Push[
table: graphicsSoftKeysnPTable,
labels: graphicsSoftKeyLabelsJ;

-·where the core of the graphics TIP. Table looks something like:
-·Ieft·side values are defined in the LevellVKeys lnterlace
SELECT TRIGGER FROM .

CenterDown • > Stretch;
BoldDown • > Magnify;
ItalicsDown • > Grid;
caseDown, UnderlineDown • > Line;
DbkUnderlineDown, SuperscriptDown • > Curve;
StrikeoutDown, SubscriptDown • > Join;
SuperSubDown, SmalierDown • > Top;
ENDCAse;

-·and part of the graphics TIP. NotifyProc resembles the following:
-·Ieft-side values are the atom results from the TIP. Table
atom • > SELECT result FROM

Stretch. > DoMyStretchRoutine[];
Magnify • > DoMyMagnifyRoutine£];
Grid. > DoMyGridRoutine[]; ,
Line. > DoMyLineRoutine£];
Curve • > DoMyCurveRouti ne£];

.~.

ViewPoint Programmer's Manual

Join :II> DoMyJoinRoutine[];
Top :I> DoMyTopRoutine(];
ENDCASE;

--When graphics loses the selection, it must clear away its SoftKeys interpretation.
Remove(graphicsSoftKeysWindowl;

48

A client using More as one of its soft keys handles it in hits s np. Tables and TIP.NotifyProc:

np. Table entry:
Center Down • > More;

NotifyProc entry.
More • > Swap(
window: mySoftKeysWindow,
table: myNextSoflKeysTIPTable,
labels: myNextSoftKeyLabels,
highlightedkey: 1];

This entry results in an exchange of the client's last SoftKeys interpretation for the next
one specified, (namely, the installation of the new TIP.Table and new labels on the key tops.)
The second key (bold on the physical keyboard) is highlighted in the SoftKeys window.
The outlinedKey parameter has been left blank. This defaults to nuliKey, in which case no
key will be outlined.

48.3.2 Keyboard Manager Example

This client's (Keyboard Manager) SELECT arm does the right thing for both the 8010 and
6085 workstation keyboards.

atom • > SELECT z.a FROM

CenterDown • > IF more THEN SoftKeys.Swap [] ELSE Install Keyboard [labeI1];
BoldDown • > InstallKeyboard [labeI2];
ItalicsDown • > InstaliKeyboard [label3];
caseDown, UnderlineDown • > InstaliKeyboard [IabeI4);
DbkUndertineDown, SuperscriptDown • > InstaliKeyboard [labelS];
StrikeoutDown, SubscriptDown • > InstallKeyboard [labeI6];
SuperSubDown • > InstaliKeyboard [labeI7]; .- No label7 if the machine is an

8010.
DbkSmalierDown • > Install Keyboard [labelS); ... No labelS for 8010 either.
MarginsDown, SmalierDown • > ShowKeyboard [];
FontDown, DefaultsDown • > SetKeyboard [];

If the user presses the MarginsDown on a 6085 or the Smaller Down on an 8010, he has
actually invoked the soft key that is labeled SHOW in the soft keys window visible on the
screen.

48-5

48 SoftKeys

48.4 Index of Interface Items ~

Item Page

HighUghtThisKey: PROCEDURE 3
Info: PROCEDURE 4
InvalidHandle: ERROR 4
LabelRecord: TYPE 1
Labels: TYPE 1
nuliKey: CARDINAL 3
numberOfKeys: CARDINAL 1
OutlineThisKey: PROCEDURE 3
Push: PROCEDURE 2
Remove: PROCEDURE 2
Swap: PROCEDURE 3

48-6

49

StarDesktop

49.1 Overview

The StarDesktop interface provides access to assorted facilities related to the ViewPoint
desktop.

49.2 Interface Items

49.2.1 General

AddReferenceToDesktop: PROCEDURE [
reference: NSFile. Reference,
place:window. Place nextPtace];

nextPlace: Window.Place • [-1,.1];

Adds an icon to the desktop. The file (reference) must be a child of the desktop file (see
GetCurrentDesktopFile below.) If there is already an icon at place, the next available place
is used.'

GetPlaceFromReference: PROCEDURE [ref: NSFile.Reference]
RETURNS [Window.Place);

This returns the location of an icon on the desktop. It may be used with
AddReferenceToDesktop to place an icon near another icon by passing the return value
from GetPlaceFromReference to AddReferenceToOesktop. AddReferenceToOesktop
places the new icon at the next available.spot after the place passed in.

SelectReference: PROCEDURE [reference: NSFile.Reference)
RETURNS [ok: BOOLEAN);

Selects the icon associated with the specified reference. SelectReference returns FALSE if
selection fails (for example, if the reference is not found on the desktop). Each call to
SelectReference will add that reference to the selection (like doing an extended selection

. with adjust). To select a single icon, call Se'ection.Clear followed by a SeledReference.

49-1

49

49-2

StarDesktop

GetWindow: PROCEDURE RETURNS [window: Window. Handle);

Returns the desktop window (that is, the root window for ViewPoint).

GetSheilFromReference: PROCEDURE [ref: NSFile.Reference]
RETURNS [SWS: StarWindowShell.Handle];

If an icon has a shell currently opened, GetShellFromReference returns this shell.

CreateDesktop: PROCEDURE [name: XString.Reader)
RETURNS (fh: NSFile.Handle];

Creates a new desktop directory and returns a handle to it. name is typically a fully
qualified three-part user name. It is used by logon plug·in clients, a friends-level facility
(as opposed to a public facility).

GetCurrentDesktopfile: PROCEDURE RETURNS [NSFile.Reference];

Every available desktop is an NSFile with attribute.isOirectory • TRUE. Desktops have
children that are also NSFiles and show up as icons on the desktop (see the ViewPoint
Programmers Guide, chapter 3, for more information). GetCurrentOesktopFile returns the
NSFile.Reference for the desktop NSFile that is currently installed and displayed to the user.

GetNextUnobscuredBox: PROCEDURE [height: INTEGER1 RETURNS [Window.BOX];

GetNextUnobscuredBox returns the next available vertical segment of the desktop
window of height, height, and width the width of the desktop. This is intended for such
things as the Attention window and the typing feedback window for JStar. There is no
guarantee that the box returned will be visible, i.e., the client must ensure that the
returned box is within the desktop window.

MakeBusy: PROCEDURE [ref: NSFile.Reference)
RETURNS (Busylcon.BusyStatus);

MakeUnbusy: PROCEDURE [ref: NSFile.Reference]
RETURNS [Busylcon.BusyStatus];

IsBusy: PROCEDURE [ref: NSFUe.Reference]
RETURNS [yes: BOOLEAN];

These procedures support the BusyIcon interface by allowing the client to make icons busy
and unbusy and determine if an icon on the desktop is busy. See the Busylcon chapter for
details on busy icons. These interfaces are defined in StarOesktopExtra.

SetOisplayBackgroundProc: PROCEDURE [PROCEDURE [Window.Handle]];

SetOisplayBackgroundProc allows a client to change the procedure that displays the
background for the desktop.

View Point Programmer' s ~an ual 49

49.2.2 Atoms .

Several ATOMs are exported by the StarOesktop:

attemptingLogoff

desktopWindowAvailable

"' AttemptingLogofi"': Event just before logoff. Can be
vetoed. Gives clients a chance to veto logoff.

"'DesktopWindowAvailable": Event notified when the
desktop window has been initialized and inserted into
the window tree. Cannot be vetoed.

.• "FullUserName": This atom is to be used with
AtomicProfile.

newlcon

logoff

logon

userPassword

49.3 Usage/Examples

49.3.1 Adding a Reference to the Desktop

BuildFile: PROCEDURE [--parms--] • {
reference: NSFUe.Reference +-

"Newlcon": Event notified when an icon has been
added to the desktop, either by user copy/move, or by a
client call to AddReferenceToOesktop.

NLogofi"': Event occurs after logoff. Cannot be vetoed.

"Logon": Event notified after successful ViewPoint
logon. Cannot be vetoed. EventData is NSFile.Handle
for the desktop file.

f~UserPassword": Also to be used with AtomicProfile.

InitializeFile [parent: StarDesktop.GetCurrentOesktopFile[]]; --local proc
place:window.Place +- [•.•];

StarDesktop.AddReferenceToOesktop [reference. place);
};

49-3

49 StarDesktop

49.4 Index of Interface Items ~

Item Page

AddReferenceToOesktop: PROCEDURE 1
attemptingLogoff: Atom.A TOM 2
CreateOesktop: PROCEDURE 2
desktopWindowAvaiiable: Atom.ATOM 2
fuliUserName: Atom.ATOM 3
GetCurrentDesktopFi Ie: PROCEDURE 2
GetNextUnobscuredBox: PROCEDURE 2
GetPIaceFromReference: PROCEDURE 1
GetSheliFromReference: PROCEDURE 2
GetWindow: PROCEDURE 2
IsBusy: PROCEDURE 2
MakeBusy: PROCEDURE 2
MakeUnbusy: PROCEDURE 2
nextPtace: constant 1
newlcon: Atom.ATOM 2
SetOisplayBackgroundProc: PROCEDURE 3
SelectReference: PROCEDURE 1
Logoff: Atom.A TOM 3
Logon: Atom.ATOM 3
userPassword: Atom.A TOM 3

~

49-4

50

StarWindowShel1

50.1 Overview

StarWindowShefi allows a client to create a Star-like window. A StarWindowShell window
has a header that contains a title, commands, and pop-up menus. It may have both
horizontal and vertical scrollbars. It has interior window space that may contain anything
the client desires (see Figure 50.1.) StarWindowSheU also supports the notion of f'opening
within." The client is insulated from the implementation-specific details of exactly how
these features are represented on the display as well as how windows are arranged on the
screen (for example, whether they overlap),

50.1.1. Client overview

A StarWindowShell is a window (see Window interface) that is a child of the desktop.
window. A StarWindowShell has an interior window that is a child of the
StarWindowShell and is exactly the size of the available window space in the shell (that is,
the StarWindowShell minus its borders and header and scrollbarsL The interior window
may have child windows created by the client. These children of the interior window are
called body windows. The client may create an arbitrary number of body windows and may
arrange them arbitrarily. Note: Because the body windows are children of the interior
window, they are clipped by the interior window. A client could, for example, create a body
window that is very much taller than the interior window and accomplish scrolling simply
by sliding the body window around inside the interior window (This is what the default
StarWindowSheU scrolling does; for more detail, see the section on scrolling).

The StarWindowShell interface provides a number of facilities for manipulating
StarWindowSheUs and their various parts: creating and destroying a StarWindowShell;
using body windows, commands and pop-up menus; client TransitionProcs (called
whenever a StarWindowShell changes state--is opened or closed, for example); scrolling;
AdjustProcs and LimitProcs; and displaying and stacking (that is, open-within)
StarWindowShells, The most commonly used facilities (creating a StarWindowShell and
body windows) are described here and in the section on interface items. The less commonly
used facilities are described in each subsection of the interface items.

50-1

50

50-2

StarWindowShell

1 Commands 1----

Interior

Figure 50.1 A Star Window Shell

50.1.2 Creating a StarWindowShell. Handles, etc.

~ Pop-up menus I

"'~_-I Vertical
Scrollbar

Horizontal
--..--, SereJ I bar

A StarWindowShell is created by calling StarWindowShell.Create. There are no required
parameters, but it is quite common to provide a name and a transitionProc. The name is
displayed as the title in the StarWindowShell header. The transitionProc is called
whenever the StarWindowShell is opened, destroyed, or ffput to sleep," giving the client an
opportunity to allocate and deallocate storage, open and close files, and so forth.

StarWindowShell.Create returns a StarWindowShell.Handle. A StarWindowShell.Handle is a RECORD

[Window.Handle]. Thus any procedure that takes a Window.Handle also takes a
StarWindowshell.Handle, but not the other way around. (The Mesa compiler automatically
strips off the brackets and passes the Window.Handle if a StarWindowshell.Handle is passed). ~
In particular, a context may be hung directly off a StarWindowShell (see the Context

ViewPoint Programmer's Manual 50

interface). The Hanale returned by Create is then used as the first parameter to most other
calls to StarWi ndowShell.

The StarWindowSheU returned by Create is not displayed on the screen (that is, it. is not
inserted. into the visible window tree). A StarWindowShell may be inserted into the
window tree by calling StarWindowShell.Push. This is usually not done by the client but
rather by some other part of ViewPoint, such as the desktop implementation. For example,
when the user selects an icon and presses OPEN or PROPS, the application (actually the
application's Containee.GenericProc) creates a StarWindowSheU and returns it. The desktop
implementation then displays the StarWh,dowShell by doing a StarWindowSheU.Push.

50.1.3 Body Windows

Body windows are created by calling StarWlndowsheu.CreateBody. This returns a
Window.Handle. The client can create an arbitrary number of body windows. Each body
window is a child of the StarWindowShell's interior window. The body windows may
overlap or not. They can actually be in any arrangement the client finds useful. Some
common arrangements of body windows.are as follows:

• One very long body window.
This is easy to scroll by simply sliding the body window, which is what the
StarWindowShell default seolling does.

• One body window with BodyWi ndowJustFits • TRUE.

This is one way to display an infinite amount of data, such as a Tajo-like editor. The
client must keep track of what is currently in the window, use adjust procedures, do
scrolling, and so forth. This is difficult to implement.

• Several body windows about the size of the interior, adjacent, non-overlapping.
This is another way to display an infinite amount of data. The client lets
StarWindowShell do default scrolling, which slides the body windows up or down and
then calls the client to supply more body windows when it runs out. The client might
put one page of text into each body window, supplying pages to StarWindowShell
scrolling as needed.

• Several body windows smaller than the interior, adjacent, non-overlapping.
This can be used to simulate subwindows.

Note: Body windows can themselves have child windows, and so on. A client might
implement frames in a document editor by making each frame a child of a body window.

The eldest body window may be obtained by calling StarWlndowShell.GetBody. All the body
windows may be enumerated by calling StarWindowShell.EnumerateBodieslnDecreasingY or
StarWindowShell.EnumerateBodieslnlncreasingY. To get the StarWindowShell from any body
window, use StarWindowSheU.SheIlFromChild. Fine point: The client's body windows may not be the only

child windows of the interior wlndow, and the interior window may not be the only child of the StarWindowShell
window. Therefore the client should never try to enumerate body windows by calling Wlndow.GetChild and

Wlndow.GetSibling starting with the StarWindowShell, and the client should never try to get the StarWindowShell
from a body window by calling Wlndow.GetParent.

The client may provide a repaintProc and a bodyNotifyProc with each body window. The
repaintProc is the display procedure that is called by the window implementation

50-3

50 StarWindowShell

whenever part or all of the window needs to be displayed (see window.SetDisplayProc). The .~.
bodyNotifyProc is a TIP. NotifyProc that is attached to the window along with the normal set
of TIP tables and receives notifications for the window (see TIP.SetNotifyProcAndTableL
Note: If the client is going to use some ViewPoint interface to turn the body window into a
particular type of window (such as FormWindow or ContainerWindow), these procedures
should not be supplied by the client, but rather are supplied by that interface.

A single body window can be set to fit into the interior window. Any time the
StarWindowShell's size is changed, the body window's size is changed accordingly. (See
SetBodyWindowJustFits.)

50.1.4 Commands and Menus

Every StarWindowShell can have commands and pop·up menus, as in Figure 50.!.
Commands are actually individual menu items (MenuOata.JtemHandle), where the
MenuOata.JtemName appears with a rounded corner box around it. When the user clicks
over a command, the MenuOata.MenuProc for that item is called. Commands are specified by
calling StarWlndowSheU.SetRegularCommands, which takes a MenuOata.MenuHandle. Each
item in the menu is displayed as a command on the left side of the header.

A pop.up menu is an entire menu. The menu's title appears with a rounded corner box
around it on the right side of the shell's header. When the user buttons down over the
menu's title, a small window appears next to the poimter with one line for each menu item.
When the user selects one of the items, that item's MenuOata.MenuProc is called. Pop-up
menus are specified by calling StarWindowShell.AddPopupMenu. ~.

Facilities are also provided for specifying commands that should appear when a shell has
other shells opened on top of or within it. (See the section on Push and Pop for a full
discussion of the ··open within" illusion, and the section on commands and menus for a full
discussion of these extra commands.)

50.2 Interface Items

50-4

50.2.1 Create a StarWindowShell, etc.

Create: PROCEDURE [
transitionProc: TransitionProc +- NIL,
name:xString.Reader +- NIL,
namePicture:xstring.Character +- XChar.null,
host: Handle +- NIL"
type: SheilType regular,
sleeps: BOOLEAN +- FALSE"
considerShowingCoverSheet: BOOLEAN +- TRUE,
currentlyShowingCoverSheet: BOOLEAN +- FALSE,
pushersAreReadonly: BOOLEAN +- FALSE,
readonly: BOOLEAN +- FALSE,
scroliData: Scroll Data +- vanillaScrollData,
garbageCollectBodiesProc: PROCEDURE [Handle] +- NIL,
isClos'eLegaIProc: IsCloselegalProc NIL"
bodyGravity: Window.Gr~vity +- "w,

ViewPoint Programmer's Manual

zone: UNCOUNTED ZONE ...-NIL]
RETURNS [Handle1;

50

Create makes a StarWindowShell and returns a Handle to it. The StarWindowShell
returned by Create is not displayed on the screen (is not inserted into the window tree). A
StarWindowShell may be inserted into the window tree by calling StarWindowShell.Push.
This is usually not done by the client but rather by some other part of ViewPoint, such as
the desktop implementation. For example, when the user selects an icon and presses OPEN

or PROPS, the application (actually the application's Contain ••. GenericProc) creates a
StarWindowShell and returns it. The desktop implementation then displays the
StarWindowShell by doing a StarWindowShell.Push.

transitionProc is a procedure that is called whenever the state of the shell is about to
change. In particular, it is called just before the shell is destroyed. The client uses a
transitionProc to free any data structures that may have been allocated and associated
with the shell. TransitionProcs are discussed in later in this chapter.

name appears as the title in the header of the StarWindowShefl.

namePicture appears just before the title in the header. This character is usually a small
icon picture created by SimpleTextFont.AddCtientDefinedCharacter.

host is a StarWindowShell that this shell is logically attached to. The host shell is not
destroyed while this shell is open. This is typically used by property sheets to indicate the
shell that the property sheet is displaying properties of. If host is NIL, closing this shell does
not depend on any other shell.

type is the type of the shell. Shell placement algorithms may be affected by the type. For
example, regular shells will not, overlap when displayed with Star-style window
management, while psheet shells may overlap other shells.

sleeps indicates whether this shell can go into the sleeping StarWindowShell.State. If it is
FALSE, we assume that the client software does not take advantage of the possibilities of the
sleeping State (by remembering data from open to open). This argument is used with the
client's transitionProc, discussed later in this chapter.

considerShowingCoverSheet and currentlyShowingCoverSheet indicate whether the
shell should ever possess a cover sheet and, if so, whether the cover sheet should be visible.
What appears in any cover sheet is governed by a cover sheet implementation. See the
section on Errors.

The two readonly arguments define whether this shell is uneditable and whether all she lIs
pushed onto this one should be uneditable. readonlyness is really up to client
interpretation. This information is simply maintained for client convenience. If a shell
below this one in a push stack has pushersAreReadonly set TRUE, then the implementation
forces readonly to TRUE.

scroll Data indicates whether vertical or horizontal scrollbars should appear and allows the
client to supply procedures to be called for various user scrolling actions. (See the section
on scrolling for full details.> The default will cause vertical scrollbars to appear, but not

50-5

50

50-6

StarWindowShell

horizontal. The default scrolling procedures simply slide body windows up or down, left or
right, as appropriate.

garbageCoUectBodiesProc is called when a scroll action causes a body window to be placed
completely outside the shell's interior window. The call thus allows the client an
opportunity to garbage-collect the body window and associated data structures. (See the
section on scrolling.)

isCloseLegalProc is called when the user attempts to close the StarWindowShell or when a
client calls StandardClose, StandardCJoseAII, or StandardCloseEverything. This allows the
client to veto the user's attempt to close the window. If the isCloseLegalProc returns TRUE,
the shell is closed; if the isCloseLegalProc returns FALSE, the shell is not closed. The
isCloseLegalProc is also a convenient way for the client to get control when the window is
being closed.

bodyGravity argument indicates what value for gravity should be used when the
implementation adjusts the size ofa body window.

zone defines the storage area from which all the shell data structures are allocated If
zone. NIL, StarWindowShell creates a zone which will be destroyed when the shell is
destroyed. However, if the client supplies a zone which should be destroyed when the Shell
is destroyed, then the client should call SetDestroyZoneProc (see below). Fine point: The

Window.Objects themselves are not allocated out of the client's zone. If the client allocates child windows using a

zone (Window. Create or Wlndow.New with non-NIL zone). these child windows must be removed from the shell before

it is destroyed. When the sheU's TransitionProc is called with a state of dead, the client should remove those ~,

windows.

CreateWithBitmapUnderOption: PROCEDURE [
transitionProc: TransitionProc +- NIL"
name:xString.Reader +- NIL,
namePicture:XString.Character +- XChar.null,
host: Handle +- NIL.
type: SheliType +- regular,
sleeps: BOOLEAN +- FALSE,
considerShowi ngCoverSheet: BOOLEAN +- TRUE,
currentlyShowingCoverSheet: BOOLEAN +- FALSE,
pushersAreReadonly: BOOLEAN +- FALSE,
readonly: BOOLEAN +- FALSE,
scroliData: Scroll Data +- vaniliaScroliData,
garbageCollectBodiesProc: PROCEDURE [Handle] +- NIL,
isCloseLegalProc: IsCloseKegalProc 4- NIL,
bocIyGravity: Window.Gravity +- nw,
bitmapOption: SitmapUnderOption +- noBitmapUnder,
zone: UNCOUNTED ZONE 4- NIL]
RETURNS [Handle];

BitmapUnderOption: TYPE. {noBitmapUnder, maybeBitmapUnder, bitmapUnder};

CreateWithBitmapUnderOption is identical to Create except for the additional parameter ~
bitmapOption. If bitmapOption is noBitmapUnder, no attempt is made to make the shell
a bitmap-under. If bitmapOption is bitmapUnder, the shell will be a bitmap-under
window if enough storage space is available. If bitmapOption is maybeBitmapUnder.

~'

View Point Programmer's Manual 50

StarWindowShell will use SheliType to decide. Currently only shells of type psheet will be
bitmap-under windows if bitmapOption is maybeBitmapUnder. Note that
StarWindowShell will manage the space used for the shell's bitmap-under. Fine Point:

CreateWith8itmapUnderOption and BitmapUnderOption are currently e!:ported through

StarWindowSheUExtraS.

Handle: TYPE • RECORD [Window.Handlel;

Create and CreateWithBitmapOption returns a Handle. Any procedure that takes a
Window.Handle also takes a StarWindow5hell.Handle, but not the other way around. (The
Mesa compiler automatically strips off the brackets and passes the Window.Handle if a
StarWindowsheU.Handle is passed). In particular, a Context may be hung directly off a
StarWindowSheti (see the Context interface-). The Handle returned by Create is then used
as the tll"st parameter to most other calls to StarWindowSheli.

null Handle: Handle. [NIL];

null Handle is provided as a convenience.

ManagerFromShell: PROCEDURE [sws: Handle)
RETURNS [swmanager: window.Handle);

Given a shell (sws) return its swmanager. The swmanager is the descendant window of
the shell which "just fits" in the shell's interior. It may be used in conjunction with the
subwindow interfaces to divide the shell into subwindows. See the Subwindow Overview
Chapter for more information concerning the use of the subwindow package.

IsCloseLegalProc: TYPE. PROCEDURE [sws: Handle,
closeAII: BOOLEAN +- FALse] RETURNS [BOOLEAN];

closeAIi indicates whether the user selected Close or CloseAll.

Destroy: PROCEDURE [sws: Handle);

Destroys the StarWindowShell and associated data. First, the client's transitionProc is
called with state = dead. Next, all the shell data is freed. Finally, if the zone was supplied
by the client then any DestroyZoneProc registered by SetDestroyZoneProc is called.
Otherwise, theStarWindowShell creat~d zone is destroyed. May raise Error [notASWS).

DestroyZoneProc: TYPE = PROCEDURE [Z: UNCOUNTED ZONE. clientData: LONG POINTER ~ NIL);

SetDestroyZoneProc: PROCEDURE [
sws: Handle, proc: DestroyZoneProc +- DefaultDestroyZoneProc,
clientData: LONG POINTER +-Nll] RETURNS [oldProc: DestroyZoneProc,oldClientData:

LONG POINTER];

A DestroyZoneProc is called at the end of the process of destroying a shell, allowing the
client to destroy a zone that was created before the shell was created. That is, if the client
supplies a zone parameter to Create, then destroying that zone should be done in a
DestroyZoneProc. SetDestroyZoneProc associates a proc with the sws. oldProc and
oldClientData are the previous values or NIL. See Usage/Examples.

50-7

50

50-8

Star WindowShell

DefaultDestroyZoneProc: DestroyZoneProc;

DefaultDestroyZoneProc calls Heap.Delete, so it may be used by clients that use the Heap
package for the zone parameter to Create.

GetDestroyZoneProc: PROCEDURE [sws: StarWindowShell.Handle)
RETURNS (oldProc: DestroyZoneProc. oldClientData: LONG POINTER);

GetDe5troyZoneProc returns the current settings for DestroyZoneProc and clientData.
Fine point: DestroyZoneProc. SetDestroyZon .. Proc. GetDestroyZoneProc and DefaultOestroyZoneProc are

defined in StarWindowSheUExtra5.mesa

SheliType: TYPE. {regular(O), -keyboard, psheet. attention, static,last(1 S)};

SheliType influences how a shell behaves in several regards. regular shells have a ?
command, a Close command, and a Close All command if opened on top of another shell.
With Star-like overall screen management, regular shells do not overlap; they change size
whenever a window is opened or closed. psheet shells do not have any StarWindowShell­
supplied commands and freely overlap other shells. The PropertySheet interface uses
psheet shells to create property sheets. static shells are exempted from any overall screen
management; for example, a static shell is not shrunk to make room for a regular shell
when the overall screen management is Star-like. Some clients may find this useful. Most
clients do not use keyboard, psheet, or attention types.

StandardClose: PROCEDURE [sws: Handle) RETURNS [Handle];

StandardCloseAII: PROCEDURE [sws: Handle) RETURNS [Handle];

StandardClose and StandardCloseAIi provide procedural access to the Close and Close All
commands that are placed in a shell's header automatically by StarWindowShel1. These
procedures call the client's isCloseLegalProc and transitionProc, just as if the user had
selected the command. If StandardClose or StandardCloseAIi is not successful, the return
parameter is the shell that did not close; otherwise, the return parameter is NIL. May raise
Error [notASWS].

StandardCloseEverything: PROCEDURE RETURNS [notClosed: Handle];

StandardCloseEverything. closes all open StarWindowShefls. Logoff uses this procedure.
notClosed is the first window that could not be closed because its IsCloseLegalProc
returned FALSE. All windows that can be closed will be. If notClosed is NIL, then all windows
are closed.

NewStandardCloseEverything: PUBLIC PROCEDURE

RETURNS [numberLeftOpen: CARDINAL +- O,lastNotClosed: Handle +- nuliHandle1;

This procedure is the same as StandardCloseEverything except that it also returns the
number of shells that vetoed close. NewStandardCloseEverything is defined in
Star WindowShellExtra. mesa.

SetPreferredDims: PROCEDURE [sws: Handle, dims: Window.Dims 1;

SetPreferredPlace: PROCEDURE [sws: Handle. place: wndow.Place);

View Point Programmer's Manual 50

SetPreferredDims and SetPreferredPtace provide a suggestion as to the desired size and
location oithe shell. Depending on the overall screen management in effect at the time the
shell is displayed, these preferred values may be ignored. M'ay raise Error [notASWS].

GetPreferredDims: PROCEDURE [sws: Handle] RETURNS [box: Window.Dims];

GetPreferredPface: PROCEDURE [sws: Handle] RETURNS [box: wndow.Ptace);

GetPreferredDims and GetPreferredPiace return the current preferred dims and place of
sws. May raise Error [notASWS). These are deimed in StarWindowShellExtra4.mesa.

SetPreferredlnteriorDims: PROCEDURE [sws: Handle, dims: Window.Dims);

SetPreferredlnteriorDims makes the shell just big enough to fit around dims. This means
the interior window will be of size dims. SetPreferredlnteriorDims is defined in
Star WindowShellExtra2.mesa.

[fine point: there is a gridding procedure used when sizing and placing shells on the desktop pattern that may

cause the shell to be resized or moved ±2 bits.)

50.2.1.1 IsCloseLeg~Proc

The client may supply an isCloseLegalProc when a StarWindowShell is created or later by
calling SetisCJoseLegalProc. This client procedure is called when the user attempts to close
the StarWindowShell or when a client calls StandardClose, StandardCloseAII, or
StandardCloseEverything. This allows the client to veto the user's attempt to close the
window. If the isCJoseLegalProc returns TRUE, the shell is closed; if the isCloseLegalProc
returns FALSE, the shell is not closed. The isCJoseLegalProc is also a convenient way for the
client to get control when the window is being closed.

IsCloseLegal: PROCEDURE [sws: Handle, closeAII: BOOLEAN] RETURNS [BOOLEAN1;

IsCloseLegal calls the client's isCJoseLegalProc and returns the value returned from that
call. If there is no isCloseLegalProc, IsCloseLegal returns TRUE. May raise Error [notASWS].

IsCloseLegalProcReturnsFalse: IsCloseLegalProc;

GetlsCloseLegalProc: PROCEDURE [sws: Handle)
RETURNS [lsCloseLegaIProc];

GetlsCloseLegalProc returns the current isCloseLegalProc associated with sws. May raise
Error [notASWS]. .

SetlsCloseLegalProc: PROCEDURE [­

sws: Handle.
proc: IsCloseLegalProc];

SetlsCloseLegaiProc sets the isCloseLegalProc for sws. May raise Error [notASWS].

Note: IsCloseLegalProc: TYPE. PROCEDURE [••• should be in this interface and will be added
in the next release.

50-9

50 StarWindowShell

50.2.1.2 Miscellaneous Get and Set Procedures

50-10

Several procedures that set and return values logically associated with a StarWindowShell
are provided.

GetContainee: PROCEDURE [sws: Handle] RETURNS [Contain ... Data);

GetHost: PROCEDURE [sws: Handle) RETURNS [Handle];

GetName: PROCEDURE [sws: Handle. callBack: PROCEDURE [name: XString.Reader]];

GetReadonly: PROCEDURE [sws:Handle] RETURNS [BOOLEAN) ;

GetType: PROCEDURE [sws:Handle]RETURNs(SheIiType1;

These procedures return the obvious value associated with sws. May raise Error
[notASWS1.

GetZone: PROCEDURE [sws: Handle1 RETURNS [UNCOUNTED ZONE);

When a StarWindowShell is created the client may specify a zone, or the StarWindowShell
implementation may create a zone which will contain all shell-related data items. The
client can use this zone which is returned by GetZone. If the zone was created by the
StarWindowShell implementation then it will be completely garbage-collected when the
shell is destroyed. However, if the zone was supplied by the client then the fate of the zone ~
is up to the client. See also the DestroyZoneProc discussion in section 50.2.1. May raise ~. ...:
Error [notA5WS1.

HaveDisplayedParasite: PROCEDURE [sws: Handle1 RETURNS [BOOLEAN);

HaveDisplayedParasite returns TRUE if a shell is displayed that has this shell (sws) as its
host. (See host under StarWindowShell.Create.) For example, if a property sheet that was
created with host = sws is currently displayed, then HaveDisplayedParasite [sws] returns
TRUE. May raise Error [notASWS].

SetContainee: PROCEDURE [sws: Handle, file: Containee.DataHandle);

SetHost: PROCEDURE [sws, host: Handle1 RETURNS [old: Handle1;

SetName: PROCEDURE [sws: Handle, name: XString.Reader1;

SetNamePicture: PROCEDURE [sws: Handle, picture: XString.Character1;

SetReadOnly: PROC~DURE [sws: Handle, yes: BOOLEAN1;

SetSJeeps: PROCEDURE [SWS: StarWindowShell.Handle, sleeps: BOOLEAN)
RETURNS [old: BOOLEAN];

sleeps • TRUE means the shell can be put to sleep. It is the same as the sleeps parameter to
Create. Fine point: This procedure is currently exported through StarWindowShellExtra. ~

These procedures set the obvious value associated with sws. May raise Error [notASWS].

ViewPoint Programmer's Manual 50

50.2.2 Body Windows

A StarWindowShell is a window (see Window interface) that is a child of the desktop
window. A StarWindowShell has an interior window that is a child of the
StarWindowSheliand is exactly the size of the available window space in the shell (that is,
the StarWindowShell minus its borders and header and scrollbars). The interior window
may have child windows created by the client. These children of the interior window are
called body window8. The client may create an arbitrary number of body windows and
arrange them in an arbitrary fashion. Note: Since the body windows are children of the
interior window, they are clipped by the interior window. A client could, for example,
create a body window that is very much taller than the interior window and accomplish
scrolling by simply sliding the body window around inside the interior window. (This is
actually what the default StarWindowShell scrolling does; for more detail, see the section
onscrolling).

Body windows are created by calling StarWindowShetl.CreateBody. This returns a
Window.Handle. The client c~n create an arbitrary number of body windows. Each body
window is a child of the StarWindowSheWs interior window. The body windows may
overlap or not. They can be in any arrangement the client finds useful. Some common
arrangements of body windows are as follows:

-One very long body window.
This is easy to scroll by simply sliding the body window, which is what the
StarWindowShell default scrolling does.

-One body window with BodyWindowJustFits • TRue.

This is one way to display an infinite amount of data, such as a Tajo-like editor. The
client must keep track of what is currently in the window, use adjust procs, do
scrolling, and so forth. This is difficul t to implement.

-Several body windows about the size of the interior, adjacent, non-overlapping.
This is another way to display an infinite amount of data. The client lets
StarWindowShell do default scrolling, which slides the body windows up or down and
then calls the client to supply more body windows when it runs out. The client might
put one page of text into each body window, supplying pages to StarWindowShell
scrolling as needed.

-Several body windows smaller than the interior, adjacent, non-overlapping.
This can be used to simulate subwindows.

Note: Body windows can themselves have child windows, and so on. A client might
implement frames in a document editor by making each frame a child of a body window.

CreateBody: PROCEDURE [

5WS: Handle,
repaintProc: PROCEDURE [Window.Handle] +- NIL,

bodyNotifyProc: TIP • NotifyProc +- NIL,

box: Window.Box [[0,0].[0,29999]]] RETURNS [Window.Handle];

Create Body creates a body window that is a child of the interior window of sws.
repaintProc is the display procedure 'that is called by the window implementation
whenever part or all of the body window needs to be displayed (see Window.SetDisplayProcL

50-11

50

50-12

StarWindowShell

bodyNotifyProc is a TIP. NotifyProc that is attached to the window along with the normal set ~
of TIP tables and receives notifications for the window (see TIP.SetNotifyProcAndTable and
npsta;.NormaITable). Note: If the client is going to use some ViewPoint interface to turn
the body window into a particular type of window (such as FormWi ndow or
ContainerWindow), these procedures should not be supplied by the client but are supplied
by that interface. box indicates the size and location of the body window within the shell's
interior window. If box.dims.w and/or box.dims.h is zero, the body window takes on the
dims.w and/or dims.h of the shell's interior window. May raise Error [notASWS].

DestroyBody: PROCEDURE [body: Wlndow.Handle);

DestroyBody destroys body and any Context data associated with it. May raise Error
[notASWS].

GetBody: PROCEDURE [sws: Handle) RETURNS [Wi,ndow.Handle);

GetBody returns the eldest body window of sws. The client's body windows may not be the
only child windows of the interior window, and the interior windo~ may not be the only
child of the StarWindowShell window. Therefore the client should never try to enumerate
body windows by calling Window.GetChild and Window.GetSibling starting with the
StarWindowSheli. The EnumerateBodiesXXX procedures should be used instead. May
raise Error [notASWS).

SheliFromChild: PROCEDURE [child: Window.Handle] RETURNS [Handle);

SheliFromChiid returns the shell given any body window or any descendant window of the
shell. The client's body windows may not be the only child windows of the interior window,
and the interior window may not be the only child of the StarWindowShell window.
Therefore the client should never try to get the StarWi ndowShell from a body window by
callingWindow.GetParent. May raise Error [notASWS].

EnumerateBodieslnlncreasingY: PROCEDURE [
sws: Handle. proc: BodyEnumProc] RETURNS [Window.Handle +- NIL];

. EnumerateBodieslnDecreasingY: PROCEDURE [
sws: Handle. proc: BodyEnumProc] RETURNS [Window.Handle +- NIL];

BodyEnumProc: TYPE. PROCEDURE [victim: Window.Handle)
RETURNS [stop: BOOLEAN +-FALSE];

The EnumerateBodiesln .•• procedures enumerate all the body windows of sws, calling proc
for each body window until proc retlJrns stop • TRUE. EnumerateBodieslnlncreasingY
enumerates the body windows in increasing order of Window.GetBox [body).piace.y, and
EnumerateBodieslnOecreasingY enumerates the body windows in decreasing order of
Window.GetBox [body).place.y. Each procedure returns the last body window enumerated
or NIL if all body windows were enumerated. These procedures are especially handy for
clients that do their own scrolling. To minimize repainting when scrolling a set of body
windows upward, it is important to move the upper ones first, and vice versa. May raise
Error [notASWS]. ~

GetBodyWindowJustFits: PROCEDURE [sws: Handle] RETURNS [BOOLEAN];

~ ..

ViewPoin t Programmer's Man ual 50

SetBodyWindowJustFits: PROCEDURE [sws: Handle. yes: BOOLEAN];

Some clients may wish to have a single body window that is automatically resized by the
StarWindowShell implementation to just fit within the interior of the shell. Such a body
window is said to have BodyWindowJustFits = TRUE. If BodyWindowJustFits = FALSE (the
deiault for CreateBody), StarWindowSheli leaves the body window's dimensions alone,
even though the body window may stick out or not fill the shell. GetBodyWindowJustFits
and SetBodyWindowJustFits allow the client to determine and set this just-fits behavior
for a single body window. Settingjust-fits when there is more than one body window yields
undeimed results. May raise Error [notASWS). ,

GetAvailabfeBodyWindowDims: PROCEDURE [sws: Handle)
RETURNS [Window.Dims);

GetAvailableBodyWindowDims returns the current dimensions of the interior window of
sws. May raise Error·[notASWS].

IsBodyWindowOutOflnterior: PROCEDURE [body: Window.Handle]
RETURNS [BOOLEAN];

IsBodyWindowOutOflnterior returns TRUE if all of body is sticking out of the interior
window oiits shell. Le. none oibody is visible in its parent. May raise Error [notASWS).

InstaliBody: PROCEDURE [sws: Handle, body: window.Handle];

InstaliBody installs a previously created window into a StarWindowShell, thus making the
window a body window. Most clients do not need to use this procedure. May raise Error
[notASWS].

DestaliBody: PROCEDURE [body: Window.Handle);

DestaliBody removes body from its StarWindowShel1. Most clients do not need to use this
procedure. May raise Error [notASWS].

50.2.3 Commands and Menus

Every StarWindowShell can have commands and pop-up menus, as in Figure 50.l.
Commands are actually individual menu items (MenuData.ltemHandle), in which the
MenuData.JtemName appears with a rounded corner box around it. When the user clicks
over a command, the MenuData.MenuProc for that item is called. Commands are specified by
calling StarWindowSheU.SetRegularCommands, which takes a MenuData.MenuHandle. Each
item in the menu is displayed as a command on the left side of the header.

A pop-up menu is an ·entire menu. The menu's title appears with a rounded corner box
around it on the right side of the shell's header. When the user buttons down over the
menu's title, a small window appears next to the pointer with one line for each menu item.
When the user selects one of the items, that item's MenuData.MenuProc is called. Pop-up
menus are specified by calling StarWindowShell.AddPopupMenu.

50-13

50

50-14

StarWindowShell

The Window.Handle that is passed to the MenuData.MenuProc for a command or pop-up menu ~
item is the Window.Handle for the StarWindowShell that the command or pop-up menu is
currently displayed in.

StarWindowShelis that are of type regular (see StarWindowShell.SheIiType) always have
system commands leftmost in the header. When a shell is directly on the desktop, the
system command is Close. When a shell is opened within another, the system commands
are Close and Close All'.

Note: Commands may be added to and removed from a StarWindowShell by using
MenuOata.Addltem,and so forth.

The implementation automatically overflows the rightmost commands into an overflow
pop-up menu when all of them will not fit in the header. If all the pop-up menus will not fit
in the header. the leftmost items are overflowed into the rightmost pop-up menu. The
rightmost pop-up menu is always guaranteed to be displayed, because shells are not
allowed to be so small that no pop-up menu will tit.

SetRegularCommands: PROCEDURE [
sws: Handle, commands: Menuoata.MenuHandle] ;

SetRegubJrCommands associates commands with sws. May raise Error [notASWS].

GetRegularCommands: PROCEDURE [sws: Handle)
RETURNS [Menuoata.MenuHandle);

GetRegularCommands returns the regular commands associated with sws. May raise Error
[notASWS].

AddPopupMenu: PROCEDURE [
sws: Handle, menu: MenuData.MenuHandle] ;

AddPopupMenuX: PROCEDURE [
sws: StarWindowSheU.Handle. menu: MenuOata.MenuHandle. repaint: BOOLEAN);

AddPopupMenu and AddPopupMenuX add menu to the available pop-up menus in sws.
The title of menu is displayed in the StarWindowSheli header with the small pop-up menu
symbol (.) just to the left of it, enclosed in a rounded corner box. Note: Any arbitrary
symbol (less than the height of the system font) can be part of the title by using
SimpleTextFont.AddCJientDefinedCharacter. AddPopupMenu causes an immediate
redisplay of the header. AddPopupMenuX only repaints if repaint=- TRUE. May raise Error
[notASWS].

SubtractPopupMenu: PROCEDURE [
sws: Handle, menu: MenuData.MenuHandle] ;

SubtractPopupMenuX: PROCEDURE (
swS: StarWindowSheU.Handle. menu: MenuData.MenuHandle, repaint: BOOLEAN);

SubtractPopupMenu and SubtractPopupMenuX remove menu from sws.
SubtractPopupMenu causes an immediate redisplay of the header. SubtractPopupMenuX
only repaints ifrepaint =- TRUE. May raise Error [notASWS).

ViewPoint Programmer's Manual 50

EnumeratePopupMenus: PROCEDURE [sws: Handle. proc: MenuEnumProc];

Enumerates the pop-up menus associated with the shell.

EnumerateAIIMenus: PROCEDURE [sws: Handle. proc: MenuEnumProc];

Enumerates e~ery menu associated with the shell. This includes pop-ups, regular
commands, topPushee commands from the shell underneath, etc. Fine point: This procedure is

currently exported through StarWindowShellExtra.

EnumerateDisplayedMenus: PROCEDURE [sws: Handle. proc: MenuEnumProc];

Enumerates every menu visible in the shell. This includes pop-ups, regular commands,
topPushee commands from the shell underneath, etc. Fine point: This procedure is currently

exported throughStarWindowShellExtra6.

MenuEnumProc: TYPE =- P~OCEDURE [menu: MenuOata.MenuHandle]
RETURNS [stop: BOOLEAN FALSE];

50.2.3.1 Pushee Commands

Facilities are also provided for specifying commands that should appear when a shell has
had oUier shells opened on top of or within it. These facilities are useful only to a client that
implements some type of open-withm capability, such as folders and file drawers. (See the
section on commands and menus for a full discussion of the "open within" illusion.) These
extra commands come in three sets: the set that should be displayed when this shell is just
below the top of the install stack, the set that should be displayed when this shell is
anywhere in the install stack, and the set that should be displayed if this shell is at the
bottom of an install stack. These are the so-called TopPushee, MiddlePushee, and
BottomPushee commands.

Figure 50.2 depicts how these pushee commands, if supplied, will affect the commands
visible in a given shell's header. In Figure 50.2, Shell B is Pushed on top of Shell A and
Shell C is Pushed on top of Shell B. If Shell A is the only shell displayed, Shell A's system
and regular commands appear in the shell's header. With Shell B Pushed on top of Shell A,
Shell B's system and regular commands appear as well as Shell A's bottom pushee, middle
pushee, and top pushee commands. This is because Shell A is on the bottom, in the middle,
and just below the t~p of the stac~ of shells. With Shell C Pushed on top of Shell B, Shell A's
bottom pushee and middle pushee commands appear, but not Shell A's top pushee
commands. Shell B's top pushee and middle pushee commands appear, but not its bottom
pushee commands.

Caution: The Window.Handle passed to the MenuOata.MenuProc for any pushee command is
the Window.Handle of the StarWindowShell that the command is currently displayed in, not
the St~rWindowShell that the command was originally associated with. If the client wants
to be able to recover the StarWindowShell that the command was originally associated
with, it may be saved as the MenuOata.ltemData.

SetBottomPusheeCommands: PROCEDURE [
sws: Handle, commands: MenuData.MenuHandle] ;

50-15

50

50-16

StarWindowShell

SetMiddlePusheeCommands: PROCEDURE [

sws: Handle, commands: MenuData.MenuHandle] ;

SetTopPusheeCommands: PROCEDURE [

sws: Handle, commands: Menuoata.MenuHandle] ;

GetPusheeCommands: PROCEDURE [sws: Handle]
RETURNS [bottom, middle, top: Menuoata.MenuHandle];

May raise Error [notASWS].

A's system menu
A's regular menu

SheilA

8's system menu
8's regular menu
A's bottom pushee menu
A's middle pushee menu
A's top pushee menu

Shell 8

C's system menu
C's regular menu
8's middle pushee menu
B's top pushee menu
A's bottom pushee menu
A's middle pushee menu

Shell C

Figure 50-2. Install Stack of Window Shells

Desktop

ViewPoint Programmer's Manual 50

:)0.2.4 TransitionProcs

A StarWindowShell is always in one of three states: awake, sleeping, or dead. The awake
state indicates that the shell is currently displayed. The sleeping state indicates that the
shell still exists but is not being displayed and therefore resources associated with the
display state should be freed. The dead state indicates the shell is about to be destroyed
and therefore all resources associated with it should be freed.

Every StarWindowShell can have a client-supplied TransitionProc associated with it. This
TransitionProc is called whenever the shell's state changes. The client may then do
whatever is necessary in terms of allocating or freeing resources.

The client may call StarWindowsheu.Create [... sleeps: FALSE •••] to indicate that the
application does nothing interesting with the sleeping state. This may ,cause routines that
would otherwise put the shell in sleeping state (say on a close, where it might be quickly
reopened) to put it in dead state instead!

State: TYPE. {awake(O), sleeping, dead.last(7)};

TransitionProc: TYPE :a PROCEDURE [sws: Handle, state: State];

The TransitionProc is a client-supplied procedure responsible for allocating or deallocating
client data structures when sws's state changes. state is the new state of sws.

When the TransitionProc is called with state. dead, the zone associated with the shell
must not be destroyed yet. If the zone was supplied by the client and should be destroyed,
this must be done in a DestroyZoneProc which will be called later during the Destroy
process. See also the DestroyZoneProc discussion in section 50.2.1 and the GetZone
discussion in 50.2.1.2.

GetSleeps: PROCEDURE[SWS: Handle) RETURNS [BOOLEAN];

GetSleeps returns the value of the sleeps parameter that was passed to Create when sws
was created. If TRUE, then the application responsible for this shell can deal with the
sleeping state. May raise Error [notASWS].

GetState: PROCEDURE [sws: Handle] RETURNS [State] ;

GetState returns the current state ofsws. May raise Error [notASWS].

GetTransitionProc: PROCEDURE [sws:Handle) RETURNS [TransitionProc];

GetTransitionProc returns the current TransitionProc associated with sws. May raise Error
[notASWS].

SetTransitionProc: PROCEDURE [sws: Handle, new: TransitionProc]
RETURNS [old: TransitionProc);

SetTransitionProc sets the current TransitionProc for sws and returns the old one. May
raise Error [notASWS].

50-17

50 StarWindowShell

SetState: PROCEDURE [sws: Handle. state: Statel ;

SetState sets the state of sws and calls the client's TransitionProc as appropriate. Most
clients will not call this procedure. May raise Error [notASWS].

SleepOrDestroy: PROCEDURE [Handle) RETURNs(Handle];

SleepOrDestray either puts the shell in the sleeping state or destroys the shell, depending
on the value of the sleeps BOOLEAN that was passed to Create when the shell was created. If
the shell has the ability to sleep (sleep. TRUE), then the shell is put into the sleeping state;
otherwise, the shell is destroyed. The same shell is returned if the shell was put in the
sleeping state. This returned Handle should be kept somewhere for later use; otherwise,
the shell will be lost. A NIL handle is returned if the shell was destroyed. This procedure
might be used by the desktop implementation when a shell is closed. May raise Error
[notASWS1.

50.2.5 Scrolling

50-18

Only part of an object is usually visible to the user at anyone moment in the interior of a
StarWindowShetl. The user can request to see more of the object by scrolling the contents
up or down inside the shell. The user can perform three kinds of scrolling by using the
scrollbars pictured in Figure 50.1. (1) He can move the contents a littl~ at a time by
pointing at the arrows (up, down, left, right) in the scrollbars. (2) He can move the contents
a page or screenful at a time by pointing at the plus (+) and minus (-) signs. (3)He can
jump to any arbitrary place within the entire extent of the object being viewed by pointing ~I
in the blank part of the vertical scrollbar (this latter operation is called thumbing),

StarWindowSheH provides various levels of support to a client for performing these
scrolling operations. The client can allow StarWindowShell to do all the scrolling
functions, the client can do some of them and leave the rest to StarWindowShell, or the
client can do all scrolling operations. Much of this decision will be based on how the client
chooses to arrange body windows within the shell (see the section on body windows above
and more discussion below). First, we will describe the various types of scrolling and
scrolling procedures that a client can supply; then we will describe the default scrolling
procedures provided by StarWindowShell.

In the simplest (for the client) case, one body window contains the entire extent of the
object being viewed. StarWindowShell can handle all scrolling in this case. The client
simply defaults the scroliData parameter in the call to StarWindowshell.Create. When the
user points at an arrow, StarWindowShell moves the body window a small amount. When
the user point at plus or minus, StarWindowShell moves the body window by one interior
window's height. When the user thumbs, StarWindowShell will move the body window to
an appropriate place based on its overall height.

In a slightly more complex case, body windows are butted up against one another. When
. the user points at an arrow, StarWindowShell moves all the body windows a small amount.

When the user point at plus or minus, StarWindowShell moves all the body windows by
one interior window's height. When the user thumbs, StarWindowShell moves all the body
windows to an appropriate place based on the combined overall height of the body windows. ~
However, in this case the client often does not have the entire extent of the object displayed
in these body windows but rather wants to tack new body windows on each end as these
body windows are scrolled off. The client can do this by providing a MoreScrollProc for the

ViewPoint Programmer's Manual 50

shell. StarWindowShell calls the client's MoreScroliProc whenever it runs out of body
windows.

In the most comple" case, the client has ,a single body window that "just fits" (see
SetBodyWindowJustFits in the section on body windows), and only part of the entire object
is displayed at anyone time. The client must provide all the scrolling functions for this
case. This means providing an ArrowScroliProc (to handle the user's pointing at the
arrows, plus, and minus) and a ThumbScroUProc (to handle the user's thumbing).

Of course, the client may provide its own scrolling procedures for any of the above cases,
even the simple one, to override the type of scrolling that StarWindowShel1 provides.

ScroliData: TYPE. RECORD [

displayHorizontal: BOOLEAN FALSE,

displayVertical: BOOLEAN FALSE,

arrowScroll: ArrowScroliProc NIL,

thumbScroU: ThumbScroliProc NIL,

moreScroll: MoreScroll1 Proc NIL 1;

Scroll Data is passed to Create and SetScroliData to specify the desired scrolling.
displayHorizontal indicates whether the shell should have a horizontal scrollbar.
displayVertical indicates whether the shell should have a vertical scrollbar. arrowScroll is
called when the user points at the arrows or at the plus or minus signs. thumbScroll is
called when the user thumbs. These procedures are expected to perform the appropriate
scroll, probably by moving body windows with wlndow.Slide. If either arrowScroll or
thumbScroll are NIL, StarWindowShell provides default scrolling procedures
(VanillaArrowScroll and VaniliaThumbScroll) that operate as described above. moreScroH
is called when VanillaArrowScroll or VanillaThumbScroll needs more body windows to be
supplied by the client. The client should never need to supply both an arrowScroll and a
moreScroll.

ArrowScroliProc: TYPE :II PROCEDURE [

sws: Handle,
vertical: BOOLEAN,

flavor: ArrowFlavor,
arrowScroliAction: ArrowScroliAction go];

ArrowFlavor: TYPE :II (pageFwd, pageBwd, forward, backward};
•

An ArrowScroliProc is called whenever the user points at an arrow or the plus or minus
sign in a scrollbar. The ArrowScroliProc is expected to scroll the contents of sws as
appropriate. vertical indicates whether to scroll vertically (TRUE) or horizontally (FALSE).

flavor indicates what type of scrolling the user requested. pageFwd means the user pointed
at the plus sign (vertical • TRue) or the right margin symbol (vertical • FALse). pageBwd
means the user pointed at the minus sign (vertical • TRUE) or the left margin symbol
(vertical • FALSE). forward means the user pointed at the up-pointing arrow (vertical •
TRUE) or the left-pointing arrow (vertical • FALSE). backward means the user pointed at the
down-pointing arrow (vertical • TRUE) or the right-pointing arrow (vertical • FALSE). The
ArrowScroliProc will be called repeatedly as long as the user has the mouse button down
over one of the arrows, thus producing continuous scrolling. Note:

50-19

50

50-20

StarWindowShell

Enhumeratell~odibesdlnln~redaSing(Y anhd En~meratbeBdodi~sdlnDec} reasingY are quite useful ~
w en scro lng 0 y wln ows see t e sectIon on 0 y WIn OWS .

ArrowScroliAction: TYPE. {start. go, stop};

start indicates the user just buttoned down. go indicates the user still has the button down.
stop indicates the user just buttoned up. This allows clients to scroll body windows without
repainting until the ArrowScroliProc is called with arrowScroliAction • stop.

ThumbScroliProc: TYPE a PROCEDURE [
sws: Handle. vertical: BOOLEAN. flavor: ThumbFtavor, m. outOfN: INTEGER1;

ThumbFlavor: TYPE a {downClick. track. upCJick};

A ThumbScroliProc is called whenever the user points in the thumbing part of the vertical
scrollbar. vertical is always TRUE (horizontal thumbing is not currently allowed). flavor
indicates whether the user has just buttoned down (downClick), is moving the mouse with
the button down (track), or has just released the button (upClick). Usually, the actual
scrolling does not take place until the upCJick. downClick and track give the client an
opportunity to display information to the user, such as what page number the current
cursor location corresponds to (see Cunor.NumberlntoCursor). m and outOfN indicate
where the cursor is with respect to the entire extent of the thumbing area. For example, if
m = 200 and outOfN = 400, the user wants to thumb to the middle of the entire object.
Note: EnumerateBodieslnlncreasingY and EnumerateBodieslnDecreasingY are quite
useful when scrolling body windows (see the section on body windows). ~

PaintThumbFeedBack: PRoe [sws: Handle, offset: Percent. portion: Percent Eo- 0];

EraseThumbFeedBack: PRoe [sws: Handle);

GetScrolibar: PROC [sws:Handle, vertical: BOOLEAN Eo-TRUE] RETURNS [Window.Handle);

Percent: TYPE. INTEGER (0 .. 100];

PaintThumbFeedback, etc. support the painting of feedback into the thumbing region of a
scrollbar. These items are defined in StarWindowShellExtra3.mesa.

PercentOf: PRoe [v: INTEGER. p: Percent) RETURNS [INTEGER];

PercentOf expresses p in terms ofv. For example, m Eo- PercentOf[OutOfN, offset1 .

Percentage: PRoe [part. full: INTEGER) RETURNS [Percent);

Percentage returns th~ percentage of part to full. For example, offset Eo- Percentage[m,
OutOfN].

PaintThumbFeedback, etc. support the painting of feedback into the thumbing region of a
scrollbar. These items are defined in StarWindowShellExtra3.mesa.

MoreScroliProc: TYpe a PROCEDURE [
sws: Handle, vertical: BOOLEAN, flavor: MoreFlavor, amount: CARDINAL1;

ViewPoint Programmer's Manual 50

MoreFlavor: TYPE = {before. after};

A MoreScroliProc is called by the default StarWindowShell scrolling procedures,
VanillaArrowScroll and VaniliaThumbScroll, whenever more body windows are needed to
continue scrolling. This is used when the client has several body windows butted against
one another. When the user points at an arrow, VanillaArrowScroll moves all the body
windows a small amount. When the user point at plus or minus, VanillaArrowScroll moves
all the body windows by one interior window's height. When the user thumbs,
VaniliaThumbScroll moves all the body windows to an appropriate place based on the
combined overall height of the body windows. However, the client often does not have the
entire extent of the object displayed in these body windows but rather wants to tack on new
body windows on each end as these body windows are scrolled off. This is when the client's
MoreScroliProc is called. vertical indicates whether the user was scrolling vertically or
horizontally. flavor indicates whether to tack on more body windows before (that is, the
user was scroHing down for vertical • TRUE, right for vertical • FALSE), or after (that is, the
user was scrolling up for vertical • TRUE, left for vertical • FALSE). amount indicates how
much extra body window is needed. in screen dots.

The client's moreScroll procedure is responsible for adding and deleting body windows from
the shell. The case being handled is that in which the client has a large number of pages to
display to the user and wishes to manifest only a few. Then we need to handle the case in
which system scrolling would make a non-manifest page visible, and there is no body
window for it. Whenever the system is about to perform a scroll function, it checks to see if
the scroll action would move the visible portion of the bodies off the end of the existent body
windows. If so, it calls a non-nil client MoreScroliProc, indicating how much more body
window may be displayed. The client may augment the collection of body windows or not.
The system routines will not scroll past the end of the body windows. The client may also
use this opportunity to garbage-collect body windows that have been scrolled otT the other
end and are no longer visible.

noScroliData: Scroll Data +- [];

noScroliData indicates no scrollbars at all.

vaniliaScroliData: Scroll Data +- [
displayHorizontal: FALSE,

displayVertical: TRUE,

arrowScroll: NIL, -- actually VanillaArrowScroll
thumbScroll: NIL,-- actually VaniliaThumbScroll
moreScroll: NIL 1;

vaniliaScroliData is the default for the scroliData parameter to Create. It indicates
avertical scrollbar with the StarWindowSheli. VanillaXXXScroll procedures described above.

GetScroliData: PROC£DURE [sws: Handle] RETURNS [scroliData: ScroIiData];

GetScroliData returns the current Scroll Data associated with sws. May raise Error
[notASWS).

SetScroliData: PROCEDURE [sws: Handle, new: Scroll Data)
RETURNS [old: ScroIiData);

50-21

50 StarWindowShell

SetScroU Data sets the current Scroll Data for sws and returns the previous. May raise Error ~,
[notASWS].

vanillaArrowScroll: ArrowScroliProc;

vaniliaThumbScroll: ThumbScroliProc;

The default scrolling procedures that StarWindowShell provides are exported here. This
allows a client to insert its own scroll procedures, check for certain conditions that it wants
to handle, and call StarWindowShell to do the scrolling for other conditions.

50.2.6 Push. Pop, etc.

50-22

The StarWindowSheli returned by Create is not displayed on the screen; that is, is not
inserted into the visible window tree. A StarWindowShell may be inserted into the window
tree by calling Push. This is usually not done by the client but rather by some other part of
ViewPoint, such as the desktop implementation. For example, when the user selects an
icon and presses OPEN or PROPS, the application (actually the application's
Contain ••• GenericProc) creates a StarWindowShell and returns it. The desktop
implementation then displays the StarWindowShell by doing a Push.

A StarWindowShell is removed from the screen by calling Pop. Clients almost never call
Pop. Rather, StarWindowShell calls Pop when the user selects Close, or PropertySheet
calls Pop when the user selects Done or Cancel.

Push allows one shell to be pushed on top of another shell, thus providing the illusion of
"open-within." For example, Star folders and file drawers use this illusion.
StarWindowShell has provisions for a shell to display commands in the header of the shells
pushed on top of it. (See the section one Pushee commands.) Most clients will not make use
of this feature of Push, because the ContainerWindow _interface takes care of this for
applications that appear as a list of items that may be opened. Fine point: We simplify things here

by replacing the entire shell. When the shell on top is closed. the shell below still exists and is simply redisplayed.

Push: PROCEDURE [

newShell: Handle. topOfStack: Handle +- NIL.

poppedProc: PoppedProc +- NIL);

Push displays newShell by inserting it into the visible window tree. If topOfStack is NIL,

newShell is placed directly on the desktop. IftopOfStack is notNIL, then newShell is pushed
on top of topOfStack and topOfStack is removed from the display (but see the fine point
below). IftopOfStack is not NIL, it must be currently visible (that is, does not have another
shell Pushed on top of it). IfpoppedProc is not NIL, it is called when newShell is Popped. The
poppedProc must either sleep the shell or destroy the shell, usually by calling
SleepOrDestroy. If poppedProc is NIL, newShell will be destroyed when it is Popped. ~ote
that Push can be called repeatedly with topOfStack being the newShell from the previous
call, thus producing a stack of StarWindowShelis. May raise Error [notASWS].

Fine point: For open-within. we are experimenting with opening the newS hell overlapping the topOfStack shell.

allowing the user"lto look at the container and the thing contained at the same time. This has some rather complex ~\
implications with respect to having' two views of the same things. being able to open several contained items at

once, apd so forth.

View Point Programmer's Manual 50

PushedMe: PROCEDURE [pushee: Handle) RETURNS [pusher: Handle);

Pushed Me returns the next lower shell below pushee in the stack (NIL if none). PushedMe
is defined in Star WindowShellExtra. mesa.

PushedOnMe: PROCEDURE [pusher: Handle] RETURNS [pushee: Handle];

This procedure returns the next higher shell above pusher in the stack (NIL if none).
PushedOnMe is deimed in StarWindowShellExtra.mesa.

PoppedProc: TYPE :I PROCEDURE (popped, newSheU: Handle,
popOrSwap: PopOrSwap ~ pop);

PopOrSwap: TYPE. {pop, swap};

popped is the shell that is being taken out of the visible window tree. newShetl is the shell
that becomes visible because of popped being popped. It is NIL if popped was not opened
within another window. popOrSwap indicates the action that caused the shell to be
popped, either StarWlndowShell.POp or StarWindowShell.Swap.

Pop: PROCEDURE [popee: Handle) RETURNS [Handle);

Pop removes popee from a stack of shells and returns the shell that is now on top of the
stack. If popee was Pushed with a poppedProc, this poppedProc is called. If popee is not
the top of a stack, then all shells above it in the stack are Popped. May raise Error
[notASWS].

Swap: PROCEDURE [
new, old: Handle,
poppedProc: PoppedProc +- NIL] ;

Swap replaces old, which must be the top of a stack, with new. Equivalent to a Pop
followed by a Push, but with a lot less screen flashing. May raise Error [notASWS). Folder
uses this procedure when doing a "Show Previous".

Replace: PROCEDURE [new, old: Handle];

Replaces the old shell with new without calling old's PoppedProc. old's PoppedProc
becomes the PoppedProc for new. Fine point: This procedure is currently exported through

StarWindowSheIlExtra.. TTY uses this procedure when going from the option sheet to the tty
window. (The option sheet's MenuItemsProc calls. StarWindowSheUExtra.Replace then
returns ok:l FALSE to MenuItemsProc's caller.)

Note that the application is responsible for destroying the extra shell, since the
PoppedProc (when it does eventually get called) will destroy only the shell actually
being popped. Thus, in general, the application should call SWS. Destroy on the psheet
shell sometime after doing the Replace.

50.2.7 Limit and Adjust Proes

Limit and Adjust procs are client-supplied procedures that allow a client to get control
whenever a StarWindowShell is going to change size or location. A LimitProc gives the

50-23

50 StarWindowShell

client control over the size and placement of a shell. An AdjustProc gives the client an
opportunity to fix up the data structures and display for the shell's body window(s).

LimitProc: TYPE :I PROCEDURE [sws: Handle, box: Window.Box) RETURNS [Window.Box];

GetLimitProc: PROCEDURE [sws: Handle] RETURNS [LimitProc];

SetLimitProc: PROCEDURE [sws: Handle, proc: LimitProc] RETURNS [old: LimitProc);

Whenever the size or location of a shell is going to change, the client's LimitProc is called.
This allows the client to exercise veto or modification rights over the size and location of a
StarWindowSheli. This is useful, for example, to prohibit a shell from becoming smaller
than some certain size or from being moved completely off the screen. box is the requested
size of the shell. The LimitProc should return the desired size of the shell. The LimitProc is
called before the AdjustProc. The interior box of the shell box returned by the LimitProc is
passed to the AdjustProc. GetLimitProc and SetLimitProc may raise Error [notASWS].

-StandardLimitProc: LimitProc;

A StandardLimitProc is provided that keeps shells on the screen and keeps them from
getting too small.

AdjustProc: TYPE :I PROCEDURE [SWS: Handle, box: Window.Box, when: When];

When: TYPE a {before, after};

GetAdjustProc: PROCEDURE [sws: Handle] RETURNS [AdjustProc];

SetAdj':JstProc: PROCEDURE [sws: Handle, proc: AdjustProc] RETURNS [old: AdjustProc];

."

The AdjustProc is called whenever the shell is going to change size. It is called both before
and after the window's size is changed. The box passed to the AdjustProc is the interior
window's box (the client's viewing region in the shell). The when parameter indicates
whether the current call is before or after the window's size has been changed. An
AdjustProc is for those clients whose body window display depends on the size of the
surrounding shell. For example, if the body window sticks out of the interior of the shell
and the user must scroll the body window horizontally to see all the contents, then no
AdjustProc is needed. If, on the other hand, the content of the body window is always kept
visible regardless. of the size of the shell (by wrapping the contents around as in the Tajo
FileWindow editor), then the client needs an AdjustProc. GetAdjustProc and SetAdjustProc
may raise Error [notASWS].

50.2.8 Displayed StarWindowShells

50-24

EnumerateOisplayed: PROCEDURE [proc: ShellEnumProc] RETURNS [Handle ... [NIL)];

EnumerateOisplayedOfType: PROCEDURE [ShellType, proc: SheliEnumProcl
RETURNS [Handle "'[NIL]];

EnumerateMyOisplayedParasites: [sws: Handle, proc: SheliEnumProcl
RETURNS [Handle ... [NIL)];

ViewPoint Programmer's Manual

SheliEnumProc: TYPE :II PROCEDURE [victim: Window.Handle1
RETURNS [stop: BOOLEAN +-FALSE);

50

These procedures enumerate visible StarWindowShelis. Each one returns the last shell
incurred in the enumeration if the SheliEnumProc returns TRUE; otherwise, they return NIL.
EnumerateMyDisplayedParasites may raise Error [notASWS].

50.2.9 Errors

Error: ERRoR(code: ErrorCode];

ErrorCode: TYPE :II {desktopNotUp, notASWS, notStarStyle" tooManyWindows};

50.3 Usage/Examples

50.3.1 Example 1

-- Create a StarWindowShell - simple case

CreateShell: PROCEDURE RETURNS [StarWindowShell.Handle) •
BEGIN

another: XString.ReaderBody +- XString.From~TRI NG{" Another II LJ;
repaint: XString.ReaderBody +- XString.FromSTRI NG{" Repai nt" LJ;
post: XString.ReaderBody +- XString.FromSTRI NG["Post A Message II LJ;
sampleTool: XString.ReaderBody +-XString.FromSTRING["Sample Tool ilL];

-- Create the StarWindowShell
- Note: Since a zone was not supplied, one will be created (and destroyed) for you.
shell: StarWindowSheU.Handle • StarWindowShetl.Create [name: @sampleTool];

-- Create a body window inside the StarWindowShell
body: Window.Handle :II StarWindowsheu.CreateBody [

sws: shell,
box: [[0,0), bodyWindowDims],
repaintProc: Redisplay,
bodyNotifyProc: NotifyProc];

-- Create some menu items
Z: UNCOUNTED ZONE +- Star'IJindowSheu.GetZone [shelll;
items: ARRAY [0 •• 3) OF MenuData.ltemHandle +- [

MenuData.Createltem [zone: z, name: @another" proc: MenuProcl"
MenuData.Createltem [zone: z, name: @repaint, proc: RepaintMenuProc]"
MenuData.Createltem [zone: z, name: @post, proc: Post]];

myMenu: MenuData.MenuHandle :II MenuData.CreateMenu [
zone: z,
title: NIL"
array: DESCRIPTOR [items)];

StarWindowSheU.SetRegularCommands [sws: shell, commands: myMenu];

50-25

50 StarWindowShell

- The calling procedure will call StarWindowShell,Push on the returned shell to make ~
-- the shell visible.
RETURN [shell];

END; - ofCreateshel1

50.3.2 Example 2

50-26

-- Create a StarWindowShell using a client supplied Zone
_. There are various Heap checking tools for determining the
-. appropriate parameters to be used when creating the Zone.
_. Performance can be dramatically affected by these parameters.

Createshell :PROCEDURE RETURNS [StarWindowShetl.Handle) •
BEGIN

myZone: UNCOUNTED ZONE=- Heap.Create{initial: 51;
sampleTool: xString.ReaderBody +-XString.FromsTRING{"Sample Tool"L);

-- Create the StarWindowShel1
- Now a zone and a TransitionProc were specified.
shell: StarWindowsheu.Handle • StarWindowShetl.Create [
name: @s~mpleTool.zone: myZone. transitionProc: MyTransitionProc);

- Need to define the Destroy~oneProc so we can destroy the zone at the end. ~
-Since we are using Heap to create the zone, we will use
-- the DefaultDestroyZoneProc which does not examine client data, so leave it NIL.
[) +- StarWi ndowShel1 Extra 5. SetDestroyZoneProc[
sws: shell, proc: DefaultDestroyZoneProc];

- The rest of this procedure is exactly as shown in EXAMPLE 1

END; - of CreateS hell

MyTransitionProc: StarWindowShell.TransitionProc •
BEGIN

-This procedure will do various tasks when the shell is Created or Destroyed.
_. It could allocate data structures (state = awake) or
-- It could deallocate data used only while the shell was open (state = sleeping).
_. It could deallocate all data created for this instance of the tool (state = dead).
-. This example handles only the destruction (state = dead) state.

SELECT state FROM

awake. > NULL;

sleeping • > NULL;

dead. > {

ViewPoint Programmer's Manual

•• The zone and shell is still around. Client allowed to muck with
•• the data contained therein. For example, copy it into a file
z: UNCOUNTED ZONE +- StarWindowShell.GetZone(sws1;

- Do some miscellaneous cleanup •

50

•• NOTE: Cannot delete the Zone - StarWindowSheU.Destroy is not finished yet!
};

ENDCASE;

END; - of MyTransitionProc

50.3.3 Example 3

-- Destroy the client supplied Zone in the background
- This example does as much as possible in FORKed procedures
•• so that the shell can be closed as fast as'possible.
- Note that Process. TooManyProcesses is always handled when FORKing.

CreateShell : PROCEDURE RETURNS [StarWindowShell.Handle] •
BEGIN

myZone:'UNCOUNTED ZONE. Heap.Create[initial: 5);
sampleTool: X5tring.ReaderBody +-X5tring.FromSTRING{"Sample Tool"L];

_. Create the StarWindowShell
- A zone and a TransitionProc were specified.
shell: StarWindowShell.Handle • StarWindowShell.Create [
name: @sampleTool,zone: myZone, transitionProc: MyTransitionProc];

•• Do NOT register the DestroyZoneProc yet!

- The rest of this procedure is exactly as shown in EXAMPLE 1

END; - of CreateShell

DestroyZoneProcData: TYPE. RECORD [process: PROCESS];

MyTransitionProc: StarWindowShell.TransitionProc •
BEGIN

- This procedure will do cleanup in the background.

SELECT state fROM

awake • > NULL;

sleeping • > NULL;

dead. > {

- The zone and shell is still around. -,,0 some miscellaneous cleanup in the background

50-27

50

50-28

StarWindowShell

cJientData: LONG POINTER TO DestroyZoneProcData;
z: UNCOUNTED ZONE +- StarWindowSheII.GetZone(sws);

- Do the cleanup in another process. II this is impossible,
- then recover as gracefully as possible.
_. Do not change Process.Priority 01 the cu"ent (NOTIFIER)
- process - dire results possible.
p: PROCESS +- FORK CJeanup(z, TRUE! Process.TooManyProcesses • > {

CJeanup(z, FALSE1;
Heap.Delete{z) ;
EXIT}];

- Need to remember the process that is doing Cleanup.
clientData +- z.NEW(DestroyZoneProcData +- [pl1;

- call SetDestroyZoneProc now that we have the clientData for it.
[] +- StarWindowSheIlExtraS.SetDestroyZoneProc[

sws, MyDestroyZoneProc, clientData];

};

ENDCASE;

END; - 01 MyTransitionProc

Cleanup: PROC [z: UNCOUNTED ZONE, backgroundOK: BOOLEAN] •
BEGIN

- Do whatever cleanups are necessary.

- Cannot delete the zone.
- StarWindowShefi is not yet finished with it.

-If not in the NOTIFIER then ok to change priority.
IF backgroundOK THEN Process.SetPriority(Process.priorityBackground);

END; - of Cleanup

MyOestroyZoneProc: S~arWindowSheIIExtraS.DestroyZoneProc •
BEGIN

- Want to return as quickly as possible so FORK the actual destroy.
- Guaranteed that StarWindowShell is finished with the zone at
... this point. Now it is safe to destroy the zone.
Process.Detach[
FORK DoDestroylnBackground[z, clientData, TRUE

! Process. TooManyProcesses • > {
DoDestroylnBackground[z, clientData, FALSE];
CONTINUE}]);

END; •• of MyDestroyZoneProc

ViewPoint Programmer's Manual 50

DoOestroylnBackground: PROC [z: UNCOUNTED ZONE. c1ientOata: LONG POINTER TO
DestroyZoneProcData, backgroundOK: BOOLEAN] •
BEGIN

- Grab my data out of heap before deleting it.
- This is where I stored the Cleanup process.
destroyZoneProcData: DestroyZoneProcData • clientData f ;

-If not in the NOTIFIER then ok to change priority.
IF backgroundOK THEN Process.SetPriority{Process.priorityBackground];

- Wait until Cleanup process is done with zone
JOIN destroyZoneProcData. process;

- Now delete the zone.
Heap.Delete{z];

END: - of DoDestroylnBackground

50-29

50' StarWindowShell

50.4 Index of Interface Items ~

Item Page Item Page

AddPopupMenu : PROCEDURE 14 GetState: PROCEDURE 16
AddPopupMenuX: PROCEDURE 14 GetTransitionProc: PROCEDURE 16
AdjustProc: TYPE 22 GetType: PROCEDURE 8
ArrowFIavor: TYPE 18 GetZone:PRoCEDURE 8
ArrowScrollAction: TYPE 18 Handle: TYPE 6
ArrowScroliProc: TYPE 18 HaveDisplayedParasite: PROCEDURE 9
BitmapUnderOption: TYPE 6 InstaliBody: PROCEDURE 12
BodyEnumProc: TYPE 11 IsBodyWindowOutOfl nterior: PROCEDURE 11
Create: PROCEDURE 4 IsCJoseLegal: PROCEDURE 8
Create Body : PROCEDURE 10 IsCloseLegalProc: TYPE 6
CreateWithBitmapU nderOption: PROCEDURE 6 IsCJoseLegalProcReturnsFalse: PROCEDURE 8
DefaultDestroy ZoneProc: OestroyZoneProc 8 LimitProc: TYPE 22
DestaliBody: PROCEDURE 12 ManagerFromShell: PROCEDURE 7
Destroy: PROCEDURE 6 MenuEnumProc: TYPE 13
DestroyBody~ PROCEDURE 10 MoreFlavor: TYPE 19
Destroy ZoneProc: PROCEDURE 7 MoreScroliProc: TYPE 19
EnumerateAIIMenus: PROCEDURE 15 NewStandardCJoseEverythi ng: PROCEDURE 7
EnumerateBodieslnDecreasingY: PROCEDURE 11 nOScroliData: Scroll Data 20
EnumerateBodieslnlncreasingY: PROCEDURE 11 null Handle: Handle 6
EnumerateDisplayed: PROCEDURE 23 PaintThumbFeedBack: PROCEDURE 19
EnumerateDisplayedMenus: PROCEDURE 15 Percent:TYPE ~

EnumerateDisplayedOfType: PROCEDURE 23 Percentage: PROCEDURE 1J
EnumerateMyDisplayedParasites: PROCEDURE 23 PercentOf: PROCEDURE 19
EnumeratePopupMenus: PROCEDURE 15 Pop: PROCEDURE 22
EraseThumbFeedBack: PROCEDURE 19 PopOrSwap: TYPE 21
Error: ERROR 23 PoppedProc: TYPE 21
ErrorCode: TYPE 23 Push: PROCEDURE 21
GetAdjustProc: PROCEDURE 22 PushedMe:PRocEDURE 21
GetAvailableBodyWindowDims: PROCEDURE 11 PushedOnMe: PROCEDURE 21
GetBody: PROCEDURE 10 Replace: PROCEDURE 22
GetBodyWi ndowJustFits: PROCEDURE 11 Scroll Data: TYPE 17
GetContainee: PROCEDURE 8 SetAdjustProc:PROCEDURE 23
GetDestroyZoneProc: PROCEDURE 7 SetBodyWindowJustFits: PROCEDURE 11
GetHost: PROCEDURE 8 SetBottomPusheeCommands: PROCEDURE 15
GetlsCJoseLegalProc: PROCEDURE 8 SetContainee: PROCEDURE 9
'GetLimitProc: PROCEDURE 22 SetDestroyZoneProc: PROCEDURE 7
GetName: PROCEDURE 9 SetHost: PROCEDURE 9
GetPreferredDims: PROCEDURE 7 SetlsCJoseLegalProc: PROCEDURE 8
GetPreferredPlace: PROCEDURE 7 SetLimitProc: PROCEDURE 22
GetPusheeCommands: PROCEDURE 14 SetMiddlePusheeCommands: PROCEDURE 16
GetReadonly: PROCEDURE 8 SetName: PROCEDURE 9
GetRegularCommands: PROCEDURE 14 SetNamePicture: PROCEDURE 9
GetScrollBar: PROCEDURE 19 SetPreferredDi ms: PROCEDURE 7
GetScroliData: PROCEDURE 20 SetPreferredlnteriorDims: PROCEDURE ~ GetSleeps: PROCEDURE 16 SetPreferredPIace: PROCEDURE

50-30

ViewPoint Programmer's Manual 50

Item Page

~
SetReadOnly: PROCEDURE 10
SetRegularCommands: PROCEDURE 14
SetScrollData: PROCEDURE 21
SetSleeps: PROCEDURE 10
SetState: PROCEDURE 18
SetTopPusheeCommands: PROCEDURE' 16
SetTransitionProc: PROCEDURE 17
SheflEnumProc: TYPE 23
ShellFromChild: PROCEDURE 12
SheliType: TYPE 8
SleepOrOestroy: PROCEDURE 18
StandardCJose: PROCEDURE 8
StandardCJoseAII: PROCEDURE 8
StandardCJoseEverything: PROCEDURE 8
StandardLimitProc: LimitProc 24
State: TYPE 17
SubtractPopupMenu: PROCEDURE 14
SubtractPopupMenuX: PROCEDURE 14
Swap: PROCEDURE 23
ThumbFlavor: TYPE 20
ThumbScroilProc: TYPE 20
TransitionProc: TYPE 17
VanillaArrowScroll: ArrowScroliProc 22
vaniliaScroliData: Scroll Data 21
VaniliaThumbScroll: ThumbScroliProc 22
When: TYPE 24

50-31

50 StarWindowShell

50-32

51

Subwindow Overview

51.1 Overview

The subwindow package provides a facility that clients can use to incorporate sub windows
into their applications. We provide the capability to make subwindows scrollable
horizontally, vertically or both, adjustable horizontally, vertically or both, moveable, and
top/bottomable. The initial version includes the implementation of three specific types of
subwindows: form subwindows, message subwindows and body sub windows. This allows a
client to incorporate a form subwindow (etc.) into an application. A facility to allow client
defined subwindow types is also provided. Two levels of use of subwindows are supported.
Clients can subdivide a shell and expect the subwindows to adjust in harmony with each
other or alternately, place a subwindow in an isolated environment unrelated to any other
subwindow.

The interfaces that make up the subwindow package will be described here in terms of
typical usage starting with the most common use and working down to the least common.
Details about the various interfaces can be found in the individual chapters. The
interfaces are: Subwindower, StarWindowShellExtra5, SubwindowManager,
SubwindowFriends, AdjustableWindow, Scrollbar, BodyWindowParent.

51.2 Summary of Interfaces

This is a brief description from the highest level interfaces to the lowest. We propose that
Subwindower and StarWindowShellExtra5 are the only truly public interfaces. The rest
are friends.

Subwindower
Highest level interface, real easy to use. Given a window, it allows the predefined types of
subwindows to be created inside it, such as FormWindows, MessageWindows,
BodyWindows. Subwindower is a tiny impl that uses SubwindowManager and existing
inteffaces like FormWindow and MessageWindow.

StarWindowShellExtra5
Given a shell, gives you back the window that can be passed to Subwindower as the
swmanager. It 'just-fits' inside the shell viewing region and adjusts subwindows properly
when the shell is adjusted, etc.

51-1

51 Subwindow Overview

SubwindowManager .~
Provides the basic subwindow manager functions, e.g. Creating subwindows, adding and
removing subwindows, enumerating them, adjustment UI, etc. Subwindower uses it to
create the predefined types.

SubwindowFriends
Provides for client defined subwindow types. For example, Form Window calls in to
register its adjust procs etc to manage form subwindows. Clients can register their own
types.

BodyWindowParent
Predefined subwindow type. Exports CreateBody, GarbageCollectBodiesProc, etc.
analagous to StarWindowShell. but the whole assembly (body windows,' parent clipping
window, scrollbars, etc.) is a subwindow. FormWindows as subwindows use this.

Adjustable Window
Makes an arbitrary window become shrinkable, growable, moveable by the user (client has
all sorts of options). Used by SubwindowManager. This is where AdjustProc and
LimitProc are defined.

Scrollb~

For attaching scrollbars to a window. Client s'upplies several scroll procs. Used by
Predefmed types.

I StarWlndowShell ExtraS

SubwindowFriends

Subwindow Interface Compile time Dependencies

View Point Programmer's Manual 51

.... l~th~~ ~~.~.~.~.~i~~~~.~:.:.:.:.:~ :
..... 1_9.:~~:.~_~!~~:.~~~.~_~ __ ._ ... _ ... j
~ OtherUniqueTypes ... ~

I AdjustableWindowlmpl I

Subwindow Impl Dependencies

51.3 Subdividing a Shell

A client can easily divide a shell into subwindows that will adjust in harmony with each
other. A subwindow may only grow as big as its neighbors minimum height will allow or
as small as its own minimum height restrictions. It is expected that most clients of
subwindows will require only the procedures described in §51.3.1.

51.3.1 Creating Predefined SW s

The great majority of clients will be interested in dividing a shell into several sub windows
that resize in a coordinated manner" The following code segment divides a shell into a
message subwindow, form subwindow and a body subwindow. The message window in this
example does not have a horizontal scrollbar.

CreateMyToolWindow: PROCEDURE. {
myTool: XString.ReaderBody ~ XString.FromSTRING["My Tool"L];

--create a shell without scroll bars
shell: StarWindowShell.Handle ~ StarWindowShell.Create [

name: @myTool, scroliData: [FALSE,FALSE,NIL,NIL,NIL]];
z: UNCOUNTED ZONE ~ StarWindowShell.GetZone [shell);

--get the shell ~ sub window manager
swManager: Window.Handle ~ StarWindowShellExtraS.ManagerFromShell [

sws: shell];
--create an adjustable message subwindow with a vertical scroll bar only

msgSW: Window.Handle ~ Subwindower.MakeMessageSW[
swmanager: swManager, size: some#, horizScrolibar: FALSE, zone: z);

51-3

51

51-4

Su bwindow Overview

--create a form subwindow that is adjustable and has both scrollbars
formSW: Window.Handle +- Subwindower.MakeFormSW(

swmanager:swManager, size: some#, makeltemsProc: Makeltems, zone: z);
--create a body subwindow that is adjustable and has both scrollbars

bodySW: Window.Handle +- Subwindower.MakeBodySW(
swmanager:swManager,size: some#, zone: z];

body: Window.Handle BodyWindowParent.CreateBody[bodySW,
displayProc: DisplayProc, notify: NotifyProc);

StarWi ndowShell.Push [shef I);
}:

A subwindow manager that just fills the available interior space in the shell is created
automatically when you create a shell. This manager will continue to ffjust fit" in .the
shells interior during subsequent resizes of the shell. Most clients are expected to use this
manager.

Subwindower provides the highest'level facility for creating sub windows in a window. Given
a window, it allows predefined types of subwindows to be created inside it. It is typically
used in conjunction with StarWindowShellExtras.ManagerFromShell. Three types of
sub windows are currently provided by Subwindower. They are MessageWindows,
FormWindows, and BodyWindows. More types are expected to be added later.

A client of Subwindower.MakeBodySW will also be interested in
BodyWindowparent.CreateBody for creating body windows to go inside the bodyParent that is
returned by MakeBodySW. Any number of body windows may be linked inside of the ~,

bodyParent.

51.3.2 Client Defined SWs

Clients interested in creating their own unique subwindow type will use the
SubwindowFriends interface. The predefined types in Subwindower are implemented this
way.

Clients can create their own subwindow types by using SubwindowFriends.UniqueType,
SubwindowFriends.SetSWProcs and SubwindowManager.MakeSW. UniqueType returns a
unique identifier that is used later by other procedures. SetSWProcs takes a unique type
and several procedures that are to be called whenever MakeSW is called with that unique
type. MakeSW can be called with any unique Type or with vanilla to create a subwindow of
that type. A vanilla subwindow uses the standard procs provided in SubwindowFriends
which creates a viewer with scrollbars that do simple scrolling on descendants of the
viewer. (No descendants are provided. This is up to the client.)

See the SubwindowManager and SubwindowFriends chapters §51.3 for Sample code.

51.3.3 Inserting and Deleting SW s

It is possible for a client to add and subtract existing subwindows from their parent by
using several SubwindowManager procedures. If a client wishes to create a new subwindow ~
and insert it above some other subwindows within the manager he can call MakeXXXSW ' ~ ...
(where XXX is Form, Message or Body) or MakeSW with swmanager = FALSE (creating an orphaned

ViewPoint Programmer's Manual 51

subwindow), then at some later time call SubwindowManager .AppendSW, InsertSW,
RemoveSW, or SwapSW to place it in the desired location in the swmanager.

See the SubwindowFriendschapter §53.3 for Sample code.

51.4 Independent SWs

Another use of subwindows is available that allows a client to create a subwindow from
any given window. Example: turn a FormWindow YfindowItem into a subwindow. See
figure 3. In this case the subwindow resize would be controlled by Form Window. If the
user is allowed to adjust the shape of the subwindow, Form Window will adjust any other
items in the form window to acco.modate the new size of the window itemlsubwindow. Uses
which do not include FormWindow or swManager will have to provide any coordination of
resizes themselves.

An independent subwindow may specify if it is to be moveable or toplbottomable as well as
growable. Move, top and bottom all refer to relative location of sibling windows. In other
words, it is possible for a client to show the user several overlapping (independent)
subwindows. The user could move, top or bottom these sub windows with respect to one
another in the same fashion as moving and topibottoming shells.

A client can create an independ!3nt subwindow by calling AdiustabfeWindow.Create passing
in the window he wishes to turn into a subwindow. Scrollbars can be added to this
subwindow by calling Scrollbar.A ttaeh passing sero llProcs as desired.

51.5 Usage/Examples

Figures 1-4 on the following pages show a number of typical sub window configurations.
rhe relevant lines of code are outlined below.

Figure 1 (Figures 1,2 and 4 are very similar, therefore separate code is not shown for each)
shell: StarWindowShell.Handle +- StarWindowShell.Create [

name: name, scroll Data: [FALSE,FALSE.NIL.NIL,NIL11;
swManager: Wi ndow.Handle +- StarWindowShellExtraS.ManagerFromSnel I (shell];
msgSW: Window.Handle +- Subwindower.MakeMessageSW(

swmanager: swManager, size: small, zone: z];
formSW: Window.Handle +- Subwindower.MakeFormSW(

swmanager:swManager, size: medium, horizScrolibar: FALSE,
makeltemsProe: Make/tems, zone: z];

_.the next sw might be a "vanilla" subwindow created as follows:
mySW: Window.Handle +- SubwindowManager.MakeSW(

swmanager:swManager,size: large, zone: z);
-.OR.To implement and use your own unique type of subwindow :

myType +- Subwi ndowFriends. U niqueSWType{)
SubwindowFriends.SetSWProcs(myType,MyAttaehScrollbarsProe];
mySW SubwindowManager.MakeSW[type: myType

swmanager:swManager, size: large, zone: z];

Figure 3
-·create a shell with a form window inside it

51·5

51

51-6

Subwindow Overview

·-in the MakeItemsProc create a windowItem to use for the log subwindow
--then turn that window item into a subwindow

··make the window item an adjustable window
AdjustableWindow.Create(windowltem,WOimsChangeProc, zone,

MyLimitProc, [FALSE,TRUE,FALSE,TRUE1, FALSE, FALSE];
.-implement some variety of AttachScrollbarsProc or call the Standard version
SubwindowFriends.StandardAttachScrotlbars(•••];

WOi msChangeProc:Adj ustableWi ndow~AdjustProc. • {
SELECT when FROM after • >

FormWindow.SetWindowltemSize(form, wttemkey, box] }
ENOCASE}

ViewPoint Programmer's Manual 51

message subwindow
/'" with both hori zontal

.if'" and vertical scrollbars

~'--...L.-""';;;;::';;" ___________________ --';=------J~~ ~ grabber box to adjust
subwindow

'IE'I,5 1_lz-.~ I
Version Date

I\JAN1E

I] Blank Ob.iecti· eslr..",easurement Criteria Page

I] Blank prvlS

1], Fflrm for Exempt P.11..

I] F'Jrm for I\Jon-exempt P.'::".

I] F'Jrm f'Jr P~'/1S-updated-\.'y'lfields

Figure 1

" form subwindow with
vertical scroll bar only

'" grabber box to adjust
subwindow

a one bit
horizontal line
divides subwindows
if no horizontal
scrollbar

> grabber box to adj ust
sheil

..-- grabber box to adj ust
~---~ subwindow

Number 'Jf t:'Jpies G
r·.Jame L.'::'" Times

~ + and-gone

Print I Collated I
After printing 11-)ali'll DON'T DELETE

Figure 2

51-7

51 Subwindow Overview

1 + :2
...... ,. 3 * 2 STORE sum

36 > 6 :'C sum STORE total

> 36l SQRT [sum)

> '14.69694

Results r..,.lemor/

1'14.69694

Figure 3

Figure 4

51-8

J [ASIN

COS J [ACOS J

TAN J [ATAN)

lOG J I: IN)
PI } (EXP

~R I: CLEAR)

11X } I: ABS J
%

"

I:)
(SQRT) (SQR

I: (J I:)

M +) [M·

Independent
subwindow

fixed subwindows
no grabbers

" grabber box to
grow subwindow
and shell

~,

52

Subwindower

52.1 Overview

Subwindower provides the highest level facility for creating subwindows in a window.
Given a window, it allows predefmed types of sub windows to be created inside it, e.g.
BodyWindows, Form Windows, Message Windows. It is typically used in conjunction with
StarWIndowShefl.ManagerFromShell. Fine point: in BWS 4.3, ManagerFromShellis in StarWindowShellExtra5.

See the chapters on FormWindow, MessageWindow and BodyWindowParent for the specifics on
each type of subwindow. For a comprehensive view of all the subwindow interfaces and
their intended use, see the Subwindow Overview chapter.

52.2 Interface Items

52.2.1 Making subwindows

Three types of sub windows are currently provided by Subwi ndower. They are
Message Windows, Form Windows, and BodyWindows. Fine Point: more types are expected to be

added later. Each is identical to its non-subwindow counterpart in all functional respects.
These window types can be created using MakeFormSW, MakeMessageSW and
MakeBodySW described in the following sections.

~ number of parameters to each MakeXXXSW procedure are identical and are described
here, rather than with each procedure.

swmanager refers to the parent window that will contain the subwindow{s}. (Note: a

swmanager that manages the adjustment of adjacent subwindows may be obtained by calling

StarWindowShellExtra5.ManagerFromShell.)

size specifies the size of the subwindow (see Figure 1). If scrollbars are attached, the
viewing region within the subwindow is reduced by the width of a vertical scrollbar. If the
subwindow is the bottom subwindow in the swmanager it will be sized to fill any remaining
space in the swmanager. Fine Point: If the subwindows are vertically displayed, size represents the height

of the subwindow. If the subwindows are horizontally displayed, size represents the width of the subwindow. In

the initial implementation C4.x) only vertically displayed sub windows are supported.

vertScrolibar indicates whether or not a vertical scrollbar is desired.
horizScrolibar indicates whether or not a horizontalscrollbar is desired. (In Figure 1 the

52-1

52

52-2

Subwindower

message window at the top of the shell has only a vertical scrollbar. The form and lower
subwindows have both horizontal and vertical scrollbars).

adjustable indicates if the subwindows size is to be adjustable.

Note that there is no "place" parameter. Subwindows will be placed in their parent
(swmanager) in the order in which they are created. The flrSt subwindow is placed at [0,0],
the next one at firstSize + 1 and so on.

Fine Point: In each oithe procs described here passing a NIL swmanager will return an "orphaned" subwindow.

An orphan is a subwindow that has no parent and is not placed in a window tree. An orphan can be inserted at

some later time using the procedures available in SubwindowManager.

52.2.2 Creating Form subwindows

MakeFormSW: PROCEDURE(
swmanager: wlndow.Handle,
size: INTEGER ... SubwindowManager.minSize,
vertScrolibar, horizScrolibar, adjustable: BOOLEAN +- TRUE,
makeltemsProc: FormWindow.MakeltemsProc,
layoutProc: FormWindow.LayoutProc +- NIL,

-- uses Form. Window.DefaultLayout if NIL

windowChangeProc: FormWindow.GlobalChangeProc +- NIL,
minDimsChangeProc: For~Window.Mi nDimsChangeProc +- NIL,

--USllS Form Window.DefaultMinDim.sChangeProc if NIL

zone: UNCOUNTED ZONE,
ctientData: LONG POINTER +- NILI
RETURNS [form: Window.Handle);

MakeFormSW creates a form subwindow. The client can specify if scrollbars are to be
attached and if the window is to be adjustable. See §2.1 for specifics about swmanager,
size. vertScrolibar, horizScrolibar, and adjustable.

makeltemsProc, layoutProc, windowChangeProc, minDimsChangeProc, zone and
clientData are all identical to the parameters in FormWindow.Create. Refer to that chapter
for further information.

The RETURN parameter form is the form window itself. Note that this form window is
inside of the viewing region of the subwindow and is a different window from the formSW.
(See figure 1 for a pictorial represen.tation of the formSW and its descendant form window)
The subwindow will be of size size. It's viewing region will be a scrollbar width smaller if
scrollbars are present. The form window will be sized to "just fit" around all the items laid
out within it by the layoutProc.

~,

ViewPoint Programmer's Manual

b .. Nindo lerTest.er

viewing region

form window

After printing II.Ji!illl DON'T DELETE J t.he print forn .. ~
'--1 1+

I'rint I ((" Ic~ t (. d I
III)I')PI ./\"'{ OP rlOI\,I') I

~
f-,:
~ ~; .;.

52

~formSW

.: I': l.! rrl ('!'It,

t
form
window
height

t
size

1

.........•. _ .. _ __ _ .. ,

Figure 1

Distinguishing the subwindow from its contents: The formSW contained in the shell in the first diagram
is shown alone in the second diagram. The ghosted portions represent the hidden parts of the underlying
form window. The formSW is shown to be sized such that only a small portion of its descendant form
window is visible. The form is scrolled to show only the fourth item within it.

52-3

52

52-4

Subwindower

52.2.3 Creating Message subwindows

MakeMessageSW: PROCEDURE[
swmanager: wlndow.Handle,
size: INTEGER ... SubwindowManager.minSize.
vertScrolibar, horizScrolibar, adjustable: BOOLEAN ... TRUE,
lines: CARDINAL ... 1 0,
zone: UNCOUNTED ZONE)
RETURNS [message: Window.Handle);

MakeMessageSW creates a message subwindow. The client can specify if scrollbars are to
be attached or the window is to be adjustable. The effect of these parameters is described
above in §2.1. The subwindow will be of size size. The height of the message window itself
will be based on number of lines. (Note: A message subwindow with scrollbars will be a
scrollbar width smaller than size to account for the addition of the scrollbars.) lines and
zone are identical to the parameters in MessageWindow.Create. Refer to that chapter for
further information.

52.2.4 Creating BodyWindowParent subwindows

MakeBodySW: PROC (
swmanager: Wlndow.Handle,
size: INTEGER ... SubwindowManager.minSize,
vertScrolibar, horizScrolibar, adjustable: BOOLEAN ... TRUE,
adjuS1Proc: AdJustableWlndow.Adju5tProc +-NIL.
garbageCollectBodiesProc: BodyWindowparent.GarbageCollectBodiesProc +- NIL,

moreScrollProc: BodyWindowparent.MoreScroIIProc ... NIL.
scroll barl n10Proc: Scrollbar.Scroll ba rl n10Proc +- BodyWindowparent.OefaultScroll ba rl nfo,
thumbFeedbackProc: Scroll bar. ThumbFeedbackProc +- NIL,

thumbScrollProc: ScroUbar.ThumbScrollProc ... BodyWindowparent.OefaultThumbScrol',
zone: UNCOUNTED ZONEI
RETURNS [bodyParent: Window.Handlel;

MakeBodySW creates a bodyParent window that is a descendant of swmanager.
swmanager, vertScrolibar. horizScrolibar. and adjustable are described in detail in §2.1 of
this chapter. See the BodyWindowParent chapter for information about adjustProc,
scrolibarlnfoProc. moreScroliProc, garbageCollectBodiesProc, _ thumbFeedbackProc,
thumbScroliProc and zone.

The RETURN parameter bodyParent is the bodySW itself NOT an individual "body"
window. The client is expected to place a body or bodies inside the bodyParent window by
calls to BodyWindowparent.CreateBody. For example, a body Parent without bodies is
uninteresting. Refer to the BodyWindowParent chapter for further information regarding
the relationship between a boqyParent and body windows. '

-~

ViewPoint Programmer's Manual 52

message subwindow
~ with vertical scroll bar

~ grabber box to adjust
~--~ thesubwindow
I.i.';ijill I.)nsorted

grabber box
to adjust the
subwindow

grabber box
to adjust the
subwindow
and the shell

si

Figure 2
Tool produced by the Sample Code in §3

~ form subwindow
with both vertical and
horizontal scroll bars

" grabber box to adjust
the subwindow

body subwindow
~ with both vertical and

horizontal scrollbars

one bit horizon tal
. line separates
subwindows if no
horizontal scrollbar
is present

grabber box adjusts
both the lower

/ subwindow and the
shell

52-5

52 Subwindower

52.3 U sage/Examples

52-6

CreateMyToolWindow: PROCEDURE. {
myTool: XString.ReaderBody +- XString.FromSTRING{"My Tool"l];
shell: StarWindowSheU.Handle +- StarWindowShell.Create [

name: @myTool.scroIiData: [FALSE.FALSE.NIL.NIL.NIL]);
z: UNCOUNTED ZONE +- StarWindowShell.GetZone [sheU):
swManager: Wi ndow.Handle +- StarWindowSheIlExtraS.ManagerFromShell[

sws: shell):
-establish some initial window heights
shelldims: Window.Dims [375, 400]
minimum: INTEGER 20;
small: INTEGER +-60;
medium: INTEGER +- 300;
bodyBox: Window.Box +- [[O,O],mumb/e1;
msgSW: Window.Handle +- Subwindower.MakeMessageSW(

swmanager: swManager, size: minimum, horizScrolibar: FALSE. zone: z];
formSW: Window.Handle +- Subwindower.MakeFormSW(

swmanager:swManager, size: small. makeltemsProc: Makeltems, zone: z];
bodySW: Window.Handle +- Subwindower.MakeBodySW{

swmanager:swManager,size: medium. zone: z);
body: Window.Handle +- BodyWindowParent.CreateBody[bodySW, bodyBox,

DisplayProc. Notifyproc];
StarWindowShell.SetPreferredlnteriorDims[shell. shelldims];
StarWindowShell.Push [shell);
};

DisplayProc: PROCEDURE. {
-how does my body window display itself1-
};

NotifyProc: np.NotifyProc • {
-what is my body window interested in seeing1-
};

MakeltemsProc: FormWindow.MakeltemsProc • {
-make some items using FormWindow.MakeXXXltem­
};

View Point Programmer's Manual

52.4 Index of Interface Items

Item

MakeBodySW:PROCEDURE
MakeFormSW:PROCEDURE
MakeMessageSW:PRoCEDURE

Page

4
3
3

52

52-7

52 Subwindower

52-8

53

SubwindowFriends

53.1 Overview

SubwindowFriends provides a facility for registering new subwindow types. The client
provides the various procedures that will be needed later when a subwindow of the new
type is being created. For a comprehensive view of all the subwindow interfaces and their
intended use, see the Subwindow Overview chapter.

53.2 Interface Items

53.2.1 Registering Subwindow types

UniqueSWType: PROCEDURE

RETURNS (swType: SubwindowManager.SWType);

UniqueSWType registers a client-defined sub window type returning a unique type that is
used later by other procedures.

SetSWProcs: PROCEDURE (

type: SubwindowManager.SWType.
attachScrolibarsProc: AttachScrolibarsProc +- StandardAttachScrolibars.
clientWindowFromSWProc: ClientWindowFromSWProc +-

StandardClientWindowFromSW,
adj ustProc; AdiustableWindowAdj ustProc +- StandardAdj ust.
IimitProc: AdiustableWindow.LimitProc +- StandardLimit.
transitionProc: SubwindowManager. TransitionProc +- StandardTransition];

Registers the procedures to be called by SubwindowManager.MakeSW (etc.) when creating,
resizing or changing state of a sw of type.

attachScrolibarsProc is called when a window of type is being created. This proc is
expected to call Scrollbar.Attach with the proper window etc.

clientWindowFromSWProc is called to get the client window when only the subwindow
handle is known.

53-1

53

53-2

Subwindow Friends

adjustProc is called when client subwindow of type is about to be resized (when = before) ~
and again just after the resize occurs (when = after).

IimitProc is called when client sub window of type is about to be resized.

transitionProc is called when the state (SubwindowManager.State) of a subwindow of type is
changing.

AttachScrolibarsProc: TYPE :I PROCEDURE [
subwindow: Window.Handle.
vertScroUbar, horizScroUbar: BOOLEAN,
zone: UNCOUNTED ZONE)
RETURNS (sw: Window.Handle);

Client provides an AttachScrolibarsProc that will be called to attach scrollbars when
SubwindowManager.MakeSW is called. sw may be a descendant of subwindow or the same as
subwindow.

ClientWindowFromSWProc: TYPE. PROC [
subwindow: Window.Handle)
RETURNS [sw: Window.Handle);

ProVides a means of getting the client window when only the subwindow handle is known.

53.2.2 Getting subwindow procs

GetSWProcs:PROCEDURE[
type: SubwindowManager.SWType)
RETURNS [
attach Scroll barsProc: Attach Scroll barsProc.
clientWindowFromSWProc: ClientWindowFromSWProc.
adj ustProc: AdjustableWindow.Adj ustProc.
Ii mitProc: AdjustableWindow.Li m itProc,
transitionProc: SubwindowManager. TransitionProc];

Returns the procedures registered with type.

53.2.3 Standard Procedures

StandardAttachScrollbars: AttachScrollbarsProc;

Creates a body Parent assembly: namely a subwindow, descendant viewer and attached
scrollbars. Adjust and scrolling behavior will be as for body windows. The sub window
returned is the window passed in.

StandardClientWi ndowFromSW: ClientWindowFromSWProc;

Returns the first descendant window encountered at the client level (Le. below the
bodyParent assembly).

ViewPoint Programmer's Manual 53

StandardAdjust: AdjustableWindow.AdjustProc;

Adjusts the subwindow's descendant viewer and scrollbars.

StandardLimit:AdjustableWindow.LimitProc;

Prevents shrinking the subwindow below minSize.

StandardTransition: SubwindowManager. TransitionProc;

NoOp.

53.2.4 Errors

Error: eRROR [code: ErrorCode);

ErrorCode: TYPE := {noSuchType, tooManyTypes, other};

noSuchType raised if GetSWProcs or SetSWProcs are called with an invalid type

tooManyTypes raised ifUniqueSWType has been called too many times

other not currently used

53.3 U sage/Examples

< <Simple code to create a tool with a new subwindow type> >
CreateMyToolWindow: PROCEDURE. {

myTool: XString.ReaderBody 4- XString.FromSTRING("My Tool"L];
shell: StarWindowShell.Handle 4- StarWindowShelLCreate [

name: @myTool, scroliData: [FALSE,FALSE,NIL,NIL,NIL]];
z: UNCOUNTED ZONE 4- StarWindowShell.GetZone [shefl];
swManager: Window.Handle 4- StarWindowShellExtraS.ManagerFromShell [

sws: shell1;
--establish window heights
medium: INTEGER 4- 60:
large: INTEGER 4- 300:
formSW: Window.Handle 4- Subwindower.MakeFormSW{

swmanager:swManager, size: medium) makettemsProc: Makeltems, zone: z];
mySW: Window.Handle 4- SubwindowManager.MakeSW[

swmanager:swManager, type: myType, size: large, zone: z];
StarWindowShell.Push [shell];
};

53-3

53

53-4

Subwindow Friends

ScroflSW: SubwindowFriends.AttachScrolibarsProc • {
--call Scrollbar.Attach with the desired interior window etc.
};

MyWindow: SubwindowFriends.ClientWindowFromSWProc • {
-·return the same window as ScrolLSW given the same subwindow
};

AdjustProc : AdjustableWindow.AdjustProc • {
--adjusts itself and calls Scrollbar.Adjust with the proper interior window
};

LimitProc: AdjustableWindow.LimitProc • {
--impose any desired Limits
-.prudent to call SubwindowFriends.StandardLimitProc to prevent shrinking
--below SubwindowManager.minSize.
};

TransitionProc: SubwindowManager.TransitionProc • {
--do whatever actions are specific to myType subwindow at various state changes
};

-Mainline Code

-·create a unique type
myType: SubwindowManager . SWType +- Subwi ndowFriends. U niqueSWType{];
-·Set the procs needed for myType subwindow (can default to Standard ones)
SubwindowFriends.SetSWProcs[type: myType,

attachScrolibarsProc: ScrollSW, clientWindowFromSWProc: MyWindow,
adjustProc: AdjustProc, limitProc: LimitProc, transitionProc: TransitionProc1;

•. ~

ViewPoint Programmer's Manual"

53.4 Index of Interface Items

Item
AttachScrolibarsProc: TYPE

C!ientWindowFromSWProc: TYPE

Error
ErrorCode: TYPE

GetSWProcs: PROCEDURE
SetSWPrOCS:PROCEDURE
StandardAttachScrotlbars: AttachScrollbarsProc
StandardClientWindowFromSW: ClientWindowFromSWProc
StandardAdjust: AdiustableWindow.Adj ustProc
StandardLimit:AdjustableWindow.LimitProc
StandardTransition: SubwindowManager. TransitionProc
UniqueSWType:PROCEDURE

•

Page
2
2
2
2
2
1
2
2
2
2
2
1

53

53-5

53 SubwindowFriends

53-6

54

SubwindowManager

54.1 Overview

SubwindowManager provides a facility for creating subwindows in a window. It is
typically used in conjunction with StarWindowShell.ManagerFromShell. Fine point: in BWS

4.3. ManagerFromShell is in StarWindowShellExua5. New types of subwindows may be defined
using SubwindowFriends and then an instance of that subwindow created using
SubwindowManager. Procedures for adding and removing subwindows from their parent

. are also provided. Fine point: Predefined types of sub windows (form, message, body) can be created using the

.procedures in Subwindower instead. See the Subwindow Overview Chapter for a more complete
look at the appropriate use for the various subwindow interfaces.

54.2 Interface Items

54.2.1 Making Su bwindows

~akeSVV:PROCEDURE(

swmanager: Window.Handle +-NIL.
type: SWType +- vanilla.
size: INTEGER +- minSize.
vertScrolibar, horizScroUbar, adjustable: 800LEAN +-TRUE,
zone:UNCOUNTEDZONE]
RETURNS [sw: Window.Handle);

Creates a subwindow of type and. size. sw is appended after the last subwindow in
swmanager. While it is the bottom subwindow its size will be adjusted to fill the
remaining space in its parent swmanager. If swmanager is NIL, MakeSW creates an
orphan subwindow that can be added to a swmanager at a later time using AppendSW 01"

InsertSW as described below in §2.2.

swmanager refers to the parent window that will contain the subwindow. (Note: a swmanager

that manages the adjustment of adjacent subwindows may be created by calling

StarWindowSheIlExtraS.ManagerFromSh.,II.) If swmanager is not already a 'subwindow manager,
it will become one.

type may be one of the predefinded types (body, form, message etc.) or a client defined
type. Fine Point: see SubwindowFriends for ~reating client defined types. Currently there are

54-1

54

54-2

Su bwindow Manager

accelerators available to create some of the predefined types. (See Subwindower) More ,~
will be implemented in the future. Most clients will use the accelerator procs to create
these predefmed types rather than MakeSW. MakeSW only creates the subwindow with
appropriately attached scrollbars, it does NOT make the client call to Form Window,
Message Window, etc. See the Subwindower Chapter for more information.

size specifies the size of the sub window (see Figure 1). If scrollbars are attached, the
viewing region within the subwindow is reduced by the width of a vertical scrollbar. If the
subwindow is the bottom subwindow in the swmanager it will be sized to fill any remaining
space in the swmanager. Fine Point: If the subwindows are vertically displayed. size represents the height

of the subwindow. If the subwindows are horizontally displayed. size represents the width of the sub window . In

the initial implementation (4.%) only vertically displayed subwindows are supported.

ve rtScro II bar indicates whether or not a vertical scrollbar is desired.

horizScrolibar indicates whether or not a horizontalscrollbar is desired. (In Figure 1 the
message subwindow has only a vertical scrollbar while the other two subwindows have
both vertical and horizontal scrollbars.)

adjustable indicates if the subwindow's size is to be adjustable.

Note that there is no "place" parameter. Subwindows will be placed in their parent
(swmanager) in the order in which they are created. The rtrst subwindow is placed at [0,0],
the next one at firstSize + 1 and so on. .

SWType: TYPE • MACHINE DEPENDENT (

vanilla. body. form. message. container. log. text.list.last(377B)};

Enumerated for SWType. Fine Point: Four of the enumerated types of subwindows are currently

implemented in 4.x. They are body, form, and message and vanilla. More of the predefined types are expected to

be implemented later.

GetType:PROCEDURE [
SW: Window.Handle)
RETURNS (type: SWType);

Returns the SWType associated with sw. Can raise Error(notASubwindow).

minSize: INTEGER;

Minimum size for a subwindow. Used as the default for size in MakeSW.

54.2.2 Adding and removing subwindows

In the following procedures there is a common reference to sw and swmanager. These are
described here rather than with each procedure. Each can raise Error[notASubwindow) or
Error[notAswmanager). The visual effects of any of these procedures will not take place
until SubwindowManager.Repaint is called. Repaint is also 'described in this section.

sw refers to a subwindow that has been created using MakeSW described above or one of
the MakeXXXSW procedures in Subwindower.

ViewPoint Programmer's Manual 54

swmanager refers to the parent window that will contain the subwindow. (See §54.2.1).

AppendSW: PROC [
sw, swmanager: Window.Handle,
after: Window.Handle +- NIL);

Adds an existing sw to the swmanager after after (y= afterPlace.y+afterDims.h) or after
the bottom subwindow in swmanager if after. NIL. Any subwindows below it will move
down to allow space for the new subwindow. It is possible that they may become totally or
partially obscured by the parent swmanager. '

InsertSW: PRoe [
sw, swmanager: Window.Handle,
before: Window.Handle +- NIL);

Adds sw to the swmanager before before or at the top (y = 0) of the subwmanager if
before. NIL. Any subwindows below it will move down to allow space for the new
subwindow. It is possible that they may become totally or partially obscured by the parent
swmanager.

Rem4veSW: PRoe [
sw, swmanager: Window.Handle];

Removes sw from the tree of swmanager. Adjusts the location of any other subwindows in
the swmanager as necessary to refill the space left by sw.

SwapSW: PROC [
oldSW, newSW: Window.Handle);

Removes oidSW from its parent inserting newSW in its place in the tree. newSW will
occupy the same location and size as oldSW.

ResizeSW:PROCEDURE [
sW: Window.Handle.
size: INTEGER)
RETURNS [Window.Oj mS);

Allows the client to programmatically change the size of a subwindow. Returns the actual
size used for the resize after the appropriate limitProcs are called. This proc is particularly

. useful to the client who wishes to redistribute the space when adding or subtracting
subwindows.

Repaint: PROCEDURE [
swmanager: Window.Handle];

If the swmanager is displayed, Repaint MUST be called in conjunction with any of the
previous procedures: AppendSW, InsertSW, RemoveSW, SwapSW, and ResizeSW. This
allows the client to make several calls to resize, add or delete subwindows before validating
the changes.

54-3

54

54-4

SubwindowManager

54.2.3 Adjust, Limit., Transi't;ion Types and Procs

State: TYPE =- MACHINE DEPENDENT {awake(O), sleeping, dead, last(7)};

A window is always in one of three states:
awake: displayed
sleeping: created but not displayed
dead: being destroyed

TransitionProc: TYPE =- PROC [window: Window.Handle, state: State];

A TransitionProc is a client-supplied procedure responsible for allocating or de allocating
client data structures when the window's state changes. state is the new state of the
window.

Please note that most clients will have no need for the next 3 procedures.

Transition: TransitionProc;

Transition is the TransistionProc associated with the SubwindowManage~ window.

Adjust: AdjustableWindow.Adju~Proc;

An AdjustProc is a client-supplied procedure that is called every time the window is
changing size. Adjust is the AdjustProc associated with the SubwindowManager window. !~
It is to be called whenever the manager is adjusted. For example, the StarWindowShell
adjust code calls SubwindowManager.Adjust[shellsSWmanager] when the shell is being
resized.

Limit: AdjustableWindow.LimitProc;

A LimitProc is a client-supplied procedure that is called every time the window is about to
change size or location. This gives the client a chance to veto or change the new box before
the adjustment actually takes place. Limit is the LimitProc associated with the
SubwindowManager window.

54.2.4 Utilities

EnumerateSWs: PROCEDURE [
swmanager: Wlndow.Handle,
proc: EnumSWsProc)
RETURNS (sw: Window.Handle];

EnumSWsProc: TYPE. PROCEDURE [sw: Window.Handle) RETURNS (stop: BOOLEAN +- FALSE] ;

Call proc with each sw contained in swmanager. Can raise Error(notAswmanager). The
client may make calls to add/delete sub windows during the course of the enumeration
without adverse effects.

GetZone: PROCEDURE [sw: Window.Handle) RETURNS (zone: UNCOUNTED ZONE);

ViewPoint Programmer's Manual

Returns the zone associated with the subwindow (sw).

IsltManager: PROCEDURE [window: Window.Handle] RETURNS (BOOLEAN);

Returns TRUE if the window is a subwindow manager.

IsltSubwindow: PROCEDURE [window: Window.Handle) RETURNS (BOOLEAN);

Returns TRUE if the window is a sub window .

ManagerFromSW: PROCEDURE [

sw: Window.Handle)
RETURNS [swmanager: Window.Handle);

Return the swmanager containing sw. Returns NIL if sw is orphaned.

SubwindowFromChild: PROCEDURE [

window: Window.Handlel
RETURNS [Window.Handle ..- NIL);

54

Return the subwindow containing window. Returns NIL if window is not a child of a
subwindow.

54.2.5 Errors

Error: ERROR [code: ErrorCode);

ErrorCode: TYPE :II {notASubwindow, notAswmanager};

notASubwindow raised ifsw is not a subwindow

notAswmanager raised if swmanager is not a swmanager

54.3 Usage/Examples

< <This code will create a window shell with a message subwindow, a form subwindow and a vanilla
subwindow. It will be up to the client to then "do something interesting"with the vanilla subwindow.
See Figure 1 for a pictorial view of the tool created by this code. > >

CreateMyToolWindow: PROCEDURE. {
myTool: XString.ReaderBody·..- XString.FromSTRING["My Tool"L];
shell: StarWindowShell.Handle ..- StarWindowShell.Create [

name: @myTool, scroliData: [FALSE"FALSE,NIL"NIL"NIL]];
z: UNCOUNTED ZONE..- StarWindowShell.GetZone [shell);
swManager: Window.Handle..- StarWindowShellExtraS.ManagerFromShell [

sws: shell];
--establish initial window heights
small: INTEGER ..-20;
medium: INTEGER..-SO;
large: INTEGER ..-300;
msgSW: Window.Handle ..- Subwindower.MakeMessageSW(

swmanager:swManager" size: small1 horizScrollbar: FALSE, zone: z);
formSW: Window.Handle ..- Subwindower.MakeFormSW(

54-5

54

54-6

SubwindowManager

swmanager:swManager, size: medium, makeltemsProc: Makeltems, zone: z];
mySW: Window.Handle SubwindowManager.MakeSW(

swmanager:swManager,size: large, zone: zl;
StarWindowShell.Push [shell];

};
MakeltemsProc: FormWindow.MakeltemsProc • {

-·make some items using Form Window.MakeXXXltem-.
};

Tool

'I'hUI I_'z.,~ I

Figure 1. Tool created in sample code

View Poin t Programmer's Manual 54

< <The following code segments will create a window shell with a form subwindow and a body
subwindow. The header will have and extra menu item "AddFoo" for the user to select. Selecting
''AddF'oo''will cause another fjJrm subwindow to be added at the top of the subwindows. The
''AddF'oo'' command will change to ''RemoveFoo'' at that time. Selecting ''RemoveFoo'' will remove
the new subwindow from the shell and exchange the commands in the header. > >

fooSW: Window.Handle +-NIL;

addltem, removeltem: MenuData.ltemHandle;

CreateMyTooIWindow': PROCEDURE. {

myTool: XString.ReaderBody +- XString.FromSTRING{"My Tool"l];
addOn: XString.ReaderBody +- XString.FromSTRING{" Add Foo"l];
remove: XString.ReaderBody +- XString.FromSTRING["Remove Foo"l];
shell: StarWindowShell.Handle +- StarWindowShell.Create [

name: @myTool, scroliData: [FALSE,FALSE,NIL.NIL,NIL]];

z: UNCOUNTED ZONE +- StarWindowShell.GetZone [shell];
removeltem +- MenuData.Createltem [zone: z, name: @remove, proc: RemoveProcl;
addltem +- MenuData .• Createltem [zone: z. name: @addOn, proc: AddOnProc];
item: ARRAY [0 •• 1) OF MenuData.JtemHandle +- [addltem);
myMenu: MenuData.MenuHandle • MenuData.CreateMenu [

zone: z, title: NIL, array: DESCRIPTOR [item]];
swManager: Window.Handle +- StarWindowShellExtraS.ManagerFromShell [

sws: shell];
--establish initial window heights
medium: INTEGER +- 60;
large: INTEGER +- 300;
formSW: Window.Handle +- Subwindower.MakeFormSW[

swmanager:swManager, size: medium] makeltemsProc: Makeltems, zone: zl;
bodySW: Window.Handle +- Subwindower.MakeBodySW[

swmanager:swManager, size:large] zone: z];
body: Window.Handle +- BodyWindowParent.CreateBody[

bodySW, displayProc: DisplayProc, notify: NotifyProc);
--create an orphan FormSW of minimum dimensions
fooSW Subwindower.MakeFormSW(

makeltemsProc: MakeNewltems, zone:z];
StarWindowShell.SetRegularCommands [sws: shell, commands: myMenu];
StarWindowShell.Push [shell]};

AddOnProc: MenuData.MenuProc • {
--add my type subwindow at the top of the shell
SubwindowManager .lnsertSW(fooSW. swManager);
--swap the menu items
MenuData.Swapltem(old:addltem, new: Removeltem] };

RemoveProc: MenuData.MenuProc • {
--remove my type subwindow from the top of the shell
SubwindowManager . RemoveSW[fooSW , swManager);
--swap the menu items
MenuData.Swapltem(old: removeltem, new: addltem] };

54-7

54 SubwindowManager

54.4 Index of Interface Items ~

Item Page
Adj ust: AdjustableWindow.AdjustProc 4
AppendSW:PROCEDURE 3
EnumerateSWs :PROCEDURE 4
EnumSWSProc: TYPE 4
Error 5
ErrorCode: TYPE 5
GetType: PROCEDURE 2
GetZone:PRocEDURE 4
InsertSW: PROCEDURE 3
IsltManager: PROCEDURE 5
IsltSubwi ndow:PROCEDURE 5
Limit: AdjustableWindow.LimitProc 4
MakeSW:PROCEDURE 1
ManagerFromSW: PROCEDURE 5
minSize:INTEGER 2
RemoveSW: PROCEDURE 3
Repai nt: PROCEDURE 3
ResizeSW:PRoCEDURE 3
State: TYPE 4
SubwindowFromChild: PROCEDURE 5
SwapSW: PROCEDURE 3
SWType:TYPE 2 ~

Transition: TransitionProc 4
TransitionProc: TYPE = PROCEDURE 4

54-8

55

TIP

55.1 Overview

TIP provides basic user input facilities through a flexible mechanism that translates
hardware-level actions from the keyboard and mouse into higher-level client action
requests (result lists). The acronym TIP stands for terminal interface package. This
interface also provides the client with routines that manage the input focus, the periodic
notifier, and the STOP key.

55.1.1 Basic Notification Mechanism

The basic notification mechanism directs user input to one of many windows in the window
tree. Each window has a Table and a NotifyProc. The table is a structure that translates a
sequence of user actions into a sequence of results that are then passed to the notify
procedure of the window.

There are two processes that share the notification responsibilities, the Stimulus process
and the Not~er process. The Stimulus process is a high-priority process that wakes up
approximately 50 times a second. When it runs, it makes the cursor follow the mouse and
watches for keyboard keys going up or down, mouse motion, and mouse buttons going up or
down, enqueuing these events for the Notifier process.

The Notifier process dequeues these events, determines which window the event is for, and
tries to match the events in the window's table. If it finds a match in the table, it calls the
window's notify procedure with the results specified in the table.' If no match is found, it
tries the next table in the window's chain of tables. If no match is found in any table, the
event is discarded.

The Notifier process is an important process. To avoid multi-process interference, some
operations in the system are restricted to happen only in the Notifier process. Setting the
selection is one such operation. The Notifier process is also the one most closely tied to the
user. If an operation will take an extended time to complete, it should be forked from the
notifier process to run in a separate process so that the Notifier process is free to respond to
the user's actions.

55-1

55

55-2

TIP

55.1.2 Tables

Tables provide a flexible method of translating user actions into higher· level client-defined
actions. They are essentially large select statements in which the user's actions are
matched against the left side of a table with a corresponding set of results on the right side.
Left sides of tables specify triggers--changes in state of keys--and enablers--existing state of
keys--to be matched with the user actions. Right sides of tables specify results that include
mouse coordinates, atoms, and strings for keyboard character input. A complete syntax
and semantics of tables are in §55.3.2 and §55.3.3.

Tables have a user-editable filed representation that is parsed to build a runtime data
structure for TIP. The user-editable filed representation must be in the system catalog and
is assumed to have a file name extension of .TIP. When a table is created by calling the
CreateTable operation, the tip file is parsed and its runtime data structure is created. In
addition, a compiled version of the tip file is created in a file whose name has the character
C appended to the name of the tip file. On subsequent calls toCreateTable, this tipc file is
used to create the runtime data structure as long as the tip file has not been changed. By
avoiding parsing the tip file, building the runtime data structure from the compiled file is
much faster.

The table parser uses a macro package that allows macros to be defmed and used in writing
tables. It is described in §55.3.7.

Tables may be linked to form a chain of tables. The notifier process attempts to match user
actions in the fust table of the chain. If no match is found, it tries subsequent tables in the
chain. If no match is found in any table, the user "action is discarded. Clients can use the
links of tables to build special processing on top of basic facilities. The client can write its
own table to handle special user actions and, by linking the table to system-defined tables,
let them handle the normal user actions. An example is in the Usage/Examples section.
System-defined tables, which are accessable through the TlPStar interface, are described in
AppendixA.

55.1.3 Input Focus

The input focus is a distinguished window that is the destination of most user actions. User
actions may be directed either to the window with the cursor or to the input focus. Actions
such as mouse buttons are typically sent to the window with the cursor. Most other actions,
such as keystrokes, are usually sent to the current input focus.

The notmer process uses either the input focus window or the cursor window to obtain a
table and a notify procedure. Results from matching the user actions with the table are
normally passed to the window's notify procedure. Notify procedures may also be bound
directly with a table. In this case, results from the table go to the table's notify procedure
instead of to the window's notify procedure.

Clients may make a window be the current input focus and be notified when some other
window becomes the current input focus.

ViewPoint Programmer's Manual 55

55.1.4 Periodic Notification

The Notifier process is important because it responds directly to the user. To avoid multi­
process interference, some operations in the system are restricted to happen only in the
Notifier process. The periodic notification mechanism allows operations to happen within
the Notifier process while the user is idle. A periodic notifier is created with a window,
some results, and a time interval. The window's notify procedure is called with the results
every time interval as long as the N otifier process is not processing user actions.

55.1.5 Call·Back Notification and Setting the Manager

Call-back notification and setting of the manager bypass the normal means of selecting a
window as the destination of input and allow the client to receive all input. It is useful for
something like mouse tracking when a menu is posted. This must be done only from the
. N otifier process.

Call-back notification is so named because the client calls back to the Notifier process with
a special call-back notification procedure, a window and a table. The ~otifier matches user
actions with the table and sends the results to the call-back notify procedure. It continues
to do this until the call-back notify procedure says it is done. User actions that are not
matched are discarded.

Setting "the manager makes the Notifier process use the manager's table for matching user
actions and send the results to the manager's notify procedure. User actions that are not
matched are discarded.

While both call-back notification and setting the manager results in all notifications being
sent to a single place, they are different in the control structure. With call,.back
notification, the client's call stack is not unwound, while setting the manager does not take
effect until the current notification is processed and its call stack unwound.

00.1.6 Attention and User Abort

While most notifications are sent to notify procedures from the notifier process, there is a
mechanism that allows asynchronous notification of the STOP key. An AttentionProc may
be set for a window that is called whenever the STOP key is depressed in that window. It is
called from outside the notifier process as soon as the stimulus level sees the key go down.
For those windows that do not set an AttentionProc, the system keeps a user abort flag that
records whether the STOP key was depressed. Clients may call UserAbort to check if the flag
is set. It is cleared when any notification is sent to the window's notify procedure.

00.1.7 Stuffing Input into a Window

TIP provides operations that allow a client program to call the notify procedure of a window
with results that the client constructs. Stuff Results allows a client to pass an arbitrary
results list to a window. Stuff String, Stuff STRING, and Stuff Character allow strings and
characters to be passed to a window.

55-3

55 TIP

55.2 Interface Items

55-4

55.2.1 Results

Results: TYPE. LONG POINTER TO ResultObject;

ResultObject: TYPE • RECORD (

next: Results,
body: SELECTtype: * FROM

atom. > [a: ATOM],
bufferedChar • > NULL,

coords • > [place: Window.Ptace],
int • > [i: LONG INTEGER),

key. > [key: KeyName, downUp: OownUp),
nop • > [],
string. > [rb: XString.ReaderBody),
time. > [time: System.Pulses],
ENOCASE);

ATOM: TYPE. Atom.ATOM;

DownUp: TYPE. LeveIlVKeys.DownUp; - {down, up}

KeyName: TYPE. LeveIlVKeys.KeyName;

The right side of a statement in a table is a list of results to be passed to the notify
procedure when there is a match on the left side. Each element of this list of results is
described by a ResultObject. The atom variant contains the atom from the table's right
side. The place in the coords variant is relative to the window receiving the results. The
reader body of the string variant is either from the bufferedChar results or from a string
constant in the table. The pulses of the time variant is the value of System. Get Pulses at the
time the event actually occurred.

Character \nput is buffered by the Notifier process. If the result of a match is a
bufferedChar, the Notifier process buffers the character and proceeds to try and match the
next user actions. If there are no more user actions and the buffer of character input is not
empty, the Notifier process calls the notify procedure with the buffered character input. If
the next action produces a result that is not another character input, the Notifier process
calls the notify procedure with the buffered character input and then call it with the new
result. If the notifier process gets behind the user and a lot of character input actions get
queued up, it collects them and passes them together to the client instead of one at at time.

KeyName is an enumerated that describes the keyboard and mouse buttons. See the Pilot
Programmer's Manual (610E00160) for a complete list of the elements.

55.2.2 Notify Procedure

NotifyProc: TYPE. PROCEDURE [window: Window.Handle, results: Results];

A NotifyProc is the means of Ilotifying a window of user input. The parameters are the
window that is receiving the input and the list of results that describe the input. Normally,
the results are from the tip table associated with the window. Notify procedures may also

~.

ViewPoint Programmer's Manual 55

be bound directly with a table. In this case, results from the table go to the table's notify
procedure instead of to the window's notify procedure.

55.2.3 TIP Tables

Table: TYPE • LONG POINTER TO TableObject;

TableObject: TYPE;

Table is a pointer to the internal representation of a table.

GetTableLink: PROCEDURE [from: Table] RETURNS [to: Table];

SetTableLink: PROCEDURE [from, to: Table] RETURNS [old: Table];

GetTableLink and SetTableLink allow the tables to be linked. GetTableLink returns the
table following from in the chain, returning NIL if there is no successor table. SetTableLink
sets the link of table from to to and returns the old value.

SetTableOpacity: PROCEDURE [table: Table, opaque: BOOLEAN]

RETURNS [oldOpaque: BOOLEAN];

GetTableOpacity: PROCEDURE [table: Table) RETURNS [BOOLEAN];

SetTableOpacity sets the opacity of table and returns the old value, while GetTableOpacity
returns its value. If a table is opaque, then unrecognized user actions are discarded without
searching the table chain past the opaque entry ..

55.2.4 Associating Notify Procedures, Tables, and Windows

SetTableAndNotifyProc: PROCEDURE [

window: Window.Handle, table: Table ~ NIL, notify: NotifyProc ~ NIL];

SetTableAndNotifyProc makes window a TIP client and associates the table and notify
procedure with the window. If window is already a TIP client and table or notify is NIL,

then the old value is retained.

SetTable: PROCEDURE [window: Window.Handle. table: Table] RETURNS [oldTable: Table);

GetTable: PROCEDURE [window: Window.Handle] RETURNS [Table);

SetTable sets the table associated with window to be table and returns the old table.
GetTable returns the table associated with window.

SetNotifyProc: PROCEDURE [window: Window.Handle, notify: NotifyProc]
RETURNS [oldNotify:NotifyProc];

GetNotifyProc: PROCEDURE [window: Window.Handle] RETURNS [NotifyProc);

55-5

55

55-6

TIP

SetNotifyProc sets the notify procedure associated with window to be notify and returns ~
the old notify procedure. GetNotifyProc returns the notify procedure associated with
window.

SetNotifyProcForTable: PROCEDURE [table: Table, notify: NotifyProc]
RETURNS [oldNotify: NotifyProc);

GetNotifyProcFromTable: PROCEDURE [table: Table) RETURNS [NotifyProc];

SetNotifyProcForTable binds the notify procedure, notify, with table and returns the old
value of bound notify procedure. Results from matches within the table will go to notify
instead of to the notify procedure for the window this table is associated with.
GetNotifyProcFromTable returns the notify procedure bound to table.

55.2.5 Creating and Destroying Tables

CreateTable: PROCEDURE [
file: XString.Reader, z: UNCOUNTED ZONE ~NIL, contents: XString.Reader +- NIL)
RETURNS [table: Table);

CreateTable generates a TIP table from the text file named by file (which may not be NIL).
file is expected to be in the system file catalog. Storage for the table will be allocated in z or
from the implementation's zone if z is NIL. contents is the default contents of file, and will
be used if (1) the '1 boot switch is set, (2) the. file cannot be read, or (3) the signal
InvalidTable is resumed. (See InvalidTable for further details on how to treat that SIGNAL.) ~

When file is parsed, a compiled form of the table is written into a file with a name
constructed by appending a C on the end of file. Fine Point: file should typically have the extension

.TlP. When CreateTable is called, if a .TIPC file exists that was created from file, the .TIPC
file is used to generate table. If the '0 boot switch is set, CreateTable does not look for a
.TIP file, but rather looks directly for a .TIPC file. May raise the SIGNAL InvalidTable.

CreateCharTable: PROCEDURE [
z: UNCOU~TEDZONE +-NIL, buffered: BOOLEAN +-TRUE] RETURNS (table: Table];

CreateCharTable creates a TIP table such that any down transition of any of the
keystations (not key tops) in the main typing array have a right-hand side of BUFFEREDCHAR.
Storage is allocated from z if it is non-NIL or from the TIP implementation's zone. The
boolean buffered is ignored and will be removed when this interface is updated.

CreatePlaceHolderTable: PROCEDURE [z: UNCOUNTED ZONE +- NILl RETURNS [table: Table];

CreatePlaceHolderTable creates a placeholder tip table. Placeholder tables contain no
information themselves but allow other tables with information to be linked to them.
Storage is allocated from z if it is non-NIL or from the TIP implementation's private zone.

DestroyTable: PROCEDURE [LONG POINTER TO Table];

DestroyTable frees the table addressed by the parameter and then sets the table to NIL. ...-.,.

ViewPoint Programmer's Manual

50.2.8 Input Focus

SeUnputFocuS:PROC[
W: Wlndow.Handle, takestnput: aOOLEAN, newlnputFocus: LosingFocusProc +- NIL,
dientData: LONG POINTER NIL);

55

SetlnputFocus makes the window w the input focus. Ifw allows type-in, takeslnput should
be set to TRUE; otherwise takeslnput should be set to FALSE. newlnputFocus is called when w
loses the input focus. It is passed clientData as· the value of its LONG POINTER parameter. If w
• NIL, the input focus is cleared, i.e. input focus notifications are sent to the
backStoplnputFocus (see below).

LosingFocusProc: TYPE. PROCEDURE [w: Window.Handle, data: LONG POINTER);

LosingFocusProc describes the procedure type that is used to let the input focus know it is
no longer the input focus. w is the Window.Handle of the window that was the input focus,
and data is the client data passed t9 SetlnputFocus.

GetinputFocus: PROC RETURNS [Window.Handle];

GetinputFocus returns the window that currently has the input focus.

backStopinputFocus: READONLY Wlndow.Handle;

The window backStoplnputFocus gets all input focus notification when no other window
requests to be the input focus. It may be NIL.

SetBackStoplnputFocus: PROCEDURE [window: Window.Handle];

SetBackStoplnputFocus sets backStoplnputFocus, the window that gets all input focus
notification if no other window requests to be the input focus.

FocusTakeslnput: PROC RETURNS [aOOLEAN];

FocusTakeslnput returns TRUE if the current input focus accepts input, FALSE otherwise.

ClearinputFocusOnMatch: PROC [w: wlndow.Handle];

CJearinputFocusOnMatch is used to clear the input focus in a window if that window has
the input focus. This procedure is·usually called by clients who are implementing their own
window tyPe when they are destroying a window.

56.2.7 Character Translation

CharTranslator: TYPE • RECORD [
proc: KeyToCharP.roc. data: LONG POINTER);

KeyToCharProc: TYPE. PROCEDURE [
keys: LONG POINTER TO KeyBits, key: KeyName, downUp: DownUp, data: LONG POINTER,
buffer:xString. Writer);

A CharTranslator is used to construct characters from the state of the keyboard when a
BUFFEREDCHAR result is encountered. The KeyToCharProc is called when the notifier needs to

55-7

55

55-8

TIP

construct a character from the state of the keyboard. keys describes the current state of the ~.
keyboard. key and downUp describe the current character transition. The procedure
should append the corresponding character(s) to buffer. There is a CharTranslator for each
table.

KeyBits: TYPE • LeveUVKeys.KeyBits;

SetCharTranslator: PROCEDURE [table: Table. new: CharTranslator]
RETURNS [old: CharTranslator);

GetCharTranslator: PROC [table: Table) RETURNS [0: CharTranslator);

SetCharTranslator sets the character translator for table, returning the old value.
GetCharTranslator returns the character translator for table.

55.2.8 Periodic Notification

PeriodicNotify: TYPE [1];

nuliPeriodicNotify: PeriodicNotify;

PeriodicNotify is a handle for a periodic notifier. Periodic notifiers are a means of notifying
windows at regular intervals from within the Notifier. nuliPeriodicNotify is the null value
for PeriodicNotify.

CreatePeriodicNotify: PROC [

window: Window.Handle" results: Results" milliSeconds: CARDINAL,

notifyProc: NotifyProc 4- NIL]

RETURNS [PeriodicNotify];

CreatePeriodicNotify registers a periodic notification. If notifyProc • NIL then the notify
proc associated with window is used. If notifyProc # NIL, is called; this is useful if the client
is running in a background process but wants to perform some operation that must be done
in the notifier process, such as obtaining the current selection. If there is a COOROS result
and window • NIL, that result is [0, 01. If notifyProc • NIL and window • NIL, the
Error(other) is raised. The specified notify proc is called with parameters window and
results once every milliSeconds milliseconds as long as no user action notifications are
taking place. If milliSeconds = 0, it runs once and then destroys itself. The result list
should not contain any entries of type nop or bufferredChar. Right-hand sides of type
coords will be adjusted to reflect the actual mouse position relative to the window being
notified. The results list will not be copied. Its allocation is up to the client.

CancelPeriodicNotify: PROC [

PeriodicNotify] RETURNS [null: PeriodicNotify];

CancelPeriodicNotify stops the periodic notification passed in by removing the notification
from the list of registered procedures and returns nuliPeriodicNotify. This procedure raises
Error(noSuchPeriodicNotifier] if the handle passed in is not valid (calling it with
nuliPeriodicNotify has no effect).

55.2.9 Call-Back Notification

callBack: PROCEDURE [window: Window.Handle, table: Table" notify: CaIiBackNotifyProc];

ViewPoint Programmer's ,Manual

CaliBackNotifyProc: TYPE :II PROCEDURE [window: Window.Handle, results: Results]
RETURNS [done: BOOLEAN);

55

Call-back notification allows the client to· receive all input. It is useful for something like
mouse tracking when a menu is posted. CallBack uses table to match all user input and
calls notify for each successful match in the table with window and the results from the
table as parameters. CallBack will continue to send all notifications to notify as long as
notify returns done: FALSE. Call-back notification is similar to setting the Manager except
that the client's call stack is not unwound. User actions that are not matched are discarded.

53.2.10 Manager

Manager: TYPE :II RECORD [

table: Table, window: Window.Handle, notify: NotifyProc);

null Manager: Man~ger =- [NIL, TRASH, TRASH);

Manager is used to send all user actions through table and notify, using window instead of
through the window, table, and notify procedure determined by actionToWindow and TIPs
Match process. If table is NIL, as in null Manager, then the standard mechanisms will be
used to determine where actions will be sent.

GetManager: PROC RETURNS [current: Manager];

GetManager returns the current manager.

ClearManager: PROCEDURE :II INLlNE ••• ;

ClearManager sets the manager to null Manager. It should only be called by clients who
know that they set the manager from null to non-null.

SetManager: PROCEDURE [new: Manager] RETURNS [old: Manager];

SetManager does the obvious thing.

55.2.11 User Abort

UserAbort: PROC [Window.HancUe] RETURNS [BOOLEAN);

UserAbort returns whether the user abort flag is set for the window. The bit may be set by
calling SetUserAbort or by the system if the window does not have an attention procedure
and the STOP key is depressed in that window. If window is NIL, the Usertnput package
checks to see whether the user has done a global abort. When a non-shift key goes down,
this flag and the global abort flag are cleared.

ResetUserAbort: PROC [Window.Handle];

ResetUserAbort sets user abort flag for the window to FALSE.

SetUserAbort: PROC [Window.Handle]

55-9

55 TIP

SetUserAbort sets the user abort flag for the window. This does not call the window's ~
attention procedure, if there is one.

56.2.12 Attention

AttentionProc: TYPE = PROC [window: Window.Handle];

An AttentionProc is a procedure called whenever the STOP key is depressed. It is called from
a high-priority process-not the Notifier-as soon as the stimulus level sees the key go
down.

SetAttention: PROC [Window.Handle, attention: AttentionProc)

SetAttention sets the attention procedure for the window. The procedure attention is
called asynchronously whenever the STOP key is depressed.

55.2.13 Stuffing Input into a Window

Stuff Character: PROC [.
window: Window.Handle, char: XString.Character] RETURNS [BOOLEAN)

Stuff Character allows a client to drive the type-in mechanism as though a character were
coming from the user. The notify procedure of window is called with a string result that
contains char. The returned BOOLEAN is TRUE only if window was prepared to accept input.

StuffCurrentSelection: PROC [window: Window.Handle] RETURNS [BOOLEAN)

StuffCurrentSelection allows a client to drive the type-in mechanism as though the
contents of the current selection were coming from the user. The selection is converted to a
string and the string is passed to the window's notify proc. (See the Selection interface for a
description of the current selection.) The returned BOOLEAN is TRUE only if window was
prepared to accept input.

Stuff Results: PROCEDURE [window: Window.Handle, results: Results];

Stuff Results calls the notify proc of window with results.

Stuff String: PROC [window: Window.Handle, string: XString.Reader] RETURNS [BOOLEAN]

Stuff String allows a client to drive the type-in mechanism as though string were coming
from the user. The notify procedure of window is called with a string result that contains
string f. The returned BOOLEAN is TRUE only if window was prepared to accept input.

Stuff STRING: PROCEDURE [window: Window.Handle, string: LONG STRING]
RETURNS [BOOLEAN);

Stuff STRING calls the notify procedure of window with a results list that contains a string
ResultObject whose reader body describes the characters in string.

StuffTrashBin: PROC [window: Window.Handle] RETURNS [BOOLEAN)

StuffTrashBin is currently not implemented.

~!

55-10

ViewPoint Programmer's Manual 55

55.2.14 Errors

InvalidTable: SIGNAL [type: TableError, message: XString.Reader);

TableError: TYPE. {fileNotFound, badSyntax};.

InvalidTable is only raised by CreateTable. The type is fileNotFound if the file could not be
found and the message string was empty. fileNotFound is raised as an ERROR. The type is
badSyntax if the current file is syntactically incorrect. If badSyntax is RESUMEd, and
message is not empty, the message is written into file, and it is reparsed. If the file has
been overwritten, or message is empty, and there is a syntax error, the error will be
badSyntax. In this case if the signal is resumed, CreateTable simply returns NIL.

Error: ERROR [code: ErrorCodel;

ErrorCode: TYPE • {noSuchPeriodicNotifier, other};

ReturnToNotifier: ERROR [string: XString.Reader];

Sometimes a client is deep in the call stack of some Notifier-invoked operation from which
it wishes to unwind. The ERROR ReturnToNotifier can be raised and will be caught at the top
level of the Notifier process. Clients can catch this error, post a message with string in it,
and let the error propagate up:

55.2.15 Miscellaneous Items

GetPlace: PROCEDURE [window: Window.Handle1 RETURNS [Window.Pfacel;

GetPface returns the window relative coordinate of the last user action that was matched ..
GetPface should only be invoked while in the notifier process.

actionToWindow: PACKED ARRAY Key Name OF BOOLEAN;

actionToWindow determines if a user action should be sent to the window containing the
cursor (TRUE) or to the window containing the current input focus (FALSE). This array is
global to the entire environment. It is initialized to have all actions go to the input focus,
except those associated with the Adjust, Menu, and Point mouse buttons and the STOP key.

caretRate: Process. Ticks;

clickTimeout: System.Pulses;

cfickTimeout and caretRate are values that are set by user profile. Clients who implement
blinking carets may use caretRate to determing the rate of caret blinking. Clients who
implement click timeout without using the timing facilities in tables may use clickTimeout
to determine the maximum time allowed between two clicks of a multi-click.

FlushUserlnput: PROCEDURE;

FlushUserlnput empties the queue of pending user actions (type-ahead and button-ahead).

GetNotifierProcess: PROCEDURE RETURNS [PROCESS];

55-11

55 TIP

GetNotifierProcess returns the current notifier process. It is defined in TIPXX.mesa.,

time ToFi rstRepeat: Process. M ill iseconds;

ti meBetween Repeats : Process.Mill iseconds;

timeToFirstRepeat and timeBetweenRepeats are for clients who wish to implement
repeating keys. A key is a repeating key, if while the key is held down continuously, the
same action is performed each time an interval elapses. The value for the first interval is
the timeToFirstRepeat. The value for successive intervals is timeBetweenRepeats.

55.2.16 "Look-Ahead"

TIP allows a client to fflook ahead" at the next results that TIP will deliver, and choose to
process the results or not. This allows the client to implement possible performance gains.
For example, say the client's NotifyProc is called with a string result (the user typed some
characters) and suppose there is some significant ffsetup" processing the client must do to
get to the point where the characters can actually be inserted and displayed. If the next
thing in the input queue is more characters, the client can save that setup processing time
by looking at what's next in the input queue before returning from the NotifyProc and
continuing to process characters until the next item in the queue is not a string result.

GetResults: PROCEDURE [window: Window.Handle, resultsWa"ted: ResultsWanted +- NIL]

RETURNS [results: Results];

ResultsWanted: TYPE. PROCEDURE [

window: Window.Handle, table: Table +-NIL, results: Results]
RETURNS [wanted: BOOLEAN);

GetResults calls resultsWanted and if resultsWanted returns TRUE, then GetResults returns
the results that would next go to window's NotifyProc, and removes from the input queue
the event that produced results. If resultsWanted returns FALSE, the event is left in the
input queue and processed ffnormally." When resultsWanted is called, results is the next
results and window is the window that those results. would go to. If table is not NIL, then
the results would go to the table's NotifyProc. These items are defined in TIPX.mesa.

55.3 Usage/Examples

55.3.1 Periodic Notification

55-12

The following example shows the use of a periodic notifier for updating a display of the
volume page count. The page count will be updated every 20 seconds, provided that the
N otifier is not otherwise occupied.

window: Window.Handle +- ••• ;

updateCount: Atom.ATOM +- Atom.MakeAtom("UpdateCount"L];
results: ResultsObject +- [next: NIL, body: atom(a: updateCount));
pageNotifier: PeriodicNotify +- ~

CreatePeriodicNotifty(window: window, results: @results, milliSeconds: 20000);

MyNotifyProc: NotifyProc • {

ViewPoint Programmer's Manual

input: Results;
FOR input +- results, results. next 00

WITH z: input SELECT FROM

atom. >
IF z.a • updateCount THEN {

-- code to update page count on screen;}
ELSE {

-- code to handle other atoms};
ENDCASE;

ENDLOOP};

55.3.2 Syntax of TIP tables

55

Following is the BNF description for the syntax of tables. Non-terminals are boldface,
terminals are non-bold Titan (e.g., FastMouse>. ';I'he characters 'f"", ft.", ";", ",",

" = >", "{", and 'f}" in the BNF below are terminal symbols. The semantics are described
in the next section.

TlPTabie

Options
OptionList
Option
SmaliOrFast
FastOrSlowMouse

Expression
Statement

TriggerStmt
EnableStmt

TriggerChoiceSeries

EnableChoiceSeries

TriggerChoice
EnableChoice
FinalChoice

TriggerTerm
EnableTerm

TimeOut

KeyE~ableList

:: • Options TriggerStmt .
Note: tables terminate with a period.

:: • empty I OPTIONS OptionList ;
:: :8 Option I Option, Option List
:: • SmaliOrFast I FastOrSlowMouse
:: • Small I Fast
:: • FastMouse I SlowMouse

:: • AND TriggerChoice I WHILE EnableChoice I = > Statement
:: • TriggerStmt I EnableStmt I Results

:: • SELECT TRIGGER FROM TriggerChoiceSeries
:: • SELECT ENABLE FROM EnableChoiceSeries

:: • TriggerChoice ; TriggerChoiceSeries
I TriggerChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: • EnableChoice; EnableChoiceSeries
I EnableChoice ENDCASE FinalChoice
I ENDCASE FinalChoice

:: • TriggerTerm Expression
:: • EnableTerm Expression
:: • empty I = > Statement

:: • (Key I MOUSE I ENTER I EXIT) TimeOut
:: • KeyEnableList I Predicateldent

:: • empty I BEFORE Number I AFTER Number

:: • Key I Key I KeyEnableList
Note: the I between Key and KeyEnableList is ~
terminal and must be entered.

55-13

55 TIP

Key

Results

Resultltems
Resultltem

String

Resultldent
Keyldent
Predicateldent

:: • Keyldent Up, Keyldent Down

:: • Resultltem' Resultltem I Results' Resultltem Expression
, { Resultltems }

:: • Resultltem' Resultltem Resultltems
:: • COORDS I BUFFEREDCHAR, CHAR, KEY I TIME

I Numberl String I Resultldent

::. "any sequenc~ 01 characters not contai ni ng a ,,/1

::.Ident
::. Ident
:: • Ident

50.3.3 Semantics of Tables

55-14

The whole match process can be viewed as a SELECT statement, that is continuously reading
key transitions, mouse movements, or key states from the input queue. A trigger
statement has the effect of looking at the next action recorded in the input queue and
branching to the appropriate choice. An enable statement implies selection between the
difierent choices according to the current state of the keyboard or the mouse keys. Trigger
terms may appear in sequence, separated by AND. They might be mixed with enable terms,
which in turn are characterized by the keyword WHILE. A timeout following a trigger
indicates a timing condition that has to hold between this trigger and its predecessor. The ~.
number associated with the timeout expresses a time interval in milliseconds. Events
starting with the same sequence of trigger and/or enable terms are expressed as nested
statements. Result items may be identifiers, numbers, strings, or the keywords COORDS,
BUFFEREDCHAR, CHAR, KEY, or TIME. The results ofa successfully parsed event are
passed to the client. Numbers are passed as LONG INTEGERS, and strings as
XString.ReaderBodys. BUFFEREDCHAR and CHAR come as XString.ReaderBodys
containing the character interpretation of the key involved with the event as defined by
the CharTranslator. COORDS results in a Window. Place containing the mouse coordinates of
the event.

Option

SmaliOrFast

FastOrSlowMouse

FastMouse
SlowMouse

Expression

:: • SmaliOrFast I FastOrSlowMouse

:: • Small, Fast
TIP can produce its internal table in two formats: one designed
for compactness (default) and one for speedy execution. This
option indicates which format should be used.

:: • FastMouse, SlowMouse

The TriggerTerm MOUSE means all mouse movement.
The TriggerTerm MOUSE means only the most recent mouse
motion (default).

:: • AND TriggerChoice, WHILE EnableChoice I = > Statement

AND TriggerChoice match if and only if TriggerChoice is the next input event after
the preceding choice. "For example, A Down AND B Down

ViewPoint Programmer's Manual 55

means A goes down and then B goes down (with no intervening
actions like A Up or mouse motion).

WHILE EnableChoice match if EnableChoice is also true at this point. For example, A
Down WH I LE B Down matches if A goes down while B is
down.

= > Statement

Statement

TriggerStmt

EnableStmt

EnableStmt

TriggerStmt
TriggerTerm

Key
MOUSE
ENTER
EXIT

TimeOut

BEFORE Number

AFTER Number

EnableTerm

KeyEnableList

Key

Key

Keyldent

continue processing at Statement (it is used for results and
common prefixes).

:: • TriggerStmt I EnableStmt I Results

:: • SELECT TRIGGER FROM TriggerChoiceSeries

:: • SELECT ENABLE FROM EnableChoiceSeries

matches if any of the EnableChoiceSeries have already
happened.

matches if any of the TriggerChoiceSeries have just happened.
:: • (Key I MOUSE I ENTER I EXIT) TimeOut

matches if the appropriate key transition occurs.
matches if there is mouse motion (useful for tracking the mouse).
matches if the mouse enters the window.
matches if the mouse leaves the window.

:: • empty I BEFORE Number I AFTER Number

matches if the associated TriggerTerm ~appens within a number
of milliseconds of the preceding (matched) user action. For
example, A Down AND B Down BEFORE 200 would
match if A went down and then B went down within 115 second
(and there were no intervening actions).

matches if the associated TriggerTerm happens a number of
milliseconds or more after the preceding user action. For
example, A Down AND B Down AFTER 200 would
match if A went down and then B went down more than 1/5
second later (and there were no intervening actions).

:: • KeyEnableList I Predicateldent

is true if any of the Keys are true.

:: • Keyldent UPI Keyldent DOWN

is true if the appropriate transition has happened (if this is part
of a trigger term, is the current user action; if this is an enable
term, it has already happened).

identifies the keyboard key. The identifiers should be one of: A ...
Z, One, Two, Three, ... Zero, Adjust, AGAIN, OpenQuote,

55-15

55

55-16

TIP

Resultltem

String
Resultldent

caORDS

BUFFEREDCHAR

CHAR
KEY

TIME

String
Number
Resultldent

Predicateldent

Predicateldent

DEFAULTS, BackSlash, SS, SUBSCRIPT, SMALLER, Comma, ~,
KEYBOARD, TAB, PROPS, COPY, Minus, DELETE,
MARGINS, Equal, EXPAND, FIND, HELP, ITALICS,
UNDERLINE, Keysetl, Keyset2, Keyset3, Keyset4, Keyset5,
LeftBracket, LeftShi.tt, LOCK, MouseMiddle, CENTER, MOVE,
NEXT, SAME, Period, Point, CloseQuote, SUPERSCRIPT,
RETURN, RightBracket, RightShift, BOLD, SemiColon, Slash,
Space, OPEN, PARATAB, UNDO, STOP, A8, A9, AIO, All,
A12, LI,L4, L7, LIO, Key47,R3,R4,R9, RIO

Note: There are no names for shi.tted characters like left or right
paren. Instead, specify one or both shift keys pI us the unshifted
key name. For example, Nine Down WHILE LeftShift Down
instead of LeftParen Down.

See LevellVKeys and the Pilot Programmer's Manual for
(6l0E00160) more information on the keyboard.

:: • CaORDSI BUFFEREDCHAR I CHAR I KEYI TIME
I String I Number I Resultldent

::. "any sequence of characters not containing a "II
:: • Ident

return a coord ResultElement with the coords of the last user
action.
return a string ResultElement containing the character
representations of the last user actions that were also buffered
characters.
same as BUFFEREDCHAR
return a key ResultElemem with the current state of the key (not
recommended in normal usage. Usually a more complex TIP
table is indicated if you are usingthis result).
return a time ResultElement with the time of the last <matched)
user action.
return a string ResultElement.
return an integer ResultElement.
return an atom ResultElement.

::.Ident

a predicate is an atom which can have a procedure associated
with it (defined in SpeciaITIPX.mesa). This procedure returns a
BOOLEAN and it is called by TIP when a predicate atom is
encountered in a TIP table. Several useful predicates are
provided by ViewPoint, to distinguish physical keyboards:
"aLeve14", "eLeveI4", "jLeveI4", "aLeveIS", "eLevelS", "jLevelS"
(where a = American, e = European, j = Japanese, Leve14 =
8610, Level5 = 608S)' For example, adding this to a TIP table:

TAB Down = > SELECT ENABLE FROM
eLevelV = > SomethingSpecial
ENDCASE;

would result in "SomethingSpecial" being passed in the results

ViewPoint Programmer's Manual 55

list if and only if the TAB key went down on a European 6085
keyboard. See N ormalKeyboard. TIP in Appendi,x A for more
examples.

55.3.4 Example Table

SELECT TRIGGER FROM
Point Down = >

SELECT TRIGGER FROM
Point Up BEFORE 200 AND Point Down BEFORE 200 = >

SELECT ENABLE FROM
LeftShift Down = > CCORDS, ShiftedDoubleClick
ENDCASE = > CCORDS, NormalDoubleClick;

Adjust Down BEFORE 300 = > PointAndAdjust;
ENDCASE = > CCORDS, SimpleClick;

This table produces the result element (atom) NormalDoubleClick along with the
mouse coordinates if the left mouse button goes down, remains there not longer than 200
ms, and goes down again before another 200-ms elapse. The result is
ShiftedDoubleClick if the same actions occur but also the left shift key is down. If
the right mouse button also goes down less than 300 ms after the initial Point Down
and the left mouse button also goes down, PointAndAdjust results. Finally, the table
specifies the result SimpleClick (with coordinates) if Point goes down but none of the
above-described succeeding actions occurs.

00.3.5 Simple TIP Client Example

This example shows a simple TIP client. The window acts in the following manner. If the
left (Point) mouse button is depressed the window becomes the input focus and the
cursor changes to its special shape. As long as the window is the input focus and the
cursor is in the window, it remains the special shape but returns to the original shape
when the mouse leaves the window. The place in the window where the depressed left
(Point) mouse button is released is the place where text is displayed.

The procedure InitAtoms is part of the initialization code and creates the four atoms that
the notify procedure understands. It is put in a separate procedure so the string literals
will not be allocated in the global frame. The procedure InitWindow initializes the
window by attaching the context data and setting the table and notify procedure.

This example uses the system's table from TIPStar. The fragments of the
NormalMouse.tip portion of TlPStar's normal table that are used to generate the atom
results in this example are

Point Down = > SELECT ENABLE FROM
[SHIFT] = >:rIME, COORDS, Shift, PointDown;
ENDCASE = > TIME, COORDS, PointDown;

Point Up = > SELECT ENABLE FROM
[SHIFT] = > TIME, COORDS, Shift, PointUp;
ENDCASE = > TIME, CCORDS, PointUp;

ENTER = > Enter;
EXIT = > Exit;

55-17

55

55-18

TIP

The notify procedure TIPMe looks at the results and understands four atoms and string
input. For the atom pointDown, if the window is not already the input focus, it sets the ,~
window as the input focus and sets the cursor to its special shape. For the atom pointUp,
it saves the place the event occurred as the location to display text. The enter atom just
fiddles with the cursor if the window is the input focus. The exit atom restores the
cursor. If the window is the input focus and the user types into the window, a string
result is sent to the notify procedure containing the characters typed. The
NormalKeyboard.tip portion of TIPS tar's normal table contains the BUFFEREDCHAR results
for the keyboard-keys-going down events.

Handle: TYPE. LONG POINTER TO Object:
Object: TYPE • • •• ;

contextType: Context. Type • Context.UniqueType{];
pointDown, pointUp, enter, exit: Atom.ATOM;

InitAtoms: PROCEDURE. {
pointDown ... Atom.MakeAtom["?ointDown"l);
pointUp ... Atom.MakeAtom("PointUp"l);
enter ... Atom.MakeAtom("Enter"l1;
exit ... Atom.MakeAtom("Exit"l]};

InitWindow: PROCEDURE [window: Window.Handle] • {
h: Handle. zone.NEw[Object ... []];
Context.Create{type: contextType, data: h, proc: DestroyContext, window: window];
TIP.SetTableAndNotifyProc(

window: window, table:TIPStar.NormaITable(], notify: TlPMe]}; #~

TlPMe: TIP.NotifyProc • {
h: Handle. Context.Find[type: contextType, window: window];
place: Window.Place;
FOR input: TIP.Results ... results, input.next UNTIL input. NIL 00

WITH z: input SELECT FROM
coords • > place ... z.place;
atom • > SELECT z.a FROM

pointDown • >
IF -h.haslnputFocus THEN {

TIP. Setl nputFocus(
window: window, takeslnput: TRUE,
newln-putFocus: MyLosingFocusProc, c1ientData: hI;

SaveCursorAndSetMi ne(h]}
pointUp • >' h.textPIace ... place;
enter. > IF h.haslnputFocus THEN SaveCursorAndSetMine[h);
exit. > RestoreCursor[h];
ENDCASE;

string. >
h.textPlace ... DisplayTextAtPlace[h: h, reader: @z.rb, place: h.textPtace);

ENDCASE;
ENDLOOP};

MyLosingFocusProc: TIP.LosingFocusProc =- {
OPEN h: NARRow(c1ientData, Handle];
h.haslnputFocus ... FALSE};

~i

ViewPoint Programmer's Manual 55

55.3.6 Modifying an Existing TIP Client

This example shows how an existing TIP client may be modified. Assuming the existence
of a TextWindow package similiar to that in Tajo, this example builds a TTY·like
window on top of it. It modifies the text window's behavior in two ways. First, it changes
the table that the text window uses by linking its own table on the front of the normal
table that the text window package uses. It also has its own notify procedure that just
looks for the STOP key going down but passes all other notifications to the text window's
notify procedure that it saves.

This example writes its own table. The table maps shift backspace to the character
Control-W, backspace to the character Control-H, the DELETE key to the DEL character
and the TAB key to the ESCAPE character. This table handles only a few of the functions
and is linked onto TIPStars normal table to provide the bulk of the funtion.

-- File: TTY.tip

[DEF SHIFT, (LeftShift Down I RightShift Down I Key47 Down I A 12 Down)]

SELECT TRIGGER FROM
BS Down = > SELECT ENABLE FROM

[SHIFT1 = > "\027";
ENDCASE = > "\010";

DELETE Down = > "\177";

TAB Down = > "\033";

ENDCASE.

Handle; TYPE • LONG POINTER TO Object;
Object: TYPE •... ;
contextType: Context.Type • Context.UniqueType(];
stop: Atom.ATOM;

Init: PROCEDURE. {
rb: XString.ReaderBody +- XString.fromSTRING[nTIY.tip"l];
stop+- Atom.MakeAtom(nStop"L];
myTable +- TIP.CreateTable{file: @rb];
[] +- TIP.SetTableLink[from: myTable, to: TIPStar.NormaITable(]};

Create: PROCEDURE [window: Window.Handle, ...] • {
h: Handle. zone.NEw[Object +- []];
TextWindow.Create{window •...];
h.oldNotify +- TIP.SetNotifyProc[window: window, notify: TIPMe]};

TlPMe: TIP.NotifyProc • {
h: Handle. Context.Find[type: contextType, window: window];
WITH z: results SELECT FROM

atom • > SELECT z.a FROM
stop. > {

TIP.FlushUserlnput[];
SendHaltNotification{h);
RETURN};

55-19

55 TIP

ENDCAse;

h.oldNotify[window, results]}; _. normally pass results to text window's notify

35.3.7 Macro Package

55-20

The macro package used in TIP is based on the general-purpose macrogenerator
described by Strachey in Computer Journal ,(October 1965). The following summary is
based on that article; see the article itself for more details. .

A macro call consists of a macro name and a list of actual parameters, each separated by
a comma. The name is preceded by a left square bracket ([), and the last parameter is
followed by a right square bracket. A macro is dermed by the special macro DEF, which
takes two arguments: the name of the macro to be defined' and the defining string. The
derIDing string may contain the special symbols -1, -2, etc., which stand for the first,
second, etc., formal parameters. Enclosing any string in parentheses prevents
evaluation of any macro calls inside; in place of evaluation, one layer of string quotes is
removed. It is usual to enclose the derming string of a macro definition in string quotes
to prevent any macro calls or uses of formal parameters from being effective during the
process of definition.

Here are some sample macros and an example:

- macro definitions
[DEF,LSHIFT,(LeftShift Down)]
[DEF,RSHIFT,(RightShift Down)]
[DEF,EitherShift,(

[LSHIFT] = > -1;
[RSHIFT] = > -1)]

- trigger cases
SELECT TRIGGER FROM
BS Down = > SELECT ENABLE FROM

[EitherShift,{BackWord}];
ENDCASE = > {BackSpace};

- more cases ...
ENDCASE ...

The above example expands to:

BS Down = > SELECT ENABLE FROM
LeftShift Down = > BackWord;
RightShift Down = > BackWord;
ENDCASE = > {BackSpace};

ViewPoint Programmer's Manual 55

55.4 Index of Interface Items,.
Item Page Item Page

actionToWindow: ARRAY OF BOOLEAN 11 LosingFocusProc: TYPE 7
ATOM: TYPE 4 Manager: TYPE 9
AttentionProc: TYPE 10 NotifyProc: TYPE 4
backStoplnputFocus: window.Handle 7 null Manager: Manager 9
callBack: PROCEDURE 8 nuliPeriodicNotify: PeriodicNotify 8
caliBackNotifyProc: TYPE 9 PeriodicNotify: TYPE 8
CancelPeriodicNotify: PROCEDURE 8 ResetUserAbort: PROCEDURE 9
caretRate: Process. Ticks 11 ResultObject: TYPE 4
CharTranslator: TYPE 7 Results: TYPE 4
ClearlnputFocusOnMatch: PROCEDURE 7 ResultsWanted: TYPE 12
ClearManager: PROCEDURE 9 ReturnToNotifier: ERROR 11
dickTimeout: System.Pulses 11 SetAttention: PROCEDURE 10
CreateCharTable: PROCEDURE 6 SetBackStoplnputFocuS:PROCEDURE 7
CreatePeriodicNotify: PROCEDURE 8 SetCharTranslator: PROCEDURE 8
CreatePIaceHolderTable: PROCEDURE 6 SetlnputFocus: PROCEDURE 7
CreateTable: PROCEDURE 6 SetManager: PROCEDURE 9
DestroyTable: PROCEDURE, 6 SetNotifyProc: PROCEDURE 5
DownUp: TYPE 4 SetNotifyProcForTable: PROCEDURE 6
Error: ERROR 11 SetTable: PROCEDURE 5
ErrorCode: TYPE 11 SetTableAndNotifyProc: PROCEDURE 5'

.......,1 FlushUserinput: PROCEDURE 11 SetTableLink: PROCEDURE 5
FocusTakesl nput: PROCEDURE 7 SetTableOpacity: PROCEDURE 5
GetCharTranslator: PROCEDURE 8 SetUserAbort: PROCEDURE 9
GetlnputFocus: PROCEDURE 7 Stuff Character: PROCEDURE 10
GetManager: PROCEDURE 9 StuffCurrentSelection: PROCEDURE 10
GetNotifierProcess: PROCEDURE 11 Stuff Results: PROCEDURE 10
GetNotifyProc: PROCEDURE 5 Stuff STRING: PROCEDURE 10
GetNotifyProcFromTable: PROCEDURE 6 Stuff String: PROCEDURE 10
GetPlace: PROCEDURE 11 StuffTrashBin: PROCEDURE 10
GetResults: PROCEDURE 12 Table: TYPE 5
GetTable: PROCEDURE 5 TableError: TYPE 11
GetTableLink: PROCEDURE 5 TableObject: TYPE 5
GetTableOpacity: PROCEDURE 5 timeBetweenRepeats:
InvalidTable: SIGNAL 11 Process.Milliseconds 12
KeyBits: TYPE 8 timeToFirstRepeat: Process.Milliseconds 12
KeyName: TYPE 4 UserAbort: PROCEDURE 9
KeyToCharProc: TYPE 7 WaitSeconds: PROCEDURE 11

55-21

55 TIP

55-22

56

TIPStar

56.1 Overview'

The TIP facility provides a mechanism that links a list ofnp. Tables. These TIP. Tables contain
productions that translate user actions into terms a client is prepared to deal with. TIPStar
creates a structure for the list of ViewPoint TIP tables to be built on. This structure divides
all possible input actions into logical groups (mouse actions, special keys like UNDO and
STOP, utility keys like MOVE and COPY, etc.) and provides a means for accessing these
groups of tables.

56.2 Interface Items

56.2.1 The TIPStar Structure

The basis for the TIPStar structure is the placeholder.

Placeholder: TYPE • {mouseActions, keyOverrides, softKeys, keyboardSpecific,
blackKeys, side Keys, backstopSpeciaIFocus};

A placeholder table is created for each of the enumerateds in Placeholder. Placeholder
tables are empty TIP tables linked to form a list. This list divides all possible input actions
into logical groupings as discussed in the Overview above. It defines a series of segments
for the list of TIP. Tables to be built upon. Segments (mini-stacks> are delineated by the
placeholder tables. This initial list of TIP.Tables then, contains only empty tables. Note:
Placeholder tables are always empty. They are, as their name implies, placeholders--each
providing a position in the list of tables for adding or removing real tables of a particular
kind (those relating to mouse actions, those mentioning the soft keys,and so forth.). See
Examples in the next section.

Fine point: A set of normal tables that contain all the basic key productions is installed at boot time. See the

System TIP Tables Appendix for listings of those tables and a view of the TIP table list at the completion of

booting. These normal tables are referred to as generic in the description ofnpstar.GetTable to prevent confusion

with the procedure npstar.NormaITable.

56-1

56

56-2

TIPS tar

The list of ViewPoint placeholder tables is initialized as in Figure 56.1 (the arrows ~,

represent the links of the list).

Placeholders Input & Uses

mouseActions Point and adjust menu

keyOverrides [e.g,. PROPS when a property sheet is up]

softKeys Interprets top row of keys

keyboardSpeci fi c Keys on physically different keyboards _

blackKeys The physical keyboard and its modifications.

backstopSpecial Focus All those not directed to the input focus.

NIL Handles STOP, KEYBOARD, UNDO, and friends.

Figure 56.1 ViewPoint P'aceholder Tables

58.2.2 Installing and Removing Tables

A client may alter the table arrangement by pushing or storing a TIP table into any point
on the tree, or by popping back to a previous table.

PushTable: PROCEDURE [Placeholder, TIP. Table] ;

PushTable leaves old tables in the watershed, but places the new table (or chain of tables)
directly after the specified placeholder. This places the new table in front of any others
within that segment. Thus if the new table mentions the same key actions as the old table,
the old one is effectively ignored until the new one is popped. If the new table only
mentions a few key actions, however, previously pushed tables will be used for the others.

For an example of Push Table and the resulting TIP. Table list, see §56.3.1.

PopTable: PROCEDURE [Placeholder, TIP.Table] ;

~"

Pop Table takes the single TIP table to be popped. It is n9t required that the table to be ~,
popped be at the top of the placeholder's list. A strict stack discipline is relaxed.

ViewPoint Programmer's Manual 56

StoreTable: PROCEDURE [Placeholder, TIP.Table) RETURNS [TIP.Table) ;

StoreTable replaces the table (or chain of tables) with the client's table (or chain of tables)
and returns the previous table. The client can restore the old value later, if it wishes. (In
using StoreTable, and especially in remembering or restoring the old value, the client
probably needs to be cognizant of the other clients that may manipulate the same
placeholder.) (See examples in §56.3.3.)

56.2.3 Retrieving Pointers to Installed Tables

NormaiTable: PROCEDURE RETURNS [TIP. Table);

NormalTable returns the table at the head of the list (mouseActions placeholder), This is
the appropriate table to use for a normal TIP,SetTableAndNotifyProc.

GetTable: PROCEDURE [Placeholder) RETURNS [TIP. Table];

GetTable returns the generic table at the specified. placeholder, if one exists. (See the fine
point in §56.2.1.)

56.2.4 Mouse Modes

Mode: TYPE. {normal, copy, move, sameAs};

The TIPStar.Modes refer to the various modes attributable to mouse actions .. These modes
can be programmatically checked and changed by using the GetMode and SetMode
procedures outlined below.

GetMode:PROCEDURE RETURNS [mode: Mode);

GetMode returns the current mode.

SetMode:PROCEDURE [mode: Mode) RETURNS [old: Mode);

Calling SetMode causes the appropriate TIP. Table to be stored in the TIPStar chain.

For example, when the COpy key goes down, the call to TIPStar.SetMode(copy] causes
Norma'Mouse.TIP to be relaced by CopyModeMouse.TIP. Clients receiving mouse notifications
receive CopyModeDown instead of PointDown. If the world is in move mode (causing
Ma"eModeMouse. TIP to be stored) the client receives the MoveModeDown when mouse point
is pressed. See the TIP Table appendix for information on the other productions in the four
mouse tables (NormaIMouse. TIP, CopyModeMous •. TIP, Mo"eModeMouse. TI P and
SameAsModeMouse~ TIP).

56-3

56 TIPStar

56.3 U sage/Examples

56-4

56.3.1 When PushTable Is Called

-lnitializeMyTiPTables: PROCEDURE.

BEGIN
rbCIientAMouse: X5tring.ReaderBody xstring.FromSTRING[-ClientAMouse. np-L1;
tipClientAMouse: np.Table np.CreateTable(file: @rbClientAMousel;
_. install my tip table (tie it to my notify p,oc)
o np.SetNotifyProcForTable{ ti pClientAMouse. ClientAMouseNotifyProcl;
PushTable(mouseActions, tipClientAMouse);

rbCJientAKeys: X5tring.ReaderBody ... XString.FromSTRING,-CJientAKeys.np"LI;
tipCJientAKeys: np.Table ... np.CreateTable(file: @rbClientAKeysl;
_. install my tip table (tie It to my notify· p,oc)
o np.SetNotifyProcForTable(tipClientAKeys. ClientAKeysNotifyProc);
Push Table[sideKeys, ti pClientAKeysl;
END: -- InitializeMynPTables

Assume initially that the list appears as in Figure 56.1. If Client A then pushes two tables
onto that list, as in the code above, the new links result in the list shown in Figure 56.2 ..

mouseActions ClientAMouse. TIP

keyOverrides

softKeys

keyboardSpecific

blackKeys

sideKeys 1--'" ClientAKeys. TIP

backstopSpeci al Focus

NIL

Figure 56.2 When PushTable Is C~lIed

ViewPoint Programmer's Manual

If client B then pushes another table to the mouseActions placeholder

Push Table(mouseActions, ti pCI ientBMouse);

the resulting list appears as in Figure 56.3.

'-___ m_o_u_se_A_ct_io_n_s ___ H ClientBMouse.TIP

keyOverrides

softKeys

keyboardSpecific

blackKeys

sideKeys 1--'" CJientAKeys. TIP

backstopSpeci al Focus

NIL

Figure 56.3 Pushing Another Table

56.3.2 When StoreTable Is Called

rbClientCMouse: XString.ReaderBody +- XString.FromSTRI NGI-ClientCMouse. TIP"L);
tipClientCMouse: TIP.Table +- TlP.CreateTable(file: @rbCJientCMousel;
... instali my tip table (tie it to my notify proc)
O+-TlP.SetNotifyProcForTable(tipClientCMouse, ClientCMouseNotifyProc);
savedTable +-StoreTable(mouseActions, tipCJientCMouse);

56

Assume initially that the list appears as in Figure 56.3. If client C then calls StoreTable
with another table directed at the mouseActions placeholder, the resulting list appears as
in Figure 56.4.

56-5

56 TIPStar

1--1 ClientCMouse. TIP

=========1' I

mouseActions

_ ~eyOverrides ...

softKeys

keyboardSpecific

blackKeys

sideKeys i ClientAKeys.TIP

backstopSpecial Focus

NIL

Figure 56.4 Pushing Another Table

Client C now has the handle to the segment removed from mouseActions when the
StoreTable was done (savedTable, see Figure 56.5). This table (or in this case, chain of
tables) should be replaced when the client is through with its own mouse tip
(tipCJientCMouse) by a call to:

StoreTable[mouseActions, savedTable); or
PopTable[mouseActions. tipClientCMouse);
PushTable{mouseActions, savedTable);

I ClientBMouse.TIP

~

I ClientAMouse.TIP

Figure 56.5 Saved Table

I

I
.~

ViewPoint Programmer's Manual 56

56.3.3 When PopTable Is Called

Assume initially that the list appears as in Figure 56.3. If client A then pops its table at
the mouseActions placeholder, the resulting list appears as in Figure 56.6. Note: It is not
necessary for the table being popped to be at the top of the stack (where the top of a stack is
here deimed to be the position immediately following any placeholder table-thus there are
several stacks within the watershed list of tables).

H C1ientBMou5e.TIP

--======" , keyOverrides . '"

mouseActions

softKeys

keyboardSpecific

blackKeys'

sideKeys -CI i entAKeys. Tl P

backstopSpecial Focus

NIL

Figure 56.6 Pop Table

56-7

56 TIPStar

56.4 Index of Interface Items ~

Item Page

GetMode: PROCEDURE 3
GetTable: PROCEDURE 3
NormalTable: PROCEDURE 3
Mode: TYPE 3
Placeholder: TYPE 1
PopTable: PROCEDURE 2
PushTable: PROCEDURE 2
SetMode: PROCEDURE 3
Store Table: PROCEDURE 3

56-8

57

Undo

- 57.1 Overview·

The Undo interface provides a set of procedures that allow applications to add Undo
opportunities to the current Undo stack. An implementation of Undo can then call
applications when the UNDO key is depressed.

57.2 Interface Items

57.2.1 Application's Procedures

Opportunity: Undo.Proc;

Proc: TYPE a PROCEDURE [
undoProc: PROCEDURE [LONG POINTER].
destroyProc: PROCEDURE [LONG POINTER].
data: LONG POINTERw

size: CARDINAL ... O];

The Opportunity procedure is called by an application when it does something that can be
undone. The client's undoProc is called to perform an undo. The destroyProc is called when
the undo opportunity no longer exists. The client can destroy any data at that time. The
undoProc or the destroyProc will always be called. The client's context for the undoing is
passed in via the data item: a non-zero size indicates that the 'Undo implementation should
copy the words from data f through (data + size-1) f into its zone. If size=O, the caller's
long pointer is simply remembered.

Roadblock: PROCEDURE [XString.Reader);

The Roadblock procedure is called by an application when it does something that cannot be
undone. The immutable string passed in is a message that the Undo implementation can
issue if the user attempts to undo past this point. The string is copied.

DoAnUndo: PROCEDURE;

57-1

57 Undo

The DoAnUndo procedure is called when an undo action should be forced. This is typically ~.

when the keyboard modules notice that UNDO has been pressed.

DoAnUnundo: PROCEDURE;

The DoAnUnundo procedure is called when an un-undo action should be forced. This is
typically when the keyboard modules notice that shift-UNDO has been pressed.

DeleteAII: PROCEDURE;

The DeleteAIi procedure is called to tell the Undo implementation to empty its stack of
opportunities. This procedure is typically called upon logoff.

57.2.2 Implementation's Procedures

Setlmplementation: PROCEDURE [
undo.lmplementation] RETURNS [Implementation);

Getlmplementation: PROCEDURE RETURNS [I mplementation);

Implementation: TYPE • RECORD· [
opportunity: undo.Proc. .

roadblock: PROCEDURE [XString.Reader).
dOAnUndo: PROCEDURE,
dOAnUnundo: PROCEDURE.
deleteAII: PROCEDURE];

These procedures allow an implementation to plug itself in to the Undo mechanism. An
implementation can supply its set of procedures and can ascertain the current procedures.
Setlmplementation returns the procedures of the previo~ implementation.

An initial set of dummy procedures are provided. They are basically no-ops; the dummy
Opportunity procedure immediately calls the application's opportunity.destroyProc.

Zone: PROCEDURE RETURNS [UNCOUNTED ZONE]

Returns the implementation's zone.

57.3 UsagelExamples

57-2

The application calls Opportunity with some context. The Undo implementation
eventually calls the application either at its undoProc or its destroyProc. The former is
called upon a real undo request. The latter is called when the opportunity is about to be
forgotten: it allows the application to garbage-collect context. The destroyProc is typically
called to prune the undo stack of very old elements or to prune opportunities that are
trapped behind a roadblock.

At the application's undoProc or destroyProc, the argument is either (1) the original
pointer passed in to Opportunity, if size was zero or (2) a pointer into the Undo ~,
implementation's zone that points to a copy of the application's data. In the latter case, the
data is freed by the Undo implementation right after the call. Exception: if the help
implementation is a no-op implementation, it can call the application's destroyProc from

ViewPoint Programmer's Manual 57

inside the Opportunity call. In this case, the help implementation can present the original
pointer to the destroyProc even if size is non-zero.

57.3.1 Example

MyUndoDataObject: TYPE. RECORD [•••];

MyUndoData: TYPE. LONG POINTER TO MyUndoDataObject;
complaint: XString.ReaderBody +-XString.FromSTRING ["Can't do that"L];

UndoProc: PROCEDURE [myUndoData: MyUndoData1 • {
-- does something appropriate, like a partial cleanup of data structures. message
-- might post a about cu"ent state for the user.
Undo.Zone [].FREE [@myUndoData);
};

DestroyProc: PROCEDURE [myUndoData: MyUndoData) • {
Undo.ZOne [].FREE [@myUndoData);
};

-- Mainline code
-- Code that cannot be undone

undo.Roadblock [@complaint];
-- Code that can be undone

Undo.Zonen.NEW[MyUndoDataObject +- [.•• 1];
Undo.Opportunity [undoProc: UndoProc, destroyPrac: DestroyProc, data: myData);

57-3

57 Undo

57.4 Index of Interface Items ~

Item Page

DeleteAII: PROCEDURE 2
DoAnUndo: PROCEDURE 1
DoAnUnundo: PROCEDURE 2
Getlmplementation: PROCEDURE 2
Implementation: TYPE 2
Opportunity: PROCEDURE 1
Proc: TYPE 1
Roadblock: PROCEDURE 1
Setlmplementation: PROCEDURE 2
Zone: PROCEDURE 2

57-4

58

U nitConversion

58.1 Overview

UnitConversion provides for converting numbers between various units of measure.

58.2 Interface Items

Units: TYPE. {inch, mm, em, mica, point, pixel, pica, didotPoint, cicero};

Units deimes all the units that may be converted. point is printer point. pixel is screen dot.
pica = 12 points. .

ConvertReal: PROCEDURE [n: XLReal.Number, inputUnits, outputUnits: Units]
RETURNS [XLReal.Number];

ConvertReal converts n from inputUnits to outputUnits, using XLReal. May raise
XLReal.Error.

Convertlnteger: PROCEDURE In: LONG INTEGER, inputUnits, outputUnits: Units]
RETURNS [LONG INTEGER];

Convertlnteger converts n from inputUnits to outputUnits. May raise XLReal.Error.

58.3 Usage/Examples

58.3.1 Converting Font VaIues

The following example implements a real-number conversion utility:

Unit: TYPE. MACHINE DEPENDENT {inch(O), mm(1), mica(2), point(3), space(4), cm(S), (1 S)};

Convert: PUBUCPRoc[n: XLReal.Number, inputUnits, outputUnits: Unit.Units]
RETURNS [XLReal.Number] • {
IF inputUnits • outputUnits THEN RETURN In);
IF inputUnits • space THEN

RETURN
UnitConversion.ConvertReal [

58-1

58

58-2

U nitConversion

XLR8al.Multiply[n, pointPerSpace],seventySecondOfAnlnch,
ConvertU nits(outputU nits)];

IF outputUnits • space THEN

RETURN

XLR •• I.Divide(UnitConvenion.ConvertReal(n, ConvertUnits(inputUnits],
seventySecondOfAnlnch], pointPerSpaee);

RETURN

UnitConvenion.ConvertReal(
n, ConvertUnits(inputUnits], ConvertUnits(outputUnitsll};

ConvertUnits: PROC [u: Units1 RETURNS (UnitConv8rsion.Units] • {
IF U < mica THEN RETURN (VAL(u.ORDl1;
IF u • mica THEN RETURN [VAL(u.ORD+ 1]];
IF u • point THEN RETURN [VAL(u.ORD + 6]];
RETURN [em)
};

ViewPoint Programmer's Manual

58.4 Index of Interface Items

Item

Convertlnteger: PROCEDURE

ConvertReal: PROaOURE

Units: TYPE

Page

1
1
1

58

58--3

58 UnitConversion

·~i

~ I

58-4

59

Window

59.1 Overview

The Window interface supplies facilities for managing windows on the display screen. A
window is a rectangular region of the display screen in which a client can display
information to the user. A window may overlap another window or even completely cover
it. A window may extend past the edges of the physical display screen or even be
completely· outside it and thus not visible. Windows may be moved around horizontally and
vertically, have their size changed, and have their depth changed in the stack of windows
visible on the screen. Window shields the client from these considerations-from the
client's point of view, each window is unaffected by other windows or by the edges of the
display screen. Window automatically handles client requests to paint into window
regions that are not currently visible on the screen.

The Display interface supplies routines for painting into windows.

59.1.1 Window Creation

Window supplies operations to allocate and free a window (a Window.Object). However,
windows are usually not allocated directly by clients but are obtained from various other
facilities, such as StarWindowShel1 or FormWindow. Once allocated, a window is referred
to and manipulated by reference, using a Window.Handle.

59.1.2 Child Windows and the Window Tree

Window manipulates a tree of windows. A window may have child windows. Child
windows obscure their parent; that is, they are above their parent in the apparent stack of
windows visible on the screen. A child window may be entirely contained within its
I?arent's screen area, may project beyond its parent's edge.s, or may even be completely
outside its parent. Window automatically clips the display of a child window at its parent's
edges. Thus a child window that is completely outside its parent is not visible on the screen
at all.

Each window has an ordered list or stack of its child windows. Sibling windows may
overlap: if they do, one tha~ appears earlier in the stack is on top of or obscures one that
appears later. The first window in the stack is the top sibling, and the last is the bottom

59-1

59-2

Window

sibling. Each window has a pointer to its parent, a pointer to the next sibling of its parent,
and a pointer to the window's topmost child.

When a window is created, it is not in the window tree and is called a private window. A
private window is unknown to Window and is not displayed on the screen. Window
provides facilities for inserting private windows into the tree, moving them within the tree~
and removing them from it. A window that is in the tree will be wholly or partially visible
on the screen unless it is entirely outside its parent's area or unless its children completely
cover the portion that is within its parent. Private windows may also be built into private
trees, which can be inserted int~ and removed from the window tree as a unit.

Display supplies the root window, which is the root of the window tree and corresponds to
the entire display screen. The root window typically supplies the background pattern.

Each window has its own coordinate system: the upper-left corner is the origin [x: 0, y: 0]'
with x increasing to the right and y increasing downward. A window's location is defined in
terms of its parent's window coordinate system. Coordinates may be positive or negative,
and thus a window can have any location relative to its paren.t.

59.1.3 Painting into a Window

Every window contains a client-supplied display procedure that will, on demand, paint all
or part of the window. Note that windows can be much larger than the display screen; any
paint directed to non-visible portions of a window (or outside the window entirely) is
discarded. Thus, a client never needs to be concerned about what parts of its window are ~
covered by other windows or what parts are off the screen. As a convenience to clients,
requests to paint into a window that is not currently in the window tree are also ignored.

The Display and SimpleTextDisplay interfaces provide a variety of procedures for painting
various things into a window, including character strings, black, white, or gray boxes, and
various graphics, such as curves and lines.

The display background color, which is represented by a pixel value of zero, is commonly
called white and a value of one is called black. Note: The display hardware also can render
the picture using zero for black and one for white. Clearing or erasing an area of the screen
means setting all of its pixels to zero, or white.

A display procedure us~ally wants to start with an erased (zero) area and logically OR the
black pixels into the area. Window supplies an accelerator clearingRequired to minimize
unnecessary erasures. If clearingRequired • TRUE, Window guarantees that when the
display procedure is called to paint the window, all of the window's pixels that should be
white indeed are white. In that situation, the window might contain any combination of its
previous contents and erased areas. On the other hand, some display procedures want to
set all pixel values, completely overwriting the previous contents. These windows should
specify clearingRequired • FALSE.

Areas displayed on the screen may become incorrect or invalid for many reasons, such as
when a window that was visible is deleted. A client can also mark an area invalid. Window
accumulates these invalid areas and then, in response to a client call to Validate or ~
ValidateTree, calls the various windows' display procedures to paint the necessary areas.
Validate and ValidateTree are the only Window operations that cause immediate screen

ViewPoint Programmer's Manual 59

painting. All other operations merely enqueue work to be performed by a later Validate
operation. Fine point: The few special cases that do not follow this rule are noted in the text.

The standard way for a client to paint into its window is to update its data structures,
invalidate the portion of its window that needs to be painted, and then call a Validate
routine. Window responds by calling back into the client's display procedure to do the
painting.

When a window's display procedure is called, it has access to a list of the invalid areas of
the window (see EnumeratelnvalidBoxes). It may choose to paint the entire window or,
alternatively, to enumerate the invalid areas and just paint those areas. In any case,
Window clips all the display routine's paint requests to the boundaries of the invalid
areas-paint directed to other areas is discarded. In special circumstances, the client may
wish to paint into valid visible areas. The operation FreeBadPhosphorList deletes the
display routine's invalid area list; for the lifetime of that invocation of that display
procedure, paint requests are clipped only to the boundaries of the visible parts of the
window.

If display routines are called from outside the invocation of a window's display procedure,
the paint requests will be clipped to the boundaries of the visible parts of the window.

59.1.4 Bitmap-under

The window package allows clients to associate a window with a bitmap-under. This is a
block of memory that is used to hold the pixels that are covered up by the window. It allows
Window to move or delete such a window quickly, since it can repaint the display directly
by using the contents of the bitmap-under ·instead of calling client display procedures. A
bitmap-under is commonly used for menu windows. This is discussed in greater detail
under §59.2.7.

59.1.5 Window Panes

The window package normally maintains a detailed list of invalid regions and allows
arbitrary overlapping of windows without requiring the client to worry about other
windows. Some clients would prefer to have greater control over their windows at the
expense of more restrictions over their use. Window panes are such a mechanism. If a
window is a window pane, the client must ensure that it does not overlap any of its siblings
and that the parent does not paint underneath the pane. A further restriction is that only
window panes may be children of panes. In retll;rn, the window package can do much less
calculation to determine invalid regions. The window package does not enforce these
restrictions. It is up to the client to follow them, or the screen appearance maybe
inconsistent. The client must specify whether a window is a window pane when it is
initialized.

59.1.6 Linked Windows

The window package allows multiple windows to linked together to make it easy for client
software to support displaying the same data into multiple windows. Linked Windows are
designed so that whatever data is painted into one window will be painted into all of the
other windows. This is discussed in greater detail under §59.2.S.

59-3

59 Window

59.1.7 Buffer Backed Windows

Occasionally a client may need to capture the bitmaps created by procedures in the Display
interface rather than having them painted on the screen. This is accomplished by creating
a special window handle, a Buffer Backed Window, which is passed to procedures in the
Display interface. This is discussed in greater detail under §59.2.9.

59.2 Interface Items

59-4

59.2.1 Basic Data Types and U tiUty Operations

This section describes basic Window data types and utility procedures.

Handle: TYPE :I LONG POINTER TO Object; .

Object: TYPE [19];

Object is the storage that represents a window. A Handle is used to refer to the window.
Clients should not allocate objects directly but must use operations described in §59.2.2.

rootWindow: READONLY Handle;

. Root: PROCEDURE RETURNS [Handle] • INUNE {RETuRN[rootWindow]};

rootWindow is the window that is the root of the window tree. The procedure Root is
provided for compatibility with previous versions; new applications should use
rootWindow instead.

MinusLandBitmapUnder: TYPE [6];

MinusLandBitmapUnder is additional storage for windows that may have bitmap-unders.

MinusLandColor: TYPE [1];

MinusLandColor is not used in the current release.

MinusLandCookieCutter: TYPE [2];

MinusLandCookieCutter is not used in the current release.

Place: TYPE. UserTerminat.Coordinate; -- lx, y: INTEGER};

Place is a position in a window. It is measured relative to the window's upper-left corner,
which is defined to be at [x: 0, y: 0]. x increases to the right, y increases downward. ~ote
that the coordinates may be negative.

Dims: TYPE :I RECORD [w, h: INTEGER];

Dims is the size ofa rectangular box. The rectangle is w pixels wide and h pixels high. ~",

Box: TYPE :I RECORD [place: Place, dims: Dims];

View Point Programmer's Manual 59

BoxHandle: TYPE = LONG POINTER TO Box;

nuliBox: Box. [place: [0,0], dims: [0,0]];

Box describes completely a rectangular box. place describes the upper-left pixel of the box,
and dims describes the size of the box. The box extends to the right and downward from
place. As always, place is expressed in its containing window's coordinate system.

BoxesAreDisjoint: PROCEDURE [a, b: Box] RETURNS [aOOLEAN1;

BoxesAreDisjoint returns TRUE if a and b do not intersect.

IntersectBoxes: PROCEDURE [b1, b2: Box] RETURNS [box: Box);

IntersectBoxes returns a Box that is the intersection of b1 and b2. If their intersection is
empty, this operation returns box.dims • [0,0].

IsPlacelnBox: PROCEDURE [place: Place, box: Box] RETURNS [aOOLEAN];

IsPfacelnBox returns TRUE if place is a pixel of box.

BitmapPface: PROCEDURE [window: Handle, place: Pface· ... [0,0]] RETURNS [Place1;

BitmapPface returns the coordinates in the root window that correspond to place in
window.

BitmapPlaceToWindowAndPface: PROCEDURE [bitmapPface: Pface]
RETURNS [window: Handle, place: Place);

BitmapPfaceToWindowAndPlace returns the topmost visible window and the coordinates
within it that correspond to bitmapPlace in the root window.

59.2.2 Window Creation and Initialization

A window is created b~ the client allocating and initializing a Window.Object. Many times
windows are not created directly by clients, but rather are obtained from various other
facilities, such as StarWindowShell or FormWindow.

To create a window, the client allocates a Window.Object using New, initializes it using
Initialize, and presents it to Window for use using InsertlntoTree. When the window is of
no further use, it is withdrawn from Window using RemoveFromTree, and the storage is
freed using Free or FreeTree.

New: PROCEDU~E [
under, cookie, color: BOOLEAN ... FALSE, zone: UNCOUNTED ZONE ... NIL1 RETURNS [Handle];

New allocates a window object. If zone is NIL, a cache of objects is used. A client should
never call zone.NEw[window.Object] because the window object will not be properly
initialized.

59-5

59

59-6

Window

Initialize, InitializeWindow: PROCEDURE [
window: Handle, display: DisplayProc. box: Box,
parent: Handle +- rootWindow, sibling, child: Handle +- NIL,
clearingRequired: BOOLEAN +- TRUE, windowPane: BOOLEAN +- FALSE,
under, cookie, color: BOOLEAN +- FALSE];

DisplayProc: TYPE,. PROCEDURE [window: Handle];

Initialize and InitializeWindow initialize the window object at window t . This must be
done before the window is inserted into the window tree. The window is initially not a part
of the window tree. It may be created as an isolated window or may be linked to other
private windows to form a private tree.display is the client procedure for repainting the
window. box is the window's size and parent-relative location. parent is the window's
parent. sibling is the sibling immediately below the window in the sibling stack of parent
and child is the top child of the window. parent, sibling, and child may be NIL.
clearingRequired is described in §59.1.3. windowPane is described in §59.1.4. under
indicates that the window can be associated with a bitmap-unde'r. cookie and color are not
supported in the current release; clients should default this parameter for compatibility
with future versions.

Create: PROCEDURE [
display: DisplayProc, box: Box,
parent: Handle +- rootWindow, sibHng,child: Handle +-NIL,
clearingRequired: BOOLEAN +- TRUE, windowPane: BOOLEAN +- FALSE,
under, cookie, color: BOOLEAN +- FALSE, zone: UNCOUNTED ZONE +- NIL]
RETURNS [Handle] • INLINE ... ;

Create is an inline that follows a call to New with a call to Initialize.

Free: PROCEDURE [window: Handle, zone: UNCOUNTED ZONE +-NIL);

Free frees a window object. If zone is NIL, the window is returned to the cache of objects
maintained by Window; otherwise it is freed to the zone. Any contexts associated with the
window, via the Context interface,are not freed. Free may raise Error[invalidParameters] if
the window had already been freed, if the window is still in the window tree, if the zone is
NIL but was not NIL on the call to New, or if the zone is non-NIL but was NIL on the call to New.

FreeTree: PROCEDURE [window: Handle, zone: UNCOUNTED ZONE +- NIL];

FreeTree frees the window and all its children, children first, and frees all contexts on
windows in the subtree whose root is window .. Clients should almost always call FreeTree
rather than Free. FreeTree may raise Error[invalidParameters] if the windows had already
been freed, if the windows are still in the window tree, if the zone is NIL but was not NIL when
the windows were allocated, or if the zone is non-NIL but was NIL when the windows were
allocated. FreeTree assume all the windows were allocated with the same zone if it is non­
NIL.

~,

~,

ViewPoint Programmer's Manual 59

59.2.3 Access to and Modification of a Window's Properties

The Get procedures below return properties of a window. The Set procedures change
properties and return the previous value. These properties of a window are described in
this chapter's overview.

GetDisplayProc: PROCEDURE [Handle) RETURNS [DisplayProc);

SetDisplayProc: PROCEDURE [Handle. DisplayProc] RETURNS (DisplayProc];

GetctearingRequired: PROCEDURE [Handle) RETURNS [BOOLEAN];

SetCJearingRequired: PROCEDURE [window: Handle, required: BOOLEAN)

RETURNS [old: BOOLEAN);

GetParent: PROCEDURE [Handle] RETURNS (Handle];

GetSibling: PROCEDURE (Handle) RETUR"NS [Handle);

GetSibling returns the next lower sibling of the argument window.

GetChild: PROCEDURE [Handle] RETURNS [Handle];

GetChild returns the topmost child of the argument window.

See also §59.2.4 for Set procedures that change a window's links to its parent, siblings, and
child.

EntireBox: PROCEDURE (Handle] RETURNS [Box];

EntireBox returns the box [[0, 0], window.dims). It is handy for invalidating the entire
window.

GetBox: PROCEDURE [Handle] RETURNS (Box];

Note that there is no SetBox; SlideAndSize should be used instead.

GetPane: PROCEDURE [Handle] RETURNS [BOOLEAN];

GetPane returns whether or not the window is a window pane. The window pane property
can only be set when the window is initialized.

IsCookieVariant: PROCEDURE [Handle) RETURNS [BOOLEAN];

Cookie cutters are not supported by the current release. IsCookieVariant should always
return FALSE.

IsColorVariant: PROCEDURE [Handle] RETURNS [BOOLEAN];

Color is not supported by the current release. IsColorVariant should always return FALSE.

59-7

59

59-8

Window

59.2.4 Window Tree and Window Box Manipulation

Basic operations are provided for constructing private trees from private windows and for
inserting them into and removing them from the window tree. Other operations allow
moving a window within a window tree and changing a window's location and size. Special
operations are provided to perform common combinations of these operations.

Most clients obtain windows from some higher. level facilitiy like FormWindow; in such
cases, the window typically has already been inserted into the window tree. Thus most
clients will only use the following operations: Stack, Slide, SlideAndStack, SlideAndSize,
SlideAndSizeAndStack.

Unless otherwise noted, all these operations may be applied either to windows in· the
window tree or to windows in a private tree. Operations performed on windows in private
trees change tree links and the window's box but naturally create no invalid regions on the
display.

As described in the overview, none of the operations in this section perform screen
painting. They merely enqueue painting work to be performed by a later Validate
operation.

IsOescendantOfRoot: PROCEDURE [Handle] RETURNS [BOOLEAN];

IsOescendantOfRoot returns TRUE if window is currently a part of the window tree.

ObscuredBySibling: PROCEDURE [Handle] RETURNS [BOOLEAN];

ObscuredBySibling returns TRUE if the box of any higher sibling intersects window's box.

EnumerateTree: PROCEDURE [root: Handle, proc: PROCEDURE [window: Handle]];

EnumerateTree calls proc for every window in the tree rooted at root. The order of
enumeration is not specified. Altering the tree while an enumeration is in progressrcauses
unpredictable operation.

The following three operations allow constructing private trees from private windows.

SetParent: PROCEDURE [window, newParent: Handle] RETURNS [oldParent: Handle];

SetSibling: PROCEDURE [window, newSibling: Handle] RETURNS (oldSibling: Handle1;

SetChild: PROCEDURE [window, newChild: Handle] RETURNS [oldChild: Handle];

These Set procedures set the parent, next lower sibling, or topmost child of window. ~o list
manipulation nor consistency checking is done-these o·perations mere ly store their
argument into the window object. Ifwindow is in the window tree, Error(windowlnTree] is
raised (Stack, et al. can be used in that case). If inconsistent calls to the Set procedures are
made, Error[windowNotChildOfParent1 is raised when some subsequent operation detects

.~.

the inconsistency. ~

InsertlntoTree: PROCEDURE (window: Handle];

ViewPoint Programmer's Manual 59

InsertlntoTree inserts a private window or subtree into any window tree. window is
inserted as a child of window.parent. window is immediately above window.sibling in
the sibling stack of the new parent; window.sibling • NIL makes it the bottom most sibling.
window.child is the topmost child of a private tree that descends from the window--NIL if
none. All of these fields of window may be set by using the Set procedures described above.
The client can force painting of the windows just inserted by doing
window.Ge1Paren1[]. ValidateTree(]. Error[noSuchSibling] may be raised. Fine point:

InsertintoTr .. does not normally cause any painting activity. However, if a window that has a bitmap-under is

inserted into the tree and the content of the bitmap is not available on the display, Validate Tree is done on that

windows parent to obtain the content of the bitmap.

RemoveFromTree: PROCEDURE [Handle);

RemoveFromTree removes the window and all of its descendants from its containing tree.
The window becomes the property of the client. The descendants of the window remain
attached to it. The entire subtree may be later inserted back into a t'ree by using
InsertlntoTree. The client can force painting of now-incorrect areas of the display by
applying ValidateTree to any parent of the removed window. Caution: The sibling pointer
of the removed window remains pointing to its former sibling in the tree. A client should
take care that the sibling pointer of the window is set to the desired, valid in-tree sibling (or
NIL) before doing a subsequent InsertlntoTree.

Stack: PROCEDURE [window:' Handle. newSibling: Handle. newParent: Handle ~ NIL];

Stack changes window's location in its window tree, thus changing the window's depth in
the apparent stack of windows on the screen. If newParent is not NIL, then window is
moved to be a child of newParent; otherwise, its parent is unchanged. Next, the sibling
stack then containing window is modified so that window is now immediately above
newSibling, thus potentially obscuring siblings lower on its sibling stack. Supplying
newSibling • NIL puts window on the bottom of the sibling stack. Unless window is
already the top sibling, supplying newSibling • window.GetParent.GetChild[] puts
window on the top of the stack. Caution: If window is the top sibling, the previous
expression is a client error that is not guarded against. If one of wi ndow or newParent is in
the window tree but the other is not, Error[illegaIStack] is raised. Error[noSuchSibling] may
also be raised.

Slide: PROCEDURE [window: Handle. newPIace: Place];

Slide changes window's position relative to its parent. This procedure may be used to
implement scrolling. Error(whosSlidingRoot] may be raised.

SlideAndStack: PROCEDURE [

window: Handle, newPlace: Place. newSibling: Handle, newParent: Handle ~ NIL];

SlideAndStack performs a Stack and then a Slide, thus changing window's location in its
tree and its position within its new parent. Error[illegaIStack], Error[noSuchSibling], and
Error[whosSlidingRoot} may be raised.

Gravity: TYPE. {nil. nw. n, ne. e. se, s. sw. w, c, xxx};

59-9

59 Window

Gravity indicates where the old pixel content of a window should go when it changes size.
This allows Window to reuse any current window content that will be visible in its new
configuration.

nil The contents remain at their current screen position (not
their window-relative position).

nw, n, ne, e, sew s. sw, w The contents stay attached to the indicated compass point of
the window, which is either a corner or the middle of a side;
for example, nw means the contents stay in the upper-left
corner.

c

xxx

The contents go in the middle of the new window-trimming
or expansion occurs equally at opposite edges.

The contents are discarded.

SlideAndSize: PROCEDURE [window: Handle, newBox: Box, gravity: Gravity +- nw];

SlideAndSize changes both the location and size of window. gravity indicates what to do
with the current contents of the window. Error(sizingWithBitmapUnder] and
Error(whosSlidingRoot] may be raised.

SlideAndSizeAndStack: PROCEDURE [

window: Handle. newBox: Box. newSibling: Handle. newParent: Handle +- NIL,
gravity: Gravity +- nwl;

~,

SlideAndSizeAndStack performs a Stack and then a SlideAndSize, thus changing ~
window's location in its window tree and its position and size within its new parent.
Error(i IlegaIStack], Error(noSuchSi bl i ng], Error[si zi ngWith Bitma pU nder], and
Error[whosSlidingRoot] may be raised.

Slidelconically: PROCEDURE [window: Handle, newPlace: Place];

Slide.conically is not implemented in the current release.

59.2.5 Causing Painting

59-10

A general description of painting is given in §59.1.3. The procedures below are used both to
cause areas of the screen to be painted and .actually to do the painting.

InvalidateBox: PROCEDURE [window: Handle, box: Box, clarity: Clarity +- isOirty];

Clarity: TYPE. {isClean, isDirty};

InvalidateBox declares that the current screen content of box in window is incorrect.
Window adds box to the list of invalid regions of the window. clarity indicates the current
state of the box. clarity. isClean means the region is already erased (all white); isDirty,
that it contains some black. Window uses this information to avoid unnecessary clearing.
InvalidateBox does not cause immediate display painting; only the Validate procedures do
that. Note that a call on InvalidateBox followed by a call on Validate may result in no call
to the display procedure--for example, if the invalidated area is not visible. If the window is
not in the window tree, this operation does nothing.

,.:"

ViewPoint Programmer's Manual 59

Validate: PROCEDURE [window: Handle);

ValidateTree: PROCEDURE [window: Handle of- rootWindow];

Validate and ValidateTree are the only Window procedures that cause immediate display
painting. Fine point: The few special cases that do not follow this rule are noted in the text. Vatidate acts
only on window; Va Ii date Tree acts on the tree whose root is window. Typically, a client
updates its data structures and invalidate various regions. When the client is ready to have
the display updated, one of the Validate procedures is called. If window is not in the
window tree, this operation does nothing.

EnumeratelnvalidBoxes: PROCEDURE [window: Handle, proc: PROCEDURE [Handle, Box]];

EnumeratelnvalidBoxes is used within a window's display procedure to obtain the list of
invalid regions of the window. EnumeratelnvalidBoxes calls proc for each of the invalid
boxes of window; window is passed to proc as its first argument. The second argument of
proc describes the region that is invalid. Note: A display procedure need not worry about
redundant painting outside the invalid regions; Window automatically discards the
display procedure's paint that falls outside the invalid regions. This operation must only be
called from within a display procedure, and window must be the window argument of the
display procedure.

FreeBadPhosphorList: PROCEDURE [window: Handle];

In special circumstances, a display procedure may wish to paint into valid visible areas.
FreeBadPhosphorList deletes the display procedure's invalid area list; for .the lifetime of
that invocation of that display procedure, paint requests are clipped only to the visible
parts of the window. This operation must only be called from within a display procedure,
and window must be the window argument of the display procedure.

TrimBoxStickouts: PROCEDURE [window: Handle, box: Box] RETURNS [Box];

TrimBoxStickouts returns a box that is the result of excluding any portion of box that
sticks out of window or its ancestors. Display procedures may find it useful.

59.2.6 Errors

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE • {

illegal Bitmap, iIIegalFloat, windowNotChildOfParent. whosSlidingRoot,
noSuchSibling, noUnderVariant, windowlnTree, sizingWithBitmapUnder,
illegal Stack. invalidParameter};

illegal Bitmap

illegal Float

windowNotChildOfParent

A window passed to SetBitmapUnder is not totally visible.

See Float.

A window is not in the list of its parent's children. This
usually means that inconsistent calls to SetParent,
SetChild, or SetSibling were made.

59-11

59 Window

whosSI idi ngRoot

noSuchSi bl i ng

nOUnderVariant

wi ndowlnTree

sizingWithBitmapUnder

illegal Stack

i nvalidParameter

The client has attempted to move the root window.

An operation moving a window in the window tree specifies
a new sibling that is not a child of the new parent.

A bitmap under operation was applied to a window that
may not have a bitmap-under associated with it.

SetParent, SetSibling, or SetChild was applied to a window
in the window tree. Stack, et al., can be used instead.

A client has tried to change the size of a window that
currently has a bitmap-under but does not have an
AllocateUnderProc or a FreeUnderProc associated with it.

The client is attempting to move a window between
parents, one of which is in the window tree and the other is
not.

The client has invoked an operation with in valid
parameters.

59.2.7 Special Topic: Bitmap-Under

59-12

Bitmap-unders are described in §59.1.4. Most clients have no need for bitmap-unders. ~,

IsBitmapUnderVariant: PROCEDURE [Handle] RETURNS [BOOLEAN];

IsBitmapUnderVariant returns TRUE if the window can be associated with a bitmap-under
(that is, if InitializeWindow(... , under: TRUE]).

WordsForBitmapUnder: PROCEDURE (window: Handle] RETURNS [CARDINAL];

WordsForBitmapUnder returns the number of words of storage needed for a bitmap-under
corresponding to the current size of window. PagesForBitmapUnder should be used rather
than WordsForBitmapUnder because pages are a more appropriate unit to describe
bitmap-unders and large bitmap-unders can exceed the number of words which can be
returned from WordsForBitmapU nder .

PagesForBitmapUnder: PROCEDURE [window: Handle) RETURNS [LONG CARDINAL];

PagesForBitmapUnder returns the number of pages of storage needed for a bitmap-under
corresponding to the current size of window. This procedure should be used rather than
WordsForBitmapUnder because pages are a more appropriate unit to describe bitmap­
unders and large bitlnap-unders can exceed the number of words that can be returned from
WordsForBitmapUnder. Fine Point: This procedure is currently exported through WindowExtra. •

PagesForDims: PROCEDURE [dims:Dims] RETURNS [LONG CARDINAL];

PagesForDims returns the number of pages of storage needed for a bitmap-under
corresponding to a window with dimensions of dims. This procedure is useful when a
window has not yet been created, yet the size of the required bitmap is desired. This is

ViewPoint Programmer's Manual 59

useful when using CreateBufferBacked (see §59.2.9). Fine Point: This procedure is currently

exported through WindowExtra.

SpecialSetBitmapUnder: PROCEDURE [

window: Handle,
aliocateU nder: AliocateU nderProc,
freeUnder: FreeUnderProc];

AliocateUnderProc: TYPE. PROCEDURE [pages: LONG CARDINAL] RETURNS [pointer: LONG
POINTER);

FreeUnderProc: TYPE. PROCEDURE {pointer: LONG POINTER];

SpecialSetBitmapUnder associates an AliocateUnderProc and a FreeUnderProc with
window. aliocateUnder is the client's procedure for' allocating scratch storage area for
window's bitmap-under. freeUnder is the client's procedure for freeing window's bitmap­
under storage when it is no longer needed. aliocateUnder and freeUnder are called during
insertion and removal of window to and from the visible window tree as welras in sliding,
stacking and moving of window.

Unlike SetBitmapUnder, SpecialSetBitmapUnder allows the Window implementation to
get bitmap-under storage through the client's AJlocateUnderProc during the life of the
window and thus provides flexibility of bitmap-under storage size and allows the sizing of
bitmap-under windows.

Note that the client is responsible for the actual allocation and freeing of space. The
client's AliocateUnderProc should return NIL if there is not enough resources to provide
window with a bitmap-under. If the AliocateUnderProc returns NIL, window ceases to
have a bitmap-under until the next time the AliocateUnderProc is called and some space is
returned.

If the window cannot be associated with a bitmap-under, Error(noUnderVariantl is raised.
For window to be associated with a bitmap-under, it must be created through
New{ .•• under: TRUE] and Initialize(.•. under:TRUE). Fine Point: This procedure is currently exported

through Window Extra. .

GetAllocateUnderProc: PROCEDURE [window:Handle] RETURNS [allocateUnder:
AliocateUnderProc] ;

.GetAliocateUnderProc returns the AliocateUnderProc associated with window. If
window does not have an AliocateUnderProc, GetAliocateUnderProc returns NIL. Fine

Point: This procedure is currently e!:ported through WindowExtra.

GetFreeUnderProc: PROCEDURE [window:Handle) RETURNS [freeUnder: FreeUnderProc];

GetFreeUnderProc returns the FreeUnderProc associated with window. If window does
not have a FreeUnderProc, GetFreeUnderProc returns NIL. Fine Point: This procedure is

currently exported through Windo~Extra.

59-13

59 Window

SetBitmapUnder: PROCEDURE [

window: Handle, pointer: LONG POINTER'" NIL.

underChanged: U nderChangedProc NIL,

mouseTransformer: MouseTransformerProc NIL) RETURNS [LONG POINTER);

UnderChangedProc: TYPE. PROCEDURE [Handle, Box);

MouseTransformerProc: TYPE. PROCEDURE [Handle, Place] RETURNS [Handle, Place];

SetBitmapUnder associates a bitmap-under with window. pointer describes a scratch
storage area for the bitmap-under; its length must be as given by WordsForBitmapUnder.
If pointer. NIL, the window ceases to have a bitmap-under. The pointer to any previous
bitmap-under is returned; the client becomes the owner of that storage. The underChanged
and mouseTransformer parameters are ignored in the current release. If the window
cannot be associated with a bitmap-under, Error[noUnderVariant) is raised. If the window
is in the window tree but is obscured by another window, Error{iIIegaIBitmap) is raised.
While the bitmap--under is in effect, the window's size cannot be changed; an attempt to do
so will raise Error[sizingWithBitmapUnder].

GetBitmapUnder: PROCEDURE [window: Handle] RETURNS [LONG POINTER);

GetBitmapUnder returns the pointer to the current bitmap-under for window; returns NIL

if none. If the window cannot be associated with a bitmap-under, Error[noUnderVariant] is
raised.

Float: PROCEDURE [window, temp: Handle, proc: FloatPro~);

FloatProc: TYPE a PROCEDURE [window: Handle) RETURNS [place: Place, done: BOOLEAN);

Float moves a window continuously on the screen. Float first forces window to the top of its
sibling stack, next does ValidateTree[rootWindow], and then enters a loop for changing
the window's position. In the loop, Float calls proc, passing window to it. If proc returns
done • TRUE, the operation terminates and Float returns to the client. Otherwise, Float
moves the window to place and repaints the display. It does so without calling any client
display procedure; control returns to the top of the loop. The client must ensure that the
window is wholly visible when moved to place. temp is used for temporary storage for the
duration of the float operation. temp must be the same size as window, have a bitmap­
under, and not be in the window tree. If window is not in the window tree, if temp is in the
window tree, if either window lacks a bitmap--under, or if the windows have different sizes,
Error(illegaIFtoat) is raised.

59.2.8 Special Topic: Linked Windows

59-14

When windows are linked together they form a set. Whatever is painted into one member
of the set will be painted into all members of the set. Painting is clipped to the visible area
for each window. The client will usually want to associate the same DisplayProcs and
TIP.NotifyProcs with each window. Also, if these procedures use Context data then the
same context should be set for each window. A window may be removed from its set by
calling the Unlink procedure, or it will automatically be removed when the window is ~.
destroyed. Example 2 under Usage/Examples shows typical usage.

View Point Programmer's Manual 59

Link: PROCEDURE [new. after: Handle);

Link associates the new window with the after window. If after is already a member of a set
of linked windows, then new will become a member of that set also. Otherwise, new and
after will become a new set. A window may be a member of only one set. If new is already
in a set, Error(invalidParameter] will be raised. Windows which are to be Linked are
created just as any other window. Each set of linked windows are kept in a circularly
linked list in the order specified by the client. This means that the new window will be
inserted into the list following the after window. Fine Point: This procedure is currently exported

through WindowExtra.

Unlink: PROCEDURE [window: Handle];

Unlink removes window from the set of linked windows it currently belongs to. If it is not a
member of a set, then nothing happens. Fine Point: This procedure is currently exported through

WindowExtra.

GetNextLink: PROCEDURE [window: Handle] RETURNS [next: Handle];

GetNextUnk returns the next window in the set following window. If there are no windows
linked to window then NIL will be returned. Because the windows are kept in a circular
list, it is necessary for the client to check the window returned against the window first
passed to GetNextLink in order to determine when all members of the list have been
enumerated. This is demonstrated in Example 2. Fine Point: This procedure is currently exported

through WindowExtra.

IsLink: PROCEDURE [window: Handle] RETURNS [yes: BOOLEAN];

IsLink returns returns TRUE if window is currently linked to any other window. Fine Point:

This procedure is currently exported through Window Extra.

59.2.9 Special Topic: Buffer Backed Windows

Buffer Backed windows provide a method of capturing the bitmaps created by procedures
in the Display interface. This type of window must not be passed to any procedure in the
Window interface except, FreeBufferBacked, GetBox and EntireBox or unpredictable
results will occur. The client is responsible for flushing the backing buffer before painting
into it - Display. White is one method. Example 3 under U sagelExamples shows a typical
client ..

CreateBufferBacked: PROCEDURE (

dims: Dims. buffer: LONG POINTER.

cookie, color: BOOLEAN +- FALSE. zone: UNCOUNTED ZONE+- NIL]

RETURNS [window: Handle, paintAddress: Environment.BitAddress. bpi: NATURAL1;

CreateBufferBacked creates a window which will have dimensions corresponding to the
dims parameter. The backing buffer pointed to by buffer must be of at least the size
specified by PagesForOims. The first return value, window, can be passed to any procedure
in the Display interface. The bits will be painted into the backing buffer rather than onto
the display. The second value returned, paintAddress. points to the first bits in the buffer
which will be painted. This may differ from the value of buffer for alignment reasons. The
third value returned, bpi, specifies the bits per scan line. The cookie, color and zone

59-15

59 Window

parameters have the same meaning as in the New and Initialize procedures. This window~:
must be freed by calling FreeBufferBacked rather than Free. Fine Point: This procedure is

currently exported through WindowExtra. See Usage/Examples.

FreeBufferBacked: PROCEDURE [window: Handle. zone: UNCOUNTED ZONE +-NIL];

FreeBufferBacked will free the window. The client must free the backing buffer. The zone
parameter has the same meaning as in the Free procedure. Fine Point: This procedure is currently

exported through WindowExtra.

59.3 Usage/Examples

59-16

A scrollbar is an example of a simple window. An entire StarWindowShel1 window is an
example of a window that has many descendant windows-the window header, the
scrollbars, and the main interior window used to display the content.

Window shields the client from interference between windows and' from the presence of the
edges of the display screen. A client can freely move a window around on or off the screen
and alter its position in the stack of windows; Window automatically handles the
overlapping.

Window automatically clips painting into windows to the visible interior of its parent
window. A client can freely paint anywhere inside or even outside of its window as
convenient.

It is always correct to paint more of a window than the minimum required. Simple clients
may adopt a simple repaint strategy, invalidating and/or repainting a large part or even all
of a window. Sophisticated clients may invalidate only the necessary parts of a window,
thus allowing only small amounts of repainting and minimizing references to the window's
backing data. This may result in improved performance.

A display procedure has available to it a list of invalid areas that need to be repainted.
However, it may adopt the simple approach of ignoring this data and repainting the entire
window. In any case, Window clips a display procedure's paint to the boundaries of the
invalid regions.

Areas that project outside of a window's parent are trimmed for display purposes. Vertical
scrolling can be implemented quite simply by embedding a tall co_ntent window in a short
clipping window and then just Slideing the position of the content window within the
clipping window. Horizontal scrolling can be done in a similar way. The StarWindowShell
interface supports this method of scrolling. This approach is limited by the domain of the
coordinates, which are INTEGERS. Scrolling in this way is limited to + -2 t 15 pixels offset
from the frame window. If more scrolling than this is required, the client cannot use this
technique, but must itself perform the transformation from data coordinates to window
coordinates.

Since a window's location is defined in its parent window's coordinate system, moving a
window automatically moves all of its descendant windows along with it.

Window itself has nothing to do with the keyboard and mouse. However, the TIP interface
provides the facility for associating mouse and keyboard actions with a window.

View Point Programmer's Manual 59

59.3.1 Display Procedures and MONITORS

Any process may manipulate windows and thus cause screen painting activity. Even if one
client always runs in the Notifier process, its window's display procedure may be called at
any instant because of asynchronous activities by some other process. If a window's display
procedure uses any nonlocal variables in its painting activity (the usual case), those
variables must be protected by a MONITOR. Most display procedures are monitor entry
procedures. Of course, if the display procedure only refers to immutable data, its operation
need not be monitored.

Since a display procedure is usually a monitor entry, the client must avoid deadlocks by not
invoking the display procedure from within other monitor procedures. This is the standard
rule for monitors. Because calling Validate may cause Window to call the client's display
procedure, calls to Validate must be done outside the client's monitor. The normal
arrangement is (1) enter monitor, (2) update monitor data and Invalidate regions, (3) exit
monitor, (4) Validate (which causes the display to be repainted).

59.3.2 Example 1

_. These excerpts are taken from < BWSHacks> 1.0> Source> Puzz/e 15lmpl.mesa

boxSize: CARDINAL - 32;
boxDims: Window.Dims - [boxSize, boxSize];

bodyWindowDims: Window.Dims - [boxSize*grid + 2, boxSize*grid + 2];.
boxes: ARRAY [O •• max) OF Window.Box;

MenuProc: MenuData.MenuProc • {
rb: XString.ReaderBody +- XString.FromSTRING{"1 5 Puzzle"L);
shell: StarWindowsheu.Handle • StarWindowShell.Create [name: @rb1;
_. W;ndow.lnitiallze(] ;s called by StarWlndowShelllmpls.
body: Window.Handle • StarWindowShell.CreateBody [

sws: shell.
box: [(O,O].bodyWindowDims],
repaintProc: Redisplay,
bodyNotifyProc: NotifyProc];

StarWindowShell.Push [shel11;
};

NotifyProc: TIP.NotifyProc • {
data: Data +- LocaIFind(window]; -- Use Context to find data for this instance.
place: Window.Ptace;
FOR input: TIP.Results +- results, input.next UNTIL input. NIL 00

WITH z: input SELECT FROM
coords • > place +- z.place;
atom - > SELECT z.a FROM

pointUp • > {

59-17

59

59-18

Window

box: CARDINAL +- ResolveToBox [place);
IF Adjacent [data.empty, box] THEN {

Window.JnvatidateBox [window, boxes(data.empty]];
Window.JnvalidateBox (window, boxes(box]];
SwapBoxWithEmpty [data, box];
Window. Validate(window);
};

};
ENDCASE;

ENDCASE;

Redisplay: PROC [window: Window.Handle) • {

};

-- This is the body window's display procedure.
data: Data +- LocaIFind(window); -- Use Context to find data for this instance.
vertical: Window.Dims +- [2, boxSize*grid1;
horizontal: Window.Dims +- [boxSize*grid, 2];
place: Window.Place +- [0,0];
-- Display the 15 numbers
FOR i: CARDINAL IN (O •• max) DO

value: CARDINAL +-data.values(i]; .
'- The bitmaps were created earlier (not shown in this example)
Display.Bitmap [window, boxes(i], (@bitmaps(value],O,O), boxSize];
ENDLOOP;

-- Display the vertical lines
FOR i: CARDINAL IN [O •• grid + 2) DO

Display.Black [window, [place, vertical]];
place.x +- place.x + boxSize;
ENDLOOP;

_. Display the horizontal lines
place +- [0,0];
FOR i: CARDINAL IN [O •• grid + 2) DO

Display.Black [window, [place,horizontal11;
place.y +- place.y + boxSize;
ENDLOOP;

- Register a command for invoking this tool
I nit: PROC • {

rb: XString.ReaderBody +-XString.FromSTRING["15 Puzzle"l];
StarOesktop.AddltemToAttentionWindowMenu [

};

MenuData.Createltem [
zone: Heap.systemZone,
name: @rb,
proc: MenuProc]];

ViewPoint Programmer's Manual

59.3.3 Example 2

-- This example demonstrates one simple use of Linked Windows.

-- How to Link windows
AddSplitWindow: PROC [currentWindow: Window.Handle) • {

new: Window.Handle ..-StarWindowShell.CreateBody(..•]; - Create a window
displayProc: Wi ndow.DisplayProc ..- Window.GetDisplayProc(currentWi ndow);
notifyProc: np . NotifyProc ..- np. GetNotifyProc[currentWi ndow];
[] ..- Window.SetDisplayPrQc(new, displayProc];
[] ..- np.SetNotifyProc[new, notifyProc];
WindowExtra.Link(new, currentWindow);
};

- How to Unlink windows
RemoveSpHtWindow: PROC [currentWindow: Window.Handle1 =- (

[] ..- Window.SetDi~playProc[currentWindow,NIL];
[] ..- np.SetNotifyProc(new,NIL);
WindowExtra.Unlink[currentWindow);
};

- How to enumerate windows,
Actio'nProc: TYPE. PROCEDURE [w: Window.Handle];

59

EnumerateLinkedWindows: PROC [currentWindow: Window.Handle, proc: ActionProc) . {
- Start with 'cu"entWindow' and call 'proc' with each window.
-- Note that we start with the window following currentWindow and
-- finish with currentWindow.
firstWindow, nextWindow: Window.Handle;
IF NOTWindowExtra.Jslink(currentWindow) THEN RETURN;
firstWindow..- WindowExtra.GetNextLink[currentWindow];
FOR nextWindow ..-firstWindow, WindowExtra.GetNextLink[nextWindow] DO
proc[nextWindow);
IF nextWindow • currentWindow THEN EXIT;
ENDLOOP;
};

59.3.4 Example 3

-- This is a very simple example of how to create an image in a Buffer Backed Window
-- and then paint it onto the screen. The image could be processed differently.

mainWindow: Window.Handle;
bbWindow: Window.Handle ..- NIL;
paintAddress: Environment.BitAddress;
bpi: NA TU RAl;
dims: Window.Dims • [w: 800. h: 800); •• For example
pages: LONG CARDINAL;
backingBuffer: LONG POINTER;

59-19

59 Window

•• Create the window where the resulting bitmap will be painted .
•• Note: The bits could be copied to another source.

mainWindow +- ... ;

- Allocate the buffer to back the window
pages +- WindowExtra.PagesForDims[dims];
backing Buffer: LONG POINTER +- Space.ScratchMap(count: pages];

- Create the Buffer Backed Window
[bbWindow, paintAddress, bpl1 WindowExtra.CreateBufferBacked(
dims: dims, buffer: backingBuffer];

•• Clear the "window I. (i. e. the buffer)
Display. White(window: bbWindow. box: Window. GetBox[bbWindow]];

.- Paint something into the "window" (i.e. the buffer)
Display.Black[

window:, bbWindow
box: ...];

.- Write the prepared image onto the screen inside 'main Window'
Display.Bitmap{

window: mainWindow.
box: [... J.
address: paintAddress,
bitmapBitWidth: bpI];

-- Cleanup
backingBuffer Space.Unmap(backingBuffer);
Wi ndowExtra.FreeBufferBacked[bbWi ndow];

59.3.5 Example 4

59-20

- This example demonstrates how to create, display and destroy a bitmap-under
window.

CreateWi....,dow: PROCEDURE RETURNS [window: Window.Handle] • {
window +- Window.New(under:under);
Window.Jnitialize{

window: window,

under: under];

- if under is TRUE, window can later be associated with a bitmap under but does
- not necessarily nave to if resources are not available.
- Needs to call both Window.New and Window.lnitialize instead of .~
.- Window.Create cuz the inline Window.Create does not call Initialize
- with the under parameter correctly.}; ..

ViewPoint Programmer's Manual

} - CreateWindow

PushWindow: PROCEDURE[window: Window.Handle) • {
IF Window.lsBitmapUnderVariant[window] THEN
[] ... WindowExtra.SpeciaISetBitmapUnder(

window: window,
aliocateUnder: AliocateUnder,
freeU nder: FreeU nder];

Window.lnsertlntoTree(window);
Window.ValidateTree 0;

}; - PushWindow

DestroyWindow: PROCEDURE{window: Window: Handle] • {
Window.RemoveFromTree(window];
Window.Free(window];
Window. ValidateTree[];

}; •• DestroyWi ndow

59

EnoughBackingFile: PROCEDURE [pagesForBU: LONG CARDINAL] RETURNS (BOOLEAN] . {
- This procedure will return TRUE if we have enough scratch storage in Pilot's
-anonymous backing file or in the extra backing file to make a bitmap-under.
-Note this is only an approximation since returning TRUE does not mean that we
-have enough contiguous space. Pilot might still have to do a File.Create.

RETURN [SpacePerf.countDataPool. SpacePerf.currentUtilization > pagesForBU
OR ExtraBackingFile.countDataPool- ExtraBackingFile.currentUtilization >
pagesForBU);

}; - EnoughBackingFile

AliocateUnder: WindowExtra.AJ!ocateUnderProc • {
< <PROCEDURE [pages: LONG CARDINAL] RETURNS [pointer: LONG POINTER] > >

ENABLE Space.lnsufficientSpace, Volume.lnsufficientSpace • > CONTINUE;
pointer ... NIL; .
IF EnoughBackingFile(pageslTHEN pointer 4- [Space.ScratchMap[pages]];

}; - AliocateUnder

FreeUnder: WindowExtra.FreeUnderProc • {
< <PROCEDURE [pointer: LONG POINTER» >

[] ... Space.Unmap(pointer);
}; - FreeUnder

59-21

59 Window

59.4 Index of Interface Items ~

Item Page Item Page

AllocateU nderProc: TYPE 13 IsBitmapUnderVariant: PROCEDURE 12
BitmapPIace: PROCEDURE 5 IsCookieVariant: PROCEDURE 7
BitmapPtaceToWi ndowAndPtace: PROCEDURE 5 IsColorVariant: PROCEDURE 7
Box: TYPE 4 IsDescendantOfRoot: PROCEDURE 8
BoxesAreDisjoint: PROCEDURE 5 IsPtacell1Box: PROCEDURE 5
BoxHandle: TYPE 5 Islink: PROCEDURE 15
Clarity: TYPE 10 Link: PROCEDURE 15
Create: PROCEDURE 6 MinusLandBitmapUnder: TYPE 4
CreateBufferBacked: PROCEDURE 15 MinuslandColor: TYPE 4

Dims: TYPE 4 MinuslandCookieCutter: TYPE 4
DisplayProc: TYPE 6 MouseTransformerProc: TYPE 14
Enti reBox: PROCEDURE 7 New: PROCEDURE 5
EnumeratelnvalidBoxes: PROCEDURE 11 nullBox:Box 5
EnumerateTree: PROCEDURE 8 Object: TYPE 4
Error: ERROR 11 ObscuredBySi bl i ng: PROCEDURE 8
ErrorCode: TYPE 11 Place: TYPE 4
Float: PROCEDURE 14 PagesForBitmapUnder: PROCEDURE 12
FloatProc: PROCEDURE 14 PagesForDi ms: PROCEDURE 12
Free:PRocEDURE 6 RemoveFromTree: PROCEDURE 9
FreeBadPhosphorList: PROCEDURE 11 Root: PROCEDURE 4
FreeBufferBacked: PROCEDURE 15 rootWindow: variable 4 ~ . ~~

FreeU nderProc: TYPE 13 SetBitmapUnder: PROCEDURE 14
Free Tree: PROCEDURE 6 SetChild: PROCEDURE 8
GetAliocateUnderProc: PROCEDURE 13 SetClearingRequired: PROCEDURE 7
GetBitmapUnder: PROCEDURE 14 SetDisplayProc: PROCEDURE 7
GetBox:PROCEDURE 7 SetParent: PROCEDURE 8
GetChild: PROCEDURE 7 SetSibling: PROCEDURE 8
GetCleari ngRequi red: PROCEDURE 7 Slide: PROCEDURE 9
GetDisplayProc: PROCEDURE 7 SlideAndSize: PROCEDURE 10
GetFreeUnderProc: PROCEDURE 13 SlideAndSizeAndStack: PROCEDURE 10
GetNextLi nk: PROCEDURE 15 SlideAndStack: PROCEDURE 9
GetPane:PRocEDURE 7 Slidelconically: PROCEDURE 10
GetParent:PRocEDURE 7 SpecialSetBitmapU nder: PROCEDURE 13
GetSibling: PROCEDURE 7 Stack: PROCEDURE 9
Gravity: TYPE 9 TrimBoxStickouts: PROCEDURE 11
Handle: TYPE 4 UnderChangedProc: TYPE 14
Initialize: PROCEDURE 6 Unlink: PROCEDURE 15
InitializeWindow: PROCEDURE 6 Validate: PROCEDURE 11
InsertlntoTree:PRocEDURE 8 ValidateTree: PROCEDURE 11
I ntersectBoxes: PROCEDURE 5 WordsForBitmapUnder: PROCEDURE 12
InvalidateBox: PROCEDURE 10

59-22

60

XChar

60.1 Overview

The XChar interface is part of a string package that supports the Xerox Character Code
Standard, referred to in this document as the "standard." XChar defines the basic character
type and some operations on it.

The standard defines 16-bit characters, which would permit up to 65,536 distinct
characters. Reserving control character space reduces them to 35,532. It is convenient to
partition the character code range into 256 blocks of 256 codes each. Each block is called a
character set. This approach allows a convenient run-encoding scheme.

All the character sets currently defined are enumerated in XCharSets.

60.2 Interface Items

80.2.1 Character Representation

Character: TYPE. WORD;

Character is a 16-bit character.

Fine point: Currently only l&.bit characters are defined by the standard, but larger characters are not precluded.

If the standard is extended to include more bits per character, the type Character will be redefined.

CharRep: TYPE. MACHINE DEPENDENT RECORD [set, code: Environment.Byte);

CharRep is a type that defines the representation of a character as character set and code.
The operations Code, Make, and Set should be used instead of this type.

Code: PROCEDURE [c: Character] RETURNS [code: Environment.Byte] ;

Code returns the code within a character set of the character parameter.

Make: PROCEDURE [set, code: Environment.Byte] RETURNS [Character];

60-1

60

60-2

XCbar

Make constructs a character, given a character set and a code within the character set. ~

Set: PROCEDURE [c: Character1 RETURNS [set: Environment.Byte1 ;

Set returns the character set of the character parameter.

null: Character - 0;
not: Character - 1777778;

not is a value that may be used by operations that return a character to signify> that no
characters remain.

60.2.2 Join Direction and StreakNature

JoinDirection: TYPE - {nextCharToLeft, nextCharToRight};

JoinDirection specifies whether a character goes left to right or right to left.

GetJoinDirection: PROCEDURE [Character] RETURNS [JoinDirection];

GetJoinDirection returns the join direction for a character, given its set and code within its
set.

ArabicFirstRightToLeftCharCode: Environment.Byte - 608;

ArabicFirstRightToLeftCharCode is used by GetJoinDirection.

StreakNature: TvP! • {leftToRight, rightToLeft};

GetStreakNature: PROCEDURE [Character) RETURNS [StreakNature);

Returns a characters StreakNature (see SimpleTextDisplay.StreakSuccession).

60.2.3 Case

Decase: PROCEDURE [c: Character] RETURNS [Character];

Oecase is a case-stripping operation. It returns c with all case information removed. This is
useful when comparing characters with case ignored. Only characters in character sets
zero (Latin), 46(Greek), and 47(Cyrillic) are affected.

LowerCase: PROCEDURE [c: Character] RETURNS [Character];

LowerCase returns the lowercase representation of the character c. Only characters in
character set zero (Latin), 46 (Greek), and 47 (Cyrillic) are affected.

UpperCase: PROCEDURE [c: Character] RETURNS [Character];

Uppercase returns the uppercase representation of the character c. Only characters in ~
character set zero (Latin), 46 (Greek), and 47 (Cyrillic) are affected.

ViewPoint Programmer's Manual 60

60.3 Usage/Examples

The following two examples create specific characters. xChar.Make is also useful if the
char~cter set and code are not known at compile time, but are known at run time.

80.3.1 Creating an ASCII Character

The followin~ example creates an ASCII CR character.

c: xChar.Character .-XChar.Make{set: XCharSets.SetsJatin.ORO, code:LOOP~OlE(Ascii.CR)];

60.3.2 Creating a Greek Character

The following example creates an a from the Greek character set.

c: XChar.Character .-xChar.Make(set:XCharSets.Sets.greek.oRo, code:
XCharSet46. Codes46.lower AI pha. ORO);

60-3

60 XChar

60.4 Index of Interface Items ~
!

Item Page

ArabicFirstRightToLeftCharCode: TYPE 2
Character: TYPE 1
CharRep: TYPE 1
Code: PROCEDURE 1

- Decase: PROCEDURE 2
GetJoinDirection: PROCEDURE 2
GetStreakNa~ure: PROC_DURE 2
JoinDirection: TYPE 2
LovverCase:PRocEDURE 2
Make: PROCEDURE 1
null: TYPE 2
not: TYPE 2
Set: PROCEDURE 2
StreakNature: TYPE 2
UpperCase: PROCEDURE 2

60-4

61

XCharSets, X CharSetNNN

61.1 Overview

XCharSets enumerates the character sets defined in the Xerox Character Code Standard.
This chapter also describes a collection of interfaces that enumerate the character codes of
several common character sets. This collection of interfaces is XCharSetNNN.

61.2 Interface Items

~ 61.2.1 Sets

Sets: TYPE • MACHINE DEPENOENT (

latin(O), firstUnused1(1),lastUnused1(40B), jisSymbol1(41 B), jisSymboI2(42B),
extendedLatin(43B), hiragana(44B), katakana(45B), greek(46B), cyrillic(47B),
firstUserKanji1(50B), lastUserKanji1(57B), firstLevel1 Kanji(60B),lastLeveI1 Kanji(117B),
firstLeveI2Kanji(120B),lastLeveI2Kanji(163B), jSymboI3(164B), firstUserKanji2(165B),
lastUserKanji2(176B), firstUnused2(177B),lastUnused2(240B), fi rstReserved 1 (241 B),
lastReserved1(337B), arabic(340B), hebrew(341 B), firstReser'¥ed2(342B),
lastReserved2(355B), generaISymbols2(356B), generaiSymbols1 (357B),
firstRendering(360B), lastRendering(375B), userOefined(376B), selectCode(377B)};

Sets enumerates the character sets. Specific character sets have values defined, such as
Latin and Hiragana. Character set families such as Kanji and unused or reserved portions
-of the character set enumeration are specified by first and last values; for example,
firstUserKanji1 and lastUserKanji1.

For those eleven character sets whose codes are specified in the standard, an interface has
been defined that contains an enumerated type enumerating the codes within the
character set and a Make procedure that makes a character, given a code literal.

For example, the interface XCharSet356 has the following definitions:

Make: PROCEDURE [code: Codes356] RETURNS [Character];

61-1

61 XCharSets

Codes356: TYPE • MACHINE DEPENDENT {
thickSpace(41 B), fourEmSpace(42B), hairSpace(43B), punctuationSpace(44B),
decimaIPoint(56B). absoluteValue(174B). simiiarTo(176B), escape(377B)};

81.2.2 Enumeration of Character Sets

Table 61.1 enumerates the eleven character sets whose codes are specified in the standard,
the interface in which they are contained, and the enumerated type name for that
interface.

Character Set Interface Enumerated Type

Latin XCharSetO CodesO

jisSymbol1 XCharSet41 Codes41

jisSymbol2 XCharSet42 Codes42

extended Lati n XCharSet43 Codes43

Hiragana XCharSet44 Codes44

Katakana XCharSet45 Codes45

Greek XCharSet46 Codes46

Cyrillic XCharSet47 Codes47

jSymbol3 XCharSet164 Codes164

arabic XCharSet340 Codes340

hebrew XCharSet341 Codes341

generaiSymbols2 XCharSet356 Codes356

generalSymbols 1 XCharSet357 Codes357

fi rstRenderi ng XCharSet360 Codes360

accented Lati n XCharSet361 Codes361

Table 61. 1: Standard Character Sets

61.3 UsagelExamples

81.3.1 Creating a Greek Character

The following example shows two ways to create an a from the Greek character set.

c: XChar.Character +-XChar.Make(set:XCharS4Its.Sets.greek.ORD, code:
XCharS4It46.Codes46.lowerAlpha.oRD);

c: xChar.Charader +- XCharS4It46.Make(code: XCharS4It46.Codes46.1ower AI pha];

61-2

.. ~

ViewPoint Programmer's Manual 61

61.4 Index of Interface Items

Item Page

Sets: TYPE 1

.,.".

61-3

61 XCharSets

~\

61-4

62

XComSoftMessage

62.1 Overview

This interface assigns the global handle and message keys for all the messages the system
requires for system templates (such as time and date formatting, numbers, and so forth,).
The XMessage interface deals with system messages;, it must be understood before using
this interface.

62.2 Interface Items

62.2.1 Obtaining Message Handle

GetHandle: PROCEDURE RETURNS [h: XMessage.Handle);

This procedure returns a handle for system-required messages that have already been
initialized and allocated, and registered by the XComSoftMessage implementation.

62.2.2 Message Keys

Keys: TYPE • MACHINE DEPENDENT {
time(O). date(1), dateAndTime(2), am(3), pm(4), january(S), february(6), march(7),
april(8), may(9), june(10), july(11). august(12). septem ber(13), october(14),
november(15). december(16), monda'y(17), tuesday(18), wednesday(19), thursday(20).
friday(21). saturday(22), sunday(23), decimaISeparator(24), thousandsSeparator(25)};

time, date, and dateAndTime are available through the XTime interface; they may be used
as templates in calls to XTime.ParseReader or XTime.AppeP1d.

Months: TYPE. Keys ijanuary •• december);

DaysOfWeek: TYPE. Keys [monday •• sunday];

62-1

62 XComSoftMessage

62.3 Usage/Examples

62-2

OPEN XCSM: XComSoftMessage;

systemMsgs: XMessage.Handle +-xcsM.GetHandle 0;
mondayString: xString.Reader +- XMessage.Get [

systemMsgs, xcsM.OaysOfWeek.monday.ORO];

ViewPoint Programmer's Manual

62.4 Index of Interface Items

Item

GetHandle: PROCEDURE

Keys: TYPE

Months: TYPE

OaysOfWeek: TYPE

Page

1
1
1
1

62

62-3

62 XComSoftMessage

62-4

63

XDigits

63.1 Overview

The XDigits interface provides the definitions and procedures for implementing and
manipulating different number representations.

The average client will only use xDigits.NumberParms that is provided as a parameter for
certain input/output number routines such as XStringX2.ReaderToNumberX and
XFormatX.NumberX.

63.2 Interface Items

63.2.1 Representation

Representation :TYPE :II MACHINE DEPENDENT {
default(O), ascii(1), arabian(2), persian(3), urdu(4), Jkanji(5), Chanzi(6),
Khanja(7), amharic(8), burmese(9), khmer(10),lao(11). thai(12). devanagari(13),
bengali(14). firstFree(15).last(255)};

Representation lists all known number representations.

Digit: TYPE. [0 .. 9];

Symbols: TYPE. LONG DESCRIPTOR FOR ARRAY Digit OF xChar.Character;

Each number representation will have Symbols associated with it.

NumberParms: TYPE • RECORD [
representation: Representation,
parensForNeg: BOOLEAN,
thousandsSep: XChar.Character];

defaultNumberParms: NumberParms • [default. FALSE, XChar.not];

NumberParms is the parameter for several number inputJoutput routines. representation
is used to select the symbols to be used to input or output the digits. If representation is
defaulted, the default representation specified in the User Profile is used. If parensForNeg

63-1

63 XDigits

is TRUE, numbers within parentheses will be accepted and negated on input. On output, if
parensForNeg is TRUE, negative numbers will be emitted within parentheses instead of the
minus sign. thousandsSep will be permitted on input provided it is not the first or last
character. No other checks are made on input. On output, thousandsSep will be emitted
every three digits. NumberParms is currently a parameter in XStringX2.ReaderToNumberX,
XTokenx.NumberX, XTokenx.DecimaIX, xFormatx.NumberFormatX, XFormatx.NumberX,
X'ormatx.DecimaIX, XLRealx2.ReaderToNumberX, XLRealx2.ReadNum~erX and
XLRealX2.FormatNumberX. ",

63.2.2 Operations

GetSymbols: PROCEDURE [representation: Representation]
RETURNS [symbols: Symbols];

GetSymbols returns the symbols associated with representation. If representation does
not have any symbols associated with it, NIL will be returned.

SetSymbols: PROCEDURE [
representation: Representation [ascii • .last1,
symbols: Symbols,
label: XString.Reader NIL] ;

SetsSymbols sets the symbols for representation. If label is non-NIL, it will replace the
built-in label for the representation. label will copied and storage ~or the bytes will be
allocated out of a private zone._,"

SetDefault: PROCEDURE [representation: Representation[ascii . .Iast]];

SetDefault sets the default representation to be representation.

GetLabel: PROCEDURE [representation: Representation] RETURNS [label: XString.Reader];

GetLabel returns the label for representation. NIL is returned if there is no label for the
representation. GetLabel does not copy the label but returns a pointer to it. It should not
be changed by the client.

63.3 Usage/Examples

63-2

63.3.1 Assigning symbols

Clients adding a digit representation that has not been implemented will want to use
SetSymbols.

AddArabianSymbols: PROCEDURE :II {

arabianSymbols: ARRAY Digit OF Xchar.Character [
XCharSet340.Make[indianO],
XCharSet340.Make[indian1],
XCharSet340.Make[indian2],
XCharSet340.Make[i ndian3],
XCharSet34o.Make[indian4],
XCharSet340.Make[indianS],

~
, - '-1';

ViewPoint Programmer's Manual

XCharSet340.Make(indian6],
XCharSet340.Make(i nd ian 7],
XCharSet340.Make{indian8],
XCharSet340.Make{i ndian9]];

SetSymbols(representation: arabian, symbols: DESCRIPToR(arabianSymbols]];};

63

63-3

63 XDigits

63.4 Index of Interface Items ~ ..

Item Page

defaultNumberParms: NumberParms 1
Digit: TYPE 1
GetLabel: PROCEDURE 2
GetSymbols: PROCEDURE 2
NumberParms: TYPE 1
Representation: TYPE 1
SetDefault: PROCEDURE 2
SetSymbols: PROCEDURE 2
Symbols: TYPE 1

63-4

64

XFormat

64.1 Overview

The XFormat package provides procedures for formatting various types into
XString.Readers. The procedures require the client to supply an output procedure and a piece
of data to be formatted. Where appropriate, a format !?pecification is also required.

64.1.1 Major Data Structures

The major data structure is the Handle, whIch pointstf? an object containing a FormatProc,
an XString.Context.and some ClientData. All the formatting operations take a handle as the
destination of the formatted character string. The FormatProc is the main component of an
Object. It should pass the characters of its reader parameter to the output sink it
implements and update the object's context to reflect the context of the last character of the
reader parameter.

The other major data structure is the NumberFormat, which defines how numbers are to be
converted to text strings. It includes the base of the number, the number of columns the
text string should contain, whether to treat the number as signed or unsigned, and
whether to fill leading columns with zeros or spaces.

A FormatProc is the destination of all output from the format routines. It is the main
component of an Object. It should pass the characters of r to the appropriate sink and
update h.context to reflect the context of the last character ofr.

64.1.2 Operations

There are two major classes of operations in XFormat. The first class is used to format
various data types and pass them to a format procedure. These operations contain simple
text operations such as Blanks, Reader, and String; numeric operations such as Decimal
and Number; network-related operations such as NetworkAddress and HostNumber; and
some compatibility routines such as NSString~ All these operations direct their output to
the format procedure in their handle parameter. If this parameter is defaulted, it is
directed to the default output sink.

64-1

64 XFormat

The second class of operations provide built-in format procedures that direct their output to
the following well-known data types: XString.Writer, Stream.Handle, TTY.Handle, and
NSString.Stri n9.

64.2 Interface Items

64-2

84.2.1 Handles and Objects

Handle: TYPE • LONG POINTER TO Objed;

Objed: TYPE • RECORD [
proc: FormatProc.
context: XString.Context +- XString.vanillaContext.
data: ClientData +- NIL];

FormatProc:TYPE • PROCEDURE [r: XString.Reader, h: Handle);

ClientData: TYPE. LONG POINTER;

A Handle is a parameter to all the formatting operations. Its object encapsulates the output
sink that is the destination of all formatted text. The proc field is called one or more times
for each formatting operation; it should pass the characters of its reader parameter to the
output sink it implements. The context field is used to hold the context of the last character
sent to the'for-mat procedure. It should be updated by the format procedure. The data field
allows client-.specific information to be passed to the format procedure.

64.2.2 Default Output Sink

SetDefaultOutputSink: PROCEDURE [new: Objed) RETURNS [old: Objed];

SetDefaultOutputSink sets the default object that is the default destination for all
formatted output. For each of the formatting operations, if the handle parameter is NIL, it is
directed to the default output sink. The default output sink is initialized to an object that
ignores all results.

64.2.3 Text Operations

Blanks: PROCEDURE [h: Handle +- NIL, n: CARDINAL +-1];

Blanks calls on h.proc with readers that contain a total of n blanks. h.proc may be called
more than once.

Block: PROCEDURE [h: Handle +- NIL, block: Environment.Block];

Block calls on h.proc with a reader that contains the characters in block.

Char: PROCEDURE [h: Handle +- NIL, char: XString.Character];

Char calls on h.proc with a reader that contains only the character char.

ViewPoint Programmer's Manual 64

CR: PROCEDURE [h: Handle +- NIL, n: CARDINAL +-1];

CR calls on h.proc with readers that contain a total of n carriage returns (I5C). h.proc may
be called more than once.

Line: PROCEDURE [h: Handle +- NIL, r: XString.Reader, n: CARDINAL +-1);

Line calls on h.proc with r and then readers that contain a total of n carriage returns (I5C).
h.proc will be called more than once.

Reader: PROCEDURE [h: Handle +- NIL, r: XString.Reader);

Reader calls on h.proc with r.

ReaderBody: PROCEDURE [h: Handle of- NIL, rb: XString.Reader];

ReaderBody calls on h.proc with @rb.

String: PROCEDURE [h: H~ndle +- NIL, S: LONG STRING);

String calls on h.proc with readers that contain the characters in s.

64.2.4 Numb~r Formats

NumberFormat: TYPE=- RECORD [base: [2 .. 36) +-10.
zerofill: BOOLEAN +- FALSE, signed: BOOLEAN +- FALSE. columns: [0 .. 255] +- 0];

NumberFormat is used by the number-formatting procedures. The number will be
formatted in base base in a field at least columns wide (zero means "use as many as
needed"). If zerofill is TRUE, the extra columns are filled with zeros; otherwise, spaces are
used. If signed is TRUE and the number is less than zero, a minus sign preceeds all output,
except for columns that are filled with spaces. For bases greater than 10, the characters
'A .. 'Z are used as digits.

NumberFormatX: TYPE=- RECORD [base: [2 .. 36] +-10.
zerofill: BOOLEAN +- FALSE, signed: BOOLEAN +- FALSE, columns: [0 •• 255) +- 0,
numberParms: XDigits.NumberParms +- XDigits.defaultNumberParms];

NumberFormatX is the same as NumberFormat except that numberParms can be specified.
If base is other than 10, numberParms.representation and numberParms.thousandsSep
are ignored. See the XDigits chapter for more details. Fine Point: This type is currently found in

XFormatX.

DecimalFormat: NumberFormat • [
base: 10. zerofill: FALSE, signed: TRUE, columns: 0];

HexFormat: NumberFormat • [
base: 16. zerofill: FALSE, signed: FALSE, columns: 0];

OctalFormat: NumberFormat • [
base: 8. zerofill: FALSE. signed: FALSE, columns: 0];

64-3

64

64-4

XFormat

UnsignedDecimalFormat: NumberFormat • [
base: 10, zerofill: FALSE, signed: FALSE, columns: 0];

These are useful number format constants. The output will fill as many columns as neededo

64.2.5 Numeric Operations

Number: PROCEDURE [
h: Handle NIL, n: LONG UNSPECIFIED, format: NumberFormat);

Number formats n to a string according to the number format format. The number will be
formatted in base base in a field at least columns wide (zero means r'use as many as
needed"). If zerofill is TRUE, the extra columns are filled with zeros; otherwise, spaces are
used. If signed is TRUE and the number is less than zero, a minus sign preceeds' all output,
except for columns that are filled with spaces. For bases greater than 10, the characters
'A .. 'Z are used as digits. h.proc will be called several times with pieces of the output as they
are generated.

NumberX: PROCEDURE [
h: Handle NIL, n: LONG UNSPECIFIED. format: NumberFormatX];

~umberX formats n to a string according to the number format format. NumberX is the
same as Number except that format is of type NumberFormatX wherein the numberParms
can be specified. See the XDigits chapter for more details. Fine Point: This procedure is' currently

exported through XFormatX.

Decimal: PROCEDURE [h: Handle NIL, n: LONG INTEGER];

Decimal converts n to signed base 10. It is equivalent to Number[h, n, DecimaIFormat].

DecimalX: PROCEDURE [h: Handle NIL, n: LONG INTEGER,
numberParms: XDigit.NumberParms XDigits.defaultNumberParms];

DecimalX converts n to signed base 10. It is equivalent to NumberX[h, n, DecimaIFormat].
See the XDigits chapter for more details. Fine Point: This procedure is currently exported through

XFormatX.

Hex: PROCEDURE [h: Handle NIL, n: LONG CARDINAL];

Hex converts n to signed base 16. It is equivalent to Number[h, n, HexFormat].

Octal: PROCEDURE [h: Handle NIL. n: LONG UNSPECIFIED];

Octal convert n to base 8. When n is greater than 7, the character 'B is appended. It is
equivalent to Number[h, n, Octal Format]; IF n > 7 THEN Char[h, 'B.ORD].

64.2.6 Built-in Sinks

The XFormat interface provides several built-in format procedures that know how to send ~.
output to particular destinations. For each of the four known types of destinations
(XString.Writer, Stream.Handle, TTY.Handle, and NSString.String), there are both the format
procedure as well as an operation that returns an object initialized with the appropriate

ViewPoint Programmer's Manual 64

format procedure and destination data. Both the format procedures and the object
operations may raise the error Error{niIData] if the expected data is NIL.

NSStringProc: FormatProc;

NSStringObject: PROCEDURE Is: LONG POINTER TO NSString.String] RETURNS [Object];

NSStringProc appends the reader to an NSString.String. It expects h.data to be a LONG POINTER
TO NSString.String. NSStringObject constructs an o~ject whose proc is NSStringProc and
whose data is s.

StreamProc: FormatProc;

StreamObject: PROCEDURE [sH: Stream.Handle] RETURNS [Object];

StreamProc puts the bytes of the reader to a Stream.Handle. It expects h.data to be a
Stream.Handle. StreamObject constructs an object whose proc is StreamProc and whose data
is sH.

TTYProc: FormatProc;

TTYObject: PROCEDURE [h: TTY.Handle] RETURNS [Object];

TTYProc puts the bytes of the reader to a TTY.Handle. It expects h.data to be a TTY.Handle.
TTYObject constructs an object whose proc is TTYProc and whose data is h.

WriterProc: FormatProc;

WriterObject:PROCEDURE [w: XString.Writer] RETURNS [Object];

WriterProc appends the reader to a XString.Writer. It expects h.data to be a XString.Writer.
WriterObject constructs an object whose proc is WriterProc and whose data is w.

64.2. 7 Date Operation

DateFormat: TYPE • {dateOnly, timeOnly, dateAndTime};

DateFormat allows the user to specify which template from XTime is used when the date is
to be formatted by the procedure Date.

Date: PROCEDURE [
h: Handle +- NIL, time: System.GreenwichMeanTime +-System.gmtEpoch,
format: DateFormat +- dateAndTime];

Date converts time to a string by calling XTime.Append, using format to specify which
template to use. h.proc is then called. If time is defaulted, the current time is used.

64.2.8 Network Data Operations

NetFormat: TYPE. {octal, hex, productSoftware};

64-5

64

64-6

XFormat

NetFormat is used by the procedures that format network addresses. octal converts the
number to octal, hex converts to hex, and productSoftware converts the item to a decimal
number and then inserts a "." every three characters, starting·from the right. An example
of a number in product software fonnat is 4-294-967-295.

HostNumber: PROCEDURE [
h: Handle +- Nil, hostNumber: System.HostNumber, format: NetFormat);

HostNumber calls on h.proc with a reader that contains hostNumber formatted as defined
by format.

NetworkAddress: PROCEDURE
h: Handle +- Nil, networkAddress: System.NetworkAddress, format: NetFormat);

NetworkAddress calls on h.proc with a reader that contains networkAddress with the
form network-number#host-number#socket-number, where the format of the various
components isdetermined by format.

NetworkNumber: PROCEDURE [
h: Handle +- NIL, networkNumber: System.NetworkNumber, format: NetFormat);

NetworkNumber calls on h.proc with a reader that contains networkNumber formatted as
defined by format.

SocketNumber: PROCEDURE [
h: Handle +- NIL, socketNumber: System.SocketNurriber, format: NetFormat);

SocketNumber calls on h.proc with a reader that contains socketNumber formatted as
defined by format.

64.2.9 NSString Operations

NSChar: PROCEDURE [h: Handle +- Nil, char: NSString.Character];

NSChar calls on h.proc with a reader that contains the character char.

NSLine: PROCEDURE [h: Handle +- NIL, s: NSString.String, n: CARDINAL +-1];

NSLine calls on h.proc with a reader that contains the characters in s, then calls on
readers that contain a total of n carriage returns (15C). h.proc may be called more than
once.

NSString: PROCEDURE [h: Handle +- NIL, s: NSString.String);

NSString calls on h.proc with a reader that contains the characters in s.

64.2.10 Errors

Error: ERROR [code: ErrorCode] ;

ErrorCode: TYPE = {invalidFormat, niIData};

~,

.......,'

ViewPoint Programmer's Manual 64

invalidFormat The term invalidFormat means an invalid operation has been
attempted

nilData The term nilData means h.data was NIL, but the format procedures
wanted valid data.

64.3 Usage/Examples

64.3.1 Using Built-in Sinks

The XFormat interface allows clients to convert data types to their textual representation.
By using the built-in sinks, clients can put this text into streams, tty.handle, and append to
writers. In particular, although the XString interface does not include any append number
operations, XFormat may be used to accomplish this task.

AppendNumber: PROCEDURE [
w: XString.Writer, n: LONG INTEGER, format: xFormat.NumberFormat) • {
xfo: xFormat.Object +- xFormat.WriterObject(w];
xFormat.Number(h: @xfo, n: n, format: format]};

64.3.2 Creating New Format Procedures ·

While XFormat provides some useful output sinks, clients may wish to build new sinks.
Th~ following example hypothesizes a log window that can display text in, a window and
allows appending of text to the end .

LogWindow: DEFINITIONS. {
Create: PROCEDURE [w: Window.Handle, file: NSFile.Handle];
Destroy: PROCEDURE [w: Window.Handle];

Log Reader: PROCEDURE [w: Window.Handle, r: XString.Reader];
Info: PROCEDURE [w: Window.Handle] RETURNS [

file: NSFile.Handle, nChars: LONG INTEGER, endContext: XString.Context];

Log FormatProc: XFormat. FormatProc;
LogFormatObject: PROCEDURE [w: Window.Handle] RETURNS [object: XFormat.Object]

ErrorCode: TYPE. {notALogWindow};
Error: Error [code: ErrorCode];
} ..

LogWindowlmpl: PROGRAM. {

Create: PUBLIC PROCEDURE [w: Window.Handle, file: NSFile.Handle] • { ..• };
Destroy: PUBLIC PROCEDURE [w: Window.Handle] • { ..• };

LogReader: PUBLIC PROCEDURE [w: Window.Handle, r: XString.Reader] • { ... };
Info: PUBLIC PROCEDURE [w: Window.Handle] RETURNS [

file: NSFile.Handle, nChars: LONG INTEGER, endContext: XString.COntext] • { ..• };

LogFormatProc: PUBLIC XFormat.FormatProc • {

64-7

64

64-8

XFormat

w: Window.Handle • h.data;
IF W • NIL THEN ERROR XFormat.Error(niIData];
LogReader[w: w, r: r];
h.context lnfo(w].endContext};

LogFormatObject: PUBUC PROCEDURE [

} ..

w: Window.Handle] RETURNS [object: XFormat.Object] • {
IF W - NIL THEN ERROR XFormat.Error[niIData];
RETURN([proc: LogFormatProc, context: Info(w].endContext, data: w]]};

The bulk of the work is done in the LogReader procedure. It is assumed that the log window
keeps track of the context of the end of the log so that it will add the necessary character set
shift information when a reader that begins with a different character set is logged. If the
log window didn't take care of this, the format procedure would have to set that itself, as
the stream format procedure example below shows.

StreamProc: PUBLIC XFormat.FormatProc - {
stream: Stream.Handle - h.data;
startsWith377B: BOOLEAN;
c: XString.Context;·
IF stream - NIL THEN ERROR XFormat.Error[niiData];
[context: c, startsWith377B: startsWith377B] +- XString.Readerlnfo[r);
SELECT TRUE FROM

startsWith377B =- > NULL;
c.suffixSize • 2 - >

IF h.context.suffixSize - 1 THEN {
stream.PutByte[377B]; stream.PutByte[377B]; stream.PutByte[O]};

h.context.suffixSize • 2, c.prefix # h.context.prefix • > {
stream.PutByte[377B]; stream.PutByte(c.prefix]};

ENDCASE;
stream.PutBlock[block: xString.Block[r]];
h.context XString. Com puteEndContext[r]};

~,

ViewPoint Programmer's Manual 64

64.4 Index of Interface Items
.~

Item Page

Blanks: PROCEDURE 2
Block: PROCEDURE 2
Char: PROCEDURE 2
ClientData: TYPE 2
CR: PROCEDURE 3
Date: PROCEDURE 5
DateFormat: TYPE 5
Decimal: PROCEDURE 4
DecimalX: PROCEDURE 4
DecimalFormat: NumberFormat 3
Error: ERROR 6
ErrorCode: TYPE 6
FormatProc: TYPE 2
Handle: TYPE 2
Hex: PROCEDURE 4
HexFormat: NumberFormat 3
HostNumber: PROCEDURE 6
Line: PROCEDURE 3
NetFormat: TYPE 5
NetworkAddress: PROCEDURE 6
NetWorkNumber: PROCEDURE 6,. "NSChar: PROCEDURE 6
NSLine: PROCEDURE 6
NSString: PROCEDURE 6
NSStringObject: PROCEDURE 5
NSStringProc: FormatProc 5
Number: PROCEDURE 4
NumberX: PROCEDURE 4
NumberFormat: TYPE 3
NumberFormatX: TYPE 3
Object: TYPE 2
Octal: PROCEDURE 4
OctalFormat: NumberFormat 3
Reader: PROCEDURE 3
ReaderBodY:PROCEDURE 3
SetDefaultOutputSi nk: PROCEDURE 2
SocketNumber: PROCEDURE 6
StreamObject: PROCEDURE 5
StreamProc: FormatProc 5
String: PROCEDURE 3
rrvObject: PROCEDURE 5
TTYProc: FormatProc 5
Unsigned Decimal Format: NumberFormat 4
WriterObject: PROCEDURE 5
WriterProc: FormatProc 5

~

64-9

64 XFormat

64-10

65

XLReal

65.1 Overview

XLReal is a decimal real package that supports manipulation of real numbers with greater
precision than Mesa REALs.

65.2 Interface Items

85.2.1 Representation

Numbers are maintained as 13 decimal digits of signed mantissa with a lO-bit exponent
(-512 to 511). All routines maintain the normalized numbers, Le., the first digit is non­
zero. The assumed decimal point is after the first digit. Numbers are stored as opaque
objects occupying 4 words (64 bits).

Digit: TYPE. [0 .• 9];
Number: TYPE [4];
Bits: TYPE. ARRAY [0 .. 4) OF CARD.NAL;
ValidExponent: TYPE ::II [-512 •• 511];
Digits: TYPE ::II PACKED ARRAY [O •• accuracy) OF Digit;
accuracy: NATURAL. 13;

85.2.2 Con version

XLReal provides routines to convert numbers to and from other representations such as
LONG INTEGERS and REALS as well as routines to look at pieces of numbers.

NumberToPair: PROCEDURE [
n: Number, digits: [1 .. accuracyJ] RETURNS [negative: BOOLEAN, exp: INTEGER, mantissa:
Digits];

PairToNumber: PROCEDURE[
negative: BOOLEAN, exp:INTEGER, mantissa: Digits] RETURNS [n: Number];

65-1

65

65-2

XLReal

In PairToNumber and NumberToPair, the decimal point. is between mantissa[O] and ~.
mantissa[l]. NumberToPair rounds n so that mantissa contains digits significant digits. All
other digits are zero. NumberToPair may raise Error[notANumber]. PairTONumber may
raise Error[underflow].

IntegerPart, FractionPart: PROCEDURE [Number] RETURNS [Number];

IntegerPart and FractionPart may raise Error[notANumber]. FractionPart may also raise
Error[overflow].

Fix:PROCEDURE [Number] RETURNS [LONG INTEGER];

Float: PROCEDURE [LONG INTEGER] RETURNS [Number];

Fix may raise Error[notANumber] and Error[overflow]. Fix rounds (as, opposed to truncate).

ToREAL:PROCEDURE [number: Number] RETURNS [REAL];

ToREAL converts number to a REAL. If Abs[number] is greater than the largest REAL
(3.40282347E38) it will return Real.Pluslnfinity or Real.Minuslnfinity depending on
number's sign. If it less than the smallest REAL (1.17549435E-38) it will return
Real.PtusZero or Real.MinusZero depending on number's sign. Some precision may be lost
since a number's precision is greater than a REAL'S precision. ToREAL may raise
Error[notANumber]. Fine Point: This procedure is currently exported through XLReaIX.

FromREAL: PROCEDURE [real: REAL] RETURNS [Number];

FromREAL converts real to a Number. If real is Real.Pluslnfinity or Real.Minuslnfinity,
FromREAL returns 9.999999999999E511 or -9.999999999999E511 depending on real's
sign. If real is not a number, FromREAL returns MakeSpecial[O);. Fine Point: This procedure is

currently exported through XLReaIX.

85.2.3 Input/Output

The input and output routines convert numbers to and from a stream of characters.

ReaderToNumber: PROCEDURE[r: XString.Reader] RETURNS [Number];

ReaderToNumber converts r into a number. The number may have leading and trailing
white space (spaces, tabs and returns). It may raise Error[overflow] if the number is too big
or Error[notANumber] if the reader contains invalid characters.

ReaderToNumberX: PROCEDURE[
r: XString.Reader,
numberParms: XDigits.NumberParms 4-XOigits.defaultNumberParms,
decimalSep: XChar.Character 4- XChar.not] RETURNS [Number];

ReaderToNumberX is the same as ReaderToNumber except that the numberParms and
decimalSep can be specified. If decimalSep is defaulted then the decimal separator ,~
described in the XComSoft messages file is used. See the XDigits chapter for more
information. Fine Point: This procedure is currently exported through XLReaIX2.

View Point Programmer's Man ual 65

ReadNumber: PROCEDURE [
get: PROC RETURNS [XChar.Character], putback: PROC [XChar.Character]] RETURNS [Number];

ReadNumber converts the stream of characters from get into a number. Any character
other than white space, '+, '-, 'E, Ie, 'O-'g, or the decimal separator will cause conversion to
terminate and putback will be called with that character. It may raise Error(overflow].

ReadNumberX: PROCEDURE [
get: PROC RETURNS [xChar.Character],
putback: PROC [xChar.Character],
numberParms: XDigits.NumberParms .-XDigits.defaultNumberParms,
decimalSep: xChar.Character.- XChar.not] RETURNS [Number];

ReadNumberX is the same as ReadNumber except that the numberParms and decimalSep
can be specified. If decimalSep is defaulted then the decimal separator described in the
XComSoft messages file is used. See the XDigits chapter for more information. Fine Point: This

procedure is currently exported through XLRea.X2.

FormatReal: PROCEDURE [h: XFormat.Handle.- NIL, r: Number, width: NATURAL];

FormatReal formats r into a field width elements wide and passes the resulting text to h. If
the number does not fit the field is filled with '> characters. h.proc may be called more
than once .

. PictureReal: PROCEDURE [
h: XFormat.Handle.- NIL, r: Number, template: XString.Reader];

PictureReal is not implemented. Use FormatNumber for control over output.

NumberFormat: TYPE • RECORD [
columns: ColumnCount.- 0,
type: FormatType .- fixed,
fill: Fill +- [none, 0],
digitSpec: SELECT choice: DigitChoice FROM

fractions • > [fractions: DigitCount],
digits. > [digits: DigitCount).
ENDCASE .- digits[O]];

ColumnCount: TYPE. [0 •. 256);

FormatType: TYPE. {fixed, scientific, automatic};

Fill: TYPE. RECORD [type: FiliType, nChars: ColumnCount];

FiIIType: TYPE. {zero, blank, none};

DigitCount: TYPE • [O .. accuracy];

DigitChoice: TYPE. {fractions, digits};

NumberFormat is used by FormatNumber to allow precise control over the formatted
number. columns specifies the number of columns required; zero means use as many as
needed. type specifies whether the number is formated in fixed notation (fixed), scientific

65-3

65

65-4

XLReal

notation (scientific) or fixed if it will fit in the number of columns or scientific otherwise
(automatic). fill specifies the type and number of characters of additional fill that is
required before the number. zero and blank mean use zeros or blanks, respectively, as the
fill characters, while none means use not fill. digitSpec allows the number of digits or
fractions to be specified. fractions(n] means have n digits to the right of the decimal.
digits(n) means have n significant digits in the number, except that digits(O] means have
any number of digits in the number.

If type • automatic and columns. 0, then f.digits is used to determine whether the number
will be fixed or scientific. This allows a client to say ttl want f.digits of significant digits
and you figure out whether it should be rued or scientific." Using type. automatic and
columns#O means that FormatNumber will use columns to determine whether the number
is rued or scientific, but often the client wants to specify significant digits rather than
number of columns, especially since the number of columns will vary depending on the
format and the value of the number.

FormatNumber: PROC [
h: XFormat.Handle ~ NIL, r: Number,
format: NumberFormat ~ defaultFormat. signalifWontFit: BOOLEAN ~ FALSE];

defaultFormat: NumberFormat • [
columns: 0, type: fixed, fill: [none, 0], digitSpec: digits(O]];.

WontFit: SIGNAL;

FormatNumber formats r according to format. If format specifies a number of columns, and ~
the formatted number will not fit and signalifWontFit is TRUE, the signal WontFit will be
raised, If it is resumed or the number won't fit and signalifWontFit is FALSE,
format.columns '> will be passed to h.proc. If the number of columns or digit specification
restricts the number of significant digits presented, the number of significant digits is
reduced by rounding. If h is defaulted, output goes to the default output sink. (See the
XFormat chapter for more details.) The default format specifies fixed notation in as many
columns as necessary with no additional fill. If r is negative, the negative sign appears
before zero fill and after blank fill. h.proc may be called more than once. Fine Point: This

procedure is currently exported through XLReaIX.

FormatNumberX: PROC [
h: XFormat.Handle ~ NIL, r: Number,
format: NumberFormat ~ defaultFormat, signalifWontFit: BOOLEAN ~ FALSE,
numberParms: XDigits.NumberParms ~ XDigits.defaultNumberParms,
decimalSep: XChar.Character ~ XChar.not];

FormatNumberX is the same as FormatNumber except that the numberParms and
decimalSep can be specified. If decimalSep is defaulted then the decimal separator
described in the XComSoft messages file is used. See the XDigits chapter for more details.
Fine Point: This procedure is currently exported through XLReaIX2.

65.2.4 Comparison

Comparison: TYPE = {less, equal, greater};

~'

ViewPoint Programmer's Manual

Compare: PROCEDURE [a r b: Number] RETURNS [Comparison];

Less, LessEq, Equal r GreaterEq, Greater, NotEq: PROCEDURE [
ar b: Number] RETURNS [BOOLEAN];

Any of the compare operations may raise Error[notANumber].

63.2.3 Operations

Add, Subtract, Multiply, Divide. Remainder: PROCEDURE [
a, b: Number]RETURNS [Number];

65

Add, Multiply, Divide and Remainder may raise Error[notANumber] and Error[overflow]
Divide may also raise Error(divideByZero].

Exp: PROCEDURE [Number] RETURNS (Number];

Exp computes the results by continued fractions. Exp may raise Error[underflow1,
Error[notANumber] and Error[overflow].

Log: PROCEDUR~ [base, a,rg: Number] RETURNS [Number);

Log computes the logarithm to the base base of arg by Ln(arg)/Ln(base). Log may raise
Error[overflow], Error[invalidOperation], and Error(notANumber).

Ln: PROCEDURE [Number] RETURNS [Number];

Ln may raise Error[notANumber] , Error[overflow] , and Error[invalidOperation].

Power: PROCEDURE [base, exponent: Number] RETURNS [Number];

Power calculates base to the exponent power by e(exponent*Ln(base». Power may raise
Error[notANumber] and Error[overflow].

Root: PROCEDURE [index, arg: Number] RETURNS [Number];-

Root calculates the index root of arg by e(Ln(arg)/index). Root may raise Error[overflow],
Error[notANumber], and Error[underflow].

SqRt: PROCEDURE [Number] RETURNS [Number];

SqRt calculates the square root of the input value by Newton's iteration. SqRt may raise
Error[notANumber] and Error[invalidOperation].

Abs, Negative, Double, Half: PROCEDURE [Number] RETURNS [Number];

Abs, Negative. Double and Half may raise Error[notANumberJ Double may also raise
Error[overflow].

Cos: PROCEDURE [radians: Number] RETURNS [cos: Number];
Sin: PROCEDURE [radians: Number] RETURNS [sin: Number];
Tan: PROCEDURE [radians: Number] RETURNS [tan: Number];

65-5

65 XLReal

Computes the trigonometric function by polynomial. Angles are measured in radians
measured counterclockwise from the positive x axis about the origin [0, 0]. Sin, Cos and
Tan may raise Error[notANumber] and Error[invalidOperation] (if radians.exponent> 11).
Tan may also raise Error(overllow).

ArcCos PROCEDURE (x: Number) RETURNS [radians: Number];
ArcSin PROCEDURE [x: Number] RETURNS [radians: Number];
ArcTan PROCEDURE [x: NumberJ RETURNS [radians: Number];

Transcendental functio~s have an accuracy of about 1 X lO.·ll. ArcCos, ArcSin and ArcTan
may raise Error[notANumber]. ArcSin may also raise Error(invalidOperation] (if x NOT IN
[-1..1]).

65.2.6 Special Numbers

A client can create special numbers that will cause the Error[notANumber] to be raised if
used in any arithmetic operation.

Speciallndex: TYPE:. NATURAL;

.MakeSpecial: PROCEDURE [index: Speciallndex] RETURNS [Number];
'sSpecial: PROCEDURE [Number] RETURNS [yes: BOOLEAN, index: Speciallndex];

65.2.7 Errors

Error: ERROR [code: ErrorCode];

ErrorCode: TYPE a {bug, divideByZero, invalidOperation, notANumber, overflow,
underflow, unimplemented};

notANumber means the number passed in is a special number.

65.2.8 Special Constants

zero: Number • LOOPHOLE[Bits(O, 0, 0]];

Pi: PROCEDURE RETURNS [Number];
E: PROCEDURE RETURNS [Number];

65.3 UsagelExamples

65.3.1 Special Numbers

--Make the special number

special :XLReal.Number XLReal.MakeSpecial[1];

--do some computations with Numbers

--If a problem occurs during computation, assign

65-6

View Point Programmer's Manual 65

nlf-special

[] If-XLReal.Ln(n];
··If n = special this call to XLReal.Ln will raise Error[notANumber]

65.3.2 Times of Common Operations

For the four arithmetic operations, typical timings (in microseconds) compared with the
current Common Software 32-bit IEEE floating-point package (with no microcode assist)
are:

Add or Subtract

Multiply

Divide

XLReal

500

800

1500

REAL

800

1000

1900

65-7

65 XLReal

65.4 Index of Interface Items ~,

Item Page Item Page

Abs: PROCEDURE 5 Greater: PROCEDURE 5
accuracy: CONSTANT 1 Half:PRoCEDURE 5
Add :PROCEDURE 5 I ntegerPart: PROCEDURE 2
ArcCos :PROCEDURE 6 IsSpecial :PROCEDURE 6
ArcSin:PRocEDURE 6 Less:PRoCEDURE 5
ArcTan :PROCEDURE 6 LessEq: PROCEDURE 5
Bits: TYPE 1 Ln:PRocEDURE 5
ColumnCount:TYPE 3 Log: PROCEDURE 5
Compare: PROCEDURE 5 MakeSpecial: PROCEDURE 6
Comparison:TYPE 5 MultipIY:PROCEDURE 5
Cos: PROCEDURE 6 Negative: PROCEDURE 5
defaultFormat:coNsTANT 4 NotEq: PROCEDURE 5
Digit: TYPE 1 Number: TYPE 1
DigitChoice:TYPE 3 NumberFormat: TYPE. 3
DigitCount:TYPE 3 NumberToPai r: PROCEDURE 1
Digits:TYPE 1 PairToNumber:PRocEDURE 1
Divide:PRocEDURE 5 Pi :PROCEDURE 6
Double:PRocEDURE 5 PictureReal: PROCEDURE ·3
E:PROCEDURE 6 Power: PROCEDURE 5
Equal: PROCEDURE 5 ReaderToNumber: PROCEDURE 2
Error: ERROR 6 ReaderToNumberX:PROCEDURE 2 ~
ErrorCode :TYPE 6 . ReadNumber:PRocEDURE '3
EXP:PROCEDURE 5 ReadNumberX: PROCEDURE 3
FiII:TYPE 3 Remainder: PROCEDURE 5
FiliType:TYPE 3 Root: PROCEDURE 5
Fix:PROCEDURE 2 Si n: PROCEDURE 6
Float:PRocEDURE 2 Speciall ndex: TYPE 6
FormatNumber: PROCEDURE 4 SqRt:PROCEDURE 5
FormatNumberX:PRocEDURE 4 Subtract: PROCEDURE 5
FormatReal: PROCEDURE 3 Tan: PROCEDURE 6
FormatType :TYPE 3 ToREAL:PROCEDURE 2
FractionPart: PROCEDURE 2 ValidExponent:TYPE 1
FromREAL: PROCEDURE 2 WontFit: SIGNAL 4
GreaterEq:PRoCEDURE 5 zero :CONSTANT 6

65-8

~'

66

XMessage

66.1 Overview

The XMessage interface supports the multilingual requirements of systems requiring that
the text to be displayed to the user be separable from the code and algorithms that utilize
it. This allows workstation applications to defme messages and developers and translators
to supply the international representations of the text. The XMessage interface defines the
message transfer mechanism necessary for applications to define applicatio.n-specific
messages, register them with the system, and access them.,

The XMessage interface is part of the entire message machinery that prQvides
'multilingual text. Applications must be ~ritten to rely on messages for their text. A tool
translates messages and produces a file containing the translated version of the messages.

66.1.1 Message Usage

Applications define collection of messages and refer to them by using a Handle. A unique
key relative to that handle represents each message. To get the text of a message, the
client calls Get or Getlist. During development of applications, message handles are
obtained by calling AliocateMessages and RegisterMessages.' When the development is
completed and a message file is generated, message handles are obtained by calling
MessagesFromFile or MessagesFromReference.

Applications should be broken into three parts: the main code of the application that uses
the messages, the code that defmes and initializes the messages, and the code that gets
message handles from the message file.

66.1.2 Message Composition and Templates

Frequently, text presented to the user should include items like names and sizes of objects,
dates,and so forth. When defining such messages, it is best to define a single message
template that allows certain fields to be filled in with this information. The piecemeal
approach to constructing a understandable sentence normally does not work when the
message is translated to a different language.

66-1

66 XMessage

Templates are messages that will have additional text mekrgedifintho them. The fields in ~
templates are defined by numbers enclosed in angle brac ets t e template contains
multiple fields, or simply by angle brackets, if there is only one field.

66.2 Interface Items

66-2

88.2.1 Handles

Handle: TYPE • LONG POINTER TO Object;

Object: TYPE;

A Handle represents a collection of messages. It is normally associated with a particular
application. It is obtained from the AliocateMessages operation and is a parameter of most
operations.

66.2.2 Getting Messages

Get: PROCEDURE [h: Handle. msgKey: MsgKey] RETURNS [msg: XString.ReaderBody);

Get returns the message corresponding to the given message key within the group of
messages specified by h.

GetList: PROCEDURE [h: Handle, msgKeys: MsgKeyList. msgs: StringArray); ~
"

MsgKeyList: TYPE. LONG DESCRIPTOR FOR ARRAY OF MsgKey;

StringArray: TYPE. LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody;

GetList fills the array of reader bodies with the bodies of the messages whose keys are in
the message key list. This procedure is equivalent to:

FOR i IN [O •• msgKeys.LENGTH) DO msgs[iJ +- Get(msgKeys[i]]; ENDLOOP.

This procedure raises Error[invalidMsgKeyList) if msgKeys is NIL, Error(invalidStringArray]
ifmsgs is NIL, and Error[arrayMismatch] if the lengths of the two descriptors are not equal.

66.2.3 Composing Messages

ComposeToFormatHandle: PROCEDURE [
source: XString.Reader, destination: XFormat.Handle, args: StringArray];

Compose: PROCEDURE [
source: XString.Reader, destination: XString.Writer, args: StringArray);

ComposeToFormatHandle and Compose compose a message by replacing the fields in
source with the text in args. ComposeToFormatHandle uses an XFormat.Handle as the
destination of the message, while Compose uses an XString.Writer. A field is specified by a ~
number enclosed in angle brackets. These operations may raise Error[invalidString] if
source is empty and Error[notEnoughArguments] if args is NIL. To maintain backward

ViewPoint Programmer's Manual 66

compatibility with existing messages, the string array is one origin (that is, the field < 1 >
accesses args[O];

ComposeOneToFormatHandle: PROCEDURE [
source: XString.Reader, destination: XFormat.Handle, arg: XString.Reader];

ComposeOne: PROCEDURE [
source: XString.Reader, destination: XString.Writer, arg: XString.Reader);

ComposeOneToFormatHandle and ComposeOne compose a message by replacing the
single field in source with argo ComposeOneToFormatHandle uses an XFormat.Handle as
the destination of the message, while ComposeOne uses an XString.Writer. The single field
is specified by empty angle brackets, < >. These operations may raise Error[invalidString]
ifsource is empty and Error[notEnoughArguments] if arg is NIL.

Decompose: PROCEDURE [source: XString.Reader] RETURNS [args: StringArray);

Decompose currently does nothing.

66.2.4 Defining Messages

Messages are defmed by constructing an array of message entries and registering them
with the system.

Messages: TYPE. LONG DESCRIPTOR FOR ARRAY OF MsgEntry;

MsgEntry: TYPE • RECORD [
msgKey: MsgKey,
msg: XString.ReaderBody,
translation Note: LONG STRING +- NIL,
translatable: BOOLEAN +- TRUE,
type: MsgType +- userMsg.
id: MsgID];

MsgKey: TYPE=- CARDINAL;

MsgType: TYPE. {userMsg, template, argList, menultem, pSheetltem, commandltem,
errorMsg. infoMsg, promptltem, windowMenuCommand, others};

MsgID: TYPE=- CARDINAL;

Messages describes a group of message entries and is a parameter to RegisterMessages. A
MsgEntry contains information about each message. The msgKey field is the Handle­
relative key of the message. The msg field contains the text of the message itself, while all
other fields are to help in the translation process. The tranlationNote field provides notes
to the translator. The translatabl~ boolean indicates whether the message should be
translated. The MsgType enumerated provides a hint of how the message will be used. The
MsglD is a unique identifier for the message. For a given group of messages, each message
should have a unique value for its MsgiD. The MsglD must remain unique for all time,
across all releases. This ID allows the translators to determine when a new message has
been added or an old message deleted.

66-3

66

·66-4

XMessage

AllocateMessages: PROCEDURE [
applicationName: LONG STRING, maxMsglndex: CARDINAL,
clientData: CJientData, proc: DestroyMsgsProc]
RETURNS [h: Handle];

ClientData: TYPE. LONG POINTER;

DestroyMsgsProc: TYPE. PROCEDURE [clientData: CJientData];

AliocateMessages allows a client to define a domain of messages for subsequent registry
and access. All access to messages will be relative to the returned handle. The
application Name parameter names the message domain to the message implementation.
maxMsglndex defmes the maximum number of messages that are registered for this
domain. The ClientData and DestroyMsgsProc parameters are provided to notify the client
when the DestroyMessages operation is invoked.

RegisterMessages: PROCEDURE [
h: Handle, messages: Messages, stringBodiesAreReal: BOOLEAN];

RegisterMessages allows a client to initialize a domain of messages. It uses the
stringBodiesAreReal boolean to decide whether to copy the byte sequences of the messages.
If stringBodiesAreReal is FALSE, it copies the reader bQdy and bytes of the messages field in
. each entry of messages. If it is TRUE, RegisterMessages copies the reader body of the entry
and relies on the bytes to not be deallocated until after a call to DestroyMessages.

68.2.6 Obtaining Messages from a File

MessagesFromFile: PROCEDURE [
fileName: LONG STRING, clientData: ClientData, proc: DestroyMsgsProc]
RETURNS [msgDomains: MsgDomains];

MessagesFromReference: PROCEDURE [
file: NSFUe.Reference, clientData: ClientData, proc: DestroyMsgsProc]
RETURNS [msgOomains: MsgOomains];

MsgOomains: TYPE. LONG DESCRIPTOR FOR ARRAY OF MsgDomain;

MsgOomain: TYPE. RECORD [
appl ication Name: XString.ReaderBody,
handle: Handle];

MessagesFromFile and MessagesFromReference return a sequence of message domains
that are name, message handle pairs. MessagesFromFile gets the messages from the file
named fileName in the system folder, while MessagesFromReference gets the messages
from the tile whose reference is file. Storage for msgDomains must by freed by calling
FreeMsgOomainStorage. The ClientOata and DestroyMsgsProc parameters are provided
to notify the application when the DestroyMessages operation is invoked.

View Point Programmer's Manual 66

FreeMsgDomai nsStorage: PROCEDURE [msgDomai ns: MsgDomai ns1;

66.2.7 Destroying Message Handles

DestroyMessages: PROCEDURE [h: Handle];

DestroyMessages invokes the DestroyMsgsProc associated with the handle and then frees
any resources that are currently associated with h. The handle should no longer be used.

"66.2.6 Error

Error: ERROR [type: ErrorType];

ErrorType: TYPE :II {

arrayMismatch, invalidArglndex, invalidMsgKey, invalidMsgKeyList,
invalidStri ngArray, i nval idStri ng, notEnoughArgume'nts};

66.3 Usage/Examples

66.3.1 Structuring Applications to Use Messages

Applications that use messages have at least two parts. The first part is the code for the
application's functions. It is produced by programming tools such as the compiler and
binder with Mesa source pro~ams as input. The second part consists of the messages that
provide text to the user. :The application defines its messages and provides initial
information to the translators of the messages.

Messages that are to be translated must be able to communicate in a precise type-safe way.
Throughout the translation process, it should be possible to verify the message with its
original version.

The cleanest and safest possible interface between application developers (message
defmers) and translators is to deliver a bed that contains all the messages used by the
application as well as a well-defined mechanism for communicating them to some client.
The RegisterMessages procedure provides the mechanism; all else that is needed is to
avoid other distractions (like importing or exporting of application private facilities). To
that end, the following conventions are proposed for modules/configurations that define
and register messages:

1. Isolate message defmition code into modules whose sole function is to define and
register the message text for the application.

2. Allocate the Handle and register all messages via the modules' configuration's START

code.

3. If multiple modules are required to define the application messages, provide a
configuration that starts all modules in the the correct order and provides the correct
IMPORTS and EXPORTS.

4. XMessage definition modules and configurations must not depend upon application­
specific facilities. The IMPORTS list of any message-defining module should be restricted

66-5

66 XMessage

to procedures defined in the XMessage interface (such as RegisterMessages, ;~
AliocateMessages,and so forth).

As a consequence of 2 and 4 above, applications must provide a mechanism for
communicating the Handle between suppliers of messages (callers of ResisterMessages)
and users of messages (callers of GetMsg, and and so forth) . A simple solution is to have
the message-defInition module export a procedure that returns the handle.

68.3.2 Example of Message Usage

The following message example has three segments. The first is an interface that defines
the messages for the example. The second is the module that provides the raw material for
the messages. This module is used to supply the message text while running the
application while it is being developed. It is used to supply the raw data to the message
translators. The third part is the module that uses the messages.

-- ExampleMessage.mesa

DIRECTORY
XMessage USING [Handle];

ExampleMessage: DEfiNITIONS :I BEGIN

Keys: TYPE • MACHINE DEPENDENT {
delete(O), confirmDelete(1), deleteDone(3) ••• };

GetHandle: PROCEDURE RETURNs(h: XMessage.Handle];

END ... - of ExampleMessage:

-- ExampleMessagelmpl.mesa

DIRECTORY ...

ExampleMessagelmpl: PROGRAM
IMPORTS ...
EXPORTS ExampleMessage • BEGIN

h: XMessage.Handle;

GetHandle: PUBUC PROCEDURE RETURNS [XMessage.Handle] • {RETURN(h]};

DeleteMessages: XMessage.DestroyMsgsProc • {};

Init: PROCEDURE ::I {

msgArray: ARRAY Keys OF XMessage.MsgEntry +- [
delete: (

msgKey: Keys.delete.ORD.
msg: XString.FromSTRING["Delete"l),
translationNote: "Delete command name"l.
translatable: TRUE,
type: menultem.
id: 0],

View Point Programmer's Manual

confirmDelete: [
msgKey: Keys.confirmDelete.ORO,
msg: XString.FromSTRING{"Are you sure you want to delete that item"l},
translatable: TRUE.
type: userMsg,
id: 1].

deleteDone: [
msgKey: Keys.deleteDone.ORD,
msg: xString.FromSTRING["The item <1> has been deleted"l).
translatable: TRUE.
type: template,
id: 3]];

h +- xMessage.AllocateMessages(
"Example"L. Keys.LAST.ORO.SUCC. NIL. DeleteMessages];

xMessage.RegisterMessages(h, LOOPHOLE [LONG[OESCRIPTOR(msgArray]]]. FALSE]};

Init(];

END. -- of ExampleMessagelmpl

-- Examplelmpl.mesa

DIRECTORY ...

Examplelmpl: PROGRAM
IMPORTS XMessage, ExampleMessage • BEGIN

h: XMessage.Handle • ExampleMessage.GetHandle(]

DeleteOne: PROCEDURE [••• } • {
r: XString.Reader • XMessage.Get(h, ExampleMessage.Keys.confirmDelete.ORO];

};

}. -- of Examplelmpl

66

66-7

66 XMessage

66.4 Interface Item Index :~

Item Page

AliocateMessages: PROCEDURE 4
ClientData: TYPE 4
Compose: PROCEDURE 2
ComposeOne: PROCEDURE 3
ComposeOneToFormatHandle:PRocEDURE 3
ComposeToFormatHandle: PROCEDURE 2
Decompose: PROCEDURE 3
Destroy Messages :PROCEDURE 5
DestroyMsgsProc: TYPE 4
Error: ERROR 5
ErrorType: TYPE 5
FreeMsgDomainsStorage :PROCEDURE 5
Get: PROCEDURE 2
GetList: PROCEDURE 2
Handle: TYPE 2
Messages: TYPE 3
MessagesFromFile: PROCEDURE 4
MessagesFromReference: PROCEDURE 4
MsgDomain:TYPE 4
MsgDomains:TYPE 4

~, MsgEntry: TYPE 3
MsgID: TYPE 3
MsgKey: TYPE 3
MsgKeyList: TYPE 2
MsgType: TYPE 3
Object: TYPE 2
RegisterMessages: PROCEDURE 4
StringArray: TYPE 2

66-8

67

XString

67'.1 Overview

The XString interface is part of a string package that supports the Xerox Character
Standard. It provides the basic data structures for represen1;ing encoded sequences of
characters and some operations on these data structures.

67.1.1 Character Standard

The Xerox Character Code Standard defines a large number· of characters, encompassing
not only familiar ASCII characters but Japanese and Chinese Kanji characters and other
characters to provide a comprehensive character set able to handle international
information-processing requirements. Because of the large number of characters, the data
structures in XString are more complicated than a LONG STRING's simple array of ASCII

characters, but the operations provided are more comprehensiv,!.

Characters are 16-bit quantities that are composed of two 8-bit quantities: their character
set and character code within a character set. The Character Standard defines how
characters may be encoded, either as runs of 8-bit character codes of the character set or as
16-bit characters where the character set and character code are in consecutive bytes. See
the XChar chapter for information and operations on characters.

67.1.2 Data Structures

Three main data structures are defined by XString: Context, RE!aderBody and WriterBody.
Contexts provide information for determining how characters ;are encoded. Reader bodies
and readers describe a sequence of read only characters. Writer bodies and writers describe
a sequence of writeable characters.

A Context contains information about how characters are encoded in the byte sequence.
The suffixSize field describes whether the first byte is encoded as an 8-bit character or a 16-
bit character, the prefix field contains the character set of the first character if the
encoding is 8-bit characters, and the homogeneous field is TRUE only if there are no
character set shifts in the sequence of characters.

A ReaderBody describes some readonly characters that are stored as a sequence of bytes.
The reader body contai~s a pointer to the allocation unit conta.ining the bytes, bytes, the

67-1

67 XString

offset from the pointer to the first byte, offset, the offset from the pointer of the byte after ~\
the last byte in the byte sequence, limit, and the context information describing how the
first character is encoded, context. Most clients should not have to access fields of a reader
body. Many operations take a Reader, a pointer to a reader body, as a parameter to reduce
the number of words of parameters.

A WriterBody describes some characters that may be edited. In addition to containing all
the information in a reader body, it also contains an offset from the pointer to the first
character not in the allocation unit, maxLimit, the context that describes how the last
character is encoded, endContext, and the zone that contains the allocation unit, zone.
Writer bodies are typically passed by reference.

The designers of XString felt there is a fundamental difference between a string that will
only be read and one that will be constructed. They felt that the major usage of strings was
to describe and examine existing strings, not construct new ones. This difference is
reflected in the two types, readers and writers.

67.1.3 Operations

There are a wide range of operations on both readers and writers. Some operations that
return simple information about readers, such as ByteLength and Empty. Others access
characters in a reader, such as Fi rst, NthCharacter, and Lop. The operation
ReaderFromWriter can be used to convert a writer to a reader.

There are operations that create reader bodies from other data structures, such as ~
FromSTRING. Similarily, there are operations that create writer bodies from other
structures, such as WriterBodyFromSTRING.

Routines allocate and deallocate byte sequences of both readers and writers.
CopyToNewReaderBody makes a copy of the characters of a reader. NewWriterBody will
create an empty writer body that can hold a given number of bytes.
CopyToNewWriterBody is similar to NewWriterBody but initializes the writer with a
gi ven reader.

Other operations compare the characters in readers: Equal checks for equality and
Compare does a multinational lexical comparison. There are operations for scanning
readers for specific characters. The operation ReaderToNumber converts a reader to a
numeric value. There are Courier description routines for both readers and reader bodies.
There is also support for backward-accessing characters in a reader.

Routines are provided for appending to writers and editing writers. AppendReader
appends the characters of a reader to a writer. RepiacePiece provides a general editing
operation for writers. Only the basic appending primitives are provided in XString. The
XFormat interface can be used to append converted values, such as numbers, to writers.

67.2 Interface Items

67-2

67.2.1 Contexts

Context: TYPE =- MACHINE DEPENDENT RECORD [

suffixSize(O:O .. 6): [1 .. 2],

View Point Programmer's Manual

homogeneous(0:7 .. 7): BOOLEAN,

prefix(0:8 •• 15): Byte1;

67

A Context contains information about how characters are encoded in the byte sequence.
The suflixSize field describes whether the rll"st byte is encoded as an a-bit character or a
16-bit character, the prefix field contains the character set of'the rll"st character if the
encoding is 8-bit characters, and the homogeneous field is 1rRUE only if there are no
character set shifts in the sequence of characters.

The Character Set Standard describes how characters may be encoded as a sequence of
bytes. They call the 8-bit character encoding stringlet8 and call the IS-bit character
encoding stringietlS. In 8-bit character encoding, consecutive bytes contain character
codes of characters in the same character set. In IS-bit character encoding, the character
set and character code are contained in consecutive bytes. The suflixSize field describes
how the characters- are encoded; it is I for 8-bit character encoding and 2 for I6-bit
character encoding.

The prefix field contains the character set of the first charactE!r if it is an a-bit encoded
character. Subsequent characters in the string use this same prefix unless a character set
or encoding transition is encountered. It is not used for IS-bit encoded characters.

The homogeneous field is an accelerator. If it is TRUE, som~ operations may be faster. It is
important to set it TRUE only if the byte sequence contains no character set shifts. It is
always safe to set it to FALSE.

emptyContext: Context. [suffixSize: 1, homogeneous: TRUE, prefix: 0];

vaniliaContext: Context. [suflixSize: 1, homogeneous: FALSE, prefix: 0];

unknownContext: Context. [suffixSize: 1, homogeneous: FALSIE, prefix: 377B];

emptyContext, vaniliaContext, and unknownContext are three Context constants. An
empty writer should have emptyContext as its context and endContext. vaniliaContext is
the default context. unknownContext signifies that the context is unknown. It is generally
used only for an end context, a context that describes the last character of a sequence.

67.2.2 Readers and ReaderBodies

Reader: TYPE • LONG POINTER TO ReaderBody;

ReaderBody: TYPE • PRIVATE MACHINE DEPENDENT RECORD [

context(O): Context,
Iimit(1): CARDINAL,

offset(2): CARDINAL,

bytes(3): ReadOnlyBytes];

ReadOnlyBytes: TYPE. LONG POINTER TO READONLY ByteSequence;

ByteSequence: TYPE. RECORD (

PACKED SEQUENCE COMPUTED CARDINAL OF Byte];

67-3

67

67-4

XString

Byte: TYPE. Environment.Byte;

A ReaderBody describes some readonly characters that are stored as a sequence of bytes.
The reader body contains a pointer to the allocation unit containing the bytes, bytes, the
offset from the pointer to the rU"St byte, offset, the offset from the pointer of the byte after
the last byte in the byte sequence, I i mit, and the context information describing how the
first character is encoded, context. Most clients should not have to access fields of a reader
body. Reader bodies can be thought of as fat pointers. Many operations take a Reader, a
pointer to a reader bodYf as a parameter to reduce the number of words of parameters.

A ReaderBody is like a substring descriptor. The offset and limit fields can be changed to
describe a subsequence of bytes. Routines such as Lop and Sca"ForCharacter take
advantage of this substring-like behavior.

nullReaderBody: ReaderBody • [
limit: 0, offset: 0, bytes: NIL, context: vanillaContext];

nuliReaderBody defines a null value for a reader body. To test for an empty reader body, it
should not be compared to nullReaderBody. The operation Empty should be used instead.

67.2.3 Writers and Writer Bodies

Writer: TYPE • LONG POINTER TO WriterBody;

WriterBody: TYPE· •. PRIVATE MACHINE DEPENDENT ~ECORD [
context(O): Context, .
limit(1): CARDINAL,

offset(2): CARDINAL,

bytes(3): Bytes,
maxLimit(S): CARDINAL,

endContext(6): Context,
zone(7): UNCOUNTED ZONE];

Bytes: TYPE • LONG POINTER TO ByteSequence;

Writers describe a sequence of bytes that may be changed. Writers are bit-wise compatible
with a reader and contain additional information for storage management and appending
characters. The maxLimit field describes the limits of the allocation unit, the zone field is
the zone used for allocating and freeing the bytes, and the endContext field is an
accelerator for operations that append characters.

By including a zone in the writer body, operations that add characters to the writer are
able to allocate a larger byte sequence, copy the old bytes, and update the byte pointer in
the writer body without invalidating the writer variable that the caller owns.

nullWriterBody: WriterBody • [
limit: 0, offset: 0, bytes: NIL, context: vanillaContext, maxLimit: 0,
endContext: vani IlaContext. zone: NIL];

nullWriterBody defines a null value for a writer body.

ViewPoint Programmer's Manual 67

67.2.4 Simple Reader Operations

ByteLength: PROCEDURE [r: Reader] RETURNS [CARDINAL] • INUNE ••• ;

Byte Length returns the number of bytes in r. If r is NIL, it returns zero.

CharacterLength: PROCEDURE (r: Reader) RETURNS [CARDINAL];

CharacterLength returns the number of logical characters in r. Floating accent characters
are treated as separate logical characters. If r is NIL it returns zero. If r is a valid reader,
then ByteLength(r) • 0 iff CharacterLength(r] • O. If r contains an invalid encoding,
CharacterLength will raise the error InvalidEncoding.

Dereference: PROCEDURE [r: Reader] RETURNS [rb: ReaderBody];

Dereference returns nuliReaderBody if r is NIL and r i otherwise.

Empty: PROCEDURE [r: Reader] RETURNS [BOOLEAN) • INLINE ••• ;

Empty returns TRUE ifr is NIL or ByteLength(r] • O.

Readerlnfo: PROCEDURE [r: Reader] RETURNS [context: Conte~. startsWith377B: BOOLEAN] ;

Readerlnfo returns the context of the reader and whether the first byte of the reader is
377B, the character set shift code.

67.2.5 Accessing Characters

Because of the large number of characters in the character set standard and the way they
are encoded, it is normally not possible to access characters of a reader by indexing.
Instead, a number of operations are provided to access characters.

Character: TYPE. xChar.Character;

First: PROCEDURE (r: Reader] RETURNS [c: Character];

First returns the rust logical character. It is equivalent to NthCharacter[s, 0] but is usually
more efficient. If Empty(r) then XChar.not is returned. It may raise the InvalidEncoding
error.

NthCharacter: PROCEDURE [r: Reader. n: CARDINAL] RETURNS [c: Character];

NthCharacter returns the nth logical character. Floating accent characters are treated as
separate logical characters. First should be used if n = O. If CharacterLength(r] < • n then
XChar.not is returned. It may raise the InvalidEncoding error.

Lop: PROCEDURE [r: Reader] RETURNS [e: Character];

Lop removes the first character from the front of a reader and returns it. If r is empty it
returns XChar.not. If r contains one logical character, Lop sets r to be empty and returns

67-5

67

67-6

XString

the first logical character. Otherwise, Lop modifies r to point to the second logical character ~,
and returns the first. It may raise the InvalidEncoding error.

Map: PROCEDURE [r: Reader, proc: MapCharProc] RETURNS [c: Character];

MapCharProc: TYPE. PROC [c: Character] RETURNS [stop: BOOLEAN];

Map enumerates the reader, calling proc once for each character in r. If proc returns TRUE
it returns that character; otherwise it returns XChar.not. It is equivalent to:

FOR i: CARDINAL IN [O •• CharacterLength[r]) DO
IF proc[c NthCharacter(r, i)) THEN RETURN[C]; ENDLOOP

RETURN(XChar.not] ;

Map may raise the InvalidEncoding error.

67.2.6 Errors

Error: ERROR [code: ErrorCode] ;

ErrorCode: TYPE. {
invalidOperation, multipleCharSets, tooManyBytes, invalidParameter};

invalidOperation an invalid operation has been' attempted.

multipleCharSets InitBreakTable has been called with a reader· that contains multiple
character sets.

tooManyBytes a LONG STRING has been passed to FromSTRING or
WriterBodyFromSTRING and the string contains too many bytes.
These operations use the string as the byte pointer so the offset is non­
zero, reducing the number of bytes it may hold. This is also raised by
CopyReader for a similar reason.

invalidParameter. The term invalidParameter means an operation has been invoked
with an invalid parameter.

InvalidEncoding: ERROR [invalidReader: Reader, firstBadByteOffset: CARDINAL] ;

The error InvalidEncoding is raised by operations when they detect a sequence of bytes that
is not a valid character encoding. While two character set shifts with no intervening
character is an invalid encoding according to the character standard, only ValidateReader
will raise InvalidEncoding if it detects that case. The other operations will ignore the first
character set shift. Invalid encodings include ending with a character set shift or partial
character set shift and having a non-zero byte following two 377B bytes.

67.2.7 Conversion to Readers

ReaderFromWriter: PROCEDURE [w: Writer] RETURNS [Reader] • INLINE ... ;

ReaderFromWriter provides a conversion from the type Writer to the type Reader. This
operation takes advantage of the fact that the first part of writer bodies are bit-wise

~

View Point Programmer's Man ual 67

compatible with reader bodies, and hence this operation simply loopholes the writer into
the reader.

FromBlock: PROCEDURE [
block: Environment.Block. context: Context ... vaniliaContext] RETURNS [ReaderBody];

FromBlock returns a reader body that describes the block.

FromChar: PROCEDURE [char: LONG POINTER TO Character) RETURNS [ReaderBody];

FromChar returns a reader body that describes the character. The pointer to the character
must remain valid for the lifetime of the reader body.

FromNSString: PROCEDURE [s: NSString.String, homogeneous: BOOLEAN +- FALse]
RETURNS [ReaderBody]; .

FromNSString returns a reader body that describes the characters in the NSString. The
context of the reader body will be [suffixSize: 1. homogeneous: homogeneous, prefix: 0].

FromSTRING: PROCEDURE [s: LONG STRING. homogeneous: BOOlEAN +- FALse]
RETURNS [ReaderBody];

FromSTRING returns a reader body that describes the characters in the LONG STRING. The
context of the reader body will be [suffixSize: 1. homogeneous: homogeneous. prefix: 0].
This operation may raise Error[tooManyBytes] if the string contains more than
CARDINALLAST· StringBody.slZE "" Environment.bytesPerWord bytes ..

67.2.8 Reader Allocation

CopyReader: PROCEDURE [r: Reader, Z: UNCOUNTED ZONE] RETURNS [new: Reader];

CopyReader makes a copy of the reader body and characters of r, allocating from z as a
single allocation unit, the byte sequence for the characters, and the reader body. Note that
this operation returns a reader while all other operations in this interface that create a
reader or reader body return the reader body. The reason is to avoid a double allocation
problem in which the byte sequence and reader body are allocated from two separate nodes.
FreeReaderBytes can be used to free the new reader and the associated bytes. Note: This
operation may raise Error[tooManyBytes] if the reader contains more than CARDINAL.LAST -
ReaderBody.slZE "" Environment.bytesPerWord bytes. Errors in allocating from the zone are
allowed to propagate.

CopyToNewReaderBody: PROCEDURE [r: Reader, Z: UNCOUNTED ZONE] RETURNS [ReaderBody];

CopyToNewReaderBody allocates a copy of the bytes of r using z and returns a reader body
describing them. Ifr is NIL it returns nuliReaderBody. Errors in allocating from the zone are
allowed to propagate.

FreeReaderBytes: PROCEDURE [r: Reader, Z: UNCOUNTED ZONE];

FreeReaderBytes may be used to free the storage allocated by CopyReader and
CopyToNewReaderBody. If r is non-NIL and Z is non-NIL, it frees r.bytes to the zone. When
the reader has been obtained from CopyReader, FreeReaderBytes will free the single

67-7

67

67-8

XString

allocation unit that contains both the reader body and byte sequence. When the reader has ~
been obtair:ted from CopyToNewReaderBody, FreeReaderBytes will free the allocation unit
that contains the byte sequence but will not free the reader body. Errors in freeing to the
zone are allowed to propagate.

87.2.9 Simple Writer Operations

ClearWriter: PROCEDURE [w: Writer];

ClearWriter makes w empty. It is analogous to the LONG STRING statement s.length o.

Writerlnfo: PROCEDURE [w: Writer]
RETURNS [unused: CARDINAL, endContext: Context, zone: UNCOUNTED ZONE];

Writerlnfo returns the number of allocated but unused bytes of a writer as well as its
endContext and its zone.

67.2.10 Conversion to Writers

WriterBodyFromBlock: PROCEDURE [block: Environment.Block. inUse: CARDINAL 0]
RETURNS [WriterBody];

WriterBodyFromBlock returns a writer body that describes the block. The writer body's
offset and maxLimit fields are set from the block's startlndex and stoplndexPlusOne fields, ,~
respectiyely. The inUse parameter is used to set the limit field of the writer body. If the
block's pointer is NIL or inUse is larger than the number of bytes in the block,
Error[invalidParameter] is raised.

WriterBodyFromNSString: PROCEDURE [
s: NSString.String, homogeneous: BOOLEAN +- FALSE] RETURNS [WriterBody];

WriterBodyFromNSString returns a writer body that describes the characters in the
NSString. Its context is [suffixSize: 1, homogeneous: homogeneous, prefix: 0].

WriterBodyFromSTRING: PROCEDURE [
s: LONG STRING, homogeneous: BOOleAN FALSE] RETURNS [WriterBody];

WriterBodyFromSTRI NG returns a writer body that describes the characters in the LONG
STRING. Its context is [suffixSize: 1. homogeneous: homogeneous, prefix: 0]. This
operation may raise Error[tooManyBytes] if the string contains more than CARDINAL.LAST·
StringBody.slZE * Environment.bytesPerWord bytes.

67 .2.11 Writer Allocation

NewWriterBody: PROCEDURE [maxLength: CARDINAL, z: UNCOUNTED ZONE]
RETURNS [WriterBody];

NewWriterBody allocates a byte sequence that has room for max Length bytes using z and ~
returns an empty writer body that contains the bytes. Errors in allocating
ByteSequence[maxLength] from the zone are allowed to propagate.

View Point Programmer's Manual

CopyToNewWriterBody: PROCEDURE [
r: Reader, Z: UNCOUNTED ZONE, endContext: Context ~ unknownContext,
extra: CARDINAL ~ 0] RETURNS [w: WriterBody];

67

CopyToNewWriterBody allocates a byte sequence that has room for ByteLength[r] + extra
bytes using z, copies the bytes of r into the newly allocated byte sequence, and returns a
writer body that contains the bytes. The end context of the writer body is endContext.
Errors in allocating from the zone are allowed to propagate.

E~pandWriter: PROCEDURE [w: Writer, extra: CARDINAL];

ExpandWriter assures that at least extra bytes are available in the writer's bytes. If
w.zone is NIL, then Error[invalidOperation] is raised. Errors in allocating a new byte
sequence if required are allowed to propagate.

FreeWriterBytes: PROCEDURE [w: Writer];

FreeWriterBytes may be used to free the byte sequence of a writer as long as it was
allocated from the writer's zone. It may be used to free the byte sequence of writers created
by CopyToNewWriterBody and NewWriterBody. If w is non-NIL and w.zone is non-NIL, it
frees w.bytes to the zone. Note that it does not free the writer body. Errors in freeing to the
writer's zone are allowed to propagate.

67.2.12 Comparison of Readers

Equal: PROCEDURE [r1, r2: Reader] RETURNS [aOOLEAN};

Equal returns TRUE if and only if the number of logical characters is equal and the strings
match when compared character by character, i.e., effectively CharacterLength[r1] =­
CharacterLength[r2] and NthCharacter[r1, i] • NthCharacter[r2, i] for i in the range [0 ..
CharacterLength[r1]). It may raise the InvalidEncoding error.

Equivalent: PROCEDURE [r1, r2: Reader] RETURNS [aOOLEAN];

Equivalent returns TRUE if and only if the number of logical characters is equal and the
strings match when compared character by character, ignoring case. It is equivalent to:

IF CharacterLength[r1] IF CharacterLength[r2] THEN RETURN[FALSE);
FOR i: CARDINAL IN [O .. CharacterLength[r1]) 00

IF Decase[NthCharacter[r1, in IF Decase[NthCharacter[r2, in THEN RETURN[FALSE);
ENDLOOP;

RETURN[TRUE J.

Equivalent may raise the InvalidEncoding error.

SortOrder: TYPE • MACHINE DEPENDENT {
standard(O), spanish(1), swedish(2), danish(3), firstFree(4), nult(377B)};

SortOrder is a parameter to Compare and CompareStringsAndStems that specifies the sort
order. danish, spanish, and swedish differ from standard only in some characters in
character set zero.

67-9

67 XString

Compare: PROCEDURE [
r1, r2: Reader, ignoreCase: BOOLEAN +-TRUE, sortOrder: SortOrder +- standard]
RETURNS [Relation];

CompareStringsAndStems: PROCEDURE [
r1, r2: Reader" ignoreCase: BOOLEAN +-TRUE" sortOrder: SortOrder +- standard)
RETURNS [relation: Relation, equalStems: BOOLEAN];

Relation: TYPE. {less" equal" greater};

Compare and CompareStringsAndStems compare two readers. They return a relation
indicating the sorted relationship of their arguments with the case of characters optionally
ignored during the comparison. In CompareStringsAndStems, equalStems will be TRUE if
both readers are equal up to the length of the shorter. They may raise the InvalidEncoding
error.

67.2.13 Numeric Conversion of Readers

67-10

ReaderToNumber: PROCEDURE [
r: Reader, radix: CARDINAL +-10, signed: BOOLEAN +-FALSE] RETURNS [LONG INTEGER];

ReaderToNumber cOl\verts the characters in the reader to a number. If radix is other than
8, 10, or 16, XString.Error[invalidOperation] is raised. The syntax for a number is:

{'-j' +} {baseNumber} {'b j'B j'd j'D j 'h j 'H} {scaleFactor}

where {} indicates an optional part and "I" indicates a choice, and baseNumber and
scaleFactor are sequences of digits. The value returned is ± baseNumber * radix **
scaleFactor. The radix depends on the contexts of r and radix. If r ends with a 'B or 'b, radix
is 8; if it ends with a 'D or 'd, radix is 10, if it ends with a 'h or 'H, radix is 16; otherwise it is
radix. The number scaleFactor is always expressed in radix 10. If r does not have valid
form, or r does not contain any characters, or radix is 8 and non-octal digits are used, or
signed is FALSE and the reader contains a minus sign, the signallnvalidNumber is raised. If
it is resumed, the operation returns zero. If signed is FALSE and the number would overflow
232_1 or signed is TRUE and the number is not in the range [-231 .. 231), the signal Overflow
is raised. If it is resumed, the operation returns zero. ReaderToNumber may raise the
InvalidEncoding error.

ReaderToNumberX: PROCEDURE [
r: Reader, radix: CARDINAL +-10, signed: BOOLEAN +-FALSE,
numberParms: XDigits.NumberParms +- XDigits.defaultNumberParms]
RETURNS [LONG INTEGER];

ReaderToNumberX is the same as ReaderTONumber except that the numberParms
parameter is added. If radix is other than 10, numberParms.representation and
numberParms.thousandsSep will be ignored. See the XDigits chapter for more details.
Fine Point: This procedure is currently exported through XStringX2.

InvalidNumber: SIGNAL;

ViewPoint Programmer's Manual 67

The signallnvalidNumber is raised by the string to number operations when the string is
the wrong syntax for a number. Resuming this signal results in the operation returning
zero.

Overflow: SIGNAL;

The signal Overflow is raised by the string to number operations when the string describes
a number that is too large. Resuming this signal results in the operation returning zero.

67.2.14 Character Scanning

ScanForCharacter: PROCEDURE [r: Reader, char: Character, option: BreakCharOption]
RETURNS [breakChar: Character, front: ReaderBody]

BreakCharOption: TYPE • {ignore, appendToFront" leaveOnRest};

ScanForCharacter scans the string for the first instance of char. If char is found in r, the
characters before it will be described by front and the characters after it will be described
by" r. char will be on the end of front, discarded, or left on the front of r f if option is
appendToFront, ignore. or leaveOnRest, respectively. char will be returned as breakChar.
If it does not encounter char in r, then front will be equal to r f as it was when the
procedure was invoked and r f will be updated to be 0 characters lortg. XChar.not will be
returned as breakChar. ScanForCharacter may raise the InvalidEncoding error.

Scan: PROCEDURE [r: Reader, break: BreakTable, option: BreakCharOption]
RETURNS [breakChar: Character, front: ReaderBody];

BreakTable: TYPE. LONG POINTER TO BreakTableObject;

BreakTableObject: TYPE=- RECORD
otherSets: StopOrNot +- stop.
set:Environment.Byte +- 0,
codes: PACKED ARRAY [0 .. 256) OF StopOrNot +- ALL[not]];

StopOrNot: TYPE • {stop, not} +- not;

Scan is like ScanForCharacter except that it can scan for any number of character codes in a
particular character set. The BreakTable defines which character codes of a character set
are scanned for. Scanning is searching for the first character, c, such that

(XChar.Set[c] • break.set AND break.codes(XChar.Code[c]] • stop) OR
(XChar.Set[c) #: break.set AND break.otherSets • stop).

The disposition of the character that terminates scanning depends on option as in
ScanForCharacter. If the character terminated scanning because it was in a different
character set, XChar.not will be returned as· breakChar. Scan may raise the InvalidEncoding
error.

InitBreakTable: PROCEDURE [
r: Reader, stopOrNot: StopOrNot, otherSets: StopOrNot]
RETURNS [break: BreakTableObject];

67-11

67 XString

InitBreakTabfe initializes a BreakTabfeObject to stop (or not stop) on the characters of r
depending on stopOrNot. Ifr has multiple character sets, Error[multipleCharSets] is raised. ~
InitBreakTable may raise the InvalidEncoding error.

67.2.15 Other Reader Operations

ComputeEndContext: PROCEDURE [r: Reader] RETURNS [c: Context);

ComputeEndContext returns the context of the last character in r. If Characterlength(r]
• 0 then emptyContext is returned. ComputeEndContext may raise the InvalidEncoding
error.

Descri beReader: Courier .Descri ption;

OescribeReader is a Courier description routine. It is provided for clients that need to
serialize and deserialize readers. .

DescribeReaderBody: Courier.Description;

DescribeReaderBody is a Courier description routine. It is provided for clients that need to
serialize and deserialize readers bodies.

Run: PROCEDURE [r: Reader] RETURNS [run: ReaderBody];

Run is like Lop except that it deals in homogeneous runs of characters instead of single
characterS. It will return a reader body describing the first homogeneous run of rand
update r to remove the run. If Empty[r] it returns nullReaderBody. It may raise the
InvalidEncoding error.

ValidateReader: PROCEDURE [r: Reader];

ValidateReader checks the bytes of r to ensure that it is a valid encoding. If it is not a valid
encoding, the error InvalidEncoding is raised. Possible invalid encodings include ending in
a character set shift with no character or following two successive 377B bytes by a non-zero
byte. null run, two character set shifts with no intervening character, is an invalid
encoding that is checked by ValidateReader. If the offset is greater than the limit or the
byte pointer is NIL and the offset and limit are not equal, then Error(invalidParameter] is
raised.

67.2.16 Appending to Writers

The operations in this section append to writers. When there is insufficient space in the
writer to hold the bytes to be appended, the operations attempt to allocate from the writer's
zone a new byte sequence of sufficient size. If there is insufficient space and the writer's
zone is NIL, the signal InsufficientRoom is raised. If it is resumed, the operations will
append as many characters as will fit. Errors resulting from allocating from the zone are
allowed to propagate. An expanded set of appending operations are available using the
XFormat interface.

67-12

ViewPoint Programmer's Manual

AppendReader:PROCEDURE[
to: Writer, from: Reader, fromEndContext: Context ~ unknownContext,
extra: CARDINAL ~01;

67

AppendReader appends the reader to the writer. If either the reader or writer is NIL, this
operation simply returns. The end context of the writer is updated to fromEndContext if it
is not unknownContext and ComputeEndContext(r] otherwise. The signal
InsufficientRoom may be raised as described above.

AppendChar: PROCEDURE [to: Writer, c: Character, extra: CARDINAL ~ 0];

AppendChar appends the character to the writer. If the writer is NIL, this operation simply
returns. The signallnsufficientRoom may be raised as described above. If it is resumed,
nothing is appended.

AppendStream: PROCEDURE [
to: Writer, from: Stream.Handle, nBytes: CARDINAL,
fromContext: Context 4- unknownContext, extra: CARDINAL 4- 01
RETURNS [bytesTransferred: CARDINAL];

AppendStream appends nBytes from the stream from to the writer. If either the stream or
writer is NIL, this operation simply returns. The end context of the writer is updated to
fromEndContext if it is not unknownContext and ComputeEndContext(r] otherwise. The

. signallnsufficientRoom may be raised as described above. If it is resumed, as much of the
reader as will fit in the space available is appended. AppendStream returns the actual
number of bytes transferred.

Note: There is currently a bug in the interface such that the fromContext parameter is
defaulted to vanillaContext instead of unknownContext.

AppendSTRI NG: PROCEDURE [
to: Writer, from: LONG STRING, homogeneous: BOOLEAN ~ FALSE, extra: CARDINAL 4- 0];

AppendSTRING appends the string to the writer. If either the string or writer is NIL, this
operation simply returns. The end context of the writer is updated to vaniliaContext if
homogeneous is TRUE, otherwise its value is computed from the parameter from. The
signallnsufficientRoom may be raised as described above.

InsufficientRoom: SIGNAL [needsMoreRoom: Writer, amountNeeded: CARDINAL];

The signallnsufficientRoom' is raised by the append operations when the writer does not
have enough room to contain the appendee and the writer's zone is NIL. Resuming this
signal will result in as much as possible being appended.

AppendExtensionlfNeeded: PROCEDURE [to: Writer, extension: Reader]
RETURNS [didAppend: BOOLEAN1;

AppendExtensionlfNeeded checks to see if there is a period somewhere in the writer other
than the last character. If there is, FALSE is returned. If not, it appends a period if the writer
does not already end in one, then appends extension and returns TRUE. AppendChar and
AppendReader are used to append and they may raise InsufficientRoom.

67-13

67 XString

67.2.17 Editing Writers

Piece: PROCEDURE [r: Reader, firstChar, nChars: CARDINAL]
RETURNS [piece: ReaderBody, endContext: Context];

Piece returns a reader body that describes the firstChar through firstChar + nChars logical
characters of r. piece will describe as many characters of r that are in that range, possibly
none if CharacterLength(r] is less than or equal to firstChar. The context of the last
character of piece is also returned. It may raise the InvalidEncoding error.

ReplacePiece: PROCEDURE [
w: Writer, firstChar, nChars: CARDINAL, r: Reader,
endContext: Context 4- unknownContext];

ReplacePiece is an editing operation for writers. It replaces nChars of w starting at
firstChar with the charac~ers of r. nChars may be zero and r may be empty. If the reader is
not empty, endContext is needed to update the end context of the writer if the piece
replacement is at the end, or to determine if there needs to be a character set shift between
the bytes of r and the (firstChar + nChar)th character of w. If endContext is
unknownContextit will be computed from r. The signallnsufficientRoom may be raised as
de~ribed above if the operation resulted in a net addition of bytes. ReplacePiece may raise
the InvalidEncoding error.

67.2.18 Conversion from Readers

Block: PROCEDURE [r: Reader] RETURNS [block: Environment~Block, context: Context] ;

Block returns both a block that describes the bytes in r as well as the context of r. This
operation may be used by clients that need to examine the bytes directly. Note: The bytes
of the block should not be written. .

NSStringFromReader: PROCEDURE [r: Reader, Z: UNCOUNTED ZONE]
RETURNS [ns: NSString.String] ;

NSStringFromReader creates an NSString.String from a reader. It always copies the bytes of
the reader into a new allocation unit allocated from the zone. The resulting string should
be deallocated using operations from the NSString interface. Errors from allocating from
the zone are allowed to propagate.

67.2.19 Reverse Character Operations

ReverseMap: PROCEDURE [r: Reader, proc: MapCharProc] RETURNS [c: Character];

ReverseMap is similar to Map, except it enumerates the characters in reverse order. It is
less efficient than Map because encoding characters makes backward scanning difficult. It
may raise the InvalidEncoding error.

ReverseLop: PROCEDURE [
r: Reader, endContext: LONG POINTER TO Context,

67-14

ViewPoint Programmer's Manual

backScan: BackScanClosure +- [NIL. NIL]]
RETURNS [c: Character);

BackScanCJosure: TYPE. RECORD [proc: BackScanProc. env: LONG POINTER);

BackScanProc: TYPE • PROCEDURE [beforePos: CARDINAL, env: LONG POINTER1
RETURNS [pos: CARDINAL, context: Context];

67

Reverselop is similar to lop, except it takes characters off the end of the reader. It is less
efficient than Lop because encoding characters makes backward scanning difficult. If the
reader is empty, it returns XChar.not. If endContext i is not unknownContext, then it must
be correct. It may be changed by a call to Reverselop. If ReverseLop backs up over a
character set shift, it will set endContext i to unknownContext. It may raise the
InvalidEncodingerror.

The BackScanClosure and BackScanProc provide a way for the client to inform ReverseLop
of the context in effect before a character set· shift. If endContext i is unknownContext,
then backScan.proc is called with a byte offset before which it desires a context and
backScan.env. It should return a context for some position before the passed one. as well as
the actual position corresponding to that context. Simple clients of ReverseLop need not
provide a BackScanClosure. It is provided for clients that have information about location
of character set changes within the reader.

67.3 Usage/Examples

67.3.1 Designing Interfaces with Readers

Designing interfaces to use readers is more complicated than LONG STRINGS. The biggest
complication is the two-level allocation scheme involving readers -+ reader bodies -+ bytes.
In most cases, the bytes are relatively static and are relatively easy to deal with. The main
problem is determining whether to use a reader or a reader body. It helps to keep in mind
the following guideline: keep reader bodies to describe the bytes. Save a pointer to a string
by putting the reader body, not the reader, in the data structure. This way, one doesn't
have to worry about who owns the storage for the reader body. Consider the following
interface fragment:

Handle: TYPE • LONG POINTER TO Object;

Object: TYPE. RECORD [
next: Handle,
count: CARDINAL,
name: XString.ReaderBody];

AddAnother: PROCEDURE [name: XString.Reader];

Instead of storing the name in the object as a reader, it is stored as a reader body. A reader
is quickly generated when needed by the expression @h.name.

Another guideline is for a procedure to take a reader and return a reader body. The idea is
that passing readers as parameters reduces the number of words of parameters. Returning
reader bodies allows th~ client to manage the storage for the reader body.

67-15

67 XString

A third guideline is that clients should be able to pass pointers to local reader bodies. If an ~
implementation kept strings passed to it by saving readers, clients would have to allocate
the reader body from permanent storage, not from the local frame. If implementations keep
reader bodies instead of readers, passing @localReaderBody will not result in dangling
pointers. For example, consider the following fictional procedure that renames a file:

RenameFile: PROCEDURE [oldName:xString.Reader) • {
rb: XString.ReaderBody;
rb +- Somelnterface.GetNewNameO;
file 4- Somelnterface.LookupByName(oldName);
Somelnterface.Rename[file: file, newName: @rb1};

The procedure RenameFile takes a reader that it simply passes to another operation. While
taking a reader body is equilvalent, it is more efficient to take a reader, particularily when
strings are just being passed around. The operation GetNewName returns a reader body. If
it returned a reader, it would have to define where the storage for the reader body was kept.
Either it would have to be global, or it would have to be deallocated from a known place
after RenameFile was done with it. It is just simplier to return reader bodies than to deal
with the allocation problems of reader bodies. It is hard enough to make sure ownership of
the bytes is handled correctly. The new name to the Rename operation is a pointer to a
local reader body. Rename should copy the reader body (and the bytes) if it intends to save
the characters.

Warning: Designing interfaces that do not allow passing pointers to local reader bodies
should be avoided.

67.3.2 Using Readers

67-16

One of the simple things to do with strings is to pass string literals. Because there is no
compiler support for XString, it is harder to do. The code fragment below gives an example
of how to pass string literals:

GetUserCmFile: PROCEDURE RETURNS [file: Somelnterface.FileHandle] • {
rb: xstring.ReaderBody +- XString.FromSTRING["User.cm"L];
file 4-Somelnterface.LookupByName(name: @rb]};

Looking at all the characters in a string for something like switch processing is another
common operation:

Options: TYPE. RECORD [debug, verify, start: "BOOLEAN 4- FALSE];

ParseSwitches1: PROCEDURE [r: XString.Reader] RETURNS [options: Options] ::I {

rb: XString.ReaderBody XString.Dereference[r];
c: XString.Character.;
sense: BOOLEAN TRUE;
WHILE (c ~ XString.Lop[@rb]) # XChar.not DO

SELECT C FROM
'd.ORO ::I > {options.debug sense; sense TRUE};
'V.ORO • > {options. verify sense; sense TRUE};
'S.ORD • > {options.start sense; sense TRUE};
'·.ORO • > sense FALSE;
ENOCASE • > sense +- TRUE;

View Point Programmer's Man ual

ENDLOOP;
RETURN};

67

ParseSwitches1 uses Lop to look at each character of r and set the appropriate option.
Because Lop changes the reader body to remove the rust character, ParseSwitches1 uses
Dereference to copy the reader body to a local variable.

The operations Lop, Run, ScanForCharacter, and Scan all update the reader body of their
reader parameter. If the reader body must not be altered, it should be copied as in the
above example.

ParseSwitches2: PROCEDURE [r: XString.Reader) RETURNS [options: Options] • {
sense: BOOLEAN Eo- TRUE;
proc: XString.MapCharProc • {

SELECT C FROM
'd.ORO • > {options.debug Eo- sense; sense Eo- TRUE};
'V.ORO • > {options. verify +- sense; sense Eo- TRUE};
'S.ORO • > {options.start Eo- sense; sense Eo- TRUE};
'·.ORO • > sense Eo- FALSE;
ENDCASE • > sense Eo- TRUE;

RETURN(stOP: FALSE]};
D +-XString.Map(r: r, proc: proc]; .
RETURN};

ParseSwitches2 uses Map to look at each character of r and set the appropriate option.

67.3.3 Simple Parser Example

Below is a simple program that accepts a sequence of characters from a procedure and
parses them into tokens. It collects characters one a a time and appends them to the writer
buffer. If the string of characters is empty, it returns a keyword token of inualid. If the first
character is a digit, it returns a number token, converting the string into the number.
Otherwise it compares the string with the four keywords. If it is not a keyword, it copies the
string from the buffer to a new reader and returns the id token.

-- Example.mesa

DIRECTORY
XString USING [

AppendChar, Character, ClearWriter, Empty, Equal, First.lnvalidNumber,
NewWriterBody , OverFlow, Reader, ReaderBody, ReaderFromWriter,
ReaderToNumber, WriterBody];

Example: PROGRAM IMPORTS XString • {
OPEN XString;

TokenClass: TYPE. {keyword, id, number};
Keyword: TYPE. {begin, end, do, endloop, eof, invalid};
Token: TYPE. RECORD [

SELECT class: TokenClass FROM
keyword. > [keyword: Keyword],
id • > [id: ReaderBody],

67-17

67

67-18

XString

number • > [number: LONG INTEGER],
ENDCASE];

Input: TYPE. PROCEDURE RETURNS [Character];

eof, space: Character •••• ;
keywords: LONG DESCRIPTOR FOR ARRA Y Keyword[begin •• endloop) OF ReaderBody •••. ;
zone: UNCOUNTED ZONE +- ... ;
buffer: WriterBody +- NewWriterBody[maxLength: 40, z: zonel;

Parse: PROCEDURE [input: Input] RETURNS [token: Token] • {
r: Reader +- ReaderFromWriter(@buffer];
c: Character:
ClearWritertbuffer] ;
DO

SELECT (c +- input(]) FROM
space • > EXIT;
eof • > RETURN([keyword(IF Empty(r] THEN invalid ELSE. eo1]]];
ENDCASE • > AppendChar(@buffer, c];

ENDLOOP;
IF Empty(r] THEN RETURN([keyword[invalid)];
IF First(rllN ['O.ORD •• '9.0RD] ~HEN {

token +- [number[ReaderToNumber(r, 10!
InvalidNumber, Overflow. > {token +- [keyword(invalid)); CONTINUE}]]];

RETURN};
SELECT TRUE FROM

} ...

Equal[r, @keywords[begin]] • > token +- [keyword[begin]];
Equal[r, @keywords[end]] • > token +- [keyword[end]];
Equal[r, @keywords[do)] • > token +- [keyword[do]];
Equal[r, @keywords[endloop]] • > token +- [keyword[endloop]];
ENDCASE • >

token +- [id(CopyToNewReaderBody(r: r, z: zone)]];
RETURN};

~,

ViewPoint Programmer's Manual 67

67.4 Index of Interface Items
~

Item Page Item Page

AppendChar: PROCEDURE 13 FromSTRING: PROCEDURE 7
AppendExtensionlfNeeded: PROCEDURE 13 InitBreakTable: PROCEDURE 12
AppendReader: PROCEDURE 13 InsufficientRoom: SIGNAL 13
AppendStream: PROCEDURE 13 InvalidEncoding: ERROR 6
AppendSTRING: PROCEDURE 13 InvalidNumber: SIGNAL 10
BackScanC!osure:TYPE 15 Lop: PROCEDURE 5
BackScanProc:TYPE 15 Map: PROCEDURE 6
Block: PROCEDURE 14 MapCharProc: TYPE 6
BreakCharOption: TYPE 11 NewWriterBody: PROCEDURE 8
BreakTable: TYPE 11 NSStringFromReader: PROCEDURE 14
BreakTableObject: TYPE 11 NthCharacter:PRocEDURE 5
Byte: TYPE 4 nuliReaderBody: ReaderBody 4
ByteLength:PROCEDURE 5 nullWriterBody: WriterBody 4
Bytes: TYPE 4' Overflow: SIGNAL 11
ByteSequence:TYPE 3 Piece: PROCEDURE 14
Character: TYPE 5 Reader: TYPE 3
Characterlength: PROCEDURE ·5 Rea~erBody: TYPE 3
ClearWriter: PROCEDURE 8 ReaderFromWriter: PROCEDURE 6
Compare: PROCEDURE 10 Readerlnfo: PROCEDURE 5
CompareStringsAndStems: PROCEDURE 10 ReaderToNumber: PROCEDURE 10
ComputeEndContext: PROCEDURE 12 ReaderToNumberX: PROCEDURE 10

~ Context: TYPE 2 ReadOnlyBytes: TYPE 3
CopyReader: PROCEDURE 7- Relation: TYPE 10
CopyToNewReaderBody: PROCEDURE 7 ReplacePiece: PROCEDURE 14
CopyToNewWriterBody: PROCEDURE 9 ReverseLop: PROCEDURE 15
Dereference: PROCEDURE 5 ReverseMap: PROCEDURE 14
DescribeReader: Courier.Description 12 Run: PROCEDURE 12
DescribeReaderBody: Courier .Descri ption 12 Scan: PROCEDURE 11
Empty: PROCEDURE 5 ScanForCharacter:PRocEDURE 11
emptyContext: Context 3 SortOrder: TYPE 9
Equal: PROCEDURE 9 StopOrNot: TYPE 11
Equivalent: PROCEDURE 9 unknownContext: Context 3
Error: ERROR 6 ValidateReader: PROCEDURE 12
ErrorCode: TYPE 6 vaniliaContext: Context 3
ExpandWriter: PROCEDURE 9 Writer: TYPE 4
First: PROCEDURE 5 WriterBody: TYPE 4
FreeReaderBytes:PROCEDURE 7 WriterBodyFromBlock: PROCEDURE 8
FreeWriterBytes: PROCEDURE 9 WriterBodyFromNSString: PROCEDURE 8
FromBlock: PROCEDURE 7 WriterBodyFromSTRI NG: PROCEDURE 8
FromChar: PROCEDURE 7 Writerlnfo: PROCEDURE 8
FromNSString: PROCEDURE 7

67-19

67 XString

67-20

68

XTime

. 68.1 Overview

The XTime interface provides functions for acquiring and editing times into strings or
strings into times. It provides the same function as the XDE Time interface but deals with
XString.Readers instead of LONG STRINGS.

68.2 Interface Items

68.2.1 AcquiringTime

Current: PROCEDURE RETURNS [time: System.GreenwichMeanTime];

Current returns the current time.

ParseReader: PROCEDURE [
r: XString.Reader, treatNumbersAs: TreatNumbersAs +- dayMonthYear]
RETURNS [time:system.GreenwichMeanTime, notes: Notes, length: CARDINAL];

ParseWithTemplate: PROCEDURE [r, template: XString.Reader)
RETURNS [time: System.GreenwichMeanTime, notes: Notes, length: CARDINAL);

TreatNumbersAs: TYPE. {dayMonthYear, monthDayYear, yearMonthDay,
yearDayMonth, dayYearMonth, monthYearDay};

The ParseReader procedure parses the reader r and returns a GMT time according to the
Pilot standard. treatNumbersAs indicates how to interpret r. ParseWithTemplate parses r
according to template. template serves as an interpreter for deriving time fields from r (see
§ 68.3). The date syntax is a somewhat less restrictive version of RFC733; full RFC733 is
recognized, plus forms like "month day, year", "mmlddlyy", and variations with Roman
numerals used for the month. The form "year month day" is also accepted if the year is a
full four-digit quantity. Forms with ff_" instead of significant space are also acceptable, as
well as forms in which a delimiter (space or "-") can be elided without confusion. The time
is generally assumed to be in RFC733 format, optionally including a time zone
specification. In addition, am or pm may appear following the time (but preceding the time
zone, if any). notes is interpreted as described below. length indicates the number of

68-1

68

68-2

XTime

characters consumed by the parser (that is, it is the index of the first character of the ,~
argument that was not examined by the parser). This procedure can raise the error
Unintelligible.

Notes: TYPE. {normal, noZone, zoneGuessed, noTime, timeAndZoneGuessed};

Notes is used as one of the return values from the call on ParseReader. normal means the
value returned is unambiguous; noZone means that a time-of-day without a time zone
indication was present. (The local time zone as provided by system.LocalTimeParameters is
assumed.) zoneGuessed is returned instead of noZone if local time parameters are not
available; the time zone is assumed to be Pacific Time (standard or daylight time is
determined by the date). noTime and timeAndZoneGuessed are equivalent to noZone and
zoneGuessed respectively, where the time is assumed to be 00:00:00 (local midnight).

Unintelligible: ERROR [vicinity: CARDINAL];

If ParseReader cannot reasonably interpret its input as a date, Unintelligible is raised;
vicinity gives the approximate index in the input string where the parser gave up.

68.2.2 Editing Time

Append: PROCEDURE [
w: XString.Writer, time: System.GreenwichMeanTime +- defaultTime,
template: XString.Reader +- dateAndTime, Itp: L TP +- useSystem];

Append appends the time in human-readable form to w. template determines which fields
are appended.ltp provides the local time parameters (discussed below).

Format: PROCEDURE [
xfh: XFormat.Handle +- NIL, time: System.GreenwichMeanTime +- defaultTime,
template: XString.Reader +- dateAndTime, Itp: L TP +- useSystem);

Format converts time to a string by calling XTime.Append using template to specify which
template to use. xfh.proc is then called. If time is defaulted, the current time is used.

Pack: PROCEDURE [unpacked: Unpacked, useSystemL TP: BOOLEAN +- TRUE]
RETURNS [time: System.GreenwichMeanTime];

Pack converts unpacked into the Pilot-standard System.GreenwichMeanTime.
useSystemL TP indicates that Pack should use the system's parameters. If the local time
parameters are not available to Pilot, system.LocalTimeParametersUnknown is raised. If
unpacked is invalid, Invalid is raised.

Packed: TYPE. System.GreenwichMeanTime;

Packed is retained for compatability.

Unpack: PROCEDURE [
time: System.GreenwichMeanTime +- defaultTime, Itp: L TP +- useSystem1 ~
RETURNS [unpacked: Unpacked];

Unpack converts time into its unpacked representation. If time is defaulted, the current
time is used. Itp provides local time parameters. If the local time parameters are not

ViewPoint Programmer's Manual 68

available to Pilot, System.LocalTimeParametersUnknown is raised. If time is invalid,
Invalid is raised.

Unpacked: TYPE. RECORO(

year: [0 •• 2104]. month: [0 •• 12), day: [0 •. 31],
hour: [0 •• 24), minute: [0 •• 60), second: [0 .. 60),
weekday: [0 •• 61. dst: BOOLEAN. zone: System.LocaITimeParameters];

Unpacked values record dates by their pieces. The fields are filled by Unpack, described
above, which operates on the time and date as kept internally by Pilot. year = 0
corresponds to 1968. For month, January is numbered 0, 1,and so forth. Days of the month
have their natural assignments. For weekday, Monday is numbered O. dst indicates
Daylight Standard Time. zone indicates time zones.

LTP:TYPE • RECORO(

r: SELECT t: * FROM

useSystem • > [],
useThese • > [Ipt: System.LocalTimeParameters]]

ENOCASE);

LTP passes local time parameters to several procedures. Usually they are defaulted to the
system's parameters.

Invalid: ERROR;

68.2.3 Useful Constants and Variables.

dateAndTi me: XString.Reader;
dateOnly: XString.Reader;
timeOnly: XString.Reader;

These variables are templates that are supplied by XComSoftMessage for use in the
Append operation.

defaultTime: System.GreenwichMeanTime • System.gmtEpoch;

defaultTime always means the current time.

useSystem: useSystem L TP • [useSystem(]];
useGMT: useThese L TP • [useThese[(west. 0, 0, 0, 0]]];

These local time parameters are exported for client convenience.

68.3 Usage/Examples

68.3.1 Parse Reader Template Definitions

The template for times is a reader with fields, using the standard definition of naming
fields (that is, a number enclosed by angle brackets). The definition of the fields for times
are:

68-3

68

68-4

XTime

<1>
<2>
<3>
<4>
<5>

Month as a number*
Day as a number*
Year as a four-digit number
Year as a two-digit number
Month name

<6>
<7>

Month name with a maximum of three characters
Hour as digits in range [0 .. 12)*

<8> Hour as digits in range [0 .. 24)*
<9>
<10>
<11>

Minutes, always two digits, zero-filled (e.g., 23, 04)
Seconds, always two digits, zero-filled (e.g., 23, 04)
Day of week

<12> Time zone
<13> AM or PM

* If the number begins with a 0, the number is zero-filled to two digits.

Examples

<2>-<6>-<4> <7>:<9> 18-Nov-838:36

<2> <5> <~> 18 November 1983

<2>-<6>-<4> <7>:<9>:<10> <12> «11» 18-Nov-83 08:36:42 PST (Friday)

<7>:<9> <13> 8:36AM

<08><9> hrs 0836 hrs

68.3.2 Example

.. - Data structure to record time in both Packed and Unpacked form.
Data: TYPE :I RECORD [

startTi me: XString. ReaderBody .-XString. null ReaderBody,
endTime: XString.ReaderBody .-XString.nulI ReaderBody,
pStartTime: XTlme.Packed .-System.gmtEpoch,
pEndTime: XTlme.Packed .-System.gmtEpoch);

-- Retrieves, unpacks, stores, and displays the time.
GetAndDisplayTime: PRoc(packTime: XTlme.Packed) • {

time: XTlme.Unpacked .-XTlme.Unpack[packTime];
TimeDisplay [time.year, time.month, time.day];
};

ParseTimes: PRoc[data: Data] • {
data.pStartTime '-XTlme.ParseReader[@data.startTime!

XTlme.Unintelligible • > Error[BadStartTime, vicinity]].time;
data.pEndTime +- XTime~ParseReader[@data.endTime !

XTime.Unintelligible • > Error[BadEndTime, vicinity]].time;
};

-- Parses time into an XString. ReaderBody
PackedToString: PRoc(time: System.GreenwichMeanTime]

View Point Programmer's Manual

RETURNS [rb:XString.ReaderBody ~ XString.nuIiReaderBody) • {
template: XString.ReaderBody XString.FromSTRING[

"<2>-<6>-<4> <8>:<9>"L);
wb: XString. WriterBody +- XString.NewWriterBody[24, zone);

.xTime.Append(@wb,time, @template];
rb +- XString.CopyToNewReaderBody(xString.ReaderFromWriter[@wb), zone];
XString.FreeWriterBytes[@wb);
};

68

68-5

68 XTime

68.4 Index of Interface Items ~
1

Item Page

Append: PROCEDURE 2
Current: PROCEDURE 1
dateAndTime: XString.Reader 3
dateOnly: Xstring.Reader 3
defaultTime: constant 3
Format: PROCEDURE 2
Invalid: ERROR 3
LTP: TYPE 3
Notes: TYPE 2
Pack: PROCEDURE 2
Packed: TYPE 2
ParseReader: PROCEDURE 1
ParseWithTemplate: PROCEDURE 1
timeOnly: XString.Reader 3
TreatNumbersAs: TYPE 1
Unintelligible: ERROR 2
Unpack: PROCEDURE 2
Unpacked: TYPE 3
useGMT: constant 3
useSystem: constant 3

,-~

68-6

69

XToken

69.1 Overview

The XToken interface provides general scanning and simple parsing facilities for collecting
tokens from a character input stream.

The basic data structure is the Object, which encapsulates the source of characters to be
parsed. It contains a procedure that returns the next character in the input stream and the
final character that is read from the input stream.

The basic operations collect characters from the input str~am into tokens. Clients can
define arbitrary token classes by using filters. Clients can define their own filters or use
one of the standard· filters provided by XToken. Frequently, some portion of the input
stream, such as blanks, are only delimiters and are usually skipped when collecting a
token. The type SkipMode defines the options for skipping characters. Quoted tokens are a
feature provided by XToken. By using procedures to define opening- and closing-quote
characters, XToken allows the client to define a large number of quoting schemes. Several
common quote procedures are supplied.

XToken provides operations that collect standard tokens such as boolean and numeric
values. It also provides built-in handles that understand XString.Readers and Stream.Handles
as sources of characters.

Operations that return a reader body allocate their storage from the implementation's own
heap. Clients should call FreeTokenString to release this storage.

69.2 Interface Items

69.2.1 Character Source Definitions

Handle: TYPE :I LONG POINTER TO Object;

Object: TYPE = MACHINE DEPENDENT RECORD [
getChar(O):GetCharProcType, break(1): XChar.Character +- 01:

GetCharProcType: TYPE :I PROCEDURE [h: Handle] RETURNS [c: XChar.Character]:

69-1

69

69-2

XToken

The Object encapsulates the source of characters to be parsed. The XToken package uses ~
the getChar field to obtain the stream of characters. It assumes that the source has been~· -"
exhausted when getChar returns XChar.null or XChar.not. XToken uses the break field to
record the final character that it reads. It records the final character because there is no
way to put back a character into the character source. It must read one character beyond
the token it is parsing to ensure that it has reached the end of the input. If it simply
returned the token, this character would be lost. Since the XToken package stores the last
character in the Object, that character is available to the client. The client can ignore it,
inspect it to deci4e what to parse next, or put it back into the character source.

A GetCharProcType provides a stream of characters to be parsed. It should return either
XChar.nuU or XChar.not when the stream of characters has been exhausted. The Handle is
passed into the GetCharProcType so that a client can hide instance data in his object.
Although there is not an instance data field in Object, the client could LOOPHOLE a pointer to
a larger record that contained its data.

69.2.2 Filter DefinItions

FilterProcType: TYPE ~ PROCEDURE [
c: xChar.Character, data: FilterState] RETURNS [inClass: BOOLEAN];

FilterState: TYPE a LONG POINTER TO StandardFilterState;

StandardFilterState: TYPE a ARRAY [0 .. 2) OF UNSPECIFIED;

A FilterProcType is the mechanism by which a client defines classes of characters.
Procedures that use filters will call them once for each candidate character. The filter
should return TRUE if the character is in the class and FALSE otherwise. The FHterState
permits the filter to maintain the state of the parse. Operations that require a
FilterProcType and FilterState, will initialize the StandardFilterState to ALL[O]. If the filter
requires filter state but data is NIL, the signal NilData should be raised.

Some clients' filters may need more than two words of state for their filter. In that case
they should define a record that rust contains a StandardFilterState, then define the
additional space they need, and then loophole the filter state to a pointer to the record they
defined.

69.2.3 Skip Mode Definitions

SkipMode: TYPE. {none, whiteSpace, non Token};

SkipMode controls what characters an operation will skip before collecting a token.

none

whiteSpace

nonToken

The term none means no characters should be skipped, and the token
should start with the next character.

The term whiteSpace means characters (space, carriage return, and tab)
should be skipped before collecting the token.

The term non Token means any characters that are not legal token
characters should be skipped before collecting the token.

View Point Programmer's Manual 69

69.2.4 Quoted Token Definitions

QuoteProcType: TYPE • PROCEDURE [
c: xChar.Character] RETURNS [closing: xChar.Character);

nonQuote: xChar.Character • • •• ;

QuoteProcType defines the procedure used by MaybeQuoted to recognize quoted tokens. If
c is a quote character, it should return the corresponding closing-quote character. If c is not
a quote character, it should return non Quote.

69.2.5 Built-in Handles

ReaderToHandle: PROCEDURE [r: XString.Reader]
RETURNS [h: Handle];

ReaderToHandle creates a Handle whose source of characters are the characters in r. The
bytes of r are not copied, so clients are responsible for synchronizing access to the reader
with the XToken package.

FreeReaderHandle: PROCEDURE [h: Handle] RETURNS [nil: Handle];

FreeReaderHandle destroys a Handle created by ReaderToHandle. It does not destroy the
underlying reader. It returns NIL.

StreamToHandle: PROCEDURE [s: Stream.Handle] RETURNS[h: Handle]:

StreamToHandle creates a Handle whose source of characters is a stream. The stream
should signify the end of characters by raising the signal Stream.EndOfStream.

FreeStreamHandle: PROCEDURE [h: Handle] RETURNS [s: Stream.Handle];

FreeStreamHandle destroys a Handle created by StreamToHandle. It returns the
underlying stream.

69.2.6 Boolean and Numeric Tokens

Boolean: PROCEDURE [h: Handle, signalOnError: BOOLEAN +- TRUE] RETURNS [true: BOOLEAN1;

Boolean parses the next characters of the source as a boolean constant. Valid Boolean
values are "TRUE" or "FALSE," but unlike the Mesa language, case does not matter
("true" and "false" are also acceptable). In case of a syntax error, the signal SyntaxError is
optionally raised. If signalOnError is FALSE, or SyntaxError is resumed, then FALSE is
returned for a syntax error. This procedure skips leading white space.

Number: PROCEDURE [h: Handle, radix: CARDINAL, signalOnError: BOOLEAN +- TRUE]
RETURNS [u: LONG UNSPECIFIED];

Number parses the next characters of the source as a number in radix radix. Numbers have
the format specified in XString.ReaderToNumber. In case of a syntax error, the signal

69-3

69

69-4

XToken

SyntaxError is optionally raised. If signalOnError is FALSE, or SyntaxError is resumed, zero
is returned for a syntax error. This procedure skips leading white space.

NumberX: PROCEDURE [h: Handle, radix: CARDINAL, signalOnError: BOOLEAN +- TRUE,
numberParms: XDigits.NumberParms +- XDigits.numberParms)
RETURNS [u: LONG UNSPECIFIED];

NumberX is the same as Number except that numberParms can be specified. See the
XDigits chapter for more details. If radix is other than 10, numberParms.representation
and numberParms. thousandsSep will be ignored. Fine Point: This procedure is currently exported

through XTokenX.

Decimal: PROCEDURE [
h: Handle, signalOnError: BOOLEAN +- TRUE] RETURNS [i: LONG INTEGER];

Decimal isjust like Number, but with a radix of 10.

DecimalX: PROCEDURE [
h: Handle, signalOnError: BOOLEAN +- TRUE,
numberParms: XDigits.NumberParms +- XDigits.numberParms]
RETURNS [i: LONG INTEGER];

DecimalX is just like NumberX, but with a radix of 10. See the XDigits chapter for more
details. Fine Point: This procedure is currently exported through XTokenX.

Octal: PROCEDURE [. .
h: Handle, signalOnError: BOOLEAN +- TRUE] RETURNS [c: LONG CARDINAL];

Octal is just like Number, but with a radix of8.

69.2.7 Basic Token Routines

Fi Itered: PROCEDURE [
h: Handle, data: FilterState, filter: FilterProcType, skip: SkipMode +- whiteSpace,
temporary: BOOLEAN +- TRUE]
RETURNS [value: XString.ReaderBody];

Filtered collects the token string defined by the client's filter. If the client-instance data
parameter data is not NIL, the first two words of data are set to zero before any calls are
made to filter. filter is called with data once on each character until it returns FALSE. The
string returned, which may be XString.nuIiReaderBody, must be freed by calling
FreeTokenString. Leading characters are skipped according to the value of skip. If
temporary is TRUE, it is assumed that the string will be freed shortly, and no effort is made
to use the minimum storage for it. If temporary is FALSE, the minimum amount of storage is
used. filter may raise NilData.

FreeTokenString: PROCEDURE [5: XString.Reader] RETURNS [nil: XString.Reader +- NIL];

FreeTokenString frees bytes of the reader. It is used to free the strings allocated by Filtered,
Item, and MaybeQuoted. It returns NIL.

View Point Programmer's Manual 69

Item: PROCEDURE [
h: Handle, temporary: BOOLEAN TRUE] RETURNS [value: XString.ReaderBody];

Item returns the next token delimited by white space. Leading white space is skipped and
the characters are collected until another white-space character is encountered. The string
returned must be freed by calling FreeTokenString. If temporary is TRUE, it is assumed that
the string will be freed shortly, and no effort is made to use the minimum storage for it. If
temporary is FALSE, only as much storage is used for the string as is needed.

MaybeQuoted: PROCEDURE (
h: Handle, data: FilterState, filter: FilterProcType NonWhiteSpace,
isQuote: QuoteprocType Quote, skip: SkipMode whiteSpace,
temporary: BOOLEAN TRUE]
RETURNS [value: XString.ReaderBody];

MaybeQuoted returns the next quoted token. The first candidate character is passed to
isQuote, which either re'turns nonQuote or the closing-quote character. If a closing-quote
character other than nonQuote is returned, characters are collected in the token until the
closing quote is encountered. If the input is exhausted before the closing quote is
encountered, the signal UnterminatedQuote will be raised. If it is resumed, MaybeQuoted
returns the token collected up until that point. The closing-quote character may be
included in the token by including two instances of the character in the input; that is, if
"MaybeQuoted encounters two closing-quote characters in a row, it will insert one closing­
quote character in the token rather than terminating the token on the first closing quote.
The outer quote characters are not part of the token and are discarded. If nonQuote is
returm~d from the isQuote procedure, the filter is used to collect characters the same way it
is used in Filtered: filter is called with client-instance data parameter data once on each
character until it returns FALSE. In either case (quoted or filtered), the break character
returned in the Handle is the character following the token.

Leading characters are skipped according to the value ofskip.

If temporary is TRUE, it is assumed that the string will be freed shortly and no effort is made
to use the minimum storage for it. If temporary is FALSE, only as much storage is used for
the string as is needed. The string returned must be freed by calling FreeTokenString.

Skip: PROCEDURE [
h: Handle, data: FilterState, filter: FilterProcType, skiplnClass: BOOLEAN TRUE];

Skip is used to skip over characters. A filter is provided to define the class of characters,
and the boolean skiplnClass indicates whether the characters to be skipped are those
accepted by the filter or those rejected by it. If the client-instance data parameter data is
not NIL, the first two words of data are set to zero before any calls are made to filter. If data
is NIL and filter references data, the signal NilData should be raised.

69.2.8 Signals and Errors

SyntaxError: SIGNAL [r: XString.Reader];

The resumable SIGNAL SyntaxError can be raised if incorrect syntax is encountered by
Boolean, Decimal, Number, or Octal. In each case, resuming the signal causes the

69-5

69

69-6

XToken

procedure to return a default value (described in the discussion of the various procedures).
The reader parameter is the token collected that has the wrong syntax.

NiiData: SIGNAL;

Procedures that take a FilterProcType argument also take an argument that is a pointer to
client instance data. If the client has no need for instance data, it can pass a NIL as the
instance data pointer. If a FilterProcType attempts to access the client-instance data, but
the client passed in NIL instead of a pointer to instance data, the signal NiiData should be
raised. Implementors of FilterProcTypes are strongly encouraged to check for NIL and raise
this condition if they use client-instance data.

U nterminatedQuote: SIGNAL;

The resumable SIGNAL UnterminatedQuote is raised from MaybeQuoted if the getChar
procedure of the Handle returns XChar.not or XChar.null before the terminating quote
character 'has been read. If the signal is resumed, MaybeQuoted will return as if it had
read a closing-quote character.

69.2.9 Built-in Filters

Alphabetic: FilterProcType;

Alphabetic dermes the class of alphabetic characters; that is, the characters 'a through 'z
and 'A through 'Z. This procedure requires no filter state. ~

AlphaNumeric: FilterProcType;

AlphaNumeric defines the class of alphanumeric characters, that is, the characters 'a
through 'z, 'A through 'z, and '0 through '9. This procedure requires no filter state.

Delimited: FilterProcType;

When D~limited is passed to a procedure such as Filtered, the value of skip passed along
with it must be nonToken. It will skip leading white space, then define the first character
of the token to be both the opening-quote character and the closing-quote character,
returning all characters occurring between the first and second appearance of that
character.

Line: FilterProcType;

Line defines a class containing all characters except the carriage return. It can be used to
collect a line of information. This procedure requires no filter state.

NonWhiteSpace: FilterProcType;

NonWhiteSpace FilterProc defines all characters that are not white space; that is,
WhiteSpace[char] = -NonWhiteSpace[char]. This procedure requires no client data (data
may be NIL.)

Numeric: FilterProcType;

ViewPoint Programmer's Manual 69

Numeric defines the class of numeric characters (the characters '0 through '9) This
procedure requires no filter state.

Switches: FilterProcType;

Switches can be used to collect switch characters. It accepts the characters '-, '-, and
alphanumeric characters. This procedure requires no filter state.

WhiteSpace: Fi IterProcType;

The WhiteS pace FilterProcType dermes the white space characters. This filter is used by
Token for skipping white space. This procedure requires no filter state.

69.2.10 Built-in Quote Procedures

Brackets: QuoteProcType;

Brackets recognizes the following sets of matching open/close quote pairs: (), [], { }, and <
>.

Quote: QuoteProcType;

Quote recognizes single quote and double quote:

69.3 U sagelExamples

69.3.1 Collecting Tokens

The following example collects name and number pairs from a stream. It uses the built-in
stream handle provided by XToken for the source of characters. It uses the Item operation.

ProcessltemsFromStream: PROCEDURE [stream: Stream.Handle1 • {
tH: XToken.Handle +- XToken.HandleFromStream[stream1;
name: XString.ReaderBody +- XToken.ltem[tH);
number: LONG INTEGER;
UNTIL XString.Empty[@name1 DO

number +- XToken.Decimal[h: tH, signalOnError: FALSE];
Processltem[@name, number]; - do work
[] +- XToken.FreeTokenString[@name);
name +- XToken.ltem[tH);
ENDLOOP;

[] +- XToken.FreeStreamHandle[tH]};

The following example demonstrates how the XToken interface could be used to parse
input into tokens, optionally followed by switches. In this context, tokens and switches are
defined to be any sequence of non-white-space characters, not including the slash character
(I).

GetToken: PROCEDURE RETURNS [token, switches: XString.ReaderBody] =­
BEGIN
get: XToken.GetCharProcType = {RETURN[GetCommandLineChar[]1};

69-7

69

69-8

XToken

getToken: XToken.Object +- [getChar: get, break: XChar.not);
slash: XChar.Character =- ' I.ORO;
MyFilter: XToken.FilterProcType =- {

RETURN [SELECT TRUE FROM
XToken.WhiteSpace[c, data], c • XChar.not. > FALSE,
c • slash • > FALSE,
ENDCASE • > TRUE]};

token +- XToken.Filtered[@getToken, NIL, MyFilter];
IF getToken.break • slash THEN switches +- Xoken.Filtered[@getToken, NIL" MyFilter]
ELSE switches +- XString.nuIiReaderBody;
END;

We can extend this example so that the token is defined to be either a sequence of non­
white-space characters or a sequence of characters, containing white space characters,
between double quotes.

GetToken: PROCEDURE RETURNS [token, switches: XString.ReaderBody] :II

BEGIN
get: xToken.GetCharProcType • {RETuRN[GetCommandLineChar(]]};
getToken: xToken.Obj~ct +- [getChar: get" break: XChar.not);
slash: xChar.Character • 'I.ORO;
doubleQuote: xChar.Character • '" .ORO;
IsQuote: XToken.QuoteProcType • {

RETURN[IF c • doubleQuote THEN c ELSE XToken.nonQuote]};
MyFilter: XToken.FilterProcType =- {

RETURN[SELECT TRUE FROM
XToken.WhiteSpace[c" data], c • XChar.not=- > FALSE,
c • slash • > FALSE,
ENOCASE • > TRUE]};

token +- XToken.MaybeQuoted[@getToken, NIL, My Filter, IsQuote);
IF getToken.break =- slash THEN switches +- xoken.Filtered[@getToken, NIL, MyFilter]
ELSE switches +- XString.nuIiReaderBody;
END;

View Point Programmer's Manual 69

69.4 Index of Interface Items
~

Item Page

Alphabetic: FilterProcType 6
AlphaNumeric: FilterProcType 6
Boolean: PROCEDURE 3
Brackets: QuoteProcType 7
Decimal: PROCEDURE 4
DecimalX: PROCEDURE 4
Delimited: FilterProcType 6
Filtered: PROCEDURE 4
FilterProcType: TYPE 2
FilterState: TYPE 2
FreeReaderHandle: PROCEOURE 3
FreeStreamHandle: PROCEDURE 3
FreeTokenString: PROCEDURE 4
GetCharProcType: TYPE 1
Handle: TYPE 1
Item: PROCEDURE 5
Line: FilterProcType 5
MaybeQuoted: PROCEDURE 5
NiiData: SIGNAL 6
nonQu'ote: xChar.Character 3
NonWhiteSpace: FilterProcType 6

~ Number: PROCEDURE 3
NumberX: PROCEDURE 4
Numeric: FilterProcType 6
Object: TYPE 1
Octal: PROCEDURE 4
Quote: QuoteProcType 7
QuoteProcType: TYPE 3
ReaderToHandle: PROCEDURE 3
Skip: PROCEDURE 5
Ski pMode: TYPE 2
StandardFilterState: TYPE 2
StreamToHandle: PROCEDURE 3
Switches: FilterProcType 7
Syntax Error: SIGNAL 5
UnterminatedQuote: SIGNAL 6
WhiteSpace: FilterProcType 7

69-9

69 XToken ____ ~

69-10

II.

APPLICATION INTERFACES

~'

II. APPLICATION INTERFACES

11-2

70

ButtonInterchangeDefs

70.1 Overview

The ButtonlnterchangeOefs interface enables clients to create and enumerate anchored
Cusp button frames. Unanchored buttons (those nested within graphic frames) are handled
by GraphicslnterchangeOefs. The reader should be familiar with DocinterchangeDefs and
GraphicslnterchangeDefs before reading further.

70.1.1 Creating a button

The typical scenario for creating an anchored button in a document is:

[doc: doc, ...] f- DoclnterchangeDefs.StartCreation[...];
[h, buttonProgram] f- StartButton[

doc: doc, buttonProps: button Props, wantProgramHandle: TRUE];

GraphicslnterchangeDefs.AppendMumbleToButtonProgram[to: buttonProgram, ...];
GraphicslnterchangeDefs.ReleaseButtonProgram[bpPtr: @buttonProgram];
[...] f- DoclnterchangeDefs.AppendAnchoredFrame[

to: doc, type: cuspButton, ... , content: FinishButton[h], ... J;
[... J f- DoclnterchangeDefs.FinishCreation[docPtr: @doc, ... 1;

70.2 Interface Items

StartButton: PROC [

doc: DoclnterchangeOefs.DOc,
button Props : GraphicslntcnchangeDefs.Readon lyButtonProps,
wantProgramHandle: BOOLEAN ~ FALSE]

RETURNS [

h: GraphicslnterchangeDefs.Handle,
button Program : GraphicslnterchangeDefs.ButtonProgram];

This interface is used to begin creation of an anchored button (see
GraphicslnterchangeDefs.StartButton for nested buttons). doc must have been obtained from
DoclnterchangeDefs.StartCreation (Le., doc must not be read-only). Tt},e name inside of
button Props should either be a valid button name or be NIL, in which case the button will
assume a default name. wantProgramHandle determines whether the returned
buttonProgram is valid or NIL. Pass TRUE for this if you want a non-NIL program for this

70 - 1

70

70-2

Bu ttonln terchange Defs

button. Use the Graphics'nterchangeOefs.Append*ToButtonProgram interfaces to fill in the
buttonProgram. If you pass wantProgramHandle = TRUE, you MUST call
Graphicslnterchangeoefs.ReleaseButtonProgram (before FinishButton -- see below) on the
returned buttonProgram (after you have done all the appending you want). h is a handle
you may add graphic objects to. See the GraphicslnterchangeOefs.Add* interfaces. StartButton
may raise DodnterchangeDefs.Error[documentFull" readonlyDoc" outOfDiskSpace" outOfVM,
badParameter].

Fi nishButton: PROC [h: GraphicslnterchangeDefs.Handle]
RETURNS [button: DoctnterchangeDefs.lnstance];

Finishes all the non-program aspects of button creation and returns an instance to pass to
the content parameter of DOcinterchangeDefs.AppendAnchoredFrame. If you passed
wantProgramHandle=TRuE to StartButton, you must call
GraphicslnterchangeOefs.ReleaseButtonProgram (and before calling FinishButton).

ButtonlnfoForAnchoredFrame: PROC [
doc: DoclnterchangeDefs.Doc.
anchored Frame : DocinterchangeOefs.1 ;,sta nce"
props: GraphicslnterchangeDefs. ButtonProps,
zone: UNCOUNTED ZONE]
RETURNS [readOnlyButtonProgram: GraphicslnterchangeDefs.ButtonProgram];

This interface is u~ed to read the name and program of a button during enumeration. To
enumerate the graphic objects contained in the button, call
GraphicslnterchangeDefs.Enum-erate(••• " . graph icsConta i ner:' anchored F ra me, ... J
(anchored Frame is a parameter passed to a DoclnterchangeDefs.AnchoredFrameProc).
props.name is copied into the zone passed in,so the client is responsible for this storage.
Use GraphicslnterchangeOefs.EnumerateButtonProgram to enumerate the text in the returned
readOnlyButtonProgram. The client must call ReleaseReadOnlyButtonProgram to release
the program after enumerating it. Do not call GraphicslnterchangeOefs.ReleaseButtonProgram
on the returned readOnlyButtonProgram -- that interface is for releasing client-created
button programs.

ReleaseReadOnlyButtonProgram: PROC [
ptr: LONG POINTER TO GraphicslnterchangeOefs.ButtonProgram];

This must be called each time ButtonlnfoForAnchoredFrame is called. It releases the
returned readOnlyButtonProgram. This interface should not be called on programs
obtained from either StartButton or GraphicslnterchangeDefs.StartButton -- use
GraphicslnterchangeDefs. Rei easeButtonProgram on those.

View Point Programmer's Manual 70

70.3 Index of Interface Items
~'

Item Page

ButtonlnfoForAnchoredFrame: PROC 2
FinishButton: PROC 2
ReleaseReadOnlyButtonProgram: PROC 2
StartButton: PROC, 1

70- 3

70 ButtonInterchangeDefs

70-4

71

ChartDataInstallDefs

71.1 Overview

ChartDatalnstaliDefs provides the ability to install new data in a chart without regard to
the type of the chart. Specifics such as line styles or shadings are not affected. Typical
clients include those that have changing data depicted in chart form (one such client is the
ViewPoint database package).

71.2 Interface Items

The primary type in this interface is the ~andle, which· points to a record· of chart
information. Clients may obtain a handle by either calling GetChartFromlnstance or
GetChartFromSelection. Once the client has a handle, several functions can be performed
on the chart; installing new data or validating the chart are some examples.

Handle: TYPE. LONG POINTER TO Object;

Object: TYPE • RECORD [
type: ChartType,
instance: DoclnterchangeDefs.Jnstance,
validateChart: ValidateChartProc,
validateData: ValidateDataProc.
plot: PtotProc.
free: FreeProc];

ChartType: TYPE. MACHINE DEPENDENT {bar(O), line(1), pie(2), last(1 S)};

type refers to the manner that the chart displays information. instance is a record that has
pointers to the chart data. validateChart is a call-back procedure to check if the chart can
be edited. validateData checks the validity of new data to be installed in the chart. plot
actually installs the data, while free releases the handle.

ValidateChartProc: TYPE. PROC [h: Handle]
RETURNS [ChartValidity];

ChartValidity: TYPE. MACHINE DEPENDENT {ok(O), closed(1), readOnly(2), last(1 S)};

71 - 1

71

71- 2

ChartDatalnstallDefs

ValidateChartProc checks the chart and returns its status. This procedure should be called ~~
before any attempt to operate on the chart.

ValidateDataProc: TYPE • PROC [

h: Handle.
data: Data,
changes: Selections]
RETURNS (DataValidity);

DataValidity: TYPE • MACHINE DEPENDENT RECORD [

v(O): SELECT result(O): DataValidityResult FROM

ok • > NULL,

invalidSource • > NULL,

sizeMismatch • > [extraRows(1): INTEGER, extraCols(2): INTEGER],

nonNumericValue • > [row(1): CARDINAL, col(2): CARDINAL],

iIIegalValue • > [row(1): CARDINAL, col(2): CARDINAL],

unknown • > NULL,

last • > NULL,

ENDCASE];

DataValidityResult: TYPE • MACHINE DEPENDENT {

ok(O). invalidSource(1). sizeMismatch(2), nonNumericValue(3), iIIegaIValue(4),
unknown(S), last(1S)};

ValidateDataProc checks the validity of the new data that-the client intends to install. The
data is not actually installed in this step. data is a pointer-to the current data. changes
specifies which items are being validated.

DataValidity indicates the validity of the data and in the case of bad data, some additional
information. extra Rows is the number of extra rows the new data has relative to the
chart's current data table. A negative number means the chart currently has more rows
than the data. extraCols is the analagous number for columns. row and col indicate the
position of the chart's problem.

PlotProc: TYPE • PROC [

h: Handle,
data: Data,
changes: Selections];

Selections: TYPE. PACKED ARRAY Values OF BOOLEAN;

all: Selections. ALL[TRUE);

Values: TYPE. {title, data, rowlabels, colLabels, orientation};

PlotProc sets the chart's data and then redraws the chart. data is a pointer to the new data
to be installed. changes specifies exactly which data is set.

Data: TYPE. LONG POINTER TO DataRec;

DataRec: TYPE • RECORD [

title: XString.Reader +- NIL,

data: DataValues,

:~

View Point Programmer's Manual

rowLabels: Labels +- NIL.
colLabels: Labels +- NIL.
orientation: Orientation +- rowl;

DataValues: TYPE • LONG POINTER TO RowSeq;

RowSeq: TYPE • RECORD [
rows: SELECT format: DataFormat FROM

string • > [SEQUENCE nRows: CARDINAL OF StringRowl,
numeric. > [SEQUENCE nRows: CARDINAL OF NumericRowl

ENDCASE];

DataFormat: TYPE. {string, numeric};

Labels: TYPE • LONG POINTER TO LabelSeq;
LabeJSeq: TYPE. RECORD [SEQUENCE length:CARDINAL OF XString.Reader];

Orientation: TYPE. {column. row};

71

DataRec contains the data to be installed. title is the title of the chart. data points to a
sequence-containing record of data values. rowLabels and colLabels point to sequence­
containing records of row and column labels, respectively. orientation specifies whether
columns o.r rows are the chart's data sets.

StringRow: TYPE • LONG POINTER TO StringRowElements;
StringRowElements:" TYPE. RECORD [SEQUENCE nCols: CARDINAL OF XString.Reader];

NumericRow: TYPE. LONG POINTER TO NumericRowElements;
NumericRowElements: TYPE. RECORD [SEQUENCE nCols: CARDINAL OF XLReal.Number];

StringRow points to a sequence-containing record of readers; similarly, NumericRow
points to a sequence-containing record of numbers.

Hence, the data to be installed looks like Figure 71.1:

GetChartFromlnstance: PROC [instance: DocinterchangeDefs.lnstance]
RETURNS [Handle];

This procedure returns a handle to the chart given by instance. The result will be NIL if the
instance is not a chart. Note that a non-NIL handle doesn't guarantee that the chart is valid;
it only guarantees that the instance is a chart. Clients should call the chart's
validateChartProc to determine the chart's validity.

GetChartFromSelection: PROC RETURNS [Handle];

This procedure obtains a handle by converting the current selection. If the current
selection is not a chart, NIL will be returned.

FreeProc: TYPE. PROC [h: Handle];

FreeProc frees the handle passed in by GetChartFromSelection or
GetChartFromlnstance.

71 - 3

71

71.3 Usage

71- 4

ChartDataInstallDefs

rowLabels colLabels orientation I Data 1-1 -----.-

~----~------~--------P-----------~

Stri ngRowElements I
NumericRowElements

OutOfRoomForGraphics: ERROR;

Figure 71.1

,-

title is an XString. Reader.
orientation is an enumerated.

Raised by handle.plot if there is no more room in the document to insert graphic objects
(the components of charts).

The typical pattern of use for this module is:

handle +- GetChartFromSelection[];
IF handle :# NIL THEN {

DO
< < get raw data; > >
IF handle.validateChart[handle] :# ok THEN {< < error; > > LOOP};

< <determine which pieces of data are to be changed> >
< < allocate and fil/in data record> >
IF handle.validateData[handle, data, selections] :# ok THEN < < error; > >
handle.plot[handle, data, selections];
ENDLOOP;

handle. free[handlel;
};

View Point Programmer's Manual 71

71.£1 Index of Interface Items
~

Itenl Page

all: Selections 2
ChartType: TYPE 1
ChartValidity: TYPE 1
Data: TYPE 2
DataFormat: TYPE 3
DataRec: TYPE 2
DataValidity: TYPE 2
DataValidityResult: TYPE 2
DataValues: TYPE 3
FreeProc: TYPE 3
GetChartFromlnstance: PROC 3
GetChartFromSelection: PROC 3
Handle: TYPE 1
Labels: TYPE 3
LabelSeq: TYPE 3
NumericRow: TYPE 3
NumericRowElements: TYPE 3
Object: TYPE 1
Orientation: TYPE 3
OutOfRoomForGraphics: ERROR 4
PlotProc: TYPE 2 ',--, RowSeq: TYPE 3
Selections: TYPE 2
StringRow: TYPE 3
StringRowElements: TYPE 3
ValidateChartProc: TYPE 1
ValidateDataProc: TYPE 2
Values: TYPE 2

71-5

71 ChartDataInstallDefs

~,

71- 6

72

DocInterchangeDefs

72.1 Overview

The DocinterchangeDefs interface enables clients to create a new ViewPoint document or
read an existing one. However, it does not support inserting new information or changing
or deleting the contents of a document.

DocinterchangeDefs provides procedures to create or read any of the basic document
structures, such as text; textual "tiles;" fields; headings and footings; or frames of various
types. It does not include procedures to manipulate contents of frames, however'.

To create content within frames, the client must use interfaces specific to a particular
frame type. The following interfa~es are currently available:

GraphicslnterchangeDefs for creating or reading graphics frames

TablelnterchangeDefs for creating or reading tables

TextinterchangeDefs for creating or reading text frames

EquationlnterchangeDefs for creating or reading equation frames

ButtonlnterchangeDefs for creating or reading anchored button frames

These are currently the only frame content interfaces available.

72.1.1 Creating Documents

To create a ViewPoint document, the first step is to call the procedure StartCreation. This
sets up the data structures for the document and returns a Doc, which is a long pointer to
an opaque type that represents the document.

The next step is to add information to the document with various Append'*' procedures:
AppendAnchoredFrame, AppendAnchored Fra meX, Append Break. A ppe nd Ch a r,
AppendColumnBreak, AppendField, AppendNewParagraph. AppendPageBreak,
AppendPFC (Page Format Character), AppendText, or AppendTile.

With AppendAnchoredFrame, the client would typically call an operation in an interface
such as GraphicslnterchangeDefs. or TablelnterchangeDefs to create the contents of the
frame, and then call AppendAnchoredFrame to add that frame and its contents to the

72 - 1

72 DocInterchangeDefs

document. With TextlnterchangeDefs, the client calls AppendAnchoredFrame first and
then uses TextlnterchangeDefs to append information to the text frame.

AppendField, AppendPFC, and AppendTile all have return values: this allows the client to
call Append* routines recursively to add text and formatting information to fields, tiles, or
PFC headers.

When the document contains all the desired information, the client should call
FinishCreation, which returns an NSfile.Handle for the newly created file.

72.1.2 Enumerating documents

To enumerate the contents of an existing ViewPoint document, the client should start by
calling Open, which opens the document and returns a Doc handle for that document. The
next step is to call Enumerate, passing in the Doc and an EnumProcs record. The
EnumProcs record contains a set of callback procedures, one for each of the following
structures: anchored frame, column break, field, new paragraph, page break, page format
character, text, tile, or break character (this last via spare1Proc).

Enumerate proceeds sequentially from the beginning of the document: as it comes to
different structures within the document, it calls the appropriate callback procedure.
which handles it appropriately. Each of these procedures returns a boolean value stop; if
anyone of the procedures returns stop = TRUE, the enumeration will terminate. If stop is
never TRUE, the enumeration will continue to·the end of the document.

~
Note that the enumeration proceeds according to the "main flow" of text within a ~
document--the text sequence that contains page format characters and frame anchor
characters. This means that an AnchoredFrameProc will be called not when the frame
itself is reached, but rather when the frame's anchor character is reached.
DocinterchangeDefs knows nothing about how the document has been arranged
structurally by operations such as pagination. As a consequence of this, the enumeration
can never know what page it is on.

When the enumeration is com,plete, the client should call CJose to free all associated data
structures and close any open file handles to the document.

Note that Creation and Enumeration are totally separate activities and
procedures/handles associated witI:t one should not be used with the other. Enumeration is
a readonly operation; no editing should be attempted while it is in progress (the results are
undefined). Likewise, Enumeration should not be attempted during Creation.

72.2 Interface Items

72-2

72.2.1 Data types

The basic data structure of DocinterchangeDefs is the TextContainer, which is any object
that can contain text. A TextContainer can be a caption, document, field, heading, footing,
or spare (spares are for future compatability).

TextContainer: TYPE. RECORD [

var: SELECTtype: * FROM

~

ViewPoint Programmer's Manual

caption • > [h: Caption].
doc. > [h: Doc],
field • > [h: Field].
heading. > [h: Heading].
footing • > [h: Footing].
spare1 • > [h: SpareTC).
spare2 • > [h: SpareTC),
spare3 • > [h: SpareTC).
spare4 • > [h: SpareTC),

ENDCASE];

caption: TYPE • LONG POINTER TO CaptionObject;
CaptionObject: TYPE;

Doc: TYPE • LONG POINTER TO DocObject;
DocObject: TYPE;

Field: TYPE. LONG POINTER TO FieldObject;
FieldObject: TYPE;

Heading: TYPE. LONG POINTER TO HeadingObject;
HeadingObject: TYPE;

Footing: TYPE. LONG POINTER TO FootingObject;
FootingObject: TYPE;

Tile: TYPE. LONG POINTER TO TileObject;
TileObject: TYPE;

SpareTC: TYPE • LONG UNSPECIFIED;

Instance: TYpe[2];
instanceNiI: Instance. LOOPHOU[LONG[O]];

72

Note that TextContainers must contain at least one newParagraph character, since the
paragraph properties of any text are always inherited from the preceding newParagraph
character. The Doclnterchange implementation supplies the initial newParagraph
characters as required; the client may assume they already exist. (The client is free to
append them anyway. The implementation ensures that if the client appends one at the
start of the TextContainer, two won't appear. The client's paragraph and font properties on
the newParagraph they appended will have precedence.)

An Instance is a handle to one of a certain class of objects within a document. l\'[any,
though not all, objects within a document can be uniquely identified and accessed via an
Instance. In general, instances form the bridge between DocinterchangeDefs and the
frame-content specific Interchange interfaces such as GraphicslnterchangeDefs and
TablelnterchangeDefs: DocinterchangeDefs will provide an instance which may be passed
to operations in other Interchange interfaces. No object in any document may be accessed
through instanceNil.

72 - 3

72

72-4

DocIn terchangeDefs

72.2.2 Creating documents

72.2.2.1 Initializing a document

The client calls StartCreation to initiate the document creation process.

StartCreation: PROC [

paginateOption: PaginateOption compress,
wantHeadingHandles, wantFootingHandles: Baal FALSE,

initialFontProps: DoclnterchangePropsDefs.ReadonlyFontProps Nil,

i nitialParaProps: DodnterchangePropsoefs.ReadonlyParaProps Nil.

initialPageProps: DoclnterchangePropsOefs.ReadonlyPageProps Nil]

RETURNS [

doc: Doc,
leftHeading, rightHeading: Heading,
leftFooting, rightFooting: Footing,
status: StartCreationStatus];

PaginateOption: TYPE. MACHINE DEPENDENT {

none(O), simple, compress. firstAvailable, lastAvailable(25S)};

paginateOption specifies the type of pagination that will occur when the client calls
FinishCreation. It is specified here rather than in FinishCreation to enable performance
optimizations based on the type of pagination that will eventually occur.

compress pagination proVides all the outward signs of pagination, such as page format
properties, and leaves the structure of the document in its optimized (most compact)
form.

simple pagination provides the outward signs of pagination but does not leave the
document in its optimized form, so subsequent editing may be slower than with
compress pagination. simple pagination is somewhat faster than compress.

none leaves the document in its raw form. This can lead to very slow editing, and
potentially to loss of data. If the document will be more than a few pages long, client
must specify a paginateOption other than none to avoid losing data.

wantHeadingHandles and wantFootingHandles specify whether the first page format
character in the document will have headings and footings.

initialFontProcs, initialParaProcs, and initialPageProps specify the initial properties for the
document. If you do not specify a field of initial properties, StartCreation will use the
document default properties. (For information on document default properties, see the
DoclnterchangePropsDefs chapter)

In the pageProps, the client must ensure that the page margins leave at least one inch (72
points) for text. That is, (left margin+right margin+72 < = page width), and (top
margin + bottom margin + 72 < = page height).

StartCreation returns a Doc handle, handles for headings and footings, and a status. The
Doc handle represents the new document. The client should pass this handle to the

ViewPoint Programmer's Manual 72

Append* procedures described below to add information to the document, and then
eventually release the handle with a call to FinishCreation.

If the client releases the handle without ever calling any Append'" routines, the file will
contain a l-page document containing a single newParagraph and pageFormat character,
with the initial font, paragraph, and page props as specified.

The heading and footing handles that are returned will be Nil unless the client specified
wantHeadingHandles or wantFootingHandles = TRUE. If the headings or footings are
valid, the client should call various Append'" routines to add text and formatting
information, and then later release each handle with a call to ReleaseHeading or
ReleaseFooting. See section 72.2.2.3 for details.

StartCreation (and all subsequent editing operations on the Doc) may be called either
normally or by a forked process running in the background. Note that while background
creation is allowed, the client may have only one process accessing a particular document
at a time. If forked Creation is desired, the client must call StartCreation in a process that
is running at Process.priorityBackground. StartCreation must do special things to be able
to run in a forked process, and .it detects this situation by examining the calling process'
priority. The client may change the priority once StartCreation returns, if desired. All
creation operations execute normally in a forked process, although the client must make a
special call following.FinishCreation. See section 72.2.2.4.

StartCreationStatus: TYPE. MACHINE DEPENDENT {

. ok(O), notEnoughDiskSpace, notEnoughVM, firstAvailable, lastAvailable(255)};

StartCreation returns a status code, which can have any of the following values:

ok Everything was fine.

notEnoughDiskSpace There isn't enough disk space to perform the operation.

notEnoughVM There isn't enough contiguous virtual memory to create.

72.2.2.2 Adding to a document

The Append'" routines below add various kinds of information to TextContainers.

AppendChar, AppendField, AppendNewParagraph, AppendText, and AppendTile take a
TextContainer as a parameter and add the specified information to that container. The
remaining procedures (AppendAnchoredFrame, AppendAnchoredFrameX, AppendBreak,
AppendColumnBreak, AppendPFC, AppendPageBreak) take only a Doc, and not a general
purpose TextContainer; other TextContainers cannot contain the various special
characters.

With all of these procedures, the client must manage the storage for the property records or
other data structures passed in, except for handles obtained from the interface itself. The
storage for the properties must remain valid during the call to Append*; after Append'*'
returns, the client may do anything it chooses with the storage (typically, free it).

72 - 5

72

72-6

DocInterchangeDefs

The Append* procedures often allow the client to set font, paragraph, or page properties.
Defaulting any of these arguments will cause the newly appended text or object to inherit .~.
the properties of the preceding text/object and not the application-wide default properties.

If an Append* routine returns a non-NIL handle, the client is responsible for later freeing
that handle with a call to an appropriate Release* routine. See section 72.2.2.3 for details.

AppendAnchoredFrame: PROC [
to: Doc,
type: AnchoredFrameType,
anchoredFrameProps: DoclnterchangePropsDefs.ReadonlyFrameProps,
content: Instance +- instanceNil,
wantTopCaptionHandle, wantBottomCaptionHandle,
wantLeftCaptionHandle, wantRightCaptionHandle: BOOl +- FALSE,
anchorFontProps: DoclnterchangePropsOefs.ReadonlyFontProps +- Nil]
RETURNS [

anchoredFrame: Instance,
topCaption, bottomCaption,
leftCaption, rightCaption: Caption];

AppendAnchoredFrame appends the anchored frame type with properties
anchor~dFrameProps to the document Doc.

AnchoredFrameType: TYPE • MACHINE DEPENDENT {
nil(O), bitmap, cuspButton, equation, graphics, IMG, table, text,
illustrator, firstAvaiiable, lastAvailable(255)};

content is the contents of the frame. Currently, there are interfaces to support creating
graphics, table, text, equation, and button frames.

want*CaptionHandle specifies which captions the frame should have. a~chorFontProps

specifies the font properties of the frame anchor. Changing the font properties of the
anchor does not affect how that anchor appears on the display, but does affect the default
properties that succeeding characters will inherit.

AppendAnchoredFrame returns handles to the frame and its captions. The caption
handles will be non-Nil only if the client specified TRUE for the corresponding
want*CaptionHandle parameter. The client must later release each valid caption handle
with ReleaseCaption.

The return parameter anchoredFrame is currently used only by the TextlnterchangeDefs
interface for appending text frames.

AppendAnchoredFrameX: PROC [
to: Doc,
type: AnchoredFrameType,
anchoredFrameProps: OoctnterchangePropsoefs.ReadonlyFrameProps,
content: Instance +- instanceNiI,
wantTopCaptionHandle, wantBottomCaptionHandle,
wantLeftCaptionHandle, wantRightCaptionHandle: BOOl +- FALSE,
anchorFontProps: DoctnterchangePropsOefs.ReadonlyFontProps +- Nil]
RETURNS [

ViewPoint Programmer's Manual

anchoredFrame: Instance,
topCaption, bottomCaption,
leftCaption, rightCaption: Caption];

72

This operation is similar to AppendAnc;horedFrame, except table frames are handled a bit
differently. For these, whatever frame size is specified in the anchoredFrameProps will be
used without modification. The normal AppendAnchoredFrame ignores the frame size
passed in for tables and always creates the a table frame that just fits around the enclosed
table. (In the next major release the original AppendAnchoredFrame should function as
this does, and the extra interface will go away.) This operation is currently defined in
OocinterchangeExtra3Defs.

BreakProps: TYPE. LONG POINTER TO BreakPropsRecord;
ReadonlyBreakProps: TYPE. LONG POINTER TO READONLY BreakPropsRecord;
BreakPropsRecord: TYPE • RECORD (

breakType: BreakType,
spare1: LONG CARDINAL];

BreakType: TYPE • MACHINE DEPENDENT {
newPage{O), newLeftPage, newRightPage, newColumn, firstAvailable,
lastAvailable(255)};

AppendBreak: PROC (
to: TextContainer,
breakProps: ReadonlyBreakPr.ops,

. fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ~ NIL];

AppendBreak appends a break character to the document. fontProps are the properties of
the break character; these properties do not affect the appearance of the character itself,
but they do affect the properties that succeeding characters will inherit. This operation
and its associated types are currently defined in DoclnterchangeExtra10efs.
AppendBreak replaces AppendColumnBreak and AppendPageBreak, which are obsolete
(though still supported).

AppendChar: PROC (
to: TextContainer,
char: XChar.Character,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ~ NIL,
nToAppend: CARDINAL ~ 1];

AppendChar appends one or more copies of the text character char to the specified
TextContainer. nToAppend specifies the number of copies of the character that are to be
appended; fontProps specifies the character properties.

AppendColumnBreak: PROC (
to: Doc, fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ~NIL];

AppendColumnBreak appends a column break character to a document. fontProps are the
properties of the column break character; these properties do not affect the appearance of
the character itself, but they do affect the properties that succeeding characters will

72-7

72

72-8

Docln terchangeDefs

inherit. Note: this operation is obsolete, but still supported. We recommend using
AppendBreak instead. .~

AppendField: PROC [
to: TextContainer,
fieldProps: DoclnterchangePropsDefs.Readon I yFieldProps,
fontProps: DoctnterchangePropsDefs.ReadonlyFontProps ... NIL]
RETURNS [field: Field];

AppendField appends a field to the specified TextContainer. AppendField returns a field~
the client can then add information to the field by using the Field as the TextContai ner in
other calls to Append'" routines (but not AppendField again.) When the client is through
with the field, it must release it via ReleaseField. See section 72.2.2.3.

Note that the client cannot set the fill-in order of the fields when they are appended to the
document. This may be done via AppendltemToFilllnOrder, which is described in section
72.2.5.

AppendNewParagraph: PROC [
to: TextContainer,
paraProps: DoclnterchangePropsDefs.ReadonlyParaProps ... NIL,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ... NIL,
nToAppend: CARDINAL ... 1];

AppendNewParagraph appends one or more new paragraph characters to a TextContainer
object. nToAppend ~pecifies the number of characters to be appended. paraPropsand r-fIII!\
fontProps specify the properties for the paragraph. If paraProps is NIL, the new paragraph
inherits the props of the previous paragraph; otherwise, paraProps determines the
properties of the paragraph.

Note that TextConta.iners always contain at least one newParagraph character. The client
does not have to provides these initial newParagraph characters; Ooclnterchange
implementation supplies them as required. (see the end of section 72.2.1)

AppendPageBreak:PROC[
to: Doc, fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ... NIL];

AppendPageBreak appends a page break character to the text of a document. The
fontProps do not affect the appearance of the page break character itself, but they do affect
the properties that succeeding characters will inherit. Note: this operation is obsolete, but
still supported. We recommend using AppendBreak instead.

AppendPFC: PROC [
to: Doc,
pageProps: DoclnterchangePropsDefs.ReadonlyPageProps,
wantHeadingHandles, wantFootingHandles: BOOl ... FALSE,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps ... Nil]
RETURNS [

leftHeading, rightHeading: Heading,
leftFooting, rightFooting: Footing]; ~,

ViewPoint Programmer's Manual 72

AppendPFC appends a page format character to the main document text.

pageProps specify the properties for the new page. The client must ensure that the page
margins leave at least one inch (72 points) for text. That is, (left margin + right margin + 72
< • page width), and (top margin + bottom margin + 72 < • page height).

The heading and footing handles that are returned will be NIL unless the client specified
wantHeadingHandles or wantFootingHandles = TRUE.

If the heading and footing handles are valid, the client can then use them as
TextContainers for further calls with Append* procedures. If the headers are to be the
same on left and right pages, only leftHeading need contain the heading; rightHeading
should be NIL. The same rule applies for leftFooting and rightFooting.

When creating a heading or footing, the client should note that there are no automatic
positioning parameters for information in headers and footers; the client must call the
appropriate Append* procedures to add the desired text and position it with standard text
formatting, such as white-space characters, paragraph alignment, leading, line height, and
tabs.

Additionally, there is no page number pattern; the client must place any surrounding text
directly in the heading/footing text, inserting the # character at the position(s) where a
page number is desired. (Note that there is a procedure,
DoclnterchangePropsDefs.GetPageNumberDelimiter, that returns this character.)

The client must later free every non-NIL heading or footing with a call to ReleaseHeadi ng or
ReleaseFooti ng.

AppendText: PROC [
to: TextContainer,
text: XString.Reader, _
textEndContext: XString.Context,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps +- NIL];

AppendText appends the text with the specified properties to the TextContainer. For
efficiency, the client should pass the appropriate textEndContext if it is known (just like
XString.AppendReader). text may not contain newParagraph characters ([set: 0, code:
35B». Use AppendNewParagraph to append these.

AppendTile: PROC [
to: TextContainer,
type: Atom.ATOM,
data: LONG POINTER +- NIL,
fontProps: OoclnterchangePropsOefs. Readen I yFontPreps +- NIL]
RETURNS [tile: Tile];

AppendTile is for future use. The tile type and data format are defined elsewhere, agreed
upon by parties on either side of this interface.

72 - 9

72 DocInterchangeDefs

72.,2.2.3 Releasing storage

ReleaseCaption: PROC [eaptionPtr: LONG POINTER TO Caption];

ReleaseField: PROC [fieldPtr: LONG POINTER TO Field];

ReleaseHeading: PROC [headingPtr: LONG POINTER TO Heading];

ReleaseFooting: PROC [footingPtr: LONG POINTER TO Footing];

ReleaseTile: PROC [tilePtr: LONG POINTER TO Tile];

ReleaseSpare1: PROC [ptr: LONG POINTER TO SpareTC];

ReleaseSpare2: PROC (ptr: LONG POINTER TO SpareTC];

ReleaseSpare3: PROC [ptr: LONG POINTER TO SpareTC];

ReleaseSpare4: PROC [ptr: LONG POINTER TO SpareTC];

The client must call ReleaseCaption, ReleaseField, ReleaseFooting, ReleaseHeading,
ReleaseTile. or ReleaseSpare to release resources associated with- any non-NIL handle
obtained from any Append' procedure.

After calling Release*, the handle will be invalid. To help prevent use of an invalid handle,
the Release' routines take a pointer to the handle, and set the handle itself to NIL. (This is ~
similar to Mesa's FREE operation.)

72.2.2.4 Finalizing a document

FinishCreation: PROC [
doePtr: LONG POINTER TO Doe,
eheekAbortProc: CheekAbortProc NIL,
eheekAbortClientOata: LONG POINTER NIL]
RETURNS [

docFile: NSFile.Handle,
session: NSFile.Session,
status: FinishCreationStatus];

When the document is complete, the client must call FinishCreation to finalize the
document and release the Doe handle. FinishCreation returns an NSFile.Handle to the
newly-created document, an NSFile.Session, and a status. The file handle is valid in the
returned NSFile session. The session returned will be the default session if the client
called FinishCreation normally (not by a forked background process). If StartCreation was
called by a forked background process, then the returned session will be a private session
created by StartCreation. The client must kill this private session by calling
NSFile.Logoff[session] after it's finished processing the document file. The document that
FinishCreation provides will be in paginated form if the client so specified in StartCreation.

CheekAbortProe: TYPE :I PROC [clientData: LONG POINTER] RETURNS [abort: BOOL];

72-10

ViewPoint Programmer's Manual 72

If the client specified a checkAbortProc, then a call-back procedure will be invoked before
the call to FinishCreation returns; this call-back can abort the document's completion.
checkAbortClientData is a client defined argument and is passed into the call-back
procedure.

FinishCreationStatus: TYPE. MACHINEDEPENDENT{ok(O),
aborted, okButNotEnoughDiskSpaceToPaginate, okBuNotEnoughVMToPaginate,
okButUnknownPaginateProblem, firstAvaiiable, lastAvailable(255)};

FinishCreation also returns a status code, which can have any olthe following values:

aborted do not complete the document.

okButNotEnoughDiskSpaceToPaginate,
okBuNotEnoughVMToPaginate,
okButUnknownPaginateProblem the document is fmished but left unpaginated

This document file is temporary, and will be purged from the NSFile system if a rE!"boot
occurs before.it is made permanent. To make the file permanent, the client should call
move it to the current user desktop with NSFile. Move, followed by a call to
StarDesktop.AddReference to put the icon on the display. (See section 72.3 for an example of
this.)

AbortCreation: PRocJdocPtr: LONG POINTER TO Doc];

AbortCreation aborts document creation and deallocates the storage associated with that
document. AbortCreation will kill the private session if StartCreation was called by a .
background process, so the client should not call NSFile.Logoff[session] after having called
AbortCreation.

72.2.2.5 Utilities

The following procedures are utilities that may be of use to the client creating a document.

GetModeProps: PROC [doc: Doc, modeProps: DoclnterchangePropsDefs.ModeProps];

SetModeProps: PROC [
- doc: Doc,

modeProps: DoclnterchangePropsDefs.ReadonlyModeProps,
selections: OoclnterchangePropsDefs.ModeSelections];

Get or set the mode properties for the document; these procedures may be called at any
time. When setting mode properties, only those properties designated by TRUE selections
will be changed.

SetCurrentParagraphProps: PROC [
textContainer: TextContainer,
paraProps: DocinterchangePropsDefs. Readonl yParaProps];

SetCurrentParagraphProps can be called at any.time, such as in the middle of a paragraph
or (even if it makes no sense) repeatedly with different properties. If it is called repeatedly

72 - 11

72 Doc In terchange Defs

in the same paragraph, only the most recent call will remain in effect. The client can call
this procedure on any TextContainer, including a document. ~,

SetCurrentParagraphProps affects the entire current paragraph, including any portion not
yet appended at the time it is called. The properties also affect all subsequent paragraphs
unless the client overrides the properties with new ones passed to AppendNewParagraph,
or by another call to SetCurrentParagraphProps.

Note, however, that setting paragraph properties on a TextContainer will cause an error if
that TextContainer does not contain any paragraph characters. Although ooclnterchange
does guarantee that every TextContainer will contain at least one new paragraph
character, those paragraph characters are added (if necessary) during the Append'"
routines. Thus, calling SetCurrentParagraphProps before calling any Append'" routines
will cause an error. To avoid this problem, the client can simply call AddNewParagraph to
ensure that the TextContainer does have a paragraph character. Since the Append'"
routines only add a new paragraph if necessary, this will not cause duplication.

72.2.3 Enumerating documents

72.2.3.1 Open

Open: PROC[
docFileRef: NSFlIe.Reference,
session: NSFile.Session +-NSFile.nuIiSession,
password: XString.Reader +- NIL]
RETURNS [doc: Doc, status: OpenStatus);

To enumerate a document, the first step is to call Open. Open takes a NSFile.Reference for a
file and opens it for reading in the NSFiling session specified by the session argument. The
client should then pass Doc returned to Enumerate, which will parse the document. Open
(and all subsequent reading operations on the Doc) may be called either normally or by a
forked process running in the background. Note that while background enumeration is
allowed, the client may have only one process accessing a particular document at a time,
All reading operat~ons execute normally in a forked process. If session is defaulted,
NSFile.GetDefaultSession[] will be used.

password is provided in anticipation of future password-locking of documents. password is
currently ignored.

OpenStatus: TYPE. MACHINE DEPENDENT {
ok(O), malFormed, incompatible, notLocal, outOfDiskSpace, outOfVM, busy,
invalidPassword, firstAvaiiable, lastAvailable(255)};

Open also returns a status code, which can have any of the following values:

ok

malFormed

incompatible

Everything was fine

The Document is inconsistent internally.

The document is of a version that the VP Document Editor cannot ~
open.

72- 12

ViewPoint Programmer's Manual

notLocal

outOfDiskSpace

outOfVM

busy

invalidPassword

72.2.3.2 Enumerate

Enumerate: PROC [

The document is not on the workstation, so it cannot be opened.

There isn't enough disk space to open the document.

There isn't enough contiguous virtual memory.

Another process is using the file (e.g. background pagination).

The user does not have the credentials to open the document.

textContainer: TextContainer,
procs: EnumProcs,
clientData: LONG POINTER +- NIL]
RETURNS [dataSkipped: BOOL];

72

Enumerate parses the contents of the specified TextContainer. The client may pass a NIL
value as the textContainer--that call to Enumerate will do nothing. (NIL textContainers
may be passed to the client; the client need not check for NIL before attempting to
enumerate one. This does not imply, however that non-NIL textContainers have any
~ontent--they may be empty yet have a non-NIL ~andle ..)

procs is a record that contains client-defined callback procedures to enumerate the various
kinds of structures that can be found in a TextContainer.

dataSkipped will be TRUE if Enumerate encountered an object that it didn't recognize, or if it
encountered an object for which a client call-back procedure was not supplied.

EnumProcs: TYPE :II LONG POINTER TO EnumProcsRecord;

EnumProcsRecord: TYPE :II RECORD [
anchoredFrameProc: AnchoredFrameProc +- NIL,
columnBreakProc: ColumnBreakProc +- NIL,
fieldProc: FieldProc +- NIL,
newParagraphProc: NewParagraphProc +- NIL,
pageBreakProc: PageBreakProc +- NIL,
pfcProc: PFCProc +- NIL,
textProc: TextProc +- NIL,
tileProc: TileProc +- NIL,
spare1 Proc: SpareProc +- NIL,
spare2Proc: SpareProc +- NIL,
spare3Proc: SpareProc +- NIL,
spare4Proc: SpareProc +- NIL];

Each of the procedures in an EnumProcsRecord takes as parameters the properties of the
structure and its content when appropriate. Note that the storage for the properties passed
to these procedures is temporary; the client must explicitly copy any properties it wishes to
save. For a description of the various properties, see the corresponding Append'" routines.

spare1 Proc, if not NIL, will be called for all break characters. Its data parameter should be
LOOPHOLEd into a ReadonlyBreakPropsForEnum (currently defined in
OocinterchangeExtra10efs). columnBreakProc and pageBreakProc are obsolete, but still
supported. If spare1Proc is not NIL, then both columnBreakProc and pageBreakProc must

72 -13

72

72-14

Doc Interchange Defs

be. Conversely, if either columnBreakProc or pageBreakProc is not NIL, then spare1 Proc
must be. We recommend using spare1 Proc for enumerating break characters, as it is more ~
robust.

AnchoredFrameProc: TYPE • PROC [
clientData: LONG POINTER,
type: AnchoredFrameType,
anchorFontProps: DoclnterchangePropsOefs.ReadonlyFontProps,
anchoredFrame: Instance,
anchoredFrameProps: OOclnterchangePropsOefs.ReadonlyFrameProps,
content: Instance,
topCaption,
bottomCaption,
leftCaption,
rightCaption: Caption]
RETURNS [stop: BOOL +- FALSE];

ColumnBreakProc: TYPE • PROC [
clientData: LONG POINTER,
fontProps: OoclnterchangePropsDefs.Readonl yFontProps]
RETURNS [stop: BOOL +- FALSE];

FieldProc: TYPE • PROC [
clientData: LONG POINTER,
fontProps: OoclnterchangePropsDefs.ReadonlyFontProps,
fieldProps: OoclnterchangePropsDefs.ReadonlyFieldProps,
field: Field]
.RETURNS [stop: BOOL +- FALSE];

NewParagraphProc: TYPE • PROC [
clientData: LONG POINTER,
fontProps: DoclnterchangePropsDefs. Readon Iy FontProps,
paraProps: OoclnterchangePropsDefs.ReadonlyParaProps]
RETURNS [stop: BOOL +- FALSE];

PageBreakProc: TYPE • PROC [
clientData: LONG POINTER,
fontProps: OoclnterchangePropsDefs. Readon I yFontProps]
RETURNS [stop: BOOL +- FALSE];

PFCProc: TYPE. PROC [
clientData: LONG POINTER,
fontProps: DoclnterchangePropsDefs. Readon Iy FontProps,
pageProps: DocinterchangePropsDefs. Readon I yPageProps,
leftHeading, rightHeading: Heading,
leftFooting, rightFooting: Footing]
RETURNS [stop: BOOL +- FALSE];

In a PFCProc, if the headers are the same on left and right pages, only leftHeading will
contain the heading; rightHeading will be NIL. (Of course, leftHeading can be NIL if it has no .~
content.) The same rule applies for leftFooting and rightFooting.

ViewPoint Programmer's Manual

TextProc: TYPE • PROC [
clientData: lONG POINTER,
fontProps: DocinterchangePropsDefs.ReadonlyFontProps,
text: XString.Reader,
textEndContext: XString.Context]
RETURNS [stop: BOOl FALSE];

72

In a TextProc, textEndContext will always be accurate; it will never be
XString.unknownContext.

TileProc: TYPE. PROC [
clientData: lONG POINTER,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps.
type: Atom.ATOM,
data: lONG POINTER,
~ile: Tile]
RETURNS [stop: BOOl FALSE];

SpareProc: TYPE. PROC [
clientData: lONG POINTER,
data: lONG UNSPECIFIED]
RETURNS [stop: BOOl FALSE];

As it encounters an object of a particular type, Enumerate will call the appropriate
procedure. If the client defaults a particular procedure, Enumerate will ignore any objects
of that type'.

Each procedure has a stop return parameter; the enumeration will stop if stop ever has the
value TRUE. Some of the procedures also have a TextContainer handle as a parameter; the
client can use this TextContainer recursively in other calls to Enumerate to obtain the
contents of the TextContainer.

The clientData pointer passed in to Enumerate is passed to the callback procedures
invoked by (that call to) Enumerate. (The clientData may be different at different
recursion levels, of course.)

The handle (header, caption, etc.) supplied to the client in the call-back is readonly and is
valid only during the call-back's invocation; the client is not reponsible for releasing this
handle. It is possible for such a handle to be Nil; a Nil handle means that the corresponding
object has no text content.

Note that the enumeration does include the initial paragraph (and possible page format
characters) that every TextContainer has. Thus, when copying a document into a new
document, the client should be careful to avoid copying the initial paragraph and page
format characters and then appending some more initial ones, since that would cause
duplication.

72.2.3.3 Close

Close: PROC [docPtr: lONG POINTER TO Doc];

72 - 15

72 DocIn terchangeDefs

When" through with an enumeration, the client should call Close, which releases storage
associated with the Doc handle and sets the Doc handle to NIL.

72.2.4 Errors

Error: ERROR [why: ErrorCode];

ErrorCode: TYPE • MACHINE DEPENDENT {

containerFull(O), documentFull, readonlyDoc, outOfDiskSpace, outOfVM,
objectlllegalinContainer, badParameter, unimplemented, firstAvailable.
lastA vai lable(255)};

Any of the Append· procedures can raise an error, which can be one of the following types:

containerFuli there is no more room to append to this container.

documentFull . no more room in the document.

readonlyDoc document opened in ReadOnly mode.

outOfDiskSpace not enough disk space for the operation.

outOfVM not enough virtual memory for the operation.

objectiliegalinContainer attempted to add an object to a container that does not support

badParameter

unimplemented

that object type.

one of the arguments specified was invalid in this. context.­

this function is not supported.

Do not call any Interchange operations from within a catch phrase of Error.

72.2.5 Fill-in Order

DocinterchangeDefs provides procedures to append, enumerate, and clear the fill-in order
offields and tables. "

AppendltemToFillinOrder: PROC [

doc: Doc,
filllnOrderltemName: XString.Reader,
itemType: FilllnOrderltemType];

doc is the document that contains the field or table.

filllnOrderltemName is the name of the object being added to the fill-in order.

FilllnOrderltemType: TYPE a MACHINE DEPENDENT {

field(O), table, firstAvailable, lastAvaiiable(255)};

FilllnOrderltemType specifies the type of object that will be added to the fill-in order.

EnumerateFillinOrder: PROC [

doc: Doc,

72-16

ViewPoint Program,mer's Manual

proc: FillinOrderProc,
clientData: LONG POINTER +-NIL];

FilllnOrderProc: TYPE. PROC [

cI ientData: LONG POINTER,

fi III nOrderltemName: XString.Reader,
itemType: FililnOrderltemType]
RETURNS [stop: BOOL ~ FALSE];

72

proc is a call-back procedure that is invoked once for each object in the fill-in order. The
arguments passed into proc include the name of the enumerated object as well as its type.
The FilII norderProc can return stop = TRUE to halt the enumeration.

clientData is client defined data that is passed to proc.

ClearFililnOrder: PROC [doc: Doc];

Clear the fill-in order for the entire document.

72.3 Usage/Examples

Here is an example of both enumeration and creation. This program adds two commands to
the Attention Window: ~Copy Most of D~c (Forked)" and "Copy Most of Doc (Notifier)".
When called, these commands check to see u: the current selection is a document. If it is,
then the program enumerates the contents of that document and copies the information
into a new document.

DIRECTORY
... ,

DocExample: PROGRAM IMPORTS ... , DocinterchangeDefs, ... = {

-- Types

DICtxtHandle: TYPE = LONG POINTER TO DICtxt;
DICtxt: TYPE = RECORD [.

sourceDoc, targetDoc: DocinterchangeDefs.Doc,
ignoreNewPar, ignorePFC, aborted, error: BOOLEAN];

< < A DICtxtHandle is passed as C/ientData to procs cal/ed by
DoclnterchangeDefs.Enumerate. > >

< < The fol/owing types are used to hold copied heading or footing text. > >
HeadFootText: TYPE = LONG POINTER TO HeadFootTextRec;
HeadFootTextRec: TYPE = RECORD [

length: CARDINAL, list: SEQUENCE maxLength: CARDINAL OF ChunkRec1;
ChunkRec: TYPE = RECORD [

fontProps: Doc I nterchangePropsDefs. F ontPropsRecord,
v: SELECT type: * FROM

np = > [paraProps: DocinterchangePropsDefs.ParaPropsRecord],
text = > [rb: XString.ReaderBody, textEndContext: XString.Context],
ENDCASE1;

-- Constants

72 - 17

72

72-18

DocIn terchange Dels

z: UNCOUNTED ZONE = BWSZone.shortLifetime;

- Variables

diEnumProcsRec: DoclnterchangeDefs.EnumProcsRecord Eo- [

anchoredFrameProc: AppendAnchoredFrameToTargetDoc,
fieldProc: AppendFieldToTargetDoc,
newParagraphProc: Append NewParTo TargetDoc, pfcProc: AppendPFCT 0 TargetDoc,
textProc: AppendTextToTargetDoc, spare 1 Proc: AppendBreakToTargetDoc];

di EnumProcs: DoclnterchangeDefs. EnumProcs = @diEnumProcsRec;

- Copy contents of current selection to new doc.
MakeDoc: PROC [docFileRef: NSFile.Reference, background: BOOl] = {

nameRB: XString.ReaderBody Eo-

XString.FromSTRING["Copying Most of DOC"L, TRUE];

CallBack: BackgroundProcess.CallBackProc = {
sourceDoc: DoclnterchangeDefs.Doc;
openStatus: DoclnterchangeDefs.OpenStatus;
« Use a private session when enumerating source doc so that user can't select

and open the document while we're reading it.»
sourceDocSession: NSFile.Session =

(IF background THEN NSFile.Logon[
Atom.GetProp[
Atom.MakeAtom[ICurrentUser"l],
Atom.MakeAtom["ldentityHandle"l)] i .value]
ELSE NSFile.GetDefaultSession[]); ,~

finalStatus Eo- quietSuccess;
[sourceDoc, openStatus] Eo-

DoclnterchangeDefs.Open[docFileRef, sourceDocSession];
IF openStatus = ok THEN { -- source ok, attempt to copy contents.

targetDoc: DoclnterchangeDefs.Doc;
diCtxt: DICtxt;
docFile: NSFile.Handle;
targetDocSession: NSFile.Session;
fontProps: Dod nterchangePropsDefs. FontPropsRecord;
paraProps: DodnterchangePropsDefs.ParaPropsRecord;
page Props : Dod nterchangePropsDefs. PageProps Record;
sourceLeftHeadi ng, sourceRightHeadi ng,
sourceLeftFooti ng, sourceRightFooti ng: Head FootText;
targetLeftHeading, targetRightHeading: DoclnterchangeDefs.Heading;
targetLeftFooting, targetRightFooting: DodnterchangeDefs.Footing;

CheckAbort: OoclnterchangeDefs.CheckAbortProc = {
abort Eo- diCtxt.aborted Eo- BackgroundProcess. UserAbort(];
IF abort THEN BackgroundProcess.ResetUserAbort(];
};

- start of "openStatus = ok" code
{
GetlnitialDocProps[

docFileRef, sourceDoc, sourceDocSession, @fontProps, @paraProps,
@pageProps, @sourceLeftHeading, @sourceRightHeading,
@sourceLeftFooting, @sourceRightFooting, z];

[targetDoc, targetLeftHeading, targetRightHeading,
targetLeftFooting, targetRightFooting,] Eo-

ViewPoint Programmer's Manual

Docl nterchange Defs. S tartCreati on [
paginateOption: simple,
wantHeadingHandles: «sourceLeftHeading # NIL)
OR (sourceRightHeading # NIL»,
wantFootingHandles: «sourceLeftFooting # NIL)
OR (sourceRightFooting # NIL»,
initial FontProps: @fontProps, initial ParaProps: @paraProps,
initialPageProps: @pageProps);

IF targetLeftHeading # NIL THEN
CopyHeadFootings[

sourceLeftHeading, sourceRightHeading, sourceLeftFooting,
sourceRightFooting, targetLeftHeading, targetRightHeading,
targetLeftFooti ng, targetRi ghtFooti ng];

FreeHeadFootText[@sourceLeftHeading, z];
FreeHead FootText[@sourceRightHeading, z];
FreeHeadFootText[@sourceLeftFooting, z1;
FreeHeadFootText[@sourceRightFooting, z];
IF paraProps.tabStops.BASE # Nil THEN Z.FREE[@paraProps.tabStops.BASE);
IF pageProps.columnWidths # NIL THEN Z.FREE[@pageProps.columnWidths];
diCtxt ~ [sourceDoc, targetDoc, TRUE, TRUE, FALSE, FALSE];
[] ~ DocinterchangeDefs.Enumerate[

[doe[h: sourceDoc)], di EnumProcs, @diCtxt];
IF diCtxt.error THEN {finalStatus ~ failure; GOTO Aborted};
IF diCtxt.aborted THEN {finalStatus +- aborted; GOTO Aborted};
CopyFillinOrderAndModeProps(sourceDoc, targetDoc);
DoclnterchangeDefs.Close[@sourceDoc];
[docFile, targetDoc5ession,] +- DocinterchangeDefs.FinishCreation[

@targetDoc, CheckAbort]; .
IF NOT diCtxt.aborted THEN

WrapUpFiling[docFileRef, docFile, targetDocSession];
IF background THEN NSFile.Logoff[targetDocSession];
EXITS

};
}

Aborted = > {
DocinterchangeDefs.Close[@sourceDoc];
DoclnterchangeDefs.AbortCreation[@targetDoc1;
};

ELSE {PostOpenError[openStatus]; finalStatus ~ failure; };
IF background THEN {

72

NSFile.Logoff[sourceDoc5ession]; [] ~ Busylcon.MakeUnbusy[docFileRef]; };
}; - CallBack

- start of MakeDoc
IF background THEN {

Process.5etPriority[Process.priorityBackground);
[] +- BackgroundProcess.ManageMe[name: @nameRB, caliBackProc: CallBack];
}

ELSE [] ~ CaIiBack[NIL];
}; -MakeDoc

FreeHeadFootText: PROC [
hf: LONG POINTER TO HeadFootText, zone: UNCOUNTED ZONE] = {
IF hf i # Nil THEN {

FOR i: CARDINAL IN [O .. hf.length) DO
WITH hfBound: hf.list[i] SELECT FROM

72 - 19

72

72-20

DocIn terchangeDefs

np = >
IF hfBound.paraProps.tabStopS.BASE # NIL THEN

zone.FREE(@hfBound.paraProps.tabStopS.BASE];
text = > XString.FreeReaderBytes[r: @hfBound.rb, z: zone];
ENDCASE;

ENDLOOP;
zone.FREE[hf];
};

}; - FreeHeadFootText

CopyFillinOrderAndModeProps: PROC [
sourceDoc, targetDoc: DoclnterchangeDefs.Doc) = {
modeProps: DoclnterchangePropsDefs.ModePropsRecord;
DoclnterchangeDefs.ClearFilllnOrder[targetDoc);
DoclnterchangeDefs.EnumerateFilllnOrder(

sourceDoc, AddToFilllnOrder, targetDoc);
DoclnterchangeDefs.GetModeProps[sourceDoc, @modeProps];
DoclnterchangeDefs.SetModeProps[

targetDoc, @modeProps, [
structureShowing: TRUE, nonPrintingShowing: TRUE,
coverSheetShowing: TRUE, promptFields: TRue]];

}; - CopyFillinOrderAndModeProps

CopyHeadFootings: PROC [
sourceLeftHeading, sourceRightHeading, sourceLeftFooting, sourceRightFooting:

Head FootText,' .
. targetLeftHeading, targetRightHeading: DoclnterchangeDefs.Heading, ~,

targetLeftFooting, targetRightFooting: DoclnterchangeDefs.Footing] = {
targetTC: DoclnterchangeDefs.TextContainer ~ [spare 1 [0]];

HitNP: DoclnterchangeDefs.NewParagraphProc = {
DoclnterchangeDefs.AppendNewParagraph[

to: targetTC, paraProps: paraProps, fontProps: fontProps];
}; - HitNP

HitText: DoclnterchangeDefs.TextProc = {
. DoclnterchangeDefs.AppendText[

to: targetTC, text: text, textEndContext: textEndContext,
fontProps: fontProps];

}; - HitText

EnumerateHeadFoot: PROC [hf: HeadFootText] = {
IF hf # NIL THEN {

FOR i: CARDINAL IN [O .. hf.length) DO
WITH hfBound: hf[i] SELECT FROM

np = >
[] ~ HitNP[

clientData: NIL, fontProps: @hfBound.fontProps,
paraProps: @hfBound.paraProps];

text = >
[] ~ HitText[

clientData: NIL, fontProps: @hfBound.fontProps,
text: @hfBound.rb,
textEndContext: hfBound.textEndContext];

ENDCASE;
ENDLOOP;

ViewPoint Programmer's Manual

};
};

- start of CopyHeadFootings
targetTC +- [heading[targetLeftHeading]];
EnumerateHead Foot[sourceLeftHeadi ng];
DoclnterchangeOefs.Releas.eHeading[@targetLeftHeading];
targetTC +- [heading[targetRightHeading]];
EnumerateHeadFoot[sourceRightHeadi ng];
DocinterchangeOefs. Rei easeHead i ng[@targetRightHeading];
targetTC +- [footing[targetLeftFooting]];
Enu merateHead Foot[sou rceLeftFooti ng];
DoclnterchangeDefs.ReleaseFooting[@targetLeftFooting];
targetTC +- [footing[targetRightFooting]];
EnumerateHead Foot[sourceRi ghtFooti ng];
DoclnterchangeDefs.ReleaseFooting[@targetRightFooting];
}; - CopyHeadFootings

PostOpenError: PROC [status: DoclnterchangeDefs.OpenStatus) = {
rb: XString.ReaderBody +-

SELECT status FROM
notLocal = > XString.FromSTRING[lnotLocal"L, TRUE),
outOfDiskSpace = > XString.FromSTRING[lIoutOfDiskSpace"L, TRUE],
outOfVM = > XString.FromSTRING["outOfVMII L, TRUE],
busy = > XString.FromSTRING["busy"L, TRUE],
ENDCASE = > XString.nuIlReaderBody;

Attention.Post[s: @rb);
}; -PostOpenError

-- Copycontents of current selection to new doc.
MakeDocMenuCmdProc: MenuData.MenuProc = {

IF Selection.CanYouConvert(file] THEN {
selValue: Selection.Value +- Selection.Convert[file];
fileRef: NSFile.Reference = LOOPHOLE[seIValue.value, LONG POINTER TO

NSFile.Reference] f ;
IF LOOPHOLE[itemData, LONG CARDINAL] = 0 THEN {

Selection.Clear[];
[] +- Busylcon.MakeBusy[fileRef];
Process.Detach[FORK MakeOo.c[fileRef, TRUE]];
}

ELSE MakeDoc[fileRef, FALse];
}

ELSE UserTerminal.BlinkDisplay[];
}; - MakeDocMenuCmdProc

AddToFilllnOrder: DoclnterchangeDefs.FiIIlnOrderProc = {
targetDoc: DoclnterchangeDefs.Doc = clientData;
DoclnterchangeDefs.AppendltemToFilllnOrder[

targetDoc, filllnOrderltemName, itemType];
}; - AddToFilllnOrder

< < Called when an anchored frame was encountered in the source document.

72

Copies the frame and its contents to the target document. > >
AppendAnchoredFrameToTargetDoc: DocinterchangeDefs.Anchored FrameProc = {

-- use other interfaces here
}; --AppendAnchoredFrameToTargetDoc

72- 21

72

72-22

DocIn terchange Defs

AppendBreakToTargetDoc: DoclnterchangeDefs.SpareProc = {
diCtxt: DICtxtHandle = clientData;
bp: DoclnterchangeExtral Defs.ReadonlyBreakPropsForEnum = data;
Docl nterchange Extra 1 Defs.AppendBreak[

diCtxt.targetDoc, bp.breakProps, bp. fontProps];
}; - AppendBreakTo TargetDoc

AppendFieldToTargetDoc: DoclnterchangeDefs.FieldProc = {
diCtxt: DICtxtHandle = clientData;
procs: DoclnterchangeDefs. EnumProcsRecord Eo- [

newParagraphProc: Append NewParToNewField,
textProc: AppendTextToNewField1;

newField: DoclnterchangeDefs.Field;

AppendNewParToNewField: DoclnterchangeDefs.NewParagraphProc = {
Doclnterchangeoefs.Append NewParagraph [

[field[h:' newField]], paraProps, fontProps]};

AppendTextToNewField: Doclnterchangeoefs.TextProc = {
Doclnterchangeoefs.AppendText[

[field[h: newField]], text, textEndContext, fontProps]};

IF (diCtxt.aborted Eo- BackgroundProcess.UserAbort[]) THEN {
Backgrou nd Process. ResetU ser Abort[]; RETURN[stOP: TRUE]};

newField Eo- ooclnterchangeoefs.AppendField[
[doc(h: diCtxt.targetDocl1, fieldProps, fontProps];

[] Eo- DoclnterchangeDefs.Enumerate[[field(h: field]], @procs1;
oocl nterchangeDefs. Rei ease Fi el d [@newField];
}; - AppendFieldTo TargetDoc

AppendNewParToTargetDoc: Doclnterchangeoefs.NewParagraphProc = {
diCtxt: DICtxtHandle = clientoata;
IF diCtxt.ignoreNewPar THEN diCtxt.ignoreNewPar Eo- FALSE
ELSE

Doclnterchangeoefs.Append NewParagraph [
[doc[h: diCtxt.targetDoc]], paraProps, fontProps);

}; - AppendNewParToTargetDoc

AppendPFCToTargetDoc: Doclnterchangeoefs.PFCProc = {
diCtxt: DICtxtHandle = clientoata;
IF diCtxt.ignorePFC THEN diCtxt.ignorePFC Eo- FALSE
ELSE {

targetLeftHeading, targetRightHeading: Doclnterchangeoefs.Heading;
targetLeftFooting, targetRightFooting: Doclnterchangeoefs.Footing;
procs: Doclnterchangeoefs.EnumProcsRecord Eo- [

newParagraphProc: HitNP, textProc: HitText];
targetTC: Doclnterchangeoefs.TextContainer Eo- [spare1 [0]];

HitNP: DoclnterchangeDefs. NewParagraphProc = {
Doclnterchangeoefs.AppendNewParagraph[

to: targetTC, paraProps: paraProps, fontProps: fontProps];
}; -- HitNP

HitText: oOclnterchangeoefs. TextProc = {
oocl nterchangeoefs.AppendT ext[

ViewPoint Programmer's Manual

to: targetTC, text: text, textEndContext: textEndContext,
fontProps: fontProps);

}; -- HitText

[targetLeftHeading, targetRightHeading,
targetLeftFooting, targetRightFooting] Eo­

DoclnterchangeDefs.AppendPFC[
to: diCtxt.targetDoc, pageProps: pageProps,
wantHeadingHandles: «leftHeading # NIL) OR (rightHeading # NIL»,
wantFootingHandles: ((IeftFooting # NIL) OR (rightFooting # NIL»,
fontProps: fontProps1;

targetTC Eo- [head i ng [targetLeftHead i ng]];
[] Eo- DoclnterchangeDefs.Enumerate[[heading[leftHeading]], @procs];
DoclnterchangeDefs.ReleaseHeading[@targetLeftHeading];
targetTC Eo- [heading[targetRightHeading]];
[] Eo- DoclnterchangeDefs.Enumerate[[heading[rightHeading]], @procs);
DoclnterchangeDefs.ReleaseHeading[@targetRightHeading];
targetTC Eo- [footing[targetLeftFooting]];
[] Eo- DoclnterchangeDefs.Enumerate[[footing[leftFootingl1, @procs];
Docl ntercha ngeDefs. Rei ease Footi ng [@targetLeftFooti ng];
targetTC Eo- [footing[targetRightFooting]];
[] Eo- DoclnterchangeDefs.Enumerate[[footing[rightFootingll, @procs);
DoclnterchangeDefs.ReleaseFo~ting[@targetRightFooting];
};

}; - AppendPFCTo TargetDoc

AppendTextToTargetDoc: DoclnterchangeDefs.TextProc = {
diCtxt: DICtxtHandle = clientData;
IF (diCtxt.aborted Eo- BackgroundProcess. UserAbort(]) THEN {

BackgroundProcess.ResetUserAbort[]; RETURN[stOP: TRUE]; };
Docl nterchange Defs.AppendText(

[doc(h: diCtxt. targetDoc]], text, textEndContext, fontProps];
}; -- AppendTextTo TargetDoc

< < Copy the initial font, para, and page properties of a doc to nodes in z. > >
GetlnitialDocProps: PROC [

docFileRef: NSFile.Reference, sourceDoc: DoclnterchangeDefs.Doc,
session: NSFile.Session, fp: DocinterchangePropsDefs.FontProps,
pp: DoclnterchangePropsDefs.ParaProps,
pagep: DoclnterchangePropsDefs.PageProps,
sourceLeftHeading,sourceRightHeading,
sourceLeftFooting, sourceRightFooting: LONG POINTER TO HeadFootText,
zone: UNCOUNTED ZONE] = {
procs: DocinterchangeDefs.EnumProcsRecord Eo- [

newParagraphProc: HitNewPar, pfcProc: HitPFC];

HitNewPar: DoclnterchangeDefs.NewParagraphProc = {
pp.basicProps Eo- paraProps.basicProps;
pp.spare1 Eo- 0;
IF paraProps.tabStops.LENGTH = 0 THEN pp.tabStops Eo- DESCRIPTOR[NIL, 0]
ELSE {

Storage: TYPE = RECORD [
SEQUENCE COMPUTED CARDINAL OF DoclnterchangePropsDefs. TabStop];

pp.tabStops +- DESCRIPTOR[
zone.NEw[Storage [paraProps.tabStops.LENGTH)),
paraProps.tabStops.LENGTH];

72

72 - 23

72

72-24

DocInterchangeDefs

FOR ix: CARDINAL IN [O .. paraProps.tabStopS.LENGTH) DO
pp.tabStops(ix] Eo- paraProps.tabStops[ix]; ENDLOOP;

};
}; - HitNewPar

HitPFC: DoclnterchangeDefs.PFCProc = {
fp f lit- fontProps f ;
pagep f lit- pageProps f ;
IF pageProps.unequalColumnWidths THEN {

length: CARDINAL = pageProps.columnWidths.Jength;
pagep.columnWidths lit- ZOne.NEW[

DoclnterchangePropsDefs . Col um nWidthsRecord [I ength]];
FOR i: CARDINAL IN [O . .IengthJ 00

pagep.columnWidths.widths[i] lit- pageProps.columnWidths.widths[i];
ENDLOOP;

pagep.columnWidths.length Eo-Iength;
pagep.columnWidths.sparel Eo- pagePr'ops.columnWidths.sparel;
}

ELSE pagep.columnWidths Eo- NIL;
{
procs: DoclnterchangeDefs.EnumProcsRecord Eo- [

newParagraphProc: Local NPProc, textProc: LocaITextProc];
targetHF: LONG POINTER TO HeadFootText Eo- NIL;

GrowHF: PROC [hf: LONG POINTER TO HeadFootText) ;: {
IF hf f = NIl.: THEN {hf f +- zone.NEw[HeadFootTextRec [5]]; hf.length Eo- O}
ELSE

IF hf.length = hf.maxLength THEN {
new: HeadFootText = zone.NEw(HeadFootTextRec [hf.length + 5]];
new.length If- hf.length;
FOR i: CARDINAL IN [O .. hf.length) 00 new.list[i) If- hf.list[i); ENDLOOP;
zone.FREE[hf];
hff If-new;
};

}; -GrowHF

Local NPProc: DoclnterchangeDefs. NewParagraphProc = {
GrowH F[targetH F);
targetHF.list[targetHF.length] lit- [

fontProps: fontProps f , v: np[paraProps: paraProps f]];
WITH hfBound: targetHF.Jist[targetHF.length] SELECT FROM'

np = > {
IF paraProps.tabStops.LENGTH = 0 THEN

. hfBound.paraProps.tabstops If- DESCRIPTOR[NIL, 0]
ELSE {

Storage: TYPE = RECORD [
SEQUENCE COMPUTED CARDINAL OF
DoclnterchangePropsDefs.TabStop);

hfBound.paraProps.tabStops If- DESCRIPTOR[
zone. NEW [Storage [paraProps. tabstops. LE NGTH]],
paraProps.tabStops.LENGTH1;

FOR IX: CARDINAL IN [O .. paraProps.tabStopS.LENGTH) 00
hfBound.paraProps. tabstops[ix] If- para Props. tabStops[ix];

};
};

ENDLOOP;

~'

ViewPoint Programmer's Manual

ENOCASE = > ERROR;
targetHF.length +- targetHF.length + 1;
}; - LocalNPProc

LocalTextProc: DoclnterchangeDefs. TextProc = {
GrowHF[targetHF1;
targetHF.Jist[targetHF.Jength] +- [

fontProps: fontProps f ,
v: text[
rb: XString.CopyToNewReaderBody[r: text, z: zone],
textEndContext: textEndContext]];

targetHF.Jength +- targetHF.length + 1;
}; - LocalTextProc

- start of HitPFC
targetHF +- sourceLeftHeading;
sourceLeftHeading f +- NIL;

. [] +- DoctnterchangeDefs.Enumerate[[heading[leftHeading]], @procs];
targetHF +- sourceRightHeading;
sourceRightHeading f +- NIL;
[] +- DoclnterchangeDefs. Enumerate[[headi ng [ri ghtHead i ng]], @procs];
targetHF +- sourceLeftFooting;
sourceLeftFooting f +- NIL;
[] +- DoctnterchangeDefs. Enumerate[[footing[leftFooti ng]], @procs];
targetHF +- sourceRightFooting;
sourceRightFooting f +- NIL;
[] +- DoclnterchangeDefs.Enumerate[[footing[rightFooting]], @procs];
};
RETURN[stop: TRUE1;
}; -- HitPFC

[] +- DoclnterchangeDefs:Enumerate[[doc[h: sourceDoc]], @procs];
}; - GetlnitialDocProps

< < Change the name of the new document to be the same as the old doc. > >
SetNewDocName: PROC [

oldDoc: NSFile.Reference, newDoc: NSFile.Handle,
newDocSession: NSFile.Session] = {
oldDocFile: NSFile.Handle +- NSFile.OpenByReference[

reference: oldDoc, controls: [lock: share, access: [read: TRUE])];
attRec: NSFile.AttributesRecord;
attArray: ARRAY [0 .. 01 OF NSFile.Attribute;
NSFi I e. GetAttri butes[

file: oldDocFile, selections: [interpreted: [name: TRUE)], attributes: @attRec};
attArray[O] +- [name[value: attRec.name)];
NSFi I e. ChangeAttri butes[

file: newDoc, attributes: OESCRIPToR[attArray], session: newDocSession];
NSFile.Close[oldDocFile1;
NSFiI e. FreeWords[

72

OESCRIPToR[attRec.name.bytes, NSString.WordsForString[attRec.name.length]]1;
}; - SetNewDocName

WrapUpFiling: PROC [
docFileRef: NSFile.Reference, docFile: NSFile.Handle,
targetDocSession: NSFile.Session} = {
ref Doc, refDt: NSFile.Reference;

72 - 25

72

72-26

Doc In terchangeDefs

fileDt: NSFile.Handle;
SetNewDocName[

oldOoc: docFileRef, newDoc: docFile, newDocSession: targetOocSession];
ref Doc +- NSFile.GetReference[docFile, targetDocSession);
refDt +- StarDesktop.GetCurrentDesktopFile[];
fileDt +- NSFile.OpenByReference[refDt, , targetDocSession];
NSFile.Move[docFile, fileDt, , targetDocSession]; - put new doc on Desktop
NSFile.Close[fileDt, targetDocSession];
NSFile.Close{docFile, targetDocSession);
StarDesktop.Add Reference To Desktop [refDoc1;
}; - WrapUpFiling

Init: PROC = {
name: XString.ReaderBody +-

XString.FromSTRING[" Copy Most of Doc (Forked)"L, TRue];
Attention.AddMenultem[

MenuData.Createltem[z, @name, MakeDocMenuCmdProc]];
name +- XString.FromSTRING["Copy Most of Doc (Notifier) OIL, TRue];
Attention.AddMenu Item [

MenuData.Createltem[z, @name, MakeDocMenuCmdProc, 1]];
}; -/nit

-main code
Init[];
}.

ViewPoint Programmer's Manual 72

72.4 Index of Interface Items
~

Item Page Item Page

AbortCreation: PROC 11 Open: PROC 12
AnchoredFrameProc: TYPE 14 OpenStatus: TYPE 12
AnchoredFrameType: TYPE 6 PageBreakProc:TYPE 14
AppendAnchoredFrame: PROC 6 PaginateOption: TYPE 4
AppendAnchoredFrameX: PROC 6 PFCProc: TYPE 14
AppendBreak: PROC 7 ReadonlyBreakProps: TYPE 7
AppendChar: PROC 7 ReleaseCaption: PROC 10
AppendColumnBreak: PROC 7 ReleaseField: PROC 10
AppendField: PROC 8 ReleaseFooting: PROC 10
AppendltemToFilllnOrder: PROC 16 ReleaseHeading: PROC 10
AppendNewParagraph: PROC 8 ReleaseSpare1:PRoc 10
AppendPageBreak:PRoc 8 ReleaseSpare2: PROC 10
AppendPFC: PROC 8 ReleaseSpare3:PRoc 10
AppendText: PROC 9 ReleaseSpare4: PROC 10
AppendTile: PROC 9 ReleaseTile: PROC 10
BreakProps: TYPE 7 SetCurrentParagrapnProps: PROC 11
BreakPropsRecord: TYPE 7 SetModeProps: PROC 11
BreakType: TYPE 7 .SpareProc: TYPE 15
Caption: TYPE 3 SpareTC: TYPE 3·
captionObject: TYPE 3 StartCreation: PROC 4
CheckAbortProc: TYPE 10 StartCreatiortStatus: TYPE 5, ClearFilllnOrder: PROC 17 TextContainer: TYPE 2
Close: PROC 15 TextProc:TYPE 15
ColumnBreakProc: TYPE 14 Tile: TYPE 3
Doc: TYPE 3 TileObject: TYPE 3
OocObject: TYPE 3 TileProc: TYPE 15
Enumerate: PROC 13
EnumerateFillinOrder: PROC 16
EnumProcs: TYPE 13
EnuinProcsRecord: TYPE 13
Error: ERROR 16
ErrorCode: TYPE 16
Field: TYPE 3
FieldObject: TYPE 3
FieldProc: TYPE 14
Fi III nOrderltem Type: TYPE 16
Filii nOrderProc: TYPE 17
FinishCreation: PROC 10
FinishCreationStatus: TYPE 11
Footing: TYPE 3
FootingObject: TYPE 3
GetModeProps: PROC 11
Heading: TYPE 3
HeadingObject: TYPE 3
Instance: TYPE 3
instanceNiI: Instance 3
NewParagraphProc: TYPE 14

--
72 - 27

72 DocIn terchange Defs

72- 28

73

DoclnterchangePropsDefs

7301 Overview

This interface contains procedures and data types used to describe the properties in
documents; it is intended for use with all the *lnterchangeOefs interfaces.

Most records below have spare fields for future use. When specifying values for these, it is
important to use zero·if you do not know of a correct value to use.

73.2 Interface Items

73.2.1 Frame Properties

The chief type in this section is the FramePropsRecord, which describes the properties of an
anchored frame.

FrameProps: TYPE. lONG POINTER TO FramePropsRecord;

ReadonlyFrameProps: TYPE • lONG POINTER TO READONlY FramePropsRecord;

FramePropsRecord: TYPE. RECORD [

borderStyle: BorderStyle,
borderThickness: CARDINAL,

frameOims: FrameOims,
fixedWidth,
fixedHeight: BOOl,

span: Span,
verticalAlignment: VerticalAlignment,
horizontalAlignment: HorizontalAlignment,
topMarginHeight,
bottomMarginHeight,
leftMarginWidth,
rightMarginWidth: CARDINAL,

spare1: lONG CARDINAL];

73 - 1

73

73 - 2

DocIn terchangePropsDefs

BorderStyle: TYPE :II MACHINE DEPENDENT {

invisible(O),solid, dashed, broken, dotted, double, firstAvaiiable, lastAvailable(255)}; ~

borderStyle specifies the characteristics of the lines that make up the frame border.

borderThickness specifies the thickness of the frame border. This value is in units of 1172
inch. Note that borderThickness depends on the borderStyle specified: for double borders
borderThickness can range from 3 to 18 in multiples of 3 points (a "point" is 1/72 inch),
while for all other borderStyfes borderThickness can range from 1 to 6 points.

FrameDims: TYPE. RECORD [w, h: CARDINAL];

frameDims specifies the height and width of the frame. These dimensions are also in units
of 1172 inch.

fixedWidth and fixedHeight indicate whether the frame will expand when necessary.

Span: TYPE :II MACHINE DEPENDENT {partiaIColumn(O),
fullColumn, partialPage, fullPage, firstAvailable, lastAvailable(255)};

span specifies how much of the page the frame occupies. Currently only fuliColumn and
fuliPage are supported.

VerticalAlignment: TYPE • MACHINE DEPENDENT {

top(O), bottom, floating, firstAvailable, lastAvailable(2SS)};

HorizontalAlignment: TYPE ~ MACHINE DEPENDENT {

left(O), centered, right,-floating, firstAvailable, lastAvailable(2SS)};

vertical and horizontalAlignment specify the alignment of the frame relative to the page.

topMarginHeight, bottomMarginHeight, leftMarginWidth, and rightMarginWidth are the
margins of the frame, in units of 1172 inch.

all items marked as spare are for future use.

73.2.2 Page Properties

The chief type in this section is the PagePropsRecord, which describes the various
properties that can be associated with a page in a ViewPoint document.

PageProps: TYPE :II LONG POINTER TO PagePropsRecord;

ReadonlyPageProps: TYPE. LONG POINTER TO READONLY PagePropsRecord;

PagePropsRecord: TYPE • RECORD [

pageDims: PageDims, --layout
topMarginHeight,
bottomMarginHeight,
leftMarginWidth,
rightMarginWidth: CARDINAL,

startingPageSide: PageSide,

~'

ViewPoint Programmer's Manual

bindingMarginWidth: CARDINAL,

nColumns: CARDINAL, -- column structure
balancedColumns, unequalColumnWidths: BOOl,

columnSpacing: CARDINAL,

columnWidths: ColumnWidths,
S1artingPageNumber: CARDINAL, -page numbering
pageNumberFormat: NumberFormat,
restartPageNumbering: BOOl,

startingLineNumber, --line numbering
IineNumberlnterval: CARDINAL,

IineNumberFormat: NumberFormat,
IineNumb~rLocation: LineNumberLocation.
headingStartsOnThisPage, -- heading
headingSameOnLeftRightPages,
footingStartsOnThisPage, -- footi ng
footingSameOnLeftRightPages: BOOl,

spare1: LONG CARDINAL];

PageDims: TYPE. MACHINE DEPENDENT RECORD [~, h: CARDINAL];

PageSide: TYPE • MACHINE DEPENDENT {

nil(O), left, right, firstAvaiiable,lastAvailable(2SS)};

73

pageDims are the width and height of the table, in units of 1172 inch. topMarginHeight,
bottomMarginHeight, leftMarginWidth, and rightMarginWidth describe the page
margins; these values are also in units of 1172 inch. startingPageSide indicates whether
the first page of the document should be a left-hand page ora right-hand page~ nil means
that there is no difference between the two. bindingMarginWidth is the width of the
binding margin, if there is one.

nColumns, balancedColumns, unequalColumnWidth, and columnSpacing determine
column structure. nColumns is the number of columns; balancedColumns specifies
whether the length of the column is equal to the length of the page. unequalColumnWidth
indicates that the columns may have varying widths. columnSpacing is the amount of
space between columns, in units of 1172 inch. A maximum of 50 column widths may be
specified.

ColumnWidths: TYPE • lONG POINTER TO ColumnWidthsRecord;

ColumnWidthsRecord: TYPE. RECORD [

length: CARDINAL,

spare1 : LONG CARDINAL,

widths: SEQUENCE maxLength: CARDINAL OF ColumnWidthRecord];

ColumnWidthRecord: TYPE=- RECORD [

w: CARDINAL,

spare1: LONG CARDINAL];

The ColumnWidthsRecord record contains the number of columns (length) and a sequence
that contains the width of each column. Spare fields are included in both the record and
each of the sequence elements.

73 - 3

73 Doc Interchange PropsDefs

startingPageNumbers, pageNumberFormat, and restartPageNumbering describe the page
numbering properties. startingPageNumber indicates the page number at which the
numbering should start; restartPageNumbering specifies whether renumbering should
restart for this page, or continue from where the last numbering left off.

NumberFormat: TYPE • MACHINE DEPENDENT {

cardinal(O), lowerCaseLetter, upperCaseLetter, lowerCaseRoman,
uppercase Roman, firstAvailable,lastAvaiiable(255)};

pageNumberFormat specifies the format of the page number; currently only cardinal is
implemented.

lineNumberLocation: TYPE. MACHINE DEPENDENT {

leftMargin(O), rightMargin, outerMargin, bothMargins,
firstAvailable,lastAvailable(255)};

startingLineNumber, IineNumberlnterval, lineNumberFormat, and IineNumberLocation
are not currently implemented:

The remaining properties describe headings and footings. headingStartsOnThisPage and
footingStartsOnThisPage indicate whether the designated heading/footing should start on
this page or the next; headingSameOnLeftRightPage and footingSameOnLeftRightPages
specifies whether all pages have the same heading/footing. spare1 is for future use~

~,

73.2.3 Field Properties

73 -4

The chief field property is the FieldPropsRecord, which describes- the properties of a field.

FieldProps: TYPE. lONG POINTER TO FieldPropsRecord;

ReadonlyFieldProps: TYPE • lONG POINTER TO READONlY FieldPropsRecord;

FieldPropsRecord: TYPE • RECORD [

language: MultiNational.Language,
length: CARDINAL,

required: Baal,
skiplf: SkiplfChoiceType,
stopOnSkip: Baal,
type: FieldChoiceType,
filllnRule,
descri ption,
format,
name,
range,
skiplfField: XString.ReaderBody,
filllnRuleRuns: FontRuns,
spare1: lONG CARDINAL];

language determines the format of date and amount fields. There are many formats, so you ~
would have to check the format for each particular language.

ViewPoint Programmer's Manual 73

length specifies the maximum number of logical characters the field may contain.

required indicates whether the user is required to fill in the field. If required is TRUE, the
user will not be able to use NEXT or SKIP to advance to the next field until this field has a
value.

SkiplfChoiceType: TYPE • MACHINE DEPENDENT {

empty(O), notEmpty, never, always, firstAvailable, lastAvailable(255)};

skiplf dermes the conditions under which the field can be skipped when the user presses the
NEXT key. stopOnSkip specifies whether the skipping action should stop at this field or not.

FieldChoiceType: TYPE. MACHINE DEPENDENT {

any(O), text, amount, date, firstAvailable, lastAvailable(2SS)};

type specifies the type of data that can be in'the field. any indicates that the field can
contain any characters, including frames (but not other fields). text indicates that the field
can contain only letters, digits, and symbols entered from the keyboard. amount indicates
that the field can contain only numbers, spaces, and the following symbols: + _ * $, ' o.
date specifies that entries in the field can contain only a date.

filllnRule dermes the fill-in rule for this field.

description is posted for each field entered with the NEXT key if the document is set to
prompt for fields. format controls the format in which information is presented. For a type
of text, this property dermes a reql,lired pattern that must be matched. For a type of
amount or date, this field controls the form in which the contents of the field are presented,
regardless of how the user enters them. For a type of any, the format property is not used.

name is the name of the field. If no name is provided, the field will automatically be named
Fieldn, as in Field!, Field2, and so on.

range dermes a specific range of acceptable entries.

skiplfField contains the name of the field that will appear in the property sheet Skip iffield.

filllnRuleRuns is an auxiliary data structure that the client can attach to the XString.Reader
that describes the fill-in rule for the field. A font run describes the subsequences of
characters within a Reader that have the same font attributes.

73.2.4 Font Properties

The FontPropsRecord is the chief type in this Sec,tion. Section 73.2.4.1 describes the
fontDesc field; section 73.2.4.2 describes the other fields in a FontPropsRecord.

FontProps: TYPE. LONG POINTER TO fontPropsRecord;

ReadonlyFontProps: TYPE. LONG POINTER TO READONLY FontPropsRecord;

FontPropsRecord: TYPE • RECORD [

fontDesc: FontDescription,
offset: INTEGER,

73 - 5

73

73 - 6

DocIn terchangePropsDefs

foregroundBackground: ForegroundBackground,
nUnderlines: CARDINAL,

stri keout: BOOl,

placement: Placement,
toBeDeleted,
revised: BOOl,

width: Width,
spare1: LONGCARDINAL];

73.2.4.1 FontDescription

FontDescription: TYPE. RECORD [

family: Family,
designVariant: DesignVariant,
posture: Posture,
weight: Weight,
pointSize: CARDINAL,

serifness: Serifness,
spare1: LONG CARDINAL];

Family: TYPE • MACHINE DEPENDENT {

century(O), frutiger(1), titan(2), pica(3), trojan(4), vintage(5), elite(6),
letterGothic(7), master(8), cubic(9), roman(10), scientific(11), gothic(12),
bold(13), ocrB(14), spokesman(15), xeroxLogo(16), centuryThin(17),
scientificThin(18), helvetica(19), helveticaCondensed(20), optima(21), .~
times(22), baskervrlle(23), spartan(24), bodoni(25), palatino(26),
caledonia(27), memphis(28), excelsior(29), 0Iympian(30), univers(31),
universCondensed(32), trend(33), boxPS(34), terminal(35), ocrA(36), logo1(37),
log02(38), log03(39), geneva2(40), times2(41), square3(42), courier(43),
futura(44), prestige(45), aLLetterGothic(46), centurySchooIBook(47),
firstUnused(48), lastUnused(510), backstop(511)};

family is the font family.

DesignVariant: TYPE • MACHINE DEPENDENT {

null(O), roman, italic, firstAvaiiable, lastAvaiiable(255)};

designVariant specifies whether the character is roman or italic. null is not currently a
valid value.

Posture: TYPE • MACHINE DEPENDENT {

null{O), upright, slanted, backslanted, firstAvailable, lastAvailable(255)};

posture indicates the slant (stress) of the character, if any. null is not currently a valid
value.

Weight: TYPE ::I MACHINE DEPENDENT {

null(O), ultralight, extraLight, light. semiLight. medium, semi Bold. bold,
extraBold, ultraBold, firstAvailable, lastAvaiiable(255)};

weight is the thickness of the character.

View Point Programmer's Manual 73

pointSize is the size of the font. Note that this value must be in the subrange [0 .. 1023].

Serifness: TYPE :II MACHINE DEPENDENT {

null(O), serif, sansSerif, firstAvailable, lastAvailable(2SS)};

serifness indicates whether or not the character has serifs. null is not currently a valid
value.

spare1 is for future use.

73.2.4.2 The other fields in FontPropsRecord

offset is the offset of the character from the baseline.

ForegroundBackground: TYPE. MACHINE DEPENDENT {

null(O), blackOnWhite, whiteOnBlack, firstAvailable, lastAvailable(~S5)};

foregroundBackground indicates the color of the character relative to the display.

nUnderlines indicates the number of times that the character is underlined; the value must
be in the r~ge [0 .. 2].

strikeout indicates whether or not the character has been struck through.

Placement: TYPE • MACHINE DEPENDENT{

null(O), sub, subSub, stibSuper, super, superSub, superSuper, userSpecified,
firstAvaiiable,lastAvailable(2SS)};

placement indicates the position of the character relative to the line.

toBeDeleted indicates "normal'f text that has been marked for deletion in Redlining mode.

revised indicates text that was typed in while Redlining was on but before finalizing the
Redlined revisions.

Width: TYPE. MACHINE DEPENDENT {

proportional(O). quarter, third, half, threeQuarters, full, firstAvailable,
lastA vai lable(255)};

width is used for Japanese text and should be set to proportional to get normal characters.

73.2.5 Font Runs

FontRuns are used to associate font properties with text. XString provides no facilities for
associating font properties with text; DocinterchangePropsDefs allows the client to create
font information structures that point into XStri ng structures to make the association.

The data structures in this section mark font runs, which are consecutive characters with
the same font. A FontRunsRec describes the font, while a cardinal value describes where
the font starts in the text.

73 -7

73

73 - 8

Docln terchangePropsDefs

In addition, this interface allows the client to enumerate the font runs in a given XString ~

body of text.

Run: TYPE • RECORD [
props: FontPropsRe<ord,
index: CARDINAL,
context: XString.Context,
spare1 : LONG CARDINAL];

A Run indicates the beginning of a font run. props is the field describing the font used in
the font run. index is the byte offset in the byte sequence that holds the text; it is the byte
offset from the beginning of the byte sequence to the byte after the byte run. context is the
XString context describing the next byte run. The context of the first byte run is contained
in the reader body. See the next section for further explanation.

FontRuns: TYPE. lONG POINTER TO FontRunsRec;

FontRunsRec: TYPE. RECORD [
length: CARDINAL,
spare1: lONG CARDINAL,
runs: SEQUENCE maxLength: CARDINAL OF Run];

FontRuns points to FontRunsRec, which is a record containing a sequence of Runs.

EnumerateFontRuns: PRoe [
r: XString.Reader,
runs: FontRuns,
proc: FontRunProc,
clientData: LONG POINTER ~NIL]
RETURNS [stopped: BOOL];

FontRunProc: TYPE • PRoe [
r: XString.Reader,
fontProps: FontProps,
clientOata: lONG POINTER]
RETURNS [stop: BOOl ~ FALSE];

EnumerateFontRuns allows you to perform some action for each font run in an
XString.Reader. FontRunProc is a ca11-back procedure that you pass to EnumerateFontRuns.
If FontRunProc returns stopped • TRUE, the enumeration stops and EnumerateFontRuns
returns stopped • TRUE. clientData is client defined data that you pass to
EnumerateFontRuns, which passes it to FontRunProc every time FontRunProc is invoked.

73.2.5.1 Meaning of Index and Context Fields in Run

As stated earlier, index is the index into the XString of the byte following that run. context
is the XString.Context in effect after that run. Here are two examples:

~:

A ReaderBody with offset = 0, limit = 12, with bytes abcdefghijk/; font runs that describe ~
the first three bytes as fantA, the next four as fontS, and the last five as fonte would be:

ViewPoint Programmer's Manual 73

fontRun 0: [props: fontA, index: 3, context: ... 1
fontRun 1: [props: fonta, index: 7, context: ... 1
fontRun 2: [props: fonte, index: 12, context: ... J

, A ReaderBody with offset = 7, limit = 19, with bytes abcdefghijk/; font runs that describe
the fIrSt three bytes as fantA, the next four as fontS, and the last five as fante would be:

fontRun 0: [props: fantA, index: 10, context: ... J
fontRun 1: [props: fonta, index: 14, context: ...]
fontRun 2: [props: fonte, index: 19, context: ... J

73.2.6 Paragraph Properties

The chief type in this section is the ParaPropsRecord, which describes the possible
paragraph properties.

ParaProps: TYPE. lONG POINTER TO ParaPropsRecord;

ReadonlyParaProps: TYPE. lONG POINTER TO READONLY ParaPropsRecord;

ParaPropsRecord: TYPE. RECORD [

basicProps: BasicPropsRecordr
tabStops: TabStopsr
spare1: LONG CARDINAL];

basicProps describes all standard paragraph properties (those on the Paragraph property
sheet); tabStops describes the current tab settings (the information on the Tab Settings
property sheet).

The following sections describe the BasicPropsRecord and TabStops records in detail.

73.2.6.1 BasicPropsRecord

BasicProps: TYPE. lONG POINTER TO BasicPropsRecord;

ReadonlyBasicProps: TYPE. lONG POINTER TO READONlY BasicPropsRecord;

BasicPropsRecord: TYPE • RECORD [

preLeading,
postLeading,
leftlndent,
rightlndent,
IineHeight: CARDINAL,

paraAlignment: ParaAlignment,
justified,
hyphenated,
keepWithNextPara: BOOl,

language: MultiNational. language,
streakSuccession: StreakSuccession,
defaultTabStopSpacing: DefaultTabStopSpacing,

73 - 9

73

73 - 10

DocInterchangePropsDefs

defaultTabStopAlignment: TabStopAlignment,
spare1 : LONG CARDINAL];

preLeading and postLeading are the spacing before and after the paragraph respectively;
these values are in units of 1172 inch.

leftlndent and rightlndent are the left and right paragraph margins; these values are in
units of 1172 inch:

IineHeight is the default line height for the paragraph; this value is in units of 1172 inch.

ParaAlignment: TYPE • MACHINE DEPENDENT {

left(O), center, right, firstAvailable, lastAvailable(255)};

paraAlignment indicates the alignment of the paragraph relative to the containing text
column or text block.

justified when TRUE, causes the text in the paragraph to stretch to make a straight right
edge.

hyphenated indicates whether the paragraph will be hypenated at the end of lines to
improve justification.

keepWithNextPara indicates whether the pagination operation should attempt to keep this
paragraph on the same page or column as the next one.

language is the language for the paragraph; this information is used for formatting
decimal tabs. It is also used when items are added to the paragraph (e.g., a field inherits
the paragraph language when added to the paragraph).

StreakSuccession: TYPE • MACHINE DEPENDENT {

leftToRight(O), rightToLeft, firstAvailable, lastAvailable(255)};

streakSu(cession specifies whether a "streak" of characters should logically be read from
left to right (e.g. English) or right to left (e.g. Hebrew).

TabStopOffset: TYPE • CARDINAL;

DefaultTabStopSpacing: TYPE. CARDINAL;

defaultTabStopSpacing is the default number of spaces between tabs.

TabStopAlignment: TYPE • MACHINE DEPENDENT {

left(O), center, right, decimal, firstAvailable, lastAvaiiable(255)};

defaultTabStopAlignment is the default alignment for tabs: tabs can be relative to the left
paragraph margin, the center of the paragraph, the right paragraph margin, or decimal
points.

spare1 is for future use.

~,

,~,

~'

ViewPoint Programmer's Manual

73.2.6.2 Tabs

TabStops: TYPE. LONG DESCRIPTOR FOR ARRAY OF TabStop;

TabStop: TYPE • RECORD [

dotLeader: BOOLEAN,

tabStopOffset: TabStopOffset,
tabStopAlignment: TabStopAlignment,
spare1: LONG CARDINAL];

tabStops describes the currently set tabs for the paragraph.

73

dotLeader indicates whether the tab has leader ~ots. tabStopOffset indicates the location
of the tab, relative to the paragraph margin. tabStopAlignment indicates the alignment of
the tab.

Any array of tabstops used to create or modify a document object must be sorted in
increasing order of tabStopOffsets. A tabStopOffset that is equal to a previous one is
ignored. During enumeration, tabstop arrays passed to the client will always be sorted in
this manner. The maximum number of tabstops that may be set in any paragraph is
nTabsMax.

nTabsMax: CARDINAL. 100;

nTabsMax is the maximum number of tabs, that there can be in a paragraph.

73.2.7 Mode Properties

Mode properties describe the commands in the document and auxillary menus of a
ViewPoint document.

ModeProps: TYPE • LONG POINTER TO ModePropsRecord;

ReadonlyModeProps: TYPE. LONG POINTER TO READONLY ModePropsRecord;

ModePropsRecord: TYPE • RECORD [

structu reShowi ng,
nonPrintingShowi ng,
coverSheetShowi ng,
promptFields: BOOL,

spare1: LONG CARDINAL];

structureShowing, nonPrintingShowing, coverSheetShowing, and prornptFields specify
the appearance of the displayed document.

BooleanFalseDefault: TYPE == BOOL ~ FALSE;

ModeSelections: TYPE. PACKED ARRAY ModeElements OF BooleanFalseDefault;

73 - 11

73 DocInterchangePropsDefs

ModeElements: TYPE ~ {

structureShowing, nonPri nti ng Showi ng, coverSheetShowi ng, promptFields,
spare1,spare2,spare3,spare4,spareS,spare6,spare7,spare8};

ModeSelections are used to specify which ModeElements of a document should be acted
upon.

73.2.8 Constants

73 -12

The null*Props constants are declared so that clients may initialize property records with
"neutral" properties. In most cases, e~ch field value is the same as what would be set by the
corresponding Get*PropsDefaults operation (sec 73.2.8).

nuliFrameProps: FramePropsRecord • [
borderStyle: solid,
borderThickness: 2,
frameDims: [72, 72],
fixedWidth: FALSE,

fixedHeight: FALSE,

span: partialColumn,
verticalAlignment: floating,
horizontalAlignment: centered,
topMarginHeight: 0,
bottomMarginHeight: 0,
leftMarginWidth: 0,
rightMarginWidth: 0,
spare1: 0];

nuliPageProps: PagePropsRecord • [
pageDims: [0,0],

" topMarginHeight: 0,
bottomMarginHeight: 0,
leftMarginWidth: 0,
rightMarginWidth: 0,
startingPageSide: left,
bindingMarginWidth: 0,
nColumns: 1,
balancedColumns: FALSE,

unequalColumnWidths: FALSE,

columnSpacing: 0,
columnWidths: NIL"

startingPageNumber: 1,
pageNumberFormat: cardinal,
restartPageNumbering: FALSE,

startingLineNumber: 1,
lineNumberlnterval: 1,
IineNumberFormat: cardinal,
lineNumberlocation: leftMargin,
headingStartsOnThisPage: TRUE,

headingSameOnleftRightPages: TRUE,

footingStartsOnThisPage: TRUE,

ViewPoint Programmer's Manual 73

footingSameOnLeftRightPages: TRUE,
spare1: 0];

~

nuliColumnWidth: ColumnWidthRecord II (

w: 0,
spare1: 0];

nuliFieldProps: FieldPropsRecord • (
language: USEnglish,
length: 0,
required: FALSE,
ski plf: never,
stopOnSkip: FALSE,
type: any,
filllnRule: XString.nuIiReaderBody,
descri ption: XString.null ReaderBody,
format: XString.null ReaderBody,
name: XString.nuIiReaderBody,
range: XString.null ReaderBody,
skiplfField: XString.nuIlReaderBody,
filllnRuleRuns: NIL,
spare1: 0];

nuliFontProps: FontPropsRecord • [
fontDesc: null FontOescri ption,

~
offset: 0,
foregroundBackground: blackOnWhite,
nUnderlines: 0,
strikeout: FALSE,
placement: null,
toBeDeleted: FALSE,
revised: FALSE,
width: proportional,
spare1: 0];

nuliFontDescription: FontDescription II [

family: modern,
designVariant: roman,
posture: upright,
weight: medium,
pointSize: 12,
serifness: sansSerif,
spare1: 0];

nuliRun: Run. [
props: nuliFontProps,
index: 0,
context: XString.unknownContext,
spare1: 0];

J

classic: Family =- century;
......,..

--
73 - 13

73 DocIn terchangePropsDefs

modern: Family. frutiger;

nuliParaProps: ParaPropsRecord • [
basicProps: nuliBasicProps,
tabStops: DESCRIPTOR[NIL, 0),
spare1: 0);

nuliBasicProps: BasicPropsRecord • [
preLeading: 0,
postLeading: 0,
leftlndent: 0,
rightlndent: 0,
IineHeight: 12,
paraAlignment: left,
justified: FALSE,

hyphenated: FALSE,

keepWithNextPara: FALSE,

language: USEnglish,
streakSuccession: leftToRight,
defaultTabStopSpacing: 18,
defaultTabStopAlignment: left,
spare1: 0);

nuliTabStop: TabStop • [
dotLeader: FALSE,

tabStopOffset: 0,
tabStopAlignment: left,
spare1: 0);

nuliModeProps: ModePropsRecord • [
structureShowing: FALSE,

nonPrintingShowing: FALSE,

coverSheetShowi ng: FALSE,

promptFields: FALSE,

spare1: 0);

73.2.9 Default Properties

73 - 14

The Get*PropsDefaults procedures are called to obtain default values for property fields.
These procedures differ from the constants in that they may obtain information from the
user profile. Before calling any of these procedures, the client must declare a record of the
appropriate type and pass its address to the Get*PropsDefaults procedure. None of these
procedures allocate any additional data that the client would later have to free.

GetFramePropsDefaults: PROC [props: FrameProps];

GetPagePropsDefaults: PROC [props: PageProps];

GetFieldPropsDefaults: PROC [props: FieldProps];

GetFontPropsDefaults: PROC [props: FontProps];

ViewPoint Programmer's Manual

GetParaPropsDefaults: PROC [props: ParaProps];

GetModePropsDefaults: PROC [props: ModeProps];

GetPageNumberDelimiter: PROC RETURNS [XChar.Character];

73

73 - 15

73 DoclnterchangePropsDefs

73.3 Index of Interface Items

Item

BasicProps: TYPE
BasicPropsRecord: TYPE
BooleanFalseDefault: TYPE
BorderStyle: TYPE
classic: Family
ColumnWidthRecord: TYPE
ColumnWidths: TYPE
ColumnWidthsRecord: TYPE
DefaultTabStopSpacing: TYPE
DesignVariant: TYPE
EnumerateFontRuns: PROC
Family: TYPE
FieldChoiceType: TYPE
FieldProps: TYPE
FieldPropsRecord: TYPE
FontDescription: TYPE
FontProps: TYPE
FontPropsRecord:TYPE
FontRunProc:TYPE
FontRuns: TYPE
FontRunsRec: TYPE
ForegroundBackground: TYPE
FrameDims: TYPE
FrameProps: TYPE
FramePropsRecord: TYPE
GetFieldProp~Defaults: PROC
GetFontPropsDefaults: PROC
GetFramePropsDefaults: PROC
GetModePropsDefaults: PROC
GetPageNumberDel i miter: PROC
GetPagePropsDefaults: PROC
GetParaPropsDefaults: PROC
HorizontalAlignment: TYPE
LineNumberLocation: TYPE
ModeElements: TYPE
ModeProps: TYPE
ModePropsRecord: TYPE
modern: Family
ModeSelections: TYPE
nTabsMax: CARDINAL
null BasicProps: BasicPropsRecord
nuliColumnWidth: ColumnWidthRecord
nullFieldProps: FieldPropsRecord
nu II FontDescri pti on: FontDescri pti on
nuliFontProps: FontPropsRecord
nuliFrameProps: FramePropsRecord
nuliModeProps: ModePropsRecord

73 -16

Page

9
9

11
2

13
3
3
3

10
6
8'
6
5
4
4
6
5
5
8
8
8
7
2
1
1

14
14
14
15
15
14
15

2
4

12
11
11
14
11
11
14
13
13
13
13
12
14

Item

nuliPageProps: PagePropsRecord
nuliParaProps: ParaPropsRecord
nullRun:Run
nuliTabStop: TabStop
NumberFormat: TYPE
PageDims: TYPE
PageProps: TYPE
PagePropsRecord: TYPE
PageSide: TYPE
ParaAlignment: TYPE
ParaProps: TYPE
ParaPropsRecord: TYPE
Placement: TYPE
Posture: TYPE
ReadonlyBasicProps: TYPE
ReadonlyFieldProps: TYPE
ReadonlyFontProps: TYPE
ReadonlyFrameProps: TYPE
ReadonlyModeProps: TYPE
ReadonlyPageProps: TYPE
ReadonlyParaProps: TYPE
Run: TYPE
Serifness: TYPE
SkiplfChoiceType: TYPE
Span: TYPE
StreakSuccession: TYPE
TabStop: TYPE
TabStopAlignment: TYPE
TabStopOffset: TYPE
TabStops: TYPE
VerticalAlignment: TYPE
Weight: TYPE
Width: TYPE

~,

Page

12
14
13
14

4
3
2
2
3

10
9
9
7
6
9
4

5
1

11
2

~

7
5
2

10
11
10
10
11

2
6
7

~"

74

EquationInterchangeDefs

74.1 Overview

EquationlnterchangeDefs provides utilities for creating and enumerating the content of
anchored equation frames. It is meant to be used in conjunction with DoclnterchangeDefs.

An equation is a container for sub-parts, each of which is either a single object (like a
character or parenthesis) or an object that, like an equation, contains sub-parts itself.
Examples of the latter include fractions~ integrals, and matrices. The data structure that
represents this "thing that contains other things" is the Handle, defined below. A handle is
created by calling StartEquation and is passed to most of the routines in this interface. A
typical scenario for creating a document with an equation frame in it would be:

doc ~ DoclnterchangeDefs.StartCreation[... 1;
h +- StartEquation[doc);
Append ... [h, ...]; - add an object to h. Ref. any Append* routine below.
[equation, ...] ~ FinishEquation[h1;
[...] +- DocinterchangeDefs.AppendAnchored Frame[

to: doc, type: equation, content: equation];
[...] +- DoclnterchangeDefs.FinishCreation[@doc];

All the Append'*' routines defined below add an object to the end of a container's list of
objects.

Most records below have spare fields for future use. When specifying values for these, it is
important to use zero if you do not know of a correct value to use.

74.2 Interface Items

74.2.1 General data types

Handle: TYPE • LONG POINTER TO Object;

Object: TYPE. RECORD [

zone: UNCOUNTED ZONE,

equation: DocinterchangeDefs.l nstance,

74 - 1

74 Equationln terchange Defs

spare1 : LONG CARDINAL.
private: ARRAY [0 •. 0) OF WORD);

The zone is a normal type of scratch zone that will be destroyed when
DocInterchangeDefs .. FinishCreation or DoclnterchangeDefs.AbortCreation has been called on the
document. Clients are free to use this zone for node allocation.

equation uniquely identifies an equation or an equation sub-part within a document.

Looks: TYPE • MACHINE DEPENDENT {normal(O). bold. italic.lastAvaiiable(255)};

Size: TYPE • MACHINE DEPENDENT {
smallest(O). small(1). regular(2).large(3), lastAvaiiable(255)};

EquationCharProps: TYPE • LONG POINTER TO EquationCharPropsRecord;

ReadonlyEquationCharProps: TYPE. LONG POINTER TO READONLY
EquationCharPropsRecord;

EquationCharPropsRecord: TYPE • RECORO [
looks: Looks.
size: Size,
spares: ARRAY [0 •• 8) OFWORO);

74 .. 2..2 Equation creation

74- 2

StartEquation: PROC [doc: DoclnterchangeDefs.Doc) RETURNS [Handle];

Creates a handle that, when passed to FinishEquation, will yield the content of an anchored
equation frame. The content of the frame is to be passed to
DoclnterchangeDefs.AppendAnchoredFrame. See FinishEquation. May raise
DoctnterchangeDefs.Error[documentFull, readonlyDoc. outOfDiskSpace. outOfVM].

EquationProc: TYPE. PROC [h: Handle. c1ientData: LONG POINTER];

Procedures of this type are passed to certain Append'" routines (the routines that create
objects that contain other equation objects). The Equationlnterchange implementation
then calls this procedure back in order to fill in a particular sub-part. The client pr~c
should do this by calling various Append'" routines with the passed handle. See the
Append'" routines.

Side: TYPE. {left. right};

Specifies a side for objects like parentheses, brackets, and braces.

AppendBrace: PROC [h: Handle, side: Side, props: ReadonlyEquationCharProps);

Appends a curly brace to the handle. props.looks should always be normal. May raise
DocinterchangeDefs.Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM,
badParameter) (badParameter ifprops.looks #: normal). ~

AppendBracket: PROC [h: Handle, side: Side, props: ReadonlyEquationCharProps];

View Point Programmer's Manual 74

Appends a square bracket to the handle. props.looks should always be normal. May raise
OocinterchangeOefs.Error(documentFull, readonlyDoc, outOfDiskSpace, outOfVM.
badParameter] (badParameter if props.looks IF norman.

AppendCharacter: PRoe [
h: Handle, character: xChar.Character, props: ReadonlyEquationCharPrQPs];

Appends a character to the handle. May raise OoclnterchanveOefs.Error[documentFull,
readonlyDoc, outOfDiskSpace, outOfVM].

AppendString: PRoe [
h: Handle, string: XStrinv.Reader, props: ReadonlyEquatio'!CharProps];

Appends a string to the handle. Each character of the string is given the designated props.
May raise OoclnterchangeOefs.Error[documentFull, readonlyDoc, outOfDiskSpace.
o~tOfVM].

AppendFraction: PRoe [.
h: Handle, size: Size, numerator, denominator: EquationProc,
clientData: LONG POINTER];

Appends a fraction to the handle. During the call to AppendFraction, numerator and
denominator are called back. Each should rll1 in their respective parts of the fraction via
more Append*' routines (passing the handle that was passed to them). May raise
DocInterchangeOefs. Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM].

IntegralType: TYPE. MACHINE OEPENOENT{
integral(O), Iinelntegral(1), verticaIBar(2), lastAvailable(255)};

Appendlntegral: PROC [
h: Handle, props: ReadonlyEquationCharProps, type: IntegralType,
lowerBound, upperBound: EquationProc, clientData: LONG POINTER];

Appends an integral to the handle. props.looks should always be normal. During the call
to Appendlntegral, lowerBound and upperBound are called back. Each should fill in their
respective parts of the integral via more Append* routines (passing the handle that was
passed to them). May raise OoclnterchangeOefs.Error[documentFull, readonlyDoc,
outOfDiskSpace, outOfVM, badParameter] (badParameter ifprops.looks # norman.

AppendLimit: PRoe [
h: Handle, props: ReadonlyEquationCharProps, range: EquationProc,
clientData: LONG POINTER];

Appends a limit to the handle. props.looks should always be normal. During the call to
AppendLimit, range is called back. It should fill in the range of the integral via more
Append* routines (passing the handle that was passed to range). May raise
oOcinterchangeoefs.Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM.
badParameter] (badParameter if props.looks # norman.

Clearance: TYPE. [-63 .. 64]; -- units are 1172 inch.

74 - 3

74

74-4

EquationlnterchangeDefs

ColumnAlignment: TYPE • MACHINE DEPENDENT {
left(O), right(1), centered(2), decimal(3), lastAvailable(255)};

RowAlignment: TYPE - MACHINE DEPENDENT {
tOp(O), bottom(1), centered(2), onbaseline(3), lastAvaiiable(255)};

NextOrder: TYPE - MACHINE DEPENDENT {byrow(O), bycol(1), lastAvaiiable(255)};

EquationMatrixProps: TYPE - LONG POINTER TO EquationMatrixPropsRecord;

ReadonlyEquationMatrixProps: TYPE - LONG POINTER TO REAOONLY
Equation MatrixPropsRecord;

EquationMatrixPropsRecord: TYPE - RECORD [
size: Size,
ctCols, ctRows: CARDINAL [1 •• 2561,
clearancelnterCol. clearance'nterRow~ Clearance,
rowalignment: RowAlignment,
colalignment: ColumnAlignment,
nextorder: NextOrder,
spare1: LONG CARDINAL];

MatrixCellProc: TYPE- PRoe [
h: Handle, row, column: CARDINAL [1oe256], clientData: LONG POINTER);

AppendMatrix: P"OC [
h: Handle, props: ReadonlyEquationMatrixProps, proc: MatrixCeliProcu

clientData: LONG POINTER);

Appends a matrix to the handle. During the call to App~ndMatrix, proc is called back once
for each cell. The proc should fill in the appropria~e cell of the matrix via more Append'*'
routines (passing the handle that was passed to proc). The client's proc should not assume
it is being called in any particular order relative to other cells in the same matrix. May
raise DocInterchangeDefs.Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM].

AppendOther: PROC [h: Handle, data: LONG UNSPECIFIED, clientData: LONG POINTER];

AppendOther is for future use. It is currently unimplemented.

AppendOverBar: PROC [
h: Handle, size: Size, equation: EquationProc, clientData: LONG POINTER];

Appends an overbar to the handle (this is just a horizontal bar over an equation sub-part).
During the call to AppendOverBar, equation is called back. It should fill in the pieces
underneath the overbar via more Append" routines (passing the handle that was passed to
equation). May raise DoclnterchangeDefs.Error[documentFull, readonlyDoc w

outOfDiskSpace,outOfVM].

AppendParenthesis: PROC [h: Handle, side: Side, props: ReadonlyEquationCharProps];

.~.

.~
;

ViewPoint Programmer's Manual 74

Appends a parenthesis to the handle. props.looks should always be normal. May raise
DOClnterchangeDefs.Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM,
badParameter] (badParameter if props.looks /# normal).

AppendScript: PRoe [
h: Handle, size: Size, base, superScript, subScript: EquationProc,
clientData: LONG POINTER);

Appends a base/superscript/subscript thingy to the han4le. During the call to
AppendScript, base, superScript and subScript are called back. Each should fill in their
respective parts ol the whatsit via more Append'" routines (passing the handle that was
passed to them). May raise DoclnterchangeOefs.Error[documentFull, readonlyDoc,
outOfDiskSpace, outOfVM).

SummationType: TYPE. MACHINE DEPENDENT {
sum(O), product(1), union(2), intersection(3), lastAvaiiable(25S)};

App~ndSummation: PROC [
h: Handle, props: ReadonlyEquationCharProps, type: SummationType,
lowerBound, upperBound: EquationProc, clientData: LONG POINTER];

Appends a summation structure to the handle: props.looks should always be normal.
During the call to AppendSummation, lowerBound and upperBoundare called back.
Each should fill in their respective parts olthe summation sign via more Append'" routines
(passing the handle that was passed to them). May raise
DoclnterchangeOefs.Error[documentFull, readonlyDoc, outOfDiskSpace, outOfVM,
badParameter] (badParameter if props.looks /# normal).

FinishEquation: PROC [h: Handle]
RETURNS [

equation: DoclnterchangeDefs.lnstance,
equationHeight, equationWidth: LONG CARDINAL];

Finishes an equation and returns an instance for its content. This should be passed to the
content parameter of OocInterchangeOefs.AppendAnchoredFrame. equationHeight and
equationWidth are for informative purposes only (they are in 1/72 inch units).

74.2 .. 3 Equation enumeration

BraceProc: TYPE. PROC [
side: Side, props: ReadonlyEquationCharProps, clientData: LONG POINTER]
RETURNS [stop: BOOLEAN ~ FALSE);

BracketProc: TYPE • PROC [
side: Side, props: ReadonlyEquationCharProps, clientData: LONG POINTER]
RETURNS [stop: BOOLEAN ~ FALSE];

CharacterProc: TYPE • PROC [
character: xChar.Character, props: ReadonlyEquationCharProps,
c1ientData: LONG POINTER]
RETURNS [stop: BOOLEAN ~ FALSE];

74 - 5

74 EquationInterchangeDefs

FractionProc: TYPE • PROC [
size: Size, numerator, denominator: OocinterchangeOefs.lnstance"
clientData: LONG POINTER]
RETURNS [stop: BOOLEAN +- FALSE];

IntegralProc: TYPE. PROC [
props: ReadonlyEquationCharProps, type: IntegralType.
lowerBound. upperBound: DocInterdtangeOefs.lnstance. clientData: LONG POINTER]
RETURNS (stop: BOOLEAN +- FALSE];

Li mitProc: TYPE • PROC [
props: ReadonlyEquationCharProps, element: DoclnterchangeOefs.1 nstance"
clientData: LONG POINTER)
RETURNS [stop: BOOLEAN +- FALSE];

MatrixElementProc: TYPE • PROC [
element: DoclnterchangeOefs.lnstance. row, column: CARDINAL (1 .. 256].
cI ientData: LONG POINTER]
RETURNS [stop~ BOOLEAN +- FALSE];

EnumerateMatrixProc: TYPE • PRoe [proc: MatrixElementProc, clientData: LONG POINTER]
RETURNS [stopped: BOOLEAN +- FALSE];

MatrixProc: TYPE • PRoe [
props: ReadonlyEquationMatrixProps, matrixProc: EnumerateMatrixProc"
clientData: LONG POINTER]
RETURNS [stop: BOOLEAN +- FALSE];

OtherObjectType: TYPE. MACHINE DEPENDENT {firstAvailable(O), lastAvaiiable(255)};

OtherProc: TYPE • PRoe [
clientData: LONG POINTER, instance: DoclnterchangeOefs.lnstance,
objectType: OtherObjectType]
RETURNS [stop: BOOLEAN +- FALSE];

The OtherProc is currently unimplemented--it will not be called during an enumeration.

OverBar.Proc: TYPE • PROC [
size: Size, element: OoclnterchangeOefs.lnstance, clientData: LONG POINTER]
RETURNS [stop: BOOLEAN +- FALSE);

ParenthesisProc: TYPE. PROC [
side: Side, props: ReadonlyEquationCharProps, clientData: LONG POINTER]
RETURNS [stop: BOOLEAN +- FALSE);

ScriptProc: TYPE. PROC [
size: Size, base, superScript, subScript: DoclnterchangeOefs.lnstance,
clientData: LONG POINTER]
RETURNS [stop: BOOLEAN +- FALSE];

SummationProc: TYPE. PROC [
props: ReadonlyEquationCharProps, type: SummationType,

ViewPoint Programmer's Manual

lowerBound, upperBound: OOclnterchangeOefs.lnstance, clientData: LONG POINTER]

RETURNS [stop: BOOLEAN ~ FALSE];

EnumProcs: TYPE • LONG POINTER TO EnumProcsRecord;

EnumProcsRecord: TYPE. RECORD [

brace: BraceProc ~ NIL,

bracket: BracketProc ~ NIL,

character: CharacterProc ~ NIL,

fraction: FractionProc +- NIL,

integral: IntegralProc +- NIL,

limit: LimitProc +- NIL,

matrix: MatrixProc +- NIL,

other: OtherProc +- NIL,

overBar: OverBarProc ~ NIL,

parenthesis: ParenthesisProc ~ NIL,

script: ScriptProc +- NIL,

summation: SummationProc ... NIL];

EnumerateEquation: PROC [

equation: Doclnterchangeo.fs.lnstance, procs: EnumProcs, clientData: LONG POINTER]

RETURNS [stopped: BOOLEAN ... FALse];

74

Enumerat~s an equation. Note that the Instance could be that of an anchored equation·
frame or that of some sub-part. If it's the former, then it should be the content parameter
passed· to a oOctnterchangeoefs.AnchoredFrameProc. Do NOT pass anchoredFrame (another
Instance parameter of a DoclnterchangeDefs.AnchoredFrameProc) to EnumerateEquation.

74 -7

74 Equation In terchangeDefs

74.3 Index of Interface Items ~

Item Page Item Page

AppendBrace: PROC 2 Side: TYPE 2
AppendBracket: PROC 2 Size: TYPE 2
AppendCharacter: PROC 3 StartEquation: PROC 2
AppendFraction: PROC 3 SummationProc: TYPE 6
Appendlntegral: PROC 3 SummationType: TYPE 5
AppendLimit: PROC 3
AppendMatrix: PROC 4
AppendOther: PROC 4
AppendOverBar: PROC 4
AppendParenthesis: PROC 4
AppendScri pt: PROC 5
AppendString: PROC 3
AppendSu.mmation:. PROC 5
BraceProc: TYPE 5
BracketProc:TYPE 5
CharacterProc: TYPE 5
Clearance: TYPE 3
COlumnAlignment: TYPE 4
EnumerateEquation: PROC 7
EnumerateMatrixProc: TYPE 6

¥~ EnumProcs: TYPE 7
EnumProcsRecord: TYPE 7
EquationCharProps: TYPE 2
EquationCharPropsRecord: TYPE 2
EquationMatrixProps: TYPE 4
EquationMatrixPropsRecord: TYPE 4
EquationProc: TYPE 2
FinishEquation: PROC 5
FractionProc: TYPE 6
Handle: TYPE 1
IntegralProc:TYPE 6
IntegralType: TYPE 3
LimitProc: TYPE 6
Looks: TYPE 2
MatrixCeliProc: TYPE 4
MatrixElementProc: TYPE 6
MatrixProc: TYPE 6
NextOrder: TYPE 4
Object: TYPE 1
OtherObjectType: TYPE 6
OtherProc: TYPE 6
OverBarProc: TYPE 6
ParenthesisProc: TYPE 6
ReadonlyEquationCharProps: TYPE. 2 ~ ReadonlyEquationMatrixProps: TYPE 4
RowAlignment: TYPF. 4
ScriptProc: TYPE 6

74- 8

75

GraphicslnterchangeDefs

75.1 Overview

GraphicslnterchangeDefs provides utilities for creating and enumerating the contents of
anchored and nested graphics frames. It is intended to be used in conjunction with
DodnterchangeDefs.

75.1.1 Creating Graphics

To create new graphics, the client starts by calling StartGraphics, which initializes a
graphics frame so that information can be· added to it. This procedure returns a Handle,
which is a pointer to an opaque type that contai~s, among other things, a graphics
container. A graphics container is just an object that can contain graphic objects: a
graphics container can be an anchored graphics frame, a nested graphics frame, a cusp
button within a graphics frame, or another similar construct, such as a chart.

Once the client has a Handle, it can pass that Handle to various Add· routines to add new
graphics objects, such as curves, rectangles, bitmaps, and text frames, to the graphics
frame ..

The client can also add nested frames, such as non-anchored graphics frames, cusp buttons,
or graphics clusters, to the anchored frame. To create these structures, the client should
call StartGraphicsFrame, StartCuspButton, or StartCluster, respectively. Each of these
procedures takes a graphics container as a parameter, and returns another graphics
handle. The client can then use this as the gr:;lphics container in other calls to Add·
routines.

When everything has been added to a graphics container, the final step is to call a Finish·
routine: FinishGraphics, FinishButton, FinishGraphicsFrame, or FinishCluster.
FinishGr~phics returns a graphics handle that can be passed to DocinterchangeDefs.

Thus, the scenario for creating a document with a floating graphics frame nested within an
anchored graphics frame looks something like this:

1. Call oocinterchangeOefs.StartCreation to get a document handle (doc).

75 - 1

75 GraphicsInterchangeDefs

2. Call StartGraphics[doc] to get an anchored frame handle (h).

3. Call Add*[hI to add graphics to the anchored frame.

4. Call StartGraphicsFrame to get a handle for a nested graphics frame (gfh).

5. Call Add~[gfh] to add graphics to the nested frame.

6. Call FinishGrapicsFrame(gfh] to fmish the nested frame.

7. Call FinishGraphics(h] to complete the anchored frame and get an object of type
DocInterchangeDefs.lnstance (graphics).

8. Call Doclnterchangeoets.AppendAnchoredFrame(graphics].

9. Call DoclnterchangeDefs.FinishCreation[@doc].

75.,1 .. 2 Reading Graphics

GraphicslnterchangeOefs also includes the facilities to read the contents of graphics
frames. To read a graphics frame, the: client should call Enumerate. Enumerate takes as
parameters a graphics container and a record of call back procedures: one for each of the
following graphics objects: {bitmap frame, cusp button, cluster, curve, ellipse, form field,
frame, i~age; line, point, rectangle, text, triangle, other}.

Enumerate reads the contents of the graphics container, calling the appropriate procedure
for each object that it encounters. If the client does not provide a procedure for a particular
type of object, objects of that type will be ignored. Each of the client-supplied enumeration
procedures can stop the enumeration if it so desires.

There are similar procedures to enumerate the contents of cusp buttons.
EnumerateButtonProgram takes a button program and a record to handle the various
objects that can be in a button program: new paragraphs and text.

75.2 Interface Items

75 - 2

75.2.1 Creating graphics

After calling a Start* routine to initialize a graphics container, the client will typically call
various Add* routines to add information to the graphics container. The Add* routines
defined below add an object to the end of the list of objects in the specified graphics
container.

Many property records defined below have spare fields for future use. When specifying
values for these, it is important to use zero if you do not know of a correct value to use.

The operations for creating graphics are divided into eight sections, which are:

1. Start routines, which describes the operations for creating graphic containers ~
2. Setting extra frame properties, for dealing with additional properties that only

anchored frames have

ViewPoint Programmer's Manual 75

3. Adding geometrics, for adding simple graphics objects such as curves, ellipses,
lines, points, rectangles, and triangles

4. Adding frames, for adding all types of nested frames
5. Adding to a cusp button, for specifying a cusp button's program
6. Adding miscellaneous objects, for adding objects not deimed in this interface
7. Release routines, which describes operations similar to the Release* operations in

DoclnterchangeDefs
8. Finish routines, for wrapping up graphic containers

75.2.1.1 Start routines

To create new graphics objects, the client must Ilrst call StartGraphics to get an anchored
frame handle. .

StartGraphics: PROC [

doc: DoclnterchangeDefs. Doc]
RETURNS [h: Handle];

StartGraphics creates. a new graphics frame within doc.

Handle: TYPE • LONG POINTER TO Object;
Object: TYPE;

There are also similar routines to create nested frames within a graphics container.
StartCluster, StartGraphicsFrame, and StartButton each initialize a nest~d frame within a
graphics container. All Start routines return a Handle, which the client can then pass to
the various Add* routines to add graphics to that graphics container.

StartCluster: PROC [h: Handle;box: Box] RETURNS [ch: Handle];

StartCluster initializes a set of graphics objects in h. box describes the size and location of
the cluster relative to the anchored frame; place and dims are in micas.

Box: TYPE • RECORD [place: Place, dims: Dims]; - micas

Place: TYPE. RECORD [x, y: LONG INTEGER];

Dims: TYPE. RECORD [w, h: LONG INTEGER];

Note that an object's place is always relative to the object that contains it. A place. of [0, 0]
indicates the container's upper left corner. When the container is a graphics frame, the
upper left corner is the one that includes the margins (even when the frame is anchored).
Increasing X values indicate more rightward locations, and increasing Y values indicate
more downward locations. Although an object's dims are declared as LONG INTEGERS, it is
illegal to specify negative width or height for an object's box. An object's place should
therefore always indicate its upper left corner.

Every graphic object, including points and containers, has a box. An object's box.dims
define the size of the object. If a client specifies a box that is too small for an object in a call
to an Add* routine, then only that part of the object which lies inside the box will be
displayed.

75 - 3

75

75 -4

GraphicsInterchange Defs

When graphic objects are encountered during enumeration, the data passed to the client
procedure always follows the above rules.

StartGraphicsFrame: PROC [
h: Handle.
box: Box,
frameProps: ReadonlyFrameProps.
name. description: XString.Reader NIL"
spareProps: lONG POINTER NIL,
wantTopcaptionHandle,
wantBottom(aptionHandle,
wantLeftCaptionHandle,
wantRightcaptionHandle: BOOLEAN FALSE]
RETURNS [

gfh: Handle,
topCaption, bottom(aption,
leftcaption, rightCaption: OocinterchangeDefs.Caption];

StartGraphicsFrame initializes a nested graphics frame in h. box indicates the size and
location'ofthe nested frame relative to the graphics container; these values are in micas.

frameProps are the properties for the frame.

FrameProps: TYPE •. lONG POINTER TO FramePropsRec;

Readon.lyFrameProps: TYPE. lONG POINTER TO READONLY FramePropsRec;

FramePropsRec: TYPE • RECORD [
brush: Brush,
fixedShape: BOOl,
margins: ARRAY Side OF LONG CARDINAL,
captionContent: ARRAY Side OF DoclnterchangeDefs.Caption,
spare1: lONG CARDINAL];

Brush: TYPE • RECORD [
wthbrush: lONG CARDINAL,
stylebrush: StyleBrush];

StyleBrush: TYPE • MACHINE DEPENDENT{
invisible(O), solid(1), dashed(2), dotted(3), double(4), broken(S), (15)};

brush describes the properties of the lines that make up the frame. The brush width is in
micas. The standard brush widths on the property sheet are 35, 71, 106, 141, 176 and 212.
Note that wthbrush depends on the stylebrush specified: for double borders wthbrush
should be 3 times the usual width.

fixedShape indicates whether the frame will expand in a uniform fashion.

margins are the frame margins, in points.

Side: TYPE. {top, bottom, left, right};

.~,

~,

ViewPoint Programmer's Manual 75

captionContent is an array of captions associated with the frame. Note that the
captionContent parameter is only meaningful during enumeration, and not during Start or
Add* routines, since the caption content is added after the frame is created.

spare1 is for future use.

name and description are the name and description of the graphics frame as it appears in
the property sheet.

spareProps is for future use.

want*CaptionHandle indicates whether the client wants the frame to have the
corresponding captions. If the client passes TRUE for one of these values, the corresponding
return value will be non-NIL. The client can then use DocinterchangeDefs routines to add
text to the caption. Note that the caption must eventually be freed with
DoclnterchangeDefs.ReleaseCaption.

gfh is a handle to the newly created graphics frame.

StartButton: PROC [
h: Handle,
box: Box,
buttonProps: ReadonlyButtonProps,
frameProps: ReadonlyFrameProps,
wantProgramHandle,
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN oE- FALSE]
RETURNS [

bfh: Handle,
buttonProgram: ButtonProgram,
topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeOefs.Caption];

StartButton initializes a cusp button as a graphics container. box describes the size and
location of the cusp button relative to the graphics container h.

ButtonProps: TYPE • LONG POINTER TO ButtonPropsRec;

ReadonlyButtonProps: TYPE • LONG POINTER TO REAOONLY ButtonPropsRec;

ButtonPropsRec: TYPE • RECORD [
name: XString.Reader,
spare1: LONG CARDINAL];

ButtonProgram: TYPE. LONG POINTER TO ButtonProgramObject;

ButtonProgramObject: TYPE;

button Props are the default properties for the button. If the client defaults this parameter,
StartButton will generate a new unique name for the button.

75 - 5

75 Graphics InterchangeDefs

wantProgramHandle specifies whether the client wants to be able to add to the button's
program. If the client specifies TRUE, and is returned a valid button program handle~ then it".-~
must later free that handle with a call to ReleaseButtonProgram (see section 7502.1.7). '
GraphicslnterchangeDefs provides several procedures that the client can use to add data to
the cusp program; see section 75.2.1.5, Adding to a cusp button, for information on these
procedures.

All other properties are as described for StartGraphicsFrame.

75 .. 2.1.2 Setting extra frame properties

75 - 6

SetExtraAnchoredFrameProps: PROC [
doc: DoclnterchangeDefs.Docl'
anchored Frame : DocInterchangeDefs.l nstance.
name, description: XString.Reader,
spareProps: lONG POINTER +- Nil,
selections: ExtraAnchoredFramePropsSelections];

ExtraAnchoredFramePropsSelections: TYPE • PACKED ARRAY
ExtraAnchoredFramePropsElements OF DoclnterchangePropsDefs.BooleanFalseOefault;

ExtraAnchoredFramePropsEJements: TYPE. {name" description, spareProps};

The client can associate a name and descriptIon with an anchored frame by calling
SetExtraAnchoredFrameProps. doc is the document that contains the anchored frame. .~
anchoredFrame is ·the frame in which the client intends to add a . name or description.
spar-eProps are for future use and should be left defaulted to Nil. selections indicate which
properties the client intends to add.

75.2.1.3 Adding geometrics to a graphics container

AddCurve: PRoc[h: Handle, box: Box, curveProps: ReadonlyCurvePropsl;

CurveProps: TYPE • lONG POINTER TO CurvePropsRec;

ReadonlyCurveProps: TYPE. lONG POINTER TO READONlY CurvePropsRec;
CurvePropsRec: TYPE • RECORD [

brush: Brush,
IineEndNW: LineEnd,
IineEndSE: LineEnd,
IineEndHeadNW: L;neEndHead,
IineEndHeadSE: LineEndHead,
direction: LineDirection.
placeNW, placeApex. placeSE, placePeak: Place,
fixedAngle: BOOl,
spare1: lONG CARDINAL];

LineEnd: TYPE. MACHINE DEPENDENT {
flush(O), square(1), round(2), arrow(3), (7)};

.~

ViewPoint Programmer's Manual

LineEndHead: TYPE. MACHINE DEPENDENT {

"one(O), h1 (1), h2(2), h3(3), (15)};

LineDirection: TYPE • MACHINE DEPENDENT {

WE(O), NS(1), NwSe(2), SwNe(3)};

75

AddCurve adds the curve described by curveProps to the specified graphics container. box
specifies the location of the curve relative to the graphics frame. If box.dims is smaller
than the curve, only that part of the curve that fits within box.dims will be displayed.

brush indicates the line properties of the curve; brush is as described earlier for
StartGraphicsFrame.

IineEnd* describe the properties althe ends of the curve. IineEndNW describes the end that
wo~ld paint rust if the curve is traced clockwise; IineEndSE describes the end that would
paint last tracing clockwise (Figure 75.1).

~E SE NW

~ NW

2
NW SE

s~W ~
NW SE

Figure 75. 1 Curve Oi recti on

If IineEnd = arrow, then IineEndHead describes the type of arrow: h1 is the thinnest
arrowhead; h3 is the thickest as shown in Figure 75.2. If lineEnd = arrow, then
IineEndHead should be none.

--ooJI....... h1 ---t.. h2

----. "3
Figure 75.2 Arrowheads

75 -7

75

75 - 8

GraphicsInterchangeDefs

direction is ignored; the client should always set this to WEo

place* defines the curve by specifying its endpoints? apex, and peak. These points are
relative to box, and not the frame itself. Recall that curves paint clockwise; clients must
ensure that the NW endpoint appears before the SE endpoint when tracing the curve
clockwise. Figure 75.3 illustrates these four points for two different curves; the triangle
marks the apex, the square marks the peak, and the circles mark the endpoints .

. " .. :~

... ...

Figure 75.3 Defining curves

fixedAngle indicates that the curve will maintain its shape when grown or shrunk. sparel
is for future use.

AddEccentricCurve: PROC [

h: Handle.
box: Box.
eccentricCurveProps: ReadonlyEccentricCurveProps];

EccentricCurveProps: TYPE • LONG POINTER TO EccentricCurvePropsRec;

ReadonlyEccentricCurveProps: TYPE.

LONG POINTER TO READONLY EccentricCurvePropsRec;

EccentricCurvePropsRec: TYPE • RECORD [

brush: Brush.
IineEndNW: LineEnd,
IineEndSE: LineEnd,
IineEndHeadNW: LineEndHead,
IineEndHeadSE: LineEndHead,
direction: LineDirection,
placeNW. placeApex, placeSE: Place.
eccentricity: CARDINAL,

fixedAngle: Baal,
spare1: lONG CARDINAL];

AddEccentricCurve is just like AddCurve except that the curve is specified by its endpoints,
apex, and eccentricity, rather than by endpoints, apex and peak.

"",

eccentricity is a fraction represented by eccentricity I LAST[CARDINAL]. This allows the ~
highest possible precision for eccentricities between 0 and 1.

ViewPoint Programmer's Manual

AddEJlipse: PROC [

h: Handle,
box: Box,
ellipseProps: ReadonlyEl1 i pseProps];

EUi pseProps: TYPE • LONG POINTER TO Elli psePropsRec;

ReadonlyEIli pseProps: TYPE • LONG POINTER TO REAOONL Y EUi psePropsRec;

EllipsePropsRec: TYPE. RECORD [

brush: Brush,
shading: Shading,
fixedShape: BOOL,

spare1: LONG CARDINAL];

75

AddEllipse adds an ellipse to the specified graphics container. box.dims determine the size
and shape of'the ellipse; box.place determines its location relative to the container h.

Shading: TYPE. RECORD [gray: Gray, textures: Textures];

Gray: TYPE • MACHINE DEPENDENT {

none(O), gray2S(1), graySO(2), gray7S(3), black(4), (1 S)};

Textures: TYPE. PACKED ARRAY Texture OF BOOLEAN;

Texture: TYPE. MACHINE DEPENDENT { .

vertical(O), horizontal(1), nwse(2), swne(3), polkadot(4), (11)};

Within the EllipseProps, brush describes the ellipses' border, and shading describes its
interior. The shading of the interior can be 25%, 50%, or 75% gray or solid black; the
texture can be horizontal: vertical, or diagonal lines, or dots. fixedShape has the same
meaning for all shapes: it ind~cates that the proportions of the object will not change when
the user grows or shrinks it. spare1 is for future use for all shapes.

AddLine: PROC [

h: Handle,
box: Box,
IineProps: ReadonlyLineProps];

LineProps: TYPE. LONG POINTER TO LinePropsRec;

ReadonlyLineProps: TYPE • LONG POINTER TO READONL Y LinePropsRec;

LinePropsRec: TYPE. RECORD [

brush: Brush,
IineEndNW: LineEnd,
IineEndSE: LineEnd,
IineEndHeadNW: LineEndHead,
IineEndHeadSE: LineEndHead,
direction: LineDirection,
fixedAngle: BOOL,

spare1: LONGCARDINAL];

75 - 9

75

75 -10

GraphicsInterchange Defs

AddLine adds a line to the graphics container h. box describes the bounding box of the line.
lineProps are all as described above for curves. ~

AddPieslice: PROC [
h: Handle,
box: Box,
piesliceProps: ReadonlyPiesliceProps);

PiesliceProps: TYPE • LONG POINTER, TO PieslicePropsRec;

ReadonlyPiesliceProps: TYPE. LONG POINTER TO READONLY PieslicePropsRec;

PieslicePropsRec: TYPE • RECORD [
brush: Brush,
shading: Shading,
centerQ start, stop: Place,
spare1: LONG CARDINAL];

AddPieslice adds a pies lice object to the graphics container h. box describes the bounding
box of the pieslice. PiesliceProps are alIas described above for ellipses. center, start, and
stop are all relative to boxoplace. The arc of a pies lice goes from start to stop in a clockwise
direction. Ohly brush styles of none and solid are supported. All the pies lice properties
and operations are currently defined in GraphicslnterchangeExtra3Defs.

AddPoint: PROC [
h: Handle,
box: Box,
pointProps: ReadonlyPointProps);

Poi ntProps: TYPE • LONG POINTER TO Poi ntPropsRec;

ReadonlyPoint~rops: TYPE. LONG POINTER TO READONLY PointPropsRec;

PointPropsRec: TYPE • RECORD [
wthbrush: LONG CARDINAL,
pointStyle: PointStyle,
pointFiII: PointFiII,
spare1: LONG CARDINAL];

PointStyle: TYPE • MACHINE DEPENDENT {round(O), square(1), triangle(2), (ros5(3), (255)};

PointFiII: TYPE. MACHINE DEPENDENT {50Iid(O). hollow(1). (255)};

AddPoint adds the point described by box and pOintProps to the graphics container h.
wthbru5h is in micas. pointStyle and pointFili are as shown in the Point object property
sheet.

AddRectangle: PROC [
h: Handle,
box: Box,
rectangleProp5: ReadonlyRectangleProp5];

~':

View Point Programmer's Manual

RectangleProps: TYPE • LONG POINTER TO RectanglePropsRec;

ReadonlyRectangleProps: TYPE. LONG POINTER TO READONLY RectanglePropsRec;

RectanglePropsRec: TYPE • RECORD [

brush: Brush,
shading: Shading,
fixedShape: BOOL,

spare1: LONG CARDINAL];

75

AddRectangle adds the rectangle specified by box to the graphics container h. Rectangle
properties ~e as described above for ellipses.

AddTriangle: PROC [

h: Handle,
box: Box,
triangleProps: ReadonlyTriangleProps];

TriangleProps: TYPE • LONG POINTER TO Trian~lePropsRec;

ReadonlyTriangleProps: TYPE.

LONG POINTER TO READONL Y TrianglePropsRec;

TrianglePropsRec: TYPE • RECORD [

brush: Brush,
. shading: Shading,
place1,place2. place3: Pface. -- corners of triangle
fixedShape: BOOL,

spare1 : LONG CARDINAL];

AddTriangle adds a triangle to the graphics conainter h. brush and shading are as
described for ellipses; place1, place2, and place3 are the corners of the triangle, relative to
box. The triangle is added to h at box. place.

71.2.1.4 Adding frames to a graphics container

The following Add'" routines add various types of frame objects to the graphics container.
Each of these routines has a parameter of type FrameProps that describes the frame, and
want"'CaptionHandle parameters that determine the captions for that frame. These
parameters are as described in section 75.2.1.1, StartGraphicsFrame.

AddBitmap: PROC [

h: Handle,
box; Box,
bitmapProps: ReadonlyBitmapProps,
frameProps: ReadonlyFrameProps"
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandlell

wantRightCaptionHandle: BOOLEAN ~FALSE]

RETURNS [

75 - 11

75

75 -12

GraphicsIn terchangeDefs

topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeDefs.Caption];

bitmapProps describes a bitmap frame. bitmapF!rops largely correspond to the properties
that the user sees in the property sheet.

BitmapProps: TYPE • LONG POINTER TO BitmapPropsRec;

ReadonlyBitmapProps: TYPE • LONG POINTER TO READONL Y BitmapPropsRec;

BitmapPropsRec: TYPE • RECORD [
opaque: BOOLEAN,
xOffset, yOffset: LONG INTEGER,
printFile: XString.ReaderBody,
displaySource: BmDisplay,
scalingProps: BitmapScalingProps,
spare1: LONG CARDINAL];

opaque specifies whether the bitamp is opaque or transparent. xOffset and yOffset
control the position of the bitmap within the bitmap frame. Setting both to ° will position
the bitmap flush in the upper left-hand corner. These values·are in units of 1172 inch.

printFile is the source for the bitmap to print. This is usually the same as the display
source, but the client may specify a file name as an alternate print source if desired.

BmDisplay: TYPE • RECORD [.
SELECT type: .. FROM

internal • > [bm: LONG POINTER TO BitmapData],
file • > [name: XString.ReaderBody],

ENDCASE];

The source for the displayed bitmap is in .one of two locations: either internal (the bits are
copied into the document), or in a file on the desktop.

BitmapData: TYPE. RECORD[
signature: INTEGER ... bmSignature, - do not use any other value
xScale: Interpress.Rational,
yScale: Interpress.Rational,
xDim: CARDINAL, - /I of bits wide
yDim: CARDINAL, - /I of bits tall
bpi: CARDINAL, - Bits Per Line = «xDim + 15) 116) * 16
pages: NSSegment.PageCount,
bits: PACKED ARRAY [0 •• 0) OF Environment.Byte];

bmSignature: INTEGER. 23456;

The actual bitmap is described by a BitmapOata record. signature is a validity check for
the bitmap. If a bitmap signature is anything but bmSignature, the implementation will
not recognize it as a valid bitmap.

xScale and yScale specify the bitmap scale. At present, the only scale that is supported is
72 spots per inch, so the client should always set xScale and yScale to [254, 720,0001. (The

ViewPoint Programmer's Manual 75

default unit for an Interpress.Rational is meters; converting inches to meters yields 720,000
spots per 254 meters, since 1 inch = 2.54 em.)

xDim and yDim describe the size of the bitmap. bpi is the width of the bitmap, rounded to
the nearest word boundary.

pages is the number of pages that the bitmap occupies, and bits is the actual bitmap.

BitmapScalingProps: TYPE • RECORD [
SELECTtype: .. FROM
printerResolution • > [resolution: CARDINAL],
fixed. > [

horizontalAlignment: {center, right, left},
verticalAlignment: { center, bottom, top},
scalingPercentage: CARDINAL [0 •• 1024)],

automatic. > [shape: {similar, fillUp}],
other • > [spare1: PACKED ARRAY [2 .. 15) OF [0 •• 1], spare2: CARDINAL],
ENDCASE];

scalingProps specifies one of the three bitmap scaling modes: automatic, fixed or
printerResolution. The client will generally default the mode to automatic with shape.
similar; this ensures that the bitmap will be' automatically magnified/shrunk to fit just
inside the bitmap frame until either the vertical or horizontal edge reaches the frame's
edge. If filiUp is specified, the vertical and horizontal scaling factors are individually
determined so that the bitmap completely fills the frame.

The fixed mode requires the client to control the bitmap's alignment (by Alignment
parameters) and scaling (by Scale parameter). The scalingPercentage allows the client to
shrink or magnify the bitmap. A scalingPercentage value of 100 means that the bitmap
should be displayed and printed the same size as the original. A value of 50 means that the
bitmap is shrunk to one half both vertically and horizontally. scalingPercentage must be
in the range [1..1000].

printerResolution indicates the resolution of the printer; typical values are: 72, 75, 150,
200, and 300. Other values can be specified and must be the number of spots per inch.

AddFormField: PROC [
h: Handle,
box: Box,
fieldProps: DoclnterchangePropsDefs.ReadonlyFieldProps,
frameProps: ReadonlyFrameProps,
paraProps: DoclnterchangePropsDefs.ReadonlyParaProps NIL,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps NIL,
expandRight, expandBottom: BOOL FALSE,
wantFieldHandle,
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN FALSE]
RETURNS [

field: DoclnterchangeDefs.Field,

75 - 13

75

75 - 14

GraphicsInterchangeDefs

topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeOefs.Caption];

AddFormField adds the specified field to h at the location box. place. A more flexible
version of this operation is now supported--see AddFormFieldX below.

If the. client specifies wantFieldHandle = TRUE, AddFormField will return a
DoclnterchangeOefs.Field; the client must eventually free this field with a call to
DoctnterchangeDefs.ReleaseField. To add information to the field, the client should use the
facilities of DocinterchangeDefs.

AddFormFieldX: PROC [
h: Handle,
box: Box,
fieldProps: DocInterchangePropsDefs.ReadonlyFieldProps,
frameProps: ReadonlyFrameProps,
textFrameProps: ReadonlyTextFrameProps,
paraProps: DoclnterchangePropsOefs.ReadonlyParaProps +- NIL,
fontProps: DoctnterchangePropsDefs.ReadonlyFontProps +- NIL.
wantFieldHandle,
wantTopCaptionHandle,

. wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN FALSE]
RETURNS [

field:' DoclnterchangeOefs.Field,
topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeDefs.Caption];

This operation is currently in GraphicsinterchangeExtra1 Oefs (see older form above).

Addlmage: PROC [
h: Handle,
box: Box, .
imageProps: ReadonlylmageProps,
frameProps: ReadonlyFrameProps,
~antTopCaptionHandle,

wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN +- FALSE]
RETURNS [

topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeDefs.Caption];

ImageProps: TYPE • LONG POINTER TO ImagePropsRec;

ReadonlylmageProps: TYPE • LONG POINTER TO READONlY ImagePropsRec;

ImagePropsRec: TYPE • RECORD [
name: XString.Reader,
spare1 : LONG CARDINAL]; .

.~

ViewPoint Programmer's Manu'al

Addlmage adds an image frame to the specified graphics container.

AddTable: PRoe [
h: Handle,
box: Box,
table: DocInterchangeDefs.lnstance,
frameProps: ReadonlyFrameProps,
wantTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN +- FALSE]
RETURNS [

topCaption, bottomCaption,
leftCaption, rightCaption: DoclnterchangeDefs.Caption];

75

AddTable adds a table frame to the graphics container h. table should be the instance
returned from TabfelnterchangeDefs.FinishTable. This operation is currently defined in
GraphicslnterchangeExtra2Defs.

AddTextFrame: PRoe [
h: Handle,
box: Box,
frameProps: ReadonlyFrameProps,
textFrameProps: ReadonlyTextFrameProps,
wantTextHandle,
wa"tTopCaptionHandle,
wantBottomCaptionHandle,
wantLeftCaptionHandle,
wantRightCaptionHandle: BOOLEAN +-FAlSE]
RETURNS [,

text: TextinterchangeDefs. Text,
topCaption, bottomCaption,
leftCaption, rightCaption: Doclnterchange.Caption];

TextFrameProps: TYPE. lONG POINTER TO TextFramePropsRec;

ReadonlyTextFrameProps: TYPE.
lONG POINTER TO READONL y TextFramePropsRec;

TextFramePropsRec: TYPE • RECORD [
expand Right, expand Bottom, transparent: BOOl,
tFrameProps: TextlnterchangeDefs. TFra mePropsRec,
spare1: LONG CARDINAL];

AddTextFrame adds a text frame to the specified graphics container. If the client specifies
wantTextHandle = TRUE, it will return a handle to a text frame. The handle may then be
used to add text to the central area of the frame.

75 -15

75 GraphicsIn terchangeDefs

75.,2.1.5 Adding to a cusp button

The following routines allow the client to add textual information to a cusp button
program.

AppendCharToButtonProgram: PROC [
to: ButtonProgram,
char: xCharoCharacter.
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps +- NIL.
nToAppend: CARDINAL+-1];

Add a character to the button program. nToAppend is the number of copies of the
character to be added; fontProps are the properties of the character.

AppendNewParagraphToButtonProgram: PROC [
to~ ButtonProgram.
paraProps: DoclnterchangePropsoefs.ReadonlyParaProps +- NIL,

fontProps: DoclnterchangePropsOefs.ReadonlyFontProps +- NIL.
nToAppend: CARDINAL +- 1];

Add a new paragraph character with specified properties to the button program.

AppendTextToButtonProgram: PROC (
to: ButtonProgram,
text: XString.Reader.
textEndContext: XString.Context"
fontProps: DoclnterchangePropsOefs.ReadonlyFontProps NIL];

Add a string with specified properties to button program. For efficiency, the client should
include textEndContext if known. Do not append newParagraph characters [set: 0, code:
35B] with this operation--use AppendNewParagraphToButtonProgram for that.

73.2.1.6 Adding miscellaneous graphics

AddOther: PROC [
h: Handle.
box: Box,
instance :OoclnterchangeOefs.1 "stance];

AddOther is provided to allow addition of charts and other as yet undefined objects. For
information on charts, see ChartDatalnstaliDefs.

75.2.1.7 Release routines

ReleaseButtonProgram: PROC [
bpPtr: LONG POINTER TO ButtonProgram);

ReleaseButtonProgram releases the handles obtained from AddButtonProgram. Like
Mesa's FREE operator, this routine take a pointer to the object to be freed, and sets the ~!
handle itself to NIL. Thus, after a call to ReleaseButtonProgram, ButtonProgram will be NIL.

75 -16

ViewPoint Programmer's Manual 75

73.2.1.8 Finish routines

When everything has been added to a graphics container, the client should call a Finish
routine.

FinishButton: PROC [bfh: Handle];

FinishCluster: PROC [ch: Handle];

FinishGraphics: PROC [h: Handle]
RETURNS [graphics: DocInterchangeOeft.Jnstance];

finishGraphicsFrame: PROC [gfh: Handle];

bfh, ch, h, and gfh are the handles obtained from the corresponding Start routines. The
client will typically pass the DoclnterchangeOefs.lnstance returned by finishGraphics to
OoclnterchangeOefs.AppendAnchoredFrame.

7502.2 Reading graphics

To read the contents of a graphics frame, the client should call Enumerate~ Enumerate.
takes as parameters a graphics container and a list of call back procedures, one for each-of
the . kinds of items that might be in the graphics container. Enumerate will proceed
through the graphics container, calling the appropriate procedure for each item that it
encounters.

Each enumeration procedure takes parameters that describe the properties of the object.
These properties are temporary, and will be destroyed after the client procedure returns. If
the client wishes to save any of these properties, it must explicitly copy them.

Client EnumProcs should not call any Release'" routines' on anything passed them as a
parameter. The Enumerator always releases containers after calling each EnumProc.

In the case of a cusp button, cluster, or nested graphics frame, the client can recursively
call Enumerate to get the contents of the nested frame. There are also related
enumeraters, TextlnterchangeOefs.EnumerateText and EnumerateButtonProgram, that
enumerate the contents of a text frame and a cusp button, respectively.

75.2.2 .. 1 Enumerate and its callbacks

Enumerate: PROC [
doc: DoclnterchangeDefs.Doc.
graphicsContainer: DoclnterchangeOefs.Jnstance.
procs: EnumProcs.
clientData: LONG POINTER ... NIL]
RETURNS [dataSkipped: BOOLEAN];

EnumProcs: TYPE. LONG POINTER TO EnumProcsRecord;

EnumProcsRecord: TYPE. RECORD [
bitmapProc: BitmapProc ... NIL.

75 -17

75

75 -18

GraphicsInterchange Defs

buttonProc: ButtonProc +- NIL.

clusterProc: ClusterProc +- NIL,

curveProc: CurveProc If-o NIL,

elli pseProc: Elli pseProc +- NIL,

formFieldProc: FormFieldProc +- NIL,

frameProc: FrameProc +- NIL,

imageProc: ImageProc +- NIL,

IineProc: LineProc +-NIL,

otherProc: OtherProc +- NIL,

pointProc: PointProc +-NIL,

rectangleProc: RectangleProc +- NIL,

textFrameProc: TextFrameProc +- NIL,

triangleProc: TriangleProc +- NIL];

To enumerate an anchored graphics frame as a graphics container, pass the
anchoredFrame parameter of the DoclnterchangeDefs.AnchoredFrameProc into Enumerate,
not the content parameter. See the DocinterchangeDefs documentation for
AnchoredFrameProc.

BitmapProc: TYPE • PROC [

clientData: LONG POINTER,

box: Box,
bitmapProps: ReadonlyBitmapProps,.
frameProps: ReadonlyFrameProps]
RETURNS [stop: BOOLEAN +- FALSE];

ButtonProc: TYPE • PROC [

clientData: LONG POINTER,

graphicsContainer:OoclnterchangeOefs.lnstance,
box: Box,
buttonProps: ReadonlyButtonProps,
frameProps: ReadonlyFrameProps,
buttonProgram: ButtonProgram)
RETURNS [stop: BOOLEAN +- FALSE);

CI usterProc: TYPE • PROC [

clientData: LONG POINTER,

graphicsContainer: DoclnterchangeDefs.lnstance,
box: Box)
RETURNS [stop: BOOLEAN +- FALSE];

CurveProc: TYPE • PROC [

clientData: LONG POINTER,

box: Box,
curveProps: ReadonlyCurveProps]
RETURNS [stop: BOOLEAN +- FALSE);

EllipseProc: TYPE. PROC [

clientData: LONG POINTER,

box: Box,

View Point Programmer's Manual

ellipseProps: ReadonlyEllipseProps]
RETURNS [stop: BOOLEAN +- FALSE];

FormFieldProc: TYPE • PROC [
clientData: LONG POINTER, box: Box,
fieldProps: DoclnterchangePropso.fs.ReadonlyFieldProps.
frameProps: ReadonlyFrameProps,
paraProps: DodnterchangePropsDefs.ReadonlyParaProps,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps,
expandRightp expandBottom: BOOL,
content: DodnterchangeDefs.Field1
RETURNS [stop: BOOLEAN +- FALSE];

FrameProc: TYPE • PROC [
clientData: LONG POINTER,
graphicsContainer: DocinterchangeDefs.lnstance,
box: Box,
frameProps: ReadonlyFrameProps,
name, description: XString.Reader, .
spareProps: LONG POINTER]
R~TURNS [stop: BOOLEAN +- FALSE];

ImageProc: TYPE • PROC [
clientData: LONG POINTER,
box: Box,
imageProps: ReadonlylmageProps,
frameProps: ReadonlyFrameProps]
RETURNS [stop: BOOLEAN +-FALSE];

LineProc: TYPE. PROC [
clientData·: LONG POINTER,
box: Box,
IineProps: ReadonlyLineProps]
RETURNS [stop: BOOLEAN +-FALSE];

OtherProc: TYPE • PROC [
clientData: LONG POINTER,
box: Box,
instance: OoclnterchangeDefs.lnstance,
objectType: OtherObjectType]
RETURNS [stop: BOOLEAN +-FALSE];

OtherObjectType: TYPE • MACHINE DEPENDENT {
iIIusFrame(O), barchart, linechart, piechart, pieslice, table, equation,
firstAvailable,lastAvailable(255)};

75

Although data driven charts are not yet fully supported by any Interchange interface, it is
possible to enumerate the graphic components of one. In the OtherProc, simply call
Enumerate on the instance when it is a chart, and the appropriate procedures will be called
for its contained graphic objects. Think of it as a cluster.

75 - 19

75 GraphicsIn terchangeDefs

Poi ntProc: TYPE • PROC [
clientOata: LONG POINTER,
box: Box,
pointProps: ReadonlyPointProps]
RETURNS [stop: BOOLEAN +-FALSE];

RectangleProc: TYPE • PROC [
clientData: LONG POINTER,
box: Box,
rectangleProps: ReadonlyRectangleProps]
RETURNS [stop: BOOLEAN +- FALSE];

TextFrameProc: TYPE • PROC [
clientOata: LONG POINTER,
box: Box,
frameProps: ReadonlyFrameProps,
textFrameProps: ReadonlyTextFrameProps,
content: TextlnterchangeOefs. Text]
RETURNS [stop: BOOLEAN +- FALSE);

TriangleProc: TYPE. PROC [
clientOata: LONG POINTER,

. box: Box,

triangleProps: ReadonlyTriangleProps]
RETURNS [stop: BOOLEA,. +-FALSE];

73,,20202 Getting extra properties

75- 20

GetExtraAnchoredFrameProps: PROC [
doc: DoclnterchangeOefs.Doc,
anchoredFrame: OoclnterchangeDefs.lnstance,
spareProps: LONG POINTER +- NIL,
zone: UNCOUNTED ZONE]
RETURNS [name, description: XString.ReaderBody];

The name and description properties can be retrieved from an anchored frame with
GetExtraAnchoredFrameProps. spareProps and zone are for future use. The returned
values are not allocated from- zone and so are read-only; the client should not attempt to
call XString.FreeReaderBytes on them. Within a DoclnterchangeDek.AnchoredFrameProc the
client should pass the anchoredFrame parameter to GetExtraAnchoredFrameProps, rather
than the content parameter.

GetExtraForm FieldProps: PROC [contentOfFormField: DoclnterchangeDefs. Fi eld]
RETURNS [textFrameProps: ReadonlyTextFrameProps];

This operation returns a readonly pointer to the text frame properties of a form field.
GetExtraFormFieldProps may only be called from within a FormFieldProc. The enumerator
owns the storage of all the returned properties. GetExtraFormFieldProps is currently
defined in GraphicsinterchangeExtra1 Oefs. . .. ~

GetNestedTableProps: PROC [
doc: OoclnterchangeDefs.OOc,

ViewPoint Programmer's Manual

instance: OoclnterchangeDefs.Jnstance,
frameProps: FrameProps)
RETURNS [content: DOcinterchangeDefs.lnstance);

75

GetNestedTableProps fills in frameProps with the frame props of the nested table frame
and returns content. May be called only within an OtherProc during an enumeration, and
the instance passed to GetNestedTableProps must be the same as the one passed to the
OtherProc. The entries of the frameProps.captionContent are readonly and are owned by
the enumerator, so they are valid only during that call to the OtherProc. Do not call
DoclnterchangeDefs.ReleaseCaption on any of them. Use TablelnterchangeDefs.EnumerateTable
[content, ...] to obtain the rest of the table's properties. GetNestedTableProps is currently
defined in GraphicslnterchangeExtra2Defs.

GetPiesliceProps: PROC [
doc: DocInterchangeDefs.Doc,
instance: DoclnterchangeDefs.lnstance,
piesliceProps: PiesliceProps);

GetPiesliceProps fills in piesliceProps with the properties of the pieslice. May be called
only within an OtherPro,c when the object is a pieslice. GetPiesliceProps is currently
defmed in GraphicslnterchangeExtra3Defs.

75.2.2.3 Enumerating cusp button programs

EnumerateButtonProgram: PROC [
buttonProgram: ButtonProgram,
procs: ButtonProgra~EnumProcs,
clientData: LONG POINTER +-NIL]
RETURNS [dataSkipped: BOOLEAN];

ButtonProgramEnu'mProcs: TYPE.
LONG POINTER TO ButtonProgramEnumProcsRecord;

ButtonProgramEnumProcsRecord: TYPE • RECORD [
newParagraphProc: OoclnterchangeDefs.NewParagraphProc +- NIL,
textProc: DocInterchangeOefs. TextProc +- NIL];

EnumerateButtonProgram enumerates the contents of buttonProgram, calling the client­
supplied procs as appropriate. clientData is passed to each of the call-back procedures
during enumeration.

75.2.3 Constants

nuliBitmapProps: BitmapPropsRec • [
opaque: TRUE,
xOffset: 0,
yOffset: 0,
printFile: XString.nuIiReaderBody.
displaySource: nullBmDisplay.
scalingProps: nullBitmapScalingProps,

75 - 21

75

75 - 22

GraphicsInterchangeDefs

spare1: 0];
nullBmDisplay: BmDisplay • [internal[bm: NIL]];

nuliBitmapScalingProps: BitmapScalingProps • [automatic[shape: similar));

nuliButtonProps: ButtonPropsRec • (name: Nil, spare1 : 0];

nuliCurveProps: CurvePropsRec • [
brush: [0, solid],
IineEndNW: flush,
IineEndSE: flush,
IineEndHeadNW: none,
IineEndHeadSE: none,
direction: we,
placeNW: [0,0],
placeApex: [0,0],
placeSE: (0, 0],
.placePeak: (0, 0],
fixedAngle: FALSE,

spare1: 0);

nullEccentricCurveProps: EccentricCurvePropsRec • [
brush: (0, solid],
IineEndNW: flush,
IineEndSE: flush,
IineEndHeadNW: none,
IineEndHeadSE: none~
direction: WE,
placeNW: (0,0),
placeApex: (0,0],
placeSE: [0,0],
eccentricity: 0,
fixedAngle: FALSE,

spare1: 0];

nuliEllipseProps: EllipsePropsRec • [
brush: (0, solid1,
shading: (none, ALL(FALSE]],

fixedShape: FALSE,

spare1: 0];

nuliFrameProps: FramePropsRec • [
brush: [0, solid],
fixedShape: FALSE,

margins: ALL[O],

captionContent: ALL[NIL],

spare1: 0];

nulllmageProps: ImagePropsRec • [name: NIL, spare1: 0];

nullLineProps: LinePropsRec • [
brush: [0, solid],

ViewPoint Programmer's Manual

lineEndNW: flush,
lineEndSE: flush,
IineEndHeadNW: none,
IineEndHeadSE: none,
direction: WE,
fixedAngle: FALSE,

spare1: 0];

null~iesliceProps: PieslicePropsRec • [
brush: [2, solid],
shading: [none, AU[FALSE]].

center: [0, 0],
start: [0, 0],
stop: [0, 0],
spare1: 0];

nuliPiesliceProps is currently dermed in GraphicslnterchangeExtra3Defs.

nuliPointProps: PointPropsRec • [
wthbrush: 0,
pointStyle: round,
pointFiII: solid,
spare1: 0];

nuliRectangleProps: RectanglePropsRec ~ [
brush: [0, solid],
shading: [none, ALL[FALSE]],

fixedShape: FALSE,

spare1: 0];

nuliTextFrameProps: TextFramePropsRec • [
expandRight: FALSE,

expand Bottom : FALSE,

transparent: FALSE,

tFrameProps: TextlnterchangeDefs.nullTFrameProps,
spare1: 0];

nuliTriangleProps: TrianglePropsRec • [
brush: [0, solid],
shading: [none, ALL[FALSE]],

place1: [0, 0],
place2: [0, 0],
place3: [0, 0],
fixedShape: FALSE,

spare1: 0];

75.3 Usage/Examples

75

The following code copies anchored graphic and cusp button frames from a source
document being enumerated to a target document being created. What follows is not a
complete program; the jumping off point is a DoclnterchangeOefs.AnchoredFrameProc. This

75 - 23

75

75 ~ 24

GraphicsInterchangeDefs

code fits in with the example code listed in the DocinterchangeDefs documentation. Some ~
of the declarations below are copied from the DocinterchangeDefs example.

- Types

CaptionsHandle: TYPE = LONG POINTER TO CaptionsRec;
CaptionsRec: TYPE = RECORD [te, be, Ie, re: ooelnterehangeoefs.Caption);

olCtxtHandle: TYPE = LONG POINTER TO olCtxt;
olCtxt: TYPE = RECORD [

soureeDoe, targetDoe: ooclnterehangeDefs. Doc,
ignoreNewPar, ignorePFC, aborted, error: BOOLEAN);

< < A DICtxtHandle is passed as clientData to procs called by
DoclnterchangeDefs.Enumerate. > >

GICtxtHandle: TYPE = LONG POINTER TO GICtxt;
GICtxt: TYPE = RECORD [

h: Graphieslnterehangeoefs.Handle,
sourceDoe, targetDoe: ooclnterehangeDefs.Doc,
error: BOOl];

< < A GICtxtHandle is passed as elientData to procs called by
GraphicslnterchangeDefs.Enumerate. > >

-Constants

Z: UNCOUNTED ZONE = BWSZone.shortLifetime;

- Variables

giEnumProcsRec: GraphicslnterchangeDefs.EnumProcsRecord +- [
bitmapProc: Bitmap, buttonProc: Button, c1usterProc: Cluster, curveProc: Curve,
ellipseProc: Ellipse, formFieldProc: FormField, frameProc: Frame, imageProc: Image,
lineProc: Line, otherProc: Other, pOintProc: Point, rectangleProc: Rectangle,
textFrameProc: 'TextFrame, triangleProc: Triangle];

giEnumProcs: GraphicslnterchangeDefs.EnumProcs = @giEnumProcsRec;

< < Called when an anchored frame was encountered in the source document.
Copies the frame and its contents to the target document. > >

AppendAnchoredFrameToTargetDoc: ooclnterchangeDefs.Anchored FrameProc = {
diCtxt: olCtxtHandle = c1ientData;
sourceCaptions: CaptionsRec 4- [

topCaption, bottomCaption, leftCaption, rightCaption];
newCaptions: CaptionsRec;
IF (diCtxt.aborted 4- BaekgroundProcess.UserAbort(]) THEN {

BackgroundProcess.ResetUserAbort[]; RETURN[stOP: TRUE]; };
SELECT type FROM

graphics = > {
h: Graphicslnterchangeoefs.Handle 4- GraphicslnterchangeDefs.StartGraphics[

diCtxt. targetDoc];
giCtxt: GICtxt 4- [h, diCtxt.sourceDoc, diCtxt.targetDoc, FALse];
gc: DoclnterchangeDefs.lnstance;
[] 4- Graphicslnterchangeoefs.Enumerate[

diCtxt.sourceDoc, anchored Frame, giEnumProcs, @giCtxt); .~
{
nameRB, descriptionRB: XString.ReaderBody;
gc 4- GraphicslnterchangeDefs. Fi nishGraphics[h];

ViewPoint Programmer's Manual

[nameRB, descriptionRB) Eo-

GraphicslnterchangeDefs. GetExtraAnchored FrameProps[
doc: diCtxt.sourceDoc, anchoredFrame: anchored Frame, zone: NIL];

GraphicslnterchangeDefs.SetExtraAnchoredFrameProps[
doc: diCtxt. targetDoc, anchored Frame: gc, name: @mameRB,
description: @descriptionRB,
selections: [name: TRUE, description: TRUE, spareProps: FALSE)]};

[, newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc] Eo­

DoclnterchangeDefs.AppendAnchored Frame[
to: diCtxt. targetDoc, type: graphics,
anchored FrameProps: anchored FrameProps,
content: gc, wantTopCaptionHandle: topCaption /I NIL,

wantBottomCaptionHandle: bottomCaption /I NIL,

wantLeftCaptionHandle: leftCaption /I NIL,

wantRightCaptionHandle: rightCaption /I NIL,

anchorFontProps: anchorFontProps !
DoclnterchangeOefs. Error = > {

diCtxt.error +- TRUE; stop +- TRUE; CONTINUE}];

IF -diCtxt.error THEN FiIIlnFrameCaptions[@SourceCaptions, @newCaptions);
}; - graphics

cuspButton = > {
bProps: GraphicslnterchangeOefs.ButtonPropsRec;
bProgSource: GraphicslnterchangeDefs.ButtonProgram +­

ButtonlnterchangeOefs. ButtonlnfoForAnchored Frame[
diCtxt.sourceOoc, anchoredFrame, @bProps, z];

bProgTarget: GraphicslnterchangeOefs.ButtonProgram;
h: GraphicslnterchangeOefs. Handle;
giCtxt: GICtxt; .

75

bProcs: GraphicslnterchangeDefs.ButtonProgramEnumProcsRecord Eo- [

newParagraphProc: AppendNewParToProg, textProc: AppendTextToProg);

AppendNewParToProg: DoclnierchangeDefs. NewParagraphProc = {
GraphicslnterchangeDefs.AppendNewParagraphToButtonProgram[

bProgTarget, paraProps, fontProps);
}; - AppendNewParToProg

AppendTextToProg: OoclnterchangeDefs.TextProc = {
GraphicslnterchangeOefs.AppendTextToButtonProgram [

bProgTarget, text, textEndContext, fontProps];
}; -AppendTextToProg

[h, bProgTarget] +- ButtonlnterchangeDefs.StartButton[
diCtxt. targetDoc, @bProps, (bProgSource /I NIL)];

[] +- GraphicslnterchangeOefs.EnumerateButtonProgram[
bProgSource, @bProcs];

GraphicslnterchangeOefs.ReleaseButtonProgram[@bProgTarget];
ButtonlnterchangeDefs.ReleaseReadOnlyButtonProgram[@bProgSource);
giCtxt Eo- [h, diCtxt.sourceDoc, diCtxt.targetOoc, FALse];

[] Eo- GraphicslnterchangeOefs. Enumerate[
diCtxt.sourceDoc, anchoredFrame, gi EnumProcs, @giCtxt];

[, newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc] +­
DoclnterchangeDefs.AppendAnchoredFrame[
to: diCtxt. target Doc, type: cuspButton,
anchoredFrameProps: anchoredFrameProps,
content: ButtonlnterchangeDefs.FinishButton[h],
wantTopCaptionHandle: topCaption # NIL,

75 - 25

75

75 -26

GraphicsInterchangeDefs

wantB.ottomCaptionHandle: bottomCaption #: NIL,

wantLeftCaptionHandle: leftCaption #: NIL,

wantRightCaptionHandle: rightCaption #: NIL,

anchorFontProps: anchorFontProps !
DocinterchangeDefs.Error = > {

diCtxt.error...., TRUE; stop +- TRUE; CONTINue}];

IF GdiCtxt.error THEN FiIIlnFrameCaptions[@SourceCaptions, @newCaptions];
};

ENDCASE;

}; - AppendAnchoredFrame

< < Called when a bitmap frame was encountered while enumerating the contents
of a graphics container. > >

Bitmap.: GraphicslnterchangeDefs.BitmapProc = {
ctxt: GICtxtHandle = clientData;
sourceCaptions: CaptionsRec +- [.

frameProps.captionContent(top), frameProps.captionContent[bottom],
frameProps.captionContent[left), frameProps.captionContent[right]];

newCaptions: CaptionsRec;
[newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc] +­

GraphicslnterchangeDefs.AddBitmap[
ctxt.h, box, bitmapProps, frameProps, sourceCaptions. tc #: NIL,

sourceCaptions.bc #: NIL, sourceCaptions.lc #: NIL, sourceCaptions.rc #: NIL];

FiIIlnFrameCaptions(@SourceCaptions, @newCaptions];
}; -Bitmap

< < Called when a Cusp button was encountered while enumerating the contents ~
of a graphics container. > > .

Button: GraphicslnterchangeDefs.ButtonProc = {
ctxt: GICtxtHandle = clientData;
bfh: GraphicslnterchangeDefs.Handle;
newProgram: Graphi cslnterchangeDefs. ButtonProgram;
bpProcs: GraphicslnterchangeDefs.ButtonProgramEnumProcsRecord +- [

newParagraphProc: Append NewParToProgram,
textProc: AppendTextToProgram];

newCtxt: GICtxt;
sourceCaptions: CaptionsRec, [

frameProps.captionContent(top], frameProps.captionContent(bottom],
frameProps.capti onContent[1 eft], frameProps.capti onContent(ri ght]];

newCaptions: CaptionsRec;

AppendNewParToProgram: DoC! nterchangeDefs. NewParagraphProc = {
GraphicslnterchangeDefs.Append NewParagraph ToButtonProgram [

newProgram, para Props, fontProps];
}; - AppendNewParToProgram

AppendTextToProgram: DoclnterchangeDefs.TextProc = {
GraphicslnterchangeDefs.AppendTextToButtonProgram [

newProgram, text, textEndContext, fontProps);
}; - AppendTextToProgram

[bfh, newProgram, newCaptions.tc, newCaptions.bc, newCaptions.lc,
newCaptions.rc) +-
GraphicslnterchangeDefs.StartButton[
ctxt.h, box, button Props, frameProps, buttonProgram #: NIL,

sourceCaptions.tc #: NIL, sourceCaptions.bc #: NIL, sourceCaptions.lc #: NIL,

ViewPoint Programmer's Manual

sourceCaptions.rc #: NIL];
newCtxt ~ [bfh, ctxt.sourceDoc, ctxt.targetDoc, FALSE];
[] if- GraphicslnterchangeDefs.Enumerate(

ctxt.sourceOoc, graphicsContainer, giEnumProcs, @newCtxt);
Graphi csl nterchangeOefs. Fi nishB utton [bfh];
[] if- GraphicslnterchangeOefs. EnumerateButtonProgram [

buttonProgram, @bpProcs];
GraphicslnterchangeOefs. Rei easeButtonProgram[@newProgram];
FilllnFrameCaptions[@SourceCaptions, @newCaptions);
}; -Button

< < Called when a duster was encountered while enumerating the contents
of a graphics container. > >

Cluster: GraphicslnterchangeOefs.ClusterProc = {
ctxt: GICtxtHandle = clientData;
ch: GraphicslnterchangeOefs.Handle =

GraphicslnterchangeDefs.StartCluster[ctxt.h, box];
newCtxt: GICtxt ~ [ch, ctxt.sourceDoc, ctxt.targetDoc, FALSE];
[] if- GraphicslnterchangeDefs.Enumerate[

ctxt.sourceOoc, graphicsContainer, giEnumProcs, @newCtxt);
GraphicslnterchangeOefs.FinishCluster[ch];
}; -Ouster

CopyColumnlnfo: PROC [
source: TablelnterchangeOefs.Columnlnfo, zone: UNCOUNTED ZONE]
RETURNS [new: TablelnterchangeDefs.Columnlnfo) = {
new if- zone.NEw[TablelnterchangeDefs .Columnlnfo$eq[source.length]];
FOR i: CARDINAL IN [0 .. source.length) DO

new[i] ~source[i];
new[i).headerEntryRec.content ~ [

write[FilllnText, @source[i].headerEntryRec.content]];
IF source[il.subcolumnlnfo #: NIL THEN

new[i].subcolumnlnfo ~ CopyColumnlnfo[source(i].subcolumnlnfo, zone];
ENDLOOP;

}; - CopyColumnlnfo

CopyRowContentlnfo: PROC [
source: TablelnterchangeDefs.RowContent, zone: UNCOUNTED ZONE]
RETURNS [new: TablelnterchangeDefs.RowContent] = {
new if- zone.NEW[TablelnterchangeOefs . RowContentSeq[source.length]];
new.topMargin ~ source.topMargin;
new.bottomMargin ~ source.bottomMargin;
new.line ~source.iine;
new. verticalAlignment ~ source. verticalAlignment;
FOR i: CARDINAL IN [O .. source.length) DO

. new.rowdata[i] ~ source.rowdata[i];
new.rowdata[i].content +- [write[FilllnText, @Source[i].content]];
IF source.rowdata(i].subRows #: NIL THEN {

new.rowdata[i].subRows ~ zone.NEW[
TablelnterchangeDefs .SubRowsRec(source.rowdata[i].subRows.length]];

new.rowdata[i].subRows.length ~ source.rowdata[i].subRows.length;
FOR j: CARDINAL IN [O .. source.rowdata[i].subRows.length) DO

new.rowdata[i].subRows.rows[j] +- CopyRowContentlnfo[
source.rowdata[i].subRows.rows[j], zone];

ENDLOOP;
}; -- had subrows

75

75 - 27

75

75 -28

GraphicsInterchangeDefs

ENOLOOP;

}; - CopyRowContentlnfo

< < Called when a curve was encountered while enumerating the contents
of a graphics container. > >

Curve: GraphicslnterchangeDefs.CurveProc = {
ctxt: GICtxtHandle = clientData;
GraphicslnterchangeDefs.AddCu rve[ctxt.h, box, curveProps]};

< < Called when an ellipse was encountered while enumerating the contents
of a graphics container. > >

Ellipse: GraphicslnterchangeDefs.EllipseProc = {
ctxt: GICtxtHandle = clientData;
GraphicslnterchangeDefs.AddEllipse[ctxt.h, box, ellipseProps)};

< < Called by any proc that's appending a frame to the target doc,
FilllnFrameCaptions enumerates the contents of each source caption and
appends everything found to the corresponding new caption. > >

FilllnFrameCaptions: PROC [sourceCaptions, targetCaptions: CaptionsHandle] = {
crntTC: DoclnterchangeDefs. TextContai ner;
< < The current TextContainer to append stuff to. > >
procs: DoclnterchangeDefs.EnumProcsRecord +- [

fieldProc: AppendFieldToCrntTC, newParagraphProc: AppendNewParToCrntTC.
textProc: AppendTextToCrntTC];

AppendNewParToCrntTC: DoclnterchangeDefs.NewParagraphProc = {
DocinterchangeDefs.AppendNewParagraph[crntTC, paraProps, fontProps)}; ~

I

AppendTextToCrntTC: DocinterchangeDefs.TextProc = {
Docl nterchangeDefs.AppendText[crntTC, text, textE ndContext, fontProps]};

AppendFieldToCrntTC: DoclnterchangeDefs.FieldProc = {
procs: DoclnterchangeDefs. EnumProcsRecord +- [

newParagraphProc: Append NewParToCrntTC,
textProc: AppendTextToCrntTC];

newField: DocinterehangeDefs. Field +- DoclnterehangeDefs.Append Fi eld [
crntTC, fieldProps, fontProps];

saveTC: DoclnterehangeDefs.TextContainer = crntTC;
crntTC +- [field[h: newField]];
[] +- DoclnterchangeDefs.Enumerate([field[h: field]], @proes];
DocinterehangeDefs.ReleaseField[@newField];
erntTC +- saveTC;
}; - AppendFieldToCrntTC

- start of FilllnFrameCaptions
erntTC +- [eaption[h: targetCaptions.te]];
[] +- DocinterehangeDefs.Enumerate[[eaption[h: soureeCaptions.te]],@procs);
DoclnterehangeDefs. ReleaseCapti on [@targetCaptions. te];

erntTC +- [eaption[h: targetCaptions.bc]];
[] +- DoelnterchangeDefs.Enumerate[[caption[h: soureeCaptions.bc]], @procs);
DoelnterchangeDefs.ReleaseCaption[@targetCaptions.bc);

crntTC +- [eaption[h: targetCaptions.Ic]];
[] +- DoclnterehangeDefs.Enumerate[[eaption[h: soureeCaptions.lcll, @procs1;
DoelnterchangeDefs.ReleaseCaption[@targetCaptions.le);

ViewPoint Programmer's Manual

crntTC +- [caption[h: targetCaptions.rcl1;
[) +- DoclnterchangeDefs.Enumerate[[caption[h: sourceCaptions.rc]], @procsl;
DocinterchangeDefs. Rei easeCapti on [@targetCaptions.rc];
}; - FilllnFrameCaptions

FillinText: TablelnterchangeDefs.FiIIlnTextProc = {
sourceEntryContent: LONG POINTER TO TablelnterchangeOefs.EntryContent =

clientData;
sourceText: TextlnterchangeDefs. Text;
targetText: TextlnterchangeDefs. Text = text;
procs: TextlnterchangeDefs. TextEnumProcsRecord +- [
newParagraphProc: HitNP, textProc: HitText];

HitNP: DoclnterchangeDefs.NewParagraphProc = {
TextlnterchangeDefs.AppendNewParagraphToText[

targetText, paraProps, fontProps]};

HitText: DoclnterchangeDefs. TextProc = {
TextlnterchangeOefs.AppendTextToText[

targetText, text, textEndContext, fontProps]};

- start of FilllnText
WITH c: sourceEntryContent i SELECT FROM

read = > sourc'eText +- c.obtainTextProc[c.obtainTextData];
write = > ERROR;

ENDCASE;
[) +- TextlnterchangeDefs.EnumerateText[sourceText, @procs];
TextlnterchangeDefs. Rei ease Text[@sourceText];
}; - FiIIlnText

< < Proc that's called for each form-field frame in the graphic container. > >
FormField : GraphicslnterchangeDefs. Form Fi el d Proc = {

ctxt: GICtxtHandle = clientData;
field: DoclnterchangeOefs.Field;
sourceCaptions: CaptionsRec +- [

frameProps.captionContent[top], frameProps.capti onContent[bottom],
frameProps.captionContent[left], frameProps.captronContent[right]];

newCaptions: CaptionsRec;
procs: DoclnterchangeDefs.EnumProcsRecord +- [

newParagraphProc: AppendNewParToField,
textProc: AppendTextToField];

AppendNewParToField: DoclnterchangeDefs.NewParagraphProc = {
DoclnterchangeDefs.AppendNewParagraph[

[field[h: field]], paraProps, fontProps]};

AppendTextToField: DoclnterchangeDefs.TextProc = {
DoclnterchangeDefs.AppendText(

[field[h: field]], text, textEndContext, fontProps]};

[field, newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc] +­
GraphicslnterchangeExtra t Defs.AddFormFieldX[
ctxt.h, box, fieldProps, frameProps,
GraphicslnterchangeExtra t Defs.GetExtraFormFieldProps[content], para Props,
fontProps, content :# NIL, sourceCaptions. tc :# NIL, sourceCaptions.bc :# NIL,

75

75 - 29

75

75 -30

GraphicsInterchangeDefs

sourceCaptions.1c :# NIL, sourceCaptions.rc :# NIL];
[) ~ DoclnterchangeDefs.Enumerate(

[field[h: content]), @procs ! DoclnterchangeDefs.Error = > { ... }];
DoclnterchangeDefs.ReleaseField[@field]; "
FiIIlnFrameCaptions[@SourceCaptions, @newCaptions);
}; - FormField

< < Called when a graphics frame was encountered while enumerating the contents
of a graphics container. > >

Frame: GraphicslnterchangeOefs.FrameProc = {
ctxt: GICtxtHandle = clientData;
gth: Graphicslntercha"geOefs. Handle;
sourceCaptions: CaptionsRec [

frameProps.captionContent(top), frameProps.captionContent[bottom1,
frameProps. capti onContent(1 eft], frameProps.capti onContent[ri ght));

newCaptions: CaptionsRec;
newCtxt: GICtxt;
[gfh~ newCaptions.tc, newCaptions.bc, newCaptions.lcp newCaptions.rc] +­

GraphicslnterchangeOefs.StartGraphicsFrame[
ctxt.h, box, frameProps, name, description, NILp sourceCaptions. tc #: NIL,
sourceCaptions.bc:# NIL, sourceCaptions.lc :# NIL, sourceCaptions.rc # NIL];

newCtxt +- [gth, ctxt.sourceOoc, ctxt. targetOoc, FALSE];
[] +- GraphicslnterchangeOefs. Enumerate[

ctxt.sourceOoc, graphicsContair:,1er, giEnumProcs, @newCtxt);
FilllnFrameCaptions[@SourceCaptions, @newCaptions];
}; -Frame

FreeColumnlnfo: PROC [
c: LONG POINTER TO TablelnterchangeDefs.Columnlnfo, zone: UNCOUNTED ZONE] = {
FOR i: CARDINAL IN [O •. c.length) DO

IF c[i].subcolumnlnfo :# NIL THEN FreeColumnlnfo[@c[i].subcolumnlnfo, zone];
ENDLOOP;

zone.FREE[C];
}; - FreeCo/umnlnfo

FreeRowContentinfo: PROC [
r: LONG POINTER TO TablelnterchangeOefs.RowContent, zone: UNCOUNTED ZONE] = {
FOR i: CARDINAL IN [O .. r.length) Db

IF r.rowdata[i].subRows :# NIL THEN
FOR j: CARDINAL IN [O .. r.rowdata[i].subRows./ength) DO

FreeRowContentlnfo[@r.rowdata[i].subRows.rows(j], zone];
ENDLOOP;

ENDLOOP;
zone.FREE[r];
}; - FreeRowContentlnfo

< < Called when an image frame was encountered while enumerating the contents
of a graphics container. > >

Image: GraphicslnterchangeOefs.lmageProc = {
ctxt: GICtxtHandle = c1ientOata;
sourceCaptions: CaptionsRec [

frameProps. capti onConter.t[top], frameProps. capti onContent[bottom],
frameProps.captionContent[Ieftj, frameProps.captionContent[right]1; A~

newCaptions: CaptionsRec;
[newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc]

GraphicslnterchangeOefs.Add I magee

ViewPoint Programmer's Manual

ctxt.h, box, imageProps, frameProps, sourceCaptions.tc :# NIL,
sourceCaptions.bc :# NIL, sourceCaptions.lc :# NIL, sourceCaptions.rc :# NIL];

FilllnFrameCaptions[@SourceCaptions, @newCaptions];
}; -Image

< < Called when a line was encountered while enumerating the contents
of a graphics container. > >

Line: GraphicslnterchangeDefs.LineProc = {
ctxt: GICtxtHandle = clientData;
GraphicslnterchangeDefs.Add Li nee ctxt.h, box, Ii neProps]};

Other: GraphicslnterchangeDefs.OtherProc = {
ctxt: GICtxtHandle = clientData;
SELECT objectType FROM

barchart, linechart, piechart = > { - for now, turn these into a cluster

75

ch: GraphicslnterchangeDefs.Handle = GraphicslnterchangeDefs.StartCluster[
ctxt.h, box];

newCtxt: GICtxt ~ [ch, ctxt.sourceDoc, ctxt.targetDoc, FALSE];
[] GraphicslnterchangeDefs.Enumerate[

ctxt.sourceOoc, instance, giEnumProcs, @newCtxt];
GraphicslnterchangeDefs.FinishCluster[ch};
}; - barchart, linechart, piechart

pieslice = > {
piesliceProps: GraphicslnterchangeExtra3Defs.PieslicePropsRec;

GraphicslnterchangeExtra3Defs.GetPiesliceProps(
ctxt.sourceDoc, instance, @piesliceProps};

GraphicslnterchangeExtra3Defs.AddPieslice(ctxt.h, box, @piesli~eProps];
}; - pieslice

table = > {
sourceCaptions, newCaptions: CaptionsRec;
tableEnumProcs: TablelnterchangeDefs.EnumProcsRec [

TableProc, ColumnsProc, RowProc1;
tableProps: TablelnterchangeDefs. TablePropsRec;
extra TableProps: Tabl elnterchangeExtra 1 pefs. Extra Tabl ePropsRec;
h: TablelnterchangeDefs.Handle NIL;
frameProps: GraphicslnterchangeDefs.FramePropsRec;
content: Doclnt~rchangeDefs.lnstance;

TableProc: TablelnterchangeDefs. TableProc = {
tableProps props f ;
IF props.spare1 :# 0 THEN {

tableProps.sparel LOOPHOLE(LONG[@extraTablePropsl1;
extraTableProps.deferOnPaginate LOOPHOLE[props.sparet,

TablelnterchangeExtra 1 Defs. ExtraTableProps].deferOnPagi nate;
extraTableProps.spare 1 0;
};

}; - TableProc

ColumnsProc: TablelnterchangeDefs.ColumnsProc = {
'newColumnlnfo: TablelnterchangeDefs.Columnlnfo

CopyColumnlnfo[columns, z];
h TablelnterchangeDefs.StartTable[

ctxt.targetDoc, @tableProps, newColumnlnfo];
FreeColumnlnfo[@newColumnlnfo, z];
}; -- Co/umnsProc

75 - 31

75

75 - 32

GraphicsInterchangeDefs

RowProc: TablelnterchangeDefs.RowProc = {
newContent: Tablel nterchangeDefs. RowContent;
IF BackgroundProcess.UserAbort[] THEN RETURN[StOP: TRUE];
newContent f- CopyRowContentlnfo[content, Z];
TablelnterchangeDefs.Append Row[h, newContent];
FreeRowContentlnfo[@newContent, Z];
}; -RowProc

- start of table arm of Other
content f- GraphicslnterchangeExtra20efs. GetNestedTabl eProps[

ctxt.sourceOoc, instance, @frameProps];
sourceCaptions f- (

frameProps.captionContent[top), frameProps.captionContent[bottom],
frameProps.captionContent[left], frameProps.captionContent[right]];

TablelnterchangeOefs.EnumerateTable[content, @tableEnumProcs];
[newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc) f-

GraphicslnterchangeExtra20efs.AddTa~le[.
h: ctxt.h, box: box, table:'TablelnterchangeOefs.FinishTable[h).table,
frameProps: @frameProps,
wantTopCaptionHandle: frameProps.captionContent(top] # NIL,

wantBottomCaptionHandle: frameProps.captionContent[bottom] :# NIL,

wantLeftCaptionHandle: frameProps.captionContent[left] :# NIL,

wantRightCaptionHandle: frameProps.captionContent[right1 :# NIL];

, FiIIlnFrameCaptions[@SourceCaptions, @newCaptions);
}; - table

ENOCASE;
}; -Other

< < Called when a point was encountered while enumerating the contents
of a graphics container. > >

Point: GraphicslnterchangeOefs.PointProc = {
ctxt: GICtxtHandle = clientData;
GraphicslnterchangeDefs.AddPoint[ctxt.h, box, pointProps]};

< < Called when a rectangle was encountered while enumerating the contents
of a graphics container. > >

Rectangle~ GraphicslnterchangeDefs.RectangleProc = {
ctxt: GICtxtHandle = clientOata;
GraphicslnterchangeDefs.AddRectangle[ctxt.h, box, rectangleProps]};

< < Called when a text frame was encountered while enumerating the contents
of a graphics container. > >

TextFrame: GraphicslnterchangeDefs. TextFrameProc = {
ctxt: GICtxtHandle = clieritOata;
sourceCaptions: CaptionsRec f- [

frameProps. capti onContent[top], frameProps. capti onContent[bottom] I
frameProps.captionContent[left], frameProps.captionContent[right)];

newCaptions: CaptionsRec;
newContent: TextlnterchangeDefs. Text;
textProcs: TextlnterchangeDefs.TextEnumProcsRecord Eo- [

fieldProc: AppendFieldToContent,
newParagraphProc: Append NewParToContent,
textProc: AppendTextToContent); :~

AppendNewParToContent: DoclnterchangeDefs.NewParagraphProc = {
, TextlnterchangeDefs.AppendNewParagraphToText[

View Point Programmer's Manual

newContent, paraProps, fontProps]};

AppendTextToContent: DoclnterchangeDefs. TextProc = {
TextlnterchangeDefs.AppendTextTo Text[

newContent, text, textEndContext, fontProps]};

AppendFieldToContent: DocinterchangeDefs.FieldProc = {
procs: DocinterchangeDefs. EnumProcsRecord +- [

75

newParagraphProc: AppendNewParToField, textProc: AppendTextToField];
newField: DoclnterchangeDefs.Field +- TextlnterchangeDefs.AppendFieldToText[

newContent, fieldProps, fontProps1;

AppendNewParToField: DoclnterchangeDefs.NewParagraphProc = {
DoclnterchangeDefs.Append NewParagraph [

[field[h: newField]], para Props, fontProps]};

AppendTextToField: DoclnterchangeDefs.TextProc = {
DocinterchangeDefs.AppendText[

[field[h: newField]], text, textEndContext, fontProps]};

- start of AppendFieldToContent
[) +- DoclnterchangeDefs.Enumerate[[field[h: field]], @procs];
DocinterchangeDefs.ReleaseField[@newField]};

[newContent, newCaptions.tc, newCaptions.bc, newCaptions.lc, newCaptions.rc] +­
GraphicslnterchangeDefs.AddTextFrame[

" ¢tt.h, box, frameProps, textFrameProps, content /I NIL, sourceCaptions. tc :# NIL,

sourceCaptions.bc /I NIL, sourceCaptions.lc #" NIL, sourceCaptions.rc IF NIL1;

[] +- TextlnterchangeDefs.EnumerateText[content, @textProcs];
TextlnterchangeDefs. Rei ease Text[@newContent];
FilllnFrameCaptions[@sourceCaptions, @newCaptions];
}; - TextFrame

< < Called when a triangle was encountered while enumerating the contents
of a graphics container. > >

Triangle: GraphicslnterchangeDefs.TriangleProc = {
" ctxt: GICtxtHandle = clientData;

GraphicslnterchangeDefs.AddTriangle[ctxt.h, box, triangleProps]};

75 - 33

75 GraphicsIn terchangeDefs

75.4 Index of Interface Items ~

Item Page Item Page

AddRitmap: PRoe 11 EnumProcs: TYPE 17
AddCurve: PRoe 6 EnumProcsRecord: TYPE 17
AddEccentricCurve: PRoe 8 ExtraAnchoredFramePropsElements: TYPE 6
AddEJlipse: PRoe 9 ExtraAnchoradFramePropsSelections: TYPE 6
AddFormField: PRoe 13 FinishButton: PRoe 17
AddFormFieldX: PRoe 14 Fi nishCI ustar: PRoe 17
Addlmage: PRoe 14 FinishGraphics: PRoe 17
AddUne: PRoe 9 FinishGraphicsFrame: PROC 17
AddOther: PRoe 16 FOrmFieldProc: TYPE 19
AddPieslice: PRoe 10 FrameProc: TYPE 19
AddPoint: PROC 10 FrameProps: TYPE 4
AddRectangle: PRoe 10 FramePropsRec: TYPE 4

AddTable: PRoe 1S GetExtraAnchoredFrameProps: PRoe 20
AddTextFrame: PRoe 15 Gray: TYPE 9
AddTriangle: PRoe 11 Handle: TYPE 3
AppendCharToButtonProgram: PRoe 16 ImageProc: TYPE 19
AppendNewParagraphToButtonProgram: ImageProps: TYPE 14

PRoe 16 ImagePropsRec: TYPE 14
AppendTextToButtonProgram: PRoe 16 LineDirection: TYPE 7
BitmapData: TYPE 12 Li neEnd: TYPE 6
BitmapProc: TYPE 18 LineEndHead: TYPE ~
BitmapProps: TvPE 12 LineProc: TYPE • .1

BitmapPropsRec: TYPE 12 Li neProps: TYPE 9
BitmapScalingProps: TYPE 13 LinePropsRec: TYPE 9
BmDisplay: TYPE 12 nuliBitmapProps: BitmapPropsRec 21
bmSignature: INTEGER 12 nuliBitmapScalingProps: BitmapScalingProps 22
Box: TYPE 3 nuIIBu~onProps: ButtonPropsRec 22
Brush: TYPE 4 nuliCurveProps: CurvePropsRec 22
ButtonProc: TYPE 18 null EccentricCurveProps :
ButtonProgram: TYPE S EccentricCurvePropsRec 22
ButtonProgramEnumProcs: TYPE 21 nuliEllipseProps: EllipsePropsRec 22
ButtonProgramEnumProcsRecord: TYPE 21 nuliFrameProps: FramePropsRec 22
ButtonProgramObje~: TYPE 5 nulllmageProps: ImagePropsRec 22
ButtonProps: TYPE 5 nullLi neProps: Li nePropsRec 22
ButtonPropsRec: TYPE S nuliPiesliceProps: PieslicePropsRec 23
ClusterProc:TYPE 18 nuliPointProps: Poi ntPropsRec 23
CurveProc: TYPE 18 nuliRectangleProps: RectanglePropsRec 23
CurveProps: TYPE 6 nuliTextFrameProps: TextFramePropsRec 23
CurvePropsRec: TYPE 6 nullTriangleProps: TrianglePropsRec 23
Dims: TYPE :3 Object: TYPE 3
EccentricCurveProps: TYPE 8 OtherObjectType: TYPE 19
EccentricCurvePropsRec: TYPE 8 OtherProc: TYPE 19
EllipseProc: TYPE 18 PiesliceProps: TYPE 10
EllipseProps: TYPE 9 PieslicePropsRec: TYPE .~ EllipsePropsRec: TYPE 9 Place: TYPE
Enumerate: PRoe 17 PointFiII: TYPE ,0
EnumerateButtonProgram: PRoe 21 Poi ntProc: TYPE 20

75-34

View Point Programmer's Manual 75

Itern Page

~
PointProps: TYPE 10
PointPropsRec: TYPE 10
PointStyle: TYPE 10
ReadonlyBitmapProps: TYPE 12
ReadonlyButtonProps: TYPE 5
ReadonlyCurveProps: TYPE 6
ReadonlyEccentricCurveProps: TYPE 8
ReadonlyEllipseProps: TYPE 9
ReadonlyFrameProps: TYPE 4
ReadonlylmageProps: TYPE 14
ReadonlyLineProps: TYPE 9
ReadonlyPiesliceProps: TYPE 10
ReadonlyPointProps: TYPE 10
ReadonlyRectangleProps: TYPE 11
ReadonlyTextFrameProps: TYPE 15
ReadonlyTriangleProps: TYPE 11
RectangleProc: TYPE 20
RectangleProps: TYPE 11
RectanglePropsRec: TYPE 11
ReleaseButtonProgram: PROC 16
SetExtraAnchoredFrameProps: PROC 6
Shading: TYPE' 9
Side: TYPE ·4

-~ StartButton: PROC 5
StartCluster: PROC 3
Sta.'tGraphics: PROC 3
StartGraphicsFrame: PROC 4
StyleBrush: TYPE 4
Tex'tFrameProc: TYPE 20
TextFrameProps: TYPE 15
TextFramePropsRec: TYPE 15
Texture: TYPE 9
Textures: TYPE 9
TriangleProc: TYPE 20
TriangleProps: TYPE 11
TrianglePropsRec: TYPE 11

75 - 35

75 GraphicsInterchangeDefs

75 - 36

76

TIl ustra tor In terchangeDefs

76 .. 1 Overview

The lIIustratorlnterchangeDefs interface provides the mechanisms for the creation and
enumeration of frames within ViewPoint documents which contain Xerox Pro Illustrator
graphics. It should be used in conjunction with the DocJnterchangeDefs interface.

A Xerox Pro Illustrator frame is composed of a collection of forins. These forms may be
simple graphical objects such as lines or curves, or may be more complex, such as clusters
offorms, or text frames. Forms themselves can have various properties. For example, a line
has a, width and a color, and an area has a texture and a transparency.

76.lel Creating Pro 1l1u~trator graphics

The client creates a Pro Illustrator frame within a document by calling Startlllustrator,
passing in the required dimensions and frame parameters. This procedure returns a frame
handle, which is used in subsequent operations on that frame.

Forms are created within a frame by calling various Create* procedures, such as
CreateLine. These procedures take only the basic parameters to determine the placement
of the form within the frame, along with a set of default properties, which determine the
initial characteristics of the form. Subsequent modification of form properties can be
accomplished by calling the appropriate Set*Props procedures.

Once created within the frame, a form must b~ posted in order for it to be displayed in the
resulting Pro Illustrator frame. This is accomplished via PostFormAtTop, which causes
the form to be added on (visual and structural) top of all forms previously posted in the
same frame.

Transformations may be applied to a form after its creation. Procedures such as Rotate
and Shear perform the corresponding transformations, relative to a pinned point supplied
by the client.

Text frames within a Pro Illustrator frame are created by calling CreateText*. The various
procedures provided allow several different sources to be used for the text itself.

76-1

76 IllustratorIn terchangeDefs

When the client has finished creating and manipulating forms
h
, the framfe is completedh.b

h
y .~

calling Finishillustrator. This procedure returns a Doclnterc angeDe s.lnstance, W IC

should then be passed to DocinterchangeDefs.AppendAnchoredFrame to enter the Pro
Illustrator frame into the document.

78.1.2 Reading Pro Illustrator graphics

The client can process the contents of an existing Pro Illustrator frame by calling
Enumerate, passing in the frame handle and a procedure to be called back for each form.
The frame handle itself can be obtained from an anchored frame by calling
GetFrameHandle, passing in the DodnterchangeDefs.Jnstance which corresponds to the
Pro Illustrator frame.

Basic information for each type of form can be obtaine'd by calling Get*Data. This includes
obtaining the location of the end points of a line, or the text content from a text frame.
Particular groups of properties, not specific to anyone type of form, can be obtained by
calling Get*Props .

. 76 .. 2 Interface Items

76-2

78 .. 2..1 Creating Pro Illustrator graphics

78 .. 2..1.1 Creating a frame

The following prOcedure creates a new Pro Illustrator frame in which graphics may
subsequently be created.

Startlllustrator: PROCEDURE [

doc: DocinterchangeDefs.Docp

lowerLeft. upperRight: Locn.
frameUnit: FrameUnit.
brush: FrameBrush.
leftMargin. rightMargin, topMargin, bottomMargin: CARDINAL 0]
RETURNS [

ok: BOOLEAN.

frame: FrameHandle);

Startlllustrator creates a new Pro Illustrator frame within doc. The size of the frame,
exclusive of any frame margins, is determined by lowerLeft and upperRight, measured in
frameUnit units. These values also determine the coordinate system to be used when forms
are subsequently added to the frame (including the positive direction of the x and y axes),
frameUnit defining the unit of measurement for subsequent operations within the frame.

Locn: TYPE. RECORD [x: Scalar, y: Scalar];
Scalar: TYPE • REAL;

FrameUnit: TYPE. {mica, millimeter, centimeter, point" point72" pica" inch};

Note: In the current implementation, point and point72 are treated as equivalent, and
correspond to exactly 72 points per inch.

ViewPoint Programmer's Manual

The appearance of the frame border is determined by brush.

FrameBrush: TYPE • RECORD [

frameBorderWidth: Pixels.
frameBorderStyle: FrameBorderStyle];

Pixels: TYPE. CARDINAL;

FrameBorderStyle: TYPE • MACHINE DEPENDENT {

invisible(O), solid(1), dashed(2), dotted(3), double(4), broken(S), (1S)};

76

The size of the margin on each side of the frame is determined by leftMargin, rightMargin,
topMargin, and bottomMargin, measured in micas.

The FrameHandle returned by Startlllustrator is passed to the various procedures used to
add forms to the newly created frame.

FrameHandle: TYPE [2];

A frame may also be created by copying an existing Pro Illustrator frame.

CopyFrame: PROCEDURE [

frame: FrameHandle,
doc: DocinterchangeDefs.Doc,

. brush: FrameBrush,
leftMargin,rightMargin, topMargin, bottomMargin: CARDINAL +- 0]
RETURNS [

ok: BOOLEAN,

copy: FrameHandle);

frame is the frame to be copied. The document into which the frame is to be copied is
identified by doc, and may be the same as, or different from, the document containing
frame. As with Startlllustrator, brush determines the appearance of the frame border, and
leftMargin, rightMargin, topMargin, and bottomMargin specify the frame margins.

76.2.1.2 Creating forms

After creating the frame by calling Startlllustrator, the client will typically add forms to it
by calling various Create'" procedures, described below. To each of these procedures the
client passes the FrameHandle returned by Startlllustrator and the default properties to be
used, as well as form-dependent parameters. (See Section 76.2.3.3 for details of default
properties.) Each returns a FormHandle, used in subsequent operations on the form.

FormHandle: TYPE [2];

nilFormHandle: FormHandle • LOOPHOLE[LONG[NIL]];

The procedures used to create forms are divided into seyeral groups: basic forms, clusters,
trajectories and shapes, and text frames. These are described in separate sections be low,
followed by a section on copying an existing form.

76-3

76

76-4

IllustratorInterchangeDefs

Basic forms

CreatePoint:PROCEDURE[
frame: FrameHandle,
loen: lacn,
defaultProps: DefaultProps]
RETURNS (FarmHandle];

CreatePoint creates a point form at the location specified by locn.

Createline: PROCEDURE [
frame: FrameHandle,
lacnA, 10cnS: Locn,
defaultProps: DefaultProps]
RETURNS [FormHandle];

Createline creates a line form with start and end points specified by lacnA and 10cnS.

CreateRectangle: PROCEDURE [
frame: FrameHandle.
pointA, pointe: Locn,
defaultProps: DefaultProps]
RETURNS [FormHandle];

;"lItll.,
j

CreateRectangle creates a rectangle form whose size and placement are determined by 1"'~
specifying two diagonally opposed vertices of the rectangle, pointA and pointe. The order
in which these vertices are specified is not significant.

CreateParalielogram: PROCEDURE [
frame: FrameHandle,
pointA, pointS, pointe: Lacn,
defaultProps: DefaultProps]
RETURNS [FormHandle];

CreateParalielogram creates a parallelogram form whose size, shape and placement are
determined by pointA, pointS and pointC, these being any three consecutive vertices of the
parallelogram.

CreateEllipse: PROCEDURE [
frame: FrameHandle,
pointA, pointS, pointe: Locn,
defaultProps: DefaultProps]
RETURNS [FormHandle];

CreateEllipse creates an ellipse form whose size, shape and placement are determined by
pointA, pointS and pointC, these being any three consecutive vertices of the bounding
parallelogram for the ellipse.

ViewPoint Programmer's Manual 76

Clusters

A cluster is a form which is itself a grouping of forms, created by joining the forms of which
it is to be composed. The resultant cluster can then be manipulated as a single entity.
Note that clusters may themselves be part of another cluster.

Join: PROCEDURE [enumerateProc: EnumerateFormsProc. count: CARDINAL +- 0]
RETURNS [FormHandle];

EnumerateFormsProc: TYPE. PROCEDURE [formCaIiBack: AcceptFormProc];
AcceptFormProc: TYPE • PROCEDURE [form: FormHandle];

The enum~rateProc, supplied to Join by the client, is called back to obtain the forms which
are to comprise the cluster. For each of these forms, the client should call the
formCaIiBack, as passed into the enumerateProc, to add it to the cluster.

count is the number of forms ~hich will comprise the cluster. If count is zero, the
enumerateProc will be called once to count the forms, and then called again to build the
cluster itself.

TrajectQries and shapes

A shape is a form which corresponds to a (possibly filled) geometric'shape, and is composed
of a number of trajectories. Each trajectory is co~posed of a sequence of edges, and may be
either open or closed. A closed trajectory is analogous to a polygon, and an open trajectory
to a polyline.

A shape is created by calling CreateShape.

CreateShape: PROCEDURE [

frame: FrameHandle,
defaultProps: DefaultProps]
RETURNS [FormHandle];

frame is the frame within which the shape is to be created, and defaultProps contains the
default properties for the form.

Trajectories are added to a shape by calling AddTrajectory.

AddTrajectory: PROCEDURE [trajectory. shape: FormHandle];

A trajectory is itself created by calling CreateTrajectory.

CreateTrajectory: PROCEDURE [

frame: FrameHandle,
edges: CARDINAL,

closed: BOOLEAN +-TRUE,

boundaryType: BoundaryType ... including,
defaultProps: DefaultProps]
RETURNS [currentForm: FormHandle];

76-5

76

76-6

IllustratorIn terchangeDefs

frame is the frame within which the trajectory is to be created. edges specifies the number ~l!"lt~,
of edges in the trajectory, and closed specifies whether the trajectory is closed or open.

Each trajectory has a boundary type which may be either including or excluding. A
boundary type of including will cause a shade or texture fill to fill inside the trajectory,
whilst one of excluding will cause the fill to fill outside. This enables objects with "holesn to
be constructed. Figure 76.1 illustrates a shape composed of a rectangular trajectory with

Figu~e 76.1 A shape with a Mhole"

boundary type including and a triangular trajectory with boundary type excluding, and
filled with 50% gray. .

BoundaryType: TYPE • {including. excluding};

Edges are added to the trajectory by calling Add Edge.

AddEdge: PROCEDURE [trajectory: FormHandle, edge: Edge];

This causes edge to be added to trajectory. The edges of a trajectory may be lines, conics,
bezier curves or arcs.

EdgeType: TYPE. {lineTo, conicTo, bezierTo, arcTo};

Edge: TYPE • LONG POINTER TO READONLY EdgeObject;
EdgeObject: TYPE • RECORD [

smoothJoint: BOOLEAN +- FALSE,

data: SELECT type: EdgeType FROM

IineTo • > [vertex: Locn].
conicTo • > [apex: Locn, eccentricity: Scalar, vertex: Locn],
bezierTo • > [apexA, apexS, vertex: Locn],
arcTo • > [direction: DirectionType +- clockwise,

pointA, pointS, pointe, vertex: Locn],
ENDCASE];

Since each edge of a trajectory starts at the end point (the vertex) of the previous edge, no
starting point for an edge needs to be specified. For a closed trajectory, the first edge starts .~
at the vertex of the last edge. For an open trajectory, the first edge defines the starting
point of the trajectory (via its vertex), but is otherwise ignored.

ViewPoint Programmer's Manual 76

A conic is specified by its apex and eccentricity, as illustrated in Figure 76.2. For

............... '

...
• II , " , . , . ,

e

Figure 76.2 Specification of a conic

convenience, the following constant defines the eccentricity of a circle.

eccCircle: REAL •• 414213; - Sqrt [2.0] -1.0

A bezier curve is specified by t~o bend points, apexA and apex8, as illustrated in Figure
76.3. .

...
"

. , , ' ."

. . ,

.. .. ,

.. ..

Figure 76.3 Specification of a bezier curve

An are, which may be either circular or elliptical, is specified by its direction, which may be
either clockwise or counter-elockwise, and three points on its bounding parallelogram, as
illustrated in Figure 76.4.

DirectionType: TYPE. {clockwise, counterClockwise};

Note: In the current version, a trajectory can appear only inside a shape, only one
trajectory per shape is permitted, and boundaryType is always taken as including.

Text frames

Text frames within a Pro Illustrator frame may be created in one of four different ways,
depending upon the source of the text content itself. In each case, the client passes in

76-7

76

76-8

Illustrator InterchangeDefs

Figure 76.4 Specification of an arc

frame, which is the Pro Illustrator frame within which the text frame is to be created~
pointA and pointe, which are two diagonally opposed vertices of the text frame. and
defaultProps, which are the default properties to be used in creating the text frame. (See
Section 76.2.3.3 for details of default properties.) The text frame form is returned in
FormHandle.

Although the size and placement of a text frame is initially specified via poi ntA and
pointC, this may be altered during creation if the frame has any varying sides J as
determined from defaultProps. Since changing the frame to have fixed sides after it is
created will not restore the frame's original size, the correct properties should be set within ~
defaultProps before calling CreateText*. (See Property Groups in Section 76.2.3.2 for
details of text properties.)

CreateText:PROCEDURE[
frame: FrameHandle,
pointA, pointC: Locn,
defaultProps: DefaultProps,
string: XString.Reader if- NIL,

paraProps: DodnterchangePropsDefs.ReadonlyParaProps if- NIL,

fontProps: DocinterchangePropsDefs.ReadonlyFontProps if- NIL]

RETURNS (FormHandle];

CreateText creates a text frame containing the text supplied in string, with paragraph and
font properties determined by paraProps and fontProps respectively.

CreateTextFromTextType: PROCEDURE (
frame: FrameHandle,
pointA, pointC: Locn,
defaultProps: DefaultProps,
string: XString.Reader if-NIL,

textContent: TextinterchangeOefs. Text if- NIL]

RETURNS [Form Handle];

CreateTextFromTextType creates a text frame containing the text supplied in textContent ~
preceded by that supplied in string, if any. This allows, for example, the copying of text
from another text frame.

View Point Programmer's Manual

CreateTextFromField: PROCEDURE [

frame: FrameHandle.
pointA. pointC: Loc".
defaultProps: DefaultProps.
string: XString.Reader +- NIL,

fieldContent: DodnterchangeDefs.Field +- NIL.

paraProps: DodnterchangePropsDefs.ReadonlyParaProps +- NIL,

fontProps: DodnterchangePropsDefs.ReadonlyFontProps +- NIL)

RETURNS [FormHandle);

76

CreateTextFromField creates a text frame containing the text supplied in fieldContent,
preceded by that supplied in string, if any, with paragraph and font properties determined
by paraProps and fontProps respectively. This allows the copying of text from a field
within a ViewPoint document into a text frame within a Pro Illustrator frame.

CreateT~xtFromCaption: PROCEDURE (

frame: FrameHandle.
pointA. pointe: Loc",
defaultProps: DefaultProps,
string: XString.Reader +- NIL.

captionContent: DodnterchangeDefs.Caption +- NIL.

paraProps: DodnterchangePropsDefs.ReadonlyParaProps +- NIL.

fontProps: DodnterchangePropsDefs.ReadonlyFontProps +- NIL)

RETURNS [FormHandle];

CreateTextFromCaption creates a t"ext frame containing the text supplied in
captionContent, preceded by that supplied in string, if any, with paragraph and font
properties determined by para Props and fontProps respectively. This allows the copying of
text from a frame caption into a text frame within a Pro Illustrator frame.

Copying a form

A form may also be created by copying an existing form.

CopyForm: PROCEDURE [

form: FormHandle.
toFrame: FrameHandle +- nilFrameHandle]
RETURNS [FormHandle];

nilFrameHandle: FrameHandle • LOOPHOLE[LONG[NIL]];

CopyForm creates and returns a copy of form within frame toFrame. If toFrame is
nilFrameHandle, the form will be copied within the same frame

76.2.1.3 Posting forms

For a form to be visible within a displayed or printed Pro Illustrator frame, it must be
posted after its creation. However, forms within a cluster should not themselves be posted,
since posting the cluster achieves the correct result.

76-9

76 IllustratorInterchan ge Defs

PostFormAtTop: PROCEDURE [form: FormHandle);

PostFormAtTop causes form to be imaged on top of all forms previously created within this
frame.

A form may be unposted, or removed from the list of forms to be imaged within the frame,
by calling UnPostForm.

UnPostForm: PROCEDURE [form: FormHandle];

78 .. 2.1 .. 4 Form transformations

76-10

After its creation, a variety of transformations may be applied to a form. Each of the
following procedures performs a transformation on the form passed in, returning a boolean
value indicating whether the form was actually changed or whether in fact the identity
transformation took place.

Magnify: PROCEDURE [

form: FormHandle.
pin: Locn"
scale: Scalar]
RETURNS [changed: BOOLEAN};

Magnify causes form to be magnified by a factor of scale, centered around the pinned point,
pin. Everything, including line widths, line endings and point widths, is magnified in ~
proportion.

Note: While text frames can be magnified (subject to automatic constraints if they have
varying edges), the text inside them is not. Also, the length of segments in dashed lines is
not affected by magnification.

Mirror: PROCEDURE [

form: FormHandle.
pin: Locn.
axis: Axis]
RETURNS [changed: BOOLEAN];

Axis: TYPE. {x. y. origin. yEqualsX. yEqualsMinusX};

Mirror causes form to be reflected in the axis specified by axis and passing through the
pinned point, pin. Ifaxis is origin, then the reflection occurs through the pinned point, pin.

Note: Mirroring in the yEqualsX and yEqualsMinusX axes are currently not supported.

Rotate: PROCEDURE [

form: FormHandle.
pin: Locn,
sinw cos: Scalar]
RETURNS [changed: BOOLEAN];

ViewPoint Programmer's Manual 76

Rotate causes form to be rotated by e degrees around the pinned point, pin, where sin and
cos are the sine and cosine, respectively, ofe.

Note: Embedded frames (currently only text frames) are not rotated, but instead keep
their orientation and are moved along the path of the rotation.

Scale: PROCEDURE [

form: FarmHandle.
pin: Locn.
xScaleFactor: Scalar,
yScaleFactor: Scalar]
RETURNS [changed: BOOLEAN];

Scale causes form to be sealed by a factor of xScaleFactor in the X axis, and yScaleFactor in
the Y axis, centered around the pinned point, pin. Line widths and line endings are not
affected.

Note: While text frames can be scaled (subject to automatic constraints if they have
varying edges), the text inside them is not.

Shear: PROCEDURE [

form: FormHandle.
pin: Lacn.
shearFactor: Scalar.
scaleFactor: Scalar.
aX1s: Axis]
RETURNS [changed: BOOLEAN];

Shear causes form to be sheared by a factor of shearFactor in the axis axis, and scaled by a
factor of scale Factor in the orthogonal axis, centered around the pinned point, pin.

Note: Shearing in the yEqualsX and yEqualsMinusX axes are currently not supported.
Embedded frames (currently only text frames) are not sheared, but instead keep their
orientation and are moved along the path of the shear.

Translate: PROCEDURE [

form: FarmHandle,
xOffset: Scalar,
yOffset: Scalar,
guidePtLocn: Locn origin,
mode: TranslateMode relative]
RETURNS [changed: BOOLEAN];

TranslateMode: TYPE. {absolute, relative};

If mode is absolute, Translate causes form to be translated by an amount such as to
position the guide point, guidePtLocn, at the point (xOffset, yOffset). If mode is relative,
form is translated by xOffset in the X axis and yOffset in the Y axis.

76-11

76 IllustratorInterchangeDefs

78.2.1.5 Finish routines

When all the desired forms have been added to the frame~ the client should call
Fi nishlll ustrator, passing in the FrameHandle originally returned by Startlll ustrator.

Finishillustrator: PROCEDURE [frame: FrameHandle)
RETURNS [illustrator: DodnterchangeDefs.lnstance);

The client will typically pass illustrator to DodnterchangeDefsoAppendAnchoredFrame to
insert the frame into a document.

78.2.2 Reading graphics

This section details the procedures used to perform basic enumeration of the forms within a
Pro Illustrator frame. Interrogation of the properties of forms is achieved through use of
the procedures described in the next section.

The client enumerates the forms within a Pro Illustrator frame by calling Enumerate.

Enumerate: PROCEDURE [frame: FrameHandle. proc: FormProc]
RETURNS [stopped: BOOLEAN +-fALSE];

FormProc: TYPE. PROCEDURE [form: FormHandle) RETURNS [stop: BOOLEAN +-FALSE);

. frame is the handle of the Pro Illustrator frame to he enumerated. Th~ client-supplied proc I~
is called hack for each form in the frame, in bottom to top order. If proc returns stop • TRue

at any time, the enumeration is terminated, and Enumerate returns to the client with
stopped. TRUE.

In order to enumerate the forms within a cluster, or trajectories within a shape, the client
should call the following procedure.

EnumerateSubForms: PROCEDURE [form: FormHandle. proc: AcceptFormPro~];

The client-supplied proc is called back for each form in the cluster, or trajectory within the
shape.

In order to enumerate the edges within a trajectory, the client should call the following
procedure.

EnumerateEdges: PROCEDURE [form: FormHandle, proc: EdgeProc]
RETURNS [stopped: BOOLEAN +- fALSE];

EdgeProc: TYPE. PROCEDURE [edge: Edge] RETURNS [stop: BOOLEAN +- FALSE];

The client-supplied proc is called back for each edge in the trajectory. If proc returns stop
• TRUE at any time, the enumeration is terminated, and EnumerateEdges returns to the
client with stopped • TRUE.

ViewPoint Programmer's Manual 76

76.2 .. 3 Properties

Previous sections of this chapter have dealt with the creation and enumeration of frames
and forms in their basic state. This section details the properties applicable to frames and
to each type of form, and describes the procedures available to set and interrogate those
properties.

76.2.3.1 Frame properties

The following procedures allow the client to get and set various properties of a Pro
Illustrator frame. The Get* procedures take a FrameHandle as a parameter, and return
the appropriate type of information as their result. The Set* procedures take a
FrameHandle and the appropriate information as parameters.

GetFrameHandle: PROCEDURE [anchoredFrame: DodnterchangeDefs.lnstance]
RETURNS [FrameHandle];

GetFrameHandle returns the handle for an anchored Pro Illustrator frame within a
document. anchoredFrame will typically have been passed to the client as.a result of a call
to DocinterchangeDefs.Enumerate.

GetBoundary: PROCEDURE [frame: FrameHandle] RETURNS [lowerLeft. upperRight: Locn];

SetBoundary: PROCEDURE [frame: FrameHandle.lowerLeft. upperRight: Locn];

GetBoundary and SetBoundary allow the client to get and set, respectively, the bounding
box for a frame. The values lowerLeft and upperRight define the size of'the frame and the
coordinate System to be used within it.

GetFrameUnit: PROCEDURE [frame: FrameHandle] RETURNS [FrameUnit];

SetFrameUnit: PROCEDURE [frame: FrameHandle. frameUnit: FrameUnit];

GetFrameUnit and SetFrameUnit allow the client to get and set, respectively, the unit of
measurement to be used in subsequent operations within the frame.

GetGridding: PROCEDURE [frame: FrameHandle) RETURNS [Griddinglnfo);

SetGridding: PROCEDURE [frame: FrameHandle, gridding: Griddinglnfo];

GetGridding and SetGridding allow the client to get and set, respectively, the parameters
affecting the use of a grid within the frame.

Griddinglnfo: TYPE. LONG POINTER TO READONLY GriddingObject;
GriddingObject: TYPE. RECORD [

xGrid" yGrid: Scalar 0.0,
rGrid. theta Grid: Scalar 0.0,
cartesianGridOrigin: Locn origin.
polarGridOrigin: Loc" origin,
thetaGridOffset: Scalar 0.0,
displayGrid: BOOLEAN FALSE,

gridStyle: GridStyle none,

76-13

76 IllustratorInterchangeDefs

gridType: GridType +- none,
xGridOn. yGridOn: BOOLEAN +-FALSE,

rGridOn, thetaGridOn: BOOLEAN +-FALSE);

GridStyle: TYPE. {tic, dot" none};
GridTyp.: TYPE. {linear, angular, none};

origin: Locn • [0.0,0.0);

Both cartesian and polar grids are provided for within a Pro Illustrator frame, that which
is active (if any) being indicated by gridType. Whether or not the grid is visible to the user
is determined by displayGrid, and the style of grid points, when visible, is specified by
gridStyle.

Note: gridStyle. tic is not supported in the current version.

For a cartesian grid, X and Y grid control is independently specifiable. Whether or not X or
Y positioning is to be constrained by the grid is specified by xGridOn and yGridOn
respectively. The grid spacing is specified by xGrld and yGrid, measured from the grid
origin, cartesianGridOrigin .

. For a polar grid, r and 9 grid control is independently specifiable. Whether or not r or e
positioning is to be constrained by the grid is specified by rGridOn and thetaGridOn
resPectively. The grid spacing is specified by rGrid measured from the grid origin,
polarGridOrigin, and by thetaGrid measured in degrees around the grid origin, starting at
thetaGridOffset degrees.

GetTopForm: PROCEDURE [frame: FrameHandle) RETURNS (FormHandle);

GetBottomForm: PROCEDURE [frame: FrameHandle] RETURNS [FormHandle];

GetTopForm and GetBottomForm return the handle of the top and bottom form,
respectively, within the imaging order of the frame whose handle is passed in.

78.2.3.2 Form properties

76-14

The following procedures allow the client to get and set various properties of a form. These
procedures are divided into three groups, reflecting their applicability to all types of forms,
to specific types of forms, or to specific types of properties. A further section is devoted to
the subject of line, dash styles.

Generic form properties

These procedures return to the client information about the form in its context within the
frame. They are applicable to all type of forms.

GetParentFrame: PROCEDURE [form: FormHandle) RETURNS [FrameHandle];

GetParentFrame returns the handle of the Pro Illustrator frame within which the form ~,
exists.

View Point Programmer's Manual 76

GetFormType: PROCEDURE [form: FormHandle] RETURNS [FormType];

FormType: TYPE. {

point. line. rectangle. parallelogram, ellipse.trajectory. shape. cluster, text, frame};

GetFormType returns the type of the form whose handle is passed in.

GetFormAbove: PROCEDURE [form: FormHandle. circular: BOOLEAN +-FALSE]

RETURNS [FormHandle];

GetFormBelow: PROCEDURE [form: FormHandle. circular: BOOLEAN +-FALSE]

RETURNS [FormHandle];

GetFormAbove and GetFormBelow return the form above and below, respectively, the
form whose handle is passed in, within the imaging order of the frame. Ordinarily,
GetFormAbove returns NIL if form is the top form,and GetFormBelow returns NIL if form is
the bottom form. However, if circular = TRUE, both functions "wrap around", that is,
GetFormAbove of the top form returns the bottom form, and GetFormBelow of the bottom
form returns .the top form.

Specific form properties

Each of these procedures returns to the client the pertinent information for the particular
type ofform whose handle is passed in.

GetPointData: PROCEDURE [form: FormHandle] RETURNS [point: Locn];

GetPoi ntData returns the location of the point passed in.

GetLineData: PROCEDURE [form: FormHandle] RETURNS [pointA, pointS: Locn];

GetLineData returns the start and end points of the line passed in.

GetParalielogramData: PROCEDURE [form: FormHandle]
RETURNS [isRectangle: BOOLEAN, pointA, pointS, pointe: Locn];

GetParalielogramData returns three consecutive vertices of the parallelogram passed in,
and indicates whether or not the parallelogram is in fact a rectangle.

GetEllipseData: PROCEDURE [form: FormHandle) RETURNS [pointA, pointS, pointC: Locn];

GetEllipseData returns three consecutive vertices of the bounding parallelogram for the
ellipse passed in.

GetClusterData: PROCEDURE [form: FormHandle] RETURNS [count: CARDINAL];

GetClusterData returns, for the shape passed in, a count of the number of forms of which it
is composed.

GetShapeData: PROCEDURE [form: FormHandle] RETURNS [count: CARDINAL];

76-15

76

76-16

Illustrator InterchangeDefs

GetShapeData returns, for the shape passed in, a count of the number of trajectories of ~
which it is composed.

GetTrajectoryData: PROCEDURE [form: FormHandle]
RETURNS [count: CARDINAL, closed: aOOLEAN, boundaryType: BoundaryType];

GetTrajectoryData returns the number of edges in the trajectory, an indication of whether
it is closed or not, and the boundary type, for the trajectory passed in.

GetTextData: PROCEDURE [doc: DocinterchangeDefs.Doc, form: FormHandle]
RETURNS [text: TextinterchangeDefs.Text];

GetTextData returns, for the text frame passed in, the text content for that frame.

Property groups

There are several gro':lps of properties which are not directly connected to a particular type
of form~ but which may in fact be associated with several different types of forms. For each
such group, three procedures are provided, viz Has*Props, Get*Props and Set*Props. For a
given form, these procedures allow the client to determine whether the form possesses the
properties, to get the properties, and to set them, respectively.

Has*Props procedures return TRUE if the form has that particular type of property - that is,
if the property is appropriate for the form - and FALSE otherwise. For example, line
properties are appropriate for lines, but area properties are not. The client should call the
appropriate Has*Props procedure to determine the appropriaten~ss of properties before
calling Get*Props or Set*Props.

Get*Propsprocedures return the form property if that property -is appropriate and
consistent. For example, lines have line properties, but a cluster of lines might have
inconsistent (i.e. different) line properties. If the property is inappropriate, NIL is returned;
ifit is inconsistent or does not exist, the value undefined*Props is returned.

Note that both line end properties and area properties are appropriate for shape forms, but
that line end properties are used only on open trajectories, and area properties only on
closed trajectories.

Area properties are normally applicable to rectangles, parallelograms, ellipses, closed
trajectories and text frames, and may be applicable to clusters.

HasAreaProps: PROCEDURE [form: FarmHandle] RETURNS [aOOLEAN);

GetAreaProps: PROCEDURE [form: FarmHandle] RETURNS [AreaPropsObject1;

SetAreaProps: PROCEDURE [form: FarmHandle. areaProps: AreaProps);

AreaProps: TYPE. LONG POINTER TO AreaPropsObject;
AreaPropsObject: TYPE • RECORD [

area Texture: AreaTexture.
areaColor: Color,
transparent: Boolean];

,
~~'~

~.

ViewPoint Programmer's Manual 76

Boolean: TYPE. {true, false, undefined};

An area has a texture and a color, and may be either transparent or opaque. A variety of
basic textures are provided, and these may be used singly or in combination to achieve the
desired effect.

AreaTexture: TYPE • RECORD [
-lina­
IineVert,lineHoriz,lineNW, IineNE,
-dash-

'dashNW, dashNE, brick, crossweave,
-other-
stipple, whiteArc, wave, squareDot: Boolean];

As a convenience, noAreaTexture allQws the client to specify the absence of any texture
within an area.

nOAreaTexture: AreaTexture • [
false, false, false, false, false, false, false, false, false, false, false, false1;

Color, as a shade of gray, is specified as a value in the range 0 to 1, where 0 and 1 represent
white and black respectively .

. Color: TYPE • Scalar;

The following definition represents no specific~tion of area properties. Note that this is
different from specification of no area properties.

undefi nedAreaProps: AreaPropsObj~ct • [
undefinedAreaTexture, undefinedScalar, undefined];

undefinedAreaTexture: AreaTexture • [
undefined, undefined, undefined, undefined, undefined, undefined.
undefined, undefined. undefined, undefined, undefined, undefined];

undefinedScalar: Scalar • Real.LargestNumber;

Graphic properties are applicable to all form types.

HasGraphicProps: PROCEDURE [form: FormHandle] RETURNS [BOOLEAN];

GetGraphicProps: PROCEDURE [form: FormHandle] RETURNS [GraphicPropsObject];

SetGraphicProps: PROCEDURE [form: FormHandle. graphicProps: GraphicProps];

GraphicProps: TYPE • LONG POINTER TO GraphicPropsObject;
GraphicPropsObject: TYPE • RECORD [

fixedAngle: Boolean.
fixedShape: Boolean.
printable: Boolean];

76-17

76

76-18

Illustrator In terchangeDefs

printable determines whether or not the form should be printed in addition to being
displayed on the screen.

Note: fixedAngle and fixedShape are not implemented in the current release.

The following deflnition represents no specification of graphic properties.

undefinedGraphicProps: GraphicPropsObject -[undefined, undefined, undefined);

Point properties are applicable to points, and may be applicable to clusters.

HasPointProps: PROCEDURE [form: FormHandle] RETURNS [BOOLEAN];

GetPointProps: PROCEDURE [form: FormHandle] RETURNS [PointPropsObject];

SetPointProps: PROCEDURE [form: FormHandle, pointProps: PointProps);

PointProps: TYPE - LONG POINTER TO PointPropsObject:
PointPropsObject: TYPE - RECORD [

pointMarker: PointMarker,
pointWidth: Scalar,
pointColor: Color];

A point has a marker type, a width and a color. A v&:riety of markers are provided. Width,
which is the effective diameter of the point, is specified in the current frame units. As for
areas, coloris specified as a value in the range 0 to 1, where 0 and 1 represent white and .~
black respectively.

Poi ntMarker: TYPE • {

- solid-·
solidSquare, solidCircle, solid Diamond, solidUpTriangle,
solidDownTriangle, solidRightTriangle, soli~LeftTriangle,
-open-
openSquare, openCircle, open Diamond, openUpTriangle,
openDownTriangl4!!, openRightTriangle, openLeftTriangle,
-nDot-
squareNDot, circieNDot, diamondNDot,
-misc-
solidDiscRising, solidDiscSetting, solidStar,
x, plus, outlineOiscRising, outlineDiscSetting,
openS tar , starburst, check,
undefined};

The following definition represents no specification of point properties.

undefinedPointProps: PointPropsObject • [
undefined, undefinedScalar, undefinedScalar];

Line properties are applicable to lines, rectangles, parallelograms, ellipses, trajectories
and text frames, and may be applicable to clusters.

HasLineProps: PROCEDURE [form: FarmHandle] RETURNS [BOOLEAN];

ViewPoint Programmer's Manual

GetLineProps: PROCEDURE [form: FormHandle] RETURNS [LinePropsObject];

SetLineProps: PROCEDURE [form: FormHandle, IineProps: LineProps);

LineProps: TYPE • LONG POINTER TO LinePropsObject;
LinePropsObject: TYPE • RECORD [

IineTexture: LineTexture,
dashStyle: DashStyle,
IineWidth : Scalar,
IineColor: Color);

76

A line has a texture, a width and a color. If the line texture is dashed, the line has a dash
style. Dash styles are described in the next section.

LineTexture: TYPE. {solid, dashed, none, undefined};

The following definition represents no specification oflill:e properties.

undefinedLineProps: LinePropsObject • [
undefined, NIL, undefinedScalar, undefinedScalar);

Line end properties are applicable to lines and trajectories, and may be applicable to
clusters.

HasLineEndProps: PROCEDURE [form: FormHandle) RETURNS [aOOLEAN];

GetLineEndProps: PROCEDURE [form: FormHandle] RETURNS [LineEndPropsObject];

SetLineEndProps: PROCEDURE [form: FormHandle, IineEndProps: LineEndProps];

LineEndProps: TYPE. LONG POINTER TO LineEndPropsObject;
LineEndPropsObject: TYPE •. RECORD [

endingA: LineEnding,
endSizeA: Scalar,
fixedOrVaryingA: FixedOrVarying,
endingB: LineEnding,
endSizeB: Scalar,
fixedOrVaryingB: FixedOrVarying];

For each end of the line, the LineEndPropsObject specifies the type and size of the line
ending, and whether it is rued or variable. The size of a rued line ending is specified by
size, and remains unchanged when the line width itself is scaled. size represents the line
width for which the arrowhead is proportionately correct. For a variable line ending, size
is ignored, and the actual size is determined from the line width. Variable Hne endings are
scaled along with the line itself.

LineEnding: TYPE. {

-basic-
extended, flush, rounded,
- solid arrows -
arrowSolidMiddleFlatBack, arrowSol idShortFlatBack,
arrowSolidEquil FlatBack, arrowSol idSkinnyFlatBack,
arrowSolidSmallVBack, arrowSolidLargeVBack,

76-19

76

76-20

IllustratorInterchangeDefs

... outline arrows-·
arrowOutlineMiddleFtatBack, arrowOutlineShortFlatBackf/
arrowOutlineEquilFlatBack, arrowOutlineSkinnyFlatBackf/
arrowOutlineSmallVBack, arrowOutlineLargeVBackf/
-v arrows-
arrowVLon9. arrowVFlatTop,
-misc-
solidCircie. outlineCircie. break. slash,
- double arrows
doubleMiddleFlatBack. doubleEquilFlatBack, doubleSmallVBack.
undefined};

FixedOrVaryin9: TYPE. {fixed. varying, undefined};

The following definition repr-esents no specification of line end properties.

undefinedLineEndProps: LineEndPropsObject • [
undefined, undefinedScalar, undefined, undefined, undefinedScalar, undefined);

Text properties are applicable to text frames, and may be applicable to clusters.

HasTextProps: PROCEDURE [form: FarmHandle] RETURNS [BOOLEAN];

GetTextProps: PROCEDURE [form: FarmHandle] RETURNS [TextPropsObject];

SetTextProps: PRQCEDURE [form: FarmHandle, textProps: TextProps);

TextProps: TYPE. LONG POINTER TO TextPropsObject;
TextPropsObject: TYPE • RECORD [

leftEdge, rightEdge, topEdge, bottomEdge: FixedOrVarying,
ctrlPtPlace: CtrlPtPlace,
leftMargin, rightMargin, topMargin, bottomMargin: Scalar];

Each edge of a text frame may be either fIXed or varying. When an edge is specified as
varying, its position is determined by the textual content of the frame, whereas the
position of a fIXed edge will not be altered in this way. The margin for each edge is
independently specificable, and the positioning of control points for the text frame is
determined by ctrlPtPlace.

CtrlPtPlace: TYPE. {baseline. center, baselineAndCenter, undefined};

When ctrlPtPlace is center, control points for the text frame are positioned the same as for a
rectangle. When ctrlPtPlace is baseline, the control points in the middle of the left and right
sides and in the center of the frame are positioned along the baseline of the first line of text.

Note: baselineAndCenter is not supported in the current version.

The following definition represents no specification of text properties.

undefinedTextProps: TextPropsObject • [
undefined, undefined, undefined, undefined, undefined,
undefinedScalar, undefinedScalar, undefinedScalar, undefinedScalar];

ViewPoint Programmer's Manual 76

Dash styles

Pro Illustrator allows the creation and use of arbitrary dash styles for lines and
trajectories. Due to this arbitrary nature, a special mechanism exists for their
manipulation, the details of which are described in this section.

A dash pattern can be considered as a sequence of pairs of arbitrary length, each pair
comprising a dash and a gap. Hence a regular dashed line would consist of a single pair,
with the dash and gap of equal length, and a dash-dot line would consist of two pairs, the
two dash lengths being different.

~ The client creates a new dash style by calling CreateDashStyle.

CreateDashStyle: PROCEDURE [

zone: UNCOUNTED lONE,

fit: DashFit,
enumerateProc: EnumeratePatternProc]
RETURNS [DashStyle];

DashStyle: TYPE • LONG POINTER;

The storage for the new dash style will be allocated from zone. fit determines the
behaviour of the dash pattern within a line. .

DashFit: TYPE. {fromOneEnd, centered, st~etchToFit, stretchToVertices};

fromOneEnd causes the dash pattern to be applied, repeatedly if necessary, without
stretching, and starting with the first dash at the first vertex of the trajectory. centered
causes the dash pattern to be applied without stretching and starting at the center of the
trajectory. stretchToFit causes the dash pattern to be stretched as necessary so that each
end of the trajectory has a full dash. stretchToVertices causes the dash pattern to be
stretched as necessary, separately for each segment, so that each vertex of the trajectory
has a full dash.

Note: Only fit = fromOneEnd is currently implemented.

The client-supplied enumerateProc is called back to obtain the pairs comprising the dash
pattern.

EnumeratePatternProc: TYPE. PROCEDURE [dashCaIIBack: AcceptDashProc];

AcceptDashProc: TYPE. PROCEDURE [dash, gap: Scalar, dashEnd: DashEnd flush];

The client should call dashCaliBack for each dash-gap pair of the dash pattern. dashEnd
determines the appearance of the end of the dash. .

Note: Currently, the unit of measure for dash patterns is always point regardless of the
units in effect for the frame.

DashEnd: TYPE. {flush, extended, round};

76-21

76 IllustratorInterchangeDefs

flush causes the dash to end at precisely the point at which its length indicates. extended ~
causes the dash to be extended by half its width in the direction of the trajectory at that
point. round causes the the dash to appear with a semicircular end, whose diameter equals
the line width and whose center coincides with the dash end.

A dash style may also be created by copying an existing dash style.

CopyDashstyle: PROCEDURE [zone: UNCOUNTED ZONE. dashstyle: Dashstyfe]
RETURNS [Dashstyle];

CopyDashstyle returns a copy of dash Style whose storage is allocated from zone.

When a dash style is no longer required it should be destroyed, and its storage freed, using
the following procedure.

Dest~oyDashStyle: PROCEDURE [zone: UNCOUNTED ZONE, ptr: LONG POINTER TO DashStyle];

zone must be the same as that which was passed to CreateDashStyle or CopyDashStyle
when the dash style was created.

In order to interrogate the construction of an existing dash style? the client should call
ReadDashStyle.

ReadDashstyle: PROCEDURE [dashStyle: DashStyle, proc: AcceptDashProc ~ NIL]
RETURNS [DashFit]; .

The client-supplied proc is called back for each dash-gap pair in dashStyle, and the fit for
the dash style is returned returned by ReadDashStyle.

The equality or otherwise of two dash styles is determined using the following procedure.

DashStylesEqual: PROCEDURE [style1, style2: DashStyle] RETURNS [aOOLEAN);

DashStylesEqual returns TRUE if all elements of style1 and stjle2 are equal, and FALSE

otherwise,' Note that this is not the same as comparing style1 and style2 directly, since the
two patterns may be exactly equivalent without being one and the same.

78e203 .. 3 Default properties

76-22

Default properties are used in the creation of forms within a frame, and comprise a global
set of property settings not specific to any particular type of form. The client will typically
construct a single set of default values, and use this each time a form is created by calling
Create*. This section describes the procedures whereby the client can create and
subsequently manipulate default properties.

A default property record is created by calling the following procedure.

CreateDefaults: PROCEDURE [z: UNCOUNTED ZONE) RETURNS [defaultProps: DefaultProps];

DefaultProps: TYPE. LONG POINTER TO DefaultPropsObject;

DefaultPropsObject: TYPE;

.~

ViewPoint Programmer's Manual 76

CreateDefauits returns a pointer to a default property object whose value consists of the set
of standard Pro Illustrator defaults for each group of properties. The storage for the object
is allocated from the client-supplied zone, z.

When a default property record is no longer required it should be destroyed, and its storage
freed, using the following procedure.

DestroyDefaults: PROCEDURE [defaultProps: LONG POINTER TO DefaultProps];

For each group of properties described under Specific Property Types in Section 76.2.3.2
above, the client can get or set the defaults within defaultProps using the Get* and Set*
procedures listed below. Each Get* procedure returns a complete *PropsObject, and each
Set* procedure takes a *Props, as appropriate.

GetDefaultAreaProps: PROCEDURE (defaultProps: DefaultProps]
RETURNS [AreaPropsObject];

SetDefaultAreaProps: PROCEDURE [

areaProps: AreaProps, defaultProps: DefaultProps);

GetDefaultGraphicProps: PROCEDURE (defaultProps: OefaultProps]
RETURNS (GraphicPropsObject];

SetDefaultGraphicProps: PROCEDURE (

graphicProps: GraphicProps, defaultProps: DefaultProps];

GetDefaultPointProps: PROCEDURE [defaultProps: DefaultProps]
RETURNS [PointPropsObject];

SetDefaultPoi ntProps: PROCEDURE [

pointProps: PointProps, defaultProps: DefaultProps);

GetDefaultLineProps: PROCEDURE (defaultProps: DefaultProps]
RETURNS [LinePropsObject);

SetDefaultLineProps: PROCEDURE (

IineProps: LineProps, defaultProps: DefaultProps);

GetDefaultLineEndProps: PROCEDURE (defaultProps: DefaultProps]
RETURNS (LineEndPropsObject];

. SetDefaultLineEndProps: PROCEDURE [

IineEndProps: LineEndProps, defaultProps: DefaultProps];

GetDefaultTextProps: PROCEDURE [defaultProps: DefaultProps)
RETURNS [TextPropsObject];

SetDefaultTextProps: PROCEDURE (

textProps: TextProps, defaultProps: .oefaultProps];

Mter changing the frame units using SetFrameUnit, the client should update any default
property records by calling the following procedure.

76-23

76 IllustratorIn terchangeDefs

UpdateDefaultFrameUnits: PROCEDURE [

defaultProps: DefaultProPSr frameUnit: FrameUnit];

UpdateDefaultFrameUnits will cause the values in defaultProps to be represented in
frameUnit units, so that they are correctly interpreted in subsequent Create* operations.

78.2.4 Errors

76-24

ErrorCode: TYPE. {formNotPosted, unknown};

Error: ERROR [code: ErrorCode);

Error is raised only by UnPostForm. When the form is already unposted, Error will be
raised with code • form NotPosted. Any other error causes Error to be raised with code. =­
unknown.

View Point Programmer's Manual 76

76.3 Index of Interface Items
~

Item Page Item Page

AcceptDashProc: TYPE • PROC 21 EnumeratePatternProc: TYPE • PROC 21
AcceptFormProc: TYPE. PROC 5 EnumerateSubForms: PROC 12
AddEdge: PROC 6 Error: ERROR 24
AddTrajectory: PROC 5 ErrorCode: TYPE 24
AreaProps: TYPE 16 Finishlllustrator: PROC 12
AreaPropsObject: TYPE 16 FixedOrVarying: TYPE 20
AreaTexture:TYPE 17 FormHandle: TYPE 3
Axis: TYPE 10 FormProc: TYPE • PROC 12
Boolean: TYPE 17 FormType: TYPE 1S
BoundaryType: TYPE 6 FrameBorderStyle: TYPE 3
Color: TYPE 17 FrameBrush: TYPE 3
CopyDashStyle: PROC 22 FrameHandle: TYPE 3
CopyForm: PROC 9 FrameUnit: TYPE 2
CopyFrame: PROC 3 GetAreaProps: PROC 16
CreateDashStyle: PROC 21 GetBottomForm: PROC 14
CreateDefaults: PROC 22 GetBoundary: PROC 13
CreateEIli pse: PROC 4 GetClusterData: PROC 1S
CreateLine: PROC 4 GetDefaultAreaProps: PROC 23
CreateParal'elogram: PROC- 4 GetDefaultGraphicProps: PROC 23
CreatePoi nt: PROC 4 GetDefaultLineEndProps: PROC 23
CreateRectangle: PROC 4 GetDefaultLineProps: PROC . 23 .,-",.
CreateShape: PROC 5 GetDefaultPointProps: PROC 23
CreateText: PROC 8 GetDefaultTextProps: PROC 23
CreateTextFromCaption: PROC 9 GetEIIi pseData: PROC 15
CreateTextFromField: PROC 9 GetFormAbove: PROC 15
CreateTextFromTextType: PROC 8 GetFormBelow: PROC 15
CreateTrajectory: PROC 5 GetFormType: PROC 15
CtrlPtPlace: TYPE 20 GetFrameHandle: PROC 13
DashEnd: TYPE 21 GetFrameUnit: PROC 13
DashFit: TYPE 21 GetGraphicProps: PROC 17
DashStyle: TYPE 21 GetGridding: PROC 13
DashStylesEqual: PROC 22 GetLi neData: PROC 1S
DefaultProps: TYPE 22 GetLineEndProps: PROC 19
DefaultPropsObject: TYPE 22 GetLineProps: PROC 19
DestroyDashStyle: PROC 21 GetParalielogramData: PROC 15
DestroyDefaults: PROC 23 GetParentFrame: PROC 14
DirectionType: TYPE 7 GetPointData: PROC 15
eccCircle: REAL 7 GetPointProps: PROC 18
Edge: TYPE 6 GetShapeData: PROC 15
EdgeObject: TYPE 6 GetTextData: PROC 16
EdgeProc: TYPE • PROC 12 GetTextProps: PROC 20
EdgeType: TYPE 6 GetTopForm: PROC 14
Enumerate: PROC 12 GetTrajectoryData: PROC 16
EnumerateEdges: PROC 12 GraphicProps: TYPE 17

~
EnumerateFormsProc: TYPE • PROC 5 GraphicPropsObject: TYPE 17

76-25

76 IllustratorInterchangeDefs

Item Page

Griddinglnfo: TYPE 13
GriddingObject: TYPE 13
GridStyle: TYPE 14
GridType: TYPE 14
HasAreaProps: PRoe 16
HasGraphicProps: PRoe 17
HasLineEndProps: PRoe 19
HasLineProps: PRoe 18
HasPointProps: PRoe 18
HasTextProps: PRoe 20
Join: PRoe 5
LineEnding: TYPE 19
LineEndProps: TYPE 19
lineEndPropsObject: TYPE 19
Li neProps: TYPE 19
LinePropsObject: TYPE 19
LineTexture: TYPE 19
Loc": TYPE 2
Magnify: PROC 10
Mirror: PROC 10
nilFormHandle: FormHandle 3
nilFfameHandl~: FrameHandle 9
noA,.eaTexture: AreaTexture 17
origin: Locn 14
Pixels: TYPE 3
PointMarker:TYPE 18
PointProps: TYPE 18
PointPropsObject: TYPE 18
PostFormAtTop: PROC 10
ReadDashStyle: PROC 22
Rotate: PRoe 10
Scalar: TYPE 2
Scale: PROC 11
SetAreaProps:PROC 16
SetBoundary:PRoc 13
SetDefaultAreaProps: PROC 23
SetDefaultGraphicProps: PROC 23
SetDefaultLineEndProps: PROC 23
SetDefaultLineProps: PROC 23
SetDefauitPointProps: PROC 23
SetDefauitTextProps: PRoe 23
SetFrameUnit: PROC 13
SetGraphicProps: PROC 17
SetGridding: PROC 13
SetLineEndProps: PROC 19
SetLineProps: PROC 19
SetPointProps: PROC 18

76--26

Item p~,

SetTextProps: PROC 2u
Shear:PROC 11
StartJllustrator: PRoe 2
TextProps: TYPE 20
TextPropsObject: TYPE 20
Translate: PRoe 11
TranslateMode: TYPE 11
undefinedAreaProps: AreaPropsObject 17
undefinedAreaTexture: AreaTexture 17
undefinedGraphicProps: GraphicPropsObject 18
undefinedLineEndProps: LineEndPropsObject 20
undefinedLineProps: LinePropsObject 19
undefinedPointProps: PointPropsObject 18
undefinedScaiar: Scalar 11
undefinedTextProps: TextProp~Object 20
UnPostForm: PROC 10
UpdateDefaultFrameUnits: PROC 24

.~.

77

TableInterchangeDefs

77el0verview

TablelnterchangeDefs allows clients to read the contents of a table, create a new table, or
add information to an existing table. This interface should be used in conjunction with
DodnterchangeDefs or GraphicslnterchangeDefs.

A table is described by three sets of properties: table properties, column properties, and row
properties. Table properties include the name of the table, a description of table headers
and the number of columns and rows in the table; column properties include whether the
columns are divided, and the alignment of text within the columns; and ~ow propert~es
include information about how the text is aligned within a given row. The .actual content
of a table is included with the row information.

Most records below have spare fields for future use. When specifying values for these, it is
important to use zero if you do not know of a correct value to use.

All dimension values are measured in micas. Clients may use the ViewPoint interface
UnitConversion to convert to and from mica values.

77.1.1 Table building

To. create a new table, the client should start by calling StartTable. This procedure takes
table properties and column properties as parameters, and returns a table handle. Handle
points to Object, which is a record that contains, along with table-related data, a pointer to
the actual table content (See section 77.2.8: Diagram of table structure). Initially, the row
properties have default values and the table has no content; the client should initialize row
properties and content after the call to StartTable.

To add content to the table, the client can pass the table handle to AppendRow, which adds
new information to the table. When all of the rows have been added, the final step is to call
FinishTable, which creates the final structure for the table. Once the table is created, the
client can pass this table to the procedures in DoclnterchangeDefs or
GraphicslnterchangeDefs to add it to a document.

FinishTable returns a DoclnterchangeDefs.lnstance for the table, which the client can pass to
DoclnterchangeDefs.AppendAnchoredFrame or GraphicslnterchangeExtra2Defs.AddTa bl e. This

77 - 1

77 TableInterchangeDefs

instance is the table frame's content; the rest of a frame's properties (like captions. and
border style) are handled by DoctnterchangeDefs and GraphicslnterchangeDefs. ~

To add information to an existing table, the client should call StartExistingTable instead of
StartTable. This procedure also returns a table handle» which the client can then pass to
AppendRowand FinishTable. StartExistingTable takes an DocInterchangeDefs.lnstance as a
parameter; the client will typically call TableSelectionDefsoTableFromSelection to get the
currently selected table as a value of type DoctnterchangeDefs.lnstance.

7701.2 Table reading

To read the contents of a table, the client typically starts by calling Enumerate. Enumerate
takes as arguments a table object (DoclnterchangeDefs.lnstance) and a record of three call back
procedures: a TableProc, a ColumnsProc, and a RowProc.

Enumerate will call the TableProc and the ColumnsPrqc once for a given table; these
procedures obtain the table and column properties. Since the content of the table is stored
with the rows, Enumerate will call the RowProc once for each row in the table.

There is a also a procedure EnumerateSpecificRows, which is just like Enumerate except
that it enumerates a specific list of rows within a table rather than the entire table.
EnumerateSpecificRows will call the RowProc once for each row in the specified range of
rows.

77.2 Interface Items

77 - 2

77.2.1 Table properties

A TablePropsRec describes the properties of a table and its headers.

TableProps: TYPE • LONG POINTER TO TablePropsRec;

TablePropsRec: TYPE • RECORD [
name: XString.Reader,
fillinByRow,
fixedRows,
fixedColumns: BOOL,
numberOfCol umns,
numberOfRows: NATURAL.
visibleHeader.
repeatHeader,
repeatTopCaption.
repeatBottomCaption: BOOL,
borderline,
dividerline: line,
horizontalAlignment: HeaderAlignment,
headerVerticalAlignment: VerticalAlignment,
topHeaderMargin. bottomHeaderMargi n: LONG CARDINAL.
sortKeys: SortKeys.
spare1: LONG CARDINAL];

77

77 -4

TableInterchangeDefs

ascending: BOOl,
spare1: LONG CARDINAL];

The SortKeysRec contains a sequence of optional Sort Keys for a table or column. A column
must be divided-repeating in orde~ to have sort keys. Each SortKey contains the column's
name, its sortOrder and whether to sort in ascending or descending order.

Ifspare1 is not zero, it is assumed to be an ExtraTableProps pointer.

ExtraTableProps: TYPE • LONG POINTER TO ExtraTablePropsRec;

ExtraTablePropsRec: TYPE • RECORD [
deferOnPaginate: BOOl,
spare1: LONG CARDINAL];

deferOnPagi nate indicates whether the pagination operation will defer the table frame to
the next page if it will not fit on the current one. If deferOnPaginate is FALSE, the portion of
the table that fits on the current ~age will be placed there, and the remainder will appear
on successive pages.

spare1 in the ExtraTablePropsRec is for future use.

ExtraTableProps is currently deimed in Tablel nterchangeExtra1 Oefs.

77.,2.2 Column properties

Columnlnfo: TYPE • lONG POINTER TO Columnl.nfoSeq;

ColumnlnfoSeq: TYPE. RECORD [SEQUENCE length: CARDINAL OF ColumnlnfoRec];

ColumnlnfoRec: TYPE • RECORD [
headerEntryRec: HeaderEntryRec,
name, description: XString.Reader,
divided: BOOl,
subcolumns: NATURAL,
repeati ng: BOOl,
subcolumnlnfo: Columnlnfo,
alignment: HorizontalAlignment,
tabOffset, - Micas! (different from DoclnterchangePropsDefs. TabStop)
width,
leftMargin,
rightMargin: LONG CARDINAL,
type: DoclnterchangePropsDefs.FieldChoiceType,
required: BOOl,
language: MultiNational.Language,
format: XString.Reader,
stopOnSkip: BOOl.
range: XString.Reader.
lengt",: CARDINAL.
skipText: XString.Reader.
skipChoice: DoclnterchangePropsDefs.SkiplfChoiceTYpe.
fill in: XString.Reader,

,-,'

ViewPoint Programmer's Manual 77

name is the name of the table.

fillinByRow determines what happens when the user presses the NEXT key. IffilllnByRow is
TRUE, pressing the NEXT key advances through the table one row at a time, and the table is
expanded by rows. In this case, the number of columns is flXed and the number of rows can
be either fixed or varying. If fillinByRow is FALSE, then pressing the NEXT key advances
through the table one column at a time, and the table is expanded by columns. In this case,
the number of rows is fixed and the number of columns can be either fixed or varying.
fixedRows and fixedColumns indicate whether the user can change the number of rows
and columns in the table.

numberOfColumns and numberOfRows are used as hints for StartTable.

visibleHeader indicates whether there should be a visible header at the top of the table;
repeatHeader, repeatTopCaption, repeatBottomCaption indicates whether or not to
repeat these items on every page if the table occupies multiple-pages.

borderline describes the table border (not the f~ame border), and dividerline describes the
line between the header row and the rest of the table. A line can have a width anywhere
from one pixel to six pixels.

Line: TYPE. RECORD [
linestyle: linestyle.
linewidth: Linewidth];.

linestyle: TYPE • MACHINE DEPENDENT{
'none(O). solid, dashed. dotted. double, broken. firstAvailable,lastAvailable(255)};

linewidth: TYPE. MACHINE DEPENDENT (w1(O), w2(1). w3(2), w4(3), w5(4), w6(5)};

horizontalAlignment and headerVerticalAlignment specify the alignment of the text
within a header.

HeaderAlignment: TYPE • HorizontalAlignment [Ieft .. right];

HorizontalAlignment: TYPE. MACHINE DEPENDENT{left(O), center(1), right(2), decimal(3)};

VerticalAlignment: TYPE • MACHINE DEPENDENT (
flushtop(O), centered(1), flushbottom(2)};

topHeaderMargin and bottomHeaderMargin specify the amount of white space that
should appear between above and below each header element.

SortKeys: TYPE • LONG POINTER TO SortKeysRec;

SortKeysRec: TYPE • RECORD [
length: CARDINAL,
spare1 : LONG CARDINAL,
keys: SEQUENCE maxLength: CARDINAL OF SortKey];

SortKey: TYPE. RECORD [
columnName: XString.Reader,
sortOrder: XString.SortOrder,

77 - 3

77 TableInterchangeDefs

ascending: BOOl,
spare1: lONG CARDINAL];

The SortKeysRec contains a sequence of optional SortKeys for a table or column. A column
must be divided-repeating in order to have sort keys. Each SortKey contains the column's
name, its sortOrder and whether to sort in ascending or descending order.

Itspare1 is not zero, it is assumed to be an ExtraTableProps pointer.

ExtraTableProps: TYPE • lONG POINTER TO ExtraTablePropsRec;

ExtraTablePropsRec: TYPE • RECORD [
deferOnPaginate: BOOl,
spare1: lONG CARDINAL];

deferOnPagi nate indicates whether the pagination operation will defer the table frame to
the next page if it will not fit on the current one. If deferOnPaginate is FALSE, the portion of
the table that fits on the current page will be placed there, and the remainder will appear
on successive pages.

spare1 in the ExtraTablePropsRec is for future use.

ExtraTableProps is currently deimed in TablelnterchangeExtra1 Oefs.

77.2.2 Column properties

77 -4

Columnlnfo: TYPE • lONG POINTER TO Columnl.nfoSeq;

ColumnlnfoSeq: TYPE. RECORD [SEQUENCE length: CARDINAL OF ColumnlnfoRec);

ColumnlnfoRec: TYPE • RECORD [
headerEntryRec: HeaderEntryRec,
name, description: XString.Reader,
divided: BOOl,
subcolumns: NATURAL,
repeating: BOOl,
subcolumnlnfo: Columnlnfo,
alignment: HorizontalAlignment,
tabOffset, - Micas! (different from DoclnterchangePropsDefs. TabStop)
width,
leftMargin,
rightMargin: lONG CARDINAL,
type: DoclnterchangePropsDefs.FieldChoiceType,
required: BOOl,
language: MultiNational.Language,
format: XString.Reader,
stopOnSkip: BOOl,
range: XString.Reader,
lengt~: CARDINAL,
skipText: XString.Reader,
ski pChoi ce: DoclnterchangePropsDefs. Ski plfChoice Type,
fillin: XString.Reader,

ViewPoint Programmer's Manual

fi iii nRuns: DoclnterchangePropsDefs.FontRuns.
line: Line.
sortKeys: SortKeys.
spare1 : lONG CARDINAL];

77

A ColumnlnfoSeq describes all the columns of a table; a ColumnlnfoRec describes one
column in detail. Within a ColumnlnfoRec, the most complicated field is a
headerEntryRec; all of the other fields correspond directly to the fields on the property
sheet that the user sees. The next section discusses the header properties, and section
77.2.4 discusses the remaining column properties.

For a more complete description of any of these properties, see the user documentation.

77.2.3 Column header properties

HeaderEntryRec: TYPE • RECORD [
subHeaders: Headerlnfo.
line: Line.
singleLineHint: BOOl.
spare1 : LONG CARDINAL.
content: EntryContent];

A HeaderEntryRec describes the textual content of a column header. Header text can
contain any number of font and paragraph properties per column header.

subHeader describes the headers for each of the subcolumns. This field is only interesting
if the column is divided. subHeader points to a sequence that contains a HeaderEntryRec
for each subcolumn. Each subcolumn may in tum be subdivided, in which case that
subcolumn's HeaderEntryRec subHeader field would point to another sequence.

Headerlnfo: TYPE • LONG POINTER TO.HeaderlnfoSeq;

HeaderlnfoSeq: TYPE. RECORD [SEQUENCE length: CARDINAL OF HeaderEntryRec];

line describes the properties of line that divides the header from subheaders. line is only
visible if the column is subdivided.

singleLineHint is a hint that the header only contains one line of text; this makes the code
somewhat faster by simplifying the calculation of header size. If a client specifies a
singleLineHint value of TRUE for a header entry and then appends more than one line of text,
the resulting header entry will appear one line tall even though it has more text inside.
The user can correct this by editing the text in that header entry, which causes the entry to
re~ompute its height.

spare1 is for future use.

EntryContent: TYPE • RECORD [
SELECT mode: * FROM

read. > [obtainTextProc: ObtainTextProc. obtainTextData: ObtainTextData],
write. > [filllnTextProc: FilllnTextProc +-NIL, clientData: LONG POINTER +-NIL],

ENDCASE];

77 - 5

77 TableIn terchangeDefs

HeaderEntryRec for table:

SUbHeaders],\
"table" . ,..

"A" "B"
subHeader subHeader

Table

-"e"
subHeader: NIL

a

A B

b c d
i ii j jj

subHeader

"." " .. " "a" ~
subHeader:NIL ~ ..J,. J

Nil
JJ

NIL

77 - 6

....-----,....----
"i i"
NIL

Figure 77.1 Table and HeaderEntryRec for table

ObtainTextData: TYPE[4];

ObtainTextProc: TYPE. PROe [obtainTextData: ObtainTextData]
RETURNS [text: TexttnterchangeOefs. Text];

FillinTextPr'oc: TYPE. PRoe [text: TextlnterchangeDefs.Text, clientData: LONG POINTER];

content is a variant record that describes the content for a header entry. When
enumerating a table, all the header entries will be of the form [read(.•.]]. The client may
call the ObtainTextProc for an entry to obtain a TextinterchangeOefs. Text object, which may
then be enumerated via TextinterchangeOefs.EnumerateText. If the client does call an
ObtainTextProc, TextlnterchangeOefs.ReleaseText must be called on the returned
TextlnterchangeDefs. Text object when the client is finished enumerating it.

When creating a table, the client must set all header entries to [write[.•.]]. The client may
set the fiIII nTextProc to a proc to be called back to fill in the entry with text. clientData will
be passed to the client's fillinTextProc. The client may default the filllnTextProc to NIL so
that the entry will be empty.

......",'

ViewPoint Programmer's Manual 77

77.2.4 Other column properties

name and description are the name and description of the table as it appears in the
property sheet.

divided specifies whether the columns can be divided. subcolumns is the number of
subcolumns; repeating indicates that subcolumns can have subrows, and su.bcolumnlnfo is
the recursive description of the suhcolumns. subcolumns, repeating, and subcolumnlnfo
are ignored if divided is FALSE.

alignment describes the alignment of the text within a column.

tabOffset specifies where a decimal tab should be set, relative to the margin. tabOffset
only applies if alignment = decimal. Like all other dimensiQns, tabOffset is in micas (this
is different from a DoclnterchangePropsDefs. TabStopOffset, which is measured in units of 1172
inch).

width is the width of the column; leftMargin and rightMargin are the margins for the
columno These values are also in micas.

type indicates the type of content that will appear in a column.

required indicates that the entry is required, and that the user must fill it in before
proceeding to another entry in the table.

language affects' the format of date and amount fields. It is used when items are added to '
the paragraph.

format allows the user to define a format to which the data in the column must conform.

stopOnSkip When the user presses SKIP, the skipping action should stop at the next entry in
this column.

range is used to define a specific range of acceptable entries for the column. Once defined,
any entry not within the deimed range is not acceptable. See the user documentation for
information on how ranges are defined.

length allows the user to define the maxiumum number of characters that will be accepted
in the column entries.

skipText and skipChoice defines the conditions under which an area may be skipped when
the user presses NEXT. See the user documentation for more detail.

fillin and filiinRuns describe the fill-in rule for the column.

line describes the properties of the vertical line to the right of the colulnn.

sortKeys describes the optional sort keys for the column.

spare1 is for future use.

77 -7

77

77 - 8

TableInterchangeDefs

77.2 .. 5 Row content

RowContent: TYPE • LONG POINTER TO RowContentSeq;

RowContentSeq: TYPE • RECORD [

topMargin, bottomMargi n: lONG CARDINAL +- 0,
line: Line +- [solid, w2).
verticalAlignment: VerticafAlignment +- flushtop,
spare1: lONG CARDINAL 0,
rowdata: SEQUENCE length: CARDINAL OF RowEntryRec);

RowContentSeq describes row properties and content. The margins are the row margins;
line is the properties of the line separating the rows. verticalAlignment specifies the
alignment of text within a row. spare1 is for future use. rowdata describes the content.

RowEntryRec: TYPE • RECORD [

subRows: SubRows.
singleLineHint: BOOl,

spare1 : lONG CARDINAL"

content: EntryContent);

A RowEntryRec describes the textual content ofa given row entry.

SubRows: TYPE • LONG POINTER TO SubRowsRec;

SubRowsRec: TYPE·. RECORD [

length: CARDINAL,

spare1 : LONG CARDINAL O.
rows: SEQUENCE maxLength: CARDINAL OF RowContent);

SubRowsRec describes subrow properties and content. If subRows is non·NIL, then the rest
of the RowEntryRec record is unused, since the information will be in the individual
subrow records.

Note that subrows may only exist if the parent column is divided.

The remaining fields are as described for header properties.

77.2.6 Table building operations

77.2.8.1 Creating a new table

StartTable: PROC [

doc: OocinterchangeOefs.Doc,
props: TableProps,
c: Columnlnfa)
RETURNS [h: Handle];

ViewPoint Programmer's Manual 77

StartTable creates a document table in doc. props describes the properties of the table
itself; c describes the properties of the columns~ The Handle that is returned contains a
description of row properties and table content.

StartTable will raise DoclnterchangeOefs.Error[documentFuIlJ if the table and header row will
not fit in the document. If StartTable raises this error, the table cannot be added to the
document due to lack of storage space for structures.

StartTable returns a handle:

Handle: TYPE • LONG POINTER TO Object:

Object: TYPE • RECORD [
zone: UNCOUNTED ZONE.
table: DoclnterchangeOefs.1 nstance.
tableHeight: lONG CARDINAL.
tableWidth: lONG CARDINAL,
rc: RowContent.
spare1: lONG CARDINAL.
private: ARRAY [0 .. 0) OF WORD];

zone is the zone from which dynamic storage specific to this operation is allocated. table is
the table itself.

tableHeight is initially equal to the height of the header row and is updated after each call
to AppendRow. ~ableHeight and tableWidth.are in micas. rc points to a record used as

. temporary storage for a new row.

77.2.6.2 Opening an existing table

StartExistingTable: PROC [
table: DoclnterchangeDefs.1 nstance,
hi: Headerl nfo +- Nil.
rowPropsSource: NATURAL +- 0,
deleteExistingRows: BOOl +-TRUE.
numberOfRowsHint: NATURAL +- 0]
RETURNS [h: Handle];

StartExistingTable sets things up to append rows to an existing table. table is the table
object. The table passed in to StartExistingTable is often obtained from a call to
TableSelectionOefs. TableFromSelection, which returns the current selection as a table.

hi describes the desired properties for the table headers. If hi = NIL then the existing
column headers are used.

rowPropsSource is the index of a row in the table; this is the row from which the default
properties are taken. The rows are numbered from [O .• nJ. The horizontal alignment for
each entry is taken from Ilrst new paragraph character in the corresponding element of the
first row.

77 - 9

77 TableInterchangeDefs

deleteExistingRows indicates whether the implementation should delete the existing
contents of the table before adding new information. numberOfRowsHint is a hint about ~I
the number of rows that the table will contain; this is for efficiency purposes.

Like StartTable, StartExistingTable returns a Handle, which the client can then pass to
AppendRow.

This procedure will raise DocInterchangeDefs.Error(readonlyDoc) if the document is read­
only.

77.16.3 Appending rows

AppendRow: PROC [h: Handle, rc: RowContent);

AppendRow adds the row described by rc to the table described by h. Typically, h will be a
handle obtained from either StartTable or StartExistingTable.

RowContent is as described in section 77.2.5.

77 e2.6.4 Finishing a table

FinishTable: PROC [h: Handle]
RETURNS [
table: DocInterchangeOefs.lnstance.
tableWidth, tableHeight: LONG CAROINA~); .~

The client should call FinishTable when it is through editing a table. The table that is
returned is intended to be passed as the content argument to
DocinterchangeOefs.AppendAnchoredFrame, or as the table parameter to
GraphicslnterchangeExtra20efs.AddTable. This operation deletes hezone. tableWidth and
tableHeight are in micas.

77.2.6.5 Miscellaneous utilities

MaxTableElements: PROC RETURNS [NATURAL];

This procedure returns an estimate of the number of table cells that could reside in a
document that has no other types of structures Within. Clients may use this value to
estimate how big a table could be created in a document.

OefaultFontProps: PROC [font: DoclnterchangePropsDefs.FontProps];

DefaultParaProps: PROC [para: DoclnterchangePropsDefs.ParaProps];

These procedures take a properties record and fill in reasonable default values. These
operations are similar to the ones defined in DocinterchangePropsOefs.

GetTablePropsFromName: PROC [
doc: DocinterchangeDefs. Doc.
tableName: XString.Reader.

77 -10

ViewPoint Programmer's Manual

tableProps: TableProps,
zone: UNCOUNTED ZONE];

77

doc is the document from which to retrieve the properties of the table specified by
tableName.

tableProps.name will be NIL.but the remainder of tableProps will contain the table's
properties. .

IftableProps.sortKeys is not NIL, it will be allocated from zone.

77 .. 2.7 Table reading operations

EnumerateTable: PROC [

table: DoclnterchangeDefs.1 nstance"
procs: EnumProcs,
clientData: LONG POINTER Nil];

EnumProcs: TYPE • LONG POINTER TO EnumProcsRec;

EnumProcsRec: TYPE • RECORD [

tableProc: TableProc Nil,

columnsProc: ColumnsProc NIL,

rowProc: RowProc Nil];

To parse the contents of a table, clients call EnumerateTable or EnumerateSpecificRows.
EnumerateTable takes as parameters a table handle and a record of callback procedures:
one for table properties, one for column properties, and one for row properties.

TableProc: TYPE • PROC [

cI ientData: LONG POINTER,

props: TableProps]
RETURNS [stop: Baal FALSE];

ColumnsProc: TYPE • PROC [

clientData: LONG POINTER,

columns: Columnlnfo]
RETURNS [stop: BaaL FALSE];

RowProc: TYPE • PROC [

clientData: LONG POINTER,

content: RowContent]
RETURNS [stop: BOOL FALSE];

Enumerate calls the TableProc and the ColumnsProc once, passing in the appropriate
property information. Because the content of the table is stored with the rows,
EnumerateTable calls the rowProc once for each row in the table.

Each of these callback procedures has a boolean return value. If stop is ever returned TRUE,

then the enumeration will stop.

77 - 11

77 TableInterchangeDefs

EnumerateSpecificRows: PROC [

tr: TableRows,
procs: EnumProcs.
clientData: LONG POINTER +-NIL];

TableRows: TYPE • RECORD (

table, firstRow, lastRow: DoclnterchangeOefs.lnstance];

EnumerateSpecificRows describes a certain subset of rows in a table. As with
EnumerateTable, the tableProc and the columnsProc will each be called once to describe
the appropriate properties; the column information will describe the columns intersecting
the described rows. The RowProc will be called once for each row in (firstRow . .IastRow].

77.2.8 Diagram of table structure

Fi~e 77.2 is a diagram of a table structure. RowContent is a pointer to RowContentSeq.
. table is a record that contains two pointers to the actual instance of the table. (Note that

table itself is not a pointer.)

77.2.,9 Constants

The following constants can be used to initialize the various table properties to reasonable
default values.

nuIlExtraTableProps:_ExtraTablePropsRec • [
deferOnPaginate: TRUE,

spare1: 0];

nullExtraTableProps is currently defined in TableinterchangeExtra1 Oefs.

nullLine: Line. [linestyle: solid, linewidth: w1];

nuliSortKey: SortKey • [
column Name: NIL,

sortOrder: standard,
ascending: rRUE,
spare1: 0];

nuliColumnlnfo: ColumnlnfoRec • [
headerEntryRec: null HeaderEntry,
name: NIL,

description: NIL,

divided: FALSE,

subcolumns: 0,
repeating: FALSE,

subcolumnlnfo: NILw

alignment: center,
tabOffset: 0,
width: 2540,
leftMargin: 0,
rightMargin: 0,
type: any,

77 -12

View Point Programmer's Manual

Handle
table

e • e ...
.,." DocinterchangeDefs.lnstance

~------------------~~
Object

zone
table ••••

. .
.. .

tableHeight, tableWidth
rc

spare1
private

RowContentSeq

top Margin, bottomMargin
line
verticalAlignment
spare1

rowdata: SEQUENCE OF

RowEntryRec
subRows
singlelineHint
spare1
content

Figure 77.2 Diagram of Table Structure

required: FALSE,

language: U5English,
format: NIL,

stopOnSkip: FALSE,

range: NIL,

length: 0,
skipText: NIL,

skipChoice: empty,
fillin: NIL,
filiinRuns: NIL.

line: [solid. w2].
sortKeys: NIL.

spare1: 0];

nuliHeaderEntry: HeaderEntryRec • [.
subHeaders: NIL.

line: [solid. w2].

77

77 - 13

77 TableInterchange Dels

singleLineHint: FALSE,
spare1: 0,
content: [write[]]];

nuliRowEntry: RowEntryRec • [
subRows: NIL,
singleLineHint: FALSE,
spare1: 0,
content: [write[]]];

nuliTableProps: TablePropsRec • [
name: NIL,
fillinByRow: TRUE,
fixedRows: FALSE,
fixedColumns: TRUE,
numberOfColumns: 0,
numberOfRows: 0,
visibleHeader: TRUE,
repeatHeader: TRUE,
repeatTopCaption: TRUE,
repeatBottomCaption: TRUE,
borderline: [none, w1],
dividerLine: [solid, w4],
horizontalAlignment: center,
headerVerticalAlignment: centered,
topHeaderMargin: 0,
bottomHeaderMargin: 0,
sortKeys: NIL,
spare1: 0];

tableRowsNiI: TableRows • [
DocInterchangeDef1.instanceNil,
DocInterchangeDefs.i nstanceNi I,
DodnterchangeDefs.instanceNi 1];

tableRowsNii specifies a null value for TableRows. This value may not be passed into
EnumerateSpecificRows. It may be returned from one of the operations in
TableSelectionDefs under certain error conditions.

77.2.10 Errors

77 -14

TableError: SIGNAL [type: ErrorType];

. ErrorType: TYPE. MACHINE DEPENDENT{
tableTooWide, tableTooTall, tableHeaderTooTall, firstAvailable, lastAvaiiable(2SS)};

tableTooWide

tableTooTall

StartTable will raise this error if the specified table is too
wide to fit in the document.

AppendRow will raise this error if the specified table is too
tall to fit in the document.

ViewPoint Programmer's Manual 77

tableHeaderTooTall StartTable will raise this error if the specified headers are
too tall.

Do not call any Interchange operations from within a catch phrase ofTableError.

77.3 Usage/Examples

Here is an example of a simple program that runs from the Attention Menu. It registers
two commands: Make Table, which creates a new document with a table, and Add To
Table, which adds four new rows to the selected table.

DIRECTORY
ellO'

TableExample: PROGRAM
IMPORTSTablelnterchangeDefs, TableSelectionDefs, TextlnterchangeDefs, ... = {
tableWidth: CARDINAL = 1600; - micas
headerMargin: CARDINAL = 35 * 9; -micas; margin should be 9 pixels
rowMargin: CARDINAL = 100;

< < Menu Proc for Create Table command. Creates new document, creates new table,
appends table to document, and then adds document to desktop. > >

MakeDocument: MenuData.MenuProc = {
rows, columns: CARDINAL 3; - arbitrary
doc: DoclnterchangeDefs.Doc DoclnterchangeDefs.StartCreation[

paginateOption: nonel.doc;
table: DocinterchangeDefs.lnstance = BuildSimpleTable[doc, rows, columns];
props: Docl nterchangePropsDefs. FramePropsRecord

DocinterchangePropsDefs.null FrameProps;
props.frameDims [tableWidth, tableWidth);
[) Dati nterchangeDefs.AppendAnchored Frame[

to: doc,
type: table,
anchoredFrameProps: @props,
content: table);

Add FileToDeskTop[doc);
}; - MakeDocument

< < Create table inside doc with specified number of rows and columns.
The content will be the string "abc." > >

BuildSimpleTable: PROC [doc: DocinterchangeDefs.Doc, rows, columns: CARDINAL]
RETURNS [table: DoclnterchangeDefs.lnstance +- DoclnterchangeDefs.instanceNil] = {
h: TablelnterchangeDefs.Handle;
contentString: XString.ReaderBody XString.FromSTRING[flabc"L);
c: TablelnterchangeDefs.Columnlnfo Heap.systemZone.NEw[

TablelnterchangeOefs.ColumnlnfoSeq[columns]];
props: TablelnterchangeDefs.TablePropsRec Eo- [

name: NIL,
fillinByRow: TRUE,
fixedRows: FALSE,
fixedColumns: TRUE,
numberOfColumns: columns,
numberOfRows: rows,
visibleHeader: TRUE,

77 -15

77

77 ~ 16

TableInterchangeDefs

repeatHeader: TRUE,
repeatTopCaption: TRUE,
repeatBottomCaption: TRUE,
borderline: [none, W 1],
dividerLine: [solid, w4],
horizontalAlignment: center,
headerVerticalAlignment: centered,
topHeaderMargi n: headerMargi n,
bottomHeaderMargin: headerMargin,
sortKeys: Nil,
spare 1 : 0);

FOR i: CARDINAL IN [O .• columns) 00

c[i] +- TablelnterchangeDefs.nuIiColum,nlnfo;
c[i].width +- tableWidth;
ENDlOOP;

- start creating table
h +- TablelnterchangeDefs.StartTable(doc: doc, props: @props, c: c];
Heap.systemZone.FREE[@C);
- set row props and content
h.rc.topMargin +- rowMargin;
h.rc.bottomMargi n +- rowMargi n;
FOR i: CARDINAL IN [O .. rows) DO

FORj: CARDINAL IN [O .. columns) DO

h.rcfi] +- [
subRows: Nil,
singieLineHint: FALSE,
spare 1 : 0,
content: [write[filllnTextProc:: FilllnText, clientData: @contentString])];'

ENDlOOP;
TablelnterchangeDefs.AppendRow[h~ h.re];
ENDlOOP;

RETURN (TablelnterchangeDefs.FinishTable[h].table];
}; - BuildSimpleTable

< < Call-back procedure that writes text into the Text field of the table.
The text to write is specified by the clientData argument. > >

FilllnText: TablelnterchangeDefs.FilllnTextProe = {
< < PROC [text: TextlnterchangeDeis. Text, clientData: LONG POINTER}; > >
r: XString.Reader +- NARRow[clientData, XString.Reader];
Text I nterchange Defs.AppendTextTo Text[

to: text,
text: r,
textEndContext: XString. unknownContext];

}; - Fi/llnText

AddFileToDeskTop: PROC [doc: DoelnterchangeDefs.Doc] = {
docFile: NSFile.Handle +- DocinterchangeDefs.FinishCreation[@doc].docFile;
ref Doc: NSFile.Reference = NSFile.GetReferenee[doeFile);
refDt: NSFile.Referenee = StarDesktop.GetCurrentDesktopFile[];
fileDt: NSFile.Handle = NSFile.OpenByReference[refDt]; ,
NSFile.Move[docFile, fileDt];
NSFile.C1ose[fileDt];
NSFile.Close[docFile); ~
StarDesktop.Add Reference ToDesktop[refDoc]
}; - AddFileToDeskTop

ViewPoint Programmer's Manual

< < Menu Proc for Add To Table command.
Just adds four new blank rows to the selected table. > >

AddToTable: MenuData.MenuProc = {
h: TablelnterchangeDefs.Handle ~ NIL;
table: DocinterchangeDefs.lnstance =

TableSelection Defs. TableFromSelection[];
- if current selection is not a table, then return. Otherwise,
-add new rows to it. If doc is not editable, then return.
IF table = DoclnterchangeDefs.instanceNil THEN RETURN
ELSE (

h ~ TablelnterchangeDefs.StartExistingTable[
table: table, deleteExistingRows: FALSE - catch error if doc is not editable
! TablelnterehangeDefs.TableError = > GOTO Exit);

THROUGH [0 .. 4) 00
TablelnterchangeDefs.AppendRow[h, h.re);
ENDLOOP;

};
[] ~ TablelnterehangeDefs.FinishTable[h);
EXITS Exit = > NULL;
}; -AddToTable

Init: PROC = {
makeTable: XString.ReaderBody ~ XString.FromSTRING[lt MakeTable"L1;
addToTable: XString.ReaderBody ~ XString.FromSTRING["AddToTable" L];
Attention.AddMenultem[

Menu Data. Create Item [
zone: Heap.systemZone,
name: @makeTable,
proe: MakeDocument]];

Attentioti.AddMenultem[
Menu Data. Createltem [

zone: Heap.systemZone,
name: @addToTable,
proc: AddToTable11;

}; -Init

Init[];
}.

77

77 - 17

77 TableInterchangeDefs

77.4 Index of Interface Items

Item

AppendRow: PRoe
Columnlnfo: TYPE
ColumnlnfoRec: TYPE
ColumnlnfoSeq: TYPE
ColumnsProc: TYPE
DefaultFontProps: PRoe
DefaultParaProps: PROC
EntryContent: TYPE
EnumerateSpecificRows: PRoe
EnumerateTable: PRoe
EnumProcs: TYPE
EnumProcsRec: TYPE
ErrorType: TYPE
ExtraTableProps: TYPE
ExtraTablePropsRec: TYPE
FillinTextProc: TYPE
FinishTable: PRoe
~etTablePropsFromName: PROC
Handle: TYPE
HeaderAlignment: TYPE
HeaderEntryRec: TYPE

. Headerlnfo: TYPE
HeaderlnfoSeq: TYPE
HorizontalAlignment: TYPE
Line: TYPE
Linestyle: TYPE
Li newidth: TYPE
MaxTableElements: PROC
nuliColumnlnfo: ColumnlnfoRec
nullExtraTableProps: ExtraTablePropsRec
nuliHeaderEntry: HeaderEntryRec
nuilline: Line
nuliRowEntry: RowEntryRec
nuliSortKey: SortKey
nuliTableProps: TablePropsRec
Object: TYPE
ObtainTextData: TYPE
ObtainTextProc: TYPE
RowContent: TYPE
RowContentSeq: TYPE
RowEntryRec: TYPE
RowProc: TYPE
SartKey: TYPE
SortKeys: TYPE
SortKeysRec: TYPE
StartExistingTable: PRoe
StartTable: PROC

77 -18

Page

10
4
4
4

11
10
10

5
12
11
11
11
14

4
4
6

10
10
9
3
5
5
5
3
3
3
3

10
12
12
13
12
14
12
14

9
6
6
8
8
8

11
3
3
3
9
8

Item

SubRows: TYPE
SubRowsRec: TYPE
Table"Error: SIGNAL

TableProc: TYPE
TableProps: TYPE
TablePropsRec: TYPE
TableRows: TYPE
tableRowsNil: TableRows
VerticalAlignment: TYPE

~ ..

Page

8
8

14
11

2
2

12
14

3

78

TableSelectionDefs

78.1 Overview

TableSelectionDefs provides procedures to obtain the current selection as a table, or a
selection of rows within a table. This interface is meant to be used in conjunction with
TablelnterchangeDefs.

78~2 Interface Items

TableFromSelection: PROC RETURNS [DoclnterchangeDefs.Jnstance];

TableFromSelection returns the. current selection as an object of type
OoclnterchangeOefs.lnstance. The client .will typically pass this val ue to
TablelnterchangeOefs.StartExistingTable. If the current selection is not a table,
TableFromSelection will return DoclnterchangeDefs.i nstanceNii.

TableRowsFromSelection: PROC RETURNS [tr: TablelnterchangeOefs. TableRows];

TableRowsFromSelection returns the current selection as a series of rows in a table. The . .

client will typically pass this value as a: parameter to
TablelnterchangeDefs.EnumerateSpecificRows. If the current selection is not one or more
table rows, TableRowsFromSelection will return Tabienterchange~fs.tableRowsNil.

table Target: Selection. Target;

tableRowsTarget: Selection. Target;

TableFromValue: PROC [v: Selection. Value]
RETURNS [OocinterchangeDefs.lnstance];

TableRowsFromValue: PROC [v: Selection.Value]
RETURNS [tr: TablelnterchangeOefs. TableRows];

tableTarget, tableRowsTarget, TableFromValue and TableRowsFromValue are not
currently implemented.

78 - 1

78

78- 2

TableSelectionDefs

GetHostDocAccess: PROC [instance: DocinterchangeDefs.lnstance]
RETURNS [Access);

Access: TYPE • MACHINE DEPENDENT {readOnly(O)w readWrite, (255)};

Access specifies whether or not the document is in edit mode.

View Point Programmer's Manual

78.3 Index of Interface Items

Item

Access: TYPE

GetHostDocAccess: PROC

TableFromSelection: PROC

TableFromValue: PROC

TableRowsFromSelection: PROC

TableRowsFromValue: PROC

tableRowsTarget: Selection. Target
table Target: Selection. Target

Page

2
2
1
1
1
1
1
1

78

78- 3

78 TableSelectionDefs

78-4

79

TextInterchangeDefs

79.1 Overview

TextinterchangeDefs provides procedures to create and enumerate text that resides in
locations that DocinterchangeDefs does not define. This interface is used by
GraphicslnterchangeDefs to handle the content of nested text frames and by
TablelnterchangeDefs to handle the content of -header and row entries.
TextinterchangeDefs also provides procedures to handle the content of anchored text
frames.

All dimensions are in micas. Most records below have spare fields for future' use. When
specifying values for these, it is important to use zero if you do not know of a correct value
to use.

79.2 Interface Items

79.2~1 Data types

The basic data structure of TextinterchangeDefs is Text, which is a pointer to an opaque
text-containing object.

Text: TYPE • LONG POINTER TO TextObject;

TextObject: TYPE;

TFrameProps specify the properties of anchored text frames. Appending and enumerating
text frames is covered later in this chapter.

TFrameProps: TYPE • LONG POINTER TO TFramePropsRec;

ReadonlyTFrameProps: TYPE ~ LONG POINTER TO READONLY TFramePropsRec;

TFramePropsRec: TYPE • RECORD [

innerMargin: LONG CARDINAL.

name, description: X5tring.Reader,
spare1: LONG CARDINAL);

79 - 1

79

79-2

TextInterchangeDefs

innerMargin is the uniform spacing between the text and the frame border. The client can ~
vary the innerMargin within [0 .. 264] micas ([0 .. 7] pixels).

name and description are the name and description of the text frame as they appear in the
property sheet.

The spere1 field can be a pointer to a TFrameExtraPropsRec (see below), These extra
properties are active only for text frames, not form fields. So on enumeration, the spare1
field for form fields will be 0; on creation, form field spare1 is ignored. When a text frame is
encountered during enumeration, spare1 will always be non-O, and may be LOOPHOLEd into
a ReadonlyTFrameExtraProps. During creation, the implementation assumes that if a
sparel field is non-O, it should be treated as a ReadonlyTFrameExtraProps pointer. If it is
0, the implementation will use default values for the extra properties. These defaults come
from the nullTFrameExtraProps constant.

TFrameExtraProps: TYPE • LONG POINTER TO TFrameExtraPropsRec; _

ReadonlyTFrameExtraProps: TYPE. LONG POINTER TO READONLY TFrameExtraPropsRec;

TFrameExtraPropsRec: TYPE • RECORD [

orientation: Orientation,
lastLineJustify: BOOLEAN,

autoHyphenate: BOOLEAN,

spereO: PACKED ARRAY [3 •• 15] OF CARDINAL [0 •• 1],
spare1 : LONG CARDINAL.];

Orientation: TYPE. {horizontal, vertical};

orientation indicates whether the text in the frame flows horizontally or vertically. Only
Japanese text flows vertically.

lastLineJustify is only used in linked text frames. It specifies whether the last line of text
in the frame is justified.

autoHyphenate is only used in linked text frames. It specifies whether the text in the
frame is auto-hyphenated.

spareO and spare1 are for future use. They should be set to O.

All of these extra properties are currently dermed in TextinterchangeExtra1 Oefs.

nullTFrameExtraProps: TFrameExtraPropsRec • [
orientation: horizontal,
lastLineJustify: FALSE,

autoHyphenate: FALSE,

spareO: ALL [0],
spare1: 0];

nullTFrameProps: TFramePropsRec • [
innerMargin: 141, --4pixe/s
name: NIL,

· ViewPoint Programmer's Manual

description: NIL,
spare1: 0];

nullTFrameProps provides default initialization values for the TFramePropsRec.

79.2.2 Creating an Anchored Text Frame

79

StartTextinAnchoredFrame is used to begin appending text to the body of an anchored text
frame. After an anchored text frame has been appended to a document via
DocInterchangeDefs.AppendAnchoredFrame, StartTextlnAnchoredFrame may be called to
permit text to be appended to its body.

StartTextinAnchoredFrame: PROC [
doc: OoclnterchangeDefs. Doc,
anchored Frame: DocfnterchangeOefs.1 nstance,
props: ReadonlyTFrameProps]
RETURNS [text: Text];

doc is the document containing the new anchored text frame.

anchoredFrame is the OoclnterchangeOefs.lnstance returned by the call to
DoclnterchangeDefs.AppendAnchoredFrame. •

79.2.3 Append Operations

The following append* procedures are similar to the ones found in DodnterchangeDefs;
the only difference is that these procedures append to Text objects.

AppendCharToText: PROC [
to: Text,
char: xChar.Character,
fontProps: DoclnterchangePropsDefs.ReadonlyFontProps NIL,
nToAppend: CARDINAL 1];

AppendChar appends one or more copies of the text character char to the specified Text
object. nToAppend specifies the number of copies of the character that are to be appended;
fontProps specifies the character properties.

AppendFieldToText: PROC [
to: Text,
fieldProps: DoctnterchangePropsDefs.ReadonlyFieldProps,
fontProps: ooclnterchangePropsoefs.ReadonlyFontProps NIL]
RETURNS [field: OoclnterchangeOefs.Field];

AppendField appends a field to the specified Text object. AppendFieldToText returns a
field; the client can then add information to the field by using the Field as a
DoclnterchangeOefs. TextContai ner in other calls to OOcinterchangeOefs.Append * routines.
When the client is through with the field, it must release it via
DocinterchangeDefs.ReleaseField.

79- 3

79 TextlnterchangeDefs

Note that thTehi~lient cbanndot set, the fill-in order of tAhe fieldd.s whTenF~hlle, yoarde appended to the ~,
document. s may e one vIa OoclnterchangeDefs. ppen tem 0 I n r ere

AppendNewParagraphToText: PROC [
to: Text.
paraProps: DoctnterchangePropsOefs.ReadonlyParaProps NIL.

fontProps: DodnterchangePropsDefs.ReadonlyFontProps +- NIL.
nToAppend: CARDINAL 1];

AppendNewParagraphToText appends one or more newParagraph characters to a Text
object. nToAppend specifies the number of characters to be appended. paraProps and
fontProps specify the properties for the paragraph. If paraProps is NIL, the new paragraph
inherits the properties of the previous paragraph; however if this is the first new
paragraph in the Text object, then it will have default properties.

Note that Text objects always contain at least one newParagraph character. The client
does not have to provides these initial newParagraph characters; the Textlnterchange
implementation supplies them as required, although the client is free to append them
anyway. The implementation ensures that if the client appends one at the start of the Text
objectp two won't appear. The client's paragraph and font properties on the newParagraph
they appended will have precedence.

AppendTextToText: PRoe [
to: Text.
text: xS~ing.Reader.
textEndContext: XString.Context"
fontProps: DocInterchangePropsDefs.ReadonlyFontProps +- NIL];

AppendTextToText appends the text with the specified properties to the Text object. For
efficiency, the ciient should pass the appropriate textEndContext if it is known (just like
XString.AppendReader). text may not contain newParagraph characters ([set: 0, code:
358]). Use AppendNewParagraphToText to append these.

AppendTaleToText: PROC [
to: Text.
type: Atom.ATOM.
data: LONG POINTER +- NIL,
fontProps: OocInterchangePropsDefs.ReadonlyFontProps +- NIL]
RETURNS [tile: DoclnterchangeDefs.Tile];

AppendTileToText is for future use. The tile type and data format are defmed elsewhere,
agreed upon by parties on either side of this interface.

79.2.4 Enumeration

79-4

To extract the content of a text object, clients call EnumerateText.

EnumerateText: PROC [
text: Text.
procs: TextEnumProcs,

ViewPoint Programmer's Manual

clientData: LONG POINTER +- NIL]
RETURNS [dataSkipped: BOOLEAN];

79

procs is a pointer to a record containing client defined call-back procedures; these
enumerate the various kinds of structures that can be found in text.

clientData is a client defmed argument, that will be passed to each of the call-back
procedures.

TextEnumProcs: TYPE • LONG POINTER TO TextEnumProcsRecord:

TextEnumProcsRecord: TYPE • RECORD [
fieldProc: Doc'nterchangePropsOefs.FieldProc +- NIL,
newParagraphProc: DoclnterchangePropsoefs.NewParagraphProc +- NIL,
textProc: DoclnterchangePropsOefs. TextProc +- NIL,
tileProc: Doc,nterchangePropsoefs.TileProc +- ~IL];,

TextForAnchoredFrame is used when a client wants to enumerate the body of an anchored
text frame. .

TextForAnchoredFrame: PROC [
doc: DocInterchangePropsOefs.Doc,
content: DocInter~angePropsOefs.1 "stance,
props: TFrameProps]
RETURNS [text: Text];

doc is the document containing the anchored text frame to enumerate and content is the
value passed to the Doclnterchangeoefs.AnchoredFrameProc. The Text object that is returned
may be passed to EnumerateText. After enumerating the text, the client must call
ReleaseText on the text object returned by TextForAnchoredFrame.

TextForAnchoredFrame fills in props with text specific properties of the frame.

79.2.5 Releasing Text

The client should release the text object after calling StartTextlnAnchoredFrame or
TextForAnchoredFrame.

ReleaseText: PROC [textPtr: LONG POINTER TO Text);

79.2.6 Text Frame Link Order

This section discusses the data types and operations related to the text frame link order of a
document. Every document may have an optional text frame fill-in order which defines the
order in which text is poured into frames by pagination and by the "Fill Text Frames"
command. This fill-in order is similar to the one for fields and tables.

All of the items declared in this section are currently defined in
TextlnterchangeExtra10efs.

TextLinkltem: TYPE • LONG POINTER TO READONLY TextLinkltemRec;

79- 5

79 TextInterchangeDefs

TextLinkltemRec: TYPE. RECORD [

name: XString.Reader,
spare1: LONG CARDINAL];

Specifies an item in the linked text frame order.

TextLinkEnumProc: TYPE • PRoe [item: TextLinkltem. clientData: lONG POINTER)

RETURNS [stop: BOOl FALSE];

Callback proc for enumerating the text frame link order. See EnumerateTextLink.

EnumerateTextLink: PRoe [

doc: DoclnterchangeOefs.Doc,
proc: TextLinkEnumProc,
clientData: LONG POINTER Nil);

Enumerates the text frames in the text frame link order.

ClearTextLink: PROC [doc: DoctnterchangeDefs.Doc];

Clears the text frame link order of the document. May be called at any time. Usually
called once just before a series of calls to AppendltemToTextLink.

AppendltemToTextLink: PROC [

doc: DoclnterchangeDefs.Doc,
item: TextLinkltem);

Appends an item (a text frame) to the text frame link order. May be called at any time.

79.3 Example

79- 6

The proper sequence of calls to append an anchored text frame having content is:

props: TextlnterchangeDefs. TFramePropsRec f- [...);

[anchored Frame, ...] f- DoclnterchangeDefs.AppendAnchoredFrame[
to: doc, type: text, ...];

text f- TextlnterchangeDefs.StartTextlnAnchoredFrame[doc, anchored Frame, @props);
Textl nterchangeDefs.AppendTextTo T ext[text, reader, ...];
TextlnterchangeDefs. Rei ease Text[@text);

It is not mandatory that the client call StartTextlnAnchoredFrame after appending an
anchored frame. Failing to call StartTextlnAnchoredFrame simply means that the
anchored text frame will be empty, except for one new paragraph character that has
default paragraph and font properties. Note that if the client does not call
StartTextlnAnchoredFrame, then the client should not call ReleaseText.

ViewPoint Programmer's Manual 79

79.4 Index of Interface Items
~.

Item Page

AppendCharToText: PROC 3
AppendFieldToText: PROC 3
AppendltemToTextLink: PROC 6
AppendNewParagraphToText: PROC 4
AppendTextToText: PROC 4
ClearTextLink: PROC 6
EnumerateText: PROC 4
EnumerateTextLink: PROC 6
nullTFrameExtraProps: TFrameExtraPropsRec 2
nullTFrameProps: TFramePropsRec 2
Orientation: TYPE 2
ReadonlyTFrameExtraProps: TYPE 2
ReadonlyTFrameProps: TYPE 1
ReleaseText: PROC 5
StartTextl nAnchoredFrame: PROC 3
Text: TYPE 1
TextEnumProcs: TYPE 5·
TextEnumProcsRecord: TYPE 5
TextForAnchoredFrame: PROC 5
TextLinkEnumProc: TYPE 6
TextLinkltem: TYPE 5

~ TextLinkltemRec: TYPE 6
TextObject: TYPE 1
TFrameExtraProps: TYPE 2
TFrameExtraPropsRec: TYPE 2
TFrameProps: TYPE 1
TFramePropsRec: TYPE 1

79 -7

79 TextInterchangeDefs

79-8

Appendix A

System KeyNames and TIP Tables

A.I . Overview

This appendix contains generally useful information about how ViewPoint "sees" keys at
the stimulus level and at the TIP level.

§A.2 lists KeyNames in terms known to level4 (dlion) and levelS (daybreak) stimlev, TIP
names known to both the XDEand BWS world, and how all these relate to each other. The
XDE comparison is designed to help the programmer who programs in both worlds and/or
converts XDE tools to ViewPoint tools.

§A.3' deals with some TIP predicates that ViewPoifit registers at boot time. These useful
predicates may be used by clients as well as the BWS. For more information on
TIP . Predicates see the TIP chapter Semantics of Tables.

The system TIP tables ViewPoint uses are listed to provide the programmer with a list of
the productions available in 'the general-purpose tables. The Normal tables described in
§A.4.1 are placed in the TIPStar watershed at boot time and are therefore available {or use
by application programs. (See the TIPStar interface for {urther information about the
TIPStar watershed.} Clients are encouraged to use the productions in the Normal tables
whenever possible rather than generating new tables. Examples of use are provided in
§A.S.

A-I

A System TIP Tables

A.2 KeyNameslTIP name mapping ~

LevellVKeys.KeyN ame LevelVKeys.KeyN ame BWS TIP name XDE TIP name • (if
(if different from LevellY) different from BWS)

notAKey(O) null(O) "null" 0
Bullet(l) "Bullet" +
SuperSub(2) "SuperSub" +
Case(3) "Case" +
Strikeout(4) "Strikeout" +
KeypadTwo(S) "KeypadTwo" +
KeypadThree(6) "KeypadThree" +
SingleQuote(7) "SingleQuote" +

Keysetl(S) KeypadAdd(S) "KeypadAdd" +
Keyset2(9) KeypadSubtract(9) nKeypadSubtract" +
Keys~t3(10) KeypadMultiply(1 0) "KeypadMultiply" +
Keyset4(11) KeypadDivide(11) "KeypadDivide" +
KeYsetS(12) ~eypadClear(12) "KeypadClear" +
MouseLeft(13) Point(13) "Point"
MouseRight(14) Adjust(14) "Adjust"
MouseMiddle(IS) Menu(1S) "Menu"
Five(16) "Five"
Fow'(17) "Four"
Six(lS) "Six"
E(19) "E"

~ . Seven(20) "Seven"
D(21) "D"
U(22) "un
V(23) "V"
Zero(24) "Zero"
K(2S) "K"
Minus(26) Dash(26) "Dash"
P(27) "PH
Slash(2S) "Slash"
Font(29) "FONT" "BackSlash"
Same(30) "SAME" "PASTE"
B5(31) "BS"
Three(32) "Three"
Two(33) "Two"
W(34) "W"
Q(3S) "Q"
S(36) "S"
A(37) "A"
Nine(3S) "Nine"
1(39) "I"
X(40) "X"
0(41) "0"
L(42) "L"
Comma(43) "Comma" "~
CloseQuote(44) Quote(44) "Quote" #
RightBracket(45) "RightBracket"
Open(46) "OPEN" "STUFF"

A-2

ViewPoint Programmer's Manual A

LevellVKeys.Key Name LevelVKeys.KeyN ame BWSTIPname XDETIPname • (if

c~i (if different from LevellV) different from BWS)
Keyboard(47) Special(47) "SPECIAL" "COMMAl'lD"
One(48) "One"
Tab(49) "TAB" "COMPLETE" #
ParaTab(50) "PARATAB" ''TAB"
F(5l) "F"
Props(52) "PROPS" "CONTROL"
C(53) "C"
J(54) "J"
B(55) "B"
Z(56) HZ"
LeftShift(57) "LeftShift"
Period(58) "Period"
SemiColon(59) "SemiColon"
NewPara(60) "NewPara" "Return"
OpenQuote(61) "OpenQuote" "Arrow" #
Deiete(62) "DELETE"
Next(63) "NEXT"
R(M) "R"
T(65) "T"
0(66) "G"
Y(67) "Y"
H(68) "H"
Eight(69) ~ight"

~' N(70) "N"
M(7l) "M"
Loek(72) "LOCK"
Space(73) "Space"
LeftBracket(74) "LeftBracket"
Equa1(75) "Equal~

RightShl.ft(76) "RightShift"
Stop(77) "STOP" "USERABORT"
Move(78) "MOVE"
Undo(79) "UNDO"
Margins(SO) "MARGINS" "DOlT"
R9(SI) KeypadSeven(Sl) "KeypadSeven" +
LlO(82) KeypadEight(82) "KeypadEight" .+
L7(S3) KeypadNine(S3) "KeypadNine" +
L4(84) KeypadFour(84) "KeypadFour" +
Ll(S5) KeypadFive(S5) "KeypadFive" +
A9(S6) English(S6) "English" J
RIO(S7) KeypadSix(87) "KeypadSix" +
AS(88) Katakana(88) "Katakana" J
Copy(S9) "COPY"
Find(90) "FIND"
Again(91) "AGAIN"
Help(92) "HELP" #
Expand(93) "EXPAND"

c~; R4(94) KeypadOne(94) "KeypadOne" +

A-3

A System TIP Tables

LevellVKeys.KeyN ame

02(95)
01(96)
Center(97)
TI(98)
Bold(99)
Italics(100)
U nderline(101)
Superscript(102)
Subscript(1 03)
Smaller(104)
TI0(105)
R3(106)
Key47(107)
AI0(108)
Defaults(109)
All(llO)
A12(111)

LevelVKeys.KeyN ame
(if different from LevellV)
DiagnosticBitTwo(95)
DiagnosticBitOne(96)

KeypadZero(98)

Italic(100)

KeypadPeriod(105)
KeypadComma(10S)
LeftShiftAlt(107)
DoubleQuote(1 08) .

Hiragana(110)
RightShiftAlt(111)

BWS TIP name

"DiagnosticBitTwo"
"DiagnosticBitOne"
"CENTER"
"KeypadZero"
"BOLD"
"ITALICS"
"UNDERLINE"
"SUPERSCRIPT"
"SUBSCRIPT"
"SMALLER"
"KeypadPeriod"
"KeypadComma"
"LeftShiftAlt"
"DoubleQuote"
"DEFAULTS"
"Hiragana"
"RightShiftAlt"

XDE TIP name· (if
different from BWS)

0
0

"MENU"
+

"SCROLLBAR"
"JFIRST"
"JSELECT"
"RESERVED" :IF
"C LIE NT I " :IF
"CLIENT2"

+
+
J
+

"ATTENTION" :IF
.J
J

·Key: (0 not on any keyboard) (J JStar only) (+ daybreak only) (# dandelion only)

A.3 ViewPoint Registered TIP. Predicates

A-4

You will notice in the-following tables the use of several TIP.Predicates. The-se predicates
are registered by ViewPoint at boot time and are available for use by clients as well as the
system. Most of these predicates are used to dertermine within aTIP.Table which physical
keyboard is attached to the workstation. The following is the list of predicate. atoms and
their meaning. See the Normal tables themselves for examples of use. For more
information about TIP. Predicates see §47.3.3 Predicateident.

level4

aLevel4

eLevel4

jLevel4

level5

aLeve15

eLevel5

jLeve15

cursorKeys

matches any of the DLion keyboards
(American, European or Japanese)

American D Lion keyboard

European D Lion keyboard

Japanese DLion keyboard

matches any of the Daybreak keyboards
(American, European or Japanese)

American Daybreak keyboard

European Daybreak keyboard

Japanese Daybreak keyboard

keypad on Daybreak or sideKeys on Dlion is producing cursor Keys

~

ViewPoint Programmer's Manual A

A.4 Tables

A.4.1 Normal Tables

The set of Normal tables (NormaIMouse.TlP, NormaISoftKeys.TlP, Normal Keyboard.T1P,
NormaISideKeys.TlP, NormaIBackstop.TlP) are registered at startup and pushed into the
list of TIP tables at the appropriate TlPStar placeholder (mouseActions, softKeys,
black Keys, sideKeys, backstopSpeciaIFocus). (See TlPStar for further explanation about
placeholders.) The set of Normal tables provides productions for all possible user input.
Table entries are divided up into logical groups corresponding to the placeholder the table
will be pushed onto. Thus input actions pertaining to the mouse (Point Down, Adjust
Down, etc.) appear in the NormalMouse.TlP table and Normal Mouse.TlP is pushed onto the
mouseActions placeholder. Key actions from the side function key group that are directed
at the input focus (MOVE Down, COpy Down, etc.) appear in the NormaISideKeys.T1P table
and are pushed onto the sideKeys placeholder. Key actions such as the alphanumeric keys
(A Down, 3 Down, etc.) appear in the NormalKeyboard.TlP table and are pushed onto the
blackKeys placeholder. Key actions pertaining to the row of function keys at the top of the
keyboard (CENTER Down, BOLD Down, etc.) appear in the NormalSoftKeys.T1P table and are
pushed onto the softKeys placeholder. Key actions from the side function key group that
are not directed at the input focus (KEYBOARD Down, HELP Down) appear in the
NormalBackstop.T1P table and are pushed onto the backstopSpecialFocus placeholder.

At the end of ViewPoint boot sequence, the list ofnp.Tables in ViewPoint will appear as in
FigureA-l.

A-5

A System TIP Tables

I mouseActions placeholder

Normal Mouse. TIP

I softKeys placeholder

laceholder

I keyboardplaceholder

NIL

Figure A.I TIP Tables after boot

A-6

,~.

ViewPoint Programmer's Manual A

--File: NormalBackstop.TIP lastedit: 14-Aug-8611:50:24

[DEF,IfShift,(SELECT ENABLE FROM
LeftShift Down • > -1 ;
RlghtShift Down • > -1;
Key47 Down • > -1; - JLeveliV keyboard LeftShiftAlt
A 12 Down • > -1; - JLeveliV keyboard RightShiftAlt
ENDCASI • > -2)]

SELECT TRIGGER FROM

FONT Down wHILIlevel4 • > [lfShift,ShiftFontDown,FontDown);
FONT Up WHILE level4 • > [lfShift,ShiftFontUp,FontUp);
KEYBOARD Down • > [lfShift,ShiftKeyboardDown,KeyboardDownJ;
KEYBOARD Up • > [lfShift,ShiftKeyboardUp,KeyboardUp);
HELP Down WHILE level4 • > [lfShift,ShiftHelpDown,HelpDown);
HELP Up WHILE level4 • > [lfShift,ShiftHelpUp,HelpUp);
STOP Down .. > [lfShift,ShiftStop,Stop);
STOP Up • > [lfShift,ShiftStopUp,StopUp);
UNDO Down • > [lfShift,ShiftUndoDown,UndoDown);
UNDO Up • > [lfShift,ShiftUndoUp,UndoUp];

ENDCASI •••

A-7

A

A-8

System TIP Tables

--File: NormalKeyboard.TIP last edit: 4-Mar-8618:38:49

[OEF,lfShift,(SELECT ENABLE FROM

LeftShift Down • > -1 ;
RightShift Down :II > -1 ;

Key47 Down • > SELECT ENABLE FROM

jlevel4 • > -1; -JleveliV keyboard

jlevelS :II> -1; - JlevelV keyboard

A 12 Down • > -1; -- JLevellV keyboard
ENOCASE • > - 2)J

SELECT TRIGGER FROM

IS Down. > [If Shift. BackWord. BackSpace);

Return ~wn • > pfShift, Newline, NewParagraph);

Bullet Down .. > IUFFEREOCHAR; -levelV (non-existent on levellV keyboard)

SingleQuote Down. > IUFFEREDCHAR; -levelV (non-existent on leveliV keyboard)

- use predicates to distinguish physical keyboards

Key47 Down • > SELECT ENABLE FROM -leftShiftAlt in levelV terminology

elevel4 • > IUFFEREOCHAR; -European keyboard uses this as char key

elevelS :II > IUFFEREOCHAR; -Japanese keyboard uses this as $hift key

ENOCASE • > leftShiftAltDown; - The key is non-existent on Amer keyboard

Zero Down' • > IUFFEREOCHAR;

ana Down =- > IUFFEREDCHAR:

Two Down :II > 8UFFEREOCHAR;

Three Down • > 8UFFEREDCHAR;

Four Down :II > 8UFFEREDCHAR;

Five Down :II > 8UFFEREDCHAR;

Six Down :II > 8UFFEREDCHAR;

Seven Down :II > IUFFEREOCHAR;

Eight Down :II > IUFFEREOCHAR;

Nine Down :II > 8UFFEREOCHAR;

A Down • > 8UFFEREOCHAR;

I Down • > BUFFEREOCHAR;

C Down • > IUfFEREDCHAR;

D Down :II > IUFFEREDCHAR;

E Down :II > IUFFEREOCHAR;

F Down :II > 8UFFEREOCHAR;

G Down :II > IUFFEREDCHAR;

H Down :II > 8UFFEREDCHAR;

I Down :II > IUFFEREOCHAR;

J Down :II > BUFFEREDCHAR;

K Down :II > 8UFFEREDCHAR;

L Down :II > IUFFEREDCHAR;

M Down :II > 8UFFEREDCHAR;

N Down :II > BUFFEREDCHAR;

a Down=- > BUFFEREDCHAR;

P Down = > 8UFFEREDCHAR;

~,

.~

ViewPoint Programmer's Manual

Q Down :II > BUFFEREDCHAR;

R Down a > BUFFEREDCHAR;

S Down :II > BUFFEREDCHAR;

T Down :II > BUFFEREDCHAR:

U Down :II > BUFFEREDCHAR;

V Down • > BUFFEREDCHAR;

W Down :II > BUFFEREDCHAR;

X Down • > BUFFEREDCHAR;

Y Down • > BUFFEREDCHAR;

Z Down • > BUFFEREDCHAR:

CoseQuote Down :II > BUFFEREDCHAR;

DoubieQuoteDown :II> BUFFEREDCHAR; -levelV (A10 was unused on levellV)
Comma Down • > BUFFEREDCHAR;

Minus Down. > BUFFEREDCHAR;

Equal Down • > BUFFEREDcHAR;

Left8racket Down • > BUFFEREDCHAR:

Period Down • > BUFFEREDCHAR;

OpenQuote Down. > BUFFEREDCHAR;

RightBracket Down - > BUFFEREDCHAR;

SemiColon Down • > BUFFEREDCHAR;

Space Down • > BUFFEREDCHAR;

Slash Down • > BUFFEREDCHAR;

- use predicates to distinguish physical keyboards
PARA TAB Down • > SELECT ENABLE FROM

eLevel4 - > [If Shift. TabDown, ParaTabDown];
levelS :II> [If Shift, TabDown, ParaTabDown);
ENDCASE - > ParaTabDown;
TAB Down - > SELECT ENABLE FROM

eLevel4 - > BUFFEREDCHAR;

levelS • > BUFFEREDCHAR:

ENDCASE • > TabDown;

LOCK Down -> LockDown;
LOCK Up • > LockU p;

- JStar keyboards
- Note: AS, A9. A 11. A 12 and Key47 exist only on the J keyboards.
A 11 Down • > BUFFEREDCHAR;

AI Down - > BUFFEREDCHAR;

At Down - > BUFFEREDCHAR;

- Diagnostics bits
DiagnosticBitOne Down - > DiagnosticBitOneDown; -levelV (01 was unused on levellV)
DiagnosticBitTwo Down :II > DiagnosticBitTwoDown; -levelV (02 was unused on levellV)

ENDCASE ••

A

A-9

A

A-tO

System TIP Tables

--File: NormalMouse.TIP lastedit: 3-Apr-8615:29:19

OPTIONS Small:

[DEF,SHIFT,(LeftShift Down I RlghtShift Down I Key47 Down I A 12 Down))
[DEF ,ChordP ,(SELECT TRIGGER FROM
-1 Down BEFORE 200 • > {TIME COORDS Menu PointDown AdjustDown};
ENDCASE • > -2)]

[DEF ,ChordA,(SELECT TRIGGER FROM
-1 Down BEFORE 200 • > {TIME COORDS Menu AdjustDown PointDown};
ENDCASE • > -2)]

SELECT TRIGGER FROM

MOUSE • > SELECT ENABLE FROM
PointDown • >"COORDS, PointMotion:

Adjust Down • > COORDS, AdjustMotion:
MouseMfddle Down • > COORDS, MouseMiddleMotion:

ENDCASE;

Point Down • > [ChordP ,Adjust,

SELECT ENABLE FROM
[SHIFT) • > {TiMECOORDSMenu PointDown};

ENDCASE • > {TIME ~OORDS PointDown}];
PointUp·. >

SELECT ENABLE FROM
[SHIFT) • > TIME, COORDS, Shift, PointUp;

ENDCASE • > TIME,COORDS, PointUp;

Adjust Down. > [ChordA,Point,

SELECT ENABLE FROM
[SHIFT) • > {TIME COORDS Menu AdjustDown};

ENDCASE • > {TIME COORDS AdjustDown}];
AdjustUp • >

SELECT ENABLE FROM
[SHIFT] • > TlME,COORDS, Shift, AdjustUp;

ENDCASE • > TIME, COORDS, AdjustUp;

MouseMfddle Down. > SELECT ENABLE FROM
[SHIfT) • > TIME, COORDS, Shift, MouseMiddleDown;
ENDCASE =- > TIME, COORDS. MouseMiddleDown;

MouseMiddle Up =- > SELECT ENABLE FROM
[SHIfT) • > TIME, COORDS, Shift, MouseMiddleUp;

ENDCASE =- > TIME,COORDS, MouseMiddleUp;

ENTER =- > Enter;
EXIT =- > Exit;

ENDCASE .•

ViewPoint Programmer's Manual

--File: NormalSideKeys.TIP lastedit: 24-Apr-8713:37:S0

[DEF.lfShift,(SELECT ENABLE FROM

LeftShift Down • > -';
RlghtShift Down • > -, ;
Key47 Down • > -'; _. JLevellV keyboard LeftShiftAlt
A 12 Down • > -, ; -. JLevellV keyboard RlghtShiftAlt
ENDCASE • > -2)]

SELECT TRIGGER FROM

-- left function keys on both daybreak and dllon keyboards
AGAIN Down. > [lfShift,ShiftAgainDown.AgainDown];
AGAIN Up • > [lfShift,ShiftAgainUp.AgainUp];
DELETE Down • > [lfShift,ShiftDeleteDown,DeleteDown);
DELETE Up =- > [lfShift,ShiftDeleteUp,DeleteUp];
FIND Down =- :> [lfShift,ShiftFindDown,FindDown);
FIND Up =- > [lfShift.ShiftFindUp,FindUp);
COpy Down • > [lfShift.ShiftCopyDown,CopyDown];
COpy Up=- > [lfShift,ShiftCopyUp,CopyUp];
SAME Down • > [lfShift,ShiftSameDown,SameDown);
SAME Up =- > [lfShift,ShiftSameUp,SameUp];
MOVE Down • > [lfShift,ShiftMoveDown,MoveDown);
MOVE Up • :> [lfShift,ShiftMoveUp,MoveUp);
OPEN Down • > [lfShift,ShiftOpenDown~OpenDown);
OPEN Up. > [lfSh.ift,ShiftOpenUp,OpenUp);
PROPS Down =- > [lfShift,ShiftpropsDown,PropsDown};
PROPS Up=- > [IfShift,ShiftPropsUp,PropsUp);

- beside space bar on daybreak and in right function group on dlion
EXPAND Down. > [lfShift,DefineDown,ExpandDown];
EXPANDUp • > [lfShift,DefineUp,ExpandUp);

- right function keys on both keyboards
NEXT Down =- > SELECT ENABLE FROM

cursorKeys • > SELECT ENABLE FROM

level4 =- > [lfShift,HomeDown,LeftArrowDown);
ENDCASE =- > [IfShift,SkipDown,NextDown);

ENDCASE =- > (rfShift,SkipDown,NextDown];
NEXT Up • :> SELECT ENABLE FROM

cursorKeys =- > SELECT ENABLE FROM

level4 =-:> [IfShift,HomeUp,Le'ftArrowUp);
ENDCASE • > [lfShift,SkipUp,NextUp);

ENDCASE • > [lfShift,SkipUp,NextUp];

- part of the right function group on dlion but moved to softkeys on daybreak
MARGINS Down WHILE level4 =- > SELECT ENABLE FROM

cursorKeys =- > [IfShift,EndPageDown,DwnArrowDown];
ENDCASE • > (lfShift,ShiftMarginsDown,MarginsDown];

A

A-lI

A

A-12

System TIP Tables

MARGINS Up WHilE level4 =- > SELECT ENABLE FROM
cursorKeys • > [IfShift,EndPageUp,DwnArrowUp);
ENDCASE :8 > [lfShift,ShiftMarginsUp,MarginsUp];

- Added for Cursor Keys
HELP Down WHILE cursorKeys • > [lfShift,StartPageDown,UpArrowDown);
HELP Up WHILE cursorKeys • > [lfShift,StartPageUp,UpArrowUp);
UNDO Down WHILE level4 .:> SELECT ENABLE FROM
cursorKeys .:> [lfShift,EndDown,RightArrowDown);
ENDCASE;

UNDO Up WHILE level4 • > SELECT ENABLE FROM
cursorKeys • > [IfShift,EndUp,RightArrowUp);
ENDCASE:

- calculator key pad on daybreak
- (has no meaning on dlion except in virtual keypad)

KeypadZero Down :8 > BUFFEREDCHAR;

KeypadOne DOwn • > SELECT ENABLE FROM
levelS • > SELECT ENABLE FROM

cursorKeys :8 > [lfShift,BUFFEREDCHAR,EndDown];
ENDCASE • > [lfShift,EndDown,BUFFEREDCHAR);

ENDCASE • > BUFFEREoCHAR:
KeypadOne Up • > EndUp;

KeypadTwo Down :8 > SELECT ENABLE FROM
levelS • > SELECT ENABLE FROM

cursorKeys :8 > [1fShift,BUFFEREDCHAR,DwnArrowDown);
ENDCASE :8 > [lfShift,DwnArrowDown,BUFFEREDCHAR);

ENDCASE • > BUFFEREOCHAR:
KeypadTwoUp.:> DwnArrowUp;

KeypadThre. Down :8 > SELECT ENABLE FROM
levelS • > SELECT ENABLE FROM

cursorKeys • > (lfShift,BUFFEREDCHAR,NextPageDown);
ENDCASE :8 > [IfShift,NextPageDown,BUFFEREDCHAR];

ENDCASE :8 > BUFFEREDCHAR:
KeypadThree Up :8 > NextPageUp;

KeypadFour Down • > SELECT ENABLE FROM
levelS • > SELECT ENABLE FROM

cursorKeys :8 > [lfShift,BUFFEREDCHAR,LeftArrowOown];
ENDCASE • > [lfShift,LeftArrowOown,BUFFEREDCHAR);

ENDCASE • > BUFFEREDCHAR;
KeypadFour Up • > LeftArrowUp;

KeypadFiveDown • > BUFFEREDCHAR;

ViewPoint Programmer's Manual

KeypadSix Down • > SELECT ENABLE FROM

levelS. > SELECT ENABLE FROM

cursorKeys • > [IfShift,8uFFEREDCHAR,RightArrowDown];

ENDCASE • > [IfShift,RightArrowDown,BUFFEREDCHAR];

ENDCASE • > BUFFEREDCHAR:

KeypadSix Up • > RightArrowUp;

KeypadSeven Down • > SELECT ENABLE FROM

levelS • > SELECT ENABLE FROM

cursorKeys • > [lfShift,8UFFEREDCHAR,HomeDown];

ENDCASE • > (lfShift,HomeDown,8UFFEREDCHAR];

ENDCASE • > BUFFEREDCHAR;

KeypadSeven Up • > HomeUp;

KeypadEight Down • > SELECT ENABLE FROM

levelS • > SELECT ENABLE FROM

cursorKeys • > [IfShift,BUFFEREDCHAR,UpArrowDown);

ENDCASE • > (lfShift,UpArrowDown,8UFFEREDCHAR];

ENDCASE • > BUFFEREDCHAR;

KeypadEightUp. > UpArrowUp;

KeypadNine Down • > SELECT ENABLE FROM

levelS • > SELECT ENABLE FROM

cursorKeys •. > [lfShift,8UFFEREDCHAR,PrevPageDown);

.NDCASE • > [If~hift,PrevPageDown,BUFFEREDCHAR);
ENDCASE • > BUFFEREDCHAR;

KeypadNine Up • > PrevPageUp;

KeypadAdd Down • > BUFFEREDCHAR;

KeypadSubtract Down • > BUFFEREDCHAR;

KeypadMultiply Down • > BUFFEREDCHAR;

KeypadDivide Down • > BUFFEREDCHAR;

KeypadPeriod Down • > SELECT ENABLE FROM

levelS. > SELECT ENABLE FROM

cursorKeys • > [lfShift,8uFFEREDCHAR,StartPageDown];

ENDCASE • > (lfShift,StartPageDown,8uFFEREDCHAR];

ENDCASE • > BUFFEREDCHAR;

KeypadPeriod Up • > StartPageUp;

KeypadComma Down • > SELECT ENABLE FROM

levelS. > SELECT ENABLE FROM

cursorKeys • > [lfShift,BuFFEREDcHAR,EndPageDown];

ENDCASE • > [lfShift,EndPageDown,8uFFEREDCHAR];

ENDCASE • > BUFFEREDCHAR;

KeypadComma up. > EndPageUp;

KeypadCJearDown • > [lfShift,ShiftClearDown,ClearDown];

KeypadClear Up • > [lfShift,ShiftClearUp,ClearUp);

ENDCASE •••

A

A-I3

A

A-14

System TIP Tables

•• File: NormalSoftKeys.TIP last edit: S·Mar-8612:40:42

•• SoftKeys are the top row of function keys
(DEF,lfShift,(SELECT ENABLE FROM

Left5hift Down • > -';
RlghtShift Down • > -, :
Key47 Down • > -1; •• JLevellV keyboard LeftShiftAlt
A12 Down :8 > -1; .- JLevellV keyboard RlghtShiftAlt
ENDCASE =- > -2)]

SELECT TRIGGER FROM

•• top function keys
CENTER Down. > [lfShift,ShiftCenterDown,CenterDown];
CENTER Up :8 > [lfShift,ShiftCenterUp,CenterUp];
BOLD Down. > [lfShift,UnboldDown,BoldDown];
BOLD Up :8 > [lfShift,UnboldUp,BoldUp];
ITAUCS Down :8 > [lfShift,ShiftitalicsDown,ltalicsDown];
ITAUCS Up • > [lfShift,ShiftltalicsUp,ltalicsUp];

- Case key on daybreak only
case Down • > [lfShift,ShiftCaseDown,CaseDown];
case Up • > [IfShift,ShiftCaseUp,CaseUp];

UNDERLINE Down • > SELECT ENABLE FROM

level4 • > [lfShift,ShiftUnderlineDown,UnderlineDown];
levelS. > (IfShift,ShiftDbkUnderlineDown,DbkUnderlineDown);
ENDCASE • > [lfShift,ShiftUnderlineDown,UnderlineDown];

UNDERLINE Up • > SELECT ENABLE FROM

level4 • > [lfShift,ShiftUnderlineUp,UnderlineUp];
levelS. > [IfShift,ShiftDbkUnderlineUp,DbkUnderlineUp];
ENDCASE • > [lfShift,ShiftUnderlineUp,UnderlineUp];

-strikeout and supersub on daybreak only
Strikeout Down. > [lfShift,ShiftStrikeoutDown,StrikeoutDown];
Strikeout Up • > [lfShift,ShiftStrikeoutUp,StrikeoutUp];
SuperSub Down • > [lfShift,ShiftSuperSubDown,SuperSubDown];
SuperSubUp • > [lfShift,ShiftSuperSubUp,SuperSubUp];

-superscript and subscript on dlion only
SUPERSCRIPT Down • > [lfShift,ShiftSuperscri ptDown,Superscri ptDown];
SUPERSCRIPT Up • > [lfShift,ShiftSuperscriptUp,SuperscriptUp];
SUBSCRIPT Down • > [lfShift,ShiftSubscriptDown,SubscriptDown];
SUBSCRIPTUp • > [lfShift,ShiftSubscriptUp,SubscriptUp];

SMALLER Down • > SELECT ENABLE FROM

level4 • > [lfShift,LargerDown,SmalierDown];
levelS • > [lfShift,DbkLargerDown,DbkSmalierDown);
ENDCASE • > [lfShift,LargerDown,SmalierDown];

ViewPoint Programmer's Manual

SMAUER up • > SELECT ENABLE FROM

level4 • > [lfShift.LargerUp,SmalierUp);
levelS. > [lfShift.DbkLargerUp.DbkSmalierUp];
ENDCASE • > [lfShift.LargerUp,SmallerUp];

-margins key is a softkey on daybreak and a right function key on dlion
MARGINS Down WHILE levelS • > [IfShift.ShiftMarginsDown.MarginsDown];
MARGINS up WHILE levelS • > [lfShift.ShiftMarginsUp.MarginsUp];

-defaults key on dlion only
DEFAULTS Down • > [lfShift.ShiftDefaultsDown.DefaultsDown];
DEFAULTS Up • > [lfShift.ShiftDefaultsUp,DefaultsUp];

-font key is a softkey on daybreak and a right function key on dlion
FONT Down WHILE levelS. > [IfShift.ShiftFontDown,FontDown];
FONT up WHILE levelS. > [lfShift.ShiftFontUp.FontUp);

ENDCASE •••

A

A-I5

A

A-l6

System TIP Tables

A.4.2 Mouse Mode Tables

The mouse mode tables refer to the set of tables that will be swapped in and out of the
nPStar watershed at the mouseActions placeholder, depending on the mode set in
npstar.SetMode. npstar.Modesare normal, copy, move, and sameAs.

Note: mode • normal will return N ormalMouse. TIP to the watershed.

--File: Copy ModeMouse. TIP last edit: 2D-Apr-87 16:35:27

OPTIONS Small:

SELECT TRIGGER FROM

MOUSE • > SELECT ENABLE FROM

Point Down. > COOROS. CopyModeMotion,Mouseleft;
Adjust Down • > COOROS, CopyModeMotion,MouseRight;

ENOCASE:

Point Down • > COOROS. CopyModeDown, KEY;

Point Up • > COOROS. ~opyModeUp, KEY;

Adjust Down • > COOROS, Copy Mode Down, KEY;

Adjust Up • > COOROS, CopyModeUp, KEY;

ENTER. > CopyModeEnter;
EXIT. > CopyModeExit:

ENDCASE .•

~'

ViewPoint Programmer's Manual

--File: MoveModeMouse.TIP last edit: 20-Apr-8716:35:21

opnONS Small;

SELECT TRIGGER FROM

MOUSE • > SELECT ENABLE FROM

Point Down • > COOROS, MoveModeMotion,MouseLeft;
Adjust Down • > COOROS, MoveModeMotion,MouseRight;
ENDCASE;

Point Down • > COORQS, MoveModeDown, KEY;

Point Up • > COOROS, MoveModeUp, KEY;

Adjust Down • > COOR'OS, MoveModeDown, KEY;

Adjust Up • > COOROS, MoveModeUp, KEY;

ENTER. > MoveModeEnter;
EXIT. > MoveModeExit;

ENDCASE ••

A

A-17

A

A-iS

System TIP Tables

--File: SameAsModeMouse.TIP last edit: 20-Apr-8716:35:58

OPTIONS Small;

SELECT TRIGGER FROM

MOUSE. > SELECT ENABLE FROM

Point Down • > COORDS. SameAsModeMotion,MouseLeft;
Adjust Down :II > COORDS, SameAsModeMotion,MouseRight;

ENDCASE;

Point Down :II > COORDS. SameAsModeDown, KEY;

Point Up :II > COORDS. SameAsModeUp, KEY;

Adjust Down :II > COORoS, SameAsModeDown, KEY;

Adjust Up :II> COORDS, SameAsModeUp, KEY;

ENTER :II > SameAsModeEnter;
EXIT :II > SameAsModeExit;

ENDCASE •••

ViewPoint Programmer's Manual

A.5 Usage/Examples

A. 5. 1 Using N ormalSoftKeys. TIP when installing client softKeys

- define the Atoms for my NotifyProc to use --
canterDownw boldDownw italicsDown, underlineDown, superscriptDown,

subscriptDownw smalierDownw defaultsDown ~ Atom.A TOM ... Atom.null;

Init: PROCEDURE.
BEGIN
-- initialize my Atoms --

centerDown ... Atom.MakeAtom,-CenterDown'"1;
boldDown ... Atom.MakeAtom(-SoldDowntlL);
italicsDown ... Atom.MakeAtom'-'talicsDown-L);
underlineDown "'Atom.MakeAtom[-UnderlineDowntlL);
superscrip'tDown ... Atom.MakeAtom[-Superscri ptDown-L);
subscriptDown ... Atom.MakeAtom[-SubscriptDown"L);
smallerDown ... Atom.MakeAtom('-SmallerDowntlL];

ENO: --Init

... somewhere in the code -­
softKeyHandle ... SoftKeys.Push,

notifyProc: MyNotifyProcw

labels: DESCRIPTOR[labelsw SoftKeys.numberOfKeys)];

MyNotifyProc: TlP.NotifyProc •
BEGIN
FOR input: TlP.Results ... results, input.next UNTIL input. NIL DO

WITH z: input SELECT FROM
atom • > SELECT z.a FROM

centerDown • > --Do something interesting--;
bold Down • > --Do something interesting--;
italicsDown • > --Do something interesting--;
underlineDown • > --Do something interesting--;
superscri ptDown • > --Do something interesting--;
subscriptDown • > --Do something interesting--;
smallerDown • > --Do something in teres tin g-- ;
defaultsDown • > --Do something interesting--;

ENDCASE
ENDCASE

ENOLOOP
END: -- MyNotifyProc

A

MyNotifyProc will be attached to NormalSoftKeys.TIP by the SoftKeys implementation.
Until this client does a SoftKeys.Remove, whenever the user presses one of the top row
function keys MyNotifyProc wilLbe called with the appropriate production from the
NormalSoftKeys. TIP.

A-19

A

A-20

System TIP Tables

A.S.2 Attaching a NotifyProc to One of the Normal Tables

If a client application wants to grab the use, for example, of all the side keys for some
period of time, it can attach a notifyProc to the NormaISid.Keys. TIP table by calling:

old 4-np.SetNotifyProcForTable[TIPStar.GetTable(sideKeysJ.MyNotifyProc);

~I

~,

ViewPoint Programmer's Manual

A.6 Index of TIP Tables

Item

CopyModeMouse. TIP
MoveModeMouse. TIP
Normal Backstop. TIP
Normal Keyboard. TIP
Normal Mouse. TIP
NormalSideKeys. TIP
NormalSoftKeys. TIP
SameAsModeMouse. TIP

Page

16
17

7
8
9

11
14
18

A

A-21

A System TIP Tables

A-22

AppendixB

References

The following documents should be studied before or in conjunction with this manual:

• Mesa Language Manual (610E00170).

• XDE UserG~(610EOOI40).

• Pilot Programmers Man,uo,/, (610E00160).

• Srvices Programmers Guide: Filing Programmer's Manual (610E00180).

·In addition, any other documentation accompanying a release of ViewPoint should be
consulted before writing any programs. A list of this documentation can be found in the
release message for each release.

B-1

B References

B-2

Appendix C

Listing of Atoms

C.I Overview

Atoms (see the Atom interface) are Used in several places in ViewPoint. This appendix
contains a list of the strings that represent them.

C.2 Atoms as TIP Results in the System TIP Tables

Most of the right.hand sides (TIP results) of the productions in the system-provided TIP
, Tables (see Appendix A) contain atoms.

AdjustDown
AdjustMotion
AdjustUp
AgainDown
AgainUp
aLevel4
aLevel5
BackSpace
BackWord
BoldDown
BoldUp
Case Down
CaseUp
Center Down
CenterUp
ClearDown
ClearUp
Copy Down
CopyModeDown
CopyModeEnter
Copy ModeExit
CopyModeMotion
Copy Mode Mouse
CopyModeUp
CopyUp
cursor Keys

C-l

C Listing of Atoms

DbkLargerDown
~ DbkLargerUp

DbkSmallerDown
DbkSmallerU p
DbkU nderlineDown
DbkU nderlineUp
Defaul ts Down
DefaultsUp
DefmeDown
Define Up
DeleteDown
DeleteUp
DiagnosticBitOne
DiagnosticBitOneDown
DiagnosticBitTwo
DiagnosticBitTwoDown
DwnArrowDown
DwnArrowUp
eLeve14
eLevel5
EndDown
EndPageDown
EndPageUp
EndUp
Enter ~
Exit
ExpandDown
ExpandUp
FindDown
FindUp
FontDown
FontUp
HelpDown
HelpUp
HomeDown
HomeUp
ItalicsDown
Italics Up
jLevel4
jLevel5
KeyboardDown
KeyboardUp
KeypadAdd
KeypadClear
KeypadComma
KeypadDivide
KeypadEight
KeypadFive
KeypadFour .~
KeypadMultiply
KeypadNine
KeypadOne

C-2

ViewPoint Programmer's Manual C

KeypadPeriod

"-" KeypadSeven
KeypadSix
KeypadSubtract
KeypadThree
KeypadTwo
KeypadZero
LargerDown
LargerUp
LeftArrowDown
LeftArrowUp
LeftShiftAltDown
leve14
level5
LockDown
LockUp
MarginsDown
Margins Up
MouseMiddleDown
MouseMiddleMotion
MouseMiddleUp
MoveDown
MoveModeDown
MoveModeEnter
MoveModeExit

'-' MoveModeMotion
MoveModeMouse
MoveModeUp
NewLine
NewPara~aph

NextDown
NextPageDown
NextPageUp
NextUp
N umLockKeyDown
OpenDown
OpenQuote
OpenUp
ParaTabDown
PointDown
PointMotion
PointUp
PrevPageDown
PrevPageUp
PropsDown
Props Up
RightArrowDown
RightArrowUp
SameAsModeDown

~.
SameAsModeEnter
SameAsModeExit
SameAsModeMotion

--
C-3

C Listing of Atoms

SaxnaAs~ode~ouse

SameAsModeUp ~\

SameDown
SameUp
ShiftAgainDown
ShiftAgainU p
ShiftCaseDown
ShiftCaseU p
ShlftCenterDown
ShiftCenterU p
ShiftC lear Down
ShiftClearU p
ShiftCopyDown
ShiftCopyU p
ShiftDbkU nderlineDown
ShiftDbkU nderlineU p
ShiftDefaultsDown
ShiftDefaultsU p
ShiftDeleteDown
ShiftDeleteUp
ShiftFindDown
ShiftFindU p
ShiftFontDown
ShiftFontUp
ShiftHelpDown

~
ShiftHelpUp
ShiftltalicsDown
ShiftItalics Up
Shift Keyboard Down
ShiftKeyboardU p
ShiftMarginsDown
ShiftMarginsU p
ShiftMoveDown
ShiftMoveUp
ShiftOpenDown
ShiftOpenU p
ShiftPropsDown
ShiftProps Up
ShiftSameDown
ShiftSameUp
ShiftStop
ShiftStopUp
ShiftStrikeoutDown
ShiftStrikeout Up
ShiftSubscriptDown
ShiftSubscript U p
ShiftSuperscriptDown
ShiftSuperscriptU p
ShiftSuperSubDown ~
ShlftSuperSub Up
Shift U nderlineDown
Shift Underline Up

C-4

ViewPoint Programmer's Manual

ShiftU ndoDown
ShiftU ndoU p
Skip Down
SkipUp
Smaller Down
SmallerUp
StartPageDown
StartPageUp
Stop
StopUp
Strikeout
StrikeoutDown
StrikeoutUp
subscript
SubscriptDown
Subscript Up
SuperscriptDown
SuperscriptU p
SuperSubDown
SuperSubUp
Tab Down
UnboldDown
UnboldUp
Underline Down
UnderlineUp
UndoDown
UndoUp
UpArrowDown
UpArrow Up

C.3 Passed as the "Atom" Parameter to a Containee.GenericProc

c

These atoms may be passed to a Containee.GenericProc as the atom parameter, indicating
what operation the GenericProc should perform:

Can YouTakeSeleetion
Can YouTakeSelectionBackground
Can YouTakeSelectionAndFork
FreeMenu
Menu
Open
Props
TakeSelection
TakeSelectionAndFork
TakeSelectionBackground
TakeSelectionCopy
TakeSelectionCopy AndFork
TakeSe lectionCopyBackground

c-s

c Listing of Atoms

C.4 Event Atoms

Events are identified by atoms (see the Event interface). The following events are
explained in further detail in the chapter indicated.·

EventData Chapter where discussed

AboutLoading AppilcationFolderExtra.EventData ApplicationFolder
ApplicationLoaded AppilcadonFolderExtra.EventData ApplicationFolder
AtomicProfileChange LPT Atom.A TOM* AtomicProfile
AttemptingLogoff LPT SpedalLogon.ActiveQueueRequest Star Desktop
AttemptingLogoffFailed NIL StarDesktop
BlackKeysChange BlackKeys.Keyboard BlackKeys
Desktop Window Available NIL Star Desktop
LoadedAndAboutToStart ApplicationFolderExtra.EventData ApplicationFolder
LoadVetoed ApplicationFolderExtra.EventData ApplicationFolder
NewIcon NIL

,
Star Desktop

N ewImplementation LPT NSFile. Type Containee
Logoff NIL Star Desktop
Logon NIL StarDesktop
LogonCompleted NIL Star Desktop
NewSystemFont SimpleTextfont.MappedFontHandle SimpleTextFont
N ewSystemFontHeight LPT CARDINAL SimpleTextDisplay
PlainTextFileEdited LPT NSFile.Reference **

*LPT stands for LONG POINTER TO

·*Plain~extFileEdited is notified bySimpleEditorImpl when a plain text file is edited.

C.5 AtomicProfile Atoms

C-6

AtomicProfile is used to save various values globally. Values are saved with the following
atoms. See the AtomicProfile Chapter for information on how to retrieve the assoCiated
value.

Atom: FullUserName :. Associated Value: An XString.Reader, the fully qualified user's
name as entered by the user at logon.

~,

~,

e.G Other

ViewPoint Programmer's Manual c

The Atom interface allows any value to be associated with any pair of atoms (see
Atom.GetProp, Atom.Pair, etc.).

CurrentUser

MultiNational

Property atom

ConversationHandle

FileService

FullUserName

IdentityHandle

·NSName

LONG POINTER TO CH.ConversationHandle
created by Logon during user
authentication.

The NSFile.Service for the user's home file
service.

This xString.Reader is the fully qualified
name of the logged on user.

Auth.JdentityHandle for the currently
logged on user. This is created at logon if
the user enters a password; it can be used
to access any Network Service. It is
created with strong authentication.

This is an NSName.Name for the fully
qualified name of the logged on u~er

SimpleIdentityHandle Just like IdentityHandle above, but
created with simple authentication.

ExtendedLanguage LONG POINTER TO BOOLEAN

Language LPT MultiNational.Language

PaperSizes LPT MultiNational.PageSi zes

Physical Keyboard LPT MultiNational.Physical Keyboard

SortOrder LPT XString.SortOrder

Units LPT MultiNational.Unit

These MultiNational values are obtained from the WorkstationProfile. They are
intended to be used for customizing workstations for a particular country.
MultiNational.mesa is a Friends interface.

C-7

c ~tingofA~t~om~s __ ___

~,

C-8

AppendixD

Listing of Public Symbols

This appendix lists all public items from the public interfaces, Le., the files in'
XStringPublic.df and BWSPublic.df.

- ApplicationFolder Atom AtomicProfile Attention BlackKeys BWSAttributeTypes
BWSFileTypes BWSZone Catalog Containee ContainerCache ContainerCacheExtra
ContainerSource ContainerWindow Contai,!erWindowExtra ContainerWindowExtra2
Context Cursor Display Event FileContainerShell FileContainerSource
FileContainerSourceExtra FileContainerSourceExtra2 FormWindow
FormWindowMessageParse IdleControl KeyboardKey KeyboardWindow LevellVK eys
MenuData MessageWincJ.ow OptionFile PopupMenu ProductFactorin.g
ProductFactoringP~oducts ProductFactoringProductsExtras 'PropertyS hee t Pro to type
Pro to typ e Extra Selection SimpleTextDisplay SimpleTextEdit SimpleTextFont
SimpleTextFontExtra SoftKeys StarDesktop StarWindowShell StarWindowShellExtra
StarWindowShellExtra2 TIP TlPStar TIPX Undo UnitConversion Window XChar XCharSetO
XCharSet164 XCharSet356 XCharSet357 XCharSet360 XCharSet361 XCharSet41
XCharSet42 XCharSet43 XCharSet44 XCharSet45 XCharSet46 XCharSet47 XCharSets
XComSoftMessage XFormat XLReal XMessage XString XTime XToken

Abs: -XL Real- PROCEDURE [Number1 RETURNS [Number];
accentedLatin: -XCharSet361- XCharSets.Sets = LOOPHOLE[241];
accuracy: -XL Real- NATURAL = 13;
Acquire: -Context- PROCEDURE [type: Type, window: Window.Handle]

RETURNS [Data);
Action: -ContainerSource- TYPE = {destroy, reList, sleep, wakeup};
Action: -Selection- TYPE = MACHINE DEPENDENT{

clear, mark, unmark, delete, clearlfHaslnsert, save, restore, firstFree,
last(2SS)};

actionToWindow: -TIP- PACKED ARRAY KeyName OF BOOLEAN;

ActOn: -ContainerSource- ActOnProc;
ActOn: -Selection- PROCEDURE [action: Action];
ActOnProc: -ContainerSource- TYPE = PROCEDURE [

source: Handle, action: Action);
ActOnProc: -Selection- TYPE = PROCEDURE [data: ManagerData, action:
Action]

RETURNS [cleared: BOOLEAN ~FALSE];

D-1

D

D-2

Listing of Public Symbols

Add: -PrototypeExtra-- PROCEDURE [

file: NSFile.Handle, version: Prototype. Version,
subtype: Prototype.Subtype "0, session: NSFile.Session "LOOPHOLE[O));

Add: -XLReal- PROCEDURE [a: Number, b: Number] RETURNS [Number];
AddClientDefinedCharacter: -Simple TextFont- PROCEDURE [

width: CARDINAL, height: CARDINAL, bitsPerUne: CARDINAL, bits: LONG POINTER,

offsetlntoBits: CARDINAL "0] RETURNS [XString.Character];
Add Data: -ContainerCache- TYPE = RECORD [

clientData: LONG POINTER,

cI i entDataCount: CARDINAL,

clientStrings: LONG DESCRIPTOR FOR ARRAY CARDINAL OF XString.ReaderBody);
AddDependencies: -Event- PROCEDURE [

agent: AgentProcedure, myData: LONG POINTER,

events: LONG DESCRIPTOR FOR ARRAY CARDINAL OF EventType,
remove: FreeOataProcedure "NIL) RETURNS [dependency: Dependency];

AddDependency: -Event- PROCEDURE [

agent: AgentProcedure, myData: LONG POINTER, event: EventType,
remove: FreeDataProcedure "NIL] RETURNS [dependency: Dependency];

Addltem: -MenuData-- PROCEDURE [menu: MenuHandle, new: ItemHandle);
AddMenultem: -Attention- PROCEDURE [item: MenuData.ltemHandle];
AddPopupMenu: -StarWindowShell- PROCEDURE [

sws: Handle, menu: MenuData.MenuHandle);
AddR.eferenceToDesktop: -StarDesktop- PROCEDURE [

reference: NSFile.Reference, place: Window.Place "nextPlace];
AddToSystemKeyboards: -KeyboardKey- PROCEDURE [keyboard:
BlackKeys.Keyboard];
Adjus~Proc: -StarWindowShell- TYPE = PROCEDURE [

sws: Handle, box: Window.Box, when: When];
AgentProcedure: -Event- TYPE = PROCEDURE [

event: EventType, eventData: LONG POINTER, myData: LONG POINTER]

RETURNS [remove: BOOLEAN "FALSE, veto: BOOLEAN "FALSE];

AliocateAndlnsert: -Message Window- PROCEDURE [

parent: Window.Handle, place: Window.Place "LOOPHOLE[O],
dims: Window.Dims "LOOPHOLE[23417B], zone: UNCOUNTED ZONE" LOOPHOLE[O],
lines: CARDINAL "10] RETURNS [Window. Handle];

AliocateCache: -ContainerCache-- PROCEDURE RETURNS [Handle];
AliocateMessages: -XMessage-- PROCEDURE [

applicationName: LONG STRING, maxMessages: CARDINAL, clientData: ClientData,
proc: DestroyMsgsProc1 RETURNS [h: Handle];

AI phabetic: -XToken- Fi IterProcType;
AlphaNumeric: -XToken- FilterProcType;
Append: -XTime- PROCEDURE [

w: XString.Writer, time: System.GreenwichMeanTime "defaultTime,
template: XString.Reader "dateAndTime, Itp: LTP "useSystem];

AppendChar: -XString- PROCEDURE [

to: Writer, c: Character, extra: CARDINAL "0];
AppendExtensionlfNeeded: -XString-- PROCEDURE [to: Writer, extension: Reader]

RETURNS [didAppend: BOOLEAN];

Appendltem: -ContainerCache-- PROCEDURE [cache: Handle, addData: Add Data]
RETURNS [handle: ItemHandle);

.:~

View Point Programmer's Manual

Appendltem: -FormWindow-- PROCEDURE [
window: Window.Handle, item: Item Key, line: Line. preMargin: CARDINAL "'0,
tabStop: CARDINAL "'nextTabStop, repaint: BOOLEAN "'TRUE];

AppendLine: -Form Window- PROCEDURE [
window: Window.Handle, spaceAboveUne: CARDINAL "'OJ RETURNS [line: Line];

AppendReader: -XString- PROCEDURE [
to: Writer, from: Reader, fromEndContext: Context "unknownContext,
extra: CARDINAL "0);

AppendStream: -XString- PROCEDURE [
to: Writer, from: Stream.Handle, nBytes: CARDINAL,
from Context: Context "vaniliaContext, extra: CARDINAL "'0]
RETURNS [bytesTransferred: CARDINAL];

AppendSTRING: ~XString- PROCEDURE [
to: Writer, from: LONG STRING, homogeneous: BOOLEAN "FALSE,
extra: CARDINAL "0];

ArabicFirstRightToLeftCharCode: -XChar- Environment.Byte = 48;
Arc: -Display- PROCEDURE [_

window: Handle, place: Window.Place, radius: INTEGER, startSector: CARDINAL,
stopSector: CARDINAL, start: Window.Place, stop: Window.Place,
IineStyle: LineStyle "'NIL, bounds: Wiridow.BoxHandle "NIL];

ArcCos: -XL Real- PROCEDURE [x: Number] RETURNS [radians: Number];
ArcSin: -XL Real- PROCEDURE [x: Number] RETURNS [radians: Number];
ArcTan: -XL Real- PROCEDURE [x: Number] RETURNS [radians: Number];
ArrayHandle: -MenuData- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

ItemHandle;
ArrowFtavor: -StarWindowShell-TYPE = {pageFwd, pageBwd, forward", backward};
ArrowScrollAction: -StarWindowShell- TYPE = {start, go, stop};
ArrowScroliProc: -StarWindowShell- TYPE = PROCEDURE [

sws: Handle, vertical: BOOLEAN, flavor: ArrowFlavor,
arrowScrollAction: ArrowScroliAction "go];

ATOM: -Atom- TYPE [1]:
ATOM: -TIP- TYPE = Atom.ATOM;
attemptingLogo'ff: -StarDesktop- Atom.ATOM;
AttentionProc: -np-TYPE =·PROCEDURE [window: Window.Handle];
AttributeFormatProc: -FileContainerSource-- TYPE = PROCEDURE [

containeelmpl: Containee.lmplementation, containeeData: Containee.DataHandle,
attr: NSFile.Attribute, displayString: XString.Writer);

BackScanClosure: -XString- TYPE = RECORD [
proc: BackScanProc, env: LONG POINTER];

BackScanProc: -XString-- TYPE = PROCEDURE [
beforePos: CARDINAL, env: LONG POINTER]
RETURNS [pos: CARDINAL, context: Context];

backStoplnputFocus: -np-- REAOONLY Window.Handle;
beforeltemZero: -ContainerSource-- Itemlndex = 177776B;
beforeLogonSession: --Catalog- NSFile.Session;
BeginFiII: -ContainerCache-- PROCEDURE [

cache: Handle, fillProc: FiIIProc, clients: LONG POINTER,
fork: BOOLEAN "TRUE];

Bit: -LeveIlVKeys-- TYPE = KeyStations.Bit;
BitAddress: -Display- TYPE = BitBlt.BitAddress;

D

D-3

D

D-4

Listing of Public Symbols

BitAddressFromPlace: --Disp/ay- PROCEDURE [

base: BitAddress, x: NATURAL, y: NATURAL, raster: CARDINAL]

RETURNS [BitAddress];
BitBltFlags: -Disp/ay- TYPE = BitBlt.BitBltFlags;
bitFlags: -Disp/ay- BitBltFlags;
Bitmap: -Display- PROCEDURE [

window: Handle, box: Window.Box, address: BitAddress,
bitmapBitWidth: CARDINAL, flags: BitBltFlags "paintFlags,
bounds: Window.BoxHandle "NIL];

Bitmap: -Form Window- TYPE = RECORD [

height: CARDINAL,

width: CARDINAL,

bitsPerLine: CARDINAL,

bits: Envi ronment. BitAdd ress);
BitmapPIace: -Window- PROCEDURE [window: Handle, place: Place "LOOPHOLE[O]]

RETURNS [Place];
BitmapPIaceToWindowAndPlace: -Window- PROCEDURE [bitmapPlace: Place]

RETURNS [window: Handle, place: Place];
Bits: -XLRea/- TYPE = ARRAY [0 .. 3) OF CARDINAL;

Black: -Display- PROCEDURE [

window: Handle, box: Window.Box, bounds: Window.BoxHandle "NIL];

BlackParalielogram: -Display- PROCEDURE [

window: Handle, p: Parallelogram, dstFunc: DstFunc "null,
bounds: Window.BoxHandle "NIL];

Blanks: -XFormat- PROCEDURE [h: Handle "NIL, n: CARDINAL "1];
Block: -XFormat- PROCEDURE [h: Handle "NIL, block: Enviro"nment.Block];
Block: -XString- PROCEDURE [r: Reader]

RETURNS [block: Environment.Block, context: COr.1text];
BodyEnumProc: -StarWindowShell-- TYPE = PROCEDURE [victim: Window.Handle]

RETURNS [stop: BOOLEAN "'FALSE];

Boolean: -XToken- PROCEDURE [h: Handle, signalOnError: BOOLEAN "TRUE]

RETURNS [true: BOOLEAN];

BooleanChangeProc: -Form Window- TYPE = PROCEDURE [

window: Window.Handle, item: Item Key, caliedBecauseOf: ChangeReason,
newValue: BOOLEAN]; "

BooleanFalseDefault: -PropertySheet- TYPE = BOOLEAN" FALSE;

BooleanltemLabel: -Form Window- TYPE = RECORD [

var: SELECT type: BooleanltemLabelType FROM

string = > [string: X5tring.ReaderBody],
bitmap = > [bitmap: Bitmap),
ENOCASE];

BooleanltemLabelType: -Form Window- TYPE = {string, bitmap};
Box: -KeyboardWindow- TYPE = RECORD [

place: Window.Place, width: INTEGER, height: INTEGER];

Box: -Window- TYPE = RECORD [place: Place, dims: Dims];
BoxEnumProc: -Window-- TYPE = PROCEDURE [Handle, Box];
BoxesAreDisjoint: -Window- PROCEDURE [a: Box, b: Box] RETURNS [BOOLEAN];

boxFlags: -Disp/ay-- BitBltFlags;
BoxHandle: -Window-- TYPE = LONG POINTER TO Box;
Brackets: --XToken- QuoteProcType;
BreakCharOption: -XString-- TYPE = {ignore, appendToFront, leaveOnRest};
BreakTable: -XString-- TYPE = LONG POINTER TO BreakTableObject;

......, •.

ViewPoint Programmer's Manual

BreakTableObject: -XString-- TYPE = RECORD [
otherSets: StopOrNot "stop,
set: Environment.Byte .. 0,
codes: PACKED ARRAY [0 .. 255] OF StopOrNot "ALL[not)];

Brick: -Display- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL;
BufferProc: -Simple TextDisplay- TYPE = PROCEDURE [

result: Result, string: XString.Reader, address: Environment.BitAddress,
dims: Window.Dims, bitsPerLine: CARDINAL] RETURNS [continue: BOOLEAN];

Byte: -XString- TYPE = Environment.Byte;
ByteLength: -XString~ PROCEDURE [r: Reader) RETURNS [CARDINAL];
Bytes: -XString- TYPE = LONG POINTER TO ByteSequence;
ByteSequence: -XString- TYPE = RECORD [

PACKED SEQUENCE COMPUTED CARDINAL OF Byte);
CacheFillStatus: -ContainerCache- TYPE = {

no, inProgress, inProgressPendingAbort, inProgressPendingJoin, yes,
yesWithError, spare};

callBack: -np- PROCEDURE [
window: Window.Handle, table: Table, notify: CaIiBackNotifyProc];

CaliBackNotifyProc: -np- TYPE = PROCEDURE [
window: Window. Handle, results: Results] RETURNS [done: BOOLEAN];

CancelPeriodicNotify: - TIP- PROCEDURE [PeriodicNotify]
RETURNS [null: PeriodicNotify);

CanYouConvert: -Selection- PROCEDURE (
target: Target, enumeration: BOOLEAN' "FALSE] RETURNS [yes: BOOLEAN);

CanYouTake: -ContainerSourc~ CanYouTakeProc;
CanYouTakeProc: -ContainerSource-- TYPE = PROCEDURE [

source: Handle, selection: SeJection.ConvertProc "NIL]
RETURNS [yes: BOOLEAN);

caretRate: - np- Process. Ticks;
CatalogProc: -Catalog- TYPE = PROCEDURE [catalogType: NSFile.Type]

RETURNS [continue: BOOLEAN "TRUE];
Changelnfo: -ContainerSource-- TYPE = RECORD [

var: SELECT changeType: ChangeType FROM
replace = > [item: Itemlndex],
insert = > [insertlnfo: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Editlnfo1,
delete = > [deletelnfo: Editlnfo],
all = > NULL,
noChanges = > NULL,
ENOCASE);

ChangeProc: -Containee- TYPE· = PROCEDURE [
changeProcData: LONG POINTER, data: DataHandle "NIL,
changedAttributes: NSFile.Selections "[xxxx], noChanges: BOOLEAN "FALse];

ChangeProc: -ContainerSource-- TYPE = PROCEDURE [
changeProcData: LONG POINTER, changelnfo: Changelnfo);

ChangeReason: -Form Window- TYPE = {user, client, restore};
ChangeScope: -FileContainerSource-- PROCEDURE (

source: ContainerSource.Handle, newScope: NSFile.Scope);
ChangeSizeProc: -SimpleTextEdit- TYPE = PROCEDURE [

f: Field, oldHeight: INTEGER, newHeight: INTEGER, repaint: BOOLEAN];
ChangeType: -ContainerSource-- TYPE = {

replace, insert, delete, all, noChanges};
Char: --XFormat- PROCEDURE [h: Handle "NIL, char: XString.Character];

D

0-5

D

D-6

Listing of Public Symbols

Character: --XChar- TYPE = WORD;

Character: -XString- TYPE = XChar.Character;
Characterlength: -XString-- PROCEDURE [r: Reader] RETURNS [CARDINAL];

CharRep: --XChar- TYPE = MACHINE DEPENDENT RECORD [

set(O:O .. 7): Environment.Byte, code(0:8 .. 1S): Environment.Byte];
CharTranslator: -np- TYPE = RECORD [proc: KeyToCharProc, data: LONG POINTER];

ChoiceChangeProc: -Form Window- TYPE = PROCEDURE [

window: Window.Handle, item: ItemKey, caliedBecauseOf: ChangeReason,
oldValue: Choicelndex, newValue: Choicelndex];

ChoiceHintsProc: -Form Window- TYPE = PROCEDURE [

window: Window.Handle, item: ItemKey]
RETURNS [

hints: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicetndex,
freeHi nts: FreeChoiceHi ntsProc]:

Choicelndex: -Form Window- TYPE = CARDINAL [O .. 37777B];
Choiceltem: -Form Window- TYPE = RECORD [

var: SELECT type: ChoiceltemType FROM

string = > [choiceNumber: Choicelndex, string: XString.ReaderBody],
bitmap = > [choiceNumber: Choicelndex, bitmap: Bitmap],
wraplndicator = > NULL,

ENDCASE];

Choiceltems: -Form Window- TYPE = LONG DESCRIPTOR FOR ARRAY Choicelndex OF

Choiceltem;
ChoiceltemType: -Form Window- TYPE = {string, bitmap, wraplndicator};
Circle: -Display- PROCEDURE [

window: Handle, place: Window.Place, radius: INTEGER,

lineStyle: LineStyle "NIL, bounds: Window.BoxHandle "NIL];

Clarity: -Window- TYPE = {isClear, isDirty};
Clear: -Attention- PRoceDURE;

Clear: -MessageWindow-- PROCEDURE [window: Window.Handle];
Clear: -Selection- PROCEDURE [unmark: BOOLEAN "TRUE].;

ClearlnputFocusOnMatch: -TIP- PROCEDURE [Window.Handle];
ClearManager: - np- PROCEDURE;

ClearOnMatch: -Selection- PROCEDURE [

pointer: ManagerData, unmark: BOOLEAN "TRUE];

ClearSticky: -Attention- PROCEDURE;

ClearWriter: -XString- PROCEDURE [w: Writer];
clickTimeout: -TIP- System. Pulses;
ClientData: -XFormat- TYPE = LONG POINTER;

ClientData·: -XMessage- TYPE = LONG POINTER;

cI ientDi rectoryWords: -BWSAttribute Types- NSFi Ie. ExtendedAttri bute Type =
10373B;

clientFileWords: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 103728;
Clients: -ContainerCache- PROCEDURE [cache: Handle)

RETURNS [clients: LONG POINTER];

clientSize: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10375B;
clientStatus: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10374B;
Code: -XChar- PROCEDURE [c: Character) RETURNS [code: Environment.Byte];
CodesO: -XCharSetO-- TYPE = MACHINE DEPENDENT{

null, tab(9), IineFeed, formFeed(12), newline, esc(27), space(32),
exclamationPoint, neutral DoubleQuote, numberSign, currency, percentSign,
ampersand, apostrophe, openParenthesis, closeParenthesis, asterisk, plus,

ViewPoint Programmer's Manual

comma, minus, period, slash, digitO, digit1, digit2, digit3, digit4, digitS,
digit6, digit7, digitS, digit9, colon, semicolon, lessThan, equals,
greaterThan, questionMark, commercialAt, upperA, upperS, upperC, upperD,
upperE, upperF, upperG, upperH, upperl, upperJ, upperK, upperL, upperM,
upperN, upperO, upperP, upperQ, upperR, upperS, upperT, upperU, upperV,
!JPperW, upperX, upperY, upperZ, openBracket, backSlash, closeBracket,
circumflex, lowBar, grave, lowerA, lowerB, lowerC, lowerD, lowerE, lowerF,
lowerG, lowerH, lowert, lowerJ, lowerK, lowerL,lowerM,lowerN, lowerO,
lowerP,lowerQ,lowerR, lowerS, lowerT, lowerU, lowerV,lowerW, lowerX,
lowerY, lowerZ, openBrace, verticalBar, closeBrace, tilde,
invertedExciamation(161), cent, poundSterling, dollar, yen, section(167),
leftSingleQuote(169), leftDoubleQuote, leftDoubleGuillemet, leftArrow,
upArrow, rightArrow, downArrow, degree, plusOrMinus, superscript2,
superscript3, multiply, micro, paragraph, centered Dot, divide,
rightSingleQuote, rightDoubleQuote, rightDoubleGuiliemet, oneQuarter, oneHalf,
threeQuarters, invertedQuestionMark, graveAccent(193), acuteAccent, .
circumflexAccent, tildeAccent, macronAccent, breveAccent, overDotAccent,
dieresisAccent, overRingAccent(202), cedilla, underline, doubleAcuteAccent,
ogonek, hachekAccent, horizontalBar, superscript1, registered, copyright,
trademark, musicNote, oneEighth(220), threeEighths, fiveEighths, seven'Eighths,
ohmSign, upperAEdigraph, upperDstroke, feminineSpanishOrdinal, upperHstroke,
upperlJdiagraph(230), upperLdot, upperLstr~k'e, upperOslash, upperOEdiagraph,
masculineSpanishOrdinal', upperThorn, upperTstrok~, upperEng, lowerNapostrophe,
lowerKgreenlandi(, lowerAEdigraph, lowerDstro~e, lowerEth, lowerHstroke,
lowerldotless, lowerlJdiagraph, lowerLdot, lowerLstroke, lowerOslash, .
lowerOEdiagraph, lowerSzed, lowerThorn, lowerTstroke, 10werEng, escape};

Codes 164: -XCharSet164- TYPE = MACHINE DEPENDENT{

kabu(33), maruA, marui, maruU, maruE, maruO, maruRo, maruHa, maruNi, maruHo,
maruHe, maruTo, maNTi, maruRi, maruNu, reserved(2S5)};

Codes356: -XCharSet356- TYPE = MACHINE DEPENOENT{

thickSpace(33), fourEmSpace, hairSpace, punctuationSpace, decimaIPoint(46),
absoluteValue(124), similarTo(126), escape(25S)};

Codes357: -XCharSet357- TYPE = MACHINE OEPENOENT{

nonBreakingSpace(33). nonBreakingHyphen, discretionaryHyphen, enDash, emDash,
figureDash, neutral Quote, loweredLeftDoubleQuote, germanRightDoubleQuote,
guill~metLeftQuote, guiliemetRightQuote, enQuad, emQuad, figureSpace,
thinSpace, dagger, doubleDagger, bra, ket, rightPointinglndex,
leftPointinglndex,leftPerp, rightPerp, keft2Perp, right2Perp,
leftWhiteLenticularBracket, rightWhiteLenticularBracket, nwArrow, seArrow,
neArrow, swArrow, careOf, perThousand; muchLessThan, muchGreaterThan,
notLessThan, notGreaterThan, divides, doesNotDivide, parallel, notParallel,
isAMemberOf, isNotAMemberOf, suchThat, doubleBackArrow, doubleDoubleArrow,
doubleRightArrow, reversibleReaction2, reversibleReaction 1, doubleArrow,
curlyArrow, containsl, containedln 1, intersection, union, containsOrEquals,
containedlnOrEquals, contains2, containedln2, neitherConatainsNorlsEqualTo,
neitherContai nedlnNorlsEqualTo, doesNotContai n, isNotContai ned I n,
checketBallotBox, nullSet, abstractPlus, abstractMinus, abstractTimes,
abstractDivide, centeredBultet, centeredRing, plancksConstant, litre, not,
borkenVerticalSar, angle, sphericalAngle, identifier, because, perpendicular,
isProportionalTo, equivalent, equalByDefinition, questionedEquality, integral.
contourlntegral, approximatelyEquall, isomorphic, approximatelyEqual2,
summation, product, root, minusOrPtus, shade, cruzeiro(161), florin, francs,

D

D-7

D

D-8

Listing of Public Symbols

pesetas, europeanCurrency, milreis, genericlnfinity, number, take, tel, yogh,
complexNumber, natural Number, realNumber, integer, leftCeiling, rightCeiling,~,
leftFloor, rightFloor, therExists, forAII, and, or, qed, nabla,
partial Derivative, ocrHook, ocrFork, ocrChair, alternatingCurrent,
doubleLowBar, arc, romanNumerall, romanNumeralll, romanNumerallll,
romanNumerallV, romanNumeralV, romanNumeralVI, romanNumeralVII,
romanNumeralVIII, romanNumerallX, romanNumeralX, spades, hearts, diamonds,
clubs, checkMark, xMark, circled 1 , circled2, circled3, circled4, circiedS,
circled6, circled7, circled8, circled9, circled 10, circiedRightArrow,
circledRightThenDownArrow, circiedDownThenLeftArrow, peaceSymbol, smileFace,
poison, thickVerticalLine, thickHorizontalLine, thicklntersectingLines,
thinVerticalLine, thinHorizontalLine, thinln,tersectingLines, sun,
firstQuarterMoon, thirdQuarterMood, mercury, jupiter, saturn, uranus, neptune,
pluto, aquarius, pisces, aries, taurus, gemini, cancer, leo, virgo, libra,
scorpius, sagittarius, capricorn, telephone, oneThird, twoThirds, escape};

Codes360: -XCharSet360-- TYPE = MACHINE DEPENDENT{

IigatureFF(33), ligatureFFI, IigatureFFL, IigatureFI, IigatureFL, IigatureFT,
sigmaFinal(126), verticaITabGraphic(184), tabGraphic, JineFeedGraphic,
formFeedGraphic, carriageReturnGraphic, newLineGraphic, available276B,
available2778, avaiiable300B, avaiiable301B, pageFormatGraphic,
startOfDocumentGraphic, stopGraphic, available30S8, available3068,
available307B, available310B, available311B, blackRectGraphic,
checkerBoardGraphic,ibmDup, available3158, ibmFm, paraTabGraphic(217),
available332B, available3338, avaiiable334B, newParagraphGraphic,
avaiiable3368, available337B, available340B, boxMT, boxNOT, boxEllipsi.s, ~
box Range, boxUpperX, boxUpperA, boxdigit9, boxUpperZ, boxAsterisk,
available352B, available353B, boxPlus, boxMinus, boxPeriod, boxComma,
fieldFormatGreek(246), fieldFormatRussian, fieldFormatHiragana,·
fieldFormatKatakana, fieldFormatKanji, fieldFormatJapanese, spaceGraphicdot,
spaceGraphicb, escape(255)};

Codes361: -XCharSet361- TYPE = MACHINE DEPENDENT{

upperAgrave(33), upperAacute, upperAcircumflex, upperAtilde, upperAmacron,
upperAbrev, upperAumlaut, upperAring, upperAogonek, upperCacute,
upperCcircumflex, upperChighDot, upperCcedilla, upperChachek, upperDhachek,
upperEgrave, upperEacute, upperEcircumflex, upperEmacron, upperEhighDot,
upperEumlaut, upperEogonek, upperEhachek, upperGcircumflex(S7), upperGbrev,
upperGhighDot, upperGcedilla, upperHcircumflex, uppertgrave, upperlacute,
upperlcircumflex, upperltilde, upperlmacron, upperlhighDot, upperlumlaut,
upperlogonek, upperJcircumflex, upperKcedilla, upperLacute, upperLcedilla,
upperLhachek, upperNacute, upperNtilde, upperNcedilla, upperNhachek,
upperOgrave, upperOacute, upperOcircumflex, upperOtilde, upperOmacron,
upperOumlaut, upperODoubleAcute, upperRacute, upperRogonek, upperRhachek,
upperSacute, upperScircumflex, upperScedilla, upperShachek, upperTcedilla,
upperThachek, upperUgrave, upperUacute, upperUcircumflex, upperUtilde,
upperUmacron, upperUbrev, upperUumlaut, upperUring, upperUDoubleAcute,
upperUogonek, upperWcircumflex, upperYgrave, upperYacute, upperYcircumfJex,
upperYumlaut, upperZacute, upperZhighDot, upperZhachek, lowerAgrave(161),
lowerAacute, lowerAcircumflex, lowerAtilde, lowerAmacron, lowerAbrev,
lowerAumlaut, lowerAring, lowerAogonek, lowerCacute, lowerCcircumflex,~,
lowerChighDot, lowerCcedilla, lowerChachek, lowerDhachek, lowerEgra"e,
lowerEacute, lowerEcircumflex, lowerEmacron, lowerEhighDot, lowerEumlaut,
lowerEogonek, lowerEhachek, lowerGacute, lowerGcircumflex, lowerGbrev,

-ViewPoint Programmer's Manual

lowerGhighDot, lowerHcircumflex(189), lowerlgrave, lowerfacutei
lowerlcircumflex, lowerftilde, lowerfmacron, lowerfumlaut(196), lowerlogonek,
lowerJcircumflex, lowerKcedilla, lowerLacute, lowerLcedilla, lowerLhachek,
lowerNacute, lowerNtiJde, lowerNcedilla, lowerNhachek, lowerOgrave,
lowerOacute, lowerOcircumflex, lowerOtilde, lowerOmacron, lowerOumlaut,
lowerODoubleAcute, lowerRacute, lowerRogonek, lowerRhachek, lowerSacute,
lowerScircumflex, lowerScedilla, lowerShachek, lowerTcedilla, lowerThachek,
lowerUgrave, lowerUacute,lowerUcircumflex, lowerUtilde, lowerUmacron,
lowerUbrev, lowerUumlaut, lowerUring, lowerUDoubleAcute, lowerUogonek,
lowerWcircumflex, lowerYgrave, lowerYacute, lowerYcircumflex, lowerYumlaut,
lowerZacute, lowerZhighDot, lowerZhachek, escape(2SS)};

Codes41: -XCharSet41- TYPE = MACHINE DEPENDENT{

D

kanjiSpace(33), japaneseComma, japanesePeriod, dakuonMark(43), handakuonMark,
repeatHi ragana(S 1), repeatHi raganaWithDakuon, repeatKatakana,
repeatKatakanaWithOakuon, reduplicate, reduplicateAboveltem, repeatKanji,
shime, kanjiZero, longVowelBar, hyphen(62), paralieISign(66),
threeOotLeader(68), tWoOotLeader, leftBrokenBracket(76), rightBrokenBracket,
leftJapaneseQuote(86), rightJapaneseQuote, leftJapaneseOoubleQuote,
rightJapaneseOoubleQuote, leftBlackLenticularBracket,
rightBlackLenticularBracket, notEqual(98), lessThanOrEqualTo(1 01),
greaterThanOrEqualTo, infinity, therefore, male, female, minutes(108),
Seconds, degreesCelsius, whiteStar(121), blackStar, whiteCircle, blackCircle,
bullsEye, whiteOiamond, escape(2S5)}; .

Codes42: -XCharSet42- TYPE = MACHINE DEPENDENT{

blackOiamond(33), whiteSquare, blackSquare, whiteUpTriangle, blackUpTriangle,
whiteOownTriangle, blackOownTriangle, jisKome, jisPostOffice, escape(255)};

Codes43: -XCharSet43- TYPE = MACHINE DEPENDENT{

musicaIFlat(172), soundRecordingCopyright(174), ayn(176), alifHamzah,
lowerLeftQuote, musicaISharp(l88), mjagkijZnak, tverdyjZnak, risingTone(192),
umlaut(201), highCommaOffCentre(203), highlnvertedComma, horn(206),
hookToTheLeft(21 0), circieBelow(212), halfCircieBelow, dotBelow,
doubleOotBelow, doubleUnderline(217), africanVerticalBar, circumflexUndermark,
leftHalfOfLigature(221), rightHalfOfLigature, rightHalfOfOoubleTilda,
escape(2SS)} ;

Codes44: -XCharSet44- TYPE = MACHINE DEPENDENT{

hirSmaIlA(33), hirA, hirSmalll, hirl, hirSmallU, hirU, hirSmallE, hirE,
hirSmallO, hirO, hirKa, hirGa, hirKi, hirGi, hirKu, hirGu, hirKe, hirGe,
hirKo, hirGo, hirSa, hirZa, hirSi, hirJi, hirSu, hirZu, hirSe, hirZe, hirSo,
hirZo, hirTa, hirOa, hirTi, hirOi, hirSmallTu, hirTu, hirOu, hirTe, hi rOe,
hirTo, hi rOo, hirNa, hirNi, hirNu, hirNe, hirNo, hirHa, hirBa, hirPa, hirHi,
hirBi, hirPi, hirHu, hirBu, hirPu, hirHe, hirSe, hirPe, hirHo, hirBo, hirPo,
hirMa, hirMi, hirMu, hirMe, hirMo, hirSmallYa, hirYa, hirSmallYu, hirYu,
hirSmallYo, hirYo, hirRa, hirRi, hirRu, hirRe, hirRo, hirSmallWa, hirWa,
hirWi, hirWe, hirWo, hirN, escape(2S5)};

Codes45: -XCharSet45- TYPE = MACHINE DEPENDENT{

katSmaIlA(33), katA, katSmalll, katl, katSmallU, katU, katSmallE, katE,
katSmallO, katO, katKa, katGa, katKi, katGi, katKu, katGu, katKe, katGe,
katKo, katGo, katSa, katZa, katSi, katJi, katSu, katZu, katSe, katZe, katSo,
katZo, katTa, katOa, katTi, katOi, ·katSmaIlTu, katTu, katOu, katTe, katOe,
katTo, kat Do, katNa, katNi, katNu, katNe, katNo, katHa, katBa, katPa, katHi,
katBi, katPi, katHu, katBu, katPu, katHe, katBe, katPe, katHo, katBo, katPo,
katMa, katMi, katMu, katMe, katMo, katSmallYa, katYa, katSmallYu, katYu,

0-9

D

D-I0

Listing of Public Symbols

katSmallYo, katYo, katRa, katRi, katRu, katRe, katRo, katSmallWa, katWa,
katWi, katWe, katWo, katN, katVu, katSmallKa, katSmatlKe, escape(255)};

Codes46: -XCharSet46- TYPE = MACHINE OEPENOENT{

smootheBreathing(37), roughBreathing, iotaScript, upperPrime(52), lowerPrime,
raisedPeriod(59), upperAlpha(65.), upperBeta, upperGamma(68)u upperOelta,
upperEpsilon, upperStigma, upperDigamma, upperZeta, upperEta, upperTheta,
uppertota, upperKappa, upperLambda, upperMu, upperNu, upperXi, upperOmicron,
upperPi, upperKoppa, upperRho, upperSigma, a1278, upperTau, upperUpsilon,
upperPhi, upperKhi, upperPsi, upperOmega, upperSampi, lowerAlpha(97),
lowerBeta, lowerBetaMiddleWord, lowerGamma, lowerDelta, lowerEpsilon,
lowerStigma, lowerDigamma, lowerZeta, lowerEta, lowerTheta, lowerlota,
lowerKappa, lowerLambda, lowerMu, lowerNu, lowerXi, lowerOmicron, 10werPi,
lowerKoppa, lowerRho, lowerSigma, lowerSigmaMiddleWord,lowerTau,
lowerUpsilon, lowerPhi, lowerKhi, lowerPsi, lowerOmega, lowerSampi,
escape(255)} ;

Codes47: -XCharSet47- TYPE = MACHINE OEPENOENT{

upperA(33}, upperBe, upperVe, upperGe, upperDe, upperYe, upperYo, upperZhe,
upperZe, upperl, upperlKratkoye, upperKa, upperEI, upperEm, upperEn, upperO,
upperPe, upperEr, upperEs, upperTe, upperU, upperEf, upperXa, upperTse,
upperChe, upperSha, upperShCha, upperTvyordiiZnak, upperYeri,
upperMyaxkiiZnak, upp.erEOb.orotnoye, upperYu, upperYa, lowerA(81),.IowerBe,
lowerVe, lowerGe, lowerDe, lowerYe, lowerYo, lowerZhe, lower-Ze, lowert,
lowerlKratkoye, lowerKa, lowerEI, lowerEm, lowerEn, lowerO, lowerPe, lowerEr,
lowerEs, lowerTe, lowerU, lowerEf, lowerXa, lowerTse, lowerChe, lowerSha,
rowerShCha, lowerTvyordiiZnak, lowerYeri, lowerMyaxkiiZnak, lowerEOborotnoye,
lowerYu, lowerYa, escape(255)};

ColumnContents: -FileContainerSource-- TYPE = LONG OESCRIPTOR FOR ARRAY

CARDINAL OF ColumnContentslnfo;
ColumnContentslnfo: -FileContainerSource-- TYPE = RECORD [

info: SELECT type: ColumnType FROM

attribute = > [
attr: NSFile.AttributeType,
formatProc: AttributeFormatProc "NIL,

needsDataHandle: BOOLEAN" FALse),

extendedAttribute = > [
extendedAttr: NSFile. ExtendedAttri buteType,
formatProc: AttributeFormatProc "NIL,

needsDataHandle: BOOLEAN" FALSE],

multipleAttributes = > [
attrs: NSFile.Selections,
formatProc: MultiAttributeFormatProc "NIL,

needsDataHandle: BOOLEAN" FALSE],

ENOCASE];

ColumnCount: -ContainerSource-- ColumnCountProc;
ColumnCountProc: -ContainerSource-- TYPE = PROCEDURE [source: Handle]

RETURNS [columns: CARDINAL];

ColumnHeaderlnfo: -ContainerWindow- TYPE = RECORD [

width: CARDINAL, wrap: BOOLEAN "TRUE, heading: XString.ReaderBody];
ColumnHeaders: -ContainerWindow-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

ColumnHeaderlnfo;
ColumnType: --FileContainerSource-- TYPE = {

attribute, extendedAttribute, multipleAttributes};

.• ~

View Point Programmer's Manual

CommandProc: -Form Window- TYPE = PROCEDURE [
window: Window.Handle, item: ItemKey, clientData: LONG POINTER1;

Compare: -XL Rea/- PROCEDURE [a: Number, b: Number] RET·URNS [Comparison];
Compare: -XString- PROCEDURE [

r1: Reader, r2: Reader, ignoreCase:BOOLEAN "TRUE,
sortOrder: SortOrder '"standard] RETURNS [Relation];

CompareStringsAndStems: -XString-- PROCEDURE [
r1: Reader, r2: Reader, ignoreCase: BOOLEAN '"TRUE,
sortOrder: SortOrder '"standard]
RETURNS [relation: Relation, equalStems: BOOLEAN];

Comparison: -XL Rea/- TYPE = {less, equal, greater};
compatibility: -BWSAttributeTypes-- NSFile.ExtendedAttributeType = 103768;
Compose: -XMessage- PROCEDURE [

source: XString.Reader, destination: XString.Writer, args: StringArray];
ComposeOne: -XMessage- PROCEDURE [

source: XString:Reader, destination: XString.Writer, ar9: XString.Reader];
ComposeOneToFormatHandle: -XMessage- PROCEDURE [

source: XString.Reader, destination: XFormat.Handle, arg: XString.Reader1;
ComposeToFormatHandle: -XMessage- PROCEDURE [

source: XString.Reader, destination: XFormat.Handle, args: StringArray1;
ComputeEndContext: -XString- PROCEDURE [r: Reader] RETURNS [c: Context);
ConfirmChoices: -Attention- TYPE = RECORD [.

yes: XString.Reader, no: XString.Reader];
Conic: -Disp/ay- PROCEDURE [

w.indow; Han~:Ue, a: LONG INTEGER, b: LONG INTEGER, c: LONG INTEGER,
d: LONG INTEGER, e: LON~ INTEGER, errorTerm: LONG INTEGER,
start: Window.Place, stop: Window.Place, error Ref: Window.Place,
sharpCornered: BOOLEAN, unboundedStart: BOOLEAN, unboundedStop: BOOLEAN,
IineStyle: LineStyle '"NIL, bounds: Window.BoxHandle "NIL];

containedin: -BWSAttributeTypes- NSFile. ExtendedAttri buteType = 10400B;
Context: -XString- TYPE = MACHINE DEPENDENT RECORD [

5uffixS;ze(O:O .. 6): [1 .. 2],
homogeneous(O:7 .. 7): BOOLEAN,
prefix(O:8 .. 1 5): Environment.Byte];

Conversionlnfo: -Se/ection- TYPE = RECORD [
SELECT type: '* FROM
convert = > NULL,
enumeration = > [proc: PROCEDURE [Value1 RETURNS [stop: BOOLEAN]],
query = > [query: LONG DESCRIPTOR FOR ARRAY CARDINAL OF QueryElement],

. ENDCASE];

Dummy: DEFINITIONS =
BEGIN

Convert: -Selection- PROCEDURE [
target: Target, zone: UNCOUNTED ZONE "LOOPHOLE[OJ) RETURNS [value: Value1;

Converter: -ProductFactoringProducts- Product = 7;
Convertlnteger: -UnitConversion- PROCEDURE [

n: LONG INTEGER, inputUnits: Units, outputUnits: Units]
RETURNS [LONG INTEGER];

Convert Item : -ContainerSource- ConvertltemProc;
ConvertltemProc: --ContainerSource-- TYPE = PROCEDURE [

source: Handle, itemlndex: Itemlndex, n: CARDINAL "1,

D

D-l1

D

D-12

Listing of Public Symbols

target: Selection. Target, zone: UNCOUNTED ZONE,

info: Selection.Conversionlnfo "xxx, changeProc: ChangeProc "NIL,

changeProcData: LONG POINTER "NIL) RETURNS [value: Selection. Value);
ConvertNumber: -Selection- PROCEDURE [target: Target]

RETURNS [ok: BOOLEAN, number: LONG UNSPECIFIED];

ConvertProc: -Selection- TYPE = PROCEDURE [

data: ManagerData, target: Target, zone: UNCOUNTED ZONE,
info: Conversionlnfo "xxx] RETURNS [value: Value];

ConvertReal: -UnitConversion- PROCEDURE [
n: XLReal.Number, inputUnits: Units, outputUnits: Units]
RETURNS [XLReal. Num ber];

Copy: -Selection- PROCEDURE [v: ValueHandle, data: LONG POINTER];
CopyMove: -Selection- Val ueCopyMoveProc;
CopyOrMove: -Selection- TYPE = {copy, move};
CopyReader: -XString- PROCEDURE [r: Reader, z: UNCOUNTED ZONE]

RETURNS [new: Reader];
CopyToNewReaderBody: -XString- PROCEDURE [r: Reader, z: UNCOUNTED

ZONE]

RETURNS [ReaderBody1;
CopyToNewWriterBody: -XString- PROCEDURE [

r: Reader, Z: UNCOUNTED ZONE, end Context: Context "unknownContext,
extra: CARDINAL "0] RETURNS [w: WriterBody];

Cos: -XL Real- PROCEDURE [radians: Number] RETURNS [cos: Number];
coversheetOn: -BWSAttribute Types- NSFile. ExtendedAttri buteType =
10412B;
CR: -X Format- PROCEDURE [h: Handle "NIL, n: CARDINAL '"1);
Create: -Cata/og- PROCEDURE [
- name: XString.Reader, catalogType: NSFile.Type,

session: NSFile.Session "LOOPHOLE[OJ] RETURNS [catalog:
NSFile .. Reference);
Create: --ContainerWindow- PROCEDURE [

window: Window. Handle, source: ContainerSource.Handle,
columnHeaders: ColumnHeaders, firstltem: ContainerSource.ltemlndex "0]
RETURNS [

regularMenultems: MenuData.ArrayHandle,
topPusheeMenultems: MenuData.ArrayHandle];

Create: -ContainerWindowExtra- PROCEDURE [

window: Window.Handle, source: ContainerSource.Handle,
columnHeaders: ContainerWindow.ColumnHeaders,
firstltem: ContainerSource.ltemlndex "0, readOnly: BOOLEAN "FALse]
RETURNS [

regularMenultems: MenuData.ArrayHandle,
topPusheeMenultems: MenuData.ArrayHandle);

Create: -Context- PROCEDURE [
type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

Create: -FileContainerShell- PROCEDURE [
file: NSFile.Reference, columnHeaders: ContainerWindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems: MenuData.ArrayHandle "xxx,
topPusheeMenultems: MenuData.ArrayHandle "xxx, scope: NSFile.Scope ~
xxx,
position: ContainerSource.ltemlndex "0,
options: FileContainerSource.Options "LOOPHOlE[O)]
RETURNS [shell: StarWindowSheII.Handle];

ViewPoint Programmer's Manual

Create: -FileContainerSource- PROCEDURE [
file: NSFile.Reference, columns: ColumnContents, scope: NSFile.Scope "xxx,
options: Options "LOOPHOLE[OI1 RETURNS [source: ContainerSource:Handle];

. Create: -Form Window- PROCEDURE [
window: Window.Handle, makeltemsProc: MakeltemsProc,
layoutProc: LayoutProc "NIL, windowChangeProc: GlobalChangeProc "NIL,
minDimsChangeProc: MinDimsChangeProc "NIL,
zone: UNCOUNTED ZONE "LOOPHOLE[O], dientData: LONG POINTER "NIL];

Create: -MessageWindow- PROCEDURE [
window: Window.Handle, zone: UNCOUNTED ZONE" LOOPHOLE[O],
lines: CARDINAL "10];

Create: -PropertySheet- PROCEDURE [
formWindowltems: FormWindow.MakeltemsProc, menultemProc: MenultemProc,
size: Window.Dims, menultems: Menultems "propertySheetDefaultMenu,
title: XString.Reader "NIL, placeToDisplay: Window.Place "nuIiPlace,
formWindowltemsLayout: FormWindow.LayoutProc .. NIL,
windowAttachedTo: StarWindowShell.Handle "LOOPHOLE[O),
globalChangeProc: FormWindow.GlobalChangeProc "NIL, display: BOOLEAN "TRUE,
clientData: LONG POINTER "NIL, afterTakenDownProc: MenultemProc "NIL,
zone: UNCOUNTED ZONE "'LOOPHOLE[O]] RETURNS [shell: StarWindowShel'.Handle];

Create: -Prototype- PROCEDURE [
name: XString.Reader, type: NSFile.Type, version: Version,
subtype: Subtype "0, size: LONG CAR~INAL "0, isDirectory: BOOLEAN "FALSE,
session: NSFile.Session "LOOPHOlE[O]] RETURNS [prototype: NSFile.Handle];

Create: -StarWindowShell- PROCEDURE [
transitionProc: TransitionProc "'NIL, name: XString.Reader "'NIL,
namePicture: XString.Character "0, host: Handle" LOOPHOlE[O],
type: ShellType "'regular, sleeps: BOOLEAN "FALSE,
considerShowingCoverSheet: BOOLEAN "TRUE,
currentlyShowingCoverSheet: BOOLEAN" FALSE,
pushersAreReadonly: BOOLEAN" FALSE, readonly: BOOLEAN'" FALSE,
scroll Data: Scroll Data" vani IlaScrol1 Data,
garbageCollectBodiesProc: PROCEDURE [Handle1 "NIL,
isCloseLegalProc: IsOoseLegalProc "NIL, bodyGravity: Window.Gravity "nw,
zone: UNCOUNTED ZONE" LOOPHOLE[O]] RETURNS [Handle);

Create: -Window-PROCEDURE [
display: DisplayProc, box: Box, parent: Handle "rootWindow,
sibling: Handle "NIL, child: Handle "NIL, dearingRequired: BOOLEAN "'TRUE,
windowPane: BOOLEAN "FALSE, under: BOOLEAN "'FALSE, cookie: BOOLEAN "FALSE,
color: BOOLEAN "FALSE, zone: UNCOUNTED ZONE "'LOOPHOLE[O]]
RETURNS [window: Handle];

CreateBody: -StarWindowShel'- PROCEDURE [
sws: Handle, repaintProc: PROCEDURE [Window.Handle] "NIL,
bodyNotifyProc: TIP.NotifyProc "'NIL, box: Window.Box "xxx)
RETURNS [Window.Handle];

CreateCharTable: -np- PROCEDURE [
Z:'UNCOUNTED ZONE "LOOPHOLE[O], buffered: BOOLEAN "TRue)
RETURNS [table: Table];

CreateDesktop: -StarDesktop- PROCEDURE [name: XString.Reader]
RETURNS [fh: NSFile.Handle);

CreateField: -SimpleTextEdit- PROCEDURE [
clientData: LONG POINTER, context: FieldContext, dims: Window.Dims,
'initString: XString.Reader "NIL,
flushness: SimpleTextDisplay.Flushness "fromFirstChar,
streakSuccession: SimpleTextDisplay.StreakSuccession "fromFirstChar,
readOnly: BOOLEAN "FALSE, password: BOOLEAN "FALSE,

D

0-13

D

D-14

Listing of Public Symbols

fixedHeight: BOOLEAN "FALSE, font: SimpleTextFont.MappedFontHandle "NIL, ~
backingWriter: XString. Writer" NIL, '-

SPECIAlKeyboard: BlackKeys.Keyboard "NIL) RETURNS [f: Field];
CreateFieldContext: -Simple TextEdit- PROCEDURE [

z: UNCOUNTED ZONE, window: Window.Handle, changeSizeProc: ChangeSizeProc)
RETURNS [fc: FieldContext];

CreateFile: -Catalog- PROCEDURE [
catalogType: NSFile.Type --104768, name: XString.Reader, type: NSFile.Type,
isDirectory: BOOLEAN --FALSE, size: LONG CARDINAL "0,
session: NSFile.Session "lOOPHOlE[Oll RETURNS [file: NSFile.Handle];

Createltem: -MenuOata- PROCEDURE [

zone: UNCOUNTED ZONE, name: XString.Reader, proc: MenuProc,
itemData: LONG UNSPECIFIED "01 RETURNS [ltemHandle);

CreateLinked: -PropertySheet- PROCEDURE [

formWindowltems: FOrmWindow.MakeltemsProc, menultemProc: MenultemProc,
size: Window.Dims, menultems: Menultems "propertySheetDefaultMenu,
title: XString.Reader "NIL, placeToDisplay: Window.Place "nuIlPlace,
formWindowltemslayout: FormWindow.layoutProc "'NIL,

wi ndowAttachedTo: StarWi ndowShell. Handl e "'lOOPHOlE[Ol,
globalChangeProc: FormWindow."GlobalChangeProc "NIL, display: BOOLEAN "TRUE,

linkWindowltems: FormWindow.MakeltemsProc,
linkWindowltemsLayout: FormWindow.layoutProc "NIL,

clientData: LONG POINTER -- NIL, afterTakenDownProc: MenultemProc "NIL,

zone: UNCOUNTED ZONE --lOOPHOlE[OIl RETURNS [shell: StarWi ndowShel1. Hand Ie];
CreateMenu: -MenuOata- PROCEDURE [

zone: UNCOUN'TED ZONE, title: Item Handle, array: ArrayHandle,
copyltemslntoMenusZone: BOOLEAN -- FALSE] RETURNS [MenuHandleJ~ ~

CreatePeriodicNotify: -TlP- PROCEDU~E [
window: Window.Handle "NIL, results: Results, milliSeconds: CARDINAL,
notifyProc: NotifyProc "NIL] RETURNS [PeriodicNotify];

CreatePlaceHolderTable: - TIP- PROCEDURE [z: UNCOUNTED ZONE" LOOPHOlE[O]]
RETURNS [table: Table];

CreateProcType: -Context- TYPE = PROCEDURE RETURNS [Data, DestroyProcType);
CreateTable: - TIP- PROCEDURE [

file: XString.Reader, z: UNCOUNTED ZONE "'lOOPHOlE[O],
contents: XString.Reader "NIL] RETURNS [table: Table1;

Current: -XTime- PROCEDURE RETURNS [time: System.GreenwichMeanTimeJ;
DashCnt: -Display- CARDINAL = 6;
Data: -Containee- TYPE = RECORD [reference: NSFile.Reference "xxx];
Data: -Context- TYPE = LONG POINTER;

DataHandle: -Containee-- TYPE = LONG POINTER TO Data;
Date: -XFormat- PROCEDURE [

h: Handle "NIL, time: System.GreenwichMeanTime "LOOPHOlE[17601311200B],
format: Date Format .. dateAndTi me];

dateAndTi me: -XTime- XStri ng. Reader;
DateColumn: -FileContainerSource- PROCEDURE

RETURNS [multipleAttributes ColumnContentslnfo];
DateFormat: -XFormat- TYPE = {dateOnly, timeOnly, dateAndTime};
dateOnly: -XTime- XStri ng. Reader;
DaysOfWeek: -XComSoftMessage- TYPE = Keys [monday .. sunday];
Decase: -XChar- PROCEDURE [c: Character] RETURNS [Character];
Decimal: --XFormat- PROCEDURE [h: Handle "NIL, n: LONG INTEGER];
Decimal: --XToken-- PROCEDURE [h: Handle, signalOnError: BOOLEAN "'TRUE] ~,

RETURNS [i: LONG INTEGER);

DecimalFormat: -XFormat-- NumberFormat;·

ViewPoint Programmer's Manual

Decompose: -XMessage- PROCEDURE [source: XString.Reader)
RETURNS [args: StringArray);

DefaultFi leConvertProc: -Containee- Selection. ConvertProc;
defaultGeometry: -KeyboardWindow- BlackKeys.GeometryTable;
DefaultLayout: -Form Window- LayoutProc;
defaultPicture: -KeyboardWindow- BlackKeys.Picture;
DefaultPictureProc: -KeyboardWindow- BlackKeys.PictureProc;
defaultTabStops: -Form Window- TabStops;
defaultTime: -XTime- System.GreenwichMean Time;
Defined: -Cursor- TYPE = Type [blank .. column];
DeleteAlI: -Undo- PROCEDURE;
DeleteAndShowNextPrevious: -ContainerWindow- PROCEDURE [

window: Window.Handle, item: ContainerSource.ltemlndex, direction: Direction);
DeleteAndShowNextPrevious: -ContainerWindowExtra2- PROCEDURE [

window: Window.Handle, item: ContainerSource.ltemlndex,
direction: ContainerWindow.Direction)
RETURNS [newOpenShell: StarWindowSheII.Handle];

Deleteltems: -ContainerSource- DeleteltemsProc;
DeleteltemsProc: -ContainerSource- TYPE = PROCEDURE [

source: Handle, itemlndex: Item Index, n: CARDINAL" 1,
changeProc: ChangeProc "NIL, changeProcData: LONG POINTER" NIL);

DeleteNltems: -ContainerCache- PROCEDURE [
cache: Handle, item: CARDINAL, nitems: CARDINAL "1);

Delimited: -XToken- FilterProcType;
Dependency: -Event- TYPE [2);
Dereference: -X String- PROCEDURE [r: Reader] RETURNS [rb: ReaderBody];.
DescribeOption: -ProductFactoring- PROCEDURE [

option: Option, desc: XString.Read.r,
prerequisite: Prerequisite "'null Prerequisite);

DescribeProduct: -ProductFactoring- PROCEDURE [
product: Product, desc: XString.Reader];

DescribeReader: -XString- Courier. Descri ption;
DescribeReaderBody: -XString- Courier. Description;
desktop: --BWSFileTypes- NSFile.Type = 104008;
desktopCatalog: -BWSFileTypes- NSFile.Type = 10400B;
DesktopProc: -ldleControl- TYPE = PROCEDURE;
desktopWindowAvaiiable: -StarDesktop- Atom.ATOM;
DestaliBody: -StarWindowShell- PROCEDURE [body: Window. Handle);
Destroy: -ContainerWindow- PROCEDURE [Window.Handle];
Destroy: -Context- PROCEDURE [type: Type, window: Window.Handle];
Destroy: -Form Window- PROCEDURE [window: Window.Handle);
Destroy: -MessageWindow- PROCEDURE [Window. Handle];
Destroy: -StarWindowShell- PROCEDURE [sws: Handle);
DestroyAII: -Context- PROCEDURE [window: Window. Handle);
DestroyBody: -StarWindowShell- PROCEDURE [body: Window.Handle];
DestroyField: -SimpleTextEdit- PROCEDURE [f: Field];
DestroyFieldContext: -SimpleTextEdit-- PROCEDURE [fe: FieldContext];
END.

Destroyltem: -Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey, repaint: BOOLEAN "TRUE];

Destroyltem: --MenuData-- PROCEDURE [zone: UNCOUNTED ZONE, item: ItemHandle];
Destroyltems: --FormWindow-- PROCEDURE [

window: Window.Handle, item: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Item Key,
repaint: BOOLEAN -TRUE};

D

0-15

D

0-16

Listing of Public Symbols

DestroyMenu: -MenuData-- PROCEDURE [zone: UNCOUNTED ZONE, menu: MenuHandle);
DestroyMessages: -XMessage- PROCEDURE [h: Handle];
DestroyMsgsProc: -XMessage- TYPE = PROCEDURE [clientData: ClientData);
DestroyProcType: -Context- TYPE = PROCEDURE [Data, Window.Handle];
DestroyTable: -TIP- PROCEDURE [LONG POINTER TO Table];
DFonts: -ProductFactoringProducts- Product = 3;
Difficulty: -Selection- TYPE = {easy, moderate, hard, impossible};
Digit: -XL Real- TYPE = [0 .. 9];
Digits: -XL Real- TYPE = PACKED ARRAY [0 .. 12] OF Digit;
Dims: -Window- TYPE = RECORD [w: INTEGER, h: INTEGER);
Direction: -ContainerWindow- TYPE = {next, previous};
Discard: -Selection- PROCEDURE [saved: Saved, unmark: BOOLEAN "TRUE];

DisplayProc: -Window-TYPE = PROCEDURE [window: Handle];
Divide: -XL Rea/- PROCEDURE [a: Number, b: Number] RETURNS [Number];
DoAnUndo: -Undo- PROCEDURE;

DOAnUnundo: -Undo- PROCEDURE;

DoneLookingAtTextltemValue: --FormWindow-- PROCEDURE [
window: Window.Handle, item: ItemKey);

DoneWithString: -AtomicProfile- PROC£DURE [string: XString.Reader];
dontTimeout: -Attention- Process. Ticks = 0;
Do TheGreeterProc: -ldleContro/- GreeterProc;
Double: -XL Real- PROCEDURE [Number] RETURNS [Numberl;
DownUp: -LeveIlVKeys- TYPE = KeyStations.DownUp;
DownUp: -TlP- TYPE = LeveIlVKeys.DownUp;
DstFunc: -Display- TYPE = BitBlt. DstFunc;
E: -XLReal- PROCEDURE RETURNS [Number];
Editlnfo: -ContainerSource- TYPE = RECORD [

afterltem:ltemlndex, nltems: CARDINAL);

Ellipse: -Display- PROCEDURE [

window: Handle, center: Window.Place, xRadius: INTEGER, yRadius: INTEGER,
IineStyle: LineStyle "NIL, bounds: Window.BoxHandle "NIL];

Empty: -XString- PROCEDURE [r: Reader] RETURNS [BOOLEAN);

emptyContext: -XString- Context;
Enabled: -ProductFactoring- PROCEDURE [option: Option]

RETURNS [enabled: BOOLEAN];

EntireBox: -Window-- PROCEDURE [Handle] RETURNS [box: Box];
EntryEnumProc: -OptionFile- TYPE = PROCEDURE [entry: XString.Readerl

RETURNS [stop: BOOLEAN'" FALSE];

Enumerate: -Catalog- PROCEDURE [proc: CatalogProc];
Enumerate: -Selection- PROCEDURE [

proc: EnumerationProc, target: Target, data: RequestorData "'NIL,
zone: UNCOUNTED ZONE "LOOPHOLE[O]] RETURNS [aborted: BOOLEAN];

EnumerateAIIMenus: -StarWindowSheIIExtra- PROCEDURE [

sws: StarWindowShell.Handle, proc: StarWindowSheII.MenuEnumProc);
EnumerateDisplayed: -StarWindowShell-- PROCEDURE [proc: ShellEnumProcl

RETURNS [Handle" LOOPHOLE[O]];
EnumerateDisplayedOfType: --StarWindowShell-- PROCEDURE [

type: Shell Type, proc: Shell EnumProcl RETURNS [Handle "LOOPHOLE[O]];
EnumerateEntries: -OptionFile-- PROCEDURE [

section: XString.Reader, callBack: EntryEnumProc,
file: NSFile.Reference "'xxx);

EnumeratelnvalidBoxes: -Window-- PROCEDURE [window: Handle, proc: BoxEnumProc];
EnumerateKeyboards: --KeyboardKey-- PROCEDURE [

class: KeyboardClass, enumProc: EnumerateProc);
EnumerateMyDisplayedParasites: --StarWindowShell-- PROCEDURE [

sws: Handle, proc: ShellEnumProcl RETURNS [Handle "LOOPHOLE[O)];

ViewPoint Programmer's Manual

EnumeratePopupMenus: -StarWindowShell- PROCEDURE [
sws: Handle, proc: MenuEnumProc];

EnumerateProc: -KeyboardKey- TYPE = PROCEDURE [
keyboard: BlackKeys.Keyboard, class: KeyboardClass]
RETURNS [stop: BOOLEAN A FALSE];

EnumerateSections:.-OptionFile- PROCEDURE [
callBack: SectionEnumProc, file: NSFile.Reference "'xxx];

EnumerateString: -AtomicProfile- PROCEDURE [
atom: Atom.ATOM, proc: PROCEDURE [XString.Reader]];

EnumerateTree: -Window- PROCEDURE [
root: Handle, proc: PROCEDURE [window: Handle));

EnumerationProc: -Selection- TYPE = PROCEDURE [
element: Value, data: RequestorCata] RETURNS [stop: BOOLEAN "FALSE];

Equal: -XL Real- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];
Equal: -XString-- PROCEDURE [r1: Reader, r2: Reader] RETURNS [BOOLEAN];
Equivalent: -XString- PROCEDURE [r1: Reader, r2: Reader.] RETURNS [BOOLEAN];
eraseFlags: -Display-· BitBltFlags;
Error: -Containee- ERROR [

msg: XString.Reader "'NIL, error: ERROR "NIL, errorOata: LONG POINTER "NIL];
Error: -ContainerSource- ERROR [

code: ErrorCode, msg: XString.Reader "NIL, error: ERROR "NIL,
errorCata: LONG POINTER" NIL];

Error: -ContainerWindow- ERROR [code: ErrorCodel;
Error: -Context- ERROR [code: ErrorCode];
Error: -Form Window- ERROR [code: ErrorCode);
Error: -KeyboardKey- ERROR [code: ErrorCode];
Error: -OptionFile- ERROR [code: ErrorCode);
Error: -ProductFacforing-ERRoR [type: ErrorType];
Error: -PropertySheet- ERROR [code: ErrorCode];
Error: -Selection- ERROR [code: ErrorCode);
Error: -SimpleTextEdit- ERROR [type: ErrorType);
Error: -StarWindowShell- ERROR [code: ErrorCode);
Error: -np- ERROR [code: ErrorCode];
Error: -Window- ERROR [code: .ErrorCode];
Error: -XFormat- ERROR [code: ErrorCode);
Error: -XLReal- ERROR [code: ErrorCode];
Error: -XMessage- ERROR [type: ErrorType];
Error: -XString- ERROR [code: ErrorCode);
ErrorCode: -ContainerSource- TYPE = MACHINE DEPENDENT{

invalidParameters, accessError, fileError, noSuchltem, other, last(1 S)};
ErrorCode: -ContainerWindow- TYPE = MACHINE DEPENDENT{

notAContainerWindow, noSuchltem, last(7)};
ErrorCode: -Context- TYPE = {duplicateType, windowlsNIL, tooManyTypes, other};
ErrorCode: -Form Window- TYPE = MACHINE DEPENDENT{

notAFormWindow, wrongltemType, invalidChoiceNumber, noSuchLine,
alreadyAFormWindow, invalidltemKey, itemNotOnLine, duplicateltemKey,
incompatibleLayout, alreadyLaidOut, last(l S)};

ErrorCode: -KeyboardKey-- TYPE = {
alreadylnSystemKeyboards, notlnSystemKeyboards, insufficientSpace};

ErrorCode: -OptionFile- TYPE = {
invalidParameters, inconsistentValue, notFound, syntaxError};

ErrorCode: -PropertySheet- TYPE = {notAPropSheet};
ErrorCode: -Selection-- TYPE = {

tooManyActions, tooManyTargets, invalidOperation, operationFailed, didntAbort,
didntClear};

D

D-17

D

0-18

Listing of Public Symbols

ErrorCode: -StarWindowShell-- TYPE = {
desktopNotUp, notASWS, notStarStyle, tooManyWindows};

ErrorCode: -TIP- TYPE = {noSuchPeriodicNotifier, other};
ErrorCode: - Window- TYPE = {

iIIegal8itmap, illegal Float. windowNotChildOfParent. whosSlidingRoot,
noSuchSibling, noUnderVariant, windowlnTree, sizingWith8itmapUnder,
iIIegalStack, invalidParameters};

ErrorCode: -XFormat- TYPE = {invalidFormat. nil Data};
ErrorCode: ·-XLReal- TYPE ::: {

bug, divideByZero, invalidOperation, notANumber, overflow, underflow,
.unimplemented}; .

ErrorCode: -XString- TYPE = {
i nvalidOperation, multi pleCharSets, tooManyBytes, i nval idParameter};

ErrorType: -ProductFactoring- TYPE = {
dataNotFound, notStarted. iIIegalProduct, iIIegalOption, missingProduct,
missingOption};

ErrorType: -SimpleTextEdit- TYPE = {
fieldlsNoplace, noRoom InWriter, lastCharGTfi rstChar};

ErrorType: -XMessage- TYPE = {
arrayMismatch, invalidMsgKeyList, invalidStringArray, invalidString,
notEnoughArguments};

EventData: -ApplicationFolder- TYPE = RECORD [
application Folder: NSFile.Reference, internalName: XString.Reader);

EventType: -Event- TYPE::: Atom.ATOM;
Exp: -XLReal- PROCEDURE [Number) RETURNS [Number]; •
ExpandWriter: -XString- PROCEDURE [w: Writer, extra: CARDINAL];
Fetch: -Cursor- PROCEDURE [h: Handle]; -
FetchFromType: -Cursor- PROCEDURE [h: Handle, type: Defined];
Field: -SimpleTextEdit- TYPE = LONG POINTER TO FieldObject;
FieldContext: -SimpleTextEdit- TYPE = LONG POINTER TO FieldContextObject;
FieldContextObject: -SimpleTextEdit-- TYPE;
FieldObject: -SimpleTextEdit- TYPE;
fiftyPercent: -Display- Brick;
filedrawerReference: -BWSAttributeTypes- NSFile.ExtendedAttributeType =

104078;
FillProc: -ContainerCache- TYPE = PROCEDURE [cache: Handle]

RETURNS [errored: BOOLEAN "FALSE];
FiliResolveBuffer: -SimpleTextDisplay- PROCEDURE [

string: XString.Reader, IineWidth: CARDINAL "1777778,
wordBreak: BOOLEAN "TRUE, streakSuccession: StreakSuccession "fromFirstChar,
resolve: ResolveBuffer, font: SimpleTextFont.MappedFontHandle "NIL]
RETURNS [width: CARDINAL, result: Result, rest: XString.ReaderBody];

Filtered: -XToken- PROCEDURE [
h: Handle, data: FilterState, filter: FilterProcType,
skip: SkipMode "whiteSpace, temporary: BOOLEAN "TRUE]
RETURNS [value: XString.ReaderBody);

FilterProcType: -XToken- TYPE :;: PROCEDURE [
c: XChar .. Character, data: FilterState] RETURNS [inClass: BOOLEAN];

FilterState: -XToken-- TYPE = LONG POINTER TO StandardFilterState;
Find: -Context-- PROCEDURE [type: Type, window: Window.Handle1 RETURNS [Data];
Find: -Prototype-- PROCEDURE [

type: NSFile.Type, version: Version, sUbtype: Subtype "0,
session: NSFile.Session "LOOPHOLE[O]) RETURNS [reference: NSFile.Reference];

FindDescriptionFile: --App/icationFo/der-- PROCEDURE [
applicationFolder: NSFile.Handle] RETURNS [descriptionFile: NSFile.Reference);

ViewPoint Programmer's Manual

FindOrCreate: -Context- PROCEDURE [
type: Type, window: Window.Handle, createProc: CreateProcType] RETURNS [Data];

First: -XString- PROCEDURE [r: Reader] RETURNS [c: Character);
firstAvailableApplicationType: -BWSAttributeTypes-

NSFile.ExtendedAttributeType = 105058;
firstBWSType: -BWSAttributeTypes- NSFile.ExtendedAttributeType" = 10400B;
firstOldApplicationSpecific: -BWSAttribute Types-

NSFile.ExtendedAttributeType = 10414B;
firstSpareBWSType: -BWSAttribute Types- NSFi Ie. ExtendedAttri buteType = 10461 B;
firstStarType: -BWSFileTypes- NSFile.Type = 10400B;
Fix: -XLReal- PROCEDURE [Number) RETURNS [LONG INTEGER];
FixdPtNum: -Display- TYPE = MACHINE DEPENDENT RECORD [

SELECT OVERLAID * FROM
wholeThing = > [Ii(0:0 .. 31): LONG INTEGER],
parts: > [frac(0:0 .. 15): CARDINAL, int(1 :0 .. 1 5): INTEGER),

ENDCASE];
Float: -Window- PROCEDURE [window: Handle, temp: Handle, proc: FloatProc];
Float: -XL Real- PROCEDURE [LONG INTEGER] RETURNS [Number];
FloatProc: -Window- TYPE = PROCEDURE [window: Handle]

RETURNS [place: Place, done: BOOLEAN);
Flushness: -FormWi"dow- TYPE: SimpleTextDisplay.Flushness;
Flushness: -SimpleTextDisplay- TYPE = {flushLeft, flushRight, from FirstChar};
FlushUserinput: -TIP- PROCEDURE;
FocusTakeslnput: -np- PROCEDURE RETURNS [BOOLEAN];
FontNotFound: -Simple TextFont- SIGNAL [name: XString. Reader];
Format: -XTime- PROCEDURE [

xfh: XFormat.Handle "'NIL, time: System.GreenwichMeanTime "defaultTime,
template: XString.Reader "dateAndTime, Itp: LTP "useSystem]; ,

formatHandle: -Attention- XFormat.Handle;
FormatProc: -XFormat- TYPE = PROCEDURE [r: XString.Reader, h: Handle1;
FormatReal: -XL Real- PROCEDURE [

h: XFormat.Handle "'NIL, r: Number, width: NATURAL];
FractionPart: -XLReal- PROCEDURE [Number1 RETURNS [Number);
Free: -Se/ection- PROCEDURE [v: ValueHandle];
Free: -Window- PROCEDURE [window: Handle, zone: UNCOUNTED ZONE "LOOPHOLE[O]];
FreeBadPhosphorUst: -Window- PROCEDURE [window: Handle];
FreeCache: -ContainerCache--- PROCEDURE [Handle];
FreeChoiceHintsProc: -Form Window- TYPE = PROCEDURE [

window: Window. Handle, item: ItemKey,
hints: LONG DeSCRIPTOR FOR ARRAY CARDINAL OF Choicelndex);

FreeChoiceltems: -FormWindowMessageParse- PROCEDURE [
choiceltems: FormWindow.Choiceltems, zone: UNCOUNTED ZONE];

FreeContext: -Selection- PROCEDURE [v: ValueHandle, zone: UNCOUNTED ZONE];
FreeDataProcedure: -Event- TYPE = PROCEDURE [myData: LONG POINTER];
FreeMark: -ContainerCache- PROCEDURE [mark: Mark];
FreeMsgDomainsStorage: -XMessage- PROCEDURE [msgDomains: MsgDomains];
FreeReaderBytes: -XString- PROCEDURE [r: Reader, z: UNCOUNTED ZONE);
FreeReaderHandle: -XToken- PROCEDURE [h: Handle] RETURNS [nil: Handle];
FreeResolveBuffer: -SimpleTextDisplay- PROCEDURE [ResolveBuffer];
FreeStd: -Selection- ValueFreeProc;
FreeStreamHandle: --XToken-- PROCEDURE [h: Handle] RETURNS [s: Stream.Handle];
FreeTextHintsProc: -FormV'lindow- TYPE = PROCEDURE [

window: Window. Handle, item: ItemKey,
hints: LONG DESCRIPTOR FOR ARRAY CARDINAL OF XString.ReaderBody);

FreeTokenString: -XToken-- PROCEDURE [r: XString.Reader]
RETURNS [nil: XString.Reader "NIL];

D

0-19

D

D-20

Listing of Public Symbols

FreeTree: -Window- PROCEDURE [
window: Handle, zone: UNCOUNTED ZONE "LOOPHOLE[O]); ~,

FreeWriterBytes: -XString- PROCEDURE [w: Writer];
FromBlock: -XString- PROCEDURE [

block: Environment.Block, context: Context "vaniliaContext)
RETURNS [ReaderBody];

FromChar: -XString- PROCEDURE [char: LONG POINTER TO Character1
RETURNS [ReaderBady];

FromName: -App/icationFolder- PROCEDURE [internalName: XString.Readerl
RETURNS [applicationFolder: NSFile.Reference];

FromNSString: -XString- PROCEDURE [
s: NSString.String, homogeneous: BOOLEAN "FALSE1 RETURNS [ReaderBody];

FromSTRING: -XString- PROCEDURE [s: LONG STRING, homogeneous: BOOLEAN AFALSE]
RETURNS [ReaderBody];

fuliUserName: -StarDesktop- Atom.ATOM;
GenericProc: -Containee- TYPE = PROCEDURE [

atom: Atom.AToM, data: DataHandle, changeProc: ChangeProc AN1L,
changeProcData: LONG POINTER "NIL] RETURNS [LONG UNSPECIFIED];

GeometryTable: -BlackKeys- TYPE = LONG POINTER;
GeometryTableEntry: -KeyboardWindow- TYPE = RECORD [

box: Box, key: KeyStations, shift: ShiftState];
Get: -XMessage- PROCEDURE [h: Handle, msgKey: MsgKey]

RETURNS [msg: XS~ri ng. ReaderBody 1;
GetAdju'stProc: --:StarWindowShell- PROCEDURE [sws: Handle] RETURNS [AdjustProc];
GetAvaiiableBodyWindowDims: -StarWindowShell- PROCEDURE [sws: Handle]
, RETURNS [Window.Dims);
GetBitmapUnder: ~Window- PROCEDURE [window: Handle] RETURNS [LONG POINTER]; ~,
GetBody: -StarWindowShell- PROCEDURE [SWS:' Handle] RETURNS [Window.Handle];
GetBodyWindowJustFits: -StarWindowShell- PROCEDURE [sws: Handle]

RETURNS [BOOLEAN];
GetBOOlEAN: -AtomicProfile- PROCEDURE [atom: Atom.ATOM) RETURNS [BOOLEAN];
GetBooleanltemValue: -Form Window- PROCEDURE [

window: Window.Handle, item: Item Key] RETURNS [value: BOOLEAN];
GetBooleanValue: -OptionFile- PROCEDURE [

section: XString.Reader, entry: XString.Reader, file: NSFile.Reference "xxx]
RETURNS [value: BOOLEAN];

GetBox: -SimpleTextEdit- PROCEDURE [f: Field] RETURNS [box: Window.Box];
GetBox: '-Window- PROCEDURE [Handle] RETURNS [box: Box];
GetCachedName: -Containee- PROCEDURE [data: DataHandle]

RETURNS [name: XStri ng. ReaderBody, ticket: Ticket];
GetCachedType: -Containee- PROCEDURE [data: DataHandle]

RETURNS [type: NSFile.Type];
GetCaretPlace: -SimpleTextEdit- PROCEDURE [context: FieldContext)

RETURNS [place: Window.Place];
GetCharProcType: -XToken- TYPE = PROCEDURE [h: Handle]

RETURNS [c: XChar.Character];
GetCharTranslator: -rlP-- PROCEDURE [table: Table] RETURNS [0: CharTranslator);
GetCharWidth: -SimpleTextDisplay- PROCEDURE [

char: XChar.Character, font: SimpleTextFont.MappedFontHandle "'NIL]
RETURNS [width: CARDINAL];

GetChild: -Window- PROCEDURE [Handle] RETURNS [Handle];
GetChoiceltemValue: -·FormWindow-- PROCEDURE [

window: Window.Handle, item: ItemKey] RETURNS [value: Choicelndex]; ~
GetClearingRequired: --Window-- PROCEDURE [Handle) RETURNS [BOOLEAN];
GetClientOata: --FormWindow-- PROCEDURE [window: Window.Handle]

RETURNS [clientData: LONG POINTER];

~'

ViewPoint Programmer's Manual

GetClientData: -SimpleTextEdit-- PROCEDURE [f: Field]
RETURNS [clientData: LONG POINTER];

GetContainee: -StarWindowShell- PROCEDURE [sws: Handle]
RETURNS [Containee.Data);

GetContainerSource: -FileContainerShell- PROCEDURE [
shell: StarWindowShell.Handle] RETURNS [source: ContainerSource.Handle];

GetContainerWindow: -FileContainerShell- PROCEDURE [
shell: StarWindowShell.Handle] RETURNS [window: Window.Handle);

GetCurrentDesktopFile: -StarDeslctop- PROCEDURE RETURNS [NSFile.Reference);
GetCurrentKeyboard: -BlackKeys- PROCEDURE RETURNS [current: Keyboard];
GetDecimalltemValue: -Form Window- PROCEDURE [

window: Window.Handle, item: ItemKey] RETURNS [value: XLReaI.Number];
GetDefaultimplementation: -Containee- PROCEDURE RETURNS [Implementation];
GetDesktopProc: -ldleControl- PROCEDURE [atom: Atom.ATOM]

RETURNS [DesktopProc];
GetDims: -Window- PROCEDURE [Handle] RETURNS [dims: Dims);
GetDisplayProc: -Window- PROCEDURE [Handle] RETURNS [DisplayProc];
GetDisplayWindow: -KeyboardWindow- PROCEDURE RETURNS [Window. Handle];
GetFieldContext: -SimpleTextEdit- PROCEDURE [f: Field] RETURNS [FieldContext);
GetFile: -Catalog- PROCEDURE [

catalogType: NSFile.Type "10476B, name: XString.Reader,
readonly: BOOLEAN "FALSE, session: NSFile.Session "LOOPHOLE[O]]
RETURNS [file: NSFile.Handle];

GetFlushness: -FormWindow-- PROCEDURE [window: Window.Handle, item: ItemKey]
RETURNS [old: Flushness];

GetFlushness: -SimpleTextEdit- PROCEDURE [f: Field]
RETURNS rSimpleTextDisplay.Flushness];

GetFont: -SimpleTextEdit- PROCEDURE.-[f: Field]
RETURNS [SimpleTextFont.MappedFontHandle];

GetFormWindows: -PropertySheet- PROCEDURE [shell: StarWindowShell.Handle]
RETURNS [form: Window.Handle, link: Window.Handle];

GetGlobalChangeProc: -Form Window- PROCEDURE [window: Window.Handle]
RETURNS [proc: GlobaIChangeProc];

GetGreeterProc: -ldleControl- PROCEDURE RETURNS (GreeterProc];
GetHandle: -XComSoftMessage- PROCEDURE RETURNS [h: XMessage.Handle];
GetHost: -StarWindowShell- PROCEDURE [sws: Handle] RETURNS [Handle];
Getlmplementation: -Containee- PROCEDURE [NSFile.Type)

RETURNS [Implementation];
Getlmplementation: -Undo- PROCEDURE RETURNS [Implementation];
Getlnfo: -Cursor- PROCEDURE RETURNS [info: Info];
GetinputFocus: -SimpleTextEdit- PROCEDURE [fc: FieldContext] RETURNS [Field];
GetinputFocus: -np- PROCEDURE RETURNS [Window. Handle];
GetintegerttemValue: -Form Window- PROCEDURE [

window: Window.Handle, item: Item Key] RETURNS (value: LONG INTEGER];
GetintegerValue: -OptionFile- PROCEDURE (

section: XString.Reader, entry: XString.Reader, index: CARDINAL "0,
file: NSFile.Reference "xxx] RETURNS [value: LONG INTEGER];

GetisCloseLegalProc: -StarWindowShell-- PROCEDURE [sws: Handle]
RETURNS [IsCloseLegalProc);

Getltemlnfo: -FileContainerSource- PROCEDURE [
source: ContainerSource.Handle, itemlndex: ContainerSource.ltemlndex]
RETURNS [file: NSFile.Reference, type: NSFile.Type];

GetJoinDirection: -XChar-- PROCEDURE [Character] RETURNS (JoinDirection);
GetLength: --ContainerCacheExtra-- PROCEDURE [cache: ContainerCache.Handle]

RETURNS [cacheLength: CARDINAL];
GetLength: --ContainerSource-- GetLengthProc;

D

0-21

D

D-22

Listing of Public Symbols

GetLengthProc: -ContainerSource-- TYPE = PROCEDURE [source: Handle]
RETURNS [length: CARDINAL, totalOrPartial: TotalOrPartial "total]; ~

GetLimitProc: -StarWindowShell- PROCEDURE [sws: Handle1 RETURNS [LimitProc];
GetList: -XMessage-- PROCEDURE [

h: Handle, msgKeys: MsgKeyList, msgs: StringArray];
GetLONGINTEGER: -AtomicProfile-- PROCEDURE [atom: Atom.ATOM]

RETURNS [LONG INTEGER];
GetManager: -TlP- PROCEDURE RETURNS [current: Manager];
GetMode: - TlPStar- PROCEDURE RETURNS [mode: Mode);
GetMultipleO!oiceltemValue: -FormWindow·- PROCEDURE [

window: Window.Handle, item: ItemKey, zone: UNCOUNTED ZONE]
RETURNS [value: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicelndex1;

GetNextAvaiiableKey: -Form Window- PROCEDURE [window: Window.Handle)
RETURNS [key: ItemKey1;

GetNextOutOfProc: -FormWindow-- PROCEDURE [
window: Window. Handle, item: ItemKey1 RETURNS [NextOutOfProc];

GetNextUnobscuredBox: -StarDesktop-- PROCEDURE [height: INTEGER1
RETURNS [Window. Box];·

GetNotifyProc: -TlP- PROCEDURE [window: Window.Handle] RETURNS [NotifyProc];
GetNotifyProcFromTable: -TIP- PROCEDURE [table: Table] RETURNS [NotifyProc];
GetNthltem: -ContainerCache-- PROCEDURE [cache: Handle, n: CARDINAL1

RETURNS [Item Handle];
GetOpenltem: -ContainerWindow- PROCEDURE [window: Window.Handle]

RETURNS [item: ContainerSource.ltemlndex "'1777778];
GetPane: -Window- PROCEDURE [Handle] RETURNS [BOOLEAN];
GetParent: -Window- PROCEDURE [Handle] RETURNS [Handle];
GetPIace: -TlP- PROCEDURE [window: Window.Handle] RETURNS [Window.Place]; ~
GetPlaceFromReference:· -StarDesktop-- PROCEDURE [ref: NSFile. Reference]~·

RETURNS [Window.Place];
GetPName: -Atom- PROCEDURE [atom: ATOM) RETURNS [pName: XString.Reader);
GetProp: -Atom- PROCEDURE [onto: ATOM, prop: ATOM] RETURNS [pair: Ref Pair];
GetPushe~Commands: --StarWindowShell-- PROCEDURE [sws: Handle]

RETURNS [
bottom: MenuData.MenuHandle, middle: MenuData.MenuHandle,
top: MenuData.MenuHanqle];

GetReadOnly: -Form Window- PROCEDURE [window: Window.Handle, item: ItemKey]
RETURNS [readOnly: BOOLEAN);

GetReadOnly: -SimpleTexfEdit- PROCEDURE [f: Field]
RETURNS [readOnly: BOOLEAN];

GetReadonly: -StarWindowShell-· PROCEDURE [sws: Handle] RETURNS [BOOLEAN];
GetRegularCommands: -StarWindowShell- PROCEDURE [sws: Handle]

RETURNS [MenuData.MenuHandle];
GetResults: - TIPX- PROCEDURE [

window: Window. Handle, resultsWanted: ResultsWanted "NIL]
RETURNS [results: TIP.Results);

GetScrollData: -·StarWindowShell-· PROCEDURE [sws: Handle]
RETURNS [scrollData: ScrollDatal

ViewPoint Programmer's Manual

GetSelection: -ContainerWindow- PROCEDURE [window: Window. Handle]
RETURNS [

first: ContainerSource.ltemlndex, lastPlusOne: ContainerSource.ltemlndex];
GetSheliFromReference: -StarDesktop- PROCEDURE [ref: NSFile.Reference]

RETURNS [sws: StarWindowSlieII.Handle);
GetShowKeyboardProc: -KeyboardKey- PROCEDURE RETURNS [ShowKeyboardProc);
GetSibling: -Window- PROCEDURE [Handle] RETURNS [Handle];
GetSleeps: -StarWindowShell- PROCEDURE [sws: Handle] RETURNS [BOOLEAN);
GetSource: -ContainerWindow- PROCEDURE [window: Window. Handle)

RETURNS [source: ContainerSource.Handle);
GetS18te: -StarWindowShell- PROCEDURE [sws: Handle) RETURNS [State];
GetStreakNature: -XChar- PROCEDURE [Character] RETURNS [StreakNature);
GetStreakSuccession: -Form Window- PROCEDURE [

window: Window.Handle, item: ItemKey] RETURNS [old: StreakSuccession);
GetStreakSuccession: -SimpleTextEdit- PROCEDURE [f: Field]

RETURNS [SimpleTextDisplay.StreakSuccession);
GetString: -AtomicProfile- PROCEDURE [atom: Atom.ATOM]

RETURNS [XString.Reader);
GetStringValue: -OptionFile- PROCEDURE [

section: XString.Reader, entry: XString.Reader,
callBack: PROCEDURE [value: XString.Reader], index: CARDINAL "0,
file: NSFile.Reference "'xxx1; .

GetTable: -TIP- PROCEDURE [window: Window.Handle) RETURNS [Table);
GetTable: -TIPStar- PROCEDURE [Placeholder) RETURNS [TIP.Table);
GetTableLink: - TIP- PROCEDURE [from: Table) RETURNS [to: Table);
GetTableOpacity: - TIP- PROCEDURE [table: Table) RETURNS [BOOLEAN]; .
GetTabStops: -Form Window- PROCEDURE [window: Window.Handle1

RETURNS habStops: TabStops);
GetTag: -Form Window- PROCEDURE [window: Window.Handle, item: Item Key]

RETURNS [tag: XString.ReaderBody);
GetTextltemValue: -Form Window- PROCEDURE [

window: Window.Handle, item: ItemKey, zone: UNCOUNTED ZONE]
RETURNS [value: XString.ReaderBody);

GetTransitionProc: -StarWindowShell- PROCEDURE [sws: Handle)
RETURNS [Transiti onProc];

GetType: -StarWindowShell- PROCEDURE [sws: Handle] RETURNS [ShellType1;
GetUseBadPhosphor: -Window- PROCEDURE [Handle) RETURNS [BOOLEAN1;
GetUserProfile: -OptionFile- PROCEDURE RETURNS [file: NSFile.Reference1;
GetValue: -SimpleTextEdit- PROCEDURE [f: Field] RETURNS [XString.ReaderBody];
GetVisibility: -Form Window- PROCEDURE [window: Window.Handle, item: ItemKey]

RETURNS [visibility: Visibility];
GetWindow: -SimpleTextEdit- PROCEDURE [fc: FieldContext]

RETURNS [window: Window.Handle1;
GetWindow: --StarDesktop- PROCEDURE RETURNS [Window.Handle1;
GetWindowltemValue: --FormWindow-- PROCEDURE [

window: Window.Handle, item: Item Key] RETURNS [value: Window.Handle];
GetWorkstationProfile: -OptionFile- PROCEDURE

RETURNS [file: NSFile.Reference];
GetZone: -Form Window- PROCEDURE [window: Window.Handle]

RETURNS [zone: UNCOUNTED ZONE];
GetZone: -SimpleTextEdit- PROCEDURE [fc: FieldContext]

RETURNS [UNCOUNTED ZONE];
GetZane: -StarWindowShell- PROCEDURE [sws: Handle] RETURNS (UNCOUNTED ZONE];

D

D-23

D

0-24

Listing of Public Symbols

GlobalChangeProc: -FormWindow-- TYPE = PROCEDURE [~
window: Window.Handle, item: Item Key, calledBecauseOf: ChangeReason, .,"
clientOata: LONG POINTER);

Gravity: -Window- TYPE = {nil, nw, n, ne, e, se, s, SW, w, c, xxx};
Gray: -Display- PROCEDURE [

window: Handle, box: Window.Box, gray: Brick "fiftyPercent,
dstFunc: DstFunc "null, bounds: Window.BoxHandle "NIL);

GrayTrapezoid: -Display- PROCEDURE [
window: Handle, t: Trapezoid, gray: Brick "'fiftyPercent,
dstFunc: DstFunc "null, bounds: Window.BoxHandle "NIL];

Greater: -XL Real- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];
GreaterEq: -XLReal- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];
GreeterProc: -ldleContro/-- TYPE = PROCEDURE RETURNS [Atom.ATOM];
Half: -XLReal- PROCEDURE [Number] RETURNS [Number];
Handle: -ContainerCache-- TYPE = LONG POINTER TO Object;
Handle: -ContainerSource- TYPE = LONG POINTER TO Procedures;
Handle: -Cursor- TYPE = LONG POINTER TO Object;
Handle: -Display- TYPE = Window.Handle;
Handle: -StarWindowShell- TYPE = RECORD [Window. Handle];
Handle: -Window- TYPE = LONG POINTER TO Object;
Handle: -XFormat-- TYPE = LONG POINTER TO Object;
Handle: -XMessage-- TYPE = LONG POINTER TO Object;
Handle: -XToken- TYPE = LONG POINTER TO Object;
HasAnyBeenChanged: -Form Window- PROCEDURE [window: Window.Handle]

RETURNS [yes: BOOLEAN]; .
HasBeenChanged: -Form Window- PROCEDURE [window: Window.Handle, item: ItemKey]

RETURNS [yes: BOOLEAN];' ~
HaveDisplayedParasite: -StarWindowShell- PROCEDURE [sws: Handle]

RETURNS [BOOLEAN];
Hex: -XFormat-- PROCEDURE [h: Handle "NIL, n: LONG CARDINAL];
HexFormat: -XFormat- NumberFormat;
HighlightThisKey: -SoftKeys- PROCEDURE [

window: Window.Handle, key: CARDINAL "nullKey];
HostNumber: -XFormat- PROCEDURE [

h: Handle "NIL, hostNumber: System.HostNumber, format: NetFormat];
HowHard: -Selection- PROCEDURE [target: Target, enumeration: BOOLEAN "FALse1

RETURNS [difficulty: Difficulty];
IconColumn: -FileContainerSource- PROCEDURE

RETURNS [attribute ColumnContentslnfo);
Idle: -ldleControl- PROCEDURE;
ignoreType: -Containee- NSFile.Type = 37777777777B;
Implementation: -Containee- TYPE = RECORD [

implementors: LONG POINTER "NIL,
name: XString.ReaderBody "xxx,
smallPictureProc: SmallPictureProc .. NIL,
pictureProc: PictureProc "NIL,
convertProc: Selection.ConvertProc "NIL,
genericProc: GenericProc "NIL];

Implementation: --Undo-- TYPE = RECORD [
opportunity: Proc,
roadblock: PROCEDURE [XString.Reader],
doAnUndo: PROCEDURE,
doAnUnundo: PROCEDURE, ~.
deleteAII: PROCEDURE];

View Point Programmer's Manual

IndexFromMark: --ContainerCache-- PROCEDURE [mark: Mark]
RETURNS [index: CARDINAL1;

Info: -Cursor- TYPE = RECORD [type: Type, hotX: [0 .. 15], hotY: [0 .. 15]];
Info: -FileContainerSource- PROCEDURE [source: ContainerSource.Handle]

RETURNS [
file: NSFile.Reference, columns: ColumnContents, scope: NSFile.Scope,
options: Options);

Info: -SoftKeys- PROCEDURE [window: Window.Handle]
RETURNS [

table: TIP.Table, notifyProc: TIP.NotifyProc, labels: Labels,
highlightedKey: CARDINAL, outlinedKey: CARDINAL];

InitBreakTable: -XString- PROCEDURE [
r: Reader, stopOrNot: StopOrNot, otherSets: StopOrNot]
RETURNS [break: BreakTableObject];

Initialize: -Window- PROCEDURE [
window: Handle, display: DisplayProc, box: Box, parent: Handle" rootWindow,
sibling: Handle "NIL, child: Handle "NIL,clearingRequired: BOOLEAN "TRUE,
windowPane: BOOLEAN "'FALSE, under: BOOLEAN "FALSE, cookie: BOOLEAN "FALSE,
color: BOOLEAN" FALSE];

InitializeWindow: -Window- PROCEDURE [
window: Handle, display: DisplayProc, box: Box, parent: Handle "rootWindow,
sibling: Handle "NIL, child: Handle "NIL, clearingRequired: BOOLEAN "'TRUE,
windowPane: BOOLEAN "FALSE, under: BOOLEAN "FALSE, cookie: BOOLEAN "FALSE,
color: BOOLEAN "FALSE];

InsertintoTree: -Window- PROCEDURE [window: Handle];
Insertltem: -ContainerCache- PROCEDURE [

cache: Handle, before: CARDINAL, add Data: AddData]
RETURNS [handle: ItemHandle];

Insertltem: --Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey, line: Line, befor~ltem: ItemKey,
preMargin: CARDINAL "'0, tabStop: CARDINAL "nextTabStop,
repaint: BOOLEAN "TRUE];

InsertLine: -FormWindow-- PROCEDURE [
window: Window. Handle, before: Line, spaceAboveLine: CARDINAL "0]
RETURNS [line: Line);

InstaliBody: -StarWindowShell- PROCEDURE [sws: Handle, body: Window.Handle];
InstaliFormWindow: -PropertySheet-- PROCEDURE [

shell: StarWindowShell.Handle, menultemProc: MenultemProc,
menultems: Menultems "propertySheetDefaultMenu, title: XString.Reader "NIL,
formWindow: Window.Handle, afterTakenDownProc: MenultemProc "NIL];

InsufficientRoom: -XString- SIGNAL [
needsMoreRoom: Writer, amountNeeded: CARDINAL];

IntegerPart: -XL Rea/- PROCEDURE [Number] RETURNS [Number];
Interpolator: -Disp/ay- TYPE = RECORD [val: FixdPtNum, dVal: FixdPtNum];
Intersealoxes: -Window- PROCEDURE [bl: Box, b2: Box] RETURNS [box: Box1;
Invalid: -XTime-- ERROR;
InvalidateBox: -Window- PROCEDURE [

window: Handle, box: Box, clarity: Clarity "isOirty];
InvalidateCache: -Containee-- PROCEDURE [data: DataHandle];
InvalidateWholeCache: -Containee-- PROCEDURE;
InvalidEncoding: -XString-- ERROR [

invalidReader: Reader, firstBadByteOffset: CARDINAL1;
InvalidHandle: --BlackKeys-- ERROR;
InvalidHandle: --SoftKeys-- ERROR;
Invalid Number: -XString-- SIGNAL;
InvalidTable: -TIP-- SIGNAL [type: TableError, message: XString.Reader];

D

0-25

D

0-26

Listing of Public Symbols

Invert: -Cursor-- PROCEDURE RETURNS [BOOLEAN); ~.
Invert: -Disp/ay- PROCEDURE [

window: Handle, box: Window.Box, bounds: Window.BoxHandle "NIL);
IsBitmapUnderVariant: -Window- PROCEDURE [Handle] RETURNS [BOOLEAN);
IsBodyWindowOutOflnterior: -StarWindowShell- PROCEDURE [body: Window.Handle]

RETURNS [BOOLEAN];
IsCloseLegal: -StarWindowShell- PROCEDURE [

sws: Handle, closeAII: BOOLEAN "FALSE] RETURNS [BOOLEAN];
IsCloseLegalProc: -StarWindowShell- TYPE = PROCEDURE [

sws: Handle, closeAII: BOOLEAN "FALSE] RETURNS [BOOLEAN);
IsCloseLegalProcReturnsFalse: -StarWindowShell- IsCloseLegalProc;
IsColorVariant: -Window- PROCEDURE [Handle) RETURNS [BOOLEAN);
IsCookieVariant: -Window- PROCEDURE [Handle] RETURNS [BOOLEAN);
IsDescendantOfRoot: --Window- PROCEDURE [Handle) RETURNS [BOOLEAN);
Islt: -ContainerWindow- PROCEDURE [window: Window.Handle]

RETURNS [yes: BOOLEAN);
Islt: -FileContainerSource-f'ROCEDURE [source: ContainerSource.Handle)

RETURNS [BOOLEAN];
Islt: -FormWindow-- PROCEDURE [window: Window.Handle] RETURNS [yes: BOOLEAN];
Islt: -Message Window- PROCEDURE [Window.Handle) RETURNS (yes: BOOLEAN);
IsPlacelnBox: -Window- PROCEDURE [place: Place, box: Box] RETURNS (BOOLEAN);
IsSpecial: -XL Rea/- PROCEDURE [Number)

RETURNS [yes: BOOLEAN, index: Speciallndex];
.Item: -MenuData- TYPE = Pri vateltem;
Item: -XToken- PROCEDURE [h: Handle, temporary: BOOLEAN "TRUE)

RETURNS [value: XString.ReaderBody];
ItemClients: -ContainerCache- PROCEDURE [item: ItemHandle] ~.

RETURNS [clientData: LONG POINTER];
ItemClientsLength: -ContainerCache- PROCEDURE [handle: ItemHandle]

RETURNS [dataLength: CARDINAL1;
ItemData: -MenuData- PROCEDURE [item: ItemHandle) RETURNS [LONG UNSPECIFIED];
ItemGeneric: -ContainerSource-ltemGenericProc;
ItemGenericProc: -ContainerSource- TYPE = PROCEDURE [

source: Handle, itemlndex: Item Index, atom: Atom.AToM,
changeProc: ChangeProc "NIL, changeProcData: LONG POINTER '"NIL]
RETURNS [LONG UNSPECIFIED);

Item Handle: -ContainerCache- TYPE = LONG POINTER TO ItemObject;
ItemHandle: -MenuData- TYPE = LONG POINTER TO Item;
Itemlndex: -ContainerCache-- PROCEDURE [item: ItemHandle]

RETURNS [index: CARDINAL];
Item Index: -ContainerSource- TYPE = CARDINAL;
ItemKey: -Form Window- TYPE = CARDINAL;
ItemName: -MenuData-- PROCEDURE [item: ItemHandle)

RETURNS [name: XString.ReaderBody];
ItemNameWidth: --MenuData- PROCEDURE [item: ItemHandle] RETURNS [CARDINAL];
ItemNthString: --ContainerCache- PROCEDURE (item: Item Handle, n: CARDINAL]

RETURNS [XString.ReaderBody);
ItemObject: -ContainerCache- TYPE;
ItemProc: -MenuData-- PROCEDURE [item: ItemHandle] RETURNS [proc: MenuProc];
ItemStringCount: --ContainerCache-- PROCEDURE [item: Item Handle]

RETURNS [strings: CARDINAL];
ItemType: --·FormWindow-- TYPE = MACHINE DEPENDENT{

choice, multiplechoice, decimal, integer, boolean, text, command, tagonly, ~
window,last(15}};

JoinDirection: -XChar-- TYPE = {nextCharToRight, nextCharToLeft};

.~.

ViewPoint Programmer's Manual

KeyBits: -Leve/lVKeys-- TYPE = PACKED ARRAY KeyName OF OownUp;
KeyBits: -TlP- TYPE = LeveIlVKeys.KeyBits;
Keyboard: -SIackKeys- TYPE = LONG POINTER TO KeyboardObject "NIL;

KeyboardClass: -KeyboardKey- TYPE = {system, client, special, all, none};
KeyboardObject: -SIackKeys- TYPE = RECORD [

table: TIP.Table "'NIL,

charTranslator: TIP.CharTranslator "xxx,
pictureProc: PictureProc .. NIL,

label: XString.ReaderBody "xxx,
clientData: LONG POINTER '"NIL];

KeyName: -LeveIlVKeys- TYPE = MACHINE DEPENDENT{

notAKey, Keyset1 (S), Keyset2, Keyset3, Keyset4, Keyset5, MouseLeft,
MouseRight, MouseMiddle, Five, Four, Six, E, Seven, 0, U, V, Zero, K, Minus,
P, Slash, Font, Same, BS, Three, Two, W, Q, S, A, Nine, I, X, 0, L, Comma,
CloseQuote, RightBracket, Open, Keyboard, One, Tab, ParaTab, F, Props, C, J,
B, Z, LeftShift, Period, SemiColon, NewPara, OpenQuote, Delete, Next, R, T, G,
V, H, Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Stop, Move,
Undo, Margins, R9, L 10, L7, L4, L 1, A9, R10, AS, Copy, Find, Again, Help,
Expand, R4, 02, 01, Center, T1, Bold, Italics, Underline, Superscript,
Subscript, Smaller, T1 0, R3, Key47, A 1 0, Defaults; A 11, A 12};

KeyName: -TIP-- TYPE = LeveIlVKeys.KeyName;
Keys: -XComSoftMessage- TYPE = MACHINE DEPENDENT{

time, date, dateAndTime, am, pm, january, february, march, april, may, june,
july, august, september, october, november, december, monday, tuesday,
wednesday, thursday, friday, saturday, sunday, decimalSeparator,
thousandsSeparator} ;

KeyStations: -KeyboardWindow- TYPE = MACHINE DEPENDENT{

k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k1~k16,k17,
k1S,k19,k20,k21,k22,k23,k24,k25,k26,k27,k28,k29,k30,k31,k32,
k33:k34,k35,k36,k37,k38,k39,k40,k41,k42,k43,k44,k45,k46,k47,
k48, a1, a2, a3, a4, a5, a6, a7, a8, a9,'a10, a11, a12, last(96)};

KeyToCharProc: - TlP-- TYPE = PROCEDURE [

keys: LONG POINTER TO KeyBits, key: KeyName, downUp: OownUp,
data: LONG POINTER, buffer: XString.Writer1;

LabelRecord: -SoftKeys- TYPE = RECORD [
unshifted: XString.ReaderBody "xxx, shifted: XString.ReaderBody "'xxx];

Labels: -SoftKeys- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF Label Record;
lasstOldAppl icationSpecific: -SWSAttribute Types-

NSFile.ExtendedAttributeType = 10457B;
lastBWSType: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10777B;
LayoutError: -Form Window- SIGNAL [code: LayoutErrorCode1;

D

LayoutErrorCode: -Form Window- TYPE = {onTopOfAnotherltem, notEnufTabsDefined};
LayoutlnfpFromltem: -FormWindow-- PROCEDURE [

window: Window.Handle, item: ItemKey1
RETURNS [line: Line, margin: CARDINAL, tabStop: CARDINAL, box: Window.Box];

LayoutProc: -ForrnWindow- TYPE = PROCEDURE [.

window: Window. Handle, clientData: LONG POINTER];

Less: -XLRea/- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];

LessEq: -XL Rea/- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];

LimitProc: -StarWindowShell- TYPE = PROCEDURE [sws: Handle, box: Window.Box]
RETURNS [Window.Box];

Line: -Disp/ay-- PROCEDURE [
window: Handle, start: Window.Place, stop: Window.Place,
lineStyle: LineStyle ~NIL, bounds: Window.BoxHandle ~NIL];

Line: -FormWiAdow-- TYPE [2];

D-27

D

0-28

Listing of Pu blic Symbols

Line: -XFormat- PROCEDURE [
h: Handle "NIL, r: XString.Reader, n: CARDINAL "1);

Line: -XToken- FilterProcType;
LineStyle: -Oisp/ay- TYPE = LONG POINTER TO LineStyleObject;
LineStyleObject: -Oisp/ay- TYPE = RECORD [

widths: ARRAY [0 •• 5] OF CARDINAL, thickness: CARDINAL);
LineUpBoxes: -Form Window- PROCEDURE [

window: Window. Handle,
items: LONG DESCRIPTOR FOR ARRAY CARDINAL OF ItemKey "xxx];

Ln: -XL Real- PROCEDURE [Number) RETURNS [Number);
Log: -XL Rea/- PROCEDURE [base: Number, arg: Number1 RETURNS [Number];
logoff: -StarDesktop- Atom.ATOM;
logon: -StarDesktop- Atom.ATOM;
LogonSession: -BWSZone- PROCEDURE RETURNS [UNCOUNTED ZONE];
10gonSession: -BWSZone- UNCOUNTED ZONE;
LookAtTex111emValue: -Form Window- PROCEDURE [

window: Window.Handle, item: Item Key] RETURNS [value: XString.ReaderBody);
Lop: -XString- PROCEDURE [r: Reader] RETURNS [c: Character); .
LosingFocusProc: -np- TYPE = PROCEDURE [

w: Window.Handle, data: LONG POINTER);
LowerCase: -XChar- PROCEDURE [c: Character) RETURNS [Character];
L TP: -XTime- TYPE = RECORD [

r: SELECT t: * FROM
useSystem = > NULL, useThese = > [Itp: System.LocaITimeParameters), ENDCAse);

mailStatus: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10411B;
Make: -Atom- PROCEDURE [pName: X5tring.Reader] RETURNS [atom: ATOM);
Make: -XChar- PROCEDURE [set: Environment.Byte, code: Environment.Byte1

RETUR~S [Character);
Make: -XCharSetO- PROCEDURE [code: CodesO) RETURNS [XChar.Character1;
Make: -XCharSet164-- PROCEDURE [code: Codes 164) RETURNS [XChar.Character];
Make: -XCharSet3S6- PROCEDURE [code: Codes356] RETURNS [XChar.Character);
Make: --XCharSet3S7- PROCEDURE [code: Codes357] RETURNS [XChar.Character);
Make: -XCharSet360-- PROCEDURE [code: Codes3601 RETURNS [XChar.Character);
Make: -XCharSet361- PROCEDURE [code: Codes361] RETURNS [XChar.Character);
Make: -XCharSet41- PROCEDURE [code: Codes41) RETURNS [XChar.Character];
Make: -XCharSet42- PROCEDURE [code: Codes42) RETURNS [XChar.Character1;
Make: -XCharSet43- PROCEDURE [code: Codes43] RETURNS [XChar.Character];
Make: -XCharSet44- PROCEDURE [code: Codes44] RETURNS [XChar.Character1;
Make: -XCharSet4S- PROCEDURE [code: Codes4S] RETURNS [XChar.Character1;
Make: -XCharSet46- PROCEDURE [code: Codes46] RETURNS [XChar.Character1;.
Make: -XCharSet47- PROCEDURE [code: Codes47] RETURNS [XChar.Character];
MakeAtom: -Atom- PROCEDURE [pName: LONG STRING) RETURNS [atom: ATOM];
MakeBooleanl1em: -Form Window- PROCEDURE [

window: Window.Handle, myKey: Item Key, tag: X5tring.Reader "NIL,
suffix: X5tring.Reader "NIL, visibility: Visibility "visible,
boxed: BOOLEAN "TRUE, readOnly: BOOLEAN "FALSE,
changeProc: BooleanChangeProc "NIL, label: BooleanltemLabel,
initBoolean: BOOLEAN "TRUE];

MakeChoiceltem: -Form Window- PROCEDURE [
window: Window.Handle, myKey: Item Key, tag: X5tring.Reader "NIL,
suffix: X5tring.Reader "NIL, visibility: Visibility "visible,
boxed: BOOLEAN "TRUE, readOnly: BOOLEAN "FALSE, values: Choiceltems,
initChoice: Choicelndex, fullyOisplayed: BOOLEAN "TRUE,
verticallyOisplayed: BOOLEAN "FALSE, hintsProc: ChoiceHintsProc "NIL.
changeProc: ChoiceChangeProc "NIL,
outlineOrHighlight: OutlineOrHighlight "highlight];

ViewPoint Programmer's Manual

MakeCommandltem: -FormWindow-- PROCEDURE [

window: Window.Handle, myKey: ItemKey, tag: XString.Reader "NIL,

suffix: XString.Reader "NIL, visibility: Visibility "visible,
boxed: BOOLEAN "'TRUE, readOnly: BOOLEAN "'FALSE, commandProc: CommandProc,
command Name: XString.Reader, clientOata: LONG POINTER "'NIL];

MakeDecimalltem: -Form Window- PROCEDURE [

window: Window.Handle, myKey: ItemKey, tag: XString.Reader "NIL,

suffix: XString.Reader "NIL, visibility: Visibility "'visible,
boxed: BOOLEAN "'TRUE, readOnly: BOOLEAN "'FALSE, signed: BOOLEAN "FALSE,

width: CARDINAL, initOecimal: XLReal.Number "'xxx,
wrapUnderTag: BOOLEAN "'FALSE, hintsProc: TextHintsProc "'NIL,

nextOutOfProc: NextOutOfProc "'NIL, displayTemplate: XString.Reader "'NIL,

SPECIALKeyboard: BlackKeys.Keyboard "NIL];

Makelntegerltem: -Form Window- PROCEDURE [

window: Window. Handle, myKey: ItemKey, tag: XString.Reader "'NIL,

suffix: XString.Reader "NIL, visibility: Visibility "'visible,
boxed: BOOLEAN "'TRUE, readOnly: BOOLEAN "'FALSE, signed: BOOLEAN "'FALSE,

width: CARDINAL, initlnteger: LONG INTEGER "'0, wrapUnderTag: BOOLEAN "FALSE,

hintsProc: TextHintsProc "'NIL, nextOutOfProc: NextOutOfProc "NIL,

SPECIALKeyboard: BlackKeys.Keyboard "'NIL];

MakeltemsProc: -FormWindow-- TYPE = PROCEDURE [

window: Window. Handle,' clientOata: LONG POINTER];

MakeMenultem: .-FormWindow- PROCEDURE [

window: Window.Handle, myKey: Item Key, tag: XString.Reader "NIL,

suffix: XString.Reader "'NIL, visibility: Visibility "'visible,
boxed: BOOLEAN '"TRUE, menu: MenuOata.MenuHandle);

MakeMultipleChoiceltem: -Form Window- PROCEDURE [.

window: Window.Handle, myKey: Item Key, tag: XString.Reader "NIL,

suffix: XString.Reader "'NIL, visibility: Visibility "'visible,
boxed: BOOLEAN "'TRUE, readOnly: BOOLEAN "FALSE, values: Choiceltems,
initChoice: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicelndex,
fullyOisplayed: BOOLEAN "TRUE, verticaUyDisplayed: BOOLEAN "'FALSE,

hintsProc: ChoiceHintsProc "'NIL, changeProc: MultipleChoiceChangeProc "NIL,

outlineOrHighlight: OutlineOrHighlight '"highlight];
MakeNegative: -Cursor- PROCEDURE;

MakePositive: -Cursor- PROCEDURE;

MakeSpecial: -XL Real- PROCEDURE [index: Speciallndex] RETURNS [Number];
MakeTagOnlyltem: -Form Window- PROCEDURE [

window: Window.Handle, myKey: ItemKey, tag: XString.Reader,
visibility: Visibility "visible);

MakeTextltem: -Form Window- PROCEDURE [

window: Window. Handle, myKey: Item Key, tag: XString.Reader "NIL,

suffix: XString.Reader "NIL, visibility: Visibility "visible,
boxed: BOOLEAN "TRUE, readOnly: BOOLEAN "'FALSE, width: CARDINAL,

initString: XString.Reader "NIL, wrapUnderTag: BOOLEAN "'FALSE,

passwordFeedback: BOOLEAN "FALSE, hintsProc: TextHintsProc "'NIL,

nextOutOfProc: NextOutOfProc "NIL,

SPECIALKeyboard: BlackKeys.Keyboard "NIL1;

MakeWindowltem: -FormWindow-- PROCEDURE [

window: Window.Handle, myKey: Item Key, tag: XString.Reader "NIL,

visibility: Visibility "visible, boxed: BOOLEAN "'TRUE, size: Window.Dims,
nextlntoProc: NextlntoProc "NIL] RETURNS [c1ientWindow: Window.Handle1;

Manager: --TIP-- TYPE = RECORD [-

table: Table, window: Window.Handle, notify: NotifyProc];
ManagerData: --Se/ection-- TYPE = LONG POINTER;

D

D-29

D

D-30

Listing of Public Symbols

Map: -XString-- PROCEDURE [r: Reader, proc: MapCharProc]
RETURNS [c: Character];

MapAtomProc: -Atom- TYPE = PROCEDURE [ATOM) RETURNS [BOOLEAN);

MapAtoms: -Atom- PROCEDURE [proc: MapAtomProc] RETURNS [lastAtom: ATOM1;

MapCharProc: -X String- TYPE = PROCEDURE [c: Character]
RETURNS [stop: BOOLEAN);

MappedDefauitFont: -SimpleTextFont- PROCEDURE RETURNS [MappedFontHandle];
MappedFont: -SimpleTextFont- PROCEDURE [name: XString.Reader A NIL]

RETURNS [MappedFontHandle);
MappedFontDescriptor: -SimpleTextFont- TYPE;

MappedFontHandle: -SimpleTextFont- TYPE = LONG POINTER TO

Mapped FontDescriptor;
MapPUst: -Atom- PROCEDURE [atom: ATOM, proc: MapPlistProc]

RETURNS [lastPair: Ref Pair);
MapPListProc: -A tom- TYPE = PROCEDURE [Ref Pair] RETURNS [BOOLEAN];

Mark: -ContainerCache- TYPE = LONG POINTER TO MarkObject;
MarkObject: -ContainerCache- TYPE;

Match: -Selection- PROCEDURE [pointer: ManagerData] RETURNS [match: BOOLEAN]; .

maxStringLength: -Selection- CARDINAL = 200;
MaybeQuoted: -XToken- PROCEDURE [

h: Handle, data: FilterState, filter: FilterProcType .. NonWhiteSpace,
isQuote: QuoteProcType "Quote, skip: SkipMode "whiteSpace,
temporary: BOOLEAN "TRUE) RETURNS [value: XString.ReaderBody];

MeasureString: -SimpleTextDisplay- PROCEDURE [

string: XString.Reader, lineWidth: CARDINAL "177777B,
wordBreak: BOOLEAN "TRUE, streakSuccession: StreakSuccession AfromFirstChar,
font: SimpleTextFont.MappedFontHandle "NIL]

RETURNS [width: CARDINAL, result: Result, rest: XString.ReaderBody];
MenuArray: --MenuData-- PROCEDURE [menu: MenuHandle]

RETURNS [array: ArrayHandle];
MenuEnumProc: -StarWindowShell- TYPE = PROCEDURE [menu: MenuData.MenuHandle]

RETURNS [stop: BOOLEAN" FALSE];

MenuHandle: -MenuData- TYPE = LONG POINTER TO MenuObject;
MenultemProc: -PropertySheet- TYPE = PROCEDURE [

shell: StarWindowShell.Handle, formWindow: Window.Handle,
menultem: MenultemType, clientData: LONG POINTER] RETURNS [ok: BOOLEAN);

Menultems: -PropertySheet- TYPE = PACKED ARRAY Men.ultemType OF
BooleanFalseDefault; .

MenultemType: -PropertySheet- TYPE = {
done, apply, cancel, defaults, start, reset};

MenuObject: -MenuData- TYPE = PrivateMenu;
MenuProc: -MenuData- TYPE = PROCEDURE [

window: Window.Handle, menu: MenuHandle, itemData: LONG UNSPECIFIED];

MenuTitle: -MenuData- PROCEDURE [menu: MenuHandle]
RETURNS [title: ItemHandle);

Messages: -XMessage- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF MsgEntry;
MessagesFromFile: --XMessage-- PROCEDURE [

fileName: LONG STRING, clientData: ClientData, proc: DestroyMsgsProc]
RETURNS [msgDomains: MsgDomains);

MessagesFromReference: --XMessage-- PROCEDURE [

file: NSFile.Reference, clientData: ClientData, proc: DestroyMsgsProc)
RETURNS [msgDomains: MsgDomains);

MinDimsChangeProc: -FormWindow-- TYPE = PROCEDURE [
window: Window.Handle, old: Window.Dims, new: Window.Dims];

MinusLandBitmapUnder: -Window-- TYPE [6];

~\

ViewPoint Programmer's Manual

MinusLandColor: --Window- TYPE [1];
MinusLandCookieCutter: -Window-- TYPE [2];
Mode: -TiPStar- TYPE = {normal, copy, move, sameAs};
ModeChangeProc: - TIPStar- TYPE = PROCEDURE [

old: Mode, new: Mode, clientData: LONG POINTER];

ModifySource: -ContainerWindow- PROCEDURE [,

window: Window.Handle, proc: SourceModifyProc);
Months: -XComSoftMessage-- TYPE = Keys ijanuary .. december];
MoreFlavor: -StarWindowShell- TYPE = {before, after};
MoreScroliProc: -StarWindowShell- TYPE = PROCEDURE [

sws: Handle, vertical: BOOLEAN, flavor: MoreFlavor, amount: CARDINAL];

MouseTransformerProc: -Window- TYPE = PROCEDURE [Handle, Place]
RETURNS [Handle, Place];

Move: -Selection- PROCEDURE [v: ValueHandle, data: LONG POINTER];

MovelntoWindow: -Cursor- PROCEDURE [

window: Window.Handle, place: Window.Place];
MoveMark: -ContainerCache-- PROCEDURE [mark: Mark, newlndex: CARDINAL];

MsgDomain: -XMessag';"" TYPE = RECORD [

applicationName: XString.ReaderBody, handle: Handle];
MsgDomains: -XMessage- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF MsgDomain;
MsgEntry: -XMessage-- TYPE = RECORD [

msgKey: MsgKey,
msg: XString.ReaderBody,
translationNote: LONG STRING" NIL,

translatable: BOOLEAN ~TRUE,
type: MsgType "userMsg,
id: MsgID);

MsgID: -XMessage- TYPE = CARDINAL;

MsgKey: -XMessage-- TYPE = CARDINAL;

MsgKeyList: -XMessage-- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF MsgKey;
MsgType: -XMessage-- TYPE = { ,

userMsg, template, argList, menu Item, pSheetltem, commandltem, errorMsg,
infoMsg, promptltem, windowMenuCommand, others};

MultiAttributeFormatProc: -FileContainerSource- TYPE = PROCEDURE [

containeelmpl: Containee.lmplementation, containeeData: Containee.DataHandle,
attrRecord: NSFile.Attributes, displayString: XString.Writer];

MultipleChoiceChangeProc: -Form Window- TYPE = PROCEDURE [

window: Window.Handle, item: Item Key, calledBecauseOf: ChangeReason,
oldValue: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicelndex,
newValue: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicelndex];

Multiply: -XL Real- PROCEDURE [a: Number, b: Number] RETURNS [Number];
NameAndVersionColumn: -FileContainerSourceExtra- PROCEDURE

RETURNS [multipleAttributes FileContainerSource.ColumnContentslnfo];
NameCol umn: -FileContainerSource- PROCEDURE

RETURNS [attribute ColumnContentslnfo];
NeededDims: -Form Window- PROCEDURE [window: Window.Handle1

RETURNS [Window.Dims);
Negative: -XLReal-- PROCEDURE [Number] RETURNS [Number];
netAddr: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 104028;
NetFormat: -XFormat-- TYPE = {octal, hex, productSoftware};
NetworkAddress: --XFormat-- PROCEDURE [

h: Handle "NIL, networkAddress: System. NetworkAddress, format: NetFormat];
networkName: --BWSAttributeTypes-- NSFile.ExtendedAttributeType = 104048;
NetworkNumber: --XFormat-- PROCEDURE [

h: Handle "NIL, networkNumber: System.NetworkNumber, format: NetFormat];

D

0-31

D

D-32

Listing of Public Symbols

New: --Window-- PROCEDURE [
under: BOOLEAN A FALSE, cookie: BOOLEAN A FALSE, color: BOOLEAN "'FALSE,
zone: UNCOUNTED ZONE A LOOPHOLE(O]] RETURNS [Handle1;

newlcon: -StarDesktop-Atom.ATOM;
NewResolveBuffer: -Simple TextDisplay- PROCEDURE [words: CARDINAL]

RETURNS [ResolveBuffer);
NewStandardCloseEverything: -StarWindowSheIlExtra- PROCEDURE

RETURNS [
numberLeftOpen: CARDINAL "0,
lastNotOosed: StarWindowShell.Handle "LOOPHOLE[O));

NewWriterBody: -XString- PROCEDURE [maxLength: CARDINAL, z: UNCOUNTED ZONE]
RETURNS [WriterBody];

NextlntoProc: -Form Window- TYPE = PROCEDURE [
window: Window. Handle, item: ItemKey];

NextOutOfProc: -Form Window- TYPE = PROCEDURE [
window: Window.H~ndle, item: ItemKey];

nextPIace: -StarDesktop- Window.Place;
nextTabStop: -Form Window- CARDINAL = 17777.7B;
NiiData: -XToken- SIGNAL;
nonQuote: -XToken- XChar. Character = 0;
NonWhiteSpace: --XToken- FilterProcType;
NopDestroyProc: -Context- DestroyProcType;
NopFree: -Selection- ValueFreeProc;
nopFreeValueProcs: -Selection- REAOONLY LONG POINTER TO ValueProcs;
NormalTable: -TiPStar- PROCEDURE RETURNS [TIP. Table];
noScroliData: -StarWindowShell- Scroll Data;
NoSuchAtom: -Atom- ERROR;
NoSuchDependency: -Event- ERROR;
not: -XChar- Character = 177777B;
noTabStop: -FormWindow-- CARDINAL = 1777768;
NotAProfileFile: --OptionFile--,sIGNAL;
NotEq: --XLRea/-- PROCEDURE [a: Number, b: Number] RETURNS [BOOLEAN];
Notes: -XTime- TYPE = {

normal, nozone, zonedGuessed, noTime, timeAndZoneGuessed};
Notify: -Event- PROCEDURE [event: EventType, eventData: LONG POINTER "NIL]

RETURNS [veto: BOOLEAN];
NotifyProc: -TlP- TYPE = PROCEDURE [window: Window.Handle, results: Results];
NSChar: -XFormat-- PROCEDURE [h: Handle "NIL, char: NSString.Character];·
NSLine: -XFormat- PROCEDURE [

h: Handle "NIL, s: NSString.String, n: CARDINAL "'1];
NSString: -XFo"";at- PROCEDURE [h: Handle "NIL, s: NSString.String);
NSStringFromReader: -XString- PROCEDURE [r: Reader, Z: UNCOUNTED ZONE]

RETURNS ens: NSString.String);
NSStringObject: -XFormat- PROCEDURE [5: LONG POINTER TO NSString.String)

RETURNS [Object];
SStringProc: -XFormat- FormatProc;
NthCharacter: -XString- PROCEDURE [r: Reader, n: CARDINAL]

RETURNS [c: Character];
null: -Atom-ATOM;
null: -XChar- Character = 0;
nullBox: -Window- Box;
null Data: -Containee-- Data;
null Handle: -StarWindowShell-- Handle;

~'

ViewPoint Programmer's Manual

nuilitem: -ContainerSource--ltemlndex = 1777778;
nullltemKey: -FormWindow--ltemKey = 1777778;
nullKey: -SoftKeys- CARDINAL = 1777778;
nullManager: - np- Manager;
nuliOption: -ProductFactoring-- Option;
null PeriodicNotify: - np- PeriodicNotify;
null Picture: -BlackKeys- bitmap Picture;
null Place: -PropertySheet- Window.Place;
null Prerequisite: -ProductFactoring- Prerequisite;
nullReaderBody: -XString- Reader8ody;
nuliValue: -Se/ection- Value;
nullWriter8ody: -X String- WriterBody;
Number: -XFormat- PROCEDURE [

h: Handle "NIL, n: LONG UNSPECIFIED, format: NumberFormat];
Number: -XL Real- TYPE [4];
Number: -XToken- PROCEDURE [
h: Handle, radix: CARDINAL, signalOnError: BOOLEAN "TRUE-]

RETURNS [u: LONG UNSPECIFIED];

NumberFormat: -XFormat- TYPE = RECORD [
base: [2 .. 36] "12,
zerofill: BOOLEAN "FALSE,
signed: BOOLEAN .. FALSE,

columns: [0 .. 255] "0);
NumberOfltems: -Form Window- PROCEDURE [window: Window.Handle]
RETURNS [CARDINAL];

, numberOfKeys: -SoftKeys- CARDINAL = 8;
NumberToPair: -XL Real- PROCEDURE' [n: Number, digits: [1 .. 13]]
RETURNS [negative: BOOLEAN, exp: INTEGER, mantissa: Digits];
Numeric: -XToken- FilterProcType;
Object: -ContainerCache- TYpe;

Object: -Cursor- TYPE = RECORD [info: Info, array: UserTerminaI.CursorArray];
Object: -Window-- TYPE (19);
Object: -XFormat-- TYPE = RECORD [

proc: FormatProc,
context: XString.Context "LOOPHOLE[O],
data: ClientData ~NIL];

Object: -XMessage- TYPE;
Object: -XToken-- TYPE = MACHINE DEPENDENT RECORD [
getChar(0:0 .. 31): GetCharProcType, break(2:0 .. 1 5): XChar.Character "0];
ObscuredBySibling: -Window- PROCEDURE [Handle] RETURNS [BOOLEAN];
Octal: -XFormat- PROCEDURE [h: Handle "NIL, n: LONG UNSPECIFIED];
Octal: -XToken- PROCEDURE [h: Handle, signalOnError: BOOLEAN "TRUE]

RETURNS [c: LONG CARDINAL);
Octal Format: -XFormat- NumberFormat;
oldDateSent: -BWSAttributeTypes-- NSFile.ExtendedAttributeType = 104138;
Open: -Cata/og- PROCEDURE [

catalogType: NSFile.Type, session: NSFile.Session "LOOPHOLE[O]]
RETURNS [catalog: NSFile.Handle1;

Opportunity: -Undo- Proc;
Option: -ProductFadoring- TYPE = RECORD [

product: Product, productOption: ProductOption];
Options: -FileContainerSource- TYPE = RECORD [readOnly: BOOLEAN "FALse];
optionSheetDefaultMenu: --PropertySheet-- Menultems;
outbasketPSData: --BWSAttributeTypes-- NSFile.ExtendedAttributeType = 1041 OB;
OutlineOrHighlight: -FormWindow-- TYPE = {outline, highlight};

D

0-33

D

D-34

Listing of Public Symbols

OutlineThisKey: --SoftKeys-- PROCEDURE [
window: Window.Handle, key: CARDINAL "nuIlKey]; .~

Overflow: --XString- SIGNAL;
owner: --BWSAttributeTypes- NSFile.ExtendedAttributeType = 10377B;
Pack: -XTime-- PROCEDURE [unpacked: Unpacked, useSystemLTP: BOOLEAN "TRUE]

RETURNS [time: System.GreenwichMeanTime];
Packed: -XTime-- TYPE = System.GreenwichMeanTime;
paintFlags: -Display- BitBltFlags;
paintGrayFlags: -Display- BitBltFlags;
Pair: -Atom- TYPE = RECORD [prop: ATOM, value: Ref Any];
PairToNumber: -XLReal- PROCEDURE [

negative: BOOLEAN, exp: INTEGER, mantissa: Digits] RETURNS [n: Number];
Parallelogram: -Display- TYPE = RECORD [

x: Interpolator, y: INTEGER, w: NATURAL, h: NATURAL];
ParseChoiceltemMessage: -FormWindowMessageParse- PROCEDURE [

choiceltemMessage: XString.Reader, zone: UNCOUNTED ZONE]
RETURNS [choiceltems: FormWindow.Choiceltems);

ParseReader: -XTime-- PROCEDURE [
r: XString.Reader, treatNumbersAs: TreatNumbersAs "dayMonthYear)
RETURNS [time: System.GreenwichMeanTime, notes: Notes, length: CARDINAL];

ParseWithTemplate: -XTime-- PROCEDURE [
r: XString.Reader, template: XString.Reader]
RETURNS [time: System.GreenwichMeanTime, notes: Notes, length: CARDINAL];

PeekForFlushness: -SimpleTextDisplay- PROCEDURE [.
requestedFlushness: Flushness, string: XString.Reader) RETURNS [Flushness);

PeekForStreakSuccession: --Simple TextDisplay- PROCEDURE [
requestedStreakSu~cession: StreakSuccession, string: XString.Reader] .~
RETURNS [StreakSuccession];"1

PeriodicNotify: - TIP-- TYPE [1];
Permane"nt: -BWSZone-- PROCEDURE RETURNS [UNCOUNTED ZONE];
permanent: -BWSZone-- UNCOUNTED ZONE;
PFonts: -ProductFactoringProducts-- Product = 4;
Pi: -XLReal- PROCEDURE RETURNS [Number];
Picture: -BlackKeys- TYPE = RECORD [

variant: SELECT type: PictureType FROM
bitmap = > [bitmap: LONG POINTER], text = > [text: XString.Reader], ENDCASE];

PictureAction: -BlackKeys- TYPE = {acquire, release};
PictureProc: -BlackKeys- TYPE = PROCEDURE [

keyboard: Keyboard, action: PictureAction]
RETURNS [picture: Picture "nuIlPicture, geometry: GeometryTable "NIL1;

PictureProc: -Containee- TYPE = PROCEDURE [
data: DataHandle, window: Window.Handle, box: Window.Box, old: PictureState,
new: PictureStatel;

PictureReal: -XLReal-- PROCEDURE [
h: XFormat.Handle "NIL, r: Number, template: XString.Reader);

PictureState: --Containee-- TYPE = {
garbage, normal, highlighted, ghost, referen~e, referenceHighlighted};

PictureType: --BlackKeys-- TYPE = {bitmap, text};
Piece: -XString-- PROCEDURE [r: Reader, firstChar: CARDINAL, nChars: CARDINAL]

RETURNS [piece: ReaderBody, endContext: Contextl;
Place: -Window-- TYPE = UserTerminal.Coordinate;
Placeholder: --TlPStar-- TYPE = {

mouseActions, keyOverrides, softKeys, keyboardSpecific, black Keys, sideKeys,~,
backstopSpecial Focus};

Point: -Display- PROCEDURE [window: Handle, point: Window.Place];
Pop: --StarWindowShell-- PROCEDURE [popee: Handle1 RETURNS [Handle];

ViewPoint Programmer's Manual

PopOrSwap: -StarWindowShell- TYPE = {pop, swap};
PoppedProc: -StarWindowShell-- TYPE = PROCEDURE [

popped: Handle, newShell: Handle, popOrSwap: PopOrSwap "pop];
PopTable: -npstar- PROCEDURE [Placeholder, TIP. Table];
Popup: -PopupMenu- PROCEDURE [

menu: MenuOata.MenuHandle, clients: Window.Handle, showTitle: BOOLEAN "TRUE,
place: Window.Place "LOOPHOLE(37777777777B));

Post: -Attention- PROCEDURE [
5: XString.Reader, clear: BOOLEAN "TRUE, beep: BOOLEAN "FALSE,
blink: BOOLEAN" FALSE1;

Post: -Message Window- PROCEDURE [
window: Window. Handle, r: XString.Reader, clear: BOOLEAN "TRUE];

PostAndConfirm: -Attention- PROCEDURE [
s: XString.Reader, clear: BOOLEAN "TRUE,
confirmChoices: ConfirmChoices "xxx, timeout: Process.Ticks "dontTimeout,
beep: BOOLEAN "FALSE, blink: BOOLEAN "FALSE]
RETURNS [confirmed~ BOOLEAN, timedOut: BOOLEAN];

PostSticky: -Attention- PROCEDURE [
s: XString.Reader, clear: BOOLEAN "TRUE, beep: BOOLEAN "FALSE,
blink: BOOLEAN" FALSE];

PostSTRING: -Message Window- PROCEDURE [
window: Window. Handle, s: LONG STRING, clear: BOOLEAN "TRUE1;

Power: -XL Real- PROCEDURE [base: Number, exponent: Number1 RETURNS [Number];
Prerequisite: -ProductFactoring- TYPE = RECORD [

prerequisiteSpec: BOOLEAN "FALSE, option: Option1;
printingligatures: ":'XCharSet360-- XCharSets.Sets = LOOPHOLE[240];
Privateltem: -MenuData- TYPE = PRIVATE RECORD [

proc: MenuProc,
nameWidth: NATURAL,
nameBytes: NATURAL,
body: SELECT hasltemData: BOOLEAN FROM

FALSE = > [name: PACKED SEQUENCe COMPUTED CARDINAL OF Environment.Byte],
TRUE = > [

itemOata: LONG UNSPECIFIED,
name: PACKED SEQUENCE COMPUTED CARDINAL OF Environment.Byte],

ENDCASE);
PrivateMenu: -MenuData- TY-P.E = PRIVATE RECORD [

zone: UNCOUNTED ZONE,
swapltemProc: SwapltemProc,
title: ItemHandle "NIL,
array: ArrayHandle "xxx,
arrayAJlocatedltemHandles: NATURAL "0,
itemslnMenusZone: BOOLEAN" FALSE];

Problem: -SimpleTextFont- SIGNAL [code: ProblemCodel;
ProblemCode: -SimpleTextFont- TYPE = {

bad Font, cI i entCharacterCodesExhausted, cI i entCharacterBi tsExhausted};
Proc: -Undo-- TYPE = PROCEDURE [

undoProc: PROCEDURE [LONG POINTER], destroyProc: PROCEDURE [LONG POINTER],
data: LONG POINTER, size: CARDINAL "0];

Procedures:-ContainerSource- TYPE = LONG POINTER TO ProceduresObject;
ProceduresObject: -ContainerSource- TYPE = RECORD [

actOn: ActOnProc,
canYouTake: CanYouTakeProc,
columnCount: ColumnCountProc,
convertltem: Convert Item Proc,
deleieltems: DeleteltemsProc,

D

0-35

D

D-36

Listing of Public Symbols

getLength: GetLengthProc,
itemGeneric: ItemGenericProc,
stringOfltem: StringOfltemProc,
take: TakeProc);

Product: -ProductFactoring- TYPE = CARDINAL [0 .. 15];
Product: -ProductFactoringProducts- TYPE = ProductFactoring.Product;
Product: -ProductFactoringProductsExtras- TYPE = ProductFactoring.Product;
ProductOption: -ProductFactoring- TYPE = CARDINAL [0 .. 27];
propertySheetDefaultMenu: -PropertySheet- Menultems;
prototypeCatalog: -BWSFileTypes- NSFile.Type = 1;
PublicZone: -MenuData- PROCEDURE RETURNS [UNCOUNTED ZONE];

PurgeOldVersions: -Prototype- PROCEDURE [

type: NSFile. Type, current: Version, sUbtype: Subtype "0];
Push: -BlackKeys- PROCEDURE [keyboard: Keyboard);
Push: -SoftKeys- PROCEDURE [

table: TIP.Table "NIL, notifyProc: TIP.NotifyProc "NIL,

labels: Labels "xxx, highlightedKey: CARDINAL "null Key,
outlinedKey: CARDINAL "null Key) RETURNS [window: Window.Handle];

Push: -StarWindowShell- PROCEDURE [

newShell: Handle, topOfStack: Handle" LOOPHOLE[O],
poppedProc: PoppedProc "NIL);

PushedMe: -StarWindowSheIlExtra- PROCEDURE [pushee: StarWindowShell.Handle]
RETURNS [pusher: StarWindowSheII.Handle];

PushedOnMe: -StarWindowSheIlExtra- PROCEDURE [pusher: StarWindowShell.Handle]
RETURNS [pushee: StarWindowSheII.Handle];

PushTable: -TIPStar- PROCEDURE [Placeholder, TIP.Table];
PutProp: -Atom- PROCEDURE [onto: ATOM, pair: Pair);
Query: -Selection- PROCEDURE [

targets: LONG DESCRIPTOR FOR ARRAY CARDINAL OF QueryElement);
QueryElement: -Selection-- TYPE = RECORD [

target: Target, enumeration: BOOLEAN "FALSE, difficulty: Difficulty "NULL);

Quote: -XToken- QuoteProcType;
QuoteProcType: -XToken- TYPE = PROCEDURE [c: XChar.Character)

RETURNS [closing: XChar.Character);
Reader: -XFormat- PROCEDURE [h: Handle "NIL, r: XString.Reader);
Reader: -XString- TYPE = LONG POINTER TO ReaderBody;
ReaderBody: -XFormat- PROCEDURE [h: Handle "NIL, rb: XString.ReaderBody);
ReaderBody: -XString- TYPE = PRIVATE MACHINE DEPENDENT RECORD [

context(O:0 .. 15): Context,
limit(l:0 .. 15): CARDINAL,

offset(2:0 .. 15): CARDINAL,

bytes(3:0 .. 31): ReadOnlyBytes);
ReaderFromWriter: -XString- PROCEDURE [w: Writer] RETURNS [Reader);
Readerlnfo: --XString- PROCEDURE [r: Reader]

RETURNS [context: Context, startsWith377B: BOOLEAN];

ReaderToHandle: --XToken- PROCEDURE [r: XString.Reader] RETURNS [h: Handle];
ReaderToNumber: --XLRea/-- PROCEDURE [r: XString.Reader] RETURNS [Number];
ReaderToNumber: -XString- PROCEDURE [

r: Reader, radix: CARDINAL "10, signed: BOOLEAN "FALSE]
RETURNS [LONG INTEGER];

ReadNumber: -XLRea/-- PROCEDURE [

get: PROCEDURE RETURNS [XChar.Character),
putback: PROCEDURE [XChar.Character)) RETURNS [Number];

ReadOnlyBytes: --XString-- TYPE = LONG POINTER TO READONLY ByteSequence;

ViewPoint Programmer's Manual

Rebuildltem: -FileContainerSourceExtra2-- PROCEDURE [

source: ContainerSource.Handle, item: ContainerSource.ltemlndex];
Reconversion: -Selection- SIGNAL [target: Target, zone: UNCOUNTED ZONE]

RETURNS [ValueI;
ReconvertDuringEnumerate: -Selection- PROCEDURE [

target: Target, zone: UNCOUNTED ZONE "LOOPHOLE[O]l RETURNS [Value];
Ref Any: -Atom- TYPE = LONG POINTER;

referencedType: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10401B;
Ref Pair: -Atom-TYPE = LONG POINTER TO REAOONLY Pair;
ref Parenti 0: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10403B;
refparentTime: -BWSAttributeTypes- NSFile.ExtendedAttributeType = 10405B;
RegisterCJientKeyboards: -KeyboardKey- PROCEDURE [

wantSystemKeyboards: BOOLEAN "TRUE,

SPECIALKeyboard: BlackKeys.Keyboard "NIL,

keyboards: LONG DESCRIPTOR FOR ARRAY CARDINAL OF BlackKeys.KeyboardObject ..
xxx];

RegisterMessages: --XMessage- PROCEDURE [

h: Handle, messages; Messages, stringBodiesAreReal: BOOLEAN];

Relation: -XString- TYPE = {Jess, equal, greater};
Release: -Context- PROCEDURE [type: Type, window: Window.Handle];
Remainder: -XLReal- PROCEDURE [a: Number, b: Number] RETURNS (Number);
remoteName: -BWSAttributeTypes- NSFiJe.ExtendedAttributeType· = 10406B;
Remove: -BlackKeys- PROCEDURE [keyboard: Keyboard];
Remove: -SoftKeys- PROCEDURE [window: Window.Handle];
RemoveClieritKeyboards: -KeyboardKey- PROCEDURE;

RemoveDependency: -Event- PROCEDURE [dependency: Dependency];
RemoveFromSystemKeyboards: -KeyboardKey- PROCEDURE [

keyboard: BlackKeys.Keyboard]; .
RemoveFroniTree: -Window- PROCEDURE [Handle];
RemoveltemFromLine: -FormWindow-- PROCEDURE [

window: Window.Handle, item: ItemKey, line: Line, repaint: BOOLEAN "TRUE];

RemoveMenultem: -Attention- PROCEDURE [item: MenuData.ltemHandle];
RemoveProp: -Atom- PROCEDURE [onto: ATOM, prop: ATOM];

Repaint: -Form Window- PROCEDURE [window: Window.Handle];
RepaintField: -SimpleTextEdit- PROCEDURE [f: Field];
Replace: -StarWindowSheIIExtra- PROCEDURE [

new: StarWindowShell.Handle, old: StarWindowSheII.Handle];
ReplaceChars: -SimpleTextEdit- PROCEDURE [

f: Field, firstChar: CARDINAL, nChars: CARDINAL, r: XString.Reader,
endContext: XString.Context "LOOPHOLE[25S], repaint: BOOLEAN "TRUE);

replaceFlags: -Display- BitBltFlags;
replaceGrayFlags: -Disp/ay- BitBltFlags;
Replaceltem: -ContainerCache- PROCEDURE [

cache: Handle, item: CARDINAL, addData: AddData] RETURNS [handle: ItemHandle];
ReplacePiece: -XString- PROCEDURE [

w: Writer, firstChar: CARDINAL, nChars: CARDINAL, r: Reader,
endContext: Context "unknownContext);

RequestorData: -Selection-- TYPE = LONG POINTER;

ResetAliChanged: -Form Window- PROCEDURE [window: Window.Handle];
ResetCache: -ContainerCache-- PROCEDURE [Handle1;
ResetChanged: -FormWindow-- PROCEDURE [window: Window.Handle, item: ItemKey];
ResetUserAbort: -TlP-- PROCEDURE [Window.Handle];
ResolveBuffer: -Simp/eTextDisp/ay-- TYPE = LONG DESCRIPTOR FOR ARRAY [0 .. 0) OF

CARDINAL;

Restore: --Form Window- PROCEDURE [window: Window.Handle1;

D

0-37

D

D-38

Listing of Pu blie Symbols

Restore: -Selection- PROCEDURE [
saved: Saved, mark: BOOLEAN ~TRUE, unmark: BOOLEAN ~TRUE);

Result: -SimpleTextDisplay-- TYPE = {normal, margin, stop};
ResultObject: -TlP- TYPE = RECORD [

next: Results,
body: SELECT type: * FROM

atom = > [a: ATOM],

bufferedChar = > NULL,

coords = > [place: Window.Place],
int = > [i: LONG INTEGER],

key = > [key: KeyName, downUp: OownUp],
nop = > NULL,
string = > [rb: XString.ReaderBody),
time = > [time: System.Pulses),
ENDCASE);

Results: - TlP- TYPE = LONG POINTER TO ResultObject;
ResultsWanted: -TIPX- TYPE = PROCEDURE [

window: Window.Handle, table: TIP.Table "NIL, results: TIP.Results]
RETURNS [wanted: BOOLEAN];

ReturnTicket: -Containee-- PROCEDURE [ticket: Ticket];
ReturnToNotifier: -TlP- ERROR [string: XString.Reader);
ReverseLop: -XString- PROCEDURE [

r: Reader, endContext: LONG POINTER TO Context,
backScan: BackScanClosure "xxx) RETURNS [c: Character);

Re!lerseMap: -XString- PROCEDURE [r: Reader, proc: MapCharProc]
RETURNS [c: Character];

Roadblock: -Undo-- PROCEDURE [XString.Reader);
root: -BWSFileTypes- NSFile.Type = 104778;·
Root: -Window-- PROCEDURE RETURNS [Handle];
Root: -XLReal-- PROCEDURE [index: Number, arg: Number] RETURNS [Number];
rootWindow: -Window-- READONLY Handle;
Run: -XString-- PROCEDURE [r: Reader] RETURNS [run: ReaderBody];
Save: -FormWindow-- PROCEDURE [window: Window.Handle];
SaveAndSet: -Selection- PROCEDURE [

pointer: ManagerData, conversion: ConvertProc, actOn: ActOnProc,
unmark: BOOLEAN "TRUE) RETURNS [old: Saved);

Saved:-Selection- TYPE (6);
Scan: -XString- PROCEDURE [

r: Reader, break: BreakTable, option: BreakCharOption)
RETURNS [breakChar: Character, front: ReaderBody];

ScanForCharacter: -XString- PROCEDURE [

r: Reader, char: Character, option: BreakCharOption)
RETURNS [breakChar: Character, front: ReaderBody);

ScrollOata: -StarWindowShell- TYPE = RECORD [
displayHorizontal: BOOLEAN "FALSE,

displayVertical: BOOLEAN "FALSE,

arrowScroll: ArrowScrol1 Proc "NIL,

thumbScroll: ThumbScrollProc "'NIL,

moreScroll: MoreScrollProc "NIL];

SectionEnumProc: -OptionFile-- TYPE = PROCEDURE [section: XString.Reader]
RETURNS [stop: BOOLEAN "FALSE];

Selectltem: -ContainerWindow-- PROCEDURE [
window: Window.Handle, item: ContainerSource.ltemlndex];

SelectReference: --StarDesktop-- PROCEDURE [reference: NSFile.Reference]
RETURNS [ok: BOOLEAN);

SemiPermanent: -BWSZone-- PROCEDURE RETURNS [UNCOUNTED ZONE];

ViewPoint Programmer's Manual

semiPermanent: -BWSZone- UNCOUNTED ZONE;
Services2: -ProductFactoringProductsExtras- Product = 8;
Services: -ProductFactoringProducts- Product = 1;
Set: -Context- PROCEDURE [type: Type, data: Data, window: Window.Handle1;
Set: -Cursor- PROCEDURE [type: Defined];
Set: -Selection- PROCEDURE [

pointer: ManagerData, conversion: ConvertProc, actOn: ActOnProc);
Set: -XChar- PROCEDURE [c: Character) RETURNS [set: Environment.Byte1;
SetAdjustProc: -StarWindowShell- PROCEDURE [sws: Handle, proc: AdjustProc]

RETURNS [old: AdjustProc1;
SetAliChanged: -Form Window- PROCEDURE [window: Window.Handle];
SetAttention: -np- PROCEDURE [

window: Window. Handle, attention: AttentionProc];
SetBackStoplnputFocus: -np- PROCEDURE [window: Window.Handle1;
SetBitmapUnder: -Window-- PROCEDURE [

window: Handle, pointer: LONG POINTER "NIL,
underChanged: UnderChangedProc "NIL,
mouseTransformer:" MouseTransform"erProc "NIL] RETURNS [LONG POINTER);

SetBodyWindowJustFits: -StarWindowShell- PROCEDURE [
. sws: Handle, yes: BOOLEAN);

SetBOOLEAN: -AtomicProfile- PROCEDURE [atom: Atom.AToM, boolean: BOOLEAN];
SetBooleanltemValue: -Form Window- PROCEDURE [

window: Window.Handle, item: Item Key, newValue: BOOLEAN,
repaint: BOOLEAN "TRUE];

SetBottomPusheeCommands: -StarWindowShell- PROCEDURE [
sws: Handle, commands: MenuData.MenuHandle1;

SetCachedName: -Containee- PROCEDURE [
data: DataHandle, newName: XString.Readerl;

SetCachedType: -Containee- PROCEDURE [data: DataHandle, newType: NSFile. Type];
SetChanged: -Form Window- PROCEDURE [window: Window. Handle, item: ItemKey];
SetCharTranslator: -TIP- PROCEDURE [table: Table,. new: CharTranslatorl

RETURNS [old: CharTranslator];
SetChild: -Window-- PROCEDURE [window: Handle, newChild: Handle]

RETURNS [oldChild: Handle1;
SetChoiceltemValue: -Form Window- PROCEDURE [

window: Window. Handle, item: Item Key, newValue: Choicelndex,
repaint: BOOLEAN "TRUE];

SetClearingRequired: -Window- PROCEDURE [window: Handle, required: BOOLEAN]
RETURNS [old: BOOLEAN);

SetContainee: -StarWindowShell- PROCEDURE [
sws: Handle, file: Containee.DataHandle1;

SetDecimalltemValue: -Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey, newValue: XLReaLNumber,
repaint: BQOLEAN "TRUE1;

SetDefaultlmplementation: -Containee-- PROCEDURE [Implementation]
RETURNS [Implementation);

SetDefaultOutputSink: --XFormat-- PROCEDURE [new: Object] RETURNS [old: Object1;
SetDesktopProc: -ldleContro/- PROCEDURE [

atom: Atom.AToM, desktop: DesktopProc);
SetDims: --SimpleTextEdit- PROCEDURE [f: Field, dims: Window.Dims];
SetDisplayBackgroundProc: -StarDesktop- PROCEDURE [PROCEDURE (Window.Handle]];
SetDisplayProc: -Window- PROCEDURE [Handle, DisplayProc]

RETURNS [DisplayProc);
SetFixedHeight: -SimpleTextEdit-- PROCEDURE [f: Field, fixed Height: BOOLEAN];

D

0-39

D

0-40

Listing of Public Symbols

SetFlushness: -FormWindow-- PROCEDURE [
window: Window.Handle, item: ItemKey, new: Flushness)
RETURNS [old: Flushness];

SetFlushness: -SimpleTextEdit- PROCEDURE [
f: Field, new: SimpleTextDisplay.Flushness)
RETURNS [old: SimpleTextDisplay.Flushness);

SetFont: -Simple TextEdit- PROCEDURE [
f: Field, font: SimpleTextFont.MappedFontHandle "NIL];

SetGlobalChangeProc: -Form Window- PROCEDURE [
window: Window. Handle, proc: GlobalChangeProc]
RETURNS [old: GlobaIChangeProc];

SetGreeterProc: -ldleControl- PROCEDURE [new: GreeterProc]
RETURNS [old: GreeterProc];

SetHost: -StarWindowShell-PRocEDURE [sws: Handle, host: Handle]
RETURNS [old: Handle);

Setlmplementation: -Containee-- PROCEDURE [NSFile. Type, Implementation1
RETURNS [Implementation);

Setlmph!mentation: -Undo- PROCEDURE [Implementation] RETURNS [Implementation];
SetinputFocus: -Form Window- PROCEDURE [

window: Window.Handle, item: ItemKey, beforeChar: CARDINAL "177777B];
SetinputFocus: -SimpleTextEdit- PROCEDURE [

f: Field, beforeChar: CARDINAL "1777778];
SetinputFocus: -TlP- PROCEDURE [

w: Window.Handle, takeslnput: BOOLEAN, newlnputFocus: LosingFocusProc "NIL,
clientData: LONG POINTER "NIL];

SetintegerltemValue: -Form Window- PROCEDURE [
wi~dow: Window.Handle, item: Item Key, newValue: LONG INTEGER,
repaint: BOOLEAN "TRUE];

SetlsCloseLegalProc: -StarWindowShell- PROCEDURE [
sws: Handle, proc: IsCloseLegaIProc];

SetitemBox: -Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey, box: Window.Box];

SetltemNameWidth: -MenuData- PROCEDURE [item: Item Handle, width: CARDINAL];
SetitemWidth: -Form Window- PROCEDURE [

window: Window.Handle, item: ItemKey, width: CARDINAL];
SetKeyboard: -KeyboardKey- PROCEDURE [keyboard: BlackKeys.Keyboard];
SetLimitProc: -StarWindowShell- PROCEDURE [sws: Handle, proc: LimitProc]

RETURNS [old: LimitProc);
SetLONGINTEGER: -AtomicProfile- PROCEDURE [

atom: Atom.ATOM, int: LONG INTEGER];
SetManager: -TlP- PROCEDURE [new: Manager] RETURNS [old: Manager];
SetMark: -ContainerCache- PROCEDURE [cache: Handle, index: CARDINAL]

RETURNS [mark: Mark1;
SetMiddlePusheeCommands: --StarWindowShell- PROCEDURE [

sws: Handle, commands: MenuOata.MenuHandle];
SetMode: - TIPStar- PROCEDURE [

mode: Mode, modeChangeProc: ModeChangeProc "NIL,
clientOata: LONG POINTER "NIL] RETURNS [old: Mode];

SetMultipleChoiceltemValue: --Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey,
newValues: LONG DESCRIPTOR FOR ARRAY CARDINAL OF Choicelndex,
repaint: BOOLEAN "TRUE1;

SetName: -StarWindowShell-- PROCEDURE [SWS: Handle, name: XString.Reader];
SetNamePicture: --StarWindowShell-- PROCEDURE [

sws: Handle, picture: XString.Character];

~,

ViewPoint Programmer's Manual

SetNextOutOfProc: -Form Window- PROCEDURE [
window: Window.Handle, item: ItemKey, nextOutOfProc: NextOutOfProc]
RETURNS [old: NextOutOfProc1;

SetNotifyProc: -np- PROCEDURE [window: Window.Handle, notify: NotifyProc]
RETURNS [oldNotify: NotifyProc];

SetNotifyProcForTable: -np- PROCEDURE [table: Table, notify: NotifyProc]
RETURNS [oldNotify: NotifyProc);

SetParent: -Window- PROCEDURE [window: Handle, newParent: Handle]
RETURNS [oldParent: Handle];

SetPlace: -SimpleTextEdit- PROCEDURE [f: Field, place: Window.Place);
SetPreferredDims: -StarWindowShell- PROCEDURE [

sws: Handle, dims: Window.Dims1;
SetPreferredlnteriorDims: -StarWindowSheIlExtra2- PROCEDURE [

sws: StarWindowShell.Handle, dims: Window.Dims];
SetPreferredPlace: -StarWindowShell- PROCEDURE [

sws: Handle, place: Window.Place];
SetReadOnly: -FormWindow-- PROCEDURE [

window: Window. Handle, item: Item Key, readOnly: BOOLEAN]
RETURNS [old: BOOLEAN);

SetReadOnly: -SimpleTextEdit- PROCEDURE [f: Field, readOnly: BOOLEAN]
RETURNS [old: BOOLEAN);

SetReadOnly: -StarWindowShell- PROCEDURE [sws: Handle, yes: BOOLEAN];
SetRegularCommands: -StarWindowShell- PROCEDURE [

. sws: Handle, commands: MenuData.MenuHandle];
Sets: -XCharSets- TYPE = MACHINE DEPENDENT{

latin, firstUnused 1, lastUnused1(32), jisSymboll, jisSymbol2, extendedLatin,
hiragana, katakana, greek, cyrillic, firstUserKanji 1, lastUserKanji 1 (47), .
firstLevell Kanji, lastLevel1 Kanji(79), firstLevel2Kanji, lastLeveI2Kanji(115),
jSymbol3, firstUserKanji2, lastUserKanji2(126), firstUnused2,
lastUnused2(160)", firstReserv~d 1, lastReserved 1 (223), arabic, hebrew,
firstReserved2, lastReserved2(237), generalSymbols2, generalSymbols 1,
firstRendering, lastRendering(253), userDefined, selectCode};

SetScroliData: -StarWindowShell-- PROCEDURE [sws: Handle, new: Scroll Data]
RETURNS [old: ScroIiData];

SetSelection: -Form Window- PROCEDURE [
window: Window.Handle, item: Item Key, firstChar: CARDINAL "0,
lastChar: CARDINAL "1 n777B);

SetSelection: -SimpleTextEdit- PROCEDURE [
f: Field, firstChar: CARDINAL "0, lastChar: CARDINAL "177777B];

SetShowKeyboardProc: -KeyboardKey- PROCEDURE [ShowKeyboardProc];
SetSibling: -Window- PROCEDURE [window: Handle, newSibling: Handle1

RETURNS [oldSibling: Handle];
SetSleeps: -StarWindowSheIlExtra- PROCEDURE [

sws: StarWindowShell.Handle, sleeps: BOOLEAN1 RETURNS [old: BOOLEAN];
SetSource: -ContainerWindow- PROCEDURE [

window: Window. Handle, newSource: ContainerSource.Handle1
RETURNS [oldSource: ContainerSource.Handle];

SetState: -StarWindowShell- PROCEDURE [sws: Handle, state: State);
SetStreakSuccession: -Form Window- PROCEDURE [

window: Window. Handle, item: ItemKey, new: StreakSuccession1
RETURNS [old: StreakSuccession);

SetStreakSuccession: -SimpieTeJftEdit- PROCEDURE [
f: Field, new: SimpleTextDisplay.StreakSuccession1
RETURNS [old: SimpleTextDisplay.StreakSuccession);

SetString: -AtomicProfile-- PROCEDURE [
atom: Atom.AToM, string: XString.Reader, immutable: BOOLEAN ~FALSEJ;

D

D-41

D

D-42

Listing of Public Symbols

SetSwapltemProc: -MenuData- PROCEDURE [menu: MenuHandle, new: SwapltemProc] ~
RETURNS [old: SwapltemProc);

SetTable: -np- PROCEDURE [window: Window.Handle, table: Tablel
RETURNS [oldTable: Table];

SetTableAndNotifyProc: - TlP- PROCEDURE [
window: Window.Handle, table: Table "NIL, notify: NotifyProc "NIL];

SetTableLink: -TIP- PROCEDURE [from: Table, to: Table] RETURNS [old: Table];
SetTableOpacity: -T/P- PROCEDURE [table: Table, opaque: BOOLEAN]

RETURNS [oldOpaque: BOOLEAN);

SetTabStops: -Form Window- PROCEDURE [
window: Window. Handle, tabStops: TabStops);

SetTextltemValue: -Form Window- PROCEDURE [

window: Window. Handle, item: Item Key, newValue: XString.Reader,
repaint: BOOLEAN "TRUE];

SetTopPusheeCommands: -StarWindowShell- PROCEDURE [

sws: Handle, commands: MenuData.MenuHandle);
SetTransitionProc: -StarWindowShell-- PROCEDURE [

sws: Handle, new: TransitionProc] RETURNS [old: TransitionProc];
SetUseBadPhosphor: -Window- PROCEDURE [Handle, BOOLEAN] RETURNS [BOOLEAN];

SetUserAbort: -TlP- PROCEDURE [Window.Handle];
SetValue: -Simple TextEdit- PROCEDURE [

f: Field, string: XString.Reader, repaint: BOOLEAN '"TRUE);
SetVisibility: -Form Window- PROCEDURE [.

window: Window.Handle, item: Item Key, visibility: Visibility,
repaint: BOOLEAN '"TRUE];

SetWindowltemSize: -Form Window- PROCEDURE [

window: Window.Handle, windowltemKey: ItemKey, newSize: Window.Dims]; ~
ShellEnumProc: ~StarWindowShell- TYPE = PROCEDURE [sws: Handle]

RETURNS [stop: BOOLEAN "FALse];

ShellFromChild: -StarWindowShell- PRoceDURE [child: Window. Handle]
RETURNS [Handle];

ShellType: ·-StarWindowShell- TYPE = MACHINE DEPENDENT{

regular, keyboard, psheet, attention, static, last(1 S)};
Shift: -Display- PRoceDURE [

window: Handle, box: Window.Box, newPlace: Window.Place];
ShiftState: -KeyboardWindow- TYPE = {None, One, Two, Both};
ShortLifetime: -BWSZone- PROCEDURE RETURNS [UNCOUNTED ZONE);
shortLifetime: -BWSZone- UNCOUNTED ZONe;

ShowKeyboardProc: -KeyboardKey- TYPE = PROCEDURE;
Signal: -Containee- SIGNAL [

msg: XString.Reader '"NIL, error: ERROR "NIL, errorData: LONG POINTER "NIL];

Signal: -ContainerSource- SIGNAL [

each!: ErrorCode, msg: XString.Reader "NIL, error: ERROR "NIL,
errorData: LONG POINTER "NIL];

SimpleDestroyProc: -Context- DestroyProcType;
Sin: -XLReal- PROCEDURE [radians: Number] RETURNS [sin: Number];
SizeColumn: ·-FileContainerSource- PROCEDURE

RETURNS [multipleAttributes ColumnContentslnfo];
Skip: -XToken-- PROCEDURE [

h: Handle, data: FilterState, filter: FilterProcType,
skiplnClass: BOOLEAN "TRUE];

SkipMode: -XToken-- TYPE = {none, whiteSpace, nonToken};
SleepOrDestroy: ·-StarWindowShell-- PROCEDURE [Handle] RETURNS [Handle];
Slide: -Window-- PROCEDURE [window: Handle, newPIace: Place];

ViewPoint Programmer's Manual

SlideAndS;ze: -Window- PROCEDURE [
window: Handle, newBox: Box, gravity: Gravity "nw];

SlideAndSizeAndStack: -Window- PROCEDURE [
window: Handle, newBox: Box, newSibling: Handle, newParent: Handle "NIL,
gravity: Gravity .. nw];

SlideAndStack: -Window- PROCEDURE [
window: Handle, newPIace: Place, newSibling: Handle, newParent: Handle "NIL];

SmaliPictureProc: -Containee- TYPE = PROCEDURE [
data: DataHandle "NIL, type: NSFile.Type "ignoreType,
normalOrReference: PictureState] RETURNS [smaIiPicture: XString.Character];

SocketNumber: -XFormat- PROCEDURE [
h: Handle "'NIL, socketNumber: System.SocketNumber, format: NetFormat];

SortOrder: -XString- TYPE = MACHINE DEPENDENT{
standard, spanish, swedish, danish, firstFree, null(2SS)};

SourceModifyProc: -ContainerWindow- TYPE = PROCEDURE [
window: Window.Handle, source: ContainerSource.Handle]
RETURNS [changelnfo: Contai nerSource. Changelnfo];

spares: -BWSAttribuieTypes- CARDINAL = 20;
Speciallndex: -XL Real- TYPE = NATURAL;
Spi nnaker: -ProductFactoringProducts- Product = 2;
SqRt: -XLReal-- PROCEDURE [Number) RETURNS [Number);
Stack: -Window- PROCEDURE [.

window: Handle, newSibling: Handle, newParent: Handle "NIL];
StandardClose: -StarWindowShell- PROCEDURE [sws: Handle] RETURNS [Handle1;
StandardCloseAII: -StarWindowShell- PROCEDURE [sws: Handle1 RETURNS [Handle1;
StandardCloseEverything: -StarWindowShell- PROCEDURE

RETURNS [notClosed: Handle].;
StandardFilterState: -XToken- TYPE = ARRAY [0 .. 11 OF UNSPECIFIED;
StandardLimitProc: -StarWindowShell-- LimitProc;
Star: --ProductFactoringProducts- Product = 0;
State: -StarWindowShell- TYPE = MACHINE DEPENDENT{

awake, sleeping, dead, last(7)};
StatusOfFiII: -ContainerCache- PROCEDURE [cache: Handle1

RETURNS [CacheFiIiStatus1;'
StopOrNot: -XString- TYPE = {stop, not} "not;
Store: -Cursor- PROCEDURE [h: Handle];
StoreCharacter: -Cursor- PROCEDURE [c: XChar.Character1;
StoreNumber: -Cursor- PROCEDURE [n: CARDINAL];
StoreTable: -npstar- PROCEDURE [Placeholder, TIP. Table1 RETURNS [TIP. Table1;
StreakNature: -XChar- TYPE = {leftToRight, rightToLeft};
StreakSuccession: -Form Window- TYPE = SimpleTextDisplay.StreakSuccession;
StreakSuccession: -SimpleTextDisplay- TYPE = {

leftToRight, rightToLeft, fromFirstChar};
StreamObject: -XFormat- PROCEDURE [sH: Stream.Handle] RETURNS [Object];
StreamProc: -XFormat- FormatProc;
StreamToHandle: -XToken- PROCEDURE [s: Stream.Handle] RETURNS [h: Handle];
String: -XFormat- PROCEDURE [h: Handle "NIL, s: LONG STRING];
StringArray: -.XMessage- TYPE = LONG DESCRIPTOR FOR ARRAY CARDINAL OF

XString.ReaderBody;
StringlntoBuffer: --Simple TextDisplay- PROCEDURE [

string: XString.Reader, bufferProc: BufferProc, lineWidth: CARDINAL "177777B,
wordBreak: BOOLEAN "TRUE, streakSuccession: StreakSuccession "fromFirstChar,
font: SimpleTextFont.MappedFontHandle "NIL]
RETURNS [lastLineWidth: CARDINAL, result: Result, rest: XString.ReaderBody];

StringlntoWindow: --SimpleTextDisplay-- PROCEDURE [
string: XString.Reader, window: Window. Handle, place: Window.Place,

D

0-43

D Listing of Public Symbols

IineWidth: CARDINAL "177777B, maxNumberOfLines: CARDINAL "1,
IineToLineDeltaY: CARDINAL "0, wordBreak: BOOLEAN "TRUE,
flags: BitBlt.BitBltFlags "LOOPHOLE(42000B]]
RETURNS [lines: CARDINAL, lastLineWidth: CARDINAL];

StringOfltem: -ContainerSource- StringOfltemProc;
StringOfltemProc: -ContainerSource- TYPE = PROCEDURE [

source: Handle, itemlndex: Itemlndex, stringlndex: CARDINAL]

RETURNS [XString.ReaderBody];
Stuff Character: - TlP- PROCEDURE [

window: Window.Handle, char: XString.Character) RETURNS [BOOLEAN];
StuffCurrentSelection: -TlP- PROCEDURE [window: Window.Handle]

RETURNS [BOOLEAN];
Stuff Results: -TIP- PROCEDURE [window: Window.Handle, results: Results);
Stuff STRING: -TIP-- PROCEDURE [window: Window.Handle, string: LONG STRING]

RETURNS [BOOLEAN); .

Stuff String: -TIP- PROCEDURE [window: Window.Handle, string: XString.Reader]
RETURNS [BOOLEAN];

StuffTrashBin: - TlP- PROCEDURE [window: Window.Handle) RETURNS [BOOLEAN];

Subtract: -XL Real- PROCEDURE [a: Number, b: Number] RETURNS [Number];
Subtractltem: -MenuData- PROCEDURE [menu: MenuHandle, old: ItemHandle];
SubtractPopupMenu: -StarWindowShell- PROCEDURE [
. sws: Handle, menu: MenuData.MenuHandle);

Subtype: -Prototype-- TYPE = CARDINAL;
Swap: -BlackKeys- PROCEDURE [old: Keyboard, new: Keyboard);
Swap: -Cursor- PROCEDURE [old: Handle, new: Handle];
Swap: ~SoftKeys-- PROCEDURE [

window: Window.Handle, table: TIP.Table "NIL,

notifyProc: TIP.NotifyProc "NIL, labels: Labels "xxx, _
highlightedKey:. CARDINAL "nuIiKey, outlinedKey: CARDINAL "null Key];

Swap: -StarWindowShell-- PROCEDURE [
new: Handle, old: Handle, poppedProc: PoppedProc "NIL];

SwapExisti ngFormWi ndows: -PropertySheet-- PROCEDURE [

shell: StarWindowShell.Handle, new: Window.Handle, apply: BOOLEAN "TRUE,

newMenultemProc: MenultemProc "'NIL, newMenultems: Menultems "LOOPHOLE[O],
newTitle: XString.Reader "NIL, newAfterTakenDownProc: MenultemProc "NIL]

RETURNS [old: Window.Handle];
SwapFormWindows: -PropertySheet- PROCEDURE [

shell: StarWindowShelI. Handle, newFormWi ndowltems: FormWi ndow. MakeltemsProc,
newFormWindowltemsLayout: FormWindow.LayoutProc "NIL, apply: BOOLEAN "TRUE,

destroyOld: BOOLEAN "'TRUE, newMenultemProc: MenultemProc "NIL,
newMenultems: Menultems "LOOPHOLE[O], newTitle: XString.Reader "NIL, .

newGlobalChangeProc: FormWindow.GlobalChangeProc "NIL,

newAfterTakenDownProc: MenultemProc "NIL] RETURNS [old: Window.Handle];
Swapltem;. -MenuData- PROCEDURE [

menu: MenuHandle, old: ItemHandle, new: ItemHandle);
SwapltemProc: -MenuData- TYPE = PROCEDURE [

menu: MenuHandle, old: ItemHandle, new: ItemHandle];
SwapMenultem: --Attention- PROCEDURE [

old: MenuData.ltemHandle, new: MenuData.ltemHandle);
Switches: --XToken-- FilterProcType;
SyntaxError: -XToken-- SIGNAL [r: XString.Reader];
systemFileCatalog: --BWSFileTypes-- NSFile.Type = 10476B;
systemFontHeight: -Simp/eTextDisp/ay-- READONLY CARDINAL;

~.'

View Point Programmer's Manual

Table: --TIP-- TYPE = LONG POINTER TO TableObject;
TableError: -TlP- TYPE = {fileNotFound, badSyntax};
TableObject: -TIP- TYPE;
TabStops: -Form Window- TYPE = RECORD [

variant: SELECT type: TabType FROM
fixed = > [interval: CARDINAL1,
vary = > [list: LONG DESCRIPTOR FOR ARRAY CARDINAL OF CARDINAL],
ENDCASE1;

TabType: -Form Window- TYPE = {fixed, vary};
Take: -ContainerSource- TakeProc;
TakeNEXTKey: -Form Window- PROCEDURE [window: Window.Handle, item: ItemKey];
TakeProc: -ContainerSource- TYPE = PROCEDURE [..

source: Handle, copyOrMove: Selection.CopyOrMove,
afterHint: Itemlndex "'nuilitem, withinSameSource: BOOLEAN "'FALse';
changeProc: ChangeProc "NIL, changeProcData: LONG POINTER" NIL,
selection: Selection.ConvertProc "NIL] RETURNS [ok: BOOLEAN1;

Tan: -XL Real- PROCEDURE [radians: Number] RETURNS [tan: Number1;
Target: -Selection~ TYPE = MACHINE DEPENDENT{

window, shell, subwindow, string, length, position, integer, interpressMaster,
file, fileType, token, help, keyboard, interscriptScript, interscriptFragment,
serialized File, name, fi rstFree, last(1 023)};

textFlags: -Display- BitBltFlags;
TextHintAction: -Form Window- TYPE = {replace, 'append, 'nil};
TextHintsProc: -Form Window- TYPE :I PROCEDURE [

window: Window.Handle, item: ItemKey)
RETURNS [" '.' '" ", "',

hints: LONG DESCRIPTOR FOR ARRAY CARDINAL OF XString:ReaderBody,
freeHints: FreeTextHintsProc, hintAction: TextHi'ntAction "replace];

ThumbFlavor: -StarWindowShell- TYPE = {downClick, track, upClick};
ThumbScroliProc: -StarWindowShell- TYPE = PROCEDURE [

sws: Handle, vertical: BOOLEAN, flavor: ThumbFlavor, m: INTEGER,
outOfN: INTEGER];

Ticket: -Containee- TYPE [2];
timeOnly: -XTime- XString.Reader;
TIPResults: -SimpleTextEdit- PROCEDURE [f: Field, results: TIP.Results1

RETURNS [tooklnputFocus: BOOLEAN, changed: BOOLEAN];
TotalOrPartial: -ContainerSource-TYPE = {total, partial};
Trajectory: -Display- PROCEDURE [. "

window: Handle, box: Window.Box "'xxx, proc: TrajectoryProc; ,
source: LONG POINTER "NIL, bpi: CARDINAL "16, height: CARDI'NAL "l6,'
flags: BitBltFlags "bitFlags, missesChildren: BOOLEAN "FALSE,
brick: Brick "xxx];

TrajectoryProc: -Disp/ay- TYPE = PROCEDURE [Handle]
RETURNS [Window.Box,INTEGER];

TransitionProc: -StarWindowShell- TYPE = PROCEDURE [
5WS: Handle, state: State];

Trapezoid: --Disp/ay-- TYPE = RECORD [
x: Interpolator, y: INTEGER, w: Interpolator, h: NATURAL];

, , .~,
TreatNumbersAs: --XTime-- TYPE = {. ".

dayMonthYear, monthDayYear, yearMonthDay, yearOayMonth, dayYearMonth,
monthYearDay}; ", ~

TrimBoxStickouts: --Window- PROCEDURE [winciow: Handle, box: BoxlRETURNS [Box1;
TTYObject: -XFormat-- PROCEDURE [h: TTY.Handle] RETURNS [Object);'
TTYProc: --XFormat-- FormatProc;

D

''';'·;0-45

D

'7'J.--fi_46

Listing of Public Symbols

Type: -Context- TYPE = MACHINE DEPENOENT{
all, first, lastAliocated(37737B), last(37777B)};

Type: -Cursor- TYPE = MACHINE OEPENDENT{
blank, bullseye, confirm, ftpBoxes, hourGlass, lib, menu, mouseRed, pointDown,

~",-,;, pointLeft, pointRight, pointUp, question Mark, scroll Down, scroll Left,
scroll LeftRight, scroll Right, scrollUp, scroliUpDown, textPointer,
grou~dedText, move, copy, sameAs, adjust, row, column, last(255)};

UnderO,angedProc:,'--Window- TYPE = PROCEDURE (Handle, Box];
Unintelligible: -XTimt!- ERROR [vicinity: CARDINAl];
UniqueAction:~Selection~ PROCEDURE RETURNS [Action];
Uni'queTarget: -Se/ection- PROCEDURE RETURNS [Target];
UniqueType: -Context- PROCEDURE RETURNS [type: Type);
UniqueType: -Cursor- PROCEDURE RETURNS [Type);
Units: -UnitConversion- TYPE = MACHINE DEPENDENT{

;J:~/' in'd,; mm, em, mica, point, pixel, pica, didotPoint, cicero,
seventySecondOf An Inch, I ast(1 S)};

unknownContex1:: -XString~ Context;
UnmapFont: -SimpleTextFantExtra- PROCEDURE [SimplerextFont.MappedFontHandle];
Unpack:-X7ime- PROCEDURE [.

time: System.GreenwichMeanTime "defaultTime, Itp: LTP "useSystem]
RETURNS [unpacked: Unpacked];

Unpacked: -XTime- TYPE = RECORD [
year: [0 .. 40708),
month: [0 .. 11],
day: [0 .. 31],
hour: [0 .. 23];
minute: [0 .. 59),

; ~ ;secOnd':[O.~59],
weekday: [0 .. 6],

c ; \::: ,-;Edst":: BOOLEAN,· >. :

zone: System.LocaITimeParameters);
UhpostedSwaplte"mProc: -MenuData- SwapltemProc;
UnsignedDecimalFormat: -XFormat~ NumberFormat;

.l;'(fn'ferminatedQuote: -':'XToken- SIGNAl;
~~:'Update: ~Conta"'nerWindow- PROCEDURE [window: Window.Handle];

UpperCase: -XChar- PROCEDURE [c: Character} RETURNS [Character);
~b;;:\USf!GMT: ~XTime- useThese Lrp;-

UserAbort: -TIP- PROCEDURE [Window.Handle] RETURNS [BOOLEAN];
userPassword: -StarDesktop- Atom.ArOM;
useSystem: -XTime- useSystem L TP;
Valid: -Window- PROCEDURE [Handle] RETURNS [BOOLEAN];
Validate: -Window- PROCEDURE [window: Handle];
ValidateReader: -XString- PROCEDURE [r: Reader];
ValidateTree: -Window- PROCEDURE [window: Handle "rootWindow];
ValidExponent: -XLReal-TYPE = [.. 512 .. 511];
Value: -Selection- TYPE = RECORD [

value: LONG POINTER,
ops: LONG POINTER TO Val ueProcs "NIL,
context: LONG UNSPECIFIED "0);

ValueCopyMoveProc: -Se/ection- TYPE = PROCEDURE [
v: ValueHandle, op: CopyOrMove, data: LONG POINTER];

ValueFreeProc: -Selection-- TYPE = PROCEDURE [v: ValueHandle];
ValueHandle: -Selection-- TYPE = LONG POINTER TO Value;
ValueProcs: -Selection-- TYPE = RECORD [

free: ValueFreeProc 4 NIL, copyMove: ValueCopyMoveProc "NIL];

'~

ViewPoint Programmer's Manual
,.-.. ---.£ :uea;;::

VanillaArrowScroll: -StarWindowShef!- Ar:rowScrolI Proc;; \- :I~i- : ~r~vl
vaniliaContext: -XString-Context; '.' ~..i",':li:::;;~t:>l .,Ii:

vanillaScroliData: -StarWindowShell- ScrolJ,Data; '-, --',C"'l))- .:;.' > .
VaniliaThumbScroll: ::StarWindowSh~lI- ThumbScroll~~pc;. .>int.:lc
version: -BWSAttribute Types-~~F~le~~xtendedAttri bute~yp'~)= '19460B;
Version: -Prototy~TYPE = CARDINAL;:,,- " ... il""~ .;'" ·:.;:h::i_:;I('i';j~
VersionColumn: -FiieConfainerSourceExtra- P,RO<;E[)URE , ;;:"~ ,OJ ,tiC.i:

(I D
==

RETURNS [attribute FileContainerSource.ColumnCq"ten~f~r.l'~:; ; "~J
ViewPoint: -ProductFactoringProducts- Pr:oduct = '5;..' ;;P!~t1~itL.~
ViewPointApps: -rProductFactoringProducts-Prqduct.,;:,!6i;:"7~' ,'~JDI.1~
Visibility: -Form Window;'" TYPE ~(visible, invi~iple,jnvisibleGhos~};·. 'J
WaitSeconds: -np~ PR~CEDl:JRE [seconds: CARDINAL]; \:,,,'- :~;'·q'("';'t"':J.Jt:'
When: -StarWindowShell-:- TYPE, = {beforefafter};.. ,,')- ''',:1,,:; '!'T'~~' ;~'~G
White: -Display- PROCEDURE {.,' : '":" _';'_'~'-:·\',.!f"':";"'~"p;{.!-- ,.;.>~,;~":

window: Handle, box: Wir'ICiow.Box, bounds: Window.BoxHan~e "NIL];
WhiteSpace:' -XToken.:- FilterProcType; '::. ~:-,,',:~: :,l-yr;~:)~~ v: t;· . 'fjC

WordsForBitmapUnder: -Window- PROCEl¥J~E.[wiod9w:~ ~c;t,,~"l RETU~NS [CARDINAL];
Writer: -XString~,TYPE= LONG POINTER To.Writ,rBody;. --::"}0=10f::r:1,iL.

WriterBady: --xString:'" TYPE = . PRIVATE MACHINE DEPENDEN:r\RE.s:;OR:DJ ">~"'"
context(O:0 .. 1S):Context, "ii ":> .:;':."::)~:: !'--:~~"':. : ... r"'L~
limit(1:0 .. 1S):CARDINAL,'· ,,' ':~)-:,;,;::;s:';';:" ~':'.-,"J
offset(2:0 .. 1S): CARDINAL, .-"", ';-';'),-- ::':-~'.~)6q~,U
bytes(3:0 .. 31): Bytes, .;~:{j'\=~.t. .. T"<;;;!,\
maxLimit(5:0 .. 1S): CARDINAL, ,~' ! . 0: :1:f':':)fr;.

endContext(6:0 .. 1S): Context, .f! f. .. L] . yL.O
zone(7:0 .. 31): UNCOUNTED ZONE); J t'!: -c~ "'-.1::'1'-;

WriterBodyFromBlock: -XString- PROCEDURE [~~Z:,.J1s.llJnir'"'
block: Environment.Block, inUse: CARDINAL "OJ RETURNS: [vyr~ter~9dy];

WriterBodyFromNSString: -XString- PROCEDURE [.. '",; : .. :.<.}~ W

s: NSString.String, homogeneous: BOOLEAN "FALSE) RETURNS £W!,i~,~8ody];
WriterBodyFromSTRING: -XStri'!g- ~ROCEDU~E.[~ ;' .• :::-:'~., ,;"~' . y: :~'!"C.:i:

S: LONG STRING, homogeneous:.BO~LEAN '"FALSE) ~ErUR:NS,®i~~r'oc:f:y);}
Writerlnfo: -XString~PRQ<:EDU~E [w:.Writerl" .(,'(t ,.,,;;:>.?~;:;-, . ;' U

RETURNS [unused: CARDINAL, endCo'ntext: Context, zon~:;,,uNC;:Ql:JNTsQ l,QNE];
WriterObject: -X~ormat-PROCEDURE [w: XString. Write~J..ReTURNS [Objec:t];
WriterProc: "':'XFormat- FormatProc' ., - , ~", ~ " '_,' -::~, i' ; i,

, ,"' • . .'. _ ... ". f ... _.. ~""'"

XFormatObject: -MessageWindow- PROCEDURE' ['!Vi ~dow:: WindQV'i H.~odle]
RETURNS [0: XFormat.Object];.: ',,'~ \, . _ .: ::.,' , ·~\·."i· -- ::'::: ,:~S(;~~

xorBoxFlags: -Display- BitBltFf.ags; ,:, .. ' _. t.,- - '. - : =':;:)~,\ ,;: 6;i.,~,ti.J
xorFlags: -Display- BitBltFlags; _ 'P7? . _ :; ", ,;,4; ;:,-' 7":";i~,!2~2't.,l
xorGrayFlags: -Display--BitBltFI~gs; ,:" ') , _ ,,;";; -".", -',~::r,:';~-· ~bijs\{
zero: -XL Real- Number; ~' " ,.;' .. ' SL; V
Zone: -Undo- PROCEDURE RETURNS [UNCOUNTED ZQNE}; " ,:,~ L ~ .~' r.'

1~,,,©-47

D Listing of Public Symbols

0-48

ViewPoint Programmer's Manual 77

name is the name of the table.

fillinByRow determines what happens when the user presses the NEXT key. IffilllnByRow is
TRUE, pressing the NEXT key advances through the table one row at a time, and the table is
expanded by rows. In this case, the number of columns is rlXed and the number of rows can
be either rued or varying. If fillinByRow is FALSE, then pressing the NEXT key advances
through the table one column at a time, and the table is expanded by columns. In this case,
the number of rows is rIXed and the number of columns can be either fixed or varying.
fixedRows and fixedColumns indicate whether the user can change the number of rows
and columns in the table.

numberOfColumns and numberOfRows are used as hints for StartTable.

visibleHeader indicates whether there should be a visible header at the top of the table;
repeatHeader, repeatTopCaption, repeatBottomCaption indicates whether or not to
repeat these items on every page if the table occupies multiple-pages.

borderline describes the table border (not the f~ame border), and dividerline describes the
line between the header row and the rest of the table. A line can have a width anywhere
from one pixel to six pixels.

Li ne: TYPE • RECORD [

linestyle: Linestyle.
linewidth: linewidth];.

Linestyle: TYPE • MACHINE DEPENDENT!
. =_._/n\ =.';.1 d·· 6 • .1 .eM-" .I- hi. h._'", li,e." .;I.hl. I.... o".hl./-trr\l __

