ViewPoint
Programmer’s Manual

XEROX

™

610€00191
October 1988

Xerox Corporation)
XDE Technical Services, MS SV403
475 Oakmead Parkway
Sunnyvale, California 94086

Copyright © 1986, 1988, Xerox Corporation. All rights reserved.
XEROX ®, 8010, 6085, ViewPoint, and XDE are trademarks of XEROX CORPQRATION.

Printed in U.S. A.

Table of Contents

SYSTEM LEVEL INTERFACES

1.1
1.2

2.1

2.2
2.3

3.1

T-1

Introduction

Document Structure e e e e e
Getting Started iiit it ittt it it e i ettt

Overview

What Is ViewPoint? ... it it it ettt ettt
2.1.1 User Abstractionscoiiiiiiiiiiiiiie it
2.1.2 Client Abstractions ..., e
2.1.3 System SEIUCtUIE ... vt ettt i e e
HiStory .o e e
Philosophy and Conventionsottt
2.3.1 Supported PublicInterfaces oottt
2.3.2 Plug=ins e
2.3.3 Don'tPreemptthe User
2.3.4 Don’tCallUs, We'llCall Youc i

Programmer’s Guide

3.1.1 Guidetothe Guide
3.1.2 Containee
3.1.3 Application Windows
314 MenUS ..

2-1

Table of Contents

3.2

3.3

3.4

3.5

4.1
4.2

4.3
4.4

T-2

3.1.5 Managinga Body Window i i 3-4
3.1.5.1 DISplay ... e 3-4
3152 TIPand TIPStarcoiiiiiiiii ittt 3-5
3.1.5.3 Context ... e e 3-6
3.1.5.4 Selection it e e e 3-6

3.1.6 Property Sheetsand FormWindow i, 37

3L XString, et al. i i e e e 3-8

3.1.8 XMessageand Attention ittt i 3-9

3.1, ContaiNerS ... it et 3-9

31,10 SoftKeyS ..ottt e 3-11

3.1.11 Client-Defined Keyboardscoiiiiiiiiiniii i 3-11

3.1.12 BackgroundProcess ...ttt e 3-12

Getting Started e e e e 3-12

3.2.1 Simplest Applicationco it e 3-12

3.2.2 Teon Application e 3-13

3.2.3 Operational Notesouiiiuiitiiiiiii i, 3-15-

Flow Descriptions it i i e et et i 3-15

3.3.1 Selectanlconcooiiiinn.... P e 3-15

3.3.2 PROPSofanlconciiiiimiiiiiii i e 3-16

3.3 .3 OPEN anIcon i i e e 3-17

3.3.4 COPY Somethingtoanlecon e 317

Programming Conventionsc..oiiiiiiiiiiiiiiiiiiiiiiia 3-18

34l NotHIer i e e e 3-19

3.4.2 Multiple Processes, MultipleInstances 3-20

3.4.3 Resource Managementcoiitiinitinrreremnnereineenninenninnns 3-20

3.4.4 Stopping Applications 3-21

3.4.5 Multinationalityttt it e 3-21

Summaryof Interfaces e 3-22

AdjustableWindow

OVeIVIBW . L e e 4-1

Interface [tems 4-1

5/ 4-1

4.22Adjustand Limit Procs 4-2

4. 2 3 Ut abeS .. o 4-2

4 2 A Friends ... 4-3

L 30 0 5 o o) < 4.3

Usage/Examples e 4-3

Indexof Interfaceltems RETT e 44 A

ViewPoint Programmer’s Manual

5.1
5.2
5.3
5.4

6.1
8.2

6.3
6.4

7.1
7.2

7.3
7.4

8.1
8.2

8.3
8.4

9.1
9.2
2.3

ApplicationFolder

VBV W .ottt e e e e e 5-1
Interface Items i 5-1
Usage/Examplesoiinin ittt et ettt ettt 5-2
Indexof Interface Items it 5-5
Atom

VeIV eW . . e e e 6-1
Interface Items i 6-1
6.2.1 Making AtOmSt e e e e 6-1
8.2, BITOr ... e e e e e 6-2
6.2.3 Property Lists i 6-2
6.2.4 Enumerating AtomsandProperty Lists L. 6-2
Usage B aamples it it it i e e e e 6-3
IndexofInterface [temsottt i 6-5
AtomicProfile

L8 3 s T3 7-1
Interface tems i e e e 7-1
T.2.1 Boolean Valtescoutiii ittt ittt tiee i itie e 7-1
7.2 2 Integer Values ittt ittt ittt i eiie et 7-1
7.2.3 String Values ...t e e 7-2
Usage/Examplesttt e 7-2
IndexofInterface Items i i e 7-4
Attention

L0 o - 8-1
Interfaceltems e 8-2
8.2.1 SImple MeSSageS .. .uiiitti ittt it e e 8-2
8.2.2 SHickY MeSSaES ..ottt ittt it 8-2
8.2.3 Confirmation MesSSagesuuuiiiiieeienetniiin ... 8-2
8.2.4 System MenuU 8-3
Usage/Examples e 8-3
IndexofInterface [temso iiiiiiiiiii i .. 85
BackgroundProcess

VeV eW . . i e 9-1
Interface [tems 9-1
Usage/Examples 9-3
9.3.1 Posting Messages 9-3

Table of Contents

9.4

10

10.1
10.2

10.3

10.4

11

111

11.2

11.3
11.4

12

12.1
12.2
12.3
12.4

T-4

9.3.2 Aborting Processes PP
9.3.3 Example e
IndexofInterface Items i

BlackKeys

10.2.1 Keyboard Data Structuresciiiiiiiiiinnnnnnnnnnnnn...
10.2.2 Getting a Handle to the Current Keyboard
10.2.3 Procedures i e e e
10.2.4 EIrTors ...t e e e
Usage/Examples
10.3.1 Defininga KeyboardRecordc0iiiiiiiiiiniininnn..
IndexofInterface Items i e

BodyWindowParent

L0 - o T O
11.1.2 Body Windows Discussioncoviiiiinitiiiniin i,
Interface [tems i i e
11.2.1 Body Parent Windows iiiiiiiiiiiii ittt
11.2.2 Body WIndows i e
11.2.3 Serolling ...

11.2.3.1 SerollProcsoovvti i

11.2.3.2 Getting and Setting ScrollProes

11.2.3.3 Default SerollProcsc..iiiiiiiiiii i,
B0 0 O 5+ - T
11 2 S B ITOrS .. it e e e
Usage/Examples ... i i
IndexofInterface [tems i

Busylcon

L V- L

10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-3
10-5

11-1
11-1
11-2

e A~

11-3
11-3
11-4
11-5
11-6
11-6
11-7
11-7
11-8

ViewPoint Programmer’s Manual

13

13.1
13.2

13.3

14

14.1
14.2
14.3

15

15.1
15.2
15.3

16

16.1
16.2

16.3

17

171

17.2

17.3
17.4

BWSAttributeTypes

VBV W .. e e 13-1
Interface Items ... i i i e e 13-1
13.2.1 Available Application Types e 13-1
13.2.2 Viewpoint Typesctniiiiiiiiiiiieiae i eiiine s, 13-2
Indexof Interface Items i ittt ittt 13-3
BWSFileTypes

L0 3 o T3P 14-1
Interface [tems oo i et 14-1
Indexof Interface [tems ittt e 14-2
BWSZone

L0 o T 15-1
Interface Itemso e 15-1
Indexof Interfaceltems ,........ ..o iiuiiiiiiiinniiiiiiii i ... 152
Catalog

OVEIVIEW . ..'etieienrieeeeiieeeeannennn SO 16-1
Interface ltems e 16-1
16.2.1 Finding and Creating FilesinaCatalog 16-1
16.2.2 Operatingon Catalogsouiiiiiiiirimmin i, 16-2
Indexof Interface [tems i i i i 16-3
Containee

10 e TP 17-1
17.1.1 Background ...ttt ittt e e 17-1
17.1.2 Containee.Implementation it 17-1
17.1.3 Containee.Data ittt 17-2
Interfaceltems i e e 17-2
17.2.1 Items for Application Implementors 17-2
17.2.2 Items for Application Consumers i, 17-8
17.2.3 DefaultImplementation ittt 17-8
17.2.4 Attribute Cache i 17-9
ErrorsandSignals e 17-11
Usage/Examples 17-11
17.4.1 Sample Containeet 17-1
17.4.2 ChangeProcExample 17-14
17.4.3 Errorand Signal Usage i 17-15

Table of Contents

17.5

18

18.1
18.2

18.3

18.4

19

19.1
19.2

19.3
19.4

19.4

20

20.1
20.2

20.3

T-6

Indexof Interface Items i i i e . 17-16
ContainerCache
OV BIVIBW .ottt ittt ettt e et 18-1
Interface [temS i i e 18-1
18.2.1 Cache Allocationand Managementc.cvviiinennn.n. 18-1
18.2.2 FillingtheCache it e, 18-2
18.2.3 Item Operationscoiiiiiiin it itiie ettt e 18-2
18.2.4 Item Content Operationsc.ccciiiiiiiiiiiiiinnerinnnnnnn. 18-4
18.2.5 Marking ItemsintheCache i, 18-4
Usage/Examplesttt ettt e e e 18-5
18.3.1 Example of ContainerCacheUse iiiiiiriiriinennn.. 18-6
IndexofInterface [tems i i e 18-8
ContainerSource
L0 1S o T .. 19-1
Interface Items 19-2
19.2.1 Handle, Procedures, and ProceduresObject 19-2
19.2.2 Procedures That Operate on Individual [tems . R 19-3
19.2.3 Procedures That Operate on the Entire Source 19-5
19.2.4 ChangeProc Typesottt ettt et 19-7
19.2.5 Marks e e e 19-8
19.2.6 ContainerSource Lockingand BusyRoutines 19-10
D 0 8 7 o < . J A 19-10
19.2.8 GlobalChange Procot 19-11
1929 INLINESciiviiiiiinnn.. e e 19-12
ContainerSource and ConCUITENCYcutitrriiinneeieiiiiinaaaaannss 19-12
Usage/ExXamplesottt tie ittt ita ettt ettt 19-12
19.4.1 ContainerSource Example i 19-12
19.42 Errorsand Signals ittt 19-14
19.4.3 Source Locking for Concurrencyo iiiiiiineaii.. 19-14
Index of Interface Items e 19-18
ContainerWindow
OV VIOW . e 20-1
Interface Items 20-1
20.2.1 Create and Destroy a ContainerWindow, 20-1
20.2.2 Ttem Operationsttt 20-3
20.2.3 Operationsona ContainerWindow 20-4
20.2.4 EITOTS 20-5
Usage/Examples I 20-5

ViewPoint Programmer’s Manual

20.4

21

21.1
21.2

21.3

21.4

22

22.1
22.2

22.3
22.4

23

23.1

23.2

23.3
23.4

24

24.1
24.2

Indexof InterfaceItems i i 20-8
Context

10 o T 21-1
Interface Items i i e e 21-1
21.2.1 Creating/Destroyinga Contextcoiieriiirirrrninnneeenennn. 21-1
21.2.2 Findinga ContextonaWindowccoiiiiiiiiiiiiiininnnnnnn. 21-2
21.2.3 Acquiring/ReleasingtheContext i, 21-3
21.2.4 BITOrS ...t e e e 21-3
Usage/Examplesottt 21-4
21.3.1 Example ... e e e e 21-4
IndexofInterface Items i e 21-6
Cursor

103 o T3 22-1
Interface Items i e e 22-1
22.2.1 Major Data Structuresoiiiiiiiiiniine it 22-1
22.2.2 Settingthe Cursor Picture ittt 22-2
22.2.3 Getting Cursor Information i, 22-2
22.2.4 Miscellaneous Operationscooiiiiiiiiiiiiiiiiiiiniia., 22-3
22.2.5 Client-Defined CUrSOrSc.vitertirinranineiinineneaeanennnns. 22-3
22.2.6 Cursor Picture Manipulation e 22-3
Usage/Examplesttt it ittt e 22-3
Interface [tem Index i e 22-5
Directory

L0 -3 o U3 23-1
23.1.1 Predefined Divider Structure i, 23-1
Interface Items oo i i i e e e 23-1
23.2.1 Adding Items toa Predefined Divider 23-1
23.2.2 GetDividerHandle 23-2
Usage/Examples i 23-2
Indexof Interfaceltems e 23-4
Display

VBTV I W L it 24-1
Interface [tems e 24-1
24.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines 24-1
24.2.2 Painting Bitmapsand Gray Bricks 24-2
24.2.3 Painting Points, Slanted Lines,and Curved Lines 24-4
24.2.4 Painting Parallelogramsand Trapezoids 24-8

Table of Contents

T-8

24.3

24.4

25

25.1
25.2

256.3

25.4

26

26.1
26.2

26.3

26.4

27

27.1
27.2

27.3

27.4

28

28.1
28.2

24.2.5 Painting along Trajectories, Shifting Window Contents 24-7
Usage/Examples i 24-8
24.3.1 Special Topic: Directpainting i 24-8
24.3.2 Example 1 i i e e e e e 24-9
IndexofInterface [temst e 24-12
Divider
L0 o - 25-1
Interface [tems i e 25-1
25.2.1 Creatingand Destroyingiiitritiiiiennnnnnnnenennnns 25-1
25.2.2 ConvertProcand GenericProccoiii i 25-2
25.2.3 Addingand FindingEntries i 25-3
Usage/Examples ... e 25-3
25.3.1 Fragment from Directorylmpl.mesa 25-3
IndexofInterface Items ittt it i 25-6
Event
VeI VIeW . i e et 26-1
Interface Items e e e 26-1
26.2.1 RegisteringDependenciesttt 26-1
26.2.2 Notificationoiiiiiiiii i i 26-2
Usage/Examples it it e e 26-3
26.3.1 Example 1 e e 26-3
26.3.2 Example 2 et 26-4
Indexof Interface Items i i e 26-5
FileContainerShell
LY o TS 27-1
Interface [tems ... i i e e 27-1
27.2.1 Createa FileContainerShellcciiiiiiiiiv . 27-1
27.2.2 OperationsontheShell e 27-2
Usage/Examples i i e e 27-3
27.3.1 Example: Creating a FileContainerShell and Specifying Columns 27-3
Indexof Interface [tems i 27-5
FileContainerSource
OV VI eW ..o it 28-1
Interface [tems 28-1
28.2.1 Creationooun o 28-1
28.2.2 SpecifyingColumns 28-2
28.2.3 Operations on SoUrCeS ottt 28-3

ViewPoint Programmer’s Manual

28.3

28.4

29

29.1

29.2

29.3

28.2.4 Commonly Used Columns iiiiiiriiiii it 28-5
Usage/Examples i e 28-5
28.3.1 Example: Specifying Columns Using FileContainerSource 28-5
Indexof Interfaceltems i, e 28-8
FormWindow
L0 -] T T3 29-1
29.1.1 Creatinga FormWindowot iiiiiiiriinrrinnrninnnannnnns 29-2
29.1.2 MakingFormItems i e 29-2
29.1.3 Gettingand Setting Values i i 29-2
29.1.4 "Changed” BOOLEAN ittt 29-3
29.1.5 Visibility et e e e e et et 29-3
29.1.6 Layout ... it i i it e e e i e e 29-3
29.1.7 Neutral Propertiesttt 29-3
Interface [tems i e e 29-4
29.2.1 Creatinga FormWindow,ete. i iiiiiiiiiiiiiiiiiiinnnn.. 29-4
29.2.2 Making FormItems,ete. i 29-7
29.2.2.1 BooleanItemscciiiiiiiii i . 29-8
29.2.2.2 Choice ltemsttt ittt it i i 29-9
29.2.2.3 Command Items SRR 29-12
29.2.2.4 Tagonlyltems e e, 29-13
29.2.2.5 Textand NumberItems 29-13
29.2.2.6 Window Items i i 29-16
29.2.2.7 DestroyingItemscciiiiiiiriiiii i 29-17
29.2.3 Gettingand SettingValues oottt 29-17
29.2.3.1 GettingValuesccciiiiiiiiiiiiii ittt 29-18
29.2.3.2 Setting Valuesl 29-19
29.2.4 "Changed”" BOOLEANt it 29-20
29.2.5 Visibillty ... e e 29-21
29.2.6 Layout ... et e e e e 29-22
29.2.6.1 Flexible Layout i, 29-22
29.2.8.2 Tabs i e e 29-24
29.2.6.3 Fixed Layout 0 i 29-25
29.2.7 Saveand Restore i 29-26
29.2.8 Neutral Properties U 29-26
29.2.9 Item Popup MenuUsttt it e 29-27
29.2.10 Miscellaneous TYPES i e 29-28
29.2.11 Miscellaneous Item Operationsciiiiiiiiiiena . 29-28
29.2.12 NEXT KoY .ot i e e 29-30
29.2.13 SIGNALsand ERRORs e 29-31
29.2.14 Multinational [tems 29-33
Usage/Examples 29-33

Table of Contents

29.4

30

30.1
30.2
30.3
30.4

31

31.1
31.2

31.3
31.4

32

32.1
32.2

32.3

32.4

T-10

29.3.1 Calling ChangeProcsco ittt e, 29-33
29.3.2 Creating a Simple FormWindow ciiiiiiiinnnna.. 29-34
29.3.3 Specifying Bitmaps in Choiceltems 29-35
29.3.4 The NEXT Keyand TextItemsccoiviuiiineinennnnnn... 29-36
29.3.5 Window [tems (Including Interaction with the NEXT Key) 29-37
20.3.6 Hintsvuitiiintt ettt ettt ettt ettt ittt e e 29-38
29.3.7 Savingand RestoringItems il 29-38
Indexof Interfaceltems i 29-39
FormWindowMessageParse R

L0) o U= 3P 30-1
Interface [tems i i e et e e 30-1
Usage/Examplesouiiiiniiiie it e 30-1
Indexof Interface [tems it i i e 30-3
IdleControl

L0 2 10 31-1
Interfaceltems et e e 31-1
31.2.1 DesktopPlug-in i e e 31-1
31.2.2 Greeter Plug-in i i i e e e 31-1
31,28 Idle LoOD ittt e e e e 31-2
Usage/Examplest i e e 31-2
IndexofInterface Items i it i e e 31-3
KeyboardKey

L0 Y o T A 32-1
Interface Items oo it et 32-1
32.2.1 System Keyboards e e 32-1
32.2.2 Client Keyboardscoiviiiiiiiiiii ittt 32-2
32.2.3 Setting and Enumerating Keyboards 32-2
32.2.4 Alternate Keyboard 32-3
32.2.5 Keyboard Window Plug-in i 32-4
K20 B 37 o o +) o T PO A 32-4
Usage/Examples e e 32-5
32.3.1 AddToSystémKeyboards Exampleo 32-5
32.3.2 Special Keyboard Example 32-5
32.3.3 Registering Multiple Client Keyboards Example 32-6
Indexof Interface Items e 327

ViewPoint Programmer’s Manual

33

33.1
33.2

33.3

33.4

34

34.1
34.2
34.3

35

35.1
35.2

35.3

35.4

36

36.1
36.2

36.3
36.4

KeyboardWindow

L0 T -3 33-1
Interface Items i i et 33-1
33.2.1 Default Valuesoiiiiiiiiiiii ittt ettt 33-1
33.2.2 Geometry TableStructureciiiiiiiiiriiiiiiiei ... 33-2
33.2.3 Bitmap Structureo i e e 33-3
33.2.4 Getting to the Keyboard WindowHandle 33-3
33.2.5 The Number Lock Key Statet .. 33-3
Usage/Bxampleso it i i e e e 33-4
33.3.1 Using DefaultPictureProccciiiiiiii i, 33-4
33.3.2 UsingdefaultGeometryot 33-4
33.3.3 Sample Geometry Table Entriescoiiiiiiiiiniiineennean 33-5
Indexof Interface [tems i i e e 33-6
LevellVKeys

OVervIeWceeviiinieennnnnnnnnn. e e 34-1
Interfaceltems v e e e e 34-1
Index of Interface ItemMS\'iniueineireie e, 34-3
MenuData

L0 - e 1= PP 35-1
Interfaceltems i 351
35.2.1 MenuandItem Creationoieiiiiiiiiiiniiii i, 35-1
35.2.2 MenuManipulation i 35-2
35.2.3 AccessingData e 35-3
Usage/Examples ittt P 35-4
35.3.1 Example 1 e et 35-4
35.3.2 Example 2 e 35-5
Indexof Interface [tems i it i e 35-7
MessageWindow

OVOVI W L 36-1
Interface [temMS e 36-1
36.2.1 Create, Destroy, ete. ittt e e 36-1
36.2.2 Posting Messagesttt e 36-2
Usage/Examples o it e 36-2
Indexof Interface [tems i i e 36-4

Table of Contents

37

37.1
37.2

37.3
37.4

38

38.1
38.2
38.3

38.4

39

39.1
39.2

39.3
39.4

40

40.1
40.2
40.3

41

41.1
41.2

T-12

OptionFile

L0 o 1= P 37-1
Interface Items o i e 37-1
37.2.1 Getting ValuesfromaFile i, 37-1
3722 Current Profiles it e 37-2
37.2.3 Enumeratinga File i e e e e 37-2
R o N] o Y < PPN 37-3
Usage/Examples et e e 37-3
Indexof Interface [tems i 37-5
PopupMenu

VBV W ...ttt et 38-1
Interfaceltems ettt e e e 38-1
Usage/Examples e ettt e 38-1
38.3.1 Example I 38-1
Indexof Interfaceltems it i 38-3
ProductFactoring

Overview et e e e e 39-1
Interface Items e 39-1
39.2.1 Products and ProductOptionscoiiiiiiiiiiiie i, 39-1
39.2.2 CheckingforanEnableOption i iina.. 39-1
39.2.3 Describingan ProductandanOption iiiai... 39-2
R 32 030 O o v - T 39-2
Usage/Examplesiiiiiiiiiit i ittt ettt e e 39-2
Indexof Interface ltems it i i it e 39-4

ProductFactoringProducts

Overview e e e e e e e e 40-1
Interface [tems e e 40-1
Indexof Interface Items i 40-3
PropertySheet

OVEEVIBW . . e 41-1
Interface [temS 41-2
41.2.1 Create a PropertySheet (Nota LinkedOne) oL 41-2
41.2.2 Menu Items and the MenultemProc 41-4
41.2.3 Linked PropertySheets 41-5
41.2.4 Miscellaneous e 41-8

ViewPoint Programmer’s Manual

41.3

41.4

42

42.1
42.2
42.3
42.4

43

43.1
43.2

43.4

44

44.1

41.2.5 Signalsand Errors i 41-8
Usage/Examplesciiiiiiiiiiiiiiinnnn.. e 41-9
41.3.1 Flow Description of Creating a PropertySheet 41-9
41.3.2 An Ordinary PropertySheet 41-10
Indexof Interface Itemso i 41-13
Prototype
L0 =Y o T 42-1
Interface Items i e 42-1
Usage/Examplescooiiiiiniiiit i e 42-2
Indexof InterfaceItems i e 42-3
Scrollbar
L0 S o T 43-1
Interface Itemsttt i e e e 43-1
43.2.1 Attaching Scrollbarso i 43-1
43.2.2 Scroll Proc TYPESand PROCS i ittt 43-2
43.2.3 Utlibies ittt i i e e e e 43-4
% B) (1 o o) < S 43-5
Indexof Interface Items 43-6
Selection
VeIV W L. e e e 44-1
44.1.1 Requestorsand Managersc.c.oeeiiiinmnineeeennannnnnnen... 44-1
44.1.2 EssentialsforaRequestorttt 44-2
44.1.2.1 Convert, Target, Value, Enumerate, CanYouConvert 44-2
44.1.2.2 Resource Allocation/Deallocation Considerations 44-3
44.1.3 EssentialsforaManager it 44-4
44.1.3.1 Set, ConvertProc, ActOnProc, ManagerData 44-4
44.1.3.2 More on Selection.Value, ValueFreeProc, and ValueCopyMoveProc 44-5
44.1.3.3 Storage Considerations for ConvertProc 44-5
44.1.3.4 Storage Considerations for ManagerData 44-6
Interfaceltems e 44-6
44.2.1 Requestorltems i, e 44-6
44.2.1.1 Convert ... i 44-6
44.2.1.2 QUEBIY ..t e 44-10
44.2.1.3 Enumeration 44-11
44.2.1.4 Copy, Move, Free,etc. i, 44-13
44.2.2 Manager [tems L 44-14
44.2.2.1 Set ... 44-14

T-13

Table of Contents

44.4

45

45.1

45.2

45.3

45.4

46

46.1

46.2

T-14

44.2.2.2 COnVErSION\ttt ittt et e 44-15
44.2.2. 8 QUELY .. it e e e 44-15
44.2.2.4 Enumeration i e 44-16
44.2.2.5 Free, Copy, Move,ete.iiiiiimiiiiiiiaannnaannn.. 44-16
44.2.2.5.1 Freet i e et 44-17
44.2.252 CopyandMovecciiiiiiiennnnnnnnn.n, 44-18
44 2. 2. 8 ActOn ... e e e e e 44-19
44.2.2.7 Save and Restore, Encapsulated Selections 44-20
44.2.2.8 Miscellaneousciiiiiiiiiiiiini i 44-21
44,28 BIrOrs .. e e 44-22
Usage/Examples i e 44-23
44.3.1 What Selectionis NOT i 44-23
44.3.2 Examples of Storage Allocation for Manager’s ConvertProc 44-23
44.3.3 Detailed Flowchart of a Selection.Convert 44-25
44 3.4 Sample ConvertProcandRequestor, 44-26
44.3.5 Sample Useof Enumeration iiiiiiiniiiiinnn... 44-29
Indexof InterfaceItems il 44-31
SimpleTextDisplay
VeI VIeW L i e e e e 45-1
Interface Items ...t e e 45-1
45.2.1 Simplest Wayto Display Textt 45-1
45.2.2 StringIntoBuffer i 45-2
45.2.3 Measureand Resolvettt 45-4
45.2.4 Multinationalltems i 45-5
Usage/Examples ittt e e e et 45-6
45.3.1 StringIntoWindow 45-6
45.3.2 StringlntoBuffer i 45-6
IndexofInterfaceItems 45-8
SimpleTextEdit
OV VIBW L 46-1
46.1.1 Creating Fields i 46-1
46.1.2 Displayinga Field 46-1
46.1.3 Notifyinga Field 46-2
Interfaceltems e 46-2
46.2.1 FieldContextttt 46-2
46.2.2 Creating Fields 46-3
46.2.3 Displayinga Field 46-4
46.2.4 Notifyinga Field 46-5
46.2.5 Miscellaneous Get and Set Procedures 46-7

ViewPoint Programmer’s Manual

46.3

46.4

47

47.1
47.2

413

474

48

48.1
48.2

48.3

48.4

49

49.1
49.2

49.3

49.4

46.2.6 ChangeSizeProc ittt 46-9
4B, 2.7 BrTOrS ..o e 46-10
Usage/Examples i i ettt e et e e 46-10
46.3.1 Selection Management E 46-10
IndexofInterface Items it i e e 46-11
SimpleTextFont

(0 o 1 47-1
Interface [Lems o i i i e e e e 47-1
47.2.1 System Font e e e e 47-1
47.2.2 Client-Defined Charactersc.coiiiiiiiiiiiiiiiian i iininnennn. 47-2
47.2.3 Signalsand Errors ittt i it e i 47-2
Usage/Examples ..ottt ittt ettt e e 47-2
47.3.1 Adding a Client-Defined Charactercc.civiun... 47-3
47.3.2 AcquiringtheSystem Font i i 47-3
47.3.3 New System Font i e e e 47-3
Index of Interface Items ... 47-4
SoftKeys

VOV OW .. ittt it e et et 48-1
Interface Itemsttt i i e e i e 48-1
48.2.1 Data Structures for SoftKey Labels o il 48-1
48.2.2 Creatingand Deleting SoftKeys i, 48-2
48.2.3 Highlighting and Outlining a SoftKeys Keytop Picture 48-3
48.2.4 Retrieving Information About a SoftKeys Window Instance 48-4
T2 0285 T DF o 2+ o PR P 48-4
Usage/Bxamplesttt ettt ettt 48-4
48.3.1 Graphics Example i e 48-4
48.3.2 Keyboard Manager Example i, 48-5
Index of Interfaceltems e 48-6
StarDesktop

LY o T PP 49-1
Interface [tems e 49-1
49.2.1 General e 49-1
49,2, 2 ABOTMS ...t i it e e e 49-3
Usage/Examplesottt .. 49-3
49.3.1 Adding a Referencetothe Desktop L. 49-3
Index of Interface [tems e 19-4

Table of Contents

50

50.1

50.2

50.3

50.4
51
51.1

51.2
51.3

51.4
51.5

52

52.1
52.2

T-16

StarWindowShell
L0 3 o 1= 50-1
50.1.1 Client Overviewoiiitiiii it ittt i 50-1
50.1.2 Creating a StarWindowShell, Handles,ete. 50-2
50.1.3 Body WInAowsiiiiiiiiriiiintiniereenneetenaatrnneeanneenns 50-3
50.1.4 Commands and Menusc.iiiuiiieeernneernnnereneenonnanrnanas 50-4
Interface Items it i i e et e 50-4
50.2.1 Create a StarWindowShell,ete. 50-4
50.2.1.1 IsCloseLegalProc, 50-9
50.2.1.2 Miscellaneous Get and Set Procedures 50-10
50.2.2 Body Windows ...ttt it e e 50-11
50.2.3 Commandsand Menusc.iiiiiuiineinnneernnenrennnenanennns 50-13
50.2.3.1 PusheeCommands iiiieiiniiinnienn... 50-15
50.2.4 TransitionProcsc ittt i e e 50-17
50.2.5 Scrolling e 50-18
50.2.6 Push,Pop,etc. i, et e 50-22
50.2.7 Limitand AdjustProes ...l e 50-23
50.2.8 Displayed StarWindowShells B 50-24
10T 28 T) o o+ - J A PP 50-25
Usage/Examples oottt ittt ittt et i 50-25
50.3.1 Example 1 e 50-25
50.3.2 Example 2 50-26
50.3.3 Example 3 e 50-27
Indexof Interface Items i it i i e 50-30
Subwindow Overview
L0 - o T 51-1
Summaryof Interfacest 51-1
Subdividinga Shell e 51-3
51.3.1 Creating PredefinedSWs S 51-3
51.3.2 Client Defined SWs i 51-4
51.3.3 Insertingand DeletingSWs 51-4
Independent SWs e 51-5
Usage/Bxamples ... i e 51-5
Subwindower
OVBIVIOW oo 52-1
Interface [tems 52-1
52.2.1 MakingSubwindows 52-1

ViewPoint Programmer’s Manual

52.3
52.4

53

53.1
53.2

53.3
53.4

54.1
54.2

54.3
54.4

55

55.1

52.2.2 Creating Form Subwindows i ittt 52-2
52.2.3 Creating Message Subwindowscoviiiiiiniinniinnennnnn.. 52-4
52.2.4 Creating Body Window ParentSubwindows 52-4
Usage/Examples ittt ittt ittt it s 52-6
IndexofInterface Itemsttt i, 52-7
SubwindowFriends

103 4 TSP 53-1
Interface [tems e 53-1
53.2.1 RegisteringSubwindow Typesccciiiiiiiiiiiiiiiiinn.... 53-1
53.2.2 Getting Subwindow Proes e 53-2
53.2.3 Standard Proceduresoi ittt e 53-2
1 2022 W f o - S 53-3
Usage/Examples i i e e e 53-3
Indexof Interface [tems o it i it 53-5
SubwindowManager

L0 0 T3 54-1
Interfaceltems e e i 54-1
54.2.1 Making Subwindows i e e 54-1
54.2.2 Adding and RemovingSubwindows oo 54-2
54.2.3 Adjust, Limit, Transition TypesandProcs 54-4
54.2.4 UtIlbiesottt i i e e 54-4
54.2.5 BITOrS .ottt ittt e e e e e e 54-5
Usage/Examplesuiiiiiii ittt ettt 54-5
Indexof Interface Itemst 54-8
TIP

(00 o U= AP A 55-1
55.1.1 Basic Notification Mechanism ittt iinenninn .. 55-1
5.1, Tables ... ittt e e e e 55-2
55.1.3 Input FocUS ... it e e e 55-2
55.1.4 Periodic Notificationooiiiueiiie i, 55-3
55.1.5 Call-Back Notification and Setting the Manager 55-3
55.1.6 Attentionand User Abort i 55-3
55.1.7 Stuffing Inputintoa Window it 55-3
Interface [tems 55-4
55.2.1 Results e 55-4
55.2.2 Notify Procedure i 55-4
55.2.3 TIP Tables o e e 55-5

Table of Contents

T-18

55.3

55.4

56

56.1
56.2

56.3

56.4

57

57.1
57.2

55.2.4 Associating Notify Procedures, Tables,and Windows 55-5
55.2.5 Creating and DestroyingTables 55-6
55.2.6 Input Focus i e e 55-7
55.2.7 Character Translation iiiiiiiiiiiin e 55-7
55.2.8 Periodic Notificationoiiiiiiiriiiii ittt 55-8
55.2.9 Call-Back Notificationciiiiiiiiiiiiiiiiinaanneennnnn.. 55-8
55.2.10 Managerccitiiiiiiirttit e it ., 55-9
55.2.11 User Abort i 55-9
55.2.12 Attention i i i et 55-10
55.2.13 StuffingInputintoaWindowl 55-10
58.2.14 BITOrS ...ttt e e e 55-11
55.2.15 MiscellaneousItems e 55-11
55.2.16 "Look-Ahead” i e 55-12
Usage/Examplesooiiiiiiiiiiii i et .. 55-12
55.3.1 Periodic Notification i iiiiiiii i, 55-12
55.3.2 Syntaxof TIPtables iiiiiiirir it 55-13
55.3.3 Semanticsof Tables i i 55-14
55.3.4 ExampleTableco it i 55-17
55.3.5 Simple TIPClient Exampleottt 55-17
55.3.6 Modifyingan ExistingTIPClient iiiiiiiiiinnn... 55-19
55.3.7 MacroPackage i 55-20
IndexofInterface Items i i 55-21
TIPStar

OV BIVIEW L. it e e e e e e 56-1
Interface Itemso i e 56-1
56.2.1 The TIPStar Structurec..iiiiiriiiiinenrerereiiiinnnenanin, 56-1
56.2.2 Installingand RemovingTables, 56-2
56.2.3 Retrieving Pointersto InstalledTables 56-3
56.2.4 Mouse Modesoviiiiiitiiiie i e 56-3
Usage/Bxamples i 56-4
56.3.1 When PushTableisCalled i, 56-4
56.3.2 When StoreTableisCalled 56-5
56.3.3 When PopTableisCalled 56-7
Indexof Interface [tems it 56-8
Undo

VBTV W o e e 57-1
Interfaceltems e 57-1
57.2.1 Applieation’s Procedures 57-1
57.2.2 Implementation’s Procedures 57-2

ViewPoint Programmer’s Manual

57.3

57.4

58

58.1
58.2
58.3

58.4

59

59.1

59.2

59.3

59.4

60

60.1
60.2

Usage/Examples 57-2
57.3.1 Example ... 57-3
Indexof Interface Items i 57-4
UnitConversion

L0 -0 o T AP 58-1
InterfaceItemso it e e e 58-1
Usage/Examplescciivueenn e s 58-1
58.3.1 ConvertingFont Values i it 58-1
IndexofInterfaceltemscc it e e 58-3
Window

OV BIVIOW L. ittt i e e e e 59-1
59.1.1 Window Creationottt 59-1
59.1.2 Child Windows and the Window Treec...coueoen... 59-1
59.1.3 Paintingintoa Window it i 59-2
59.1.4 Bitmap-under i ittt e i e e e 59-3
59.1.5 Window Panes iiiimmiiiiiiii ittt 59-3
59.1.6 Linked WInAOWS0eourinrereareatsontaineantateaneaneanens, 59-3
59.1.7 Buffer Backed Windowsc.ccovriiiiniiinrineninniranenannn. 59-4
Interface emISivtr ittt e 59-4
59.2.1 Basic Data Types and Utility Operations 59-4
59.2.2 Window Creation and Initialization 59-5
59.2.3 Access to and Modification of a Window’s Properties 59-7
59.2.4 Window Tree and Window Box Manipulation 59-8
59.2.5 Causing Paintingoiiiiiiiiiiiiiii it it e 59-10
e B 0 O o 3 - SO 59-11
59.2.7 Special Topic: Bitmap-Under 59-12
59.2.8 Special Topic: Linked Windows, 59-14
59.2.9 Special Topic: Buffer Backed Windows 59-15
Usage/Exampleso e 59-16
59.3.1 Display Proceduresand MONITORs 59-17
59.3.2 Example L ... i e 59-17
59.3.3 Example 2 59-19
59.3.4 Example 3 59-19
59.3.5 Example 4 e 59-20
Indexof Interface Items it 59-22
XChar

OV VIEW L e e 60-1
fnterface 6 7=3 o o - PP 60-1

Table of Contents

60.3

60.4

61

61.1

61.2

61.3

61.4

62

62.1
62.2

62.3

62.4

63

63.1

63.2

63.3

63.4

64

64.1

64.2

T-20

60.2.1 Character Representationc.iiiiviiiiiiiiiinnnn.... 60-1
60.2.2 JoinDirection and StreakNatureo iiiiiiieiiiiian.. 60-2
B0.2.3 Case ...ttt e e 60-2
Usage /B xamplesottt ittt e e et 60-3
60.3.1 Creatingan ASCIICharactercciiiiiiiiiiiiennnnnnnnnnnn.. 60-3
60.3.2 Creatinga Greek Characterciviiiiiiiineiiiiiniennnnnnn. 60-3
Indexof Interfaceltems i . 60-4
XCharSets

L0313 61-1
Interface [tems e 61-1
Lo T .1 T 61-1
61.2.2 Enumeration of Character Setsoveeeeeeeeeeeeennunnnnnn, 61-2
Usage/Examplesttt ettt 61-2
61.3.1 Creatinga Greek Character c.iiiiiiiiineiiiennin. 61-2
Indexof Interfaceltems PP 61-3
XComSoftMessage

L0 % o L 62-1
Interfaceltems i 62-1
62.2.1 ObtainingMessageHandle, 62-1
62.2.2 Message Keysoiiiiiiiiiiii it it e e e e 62-1
Usage/Examples i i e 62-2
Indexof Interface Itemsottt e 62-3
XDigits

L0 1= o T 63-1
Interface [tems i i i 63-1
63.2.1 Representationoiiiiiniiiiiniiiiii i e 63-1
63.2.2 OPerationsottt e e 63-2
Usage/Examples 63-2
63.3.1 Assigning Symbols e 63-2
Indexof Interface Items 63-4
XFormat

OVeIVIeW .. . e 64-1
64.1.1 Major Data Structures 64-1
B4.1.2 Operations i 64-1
Interface Items e 64-2
64.2.1 Handlesand Objects 64-2

ViewPoint Programmer’s Manual

64.3

64.4

65

65.1
65.2

65.3

65.4

66

66.1

66.2

64.2.2 Default Output Sink oo i e 64-2
64.2.3 Text Operations iiiiitiiiit ittt i 64-2
64.2.4 NumberFormats ittt 64-3
64.2.5 NumericOperationsc.iiiiiiiiiiiiiiiiiiiiinennnnnnns 64-4
64.2.6 Built-in SInks0 ittt i i it e e e e e 64-4
64.2.7 Date Operationiuiiureiieeenneenneneeeeennninnnnnnnnnnn 64-5
64.2.8 Network DataOperationsc..ciiiiiiiiiiiriiinnnrninennnn.n. 64-5
64.2.9 NSString Operationscoviiiiiiiinnnninenniiiieenneennnnnns 64-6
(7 90720 1 7 o o) - O 64-6
Usage/EBxamples ittt ittt e e e 64-7
64.3.1 Using Built-in Sinks i 64-7
64.3.2 Creating New Format Procedurescoiiiiniviininnnn. ... 64-7
Indexof Interface Items it 64-9
XLReal

VBV OW .. e e 65-1
Interfaceltems i e 65-1
65.2.1 Representationcoiiiiiniii e iiine ety 65-1
65.2.2 Conversionciiunuiiiii ettt e e e 65-1
65.2.3 Input/Output . e 65-2
65.2.4 (070501302 1= 53 o KPP 65-4
85.2.5 OPErAtiONS\ tunttt ittt et 65-5
65.2.6 Special Numbers i, e 65-6
T30 AR B O o o) - P 65-6
65.2.8 Special Constants i i it e 65-6
Usage/Examplesottt tiitiiaatteeeeeen e 65-6
65.3.1 Special Numbers ittt i i e e 65-6
65.3.2 Timesof Common Operationscciuiiiiiinnreienennnennennnn. 65-7
Indexof Interface Items e 65-8
XMessage

Overview e 66-1
66.1.1 Message Usagettt ettt e 66-1
66.1.2 Message Compositionand Templatesc.cooiiiiiiiiii... 66-1
Interface [tems e 66-2
66.2.1 Handles 66-2
66.2.2 Getting Messages ...ttt 66-2
66.2.3 Composing MeSSAZRSot ee ettt e 66-2
66.2.4 Deflning Messagesttt 66-3
66.2.6 Obtaining MessagesfromaPFile L. 66-4
66.2.7 Destroying Message Handles i, 66-5

Table of Contents

66.3

66.4

67

67.1

67.2

67.3

67.4

68

68.1
68.2

T-22

B6.2.8 EITOr .. ittt e e 66-5
Usage/Examples i e e 66-5
66.3.1 Structuring Applicationsto Use Messagesccovninn.... 66-5
66.3.2 Exampleof Message Usageciiiiiiiiinreininennnnennnn. 66-6
Interface ItemIndex i i e 66-8
XString

L0 -3 s T3 67-1
67.1.1 CharacterStandard i e 67-1
67.1.2 Data Structurescviviuiir it e e e ... 67-1
B7.1.3 Operationso e i e 67-2
Interface Items et 67-2
B7.2.1 CoMEeXESttt e e 67-2
67.2.2 Readersand ReaderBodies i i i, 67-3
67.2.3 Writersand WriterBodies i il 67-4
67.2.4 Simple ReaderOperationscoouun. e, 67-5
67.2.5 AccessingCharacters ettt e 67-5
(30 1 oo - 67-6
67.2.7 ConversiontoReadersl 67-6
67.2.8 Reader Allocation e e 67-7
67.2.9 Simple Writer Operationsc..oiiiiiiiiiiiiiirennnnnnen... 67-8
67.2.10 Conversion to Writersiiiiiiiiiir ittt i, 67-8
67.2.11 Writer Allocation i e 67-8
67.2.12 Comparisonof Readers i, 67-9
67.2.13 Numeric Conversionof Readers i, 67-10
67.2.14 Character Scanningcoiiiiiiiiiiiiiainaanaeneeninnnnnns. 67-11
67.2.15 Other ReaderOperations ciiiiiiiiiiiiiniininnnn... 67-12
67.2.16 Appendingto Writerso it 67-12
67.2.17 Editing Writers i i it ettt 67-14
67.2.18 ConversionfromReaders it 67-14
67.2.19 Reverse Character Operations 67-14
Usage/Bxamplest 67-15
67.3.1 Designing InterfaceswithReaders 67-15
67.3.2 UsingReaders i it e 67-16
67.3.3 Simple ParserExample i i 67-17
Indexof Interface Items i i 87-19
XTime

OVerVIeW ..., 68-1
Interface [tems 68-1
68.2.1 Acquiring Time i 68-1

ViewPoint Programmer’s Manual

II.

68.3

68.4
69

69.1
69.2

69.3

69.4

88.2.2 Editing Timeo ittt et 68-2
68.2.3 Useful Constantsand Variables 683
Usage/Examples i e e e e 68-3
68.3.1 ParseReader Template Definitions e 68-3
68.3.2 Example e e et 68-4
IndexofInterfaceltemso i i e 68-8
XToken

L0 .S s 1P 69-1
Interfaceltems, e 69-1
69.2.1 Character Source Definitions i, 69-1
69.2.2 Filter Definitions oottt i, 69-2
69.2.3 Skip Mode Definitionscoiiiiiiiiiiiiiiiiiii i, 69-2
69.2.4 Quoted Token Definitions S 69-3
69.2.5 Built-inHandles i i e 69-3
69.2.6 Booleanand NumericTokenscoiiiiiiieiiiiniiinnennnennnn.. 69-3
69.2.7 Basic Token ROULINESoounnnemnne ettt 69-4
69.2.8 Signals and Errors e 69-5
69.2.9 Built-in Filtersoouiveiiieriii it 69-6
69.2.10 Built-inQuoteProcedurescc i i i 69-7
Usage/ B xamples ...ttt i i e e e e e 69-7
69.3.1 CollectingTokens P 69-7
Indexof Interface [tems i i e 69-9

APPLICATION INTERFACES

70
70.1

70.2
70.3

71

71.1
71.2
71.3
71.4

ButtonInterchangeDefs

[0 1= o0’ 1= 70-1
70.1.1 CreatingaButton0ttt ittt 70-1
Interface [bemsottt e 70-1
Indexof Interface [tems 70-3
ChartDatalnstallDefs

OV BTV W oottt e e 71-1
Interface [LemS ... o T1-1
L7 £ P 71-4
Index of Interface [tems i 71-5

T-23

Table of Contents

72

72.1

72.2

72.3
72.4

73

73.1
73.2

73.3

T-24

DoclInterchangeDefs
L0 Ry o T 72-1
T72.1.1 CreatingDocuments0iiiuiiitiiruneinnrnaeenneennennans 72-1
72.1.2 EnumeratingDocumentsttt 72-2
Interface [tems ittt e e 72-2
T2.2.1 Datatypesiiiiiiiiiiii i i e e 72-2
72.2.2 Creating Documentsc.iiiiiiiietriierenneeennneneennnnens 72-4
72.2.2.1 InitializingaDocument i, 72-4
72.2.2.2 AddingtoaDocumentl 72-5
72.2.2.3 Releasing Storageottt 72-10
72.2.2.4 Finalizing Document0 iiiiiiiinnannn. 72-10
72.2.2.5 Utilities 72-11
72.2.3 EnumeratingDocumentsoiiiiiiiiieenenannnnn. 72-12
72.2310pen e e 72-12
T72.2.3.2 Enumeratecuiiniiiiineieeiiiia e 72-13
T2.2.3.3 CloSe ...\ttt i i e e et e 72-15
28 2) <3+ 72-16
T2.2.5 Fill-inOrder ... e e et 72-16,
Usage/Examplesouiiiriir ittt ettt ittt e s 72-17
IndexofInterfaceltemso, [P 72-27

DoclInterchangePropsDefs

OV VI W .. ittt ittt e e 73-1
Interface [tems i e e e 73-1
73.2.1 Frame Propertiesottt iiiiiiiin it e iiiaeannnns 73-1
73.2.2 PageProperties e e et 73-2
73.2.3 Field Propertiesiiiiiiiiiii i i e e 73-4
73.2.4 Font Properties ittt ittt et e it 73-5

73.2.4.1 FontDescriptionttt i, 73-6

73.2.4.2 The other Fields in FontPropsRecord 73-7
73.2.5 Font Runs e 73-7

73.2.5.1 Meaning of Index and Context FieldsinRun 73-8
73.2.6 Paragraph Properties oo e 73-9

73.2.6.1 BasicPropsRecord 73-9

73.2.8.2 Tabs ... it 73-11
73.2.7 Mode Properties 73-11
T3.2.7T Contantso. i 73-12
73.2.8 DefaultProperties 73-14
Index of Interface [tems 73-16

ViewPoint Programmer’s Manual

74

74.1
74.2

74.3

75

75.1

75.2

75.3
75.3
75.4
76

76.1

76.2

EquationInterchangeDefs

L0 S o 1L 74-1
Interface [tems ..ot it it ittt e i 74-1
T74.2.1 GeneralDataTypescoiiiiiiiiiii i iiiiiiiiieeeriinaaannnn, 74-1
74.2.2 Equation Creationcoiiiiiiintiiiiit ittt i, 74-2
74.2.3 EquationEnumerationc...iiiiiiiiiiiiii i i 74-5
Index of InterfaceItemsc.ceovnn... R 74-8

GraphicsinterchangeDefs

10 T o -1
75.1.1 CreatingGraphics ittt i
75.1.2 Reading Graphics P
Interface [tems ... i i i e e e e
T5.2.1 Creating graphics ittt ittt
' 75.2.1.1 StarRoutinescciiiiiiiiiii
75.2.1.2 Setting Extra Frame.Properties e
75.2.1.3 Adding Geometrics to a Graphics Container
75.2.1.3 Adding Frames to a GraphicsContainer
75.2.1.5 AddingtoaCuspButton i,
75.2.1.6 Adding Miscellaneous Graphies
75.2.1.7 ReleaseRoutines o i,
75.2.1.8 FinishRoutinesc.ccoiiiiiiiiniiiriiiiiiiinnenn
75.2.2 Reading graphicsttt it e e e
75.2.2.1 EnumerateanditsCallbacks
75.2.2.2 Getting ExtraPropertiesccviiiiiiinieriiinieen...
75.2.2.3 Enuinerating CuspButtonPrograms
077 1 o U1 SO
Usage/Examples e e e re et

Indexof Interface [tems ittt ettt e e e

MustratorinterchangeDefs

VOV eW .. it
76.1.1 Creating Pro [llustrator Graphics
76.1.2 Reading Pro [llustrator Graphies
Interface [tems e
76.2.1 Creating Pro [llustrator Graphics
76.2.1.1 Creatinga Frame it ieiiii i,
76.2.1.2 Creating Forms i
BasicForms

ClUSteLS ..ot

76-1
78-2
76-2
76-2
76-2
76-3
76-4
76-5

T-25

Table of Contents

76.3

71

771

77.2

77.3
774

T-26

Trajectoriesand Shapesc.c..iiiiiieieeiinnnnn... 76-5
TexXt Framesoouiiniii it T6-7
CopyingaFormttt 76-9
76.2.1.3 Posting Forms i it i i i 76-9
76.2.1.4 Form Transformationsc..ciiiieiinnennnnnnnn.. 76-10
76.2.1.5 FinishRoutines iiiiiiiiiiiiiiiinnn... 76-12
76.2.2 ReadingGraphicsttt iiieinaanaeeannnnn. 76-12
T76.2.3 Propertiesiiiiiiir it e 76-13
76.2.3.1 FrameProperties i, 76-13
76.2.3.2 Form Propertiescciiiiiiiiiiiriiiieiiinnn. 76-14
Generic Form Propertiesccciiiiinivinnn.n. 76-14
Specific Form Properties, 76-15
Property Groupsiiiiii i e 76-16
Dash Styles AP 76-21
76.2.3.3 Default Properties i 76-22
S0 T O o) - PP 76-24
Index of Interface Items i 76-25
TableInterchangeDefs
Overview M eetaoaceaiaiieaaniaenaaeaieanns e 77-1
77.1.1 TableBuilding e e e e e e 77-1
77.1.2 TableReading ittt ittt et 77-2
Interface [tems i e e 77-2
T7.2.1 Table Propertiescouuiiiottiiiin ittt 77-2
77.2.2 Column Propertiesttt it 77-4
77.2.3 Column Header Propertiesciiiiiiiiiiiiiiiiian. .. 77-5
77.2.4 OtherColumnPropertiesccviruiiiii ittt 77-7
TT.2.5 Row Contentttt ear i 77-8
77.2.6 TableBuildingOperationscoi ittt iiennans, 77-8
77.2.6.1 CreatingaNewTable it 77-8
77.2.6.2 Openingan ExistingTable 77-9
77.2.6.3 AppendingRows i 77-10
77.2.6.4 FinishingaTable i i 77-10
77.2.6.5 Miscellaneous Utilities, 77-10
77.2.7 Table ReadingOperations i iiiiiiiinerinnn.. 77-11
77.2.8 Diagram of Table SEFUCUT® ..ot 7-12
TT.2.9 Contantsttt e e e 77-12
T 2. L0 ErrOrs o e 77-14
Usage/Examples e 77-15

Index of Interface [tems 77-18

ViewPoint Programmer’s Manual

78 TableSelectionDefs

78.1 OV OV W o ittt e e e 78-1

78.2 Interface Itemms e e s 78-1

78.3 Indexof Interface Itemsttt it et e 78-3

79 TextInterchangeDefs

79.1 L0 - o U= A 79-1

79.2 Interface Items e e e 79-1
T9.2.1 DatatypPes ..ottt i e e e e e e 79-1
79.2.2 Creatingan AnchoredTextFrame 79-3
79.2.3 Append Operationsuuiiiiieriieiint it 79-3
79.2.4 Enumerationottt it e e e e 79-4
79.2.5 ReleasingTextottt ittt iite i iean e, L. T9-5
79.2.6 TextFrame Link Orderc.oiiniii it it 79-5

79.3 Example ... e e 79-6

79.4 Indexof Interface Items ... oottt i e e e e e e 79-7

Appendices

A System TIP Tables

Al L= T - A-1

A2 KeyNames/TIP Name Mappingccvituuiiiinetneeroinnnenneenenennenann. A-2

A3 ViewPoint Registered TIP.Predicatescoiiiiiinniii ... A-4

A4 1 A=Y Y- A-5
A4l NormalTablesc.iviiiiii i i i ettt et et A-5
A.4.2 MouseMode Tables ...t i e e e A-16

A5 Usage/Examplesttt A-19
A.5.1 Using NormalSoftKeys.TIP when Installing Client SoftKeys A-19
A.5.2 Attaching a NotifyProc to One of the NormalTables A-20

A.6 Index of TIP Tablesot e e e e A-21

B References

C Listing of Atoms

C.1 OV BIVIOW . o C-1

Cz2 Atoms as TIP Results in the System TIPTables C-1

C.3 Passed as the "Atom” Parameter to a Containee.GenericProc C-5

Table of Contents

T-28

C4
C5
C.6

Listing of Public Symbols

AN

SYSTEM LEVEL INTERFACES

[-1

SYSTEM LEVEL INTERFACES

[-2

MMM

Introduction

This ViewPoint Programmer’s Manual is written for programmers who are developing
applications to run on ViewPoint software. ViewPoint’s open architecture philosophy
allows applications to be developed easily.

You will find this manual useful only if you are already a Mesa programmer. You should
have completed the Mesa Course and be familiar with the contents of the XDE User’s
Guide (610E00140) and the Mesa Language Manual (610E00170). You should also be
familiar with the facilities described in the Pilot Programmer’s Manual (610E00160) and
the Filing Programmer’s Manual contained in the Services Programmer’s Guide
(610E00180).

The ViewPoint Programmer’s Manual gives you the information you will need to
implement the user interface of an application that runs on ViewPoint. This includes how
0:

cr

Represent applications as icons.

Interact with the mouse and keyboard to process the user’s instructions.
Create folder-like containers.

Create property sheets.

Create menus.

Paint pictures and text on the display.

Create programmable keyboards.

Represent and manipulate multinational text.

It does not provide you with Mesa, Pilot, or Services-specific information.

1-1

Introduction

1.1 Document Structure

This introductory chapter describes the physical manual itself, how it is organized, who
should read it, how it should be read, and why. Chapter 2, Overview, describes ViewPoint
and discuss its history and overall design.

Chapter 3, The Programmer’s Guide, tells how to use the ViewPoint interfaces. It describes
concepts essential to understanding ViewPoint and describes the facilities that are
available. The most common interfaces are briefly discussed and grouped by application.
All of the ViewPoint interfaces, with a short summary, are listed alphabetically at the end
of the chapter.

The individual interface chapters are arranged alphabetically in Chapters 4 through 59.
These chapters give detailed descriptions of the interfaces that ViewPoint provides. Each
interface chapter begins with an overview that explains the concepts behind the interface
and the important data types that it manipulates. The second section of each chapter
describes the actual items of the Mesa interface and groups them by function. The third
section explains typical ways of using the interface and often contains programming
examples. The fourth section is the index of interface items. Within an interface chapter,
the items of the broadest interest are presented first; more specialized items follow later.

Appendix A presents the system TIP Tables, references are in Appendix B, Appendix C
contains a list of well-known atoms, and Appendix D contains a listing of public symbols.

1.2 Getting Started

1-2

Chapters 1, 2, and 3 of the ViewPoint Programmer’s Manual should be read in order.
Within Chapter 3, you will sometimes be guided to various sections in task-relative rather
than page-relative order. Chapters 4 through 59 (the interface chapters) can be read in any
order, depending on your need.

I

Overview

2.1 Whatls ViewPoint?

ViewPoint is a collection of facilities for writing application programs that run on a
personal workstation with a high-resolution bitmap display. It supports an open-ended
collection of applications, providing a framework and a set of rules that allow these
independent applications to be integrated. It has an advanced user interface that also
allows applications to be easily adapted for users in other countries.

Throughout this document, the term user describes a person who interacts with the
applications built on ViewPoint via the mouse and keyboard. Programs cannot predict or
control user actions. The term client describes programs that use the facilities described in
this document. The client may act as a result of some user action, but the behavior of the
client is the result of a program and under control of its implementor.

2.1.1 User Abstractions

ViewPoint uses several abstractions that are part of the advanced user interface pioneered
by the Star Workstation:

® Icons and Desktop. Icons that represent objects on a desktop are one basic abstraction.
These objects can represent either functions or data. Data icons, such as a document,
represent objects on which actions can be performed. Function icons, such as a printer,
represent objects that perform actions. In the metaphor, they are on the desktop that
also serves as the background for their display. With ViewPoint, clients may create
new icons that provide additional functions within the desktop metaphor.

® Windows. Windows are rectangular areas on the screen that display the contents of an
icon when it is opened. Each window has a header containing the name of the window’s
icon and a set of commands. The window also contains scroll bars that scroll the
contents of the window vertically and horizontally.

® Property Sheets. Property sheets are displayed forms that show the properties of an
object. They contain several types of parameters, including state parameters, which

2-1

Overview

may be on or off; choice parameters, which have a set of mutually exclusive values; and
text parameters.

® Selection. The selection is an object or body of data identified by the user. It is the
target of user actions; there can be only one selection at any one time. It can be a string
of text that the user may then delete, copy, or change the properties of. It can be an icon
on the desktop that is moved to a printer icon for printing or opened to display its
contents. In general, it can be almost any piece of data that can be represented on the
screen.

2.1.2 Client Abstractions

To implement the above user abstractions and to provide some building blocks for
developing applications, ViewPoint uses several client abstractions:

® Containee and StarDesktop. Containee is an application registration facility that
associates an application with a file type. Registering an application consists of
providing procedures that paint iconic pictures and perform various operations.
StarDesktop, using the desktop metaphor, displays the desktop window and iconic
pictures for each file found in a particular directory.

® (Client Windows. The client window abstraction is more primitive than the user window
abstraction. The client window abstraction serves to isolate applications from the

physical display and each other. A window can be thought of as a quarter of an infinite ©

plane. Within that space, the client is called upon to display the contents of the window
without regard to any other applications’ windows. Windows may be linked to form a
tree structure. A user’s window is typically composed of a number of small client
windows—one for the header, one for each scroll bar, and so forth.

® Menus. Menus are sequences of named commands, each consisting of a text name and a
procedure. Menus may be displayed to the user in several forms, such as in a pop-up
menu or as window shell header commands (see below).

® Window Shells. The user window abstraction is implemented by window shells. They
provide the header, scroil bars, and body windows. The body windows are windows the
client uses to display the content of an application. The commands in the header are
menus.

® Form Windows. Form windows are the client abstraction that provides the basis for the
user property sheet. Form windows allow form items in a window to be created and
manipulated. There are several types of items: boolean items, choice items, text items,
numeric text items, command items, form and window items. Window items allow the
client to implement its own type of item. The property sheet user abstraction is
implemented by putting a form window inside a window shell.

2-2

ViewPoint Programmer’s Manual ' 2

® (Container Windows. Container windows implement a window that contains a list of
items. Clients supply the source of items and the container window handles that
display the contents in a window and interact with the user.

® Selection. The client selection abstraction is a framework in which a client can
manifest itself as the holder of the user’s current selection while other clients
interrogate the selection and request that it be converted to a variety of data types.
ViewPoint defines several selection conversion types, but the selection framework
allows clients to define additional conversion types. The selection is the principal
means by which information is transferred between different applications.

2.1.3 System Structure

ViewPoint’s architecture contains a small set of public interfaces that provide the basic
facilities for building workstation applications. Facilities are included in ViewPoint for
several reasons. Some facilities implement system-wide features, such as the window
package. If several applications tried to implement their own window packages, chaos
would result. Facilities are also included in ViewPoint to provide a consistent user
interface, such as form windows and property sheets. A final reason for including facilities
is to provide packages that are useful to many clients, such as the simple text facilities. As
ViewPoint evolves, more facilities useful to a variety of clients will be added.

The ViewPoint interfaces fall into the following general categories:

Application registration:
Windows and display:
Forms and property sheets:

User input and keyboards:
Strings and messages:

Selection:

Containers:

Text display and editing:
Background management:

Miscellaneous user interface:

Miscellaneous:

2.2 History

Containee
Context, Display, StarWindowShell, Window
FormWindow, FormWindowMessageParse, PropertySheet

BlackKeys, KeyboardKey, KeyboardWindow, LevellVKeys,
SoftKeys, TIP, TIPStar

XChar, XCharSets, XCharSetNNN, XComSoftMessage,
XFormat, XLReal, XMessage, XString, XTime, XToken

Selection

ContainerCache, ContainerSource, ContainerWindow,
FileContainerShell, FileContainerSource

SimpleTextDisplay, SimpleTextEdit, SimpleTextFont
BackgroundProcess

Attention, Cursor, MenuData, MessageWindow,
PopupMenu, StarDesktop, Undo

Atom, AtomicProfile, Event, |dleControl

ViewPoint is the result of past experience with Star and the Xerox Development
Environment. [n late 1982, the Star Performance and Architecture Project concluded that
Star’s monolithic system structure, in which every piece knew about every other piece,

2-3

Overview

hindered its performance. The monolithic structure also made it difficult to develop new
applications. In addition, there were hundreds of interfaces in the system but no distinction
between public and private interfaces, which made it difficult for programmers to learn
how to write applications in the system.

In contrast to Star, the Xerox Development Environment had a modular system structure
with a small number of well-documented public interfaces It also encouraged an open-
ended collection of applications. While it performed well and was open, the Xerox
Development Environment did not have as consistent a user interface as Star, nor did it
support Star’s multilingual requirements.

As a result of this study, ViewPoint was created. It has the system structure, documented
public interfaces, and openness of the Xerox Development Environment, yet supports
Star’s user interface and multilingual requirements.

While it was initially focused on providing a new foundation for Star, ViewPoint has
become the basis for more software products from the Office Systems Division. It will
evolve to replace the current foundation of the Xerox Development Environment and will
likely support products from organizations outside the Office Systems Division.

2.3 Philosophy and Conventions

ViewPoint’s philosophy and conventions apply both to applications that interact with the
user and to packages that implement a facility. Some are just good system-building
concepts. ViewPoint assumes that programs that run within it are friendly and that they
are not trying to circumvent or sabotage the system. The system does not try to enforce
many of these conventions but assumes that clients will adhere to them voluntarily. If
these conventions are not followed, the system may degrade or break down altogether.

2.3.1 Supported Public Interfaces

Systems should be designed to export public interfaces that are well documented and
relatively stable. By defining a set of primitive facilities and stressing their stability,
applications are encouraged to depend on the existing ViewPoint facilities rather than on
other applications packages. This promotes an open architecture in which applications can
be developed and loaded with relative ease, exchanging information among themselves
while maintaining the independence of client modules. The open architecture allows
designing for unknown applications as well as the class of applications expected in Star.

In keeping with an open architecture, ViewPoint does not make far-reaching assumptions
about the applications that run above it. While ViewPoint provides facilities that make
certain styles of applications easy, it does not preclude other styles of applications.

2.3.2 Plug-ins

ViewPoint is self-contained in that it does not import procedures that it expects a client to
supply. Rather it waits, in effect, for clients to call it and state that they want to implement
some facility. This is referred to as a plug-in approach: an application plugs itself in to a
lower layer of software.

ViewPoint Programmer’s Manual 2

Plug-ins encourage modularity at the client level. Because ViewPoint can be run by itself
(although it does not do much), it can also be run with just one application plugged in. Thus
each application can be implemented and debugged individually, which simplifies system
development.

Plug-ins also can break a dependency that would create a complex dependency graph. For
example, the desktop has a dependency on the applications that appear in the desktop. If
the desktop depended directly on the applications, it would have to change every time a
new application was created. By having the applications plug themselves into the desktop,
the direct dependency is broken.

[y

2.3.3 Don’t Preempt the User

Clients should avoid dictating what the user must do. The user should be free to interact
with different applications as desired. For example, the current selection is something that
the user should control. It should be changed only as a result of user actions. A background
process should not change the selection out from under the user.

2.3.4 Don’t Call Us, We’ll Call You

Because the user is in control, a program must wait for the user to interact with it. The
method of interacting with the user that is prevalent in terminal-oriented user interfaces
is to get a command from the user and execute it, which results in the client regaining
control while it awaits user input. With potentially multiple applications active
simultaneously, the user should be free to interact with the one of his choosing.
ViewPoint’s input facilities notify a window when the user inputs to that window.

Events are another case in which the system calls the client. For example, a client may
need to do something when the user logs in. If the client registers a procedure with the
appropriate event, the procedure is invoked when the event occurs.

2-5

Overview

2-8

I

I

Programmer’s Guide

This ViewPoint application programmer’s guide is intended to point the programmer to the
most important parts of the most important interfaces needed for writing an application in
ViewPoint.

ViewPoint is a collection of interfaces to be used for writing application programs. It is
primarily intended to support applications like those in the ViewPoint workstation; that is,
there is support for icons, windows, property sheets, and so forth.

The first section (3.1 Guide) contains a jump table of the form, "If your application does X,
then you use interfaces A and B; also, you need to understand C and D, and you probably
want to read section 3.1.x.” The subsections (3.1.x) provide more detail about A, B, C, and
D, pointing the programmer to the most important types and procedures in an interface.
The second section (3.2 Getting Started) contains essential information for first-time
ViewPoint programmers. Section 3.3 provides some flow of control descriptions for several
common scenarios. [t describes which interfaces call which client procedures when, and so
forth. Section 3.4 discuss some programming conventions specific to ViewPoint interfaces.
Section 3.5 contains a summary of all the ViewPoint interfaces.

First, we briefly define an application from the user’s point of view: The user sees the icons
on the desktop and can operate on them in various ways. You can select an icon with the
mouse and open it to display its contents. Or by selecting the icon and pressing PROPS, you
can examine and change the icon’s properties through a window called a property sheet.
After an icon is opened, he can examine the properties of the contents and change them by
again using the property sheet. By selecting one icon, pressing COPY or MOVE, and then
selecting another icon, he can perform various application-specific operations. This is often
referred to as "dropping one icon onto another.” Each application attaches a different
meaning to the drop-on operation. For example, the folder takes the icon dropped onto it
and adds it to the folder. The printing application (printer icon) prints the icon dropped
onto it.

From the application’s point of view, an icon is just a picture that represents a file. Files
have a file type, and an application operates on all files of the same type. Thus when the
user selects a folder icon, he or she is actually selecting a file with file type of folder. When
the user performs some operation on an icon, the desktop calls the appropriate application
based on the file type of the file the selected icon represents.

3-1

3

Programmer’s Guide

3.1 Guide

The following table can help you readily find a desired section.

3.1.1 Guide to the Guide

If your application ... See section

~. Appears as an icon:

- Read about icon applications in 3.2 Getting Started
- Use Containee to register the icon’s behavior

. Opens a window:

- Use StarWindowsShell to create a window
- Use MenuData to construct menus

.. Manages the contents of a window:
- Use Display and Window to display information
- Supply a TiP.NotifyProc to process user actions
- Use Selection to share data between applications
- Use Context to save data with the window
«. Puts up a Property Sheef:
- Use PropertySheet and FormWindow interfaces
. Manipulates strings:
- Use the XString interfaces (including XFormat, XToken, XChar)
«. Displays messages to the user:
- Use the XMessage and Attention interfaces
. Displays a list of items like a folder:
- Use the Container interfaces (ContainerWindow, ContainerSource)
... Redefines the function keys:
- Use the SoftKeys interface
. Redefines the Black Keys:
- Use BlackKeys and KeyBoardKey interfaces

... Performs operations in a background process:

- Use the BackgroundProcess interface

3.2.2
3.1.2

3.1.3
3.1.4

3.1.5
3.1.5
3.1.5
3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

3.1.11

3.1.12

ViewPoint Programmer’s Manual ‘ 3

3.1.2 Containee

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type. (§3.2.2 explains how an application registers itself and is then
invoked to perform various operations). The most important items in Containee are:

Implementation A record containing several client procedures.
Setimplementation Registers an application.
GenericProc Client procedure called to perform OPEN, PROPS, COPY/MOVE-

onto, and so forth.
PictureProc Client procedure called to display an icon picture.

Data, DataHandle Uniquely identifies a file.
3.1.3 Application Windows

StarWindowsShell allows a client to create a Star-like window. A StarWindowShell window
has a header that contains a title, commands, and pop-up menus. The window may have
scroll bars, both horizontal and vertical. It also has interior window space that may contain
anything the client desires. StarWindowShell also supports the notion of opening within.

A StarWindowShel!l is a window (see Window interface) that is a child of the desktop
window. A StarWindowShell has an interior window that is a child of the
StarWindowShell and is exactly the size of the available window space in the shell, that is,
the window shell minus its borders and header and scrollbars. The interior window may
have child windows created by the client. These children of the interior window are called
body windows. The client may create an arbitrary number of body windows and may
arrange them arbitrarily. Note: Because the body windows are children of the interior
window, they are clipped by the interior window.

The client may manage body windows directly, including all display and notification (user
input). Body windows can also be managed by various interfaces provided by ViewPoint,
such as FormWindow and ContainerWindow. These interfaces have Create procedures
that take a body window and turn it into a particular kind of window, providing all the
display and notification handling for the window.

The most important items in StarWindowShell are:

Create Creates a StarWindowShell window.
CreateBody Creates a body window.
ShellfFromcChild Returns the window shell, given a body window.

SetRegularCommands Places commands in the header of a StarWindowsShell.

3-3

Programmer’s Guide

AddPopupMenu Adds a pop-up menu to the header of a StarWindowShell.
3.1.4 Menus

A menu is a list of named commands. When the user selects a menu command, a client
procedure is called. The MenuData interface allows menu items and menus to be created.
MenuData does not address the user interface for menus. Menu items may appear as
commands in the header of a star window shell (Starwindowshell.SetRegularCommands).
Entire menus may be accessed via a pop-up symbol in the header of a window shell
(starwindowshell.AddPopupMenu). Menu items may be added to the pop-up menu that is
available to the user through the attention window (Attention.AddMenuitem).

The most important items in MenuData are:

Createltem Creates a menu item.

MenuProc A client procedure that is called when the user selects a
menu item.

CreateMenu Creates a menu from an array of menu items.

3.1.5 Manaéing a Body Window

Clients can manage their own body windows. This involves handling both display and
notification (user-input), and often includes managing the current selection. Display is
done by providing a window display procedure. Notifications are received through a client-
provided Tp.NotifyProc. The Selection interface manages the current selection. Arbitrary
data associated with a window can be saved with the window by using the Context
interface.

3.1.5.1 Display

The Window interface calls the client’s display procedure to repaint the contents of the
window. It is called when the window is initially made visible. It is also called when the
window suddenly becomes more visible because an overlapping window was moved, or
when the window is scrolled so that the part of it that was invisible before becomes visible.
The display procedure should use the Display and/or SimpieTextDisplay interfaces to
display bits in the window. The display procedure can be set when a window shell’s body
window is created (Starwindowsheil.CreateBody) or by calling window.SetDisplayProc.

The most important item in Window is the client's display procedure. There is no TYpe for
this procedure, but it is discussed in the Window interface chapter. Other important items:

Box Defines a rectangle in a window.

Place Defines a point in a window.

ViewPoint Programmer’s Manual 3

The most important items in Display are:

Black Displays a black box.

White Displays a white box.

Invert Inverts the bits in a box.

Bitmap Displays an arbitrary array of bits.

The most important item in SimpleTextDisplay is:

StringintoWindow Displays a string in a window.
3.1.5.2 TIP and TIPStar

TIP provides basic user input facilities through a flexible mechanism that translates
hardware-level actions from the keyboard and mouse into higher-level client action
requests (result lists). The acronym TIP stands for terminal interface package. This
interface also provides the client with routines that manage the input focus, the periodic
notifier, and the sTop key.

The basic notification mechanism directs user input to one of many windows in the window
tree. Each window has a TiP.Table and a mp.NotifyProc. The table is a structure that
translates a sequence of user actions into a sequence of results that are then passed to the
notify procedure of the window.

The Notifier process dequeues user events, determines which window the event is for, and
tries to match the events in the window’s Table. If it finds a match in the table, it calls the
window’s NotifyProc with the results specified in the table. If no match is found, it tries the
next table in the window’s chain of tables. If no match is found in any table, the event is
discarded.

TIP tables provide a flexible method for translating user actions into higher-level client-
defined actions. They are essentially large select statements with user actions on the left
side and a corresponding set of results on the right side. Results may include mouse
coordinates, atoms, and strings for keyboard character input.

ViewPoint provides a list of normal tables that contain one production for each single user
action. Client programmers can write their own table to handle special user actions and
link it to system-defined tables, letting those tables handle the normal user actions. These
system-defined tables are accessible through the TIPStar interface and are described in
Appendix A,

Input Focus. The input focus is a distinguished window that is the destination of most user
actions. User actions may be directed either to the window with the cursor or to the input
focus. Actions such as mouse buttons are typically sent to the window with the cursor. Most
other actions, such as keystrokes, are sent to the current input focus. Clients may make a
window be the current input focus and be notified when some other window becomes the
current input focus.

Programmer’s Guide

The current selection and the current input focus often go together. If the window in which
a selection is made also expects to receive user keystrokes (function keys as well as black
keys), Tip.SetlnputFocus should be called at the same time as Selection.Set is called. This is
also the time to call Softkeys.Push or KeyboardKey.RegisterClientKeyboards, if necessary.

Modes. TIPStar also provides the notion of a global mode to support MOVE, COPY, and SAME.
When the user presses down and releases the MOVE, COPY, or SAME keys, the client that
currently has the input focus will receive the notification and should call TiPstar.SetMode.
This changes the mouse TIP table so that atoms specific to the mode are produced rather
than normal atoms when the user performs mouse actions. For example, in copy mode
“CopyModeDown” instead of "PointDown” is produced when the user presses the left
mouse button. This informs the client that receives the atom that it should attempt to copy
the current selection rather than simply select something.

The most important items in TIP are:
NotifyProc . Client procedure that is called to handle a user action.
Results, ResultObject Right side of the table entry that matched the user action.

SetinputFocus Sets a window to be the current input focus.

The most important items in TIPStar are:
NormalTable. Returns the chain of system-provided TIP tables.

SetMode Sets the entire environment into MOVE, COPY, or SAMEAS
mode, thus changing the results produced for mouse clicks.

3.1.5.3 Context

The Context interface allows arbitrary client data to be associated with a window. Client
data is usually allocated and associated with the window when the window is created. The
data may be retrieved any time, such as at the beginning of the client’s display procedure
and mie.NotifyProc.

The most important items in Context are:
Create Associates data with a window.

Find Recovers the data previously associated with a window.

3.1.5.4 Selection

The Selection interface defines the abstraction that is the user’s current selection. [t
provides a procedural interface to the abstraction that allows it to be set, saved, cleared,
and so forth. It also provides procedures that enable someone other than the originator of
the selection to request information relating to the selection and to negotiate for a copy of
the selection in a particular format.

3-6

ViewPoint Programmer’s Manual 3

The Selection interface is used by two different classes of clients. Most clients wish merely
to obtain the value of the current selection in some particular format; such clients are
called requestors. These programs call Convert (or maybe ConvertNumber, which in turn
calls Convert), or Query, or Enumerate. These clients need not be concerned with many of
the details of the Selection interface.

The other class of clients are those that own or set the current selection; these clients are
called managers. A manager calls Selection.Set and provides procedures that may be called
to convert the selection or to perform various actions on it. The manager remains in control
of the current selection until some other program calls Selection.Set. These clients need to
understand most of the details of the Selection interface.

A client that is managing its own body window will be both a selection requestor and a
selection manager in different parts of the code. For example, when the user selects
something in another window and copies it to the client’s window, the client must call
Selection.Convert to request the value of the selection in a form appropriate to the
application. On the other hand, when the user clicks a mouse button in the client’s window,
the client usually becomes the selection manager by calling Selection.Set.

The most important items in Selection are:
Convert Request the value of the selection in some target form.

Value A record containing a pointer to the converted selection
value, among other things.

CanYouConvert Returns TRUE if the selection manager can convert the
selection to a particular target type.

Set Called by a selection manager to become the current
manager.
ConvertProc Manager-supplied procedure that will be called to convert

the selection to some target type.

ActOnProc Manager-supplied procedure that will be called to perform
some action on the selection, such as mark, unmark, clear.

3.1.6 Property Sheets and FormWindow

A property sheet shows the user the properties of an object and allows the user to change
these properties. There are several different types of properties, the most common ones
being boolean, choice (enumerated), and text.

3-7

Programmer’s Guide

3-8

From a client’s point of view, a property sheet is simply a StarWindowShell with a
FormWindow as a body window. A property sheet is created by calling PropertySheet.Create,
providing a procedure that will make the form items in the FormWindow (a
FormWindow.MakeltemsProc), a list of commands to put in the header of the property sheet,
such as Done, Cancel, and Apply (PropertySheet.Menultems), and a procedure to call when
the user selects one of these commands (a PropertySheet.MenuitemProc). When the user
selects one of the commands in the header of the property sheet, the client’s
PropertySheet.MenultemProc is called. If the user selected Done, for example, the client can
then verify and apply any changes the user made to the object’s properties.

The most important items in PropertySheet are:

Create Creates a property sheet.

Menuitems Used for specifying which commands to put in the header of
the property sheet.

MenuitemProc Client procedure called when the user selects one of the

commands in the header.

The most important items in FormWindow are:

MakeltemsProc Client'procedure called to create the items in the form.

MakeXXXlitem Makes a form item. XXX can be Boolean, Choice, Text, !

integer, Decimal, Window, TagOnly, Command.

GetXXXltemValue Returns the current value of an item. XXX can be Boolean,
Choice, Text, Integer, Decimal, Window, TagOnly,
Command.

3.1.7 XString, et al.

The Xerox Character Code Standard defines a large number of characters, encompassing
not only familiar ASCII characters but also Japanese and Chinese Kanji characters and
others to provide a comprehensive character set able to handle international information
processing requirements. Because of the large number of characters, the data structures in
XString are more complicated than a LONG STRING’S simple array of ASCII characters, but the
operations provided are more comprehensive.

Characters are 16-bit quantities that are composed of two 8-bit quantities, their character
set and character code within a character set. The Character Standard defines how
characters may be encoded, either as runs of 8-bit character codes of the character set or as
16-bit characters where the character set and character code are in consecutive bytes. (See
the XChar chapter for information and operations on characters.)

ViewPoint provides a string package consisting of several interfaces that support the Xerox
Character Code Standard. XString provides the basic data structures for representing
encoded sequences of characters and some operations on these data structures. XFormat
converts other TYPEs into XStrings. XToken parses XStrings into other TYpes. XChar defines
the basic character type and some operations on it. XCharSets

ViewPoint Programmer’s Manual 3

enumerates the character sets defined in the Standard. A collection of interfaces
enumerate the character codes of several common character sets (XCharSetNNN). XTime
provides procedures to acquire and edit times into XStrings and XStrings into times.

3.1.8 XMessage and Attention
XMessage supports translation into other languages of text displayed to the user. It does
not include any string constants in the code of an application. Rather, all the string
constants for an application are declared in a separate module and registered with
XMessage. Then whenever the application needs a string constant, it obtains it by calling
XMessage.Get. Several commonly used messages such as “Yes”, "No”, and days of the
week are defined in XComSoftMessage.

The most important items in XMessage are:
Get Retrieves a message.

RegisterMessages Registers all the messages for an application.

The Attention interface provides a global mechanism for displaying messages to the user.
Attention provides procedures to post messages to the user in the attention window, clear
the attention window, post a message and wait for confirmation, and so forth.

The most important items in Attention are:

Post Posts a message in the attention window.

Clear Clears the attention window.

formatHandle XFormat.Handle that may be used to format strings into the
attention window.

3.1.9 Containers

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user. Star
Folders are a typical example of such an application.

Figure 3-1 shows the relationships among the various interfaces and potential clients.
Each interface is described below, followed by a discussion of which interfaces an
application might need to use.

3-9

Programmer’s Guide

3-10

Folder InBasket

\ / i Directory :

FileContainerShell

N

ContainerWindow

|

»| ContainerSource
FileContainerSource (Defs only - no impl)

\J

FileContainerSourceimpl

T~

ContainerCache

Figure 3.1 Container Interface Dependencies

The ContainerWindow interface takes a window and a ContainerSource and makes the
window behave like a container. [t maintains the display and manages scrolling, selection,
and notifications. Note: This interface does not depend on NSFile.

A container source is a record of procedures that implement the behavior of the items in a
container and the behavior of the container itself. ContainerWindow obtains the strings of
each item by calling one of these procedures. ContainerWindow also performs user
operations on items (such as open, props, delete, insert, take the current selection, and
selection conversion) by calling other procedures in the record. A container source can be
thought of as a supply (source) of items for a container window. The ContainerSource
interface defines each of the procedure TYPEs that a container source must implement.
ContainerSource contains TYPEs only.

ContainerCache provides the implementor of a container source with an easy-to-use cache
for storing and retrieving the strings of each item and some client-specific data about each
item.

FileContainerSource provides an NSFile-backed container source. It takes an
NsFile.Reference for a file that has children, and each child file becomes an item of the
container. Facilities are provided to specify the columns based on NSFile attributes.

The FileContainerShell interface takes an NSFile and column information (such as
headings, widths, formatting) and creates a FileContainerSource, a StarWindowShell, and
a container window body window. Most NSFile-backed container applications can use this
interface, which greatly simplifes the writing of those applications.

ViewPoint Programmer’s Manual 3

Each of the items in a container must behave like to a file on the desktop; that is, each item
must be able to be opened, show a property sheet, take a selection, and so forth. However,
the items need not be backed by files. If the container is backed by an NSFile that has
children, then the FileContainerShell interface is the only interface the client needs to use.
Otherwise, the client must implement a container source and make most of the calls that
the FileContainerShell implementation makes; that is, Starwindowshell.Create,
StarWindowShell.CreateBody, Containerwindow.Create.

3.1.10 SoftKeys

. The SoftKeys interface provides for client-defined function keys designated to be the
isolated row of function keys at the top of the physical keyboard. It also provides a
SoftKeys window whose “keytops” may be selected with the mouse to simulate pressing the
physical key on the keyboard. Such a window is displayed on the user’s desktop whenever
an interpretation other than the default SoftKeys interpretation is in effect (The default is
assumed to be the functions inscribed on the physical keys.)

The most important items in SoftKeys are:

Labels, LabelRecord Strings to display on the keytops in the SoftKeys window.
Push Install a client-specific interpretation for the soft keys.
Remove Remove a previously installed interpretation.

3.1.11 Client-Defined Keyboards

KeyboardKey is a keyboard (the central set of black keys on the physical keyboard)
registration facility. It provides clients with a means of registering system-wide keyboards
(available all the time, like English, French, European), a special keyboard (like
Equations), and/or client-specific keyboards (those that are available only when the client
has the input focus). The labels from these registered keyboards are displayed in the
softkeys window when the user holds the KEYBOARD key down.

The BlackKeys interface provides the data structures that define a client keyboard.

The most important items in KeyboardKey are:
AddToSystemKeyboards Adds a keyboard to the system keyboards.

RegisterClientKeyboards Establishes the keyboards available to the user.

The most important items in BlackKeys are:

Keyboard, KeyboardObject A keyboard interpretation.

3-11

3 Programmer’s Guide

3.1.12 BackgroundProcess

The BackgroundProcess interface provides basic user feedback and control facilities to
clients that want to run in a process other than the the Notifier process (see the Notifier
section below). Once registered with BackgroundProcess, the client process can use
Attention to post messages and check to see if the process has been aborted by the user. The
user can look at the messages posted by the process and abort the process. The primary
procedure in BackgroundProcess is ManageMe, which is typically the first procedure
called from a background process.

3.2 Getting Started

This section is a guide for programmers who have never used the ViewPoint interfaces. It
shows how two common types of applications are written using ViewPoint.

A user can invoke a program in the ViewPoint environment in two ways. First is to select
an icon and press a function key such as OPEN, PROPS, COPY, or MOVE. This type of program
is called an icon application. Second, the user may simply select an item in the attention
window’s pop-up menu. For example, in OS 5, a Show Size command reports on the size of
the selected icon’s file. The following sections describe how to write each of these types of
programs.

3.2.1 Simplest Application

The simplest way to get a program running in the ViewPoint environment is to have the
program add an item to the attention window’s pop-up menu. When the user selects that
item, the program is called. See the SampleBWSTool for an example of this type of
application. Excerpts from SampleBWSTool:

Init: PROCEDURE = {
sampleTool: xstring.ReaderBody « xstring.FromSTRING{"Sample Tooi"L};
Attention.AddMenultem {
MenuData.Createitem {
zone: sysZ,
name: @sampleTool,
proc: MenuProc]];

JH

-- Mainline code
Init(];

When the application is started, its startup (mainline) code creates a MenuData.ltemHandle
by calling MenuData.Createltem and then adds this item to the attention window’s menu by
calling Attention.AddMenuitem. Now the MenuProc passed to MenuData.Createitem is called
when the user selects the Sample Tool item in the attention window’s pop-up menu. The
MenuProc can then do whatever is appropriate for the application.

3-12

ViewPoint Programmer’s Manuai 3

3.2.2 Icon Application

Getting an icon application running in ViewPoint is a little more complex. The basic idea is
that an application operates on files of a particular type. When an application is started, it
registers its interest in files of that type. Whenever the user operates on a file of that type,
the application gets called. Here is a skeletal example of some application code; the full
explanation follows:

-- Constants and global data

samplelconFileType: NSFile.Type =...;
oldimpl, newimpl: Containee.Implementation « [J;

-- Containee./mplementation procedures

GenericProc: Cantainee.GenericProc = {

SELECT atom FROM
canYouTakeSelection = > ..,
takeSelection = > ...
takeSelectionCopy = > ...
open = > ..,
props = > ...
ENDCASE = > ...

PictureProc: Containee.PictureProc = {
;.);s.play.Bi‘tmap [...1;
Y

-- Initialization procedures

InitAtoms: PROCEDURE = {
open « atom.MakeAtom["Open"L];
props « Atom.MakeAtom["Props”L];
canYouTakeSelection « atom.MakeAtom["CanYouTakeSelection"L];
takeSelection « atom.MakeAtom([“TakeSelection"L];
takeSelectionCopy « Atom.MakeAtom("TakeSelectionCopy"L];
} .

FindOrCreatePrototypelconFile: PROCEDURE = {...};

Setimplementation: PROCEDURE = {
newimpl.genericProc « GenericProc;
newimpl.pictureProc « PictureProc;
oldimpl « containee.Setimplementation [samplelconFileType, newimpl];

}:
-- Mainline code
InitAtoms(];

FindOrCreatePrototypelconfile];
Setimplementation(];

Programmer’s Guide

3-14

The most important thing to note in the above example is the Setimplementation
procedure and the call to Containee.Setimpiementation in particular. This call associates the
application’s implementation (newimpl) with a particular file type (samplelconFileType).
This implementation is actually a Containee.Implementation that is a record which contains
procedures. Whenever the user operates on files of type sampleiconFileType, the
procedures in the Implementation record are called. An understanding of how this works
requires an understanding of how the ViewPoint desktop implementation operates.

First, some background about NSFiles. All NSFiles have:

A name

A file type (LONG CARDINAL)

A set of attributes, such as create date

Either:

® Content, such as a document

¢ Children that are also NSFiles, such as a folder.

An NSFile that has children is often called a directory. Fine point: anNSFile can actually have both
content.and children; however, to simplify this discussion, this point is ignored. Note: Because the children
of an NSFile can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is an NSFile that has children. An on-screen icon picture represents
each child file of the desktop’s NSFile The desktop display of rows of "icons” is an illusion.
The word icon is in quotes because, from the programmer’s point of view, there really is no
such thing as an icon. The only things that really exist are files (NSFiles), icon pictures, and
application code.)

Immediately after logging on, the desktop implementation enumerates the child files of the
desktop file and calls an application's Containee.PictureProc for each child file, based on the
child file’s type. Each application’s Containee.PictureProc should then display the icon
picture for that file. ‘ :

After logon is complete and the desktop is displayed, the desktop implementation receives
user actions such as mouse clicks and presses of the OPEN or PROPS keys. For example,
assume the user selects an icon picture and presses OPEN. The desktop implementation
determines the file type for the file represented by the icon picture the user selected and
then calls the Containee.GenericProc for the application that operates on files of that type,
requesting that the application open the icon. It also passes the application a unique
identifier for the particular file selected. At this point, the application can do whatever is
appropriate for that application. Typically, the application opens the file, reads some data
out of it, creates a StarWindowShell, and displays the contents of the file in the window in
some application-specific form.

The desktop implementation does not call an application directly. Rather, ViewPoint
maintains a table of file-type/Containee.lmplementation pairs. When an application calls
Containee.Setimplementation, an entry is added to the table. When the desktop

ViewPoint Programmer’s Manual 3

implementation calls an application, it obtains the Containee.Implementation for the
\ application by looking it up in the table (it actually calls Containee. Getimplementation).

3.2.3 Operational Notes

To write an icon application, a programmer must obtain a unique file type. Contact your
ViewPoint consultant to obtain one.

In the example above, the application in its initialization code checks to be sure a prototype
file exists and, if not, creates one. This usually involves creating a file with the proper file
type for this application. This allows the user to get started with the application, usually by
copying the blank prototype out of a special folder of prototypes.

Note: There is a clear distinction between a prototype file for an application and a bed file
that contains the code for the application. All bed files are of the same type, while each
prototype file is different for each application.

3.3 Flow Descriptions

The following flow descriptions are intended to show how everything is related. For each
example scenario, the exact sequence of calls is described, including ViewPoint interfaces
and clients.

3.3.1 Selectan Icon

The user points at an icon on the desktop.

-
°
°
°
o
- °

When the mouse button goes down over an icon picture, the notification goes to the
desktop implementation’s Tip.NotifyProc. The NotifyProc will be passed a window.Place
and a "PointDown” atom. The desktop implementation determines what file is
represented by that icon picture. Fine point: The desktop implementation maintains a mapping from
icon picture locations to NSFile.References.

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.Implementation for that file type.

The desktop implementation calls the Containee.PictureProc that is in the
Implementation; (that is, impi. pictureProc), passing in:

® data: the NsFile.Reference for the file

¢ old: normai

® new: highlighted

The application’s PictureProc displays a highlighted version of its icon picture, perhaps
simply calling Display.Invert.

When the mouse button goes up (a “PointUp” atom), the desktop implementation
becomes the current selection manager by calling Selection.Set. It sets the desktop
window to be the current input focus by calling Tip.Setinputfocus. Setting the input

3-15

Programmer’s Guide

focus to be the desktop window ensures that keys such as OPEN, PROPS, COPY,and so
forth, will all go to the desktop’s NotifyProc.

END.

3.3.2 prOPSof an Icon

Assume an icon on the desktop is selected. The user presses PROPS. After changing some
items in the property sheet, the user selects Done.

3-16

The desktop implementation’s Tip.NotifyProc gets the notification (a “PropsDown”
atom) and determines which icon picture is currently selected and what file is
represented by that icon picture.

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.lmplementation for that file type.

The desktop implementation calls the Containee.GenericProc that is in the
Implementation; (that is, impl.genericProc), passing in:

® data: the NsFile.Reference for the file

® atom: "Props”

® changeProc: a Containee.ChangeProc that belongs to the desktop implementation
°

changeProcData: a pointer to some desktop implementation data that identifies
the icon/file being operated on.

The application’s GenericProc creates a property sheet by calling Propertysheet.Create. It
probably also opens and retrieves some data out of the file (using various NSFile
operations) and uses that data to set the initial values of the items in the property
sheet.

Typically, the client wants to save the Nsrile.Handle for the file while the property sheet
is open. In addition, if the opening and closing of the property sheet might cause the
file’s attributes to change, the application’s GenericProc must save the passed
changeProc and changeProcData. A typical example is when the file’s name is one of
the items in the property sheet and the user can change the name. The data is saved by
allocating a record with this data in it and passing a pointer to the record as the
clientData parameter to PropertySheet.Create. Later, when the user selects Done or
Apply, this data may be recovered (see the rest of this flow description). Note: This
data cannot be saved in a local frame (such as that of the GenericProc) because the
GenericProc must return to the notifier after creating the property sheet; when the
user selects Done or Apply that is a new call stack. The client data should not be saved
in a global frame because more than one property sheet may be open for a particular
application.

The app'lication’s GenericProc returns the StarwindowsSheil. Handle for the property sheet.

The desktop implementation displays the property sheet by calling m

StarwindowShell.Push; then the desktop’s NotifyProc returns to the Notifier.

ViewPoint Programmer’s Manual 3

The user changes some items and then selects Done.

The PropertySheet implementation calls the client’s PropertySheet.MenuitemProc that
was passed in to PropertySheet.Create, passing in:

® shell: the StarWindowsShell for the property sheet

¢ formWindow: the FormWindow for the property sheet

® menultem: done

e clientData: the pointer to the client’s data that was passed to PropertySheet.Create.
The client’s MenuitemProc recovers the client’s data (the file handle, the changeProc
and changeProcData, and any other relevant client data) from the clientData
parameter. It determines if the user made any changes and, if so, updates the file

accordingly and calls the changeProc, passing in the changeProcData, the file -
reference, and a list of the changed file attributes.

The desktop’s ChangeProc causes the icon picture to be redisplayed, because changing
an attribute such as the name requires the picture to be updated with the new name.

The client’s MenultemProc¢ returns to the PropertySheet implementation, indicating
that the property sheet should be destroyed.

The PropertySheet implementation destroys the property sheet by calling
StarwWindowS$hell.POp and returns to the Notifier.

END.

3.3.3 OPENan Icon

Opening an icon is similar to opening a property sheet for an icon.

3.3.4 COPY Something to an Icon

Assume something has been selected. The user presses COPY and then points at an icon.

When the user presses COPY, the NotifyProc for the window that currently has the
input focus (and the selection) is called. It calls Tipstar.SetMode [copy] to set the
environment into copy mode and then returns to the Notifier. It might also call
Cursor.Set to change the cursor shape to indicate move mode.

SetMode replaces the NormalMouse.TIP table with the CopyModeMouse.TIP table.
The user presses the mouse button down over an icon on the desktop.

The desktop’s NotifyProc gets called with a "CopyModeDown” atom (instead of a
“PointDown” atom because of the TIP table switch). It determines what file is
represented by the icon picture the user is pointing at. It calls
Containee.Getimplementation, passing in the file's type and getting back a
Containee.lmplementation. It calls the Implementation’s GenericProc passing in:

® data: the Nsrile.Reference for the file

Programmer’s Guide

e atom: “CanYouTake”

o The application’s GenericProc calls selection.CanYouConvert or Selection.HowHard to
determine if the current selection can be converted to target type(s) that the
application can take. For example, if the icon being copied to is a printer icon, it calls
HowHard with targets of interpressMaster and file.

® The Selection implementation calls the current selection manager’s
Selection.ConvertProc. It returns an indication of how hard it would be to convert the
selection to the given target types.

® The application’s GenericProg returns a pointer to TRUE if it determines that it can take
the current selection and FALSE if it cannot.

® The desktop implementation changes the cursor shape to a question mark if the
application’s GenericProc returns FALSE. Otherwise, it leaves the cursor as it was.

® The user releases the mouse button.

® The desktop’s NotifyProc gets called with a "CopyModeUp” atom. [t determines what
file is represented by the icon picture the user is pointing at. It calls
Containee.Getimplementation, passing in the file's type and getting back a
Containee.Implementation. It then calls the Implementation’s GenericProc, passing in:

data: the NsFile.Reference for the file

"atom: "TakeSaelectionCopy”

e e o

changeProc: a Containee.ChangeProc that belongs to the desktop implementation

changeProcData: a pointer to some desktop implementation data that identifies
the icorn/file being copied to

® The application’s GenericProc calls selection.Convert or (Selection.Enumerate) to convert
the selection to the desired type. The application then operates on the converted
selection value as appropriate for that application. For example, the printer icon
application converts the selection to an interpressMaster and sends the master to the
printer. (See the Selection chapter for a full flow description of the selection
mechanism.)

® The application’s GenericProc returns to the desktop’s NotifyProc, which returns to the
Notifier.

e END.

3.4 Programming Conventions

3-18

The ViewPoint environment assumes that the programs that run in it are friendly and that
they are not trying to circumvent or sabotage the system. The system does not enforce
many of the conventions described here but assumes that application programmers will
adhere to them voluntarily. If these conventions are not followed, the ViewPoint M
environment may degrade or break down altogether.

ViewPoint Programmer’s Manual 3

The most important principle is that users should have complete control over their
environment. In particular, clients shall not pre-empt users. A user should never be forced
by a client into a situation where the only thing that can be done is to interact with only
one application. Furthermore, the client should avoid falling into a particular mode when
interacting with the user; that is, an application should avoid imposing unnecessary
restrictions on the sequence of user actions.

This goal of user control has implications for the designs of applications. A client should
never seize control of the processor while getting user input. This tends to happen when the
client wants to use the "get a command from the user and execute it" mode of operation.
Instead, an application should arrange for ViewPoint to notify it when the user wishes to
communicate some event to the application. This is known as the “Don't call us, we'll call
you” principle.

The user owns the window layout on the screen. Although the client can rearrange the
windows, this is discouraged. Users have particular and differing tastes in the way they
wish to lay out windows on the display; it is not the client's role to override the user's
decisions. In particular, clients should avoid making windows jump up and down to try to
capture the user's attention. If the user has put a window off to the side, then he does not
want to be bothered by it.

3.4.1 Notifier

ViewPoint sends most user input actions to the window that has set itself to be the focus for
user input; the rest of the actions are directed to the window containing the cursor. (See the
TIP interface for details on how the decision is made where to send these actions.) A process
in ViewPoint notes all user input actions and determines which window should receive
each one. A client is concerned only with the actions that are directed to its window; it need
not concern itself with determining which actions are intended for it.

The basic notification mechanism directs user input to one of many windows in the window
tree. Each window has a TIP.Table and a TIP.NotifyProc. The table is a structure that
translates a sequence of user actions into a sequence of results that are then passed to the
notify procedure of the window.

There are two processes that share the notification responsibilities, the Stimulus process
and the Notifier process. The Stimulus process is a high-priority process that wakes up
approximately 50 times a second. When it runs, it makes the cursor follow the mouse and
watches for keyboard keys going up or down, mouse motion, and mouse buttons going up or
down, enqueuing these events for the Notifier process.

The Notifier process dequeues these events, determines which window the event is for, and
tries to match the events in the window’s table. If it finds a match in the table, it calls the
window’s notify procedure with the results specified in the table. If no match is found, it
tries the next table in the window’s chain of tables. If no match is found in any table, the
event is discarded.

The Notifier process is important. To avoid multi-process interference, some operations in
the system can happen only in the Notifier process. Setting the selection is one such
operation. The Notifier process is also the one most closely tied to the user. The Notifier
waits until a NotifyProc finishes for one user action before processing the next user action.
If an operation takes an extended time to complete (more than three to five seconds), it

3-19

Programmer’s Guide

3-20

should be forked from the Notifier process to run in a separate process so that the Notifier
process is free to respond to the user’s actions. Of course, the application writer must take
great care when stepping into this world of parallel processing.

3.4.2 Multiple Proéesses, Multiple Instances

In ViewPoint, many programs can run simultaneously. The designer of a client-callable
package should bear in mind that several different asynchronous clients may invoke his
package, so the package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While one
client is using the package, all other clients block on the monitor lock. Of course, no state
should be maintained internally between successive calls to the package, because there is
no guarantee that the same client is calling each time.

This simple approach has the disadvantage that clients are simply stopped for what may be
a long time, with no option of taking alternate action. To ease this restriction, the entry
procedure can check a "busy” bit in the package. If the package is busy, the procedure can
return this result to the client. The client can then decide whether to give up, try
something else, or try again. This is less likely to tie up an application for a long period,
and the user can use the application for other purposes.

If the package is providing a collection of procedures and cannot provide its services in a
single procedure, the package and its clients must pass state back and forth in the form of
an object. The package can use a single monitor on its code to protect the object, or it can
provide a monitor as part of each object. If it does the latter, then several clients can be
executing safely at the same time.

Some packages require that a client provide procedures that are called by the package. The
designer of such a package should have these client-provided procedures take an extra
parameter, a long pointer to client instance data. When the client provides the package
with the procedures, it also provides the instance data to pass to the procedures when they
are called. The client can then use this instance data to distinguish between several
different instances of itself that are sharing the same code.

3.4.3 Resource Management

Programs in the Xerox Development Environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs; there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution time,
memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible
for the resource. The program that is responsible for the deallocation of a resource is the
owner of that resource. One example of a resource is a file handle. If a program passes a

ViewPoint Programmer’s Manual 3

file handle to another program, both programs must agree about who owns that file handle.
Did the caller transfer ownership by passing the file handle, or is it retaining ownership
and only letting the called procedure use the file handle? If there is disagreement between
the two programs, either the file will be released twice, or it will never be released at all.
All interfaces involving resources must state explicitly whether ownership is transferred.
To ease the problem of memory management when the ownership of memory can change, a
heap called the system heap is used in ViewPoint. If a piece of memory can have its
ownership transferred, it is either allocated from the system heap or a deallocation
procedure must be provided for it.

The most common resource appearing in interfaces is an XString (Reader or ReaderBody).
There must be agreement about which program is responsible for deallocating the string’s
bytes. Typically, a string passed as an input parameter does not carry ownership with it;
implementors of such procedures should not deallocate or change the string. If it is
necessary for the implementor to modify the string or use it after the procedure returns,
the implementor should first copy it. Clients should be particularly careful when a
procedure returns a string to note whether ownership has come with it.

3.4.4 Stopping Applications

The ViewPoint environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that application
writers are good citizens and will design their tools to stop voluntarily when asked to stop.

An application should stop if the user aborts the application. There are two ways to
determine if the user has aborted an application. (1) An application’s window can have a
TIP.AttentionProc that is called as soon as the user presses the STOP key. (2) Procedures in
the TIP interface can check whether a user has aborted an application with the STOP key in
the application’s window. An application should check for a user abort at frequent
intervals and be prepared to stop executing and clean up after itself. Because the
application controls when it checks, it can check at points in its execution when its state is
easy to clean up. Packages that can be called from several programs should take a
procedure parameter that can be called to see whether the user has aborted.

3.4.5 Multinationality

ViewPoint is designed to support easy transport of applications to other countries. The
string package (XString, XChar, XFormat, and so forth) supports the Xerox Character Code
Standard, which allows for strings in many languages to be intermixed. The XMessage
interface allows user messages to be translated into other languages because the
application programmer can put all these messages into a module separate from the rest of
the application code. The KeyboardKey interface supports the addition of keyboards for
many languages.

Application programmers are strongly encouraged to allow their application to be
multilingual. This means for example, using XString for all string operations and using
XMessage to manage any text that will be displayed to the user. It also means not making
any language assumptions about characters received from the user. An application that
expects typing input from the user should be prepared to receive characters from any
character set.

3-21

3

Programmer’s Guide

3.5 Summary of Interfaces

3-22

Atom provides the mechanism for making TIP, Event, and Containee atoms.
AtomicProfile provides a mechanism for storing and retrieving global values.
Attention provides a means of displaying messages to the user.

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the the Notifier process.

BlackKeys provides the capability to change the interpretation of the central (black) section
of the keyboard.

Containee is an application registration facility. It allows an application to register its
implementation for files of a particular type.

ContainerCache provides a simple cacheing mechanism for the implementor of a container
source.

ContainerSource defines the procedures that must be implemented to provide a source of
items for a container window.

ContainerWindow creates a window that displays an ordered list of items that behave like
icons on a desktop.

Context provides a mechanism for clients to associate data with windows.

Cursor provides facilities for a client to manipulate the appearance of the cursor that
represents the mouse position on the screen.

Display provides facilities to display bits in windows.

Event provides clients with the ability to be notified of events that take place
asynchronously on a system-wide basis.

FileContainerShell creates a StarWindowShel! with a ContainerWindow as a body window
that is backed by a FileContainerSource.

FileContainerSource creates a container source that is backed by a file that has children.
FormWindow creates a window with various types of form items in it, such as text,
boolean, choice (enumerated), command, and window. FormWindow is used to create

property sheets.

FormWindowMessageParse provides procedures that parse strings to produce various
FormWindow TYPEs.

IdleControl provides access to the basic controlling module of ViewPoint.

KeyboardKey is a client keyboard (the central black keys) registration facility.

ViewPoint Programmer’s Manual 3

KeyhoardWindow provides a particular implementation for a keyboard window.
LevellVKeys defines the names of the physical keys.

MenuData allows menus and menu items to be created.

MessageWindow provides a facility for posting messages in a window to the user.
PopupMenu allows a menu to be displayed (popped up) anywhere on the screen.

PropertySheet creates a property sheet. A property sheet shows the properties of some
object to the user and allows the user to change the properties.

Selection provides the facilities for a client to manipulate the user's current selection. [t
also provides procedures that enable someone other than the originator of the selection to
request information relating to the selection and to negotiate for a copy of the selection in a
particular format.

SimpleTextDisplay provides facilities for displaying, measuring, and resolving strings of
Xerox Character Code Standard text. [t can handle only nonattributed single-font text.

SimpleTextEdit provides facilities for presenting short, editable pieces of text to the user.
SimpleTextFont provides access to the default system font that is used to display
ViewPoint's text, such as the text in menus, the attention window, window names,

containers, property sheet text items, and so forth.

SoftKeys provides for client-defined function keys designated to be the isolated row of
function keys at the top of the physical keyboard.

StarDesktop provides access to the user's desktop file and window.

StarWindowShel! provides facilities for creating Star-like windows.

TIP provides basic user input facilities through a flexible mechanism that translates
hardware level actions from the keyboard and mouse into higher-level client action
requests.

TIPStar provides access to ViewPoint's normal set of TIP tables.

Undo provides facilities that allow an application to register undo opportunities, so that
when the user requests that something be undone, the application is called to do so.

Window defines the low-level window management package used by ViewPoint.

XChar defines the basic character type as defined in the Xerox Character Code Standard as
well as some operations on it.

XCharSetNNN enumerates the character codes in character set NNN.

XCharSets enumerates the character sets defined in the Xerox Character Code Standard.

3-23

Programmer’s Guide

3-24

XComSoftMessage defines messages for some commonly used strings, such as Yes, No,
day-of-the-week, month,and so forth.

XFormat converts various TYPEs into XStrings.
XLReal supports manipulation of real numbers with greater precision than Mesa ReALs.

XMessage supports the multilingual requirements of systems that require the text
displayed to the user be separable from the code and algorithms that use it.

XString provides the basic data structures for representing encoded sequences of characters
as defined in the Xerox Character Code Standard. It also provides several operations on
these data structures.

XTime provides facilities to acquire and edit times into XStrings and XStrings into times.

XToken parses XStrings into other TYPes

AdjustableWindow

4.1 Overview

AdjustableWindow makes an arbitrary window become shrinkable, growable, and/or
moveable by the user. For a comprehensive overview of all the subwindow interfaces and
their intended use, see the Subwindow Overview chapter.

4.2 Interface Items

4.2.1 Create Proc

Create: PROC|
window: window.Handle,
adjustProc: AdjustProc,
zone: UNCOUNTED ZONE,
limitProc: LimitProc « NiL,
adjustableEdges: Edges « defaultAdjustableEdges,
topBottom, move: BOOLEAN «FALSE,
upperCornersColor, lowerCornersColor: Display.Brick «NiL -- NIL means Gray--)

Edge: TYPe = {left, right, top, bottom};
Edges: TYPE = PACKED ARRAY Edge Of BooleanFalseDefault;
BooleanFalseDefauit: TYPE = BOOLEAN «-FALSE;
defaultAdjustableEdges: edges = [

left: FALSE, right: TRUE, top: FALSE, bottom: TRUE];

Create makes window resizeable, moveable and/or top/bottomable. adjustableEdges
governs which edges or corners can be adjusted. defaultAdjustableEdges, for example,
means the lower right corner of window is adjustable (which means that the upper left
corner is fixed). If only bottom is TRUE the only possible resize is a "drag” of the bottom edge
of the window. The window is moveable if move is TRUE and top/bottomable if topBottom
is TRUE. upperCornersColor and lowerCornersColor allow the client to specify white or
gray ete. for the adjustable quadrants. adjustProc and limitProc are the adjust and limit
procs for window.

4-1

AdjustableWindow

4.2.2 Adjust and Limit Procs

AdjustProc: TYPE = PROCEDURE [
window: Window.Handle,
box: window.BoOX,
when: When|;

When: TYPe = {before, after);

An AdjustProc is the proc that is called when window's box is changing. It will be called
both before and after the Window.SlideAndSize occurs.

GetAdjustProc: PROC [window: window.Handle]
RETURNS [AdjustProc];

Get the AdjustProc associated with window.

SetAdjustProc: PROC|
window: window.Handle,
proc: AdjustProc]

RETURNS [old: AdjustProc);

Set the AdjustProc for window to be proc. Returns the previously set AdjustProc.
LimitProc: TYPE = PROCEDURE |

window: window.Handle,

box: window.Box|

RETURNS [newBoOx: Window.Box);
A LimitProc is the proc that is called when window box is about to change. It allows the
client a chance to disallow (newBox <« oldBox) or modify (newBox « otherBox) the

proposed new box value before the call to Window.SlideAndSize occurs.

GetLimitProc: PROC [window: Window.Handle]
RETURNS [LimitProc);

Get the LimitProc associated with window.
SetLimitProc: PrOC|

window: window.Handle,

proc: LimitProc|
RETURNS [old: LimitProc);

Set the LimitProc for window to be proc. Returns the previously set LimitProc.

4.2.3 Utilities
Isit: PROCEDURE [window: Window.Handle] RETURNS [yes: BOOLEAN];

Returns TRUE if window is an adjustable window.

4-2

ViewPoint Programmer’s Manual 4

GetZone: PROCEDURE[window: Window.Handle] RETURNS [zone: UNCOUNTED ZONE];

Returns the zone associated with window.

4.2.4 Friends

CallAncestorForTheseCorners: PROCEDURE {
window: window.Handle,
corners: Corners « ALL [FALSE]);

Corner: TYPE = {upperleft, upperRight, lowerLeft, lowerRight};
Corners: TYPE = PACKED ARRAY Corner oF BooleanFalseDefault;

CallAncestorForTheseCorners should be called if the client wishes parent windows to
receive notifications (like the shell being notified when adjustments are made to the
bottom subwindow in a subdivided shell). For example, a subwindow can be designed to fill
the lower segment of a shell and it's lower grabbers to cause the shell to resize as well as
the subwindow. SubwindowManager uses this technique.

4,2.5 Errors
Error: ERROR (type: ErrorTypel;

ErrorType: TyPe = {notAnAdjustableWindow, notAllowed};

4.3 Usage/Examples

--from SubwindowManager.MakeSW
--make the new sw adjustable and set the manager procs
AdjustableWindow.Create[sw, CoordinateSWAdjusts, zone,
CoordinateSWLimits, [FALSE,FALSE, horizAdjust,vertAdjust], FALSE, FALSE];
AdjustableWindow.CallAncestorforTheseCorners{

SW, [FALSE.FALSE,TRUE,TRUE]];
IF SubwindowFriends.GetSWProcs{type].scrollSWProc # NIL THEN

sw « SubwindowFriends.GetSWProcs{type].scrollSWProc|

sw, vertScrollbar, horizScrollbar];

4-3

4

AdjustableWindow

4.4

4-4

Index of Interface Items

Item

AdjustProc: Type
BooleanFalseDefault: Type
CallAncestorForThese Corners: PROCEDURE
Corner: TYPE

Corners: TYPe

Create: PROCEDURE
defaultAdjustableEdges: Edges
Edge: TYpe

Edges: TYPE

Error

ErrorType: TYPE

GetAdjustProc: PROCEDURE
GetLimitProc: PROCEDURE
GetZone: PROCEDURE
Islt:PROCEDURE

LimitProc: TYPe

SetAdjustProc: PROCEDURE
SetLimitProc: PROCEDURE

When: TYpre

v
&
)
o

NINNNNWNNWWPMP s =0 0 wW =N

ApplicationFolder

5.1 Overview

ApplicationFolder provides access to the folder that contains all the component files of an
application. A full application is composed of one or more beds, a message file, a description
file, and other data files such as .TIP or .Icons. These components are all put together into a
folder with a specific file type, called an Application (or ApplicationFolder).

When the application is loaded and started, one of the first things it does is get its data
files. The actual file names of the data files are usually specified in the application’s
description file, which is a file that may be read using the OptionFile interface. The
application gets its data files by using Applicationfolder.FromName to obtain the
ApplicationFolder file, using Appiicationfolder.FindDescriptionFile to get the description file
from the ApplicationFolder file, and then using OptionFile.GetStringValue to get the data
files names. (See Usage/Examples.) ApplicationFolderExtra.lnitMessages makes
initializing messages much easier, just pass in an internal name and get back an
XMessage.Handle. No more looking for description file, finding the message file, etc.

5.2 Interface Items

FromName: PROCEDURE [internalName: xstring.Reader]
RETURNS [applicationFolder: NsFile.Reference];

Returns the folder for the given application. internalName is the section name in the
description file. Returns NsFile.nullReference if not found.

FindDescriptionFile: PROCEDURE [applicationFolder: NsFile.Handle]
RETURNS [descriptionFile: NsFile.Reference];

Finds a file with file type = OptionFile (4385) in the applicationFolder. Returns
nsFile.nullReference if not found.

FindDescriptionFileX: PROCEDURE [applicationFolder: NSFile.Handle, session: NsFile.Session]
RETURNS [descriptionFile: NsFile.Referencal;

5 ApplicationFolder

Finds a file with file type = OptionFile (4385) in the applicationFolder using the specified
NsFile.Session. Returns NsFile.nullReference if not found. FPine Point: In BWS4.3, this is in ”~
ApplicationFolderExtra.mesa.

EventData: TYPE = RECORD [
applicationFolder: Nsrile.Reference,
internalName: xstring.Reader,

applicationADF: NSFile.Reference,
containsFontFile: BOOLEAN,
versionStamp: CARDINAL,
priority: CARDINAL J;

versionStamp: CARDINAL = 2;

The application loader notifies the ApplicationLoaded event after loading and starting an
application. EventData is passed as tvent.EventData for this event. applicationADF is the
description file, containsFontFile is TRUE if it contains NovaFontFile entry in the
description file. The current versionStamp is 2. If the versionStamp is 2, then the priority
is cached as an extended attribute of the application folder. The value of priority of an
application folder is specified in the ADF's priority entry. At startup time, the autorun
applications are started in the order of ascending priority number. Fine Point: In BWS4.3,
EventData is in ApplicationFolderExtra2.mesa. '

The application loader also notifies the following events:

Aboutloading: Notifies when the loader try to load an application.
LoadVetoed: Notifies when loading vetoed by the client of the AboutLoading event.
LoadedAndAboutToStart: Notifies when finished loading an application.

InitMessages: PROCEDURE [internalName: xstring.Reader, label: xstring.Reader « NiL,
domainindex: cARDINAL < 0] RETURNS [h: XMessage.Handle] ;

Returns initialized XMessage.Handle for the specified application folder, internalName is
the section name in the description file. If label is non-NIL, then label is used as the entry
name in the description file. If label is NIL, then the entry MessageFile is used.
domainindex is xMessage.MsgDomains. Fine Point: In BWS4.3, this is in ApplicationFolderExtra.mesa.

5.3 Usage/Examples
This example code obtains the message file.
-- File: SampleMsgFileinitimpl.mesa - last edit:
-- Copyright (C) 1985 by Xerox Corparation. All rights reserved.

DIRECTORY
ApplicationFolder using [FindDescriptionFile, FromName],
Heap UsING [systemZone],
NSFile using [Close, Error, GetReference, Handle, nullHandle, nullReference, OpenByNanM
OpenByReference, Reference, Type], ‘
NSString usiNG [FreeString, String],
OptionFile usiNG [GetStringValue],

5-2

ViewPoint Programmer’s Manual 5

SampleBWSApplicationOps,

XMessage usinNG [ClientData, FreeMsgDomainsStorage, Handle, MessagesFromReference,
MsgDomains],

XString usiNG [FromSTRING, NSStringFromReader, Reader, ReaderBody];

SampleMsgFilelmpl: PROGRAM
IMPORTS ApplicationFolder, Heap, NSFile, NSString, OptionFile, XMessage, XString
EXPORTS SampleBWSApplicationOps = {

-- Data

h: XMessage.Handle « NiL;

localZone: UNCOUNTED ZONE « Heap.systemZone;

-- Procedures

DeleteMessages: PROCEDURE [clientData: XMessage.ClientData] = {};
GetMessageHandle: PuUBLIC PROCEDURE RETURNS [XMessage.Handle] = {ReTurn([h]};

InitMessages: PROCEDURE = {
internalName: xstring.ReaderBody ¢ xstring. FromSTRING ["SampleBWSApplication"L];
msgDomains: xMessage.MsgDomains « NiL;
msgDomains « XxMessage.MessagesfromReference [
file: GetMessageFileRef [ApplicationFolder.FromName [@internalName]],
clientData: N,
proc: DeleteMessages|;
h « msgDomains[0].handle;
XMessage.FreeMsgDomainsStorage [msgDomains];

%

GetMessageFileRef: PROCEDURE [folder: NsFile.Reference]
RETURNS [msgFile: NsFile.Reference « NsFile.nullRaference] = {
folderHandle: nsrile.Handle « Nsrile.OpenByRefarence [folder];
internalName: xstring.ReaderBody « XxString. FromsTRING ["SampleBWSApplication™L];
messageFile: xstring.ReaderBody «- xstring. FromsTRING ["MessageFile"L];

FindMessageFileFromName: PROCEDURE [value: xstring.Reader] a {
nssName: NsString.String « xstring. NSStringFromReader [r: value, z: localZone];
msgFileHandle: NsFile.Handle « NsFile.nuilHandle;
msgFileHandle « NsFile.OpenByName [directory: folderHandle, path: nssName'!
NsFile.Error = > {msgFileHandle « NsFile.nullHandle; coNTINUE}];
IF msgFileHandle = NsFile.nullHandle THEN ERROR; -- no message file!
msgFile « NsFile.GetReference [msgFileHandle]; '
NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone, s: nssName];

&

OptionFile.GetStringValue [section: @internalName, entry: @messageFile,
cailBack: FindMessageFileFromName,
file: Applicationfoider.FindDescriptionFile [folderHandle]];

ApplicationFolder

5-4

NsFile.Close [folderHandle];

}
-- Mainline code

InitMessages(];

}...

ViewPoint Programmer’s Manual

5.4 Index of Interface Items
Item

EventData: TYPe
FindDescriptionFile: PROCEDURE
FindDescriptionFileX: PROCEDURE
FromName: PROCEDURE
InitMessages: PROCEDURE
versionStamp: CARDINAL

Page

NN = oo

ApplicationFolder

Atom

6.1 Overview

Although it is often convenient to name an object using a textual name, XStrings are
somewhat clumsy to compare and pass around. An atom is a one-word datum that has a
one-to-one correspondence with a textual name. Using atoms, objects may be named
textually without having to store, copy, and compare the strings themselves. Atoms were
made popular by the Lisp language.

The textual name associated with an atom is called its PName, just as it is in Lisp. If two

atoms are equal, they correspond to the same PName and vice versa. An atom may also
have properties associated with it; a property is a [name, value] pair.

6.2 Interface Items

6.2.1 Making Atoms
ATOM: Tvre[1];
null: ATOM = LoopPHOLE[O].
An ATOM is a one-word datum that has a one-to-one correspondence with a textual name,
or PName. If two ATOMs are equal, they correspond to the same pName. If two pNames are
equal, they correspond to the same ATOM.
Make: PROCEDURE [pNamae: xstring.Reader] RETURNS [atom: ATOM];
MakeAtom: PROCEDURE [pName: LONG STRING] RETURNS [atom: ATOM];
MakeAtom and Make return the ATOM corresponding to pName, creating one if
necessary. In pName, uppercase and lowercase characters are different and result in
different ATOMs. The atom returned is valid for the duration of the boot session, and the

pName is remembered for the duration of the boot session.

GetPName: PROCEDURE [atom: ATOM] RETURNS [pName: xString.Reader];

6-1

Atom

GetPName returns the name of atom, returning NiL if atom is null. It raises the error
NoSuchAtom if atom is not valid. A

6.2.2 Error
NoSuchAtom: ERROR;
NoSuchAtom may be raised by GetPName, PutProp, GetProp, or RemoveProp. It is raised

when an operation is presented with an ATOM for which no Make or MakeAtom operation
has been done in the boot session. Such atoms are called invalid atoms.

6.2.3 Property Lists
Pair: TYPE = RECORD [prop: ATOM, value: RefAny];
RefAny: TYPE a LONG POINTER;
RefPair: TYPE = LONG POINTER TO READONLY Pair;

Pair defines the [name, value] pair for a property. Properties are named by atoms and have
long pointers as values. Property pairs are referenced by a read-only pointer.

PutProp: PROCEDURE [onto: ATOM, pair: Pair];

PutProp adds a property pair to onto. If the property already exists, the value is updated. If -~
onto is null, no action takes place. PutProp raises the error NoSuchAtom if onto is not

valid. .

GetProp: PROCEDURE [onto, prop: ATOM] ReTURNS [pair: RefPair};

GetProp returns the property pair whose property name is the atom prop from atom onto.

If onto does not have a property whose name is prop or onto is null, NiL is returned.

GetProp raises the error NoSuchAtom if onto is not valid. Note: The client may not change
the property pair.

RemoveProp: PROCEDURE [onto, prop: ATOM];
RemoveProp removes the property pair whose property name is the atom prop from atom

onto. If onto is null, no action takes place. RemoveProp raises the error NoSuchAtom if
onto is not valid.

6.2.4 Enumerating Atoms and Property Lists
MapAtomProc: TYPE = PROCEDURE [ATOM)] RETURNS [BOOLEAN];

MapAtomProc is used by MapAtom to enumerate atoms. When it returns TRUE, the
enumeration stops.

MapAtoms: PROCEDURE [proc: MapAtomProc] RETURNS [lastAtom: ATOM];

ViewPoint Programmer’s Manual 6

MapAtoms enumerates the atoms, calling proc once for each atom. If proc returns TRUE,
MapAtoms returns that atom. [f proc never returns TRUE, MapAtoms returns null.

MapPListProc: TYPe = PROCEDURE [RefPair] RETURNS [BOOLEAN];

MapPListProc is used by MapPList to enumerate property lists. When it returns TRUE, the
enumeration stops. Note: The client may not change the property pair.

MapPList: PROCEDURE [atom: ATOM, proc: MapPListProc] RETURNS [lastPair: RefPair];

MapPList enumerates the property list of atom, calling proc once for each pair. If proc
returns TRUE, MapPList returns that pair. If proc never returns TRUE, MapPList returns NiL.

6.3 Usage/Examples

Atom is most appropriately used for communicating names and permanent data between
separate applications or between far-flung parts of a single application. The AtomicProfile
interface is an example of this use.

However, ATOMSs and atom property lists add to the working set of every application, and
thus degrade system performance as a whole. This happens because Atom must make a
copy of the atom name in its (permanent) database, and every client of Atom uses that
database. It is much better to keep an application’s data separated from other data.

Property lists are a shared, global resource and should be used for sharing other global
resources. They should not be used for transient data. For example, consider the chaos that
would ensue if several instances of an application were running simultaneously and each
assumed that the property list of a particular atom was its to read and write. (Of course,
this interference could also result from different applications running at different times.)

ATOMs take a significant amount of time to create. Applications interested in good
performance will only use ATOMs if they need a runtime-extendable enumeration; a
simple compile-time enumeration is much more efficient.

If you want an atom with a property list for a private or transient usage (a bad idea in any
case) you must make sure that the atom is unique, so as not to interfere with other
applications using the same atom. Code such as

myLlist: Atom.ATOM = Atom.MakeAtom("string list"L]; -- WRONG

must be replaced by code that gives an atom name that is unique to the application or
module (or instance, if multiple instances may be running).

Two of the major uses of atoms are in the Event and TIP interfaces. In the Event interface,
atoms name events. [n the TIP interface they are used in TIP tables and TIP results to name
actions. (See those interfaces for more information.)

0.‘4
w

Atom

6-4

The names of atoms are case sensitive. For example, atom1 and atom2 are not equal, while
atom1 and atom3 are equal.

atom1: ATOM = MakeAtom[“Atom“L];
atom2: ATOM = MakeAtom{"ATOM"L];
atom3: ATOM a Make[GetPName[atom1]];

The value of an atom is a function of the characters of its name and the names of the atoms
that have been previously created. Atoms may not be pickled (put in a permanent
representation that may be filed and recovered later) or transmitted to another system.
The atom is just a convenient way to represent and manipulate the name, which is the
permanent representation.

ViewPoint Programmer’s Manual

6.4 Index of Interface Items

Item

ATOM: Type
GetPName: PROCEDURE
GetProp: PROCEDURE
Make: PROCEDURE
MakeAtom: PROCEDURE
MapAtomProc: TYPE
MapPList: PROCEDURE
MapPListProc: TYPe
MapAtoms: PROCEDURE
NoSuchAtom: ERROR
null: ATOM

Pair: Type

PutProp: PROCEDURE
RefAny: Type

RefPair: TYPe
RemoveProp: PROCEDURE

Page

NNNNN=2SNNWWN R A N -

Atom

AtomicProfile

7.1 Overview

The AtomicProfile interface provides a general mechanism for storing and retrieving
global values, such as user name and password. Values are named by atoms and may have
a type of either boolean, long integer, or string. Only one value is associated with each
atom, regardless of type. : :

Boolean and long integer values are simple values, unlike string values, which are passed
by reference. The value of strings may be gotten by calling the GetString routine, in which

case they must te returned to the implementation using DoneWithString. They may be
gotten by using a callback procedure in EnumerateString.

7.2 Interface Items

7.2.1 Boolean Values
GetBOOLEAN: PROCEGURE [atom: Atom.ATOM)] RETURNS [BOOLEAN];

GetBOOLEAN returns the boolean value associated with atom. If no boolean value is
associated with atom, GetBOOLEAN returns FALSE.

SetBOOLEAN: PROCEDURE [atom: Atom.ATOM, boolean: BOOLEAN];

SetBOOLEAN associates the boolean value boolean with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

7.2.2 Integer Values
GetLONGINTEGER: PROCEDURE [atom: Atom.ATOM)] RETURNS [LONG INTEGER];

GetLONGINTEGER returns the long integer value associated with atom. If no long integer
value is associated with atom, GetLONGINTEGER returns0.

7-1

AtomicProfile

SetLONGINTEGER: PROCEDURE [atom: Atom.ATOM, int: LONG INTEGER I;

SetLONGINTEGER associates the long integer value int with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

7.2.3 String Values

GetString: PROCEDURE [atom: Atom.ATOM)] RETURNS [Xstring.Reader];

GetString returns the string value associated with atom. The string is reference-counted,
and the client must return the string by calling DoneWithString. If there is no string value
associated with atom, GetString returnsNiL.

DoneWithString: PROCEDURE [string: Xstring.Reader];

A reader obtained by using GetString must be returned via DoneWithString so that the
implementation's use-count will be correct. Failure to do so results in a storage leak if the
value of the atom is replaced (see the example below).

EnumerateString: PROCEDURE [
atom: Atom.ATOM, proc: PROCEDURE [Xstring.Reader]];

EnumerateString provides an alternate method of examining the string value of an atom. If
atom has a string value, proc is called with the string value. proc is called from within the
monitor of the implementation. The reader is valid for the duration of the callback, but
proc must not call any of the operations in the implementation. If atom has no string
value, proc is not called.

SetString: PROCEDURE [atom: Atom.ATOM, string: xstring.Reader,
immutable: BOOLEAN ¢ FALSE];

SetString associates the string value string with atom. If atom previously had another
value associated with it, that value is replaced. If immutable is FALsE, SetString copies
string's body and byte sequence; otherwise, it only copies the reader body. The client must
not deallocate the byte sequence in this case. The event AtomicProfileChange is notified,
with event data being a long pointer to atom.

7.3 Usage/Examples

7-2

AtomicProfile provides a general mechanism for storing and retrieving values. Actual use
by a client depends on knowing the names and expected types of values. ViewPoint defines
some basic values, such as user name and password. Other systems may define other
values.

In the following example, a client keeps track of the user name, which depends on the
AtomicProfileChange event. UserNameChanged is called when any AtomicProfile value is
changed. By examining the event data of the agent procedure, the example can act on
changes to the user name.

| —_

ViewPoint Programmer’s Manual

atomicProfileChange: Atom ATOM = atom.MakeAtom([” AtomicProfileChange”L];
fullUserName: Atom.ATOM =2 atom.MakeAtom[“FullUserName”L];
debugging: Atom.ATOM = atom.MakeAtom(["Debugging”L];

UserNameChanged: event.AgentProc = {
atomChanged: LONG POINTER TO Atom. ATOM = eventData;
iFatomChanged + = fullUserName THEN {
name: xstring.Reader a GetString[fullUserName];
< < do processing of new name > > ,
IF GetsooLEaN[debugging] THEN { < < do debugging only code>>};
DoneWithString[name]}};

event. AddDependency|
agent: UserNameChanged, myData: NiL, event: atomicProfileChangel;

7-3

7

AtomicProfile

7.4 Index of Interface Items

7-4

Item

DoneWithString: PROCEDURE
EnumerateString: PROCEDURE
GetBOOLEAN: PROCEDURE
GetLONGINTEGER: PROCEDURE
GetString: PROCEDURE
SetBOOLEAN: PROCEDURE
SetLONGINTEGER: PROCEDURE
SetString: PROCEDURE

Page

NKN=2N==NN

A

Attention

8.1

Overview

The Attention interface provides a means for displaying messages to the user. It
implements a single window into which messages are displayed. In addition to displaying
messages, the Attention window has a menu to which clients can add system-wide
commands.

There are three types of messages: simple messages, sticky messages, and confirmed
messages. Simple messages have no special semantics. Sticky messages are redisplayed
when a non-sticky message is cleared. Attention keeps track of one sticky message.
Confirmed messages ask for confirmation by the user.

Attention allows messages to be logically appended. Each of the posting operations, Post,
PostSticky, and PostAndConfirm, contains a boolean parameter clear. If clear is TRUE, the
window is cleared before the message is displayed. If not, the message is appended to the
currently displayed message. This allows the client to use Attention to construct complex
messages.

Note that Attention works in concert with BackgroundProcess. If Attention is called from
the Notifier process, the message is posted immediately in the attention window. If
Attention is called from a non-Notifier process that has registered itself with the
background manager by calling BackgroundProcess.ManageMe, then the background
manager intercepts these messages and allows the user to see them later upon request (see
BackgroundProcess for more details). This means that Attention can be called from any
process at any time without worry. Fine point: In ViewPoint 1.0, there was no background manager and
the following restriction applied: The Attention interface could only be called from the Notifier process.

To facilitate message construction, an XFormat.Handle is provided whose format procedure
will post a simple message without clearing the window. See the example below and the
XFormat chapter for more information.

The Attention window has a global system menu. Operations are provided so that clients
may add menu items to this menu, remove items from the menu, or swap items in the
menu.

8

Attention

8.2

8-2

Interface Items

8.2.1 Simple Messages

Post: PROCEDURE [s: XString.Reader, clear: BOOLEAN ¢« TRUE, beep: BOOLEAN ¢ FALSE,
blink: BOOLEAN «FALSE];

Post displays the message s in the Attention window. If clear is TRUE, it clears the Attention
window before displaying s; otherwise, it displays s after whatever text is currently
showing. Attention makes its own copy of the reader body and bytes of s. beep and blink
stipulate that the corresponding feedback be presented to the user.

Clear: PROCEDURE;

Clear clears the Attention window of any simple message. If a simple message is being
displayed and there is a current sticky message, the sticky message is displayed. Clear has
no effect if a sticky message is being displayed.

formatHandle: xFormat.Handle;

formatHandle is an xFormat.Handle provided by the Attention window that clients can use
to post simple messages. Its format procedure logically calls Post with clear being FALSE.
(See below for an example.)

8.2.2 Sticky Messages

Sticky messages are redisplayed when a non-sticky message is cleared. Attention keeps
track of one sticky message.

PostSticky: PROCEDURE [s: XString.Reader, clear: BOOLEAN « TRUE,
beep: BOOLEAN < FALSE, blink: BOOLEAN «FALSE];

PostSticky appends s to, or replaces, the current sticky message and then displays the new
message in the window. Its operation is: (1) if the window has a simple message or ¢lear,
then clear the window; (2) if the window is clear, then clear the current sticky message; (3)
append s to the current sticky message; and (4) display the new current sticky message.
Attention makes its own copy of the reader body and bytes of s. beep and blink are the
same as in Post above.

ClearSticky: PROCEDURE;

ClearSticky clears any current sticky message. If a sticky message is being displayed, the
window is cleared. ClearSticky has no effect if there is no sticky message.

8.2.3 Confirmation Messages

PostAndConfirm: PROCEDURE |
s: xString.Reader, clear: BOOLEAN « TRUE, confirmChoices: ConfirmChoices «- (N1, NiL],
timeout: Process.Ticks «— dontTimeout,

ViewPoint Programmer’s Manual 8

beep: BOOLEAN «FALSE, blink: BOOLEAN «—FALSE]
RETURNS [confirmed, timedOut: BOOLEAN];

ConfirmChoices: TYPE = RECORD [yes, no: xstring.Reader];
dontTimeout: Process.Ticks a 0;

PostAndConfirm acts like Post in displaying the message s but waits for confirmation by
the user. The confirmChoices messages are displayed, and the user should select one of the
choices with the mouse. If the user selects yes, confirmed is returned TRUE; if no is selected
or the sToP key is depressed, confirmed is returned FaLse. If confirmChoices.yes # NIL and
confrmChoices.no = NIL, then only confirmChoices.yes is posted and confirmChoices.no is
ignored. This is useful for posting a message that the user must see, but for which the user
gets no choice, such as "Unable to communicate with the printer: CONTINUE".
PostAndConfirm absorbs all user input except the sTop key and mouse actions over the yes
and no messages. The client may specify a timeout value, which causes PostAndConfirm to
return confirmed FALSE and timedOut TRUE if the user does not act within timeout ticks. The
default value dontTimeout disables this timeout feature. Attention makes its own copy of
the reader body and bytes of s.

8.2.4 System Menu
AddMenultem: PROCEDURE [item: MenuData.ltemHandle];
AddMenultem adds item to the global system menu.
RemoveMenultem: PROCEDURE [item: MenuData.ltemHandle];

RemoveMenultem removes item from the global system menu. There is no effect if item is
not in the menu.

SwapMenultem: PROCEDURE [0ld, new: MenuData.ltemHandle];

SwapMenultem swaps new for old in the global system menu. SwapMenuitem{old: Ni,
new: item] is equivalent to AddMenuitem[item: item] and SwapMenultem[old: item,
new: NiL] is equivalent to RemoveMenultem[item: item].

8.3 Usage/Examples

The following example has a client displaying the name and size of a file. The example uses
the NSFile interface to access the file and get the name and size attributes. See the Services
Programmer’s Guide (610E00180): Filing Programmer’s Manual for documentation on the
NSFile interface.

PostNameAndSize: PROCEDURE [file: NsFile.Handle] = {
nameSelections: NsFile.Selections = [interpreted: [name: TRUE]];
attributes: NsFrile AttributesRecord;
rb: xstring.ReaderBody « Message{theFile];

Attention.Post(s: @rb, clear: TRyE]; - start a new message
NSFile.GetAttributes [file, nameSelections, @attributes];
XFormat.NSString[Antention.formatHandle, attributes.namej; -
NsFile.ClearAttributes [@attributes];

8-3

Attention

8-4

XFormat.ReaderBody[h: Attention.formatHandle, rb: Message(contains]];
XFormat.Decimal[h: Attention.formatHandle, n: NSFile.GetSizelnBytes(file]];
rb « Message[bytes];

Attention.Post{s: @rb]}; -- clear defaults to FALSE

Message: PROCEDURE [key: {theFile, contains, bytes}] RETURNS [xstring.ReaderBody] = {

N 5
An example of the resulting message displayed in the Attention window is
The file Foo contains 53324 bytes

The example intermixes use of the format handle and use of the Post procedure. A client
could clear first, using the Clear procedure, and then display the message by just using the
format handle. Note: In a multilingual environment constructing a sentence from pieces
like this is not recommended because the grammar of other languages could cause this
sentence to be rather confusing.

ViewPoint Programmer’s Manual

8.4 Index of Interface Items

Item

AddMenultem: PROCEDURE
Clear: PROCEDURE

ClearSticky: PROCEDURE
ConfirmChoices: TYPe
dontTimeout: Process.Ticks
formatHandle: xFormat.Handle
Post: PROCEDURE
PostAndConfirm: PROCEDURE
PostSticky: PROCEDURE
RemoveMenuitem: PROCEDURE
SwapMenultem: PROCEDURE

v
)
)
o

W WNNNNWWNNW

Attention

8-6

BackgroundProcess

9.1 Overview

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the the Notifier process (see §3.4.1). Once registered with
BackgroundProcess, the client process can use Attention to post messages, and check to see
if the process has been aborted by the user. The user can look at the messages posted by the
process, and abort the process. Fine Point: The implementation of BackgroundProcess is a plugin, so the
user interface is up to a particular background manager. See ViewPoint friends level documentation for details on
how to build a background manager.

9.2 Interface Items
ManageMe: ManageProc;

ManageProc: TYPE = PROCEDURE [
name: XString.Reader,
callBackProc: CallBackProc,
window: window.Handle «NiL,
icon: Containee.DataHandle «NiL,
context: LONG POINTER « NIL,
abortable: BOOLEAN « FALSE

]

RETURNS [finalStatus: FinalStatus];

CallBackProc: TYPE 2 PROCEDURE [cOontext: LONG POINTER]
RETURNS [finalStatus: FinalStatus];

FinalStatus: TYPE = MACHINE DEPENDENT{
importantfailure(0), failure, quietSuccess, success, aborted, firstFree, last(15)};

quietifNoUnreadMsg:FinalStatus = firstFree;
quietifNoUnreadimportantMsg:FinalStatus = succ[firstFree];

A client process that wishes to be managed calls ManageMe. The client should already be
in the process that it wishes to have managed, if the client starts in the Notifier, the client
should do a Forx and call ManageMe from the forked process. name is a string that may be

9-1

BackgroundProcess

9-2

used by the background manager to identify the process to the user; the bytes in name are
copied by the background manager. After ManageMe is called, the background manager
will call callBackProc with context to give control back to the client process. If the process is
prepared to catch ABORTED, then abortable should be TRUE. If the process is not prepared to
catch ABORTED, then abortable should be FALSE. (see §9.3.2). window and icon may be
provided for use by the background manager; if the process is tied to a particular window or
icon, the background manager may use these to allow the user to manipulate the process
via the window or icon. When the client process is completed or aborted, it should return
from callBackProc with a finalStatus indicating the outcome of the process.
importantFailure indicates that the user should be warned that the process terminated in a
way that might need the user’s attention. failure indicates that the process failed in some
way but that we don’t need to inform the user in any special way. quietSuccess indicates
that the process should go away without any final notice to the user. success indicates that
process succeeded and that a final status message may be posted. aborted indicates that
the process was aborted by the user. quietifNoUnreadMsg tells the background manager
that if there are no unseen messages for this process, terminate as it would with a status of
quietSuccess. [f messages remain to be read, the termination is treated as a status of
success. quietlfNoUnreadimportantMsg tells the background manager to terminate as a
quietSuccess if there are no flagged messages (see FlagimportantMsg). Fine point:
quietifNoUnreadMsg and quietifNoUnreadimportantMsg are defined in BackgroundProcessExtra.

UserAbort: PROCEDURE [process: PROCESS -~ nullProcess] RETURNS [BOOLEAN];
ResetUserAbort: PROCEDURE [process: PROCESS « nuliProcess);

AboEtProc: TYPE = PROCEDURE [context: LONG POINTER];
SetAbortProc: PROCEDURE [abortProc: AbortProc, process: PROCESS «NIL];

nullProcess: PROCESS = LOOPHOLE[0];

Clients of the background manager have a choice about how they are notified when the
user tries to abort a background task. See §9.3.2 for more details about how these choices
interact. '

UserAbort returns TRUE if the user has requested that the process be aborted.
ResetUserAbort clears any pending abort; if the user has requested an abort, UserAbort
will return TRUE until ResetUserAbort is called or the process terminates..The client can
also call SetAbortProc to specify an AbortProc that will be called when the user tries to
abort a process. The AbortProc will be passed the context pointer that was passed into
ManageMe; therefore, SetAbortProc can only be called after the client has called
ManageMe. .Fine point: AbortProc and SetAbortProc are defined in BackgroundProcessExtra.

For SetAbortProc, UserAbort, and ResetUserAbort, process is defaulted to nullProcess. All
three procedures assume that the current process is the process that called ManageMe.
process should only be used if the process calling UserAbort, ResetUserAbort, or
SetAbortProc is different from the process that called ManageMe. Fine point: nullProcess is

equivalent to NIL. nullProcess will be removed from future versions of the interface.
FlagimportantMsg: PROCEDURE [message, comment: XString.Reader « NiL, PROCESS «NIL];

This procedure lets the background manager know that there is a message that the user
should see. If the client process terminates with a status of quietifNoUnreadErrorMsg

ViewPoint Programmer’s Manual 9

before the message is read, the background manager will make sure that task is still
available to allow the user to read the message. The background manager may also use
this call to may some kind of visual notification to the user that an important message is
available. The background manager supplied by the Basic Workstation displays a
property sheet and waits for the user to respond. If message is NIL, the message posted is
the current message available in the background manager. If message is non-NIL, that
message will be posted instead. If comment is non-NIL, an extra string will be posted at
the end of the sheet which may be used to indicate error recovery. If comment is NIL, this
part of the psheet is not visible. FlagimportantMsg is synchronous: it will not return until
the user bugs done on the property sheet. Since the background manager is a plugin, other
background mangers may behave differently. Fine point: This procedure is currently exported by
BackgroundProcessExtra.

GetName: PROCEDURE [process: PROCESS « NIL] RETURNS [name: Xstring.ReaderBody];
SetName: PROCEDURE [newNamae: xstring.Reader, process: PROCESS «NiL];

These procedures allow the client to manipulate the name of the task. The name is
originally set by the name parameter to ManageMe; these procedures allow the client to
change that name. The name is typically used by the background manger to label the task
for the user. SetName copies the bytes in newName. The bytes from GetName belong to
the background manager and should be copied if the client wishes to use them.

Mode: TYPE = {foreground, backéround};
mode: READONLY Mode;

mode indicates whether applications should FORK background processes or not. Before
FORKing a background process, applications should check mode and if it is foreground, do
not do the FORK, but rather do the operation in the foreground process. This is primarily
used during Cusp programs to synchronize each Cusp statement.

backgroundCount: READONLY CARDINAL;

backgroundCount is the current number of background activities registered with the
background manager.

cusplsfRunning: BOOLEAN;

Cusp sets this to TRUE during execution of a Cusp program. Applications can interpret
this in whatever way is appropriate, for example by not posting option sheets.

9.3 Usage/Examples

9.3.1 Posting Messages

Once a client process has called ManageMe, it can freely post messages using Attention.
Fine point: the exact method the messages will be displayed is up to the background manager. Also, only the
client process that originaily called ManageMe can call Attention directly. If a background process has any
associated subprocesses that need to use Attention to post messages, it must use a tfriends level Attention interface
to associate the subprocess with the client’s main background process.

9-3

BackgroundProcess

9.3.2 Aborting processes

A client of the background manager can be notified when the user tries to abort a
background task. There are three ways that the client can be notified.

If the client calls ManageMe with abortable = TRUE, the background manager will call
Process.Abort on the process that called ManageMe. That process should be prepared to
catch ERROR ABORTED.

The client may also call SetAbortProc with a procedure that will be called if the user tries
to abort. This procedure will be called only if ManageMe was called with abortable =
FALSE; if abortable = TRUE, the manager will call Process.Abort instead of calling the
AbortProc.

Finally, the client may also call UserAbort at any time. If the client does not enable the
use of Process.Abort or set an AbortProc, it is the client’s responsibility to periodically call
UserAbort to see if the user has tried to abort the process. If the client does not check
UserAbort, user attempts at stopping the process will have no effect. The client may call
UserAbort from inside an AbortProc.

9.3.3 Example

This example program fragment illustrates the structure of a typical use of
BackgroundProcess. In this example, a MenuProc is provided that can be called from the
attention window. The MenuProc immediately forks a process, which reduces its priority
and then calls BackgroundProcess. The example program posts four messages, pausing
between each, and checking UserAbort on each pass.

backgroundName: xstring.ReaderBody « Xstring. FromSTRING(["Background Post"L];
abortedsString: xstring.ReaderBody « xstring. FromSTRING["Process canceled ..."];

Init: PROCEDURE = {
Attention.AddMenultem [
MenuData.Createltem [
zone: 2, -- some private zone
namae: @backgroundName,
proc: BackgroundProcessPost] |;

BackgroundProcessPost: MenuData.MenuProc = {
Process.Detach [FORK DoBackgroundProcessPost(s: @backgroundName]l};

DoBackgroundProcassPost: PROCEDURE [s: XString.Reader] = {
Dolt: 8ackgroundPracess.CallBackProc = {
FORi: CARDINALIN [1..4] DO

IF BackgroundProcess.UserAbort{] THeN {
Attention.POst[@abortedString];
RETURN[aborted]};

Attention.Post [s: s];

Attention.formatHandle.Blanks[2];

Attention.formatHandle.Decimal[i];

Process.Pause [Process.SecondsToTicks{10]];

ViewPoint Programmer’s Manual

ENDLOCP;
RETURN [success]};

Process.SetPriority[process.priorityBackground];
[] & BackgroundProcess.ManageMe [name: @backgroundName, callBackProc: Dolt]};

9

BackgroundProcess

9.4 Index of Interface Items

9-6

Item

AbortProc: TYPe

backgroundCount: READONLY CARDINAL
CallBackProc: Type

cusplsRunning: BOOLEAN

FinalStatus: Type

FlagimportantMsg: PROCEDURE
GetName: PROCEDURE

ManageMe: PROCEDURE

ManageProc: TYPE

Mode: Type

mode: Mode

nullProcess: PROCESS
quietifNoUnreadMsg: FinalStatus
quietifNoUnreadlmportantMsg: FinalStatus
ResetUserAbort: PROCEDURE

. SetName: PROCEDURE

SetAbortProc: PROCEDURE
UserAbort: PROCEDURE

v
8
aQ

[

NN WN - QD NWW—A 22 WN W WN

PR —
[——

=—— BlackKeys

10.1 Overview

The BlackKeys interface changes the interpretation of the main (central) section of the
physical keyboard. It includes the data structures that define a keyboard record as well as
the procedures used to manipulate the keyboard stack.

The average client uses only the data structures that the BlackKeys interface provides. The
procedures are reserved for a keyboard manager interested in interfacing between the user
and the blackkeys stack of keyboards.

10.2 Interface Items
10.2.1 Keyboard Data Structures

The BlackKeys data structures provide the framework for client-defined keys in the main
(central) section of the physical keyboard. This includes interface to a keyboard picture

whose keytops may be selected with the mouse to simulate pressing the physical key on the
keyboard.

Keyboard: TYpe = LONG POINTER TO KeyboardObject « NiL;

KeyboardObject: TYPE = RECORD {
table: Tir.Table «niL,
charTranslator: Tip.CharTranslator « [proc: NiL, data: NiL),
pictureProc: PictureProc¢ « NiL,
label: xstring.ReaderBody « Xstring.nuliReader8ody,
clientData: LONG POINTER « NIL];

KeyboardObject is the keyboard interpretation data structure. The client may provide its
own Tip.Table or default it to NiL, in which case the NormalKeyboard.TIP table is used. (See
Appendix A for productions returned by Normaikeyboard.TIP). A Tip.CharTranslator may be
provided to handle CHAR and BUFFEREDCHAR productions from a Tip. Table. A PictureProc may
be provided to be called when installing or removing this keyboard. Absence of such a
procedure assumes no picture is associated with this keyboard. label is the string that
appears in the SoftKeys window when the KEYBOARD key is pressed down. Pressing (or

10-1

1 0 BlackKeys

selecting) the key marked lahel invokes this keyboard. clientData is provided to associate
any other information the client might need to keep with the keyboard. -~

PictureProc: TYPE = PROCEDURE |
keyboard: Keyboard,
action: PictureAction]
RETURNS [
picture: Picture « nullPicture,
geometry: GeometryTable «nNiL];

PictureProc is a client-provided procedure that is called by a keyboard window application
when the client's keyboard is being installed (action = acquire) or removed (action =
release) from the top of the blackkeys stack of active keyboards. The client may use this
opportunity to map or unmap the picture and geometry table that the keyboard window
application uses.

PictureAction: TYPe = {acquire, release};

acquire a client’s keyboard is being installed at the top of the keyboard stack (becoming
the current keyboard).

release = client’s keyboard is being removed from the top of the keyboard stack.

PictureType: TYpe = {bitmap, text};
Picture: TYPE = RECORD [
variant: SELECT type: PictureType FRCM
bitmap = > [bitmap: LONG POINTER],
text = > [text: xstring.Reader]
ENDCASE];
The variant of the record, Picture, allows the client to present its keyboard window in either
bitmap or textual form. (See the KeyboardWindow interface for a discussion of the
structure behind a keyboard bitmap.) text is pointed to by an xstring.Reader. The text is not
copied.
nullPicture: bitmap Blackkeys.Picture = [bitmap(ni]};
The variable nullPicture represents a null entry to the keyboard window.

GeometryTable: TYPE = LONG POINTER;

A geometry table allows access to the data structure. (See the KeyboardWindow interface
chapter for discussion of the structure of a geometry table.)

10.2.2 Getting a Handle to the Current Keyboard

BlackKeysChange: event.EventType; - ATOM defined as "BlackKeysChange” -~

10-2

ViewPoint Programmer’s Manual].0

Changing the keyboard at the top of the blackkeys stack of keyboards results in the
notification BlackKeysChange through the Event mechanism. The eventData supplied by
the event.Notify is the current keyboard handle.

GetCurrentKeyboard: PROCEDURE RETURNS [current: Keyboard];

GetCurrentKeyboard returns the current keyboard from the top of the blackkeys stack.

10.2.3 Procedures

The following procedures are NOT expected to be used by Applications programmers.
Instead see KeyboardKey .SetKeyboard.

Push: proceDuURE [keyboard: Keyboard);

The Push procedure installs a black key interpretation at the top of the blackkeys stack of
keyboards. The Tip.Table and/or mp.CharTranslator are registered with TP and the event
BlackKeysChange is broadcast.

Remove: PROCEDURE [(keyboard: Keyboard];

The Remove procedure removes the keyboard from the stack of active keyboards and resets
the TIP.Table and Tie.CharTranslator as applicable. The event BlackKeysChange is broadeast
if keyboard is on the top of the blackkeys stack.

May raise the ERROR 8la<kKeys.InvalidHandle.

Swap: PROCEDURE [0ld:Keyboard, new:Keyboard];

The Swap procedure is designed to change black keys' interpretations without returning to
some previous or other default value in between. It is essentially the equivalent of a
Ramove followed by a Push. The event BlackKeysChange is broadcast if the keyboard being

removed was on top of the stack.

May raise the ERROR BlackKeys.InvalidHandle.

10.2.4 Errors
InvalidHandle: eRROR;

This error is raised if the keyboard passed to Remove or Swap (old) is not in the set of
active BlackKeys keyboards.

10.3 Usage/Examples

10.3.1 Defining a Keyboard Record

DefineKayboard: PROCEDURE =
BEGIN
nameString: xstring.ReaderBody « xString.FromSTRING("Swahili“L]

10-3

1 O BlackKeys

swahiliKeyboardRecord: BlackKeys.KeyboardObject «|
table: NiL,
charTranslator: [MakeChar, NiL],
pictureProc: MapBitmapFile,
label: xstring.CopyToNewReaderBody{@nameString, Heap.systamZonel]);
--Save the pointer to the record somewhere for future use --
END; --DefineKeyboard --

MapBitmapFile: BlackKeys.PictureProc =
BEGIN
PixPtr: BlackKeys.Picture.bitmap « 8iackKeys.nuliPicture;
SELECT action FROM
acquire = >
(--Do the right thing to map the bitmap. Uses the default geometry table. --
RETURN[PIXPtr, KeyhoardWindow.defaultGeometry| };
release = > {--Do the right thing to unmap the bitmap --
RETURN[BlackKeys.nullPicture,NiL]}
END; -- Map8itmapfFile

MakeChar: 1ie.XeyToCharProc =

BEGIN

--Map bufferedChar to desired xstring.Character --
END; -- MakeChar

10-4

ViewPoint Programmer’s Manual

10

10.4 Index of Interface [tems

Item

BlackKeysChange: event.EventType
GeometryTable: Type
GetCurrentKeyboard: PROCEDURE
InvalidHandle: eRROR

Keyboard: Type
KeyboardObject: Type
nullPicture:bitmap Picture

Picture: TYre

PictureAction: Type

PictureProc: TYpe

PictureType: TYPE

Push: PROCEDURE

Remove: PROCEDURE

Swap: PROCEDURE

v
£
9

o

W W WNNMNNNN=S QW WNN

1 O BlackKeys

10-6

== 11

=——= BodyWindowParent

11.1 Overview

BadyWindowParent provides a facility for creating body windows in a subwindow. The
client may provide several procs for dealing with scrolling multiple body windows within
the parent viewing region. For a comprehensive view of all the subwindow interfaces and

their intended use, see the Subwindow Overview chapter.)

11.1.1 Body windows Discussion

A bodyParent window has an interior window that is a child of the bodyParent and is
exactly the size of the available window space in the bodyParent (that is, the bodyParent
minus its serollbars). The interior window may have child windows created by the client.
These children of the interior window are called body windows. The client may create an
arbitrary number of body windows and arrange them in an arbitrary fashion. Note: Since
the body windows are children of the interior window, they are clipped by the interior
window. A client could, for example, create a body window that is very much taller than
the interior window and accomplish scrolling by simply sliding the body window around
inside the interior window. (This is actually what the default scrolling does; for more
detail, see this Chapters section on scrolling).

Body windows are created by calling BodyWindowParent.CreateBody. This returns a
window.Handle. The client can create an arbitrary number of body windows. Each body
window is a child of the bodyParent’s interior window. The body windows may overlap or
not. They can be in any arrangement the client finds useful. Some common arrangements
of body windows are as follows:

® One very long body window.
This is easy to scroll by simply sliding the body window, which is what the default
scrolling does.

® One body window with BodyWindowlustFits = TRUE.
This is one way to display an infinite amount of data, such as a Tajo-like editor. The
client must keep track of what is currently in the window, use adjust procs, do
scrolling, and so forth. This is difficult to implement.

11

BodyWindowParent

¢ Several body windows about the size of the interior, adjacent, non-overlapping.
This is another way to display an infinite amount of data. The client lets /™%
BodyWindowParent do default scrolling, which slides the body windows up or down
and then calls the client to supply more body windows when it runs out. The client
might put one page of text into each body window, supplying pages to
BodyWindowParent scrolling as needed.

® Several body windows smaller than the interior, adjacent, non-overlapping.

Note: Body windows can themselves have child windows, and so on. A client might
implement frames in a document editor by making each frame a child of a body window.

11.2 Interface Items

11-2

11.2.1 BodyParent window

Create: PROCEDURE [
parent: window.Handle,
verticalScrollbar: BOOLEAN « TRUE,
horizontalScrollbar: BOOLEAN « TRUE,
adjustProc: AdjustableWindow. . AdjustProc « NiL,
garbageCollectBodiesProc: GarbageCollectBodiesProc «Nit,
moreScrollProc: MoreScrollProc <A, -
scrollbarinfoProc: scrollbar.ScrollbarinfoProc «NiL,
thumbFeedbackProc: scrolibar. ThumbFeedbackProc «nit, M
thumbScrollProc: scrollbar. ThumbScrollProc « DefaultThumbScroll,
Zone: UNCOUNTED ZONE];

Takes a window and makes it a body parent window. An interior window is created (child
of the body parent) that becomes the viewing region for future body windows.
verticalScrollbar and horizontalScrollbar are attached as instructed by the client provided
BOOLEANS. The scrollbarinfoProc will be called when the user thumb scrolls and then the
appropriate feedback (like the ViewPoint diamond or the tajo bar) will be painted in the
thumbing region of the scrollbar. Fine Point: The client should call GetInteriorDims when deterimining
the offset and portion. moreS<roliProc and garbageCollectBodiesProc are described in §2.3.

Isit: PROCEDURE |
parent: Window.Handle
RETURNS [BOOLEANI;

Determines if parent is indeed a bodyParent created by calling BodywindowrParent.Create.
Returns TRUE if it is, FALSE if not.

Destroy: PROCEDURE [parent: window.Handle};
Destroy destroys the parent window, its descendents and any associated data.
Adjust: Adjustablewindew.AdjustProc;

-

Adjust should be called when the body parent is being resized (before and after the
SlideAndSize).

ViewPoint Programmer’s Manual 1 1

SetAdjustProc: PROCEDURE [
parent: window.Handle,
new: Adjustablewindow.AdjustProc]
RETURNS [old: AdjustableWindow.AdjustProc);

new will be called whenever parent is changing size.

11.2.2 Body windows

CreateBody: PROCEDURE [
parent: window.Handle « NiL,
box: window.BOX «[[0,0], [0,INTEGER.LAST]],
displayProc: window.DisplayProc,
notifyProc: Tie.NotifyProc,
clearingRequired:800LEAN « TRUE,
windowPane: BOOLEAN «FALSE,
under, cookie, color: BOOLEAN « FALSE]
RETURNS [body: window.Handle];

Creates a body window that is a descendent of parent. If parent is NiL, body will be an
orphaned window that can be installed at a later date. (See InstallBody below.) If
box.dims.w = 0 THEN box.dims.w « size of parent's interior. If box.dims.h = 0 THEN
box.dims.h « size of parent's interior. notifyProc will be attached to body and
Tipstar.NormalTable[]. clearingRequired, windowPane, under, cookie, and color are
described in the Window chapter. If a body is created within a visible parent, the client
must call window.ValidateTree[body] to effect the change on the screen.

InstaliBody: PROCEDURE[DOdY: Window.Handle, parent: window.Handlej;
Installs the body window in the tree of parent as the eldest sibling.
DaestaliBody: PROCEDURE[DOdY: Window.Handle];

Removes the body from its parent's window tree.

DestroyBody: PROCEDURE [body: window.Handle];

Destroys the body window and associated data.

11.2.3 Secrolling

Only part of an object is usually visible to the user at any one moment in the interior of a
bodyParent. The user can request to see more of the object by scrolling the contents up or
down inside the bodyParent. The user can perform three kinds of scrolling by using the
serollbars. (1) He can move the contents a little at a time by pointing at the arrows (up,
down, left, right) in the scrollbars. (2) He can move the contents a page or screenful at a
time by pointing at the plus (+) and minus (-) signs. (3)He can jump to any arbitrary place
within the entire extent of the object being viewed by pointing in the blank part of the
vertical scrollbar (this latter operation is called thumbing).

BodyWindowParent provides various levels of support to a client for performing these
scerolling operations. The client can allow BodyWindowParent to do all the scrolling

11-3

11

BodyWindowParent

11.2.3.1

11-4

functions, the client can do some of them and leave the rest to BodyWindowParent, or the
client can do all scrolling operations. Much of this decision will be based on how the client
chooses to arrange body windows within the bodyWindowParent (see the section on body
windows above and more discussion below). First, we will describe the various types of
serolling and scrolling procedures that a client can supply; then we will describe the
default scrolling procedures provided by BodyWindowParent.

In the simplest (for the client) case, one body window contains the entire extent of the
object being viewed. BodyWindowParent can handle all scrolling in this case. The client
simply does nothing. When the user points at an arrow, BodyWindowParent moves the
body window a small amount. When the user point at plus or minus, BodyWindowParent
moves the body window by one interior window’'s height. When the user thumbs,
BodyWindowParent will move the body window to an appropriate place based on its
overall height.

In a slightly more complex case, body windows are butted up against one another. When
the user points at an arrow, BodyWindowParent moves all the body windows a small
amount. When the user point at plus or minus, BodyWindowParent moves all the body
windows by one interior window’s height. When the user thumbs, BodyWindowParent
moves all the body windows to an appropriate place based on the combined overall height
of the body windows. However, in this case the client often does not have the entire extent
of the object displayed in these body windows but rather wants to tack new body windows
on each end as these body windows are scrolled off. The client can do this by providing a
MaoreScrollProc for the shell. BodyWindowParent calls the client’s MoreScroliProc
whenever it runs out of body windows.

In the most complex case, the client has a single body window that “just fits” (see
SetBodyWindowlustFits in the section on body windows), and only part of the entire object
is displayed at any one time. The client must provide all the scrolling functions for this
case. This means providing a Scrollbar.SingleScroliProc (to handle the user’s pointing at
the arrows, plus, and minus) and a Scrollbar.ThumbScrollProc¢ (to handle the user’s
thumbing). See the Chapter on Scrollbar for further information on setting the
SingleScrollProc.

Of course, the client may provide its own scrolling procedures for any of the above cases,
even the simple one, to override the type of scrolling that BodyWindowParent provides.
But at some point it would be wiser to register a new subwindow type instead. If
BodyWindowParent type AttachScrollbars and Adjustment are desireable then the client
should use the Standard subwindow procs exported by SubwindowFriends when creating
their own unique type.

SerollProcs

The following ScrollProc types are passed in by the client when creating a bodyParent
window. Any or all of them may be defaulted to NIL.

MoreScrollProc: TYPE = PROCEDURE |
parent: window.Handle,
type: Scrollbar. Type,
flavor: MoreFlavor,
amount: CARDINALI;

ViewPoint Programmer’s Manual 1 1

11.2.3.2

MoreFlavor: TYre = {(before, after};

The MoreScrollProc is called when we run out of body windows during scrolling. (See
discussion above) .amount is pixels.

The client’s moreScroll procedure is responsible for adding and deleting body windows from
the bodyParent. The case being handled is that in which the client has a large number of
pages to display to the user and wishes to manifest only a few. Then we need to handle the
case in which system scrolling would make a non-manifest page visible, and there is no
body window for it. Whenever the system is about to perform a scroll function, it checks to
see if the scroll action would move the visible portion of the bodies off the end of the
existent body windows. If so, it calls a non-nil client MoreScroliProc, indicating how much
more body window may be displayed. The client may augment the collection of body
windows or not. The system routines will not scroll past the end of the body windows.

GarbageCollectBodiesProc: TYPE = PROCEDURE |
parent: window.Handle,
body: Window.Handle,
type: scrolibar. Type|;

Called when body is no longer visible. Allows client a chance to destroy or reuse the body.

Getting and Setting ScrollProcs
The following procedures Get and Set the ScollProcs associated with parent.

GetScrollProcs: PROCEDURE [parent: window.Handle]
RETURNS {
garbageCollectBodiesProc: GarbageCollectBodiesProc,
moreScrollProc: MoreScrollProc,
scrollbarinfoProc: scrollbar.ScrollbarinfoProc
thumbFeedbackProc: scrolibar. ThumbFeedbackProc,
thumbScrollProc: scroilbar. ThumbScrollProc);

SetMoreScrollProc: PROCEDURE [
parent: window.Handle,
new: MoreScrollProc]
RETURNS [0ld: MoreScroliProc);

SetScrollbarinfoProc: PROCEDURE |
parent: window.Handle,
new: scrolibar.ScrollbarinfoProc]
RETURNS [0ld: scroitbar. ScrolibartnfoProc);

SetGarbageCollectBodiesProc: PROCEDURE |
parent: window.Handle,
new: GarbageCollectBodiesProc]
RETURNS [old: GarbageCollectBodiesProc|;

11

BodyWindowParent

11-6

11.2.3.3

11.2.4

SetThumbFeedbackProc: PROCEDURE |
parent: window.Handle, Aﬁ%«
new: Scrolibar. ThumbFeedbackProc)
RETURNS [old: Scrolibar. ThumbFeedbackProc);

SetThumbScrollProc: PROCEDURE (
parent: window.Handle,
new: Scrollbar.ThumbScrollProg)
RETURNS [0ld: Scrolibar. ThumbScroliProc);

Default ScrollProcs
DefaultSingleScroll: scrotibar.SingleScrollProc;
DefaultScrollbarinfo: scrolibar.ScrollbarinfoProc;
DefaultThumbScroll: scrollbar. ThumbScrollProc;
Calling DefaultSingleScroll, DefaultScrollbarinfo or DefaultThumbScroll will invoke
standard scrolling of window in specified flavor and amount. Can be used to set the
desired Procs or called independently. The type of scrolling provided is as described in the
General Discussion Simple Case in Sections 1.1 and 2.3
Utilities
GetZone: PROCEDURE [parent: window.Handle] RETURNS[zOne: UNCOUNTED ZONE|;
Returns the zone associated with the bodyParent window.
ParentFromBody: PROCEDURE [body: window.Handle]
RETURNS [parent: window.Handle];
Given a body window returns its body parent subwindow.
GetBody: PROCEDURE [parent: window.Handle]
RETURNS [body: Window.Handle};
Returns the first body window in parent.
GetScrollbar: ROCEDURE [window: Window.Handle, type: scrollbar. Type]
RETURNS [scrollbar: window.Handlej;
Given a body window or bodyParent window, returns the associated scrollbar of type.
GetinteriorDims: PROCEDURE [parent: window.Handle]
RETURNS [dims: Window.Dims];
Returns the dimensions of the viewing region of the body parent subwindow.

IsBodyWindowOutOfinterior: PROCEDURE [body: window.Handle]
RETURNS [BOOLEAN];

ViewPoint Programmer’s Manual 1 1

Returns TruUE If all of body is sticking out of the viewing region, FALSE if any part of body is
within the viewing region.

EnumerateBodies: PROCEDURE |
parent: window.Handle,
proc: BodyEnumProc]
RETURNS [Window.Handle];

EnumerateBodiesinDacreasingY:PROCEDURE [
parent: window.Handle,
proc: BodyEnumProc|

RETURNS (Window.Handle];

EnumerateBodiesinincreasingY:PROCEDURE |
parent: window.Handle,
proc: BodyEnumProc]

RETURNS [Window.Handle];

The EnumerateBodiesxxx procedures enumerate all the body windows in parent, calling
proc for each body window until proc returns stop = TRUE. EnumerateBodies enumerates
the bodies in the order in which they appear in the parent tree.
EnumerateBodiesinincreasingY enumerates the body windows in increasing order of
bodyBox.place.y, and EnumerateBodiesinDecreasingY enumerates the body windows in
decreasing order of place.y. Each procedure returns the last body window enumerated or
NiL if all body windows were enumerated. These procedures are especially handy for clients
that do their own scrolling. To minimize repainting when scrolling a set of body windows
upward, it is important to move the upper ones first, and vice versa.

BodyEnumProc: TYPE = PROC [body: Window.Handle]
RETURNS [STOP: BOOLEAN « FALSE];

stop = TRUE will terminate the enumeration. Fine Point: destalling or destroying body within the
BodyEnumProc is allowed.

11.2.5 Errors
Error: ERROR [code: ErrorCode];

ErrorCode: TYre = (noBodiesinParent, notABodyWindowParent};

11.3 Usage/Examples
--Inimpl for Body subwindows:

AttachScrollbarsToBodySW:SubwindowFriends. AttachScrollbarsProe = {
BodyWindowParent.Create(...]. }

11-7

11

BodyWindowParent

11.4 Index of Interface [tems

11-8

Item

Adjust: PROCEDURE

BodyEnumProc: TYPE

Create: PROCEDURE

CreateBody: PROCEDURE
DefaultScrollbarinfo: Scrolibar.ScrollbarinfoProc
DefaultSingleScroll: Scrollbar.SingleScrollProc
DefaultThumbScroll: Scrollbar. ThumbScrollProc
DestallBody: PROCEDURE

Destroy: PROCEDURE

DestroyBody: PROCEDURE

EnumerateBodies: PROCEDURE
EnumerateBodies InDecreasingY: PROCEDURE
EnumerateBodies InincreasingY: PROCEDURE
Error: ERROR

ErrorCode: Type

GarbageCollectBodiesProc: Type

GetBody: PROCEDURE
GetinteriorDims:PROCEDURE

GetScrollbar: PROCEDURE

GetScrollProcs: PROCEDURE

GetZone: PROCEDURE

InstallBody: PROCEDURE
IsBodyWindowQutOflnterior: PROCEDURE
Isit: PROCEDURE

MoreFlavor: TYpe

MoreScrollProc: TYpE

ParentFromBody: PROCEDURE

SetAdjustProc: PROCEDURE
SetGarbagedCollectBodiesProc: PROCEDURE
SetMoreScrollProc: PROCEDURE
SetScroiibarinfoProc: PROCEDURE
SetThumbFeedbackProc: PROCEDURE
SetThumbScrollProc: PROCEDURE

8"
)
1)

[

S hEWWWNRGRWWNANDWRPAMARBWULIVIUVUIWUVWNDN SGL B -LHBN= VN

= 12

=== Busylccn

12.1 Overview

Busylcon provides the client with a way to make file-backed icon object "busy.” An object
that is busy cannot be operated on by the user. The notion of an object being busy is a user-
interface level notion; clients are still responsible for obtaining any necessary locks on an
object. Making an object busy insures that normal user operations (open, drop-on, props,
and so forth) cannot be invoked. If an object to be made busy is visible on the desktop or in
a container, the appearance of that object will change to make the object appear busy to the
user. Whether or not the object is visible, the object is still marked as busy in the
Containee cache so that the next time the object is visible, it will appear busy. See the
Containee chapter for documentation on the Get/SetCachedBusy operations.

12.2 Interface Items

IsBusy: PROCEDURE [ref: NsFile.Reference, w: Window.Handle « niL]
RETURNS [yes: BOOLEAN];

Returns trRuE if ref is busy. If non-nil, w is used as a hint for wheie to look: either the
desktop window or a FileContainerSource-backed container window that ref might be
found in. If ref is not found in w, IsBusy will search the desktop and all open
FileContainerSources for ref. If ref is still not found, IsBusy will check the Containee cache
to see if the object is busy (see the Containee chapter for more information.)

IsBusy will only find files in container windows backed by a FileContainerSource or a
source built on FileContainarSourca.

BusyStatus: Tyre = {succeeded, notFound, stateNotChanged, notAllowed};

MakeBusy: PROCEDURE [ref: NsFile.Reference, w: window.Handle «nit]
RETURNS [result: BusyStatus];

MakeUnbusy: PROCEDURE [ref: NsFile.Reference, w: window.Handle it}
RETURNS [resuit: BusyStatus];

MakeBusy looks for ref on the desktop or in an open container window backed by a
FileContainerSource. wis a hint that ref is in that window; w may be the deskiop window

12-1

12

Busylcon

12.2 Usage

—

o
'

3]

or a container window. If w is NIL, MakeBusy and MakeUnbusy look in all open
FileContainerSource-backed container windows and on the desktop. Both operations
return result to indicate the outcome of the operation. If ref is part of the selection, the
selection is cleared (but see notAllowed status below.)

succeaded indicates that the icon for ref was found and the icon picture was changed.
notFound means that an object for ref was not found. The icon picture was not changed, but
the Containee cache was updated.

stateNotChanged means that ref was found but was already in the desired state.
notAllowed is returned if the operation is not allowed at the moment. This can occur if the
user calls MakeBusy from the background but the object is part of the user’s selection.
MakeBusy will not make the object busy, but instead will return a status of notAllowed.

1sBusy will only find files in container windows backed by a FileContainerSource or a

source built on FileContainerSource. Files in other types of container sources will not have
their picture changed by these procedures.

Clients are responsible for making sure an object is properly locked before making the
object busy. If an object is just made busy without acquiring any other locks, there is
nothing to stop some other program that has a reference to a file from operating on that
file. '

A typical way to use this interface may to do some background operation on an icon. The
flow would look something like this.

® The user selects an icon and invokes a menu command.

® In the menu command (and thus in the foreground) the command does a Selection.Convert
to get a reference to the file.

® The menu command opens the file and get an NSFile lock on

® The command calls MakeBusy to make sure the user cannot operate on the file.

9 The command FORKs some operation.

® When the operation is done, the client would unlock the file and closes the file handle
@ To finish up, the client calls MakelUnbusy to return the icon the the user’s control.

In this example, the client does not need to worry about whether the icon was on the
desktop or inside a folder. Busylcon took care of making the icon busy.

ViewPeint Programmer’s Manual

12

12.3 Index of Interface [tems
Item

BusyStatus: TYPE

IsBusy: PROCEDURE
MakeBusy: PROCEDURE
Makelnbusy: PROCEDURE

Page

—t d and aab

[9%)

12 Busylcon

12-4

13

BWSAttributeTypes

13.1 Overview

BWSAttributeTypes defines the NSFile.ExtendedAttributeTypes that are used by ViewPoint
as well as the first NsFile.ExtendedAttributeType available for client use.

The only extended attributes defined here are the ones that can be attached to any file,
such as mailing and filing application attributes. Attributes that are unique to a particular
application's files should be defined privately within that application. Several applications
can use the same extended attributes because application A should never be reading the
attributes from application B's files and vice versa. Fine point: Several application-specific attribute
types are included in this interface for compatibility. A

The extended attributes that can be attached to any file, leaving a few spare ones for future
use. are defined here. Also defined are the first available "application attribute”
(firstAvailableApplicationType). Caution: An application should not use an extended
attribute smaller than this one, nor should an application use an extended attribute larger
than lastBWSType.

13.2 Interface Items

13.2.1 Available Application Types
firstAvailableApplicationType: NsFile.ExtendedAttributeType = ...;
lastBWSType: NsFile.ExtendedAttributeType = .. .;

Applications should only use the types in the range [firstAvailableApplicationType . .
lastBWSType]. firstAvailableApplicationType is the first extended attribute type that
applications can use to store application-specific attributes. Caution: An application
should not use an extended attribute smaller than firstAvailableApplicationType.
lastBWSType is the last extended attribute type that applications can use to store
application-specific attributes. Caution: An application should not use an extended
attribute larger than lastBWSType.

13-1

1 3 BWSAttributeTypes

If a Viewpoint client needs more attributes than the number in this range, see the
NSFiling group to obtain a range specific to that client. -~

13.2.2 Viewpoint Types

Consult the Mesa interface for the exact assignment of ViewPoint-specific types.

13-2

ViewPoint Programmer’s Manual 13

13.3 Index of Interface Items

Item Page
firstAvailableApplicationType: NsFile.ExtendedAttributeType 1
lastBWSType: Nsrile.ExtendedAttributeType 1

13-3

13

BWSAttributeTypes

13-4

14

Il

BWSFileTypes

14.1 Overview

BWSFiIeTypés defines several NsFile.Types used by ViewPoint. Applications should not use
these types. (Also see the Catalog and Prototype interfaces.)

ViewPoint clients must manage all file types that they use. Ranges of file types may be
obtained from the Filing group.

14.2 Interface Items
root: NsFile.Type = . .. ;

The root file of the volume has this type. The root has children that are called (by
convention) catalogs.

desktop, des‘ktopCatalog: NSFile.Type = ...;

The desktop catalog contains all the desktops on a workstation. An individual desktop has
the same type as the desktop catalog.

prototypeCatalog: NsFile.Type = ...;

The prototype catalog contains prototype files for each application. A prototype file is a
blank application file that the user can make copies of, such as Blank Folder, or Blank
Document. (See the Prototype interface.)

systemFileCatalog: NSFile.Type = ... ;

The system file catalog contains system files, such as the beds for an application, message
files, font files, TIP files,and so forth. (See the Catalog interface.)

14-1

14

BWSFileTypes

14.3 Index of Interface Items

14-2

Item

desktop: NsFile. Type
desktopCatalog: NSFile.Type
prototypeCatalog: NsFile.Type
root: NSFile.Type
systemFileCatalog: NsFile.Type

Page

b el d wd b

15

BWSZone

15.1 Overview

BWSZone defines several zones, each with different characteristics, that ViewPoint clients
may use, as appropriate.

15.2 Interface Items
All zones are create(i at boot time and exist for the duration of t;he boot session.
permanent: UNCOUNTED ZONE;
Permanent: PRdCEDURE RETURNS [UNCOUNTED ZONE];

permanent is intended for nodes that are never deallocated. It has infinite threshold.
Permanent returns permanent.

logonSession: UNCOUNTED ZONE;

LogonSession: PROCEDURE RETURNS [UNCOUNTED ZONE];

logonSession is intended for nodes that last for a logon/logoff session. logonSession is
emptied of all nodes at each logoff (that is, Heap.Flush). LogonSession returns
logonSession. logonSession is created at boot time and is flushed at logoff.

shortLifetime: UNCOUNTED ZONE;

ShortLifetime: PROCEDURE RETURNS [UNCOUNTED ZONE];

shortLifetime is intended for nodes that are allocated for a very short time, such as during
a notification. ShortLifetime returns shortLifetime.

semiPermanent: UNCOUNTED ZONE;
SemiPermanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

semiPermanent is intended for nodes that are allocated for a very long time but that might
occasionally have to be expanded. SemiPermanent returns semiPermanent.

15-1

15

BWSZone

15.3 Index of Interface Items

15-2

Item

LogonSession: PROCEDURE
logonSession: UNCOUNTED ZONE
Permanent: PROCEDURE
permanent: UNCOUNTED ZONE
SemiPermanent: PROCEDURE
semiPermanent: UNCOUNTED ZONE
ShortLifetime: PROCEDURE
shortLifetime: UNCOUNTED ZONE

v
5

) d =d od wd o e -h

16

Catalog

16.1 Overview . .

Catalog manipulates files called catalogs that are direct descendants of the root file on a
NSFiling volume. Each catalog is uniquely identified by its file type. Files can be opened
and created within a catalog. Catalogs can be opened, created, and enumerated.

Viewpoint creates a systeni file catalog and a prototype catalog (see the Prototype
“interface) at boot time. The system file catalog typically holds font files, TIP files, icon
picture files, message files,and so forth.

16.2 Interface Items

16.2.1 Finding and Creating Files in a Catalog

GetFile: PROCEDURE [
catalogType: NsFile.Type « BWSFileTypes.systemFileCatalog,
namae: Xstring.Reader,
readonly: BOOLEAN «FALSE,
session: NSFile.Session « NsFile.nullSession]
RETURNS [file: NSFile.Handle];

GetFile finds a file with name name in the catalog with type catalogType. If the file cannot
be found, NsFile.nuilHandle is returned.

CreateFile: PROCEDURE [
catalogType: NsFile.Type « BWSFileTypes.systemFileCatalog,
name: xstring.Reader,
type: NsFile.Type,
isDirectory: BOOLEAN «FALSE,
size: LONG CARDINAL « 0,
session: NsFile.Session « NsFile.nullSession]
RETURNS [file: NsFile.Handle];

CreateFile creates a file with the specified attributes (name, type, isDirectory, size in bytes)
in the catalog with type catalogType.

16-1

16 Catalog

16.2.2 Operating on Catalogs L

Open: PROCEDURE [
catalogType: NSFile.Type,
s@ssion: NSFile.Sassion « NsFile.nullSession]
RETURNS [catalog: NSFile.Handle];

Op;ans the catalog with type catalogType. If the catalog cannot be opened, it returns
NsFile.nullHandle.

Create: PROCEDURE [
namae: Xstring.Reader,
catalogType: NsFile.Type,
session: NSFile.Session «NsFile.nullSession]
RETURNS [catalog: NsFile.Refarence];

Creates a catalog with the specified name and type. If the catalog already exists or cannot
be created, it returns NsFile.nullReference. Note: Even though the file can be identified by
type only, the name should be logical (such as "System Files") so that any tools written to
manipulate catalogs can display these names.

Enumerate: PROCEDURE [proc: CatalogProc];

CatalogProc: TYPE = PROCEDURE [catalogType: NsFile. Type]
RETURNS [continue: BOOLEAN « TRUE]; -

Enumerate calls the client-supplied proc for each existing catalog or until proc returns
FALSE.

beforeLogonSession: NsFile.Session;
beforeLogonSession is a session that can be used when calling a Catalog procedure before

any user has logged on, such as at boot time. It is set to be the default session until a user
logs on. :

16-2

ViewPoint Programmer’s Manual

16

16.3 Index of Interface Items
Item

beforeLogonSession: NSFile.Session
CatalogProc: TYpe

Create: PROCEDURE

CreateFile: PROCEDURE

Enumerate: PROCEDURE

GetFile: PROCEDURE

Open: PROCEDURE

Page

N=2N=S2SNNN

16-3

16

Catalog

17

Containee

17.1 Overview

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type. ‘

17.1.1 Background

All NSFiles have:

® aname
® afile type (LONG CARDINAL)
® aset of attributes, such as create date
® either:
- content, such as a document
- children that are also NSFiles, such as a folder -

An NSFile that has children is often called a directory. Fine Point: An NSFile can actually have both
content and children, that is ignored for now to simplify this discussion. Since the children of an NSFile
can themselves have children, NSFile supports a hierarchical file system.

A ViewPoint desktop is backed by an NSFile that has children. Each child file of the
desktop's NSFile is represented on the screen by an iconic picture.

Each application operates on NSFiles of a particular file type. For example, ViewPoint
documents operate on NSFiles with file type of 4353. Each document icon is actually an
NSFile of type 4353. Each application needs a way to register its ability to operate on files of
a particular type. Containee is such a facility.

17.1.2 Containee.Implementation
An application’s ability to operate on files of a particular type includes such operations as:
® Display of the iconie picture (full size and tiny).

® Open, performed when the user selects an icon and presses OPEN.
® Properties, performed when the user selects an icon and presses PROPS.

17-1

17

Containee

® Take the current selection, performed when the user drops an object onto an icon by
COPYing or MOVEing a selected object to an icon.

An application registers itself by calling Containee.Setimplementation, supplying a file type
and a Containee.implementation. A Containee.lmplementation is a record that contains two
important procedures:

® A procedure for displaying an icon picture (Containee.PictureProc).
® A procedure for performing various operations on an icon, such as open, create a
property sheet, and take the current selection (Containee.GenericProc).

This application registration allows the ViewPoint desktop implementation to be open-
ended. The desktop implementation itself does not know how any file behaves. Rather it
depends on applications registering their ability to operate on particular file types. The
desktop implementation, at logon, simply enumerates the child files of the desktop's NSFile
(using NSFile.List), obtaining the file type for each child. For each child file, the desktop
implementation gets an application's Containee.lmplementation by using the child file's file
type (and Containee.Getimplementation) and then calls that application's
Containee.PictureProc to actually display an icon picture. Similarly, when the user selects an
icon on the desktop and presses OPEN, the desktop implementation uses the file type of the
file at that place on the desktop to get the application’s Containee.lmplementation and then
calls the application’s Containee.GenericProc to get a StarWindowsShell created. The
implementations of Folders and File Drawers are similar to the desktop implementation in
this respect.

17.1.3 Containee.Data

An application needs to distinguish one file from another. Two different documents may be
the same file type, but probably have different names and different contents. Whenever an
application’s Containee.DisplayProc or Containee.GenericProc is called, the particular file
being operated on by the user is passed to the procedure through the Containee.DataHandie
parameter. A Containee.DataHandle is a pointer to a Containee.Data that is simply a record

 with an NSFile.Reference in it. An Nsrile.Reference uniquely identifies a particular file and

allows the application to utilize various NSFile file-accessing procedures for manipulating
the file.

17.2 Interface Items

17-2

17.2.1 Items for Application Implementors

Setimplementation: PROCEDURE [NSFile.Type, Implementation]
RETURNS [Implementation];

Setimplementation associates an Implementation record with a particular file type and
returns the previous Implementation that was associated with that file type. An
application calls Setimplementation to register its ability to operate on files of a particular

type.

When an application calls Setimplementation, it is convention to save the old
implementation to backstop operations that the new implementation does not support. For

ViewPoint Programmer’s Manual 1 7

example, most GenericProcs have an endcase that calls the old application’s GenericProc
for atoms it does not understand.

Implementation: TYPE = RECORD [
implementors: LONG POINTER « NIL,
namae: xstring.ReaderBody ¢ xstring.nullReaderBody,
smallPictureProc: SmallPictureProc «nuiL,
pictureProc:PictureProc¢ « Nit,
convertProc: Selection.ConvertProc « NiL,
genericProc:GenericProc «Ni |; '

When an application registers its ability to operate on files of a particular type (i.e, calls
Setimplementation), it supplies an Implementation record. The Implementation record
defines the behavior of all files of that type.

implementors is provided for the convenience of clients that may want to associate some
application-specific data with the Implementation record. Note: This data is one per
application, not one per file.

name is a user-sensible name for the objects that the Implementation manipulates, such as
"Document” or "Spreadsheet.” This string typically comes from XMessage. The bytes of
name are not copied--the storage for name must be allocated forever (which is easy to do
using XMessage). _)

smallPictureProc is a procedure of type SmallPictureProc that returns a character. This
procedure is describe below. - :

pictureProc is called whenever the file’s full-sized icon picture needs to be painted. (See
PictureProc.)

convertProc is called to convert the file into another form, such as an Interpress master.
This procedure is used when the owner of the current selection is a container, such as a
folder, and the selection is actually a file (row) in the container. The owner of the selection
(i.e., the container implementation) may be called to convert the selected file (row), but
only the application that implements that file's type can do the conversion. The
convertProc allows the owner of the selection to pass the conversion request along to the
application. The data parameter to the convertProc is a Containee.DataHandle. This
convertProc does not need to be able to convert to a target type of file or fileType, but rather
should call Containee.DefaultFileConvertProc for these target types. If the application does
not perform conversion to any target types, Containee.DefaultFileConvertProc should be
provided as the convertProc.

genericProc is where most of the application's real implementation resides. genericProc is
called, for example, to open an icon, to produce a property sheet for an icon, to drop
something on an icon, ete. See GenericProc.

SmallPictureProc: TYPE = PROCEDURE [
data: DataHandle «nit,
type: NsFile.Type « ignoreType,
normalOrReference: PictureState]
RETURNS [smallPicture: xstring.Character];

17-3

17

Containee

17-4

PictureState: TYPe = { garbage, normal, highlighted, ghost,
reference, referenceHighlighted };

ignoreType: NSFile.Type = LAST[LONG CARDINAL];

The SmallPictureProc should return a character for the application, which should be
obtained by passing a 13x13-bit icon picture to SimpleTextFont.AddClientDefinedCharacter.
This character is used when the file is inside a folder. normalOrReference will be either
normal or reference, and the appropriate small picture should be returned. The
SmallPictureProc should try to use the type parameter first if it is not Containee.ignoreType.
If it is ignoreType, the SmallPictureProc should use the data parameter. This change is
necessary for allowing the reference icon application to work properly. Fine Point: The picture
for normalOrReference = reference/referenceHighlighted will not normally be used by the folder
application directly, but rather would be used by a generic reference icon application.

Data: TYPE = RECORD [
reference: NSFile.Reference « NsFile.nullReference];

DataHandle: TYPE = LONG POINTER TO Data;
nullData:Data;

Data uniquely identifies a file. An application néeds to distinguish one file from another.
Two documents may be the same file type, but probably have different names and different
contents. Whenever an application's PictureProc or GenericProc or
Implementation.convertProc is called, the particular file being operated on by the user is
passed to the procedure through the DataHandle parameter. An Nsfile.Reference uniquely
identifies a particular file and allows the application to utilize various NSFile file-accessing
procedures for manipulating the file. nullData is a constant that should be used to
represent a null Containee.Data.

GenericProc: TYPE = PROCEDURE [
atom: Atom.ATOM,
data:DataHandle,
changeProc:ChangeProc «nNiL, -
changeProcData: LONG POINTER « NiL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is a procedure supplied by an application as part of an Implementation. The
GenericProc will be called to perform one of several operations that a user can invoke. atom
tells the GenericProc what operation to perform. For example, when the user selects an
icon and presses the OPEN key, the application’s GenericProc is called with an atom of
Open.

data identifies the particular NSFile to be operated on. The NSFile’s file type will be the one
for which this application has registered its Implementation.

A GenericProc must return a value. The type of the return value depends on the atom
passed in. Some atoms, their meaning to the GenericProc, and the expected return values
are as follows:

Atom Return Value and Meaning

ViewPoint Programmer’s Manual ' 17

CanYouTakeSelection

CanYouTakeSelectionBackground

FreeMenu

Menu

Open

LONG POINTER TO BOOLEAN

If the application is willing to have the current selection
dropped onto it, the GenericProc should return TrRue. This occurs
when the user has selected something, pressed COPY or MOVE,
and then selected one of this application’s files. While the user
has the mouse button down, the cursor changes to a question
mark if the GenericProc returns FALSE; otherwise, the cursor
stays the same and the icon picture highlights. This operation
should be efficient and usually involves calling
Selaction.CanYouConvert or Selection.HowHard or Selection.Query
to determine what Selection.Targets the selected object can be
converted to. For example, the printing application’s
GenericProc returns TRUE if the current selection can be
converted to an Interpress Master.

The changeProc need not be called for this atom.

LONG POINTER TO BOOLEAN

This is only called after the GenericProc returns TRUE to
CanYouTakeSelection. This atom asks if the GenericProc can
support a background take using an encapsulated selection.
The CanYouTakeSelection call is always called first to find out
if the selection type is one that the GenericProc can take. The
CanYouTakeSelectionBackground atom need not query the
selection again; all that’s needed is to return TRUE if it, supports
background take operations. If this atom returns TRUE, the
caller will call selectionx.Encapsulate (see the Selection
chapter), do a FORK, and call the GenericProc with
TakeSelectionBackground or TakeSelectionCopyBackground.
If this atom returns FALSE, the client will not FORK and will do a
foreground TakeSelection or TakeSelectionCopy.

The changeProc need not be called for this atom.

None

The application should free the menu that was created for the
Menu atom, if any. The MenuData.MenuHandle that was
returned for the Menu atom will be passed as the
changeProcData. This atom will not be passed to the
GenericProc if the Menu atom returned NIL. The changeProc
need not be called for this atom.

MenuData.MenuHandle

The application may create a menu. The menu will displayed
by the system as a popup menu. This atom is passed when the
user requests a popup menu for an icon, e.g. by pressing both
mouse buttons simultaneously while the mouse is over an icon
on the desktop or in a container window. If the application
returns a menu, then it should be prepared to free the menu
when the FreeMenu atom is passed to the GenericProc. The
changeProc need not be called for this atom.

StarwindowsShell.Handle

The application should create a StarWindowShell. Usually, the
content displayed in the StarWindowShell will be derived from
the contents of the file. For example, the ViewPoint document

17-5

1 7 Containee

Props

TakeSelection

TakeSelectionBackground

TakeSelectionCopy

TakeSelectionCopyBackground

editor application displays the text and graphics contained in
the file, thus making the file ready for viewing and/or editing.

Starwindowshell.Handle

The application should create a PropertySheet. Usually, the
properties shown reflect some attributes of the file. For
example, the Folder property sheet shows the name of the
folder, how it is sorted, and how many objects it contains. These
properties are all NSFile attributes of the file.

LONG POINTER TO BOOLEAN

The action performed for this atom is highly dependent on the
particular application. This atom is passed when the user has
selected something, pressed MOVE, then selected one of this
application’s files. For some applications, this means the
selected object should be moved into this application; for
example, the Folder application converts the selected object to a
file and adds the file to the folder. For other applications, this
means the selected object should be operated on in some
application-specific fashion; for example, the printing
application converts the selected object to an Interpress Master
(file or stream) and then sends the master to a printer. The
GenericProc should return TRUE if the operation was successful,
FALSE otherwise.

LONG POINTER TO BOOLEAN

The same as TakeSelection except that the GenericProc is
called from a background process so the GenericProc must use
an encapsulated selection rather than the user’s selection. To
get the encapsulated selection, the GenericProc should raise the
signal GetContaineeDataContext which will will be caught by
the caller and will RESUME with a LONG POINTER TO
Selectionx.Saved (see the Selection chapter). The GenericProc
can then call selectionx.ConvertX to get the value of the selection
followed by Selection.CopyOrMove. The client should always
call the GenericProc with CanYouTakeSelection-Background
before calling with this atom.

LONG POINTER TO BOOLEAN

This atom has the same meaning as TakeSelection, except it
corresponds to the COPY key being pressed rather than MOVE.
Again, the meaning of this is highly application dependent.

LONG POINTER TO BOOLEAN

This atom has the same meaning as TakeSelectionCopy, except
it corresponds to the COPY key being pressed rather than MOVE.
See TakeSelectionBackground for more details.

The changeProc must always be called, passing in changeProcData and an indication of
which NSFile attributes have changed, if any. If the execution of the GenericProc causes
any change to the NSFile's attributes, calling the changeProc allows containers (such as
Desktop, Folders) to update the display to reflect the changes. For example, when the atom
is Props, the GenericProc must save the changeProc and return the Starwindowshell.Handle

17-6

ViewPoint Programmer’s Manual 17

for the property sheet. Then later, if the user changes the file's name, for example, the
application’s PropertySheet. MenultemProc gets control when the user is done and must then
retrieve the changeProc and call it. (See the section on Usage/Examples for more detail.)

If the client's GenericProc is called with an atom that it does not recognize, it should call
the previous GenericProc (using the old implementation that was returned when it called
Containee.Setimplementation). The original system-supplied GenericProc acts to backstop
all possible atoms.

ChangeProc: TYPE = PROCEDURE [
changeProcData: LONG POINTER «—NIL,
data:DataHandle,
changedAttributes: NSFile.Selections «[]
noChanges: BOOLEAN «— FALSE];

A ChangeProc is a callback procedure that is passed to a GenericProc. [t must always be
called by the client regardless of whether an attribute of the file being operated has
changed. The reason for always calling the changeProc is to allow deallocation of the
changeProcData. The noChanges boolean indicates the effect on the relevant file's
attributes. The changeProcData parameter must be correctly supplied even for the
noChanges = TRUE case. This is used, for example, when the user changes the name of a file
by using a property sheet. When the property sheet is taken down, the application changes
the file's name and the ChangeProc that was passed to the GenericProc must then be called
by the application. (See more detail in the section on Usage/Examples).

. PictureProc: TYPE = PROCEDURE [
data:DataHandle,

window: window.Handle,
box: window.BOX,

old, new: PictureState |;

PictureState: Tvre = {garbage, normal, highlighted, ghost, reference, referenceHighlighted};

A PictureProc is a procedure supplied by an application as part of an Implementation. The
PictureProc is called whenever the desktop implementation needs to have the application's
icon picture repainted or painted differently.

data identifies the particular NSFile whose picture should be painted. The NSFile's file type
will be the one for which this application has registered its Implementation. Even though
all files of the same type will have the same PictureProc and therefore the same-shaped
picture, each picture will differ because the name of the NSFile is often displayed on the
picture. An application's PictureProc¢ can obtain an NSFile's name by using NSFile operations,
but may more easily obtain it using Containee.GetCachedName. This is one of the primary
intended uses for GetCachedName. (See the section on Attribute Cache).

window and box should be passed to any display procedures used to paint the icon picture,
such as Display.Bitmap and SimpleTextDisplay.StringintoWindow.

The old and new arguments describe the current and desired states of the icon picture.
garbage is the unknown state. PictureProc will be called with new = garbage before
moving or otherwise altering the icon; this lets an application remember an icon's
placement. The application can thus continually update the icon (for example, to represent
time-of-day) or can force a repaint by using window.Invalidate (to change the shape of an

17-7

17

Containee

17-8

InBasket icon, for example), normal is the picture displayed when the icon is not selected.
highlighted is the picture displayed when the icon is selected. ghost is the picture
displayed when the icon is currently open. reference is the picture displayed to represent a
remote file. referenceHighlighted is the highlighted version of reference. The desktop
implementation will never use these last two states, but a generic reference icon
application might.

DefaultFileConvertProc: Selection.ConvertProc;

DefaultFileConvertProc is a Selection.ConvertProc that knows how to convert to
Selection.Targets of file and fileType. DefaultFileConvertProc should be called from an
application’s Implementation.convertProc for these targets, or should be provided as the
application’s Implementation.convertProc if the application has no convertProc of its own.
No file-backed application’s convertProc should need to worry about these target types.

GetContaineeDataContext: siGNAL [dataHandle:DataHandle]
RETURNS [context: LONG POINTER];

This allows the client to pass some client data to the GenericProc. For certain atoms that
the GenericProc and its clients agree upon, the GenericProc may raise this signal. The
caller should catch the signal and resume with a long pointer to some mutually agreed
upon data. One example of where this is used is in doing a background take. See the
comments on the TakeSelectionBackground atom for how it uses
GetContaineeDataContext. Fine point: GetContaineeDataContext is defined in ContaineeExtra.

'17.2.2 Items for Application Consumers

These items would not ordinarily be used by an application implementation (provider), but
rather by a consumer such as the Desktop or Folder implementation.

Getimplementation: PROCEDURE [NSFile.Type] RETURNS [Implementation];

Getimpiementation returns the current Implementation for a particular file type.

17.2.3 Defaultlmplementation

Containee supports a single global default Implementation. This default Implementation is
used when the user operates on an NSFile for which no Implementation has yet been
registered.

GetDefaultimplementation: PROCEDURE RETURNS [Implementation];
GetDefaultimplementation returns the current default Impiementation.

SetDefaultimplementation: PROCEDURE [Implementation]
RETURNS [Implementation];

The default implementation provides a dummy display and appropriate “Sorry, Desktop is
Unable to Open That Object” complaints in the absence of a particular implementation.
Most clients will not call SetDefaultimplementation.

ViewPoint Programmer’s Manual . 17

17.2.4 Attribute Cache

Clients often want to use several common NsFile.Attributes, but it is awkward to pass the
attributes around in calls, because the attributes are long, of variable length, and
frequently not needed by the called routine. Therefore, Containee provides a cache
mechanism that can remember and supply popular attributes. Currently, the name and
file type attributes are supported, as well as the run-time busy attribute. Containee
decouples the management of in-memory copies of a file's name from parameter-passing
arrangements.

GetCachedBusy: PROCEDURE [data: Containee.DataHandle] RETURNS [busy: BOOLEAN];

Returns TRUE if the file was made busy with SetCachedBusy, FALSE otherwise. 'Busyiness’ is
not actually an attribute stored with the file, but is actually a run-time bit maintained by
Containee. See the Busylcon chapter for a general interface to busy icons. Fine point:
GetCachedBusy is defined in Containee€xtra.

GetCachedName: PROCEDURE [data:DataHandle]
RETURNS [name: xstring.ReaderBody, ticket: Ticket];

GetCachedNameX: PROCEDURE |
data:DataHandle,
handle: NsFile.Handle « NsFile.nullHandle,
session: NSFile.Session « NsFile.nullSession]
RETURNS [name: xstring.ReaderBody, ticket: Ticket];

GetCachedName returns the name attribute of the NSFile referred to by data. If the name
is not in the cache, it is looked up and added to the cache. ticket must be returned (by using
ReturnTicket) when the client is through with the name. The ticket is to prevent one client
from changing the name while another is looking at it. GetCachedNameX is identical to
GetCachedName, but takes a handle and a session. If handle is non-null, Containee will
use the handle instead of opening its own handle if it needs to fetch attributes from the file.
session is used for any filing operations including opening the file if necessary, which is
done if handle is nullHandle. handle and session are needed if the client has data (or its
parent) open in a session other than the default session. Fine point: GetCachedNameX is defined
in ContaineeExtra.

GetCachedType: PROCEDURE [data:DataHandle]
RETURNS [type:NsFile.Type];

GetCachedTypeX: PROCEDURE [
data:DataHandle,
handle: nsrile.Handle « NSFile.nullHandle,
session: NSFile.Session « NsFile.nullSession]
RETURNS [type:NsFile.Typel;

GetCachedType returns the type attribute of the NSFile referred to by data. If the type is
not in the cache, it is looked up and added to the cache. GetCachedTypeX is identical to
GetCachedName, but takes a handle and a session. If handle is non-null, Containee will
use the handle instead of opening its own handle if it needs to fetch attributes from the file.
session is used for any filing operations including opening the file if necessary, which is
done if handle is nullHandle. handle and session are needed if the client has data (or its

17-9

17

Containee

17-10

parent) open in a session other than the default session Fine point: GetCachedNameX is defined in
ContaineeExtra. Fine point: GetCachedTypeX is defined in Containee€Extra.

invalidateCache: PROCEDURE [data:DataHandle] ;

InvalidateCache clears any information about the NSFile from the cache. It is typically
called when the attributes of an NSFile are changed by an application. An application
rarely needs to call InvalidateCache, because calling the ChangeProc takes care of it.

InvalidateWholeCache: PROCEDURE ;
InvalidateWholeCache clears the entire cache. Information about all files is cleared.
ReturnTicket: PROCEDURE [ticket: Ticket];

ReturnTicket should be called after calling GetCachedName, when the client no longer
needs the string.

SetCachedBusy: PROCEDURE [
data: Containee.DataHandle,
busy: 80OLEAN];

Mark the file "busy.” The status of the file can later be queried with GetCachedBusy.
‘Busyiness’ is not an attribute stored with the file, but is a run-time status maintained by
Containee. For a more general busy icon mterface, see the Busyicon chapt:er Fine point:
SetCachedBusy is defined in ContaineeExtra.

SetCachedName: PROCEDURE [data:DataHandle, newNamae: xstring.Reader];

SetCéchedName allows a client to change a cached name. Care should be taken to keep the
filed name consistent with the cached name. An application rarely needs to call
InvalidateCache, because calling the ChangeProc takes care of it.

SetCachedType: PROCEDURE [data:DataHandle, newType:NsFile.Typel;

SetCachedType allows a client to change a cached type. Care should be taken to keep the
filed type consistent with the cached type.

Ticket: Tyre[2];

A Ticket is returned when GetCachedName is called. When the client is done using the
cached name, the ticket must be returned by calling ReturnTicket. This is to prevent one
client from changing the name while another is looking at it.

=]

ViewPoint Programmer’s Manual 17

17.3 Errors and Signals

Error: ERROR [msg: Xstring.Reader « NiL, error: ERROR ¢ NIL,
errorData: LONG POINTER TO UNSPECIFIED « NiL];

Signal: siGNAL [msg: xstring.Reader « NiL, error: ERROR ¢ NiIL,
errorData: LONG POINTER TO UNSPECIFIED ¢ NiL];

An application's GenericProc (and PictureProc and ConvertProc) should never assume that
it has been called by a desktop, and therefore should never call such facilities as
Attention.POSt or UserTerminal.BlinkDisplay. (The application might be called by CUSP, for
example.) Rather, the application should raise Containee.Error or Signal with an appropriate
message. Containee will not catch these errors. The caller of the application's GenericProc
should catch them and do the appropriate thing. In the typical case, the ViewPoint desktop
calls the application’'s GenericProc; it catches the error and calls Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file.

msg is the message to display to the user. error is the actual lower-level error that occurred
that caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower-level error. ’

174 Usage/Examples

17.4.1 Sample Containee

The folder application is used as an example of a simple application that implements a
particular file type.

-- Constants and global data

~ folderFileType: NsFile.Type =...;
oldimpl: Containee.lmplementatiqn «[];

-= Containee.Implementation procedures

FolderGenericProc: Containee.GenericProc =
< < [atom: Atom. ATOM,
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER «NiL]
RETURNS [LONG UNSPECIFIED] > >
BEGIN
SELECT atom FROM
open = > RETURN [MakeFolder[data, changeProc, changeProcData]];
props = > RETURN [MakePropertySheet[data, changeProc, changeProcData] |;
canYouTakeSelection = > ReTUrN [IF CaniTake[changeProc, changeProcData]
THEN @true eLsE @false];
canYouTakeSelectionBackground = > RETURN [@TRUE]
takeSelection, takeSelectionBackground = >

17-11

17

Containee

17-12

RETURN [
if Take[data, move, changeProc, changeProcData,
atom = takeSelectionCopyBackground]
THEN @true ELsE @false |;
takeSelectionCopy, takeSelectionCopyBackground = >
RETURN [
i Take[data, copy, changeProc, changeProcData,
atom = takeSelectionCopyBackground]
THEN @true ELsE @false |;
menu = >
BEGIN
run: xstring.ReaderBody « xString. FromSTRING ["AltOpen”L];
name: Xstring.ReaderBody « XString. FromSTRING [“Folder™L];
title: MenuData.ltemHandle « MenuData.Createitem(
zone: NiL, name: @name, proc: NiL];
items: ARRAY([0..1) OF MenuData.ltemHandle « [
MenuData.Createitem[zone: NiL, name: @run, proc: AltOpen]];
menu: MenuData.MenuHandle « MenubData.CreateMenu[
zone: NIL, title: title, array: DescriPTOR([items]];
RETURN [menu];
END;
freeMenu = >
BEGIN
menu: MenuData.MenuHandle « changeProcData;
MenuData.DestroyMenu [NIL, menu];
RETURN[menu];
END;
ENDCASE = > RETURN [
oldimpl.genericProc [atom, data, changeProc, changeProcData] |;
END;

AltOpen: MenuData.MenuProc = {...};

CaniTake: PROCEDURE [
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NiL]
RETURNS [yes: BOOLEAN] = {

< < Use Selection.CanYouConvert to see if the current selection can convert to a

file. If so, then return TRUE, eilse FALSE. > >
}

MakeFolder: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «Nit,
changeProcData: LONG POINTER « NIL]
RETURNS [shell: starwindowshell. Handle] = {

< < Create and return a StarWindowsShell containing a list of the files in this folder.

Use FileContainerShell.Create. > >

}

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle,

ViewPoint Programmer’s Manual 17

changeProc: Containee.ChangeProc «NiL,

changeProcData: LONG POINTER « NiL]

RETURNS [psheet: starwindowshell. Handle] = {

< < Create and return a property sheet, using PropertySheet.Create. > >

5

Take: PROCEDURE [
data: Containee.DataHandle,
copyOrMove: selection.CopyOrMove,
changeProc: Containee.ChangeProc « Nit,
changeProcData: LONG POINTER « NiL]
RETURNS [ok: BOOLEAN] = {
V: Selection.Value;
manager: LONG POINTER TO Selection.Saved « @mgr;
mgr: Selection.Saved « Selectionx.nullManager; > >
IF background THEN
manager « ContaineeExtra.GetContaineeDataContext{data];
< < [f this is a background take, get the encasulated selection
Convert the current selection to a file using SelectionX.Convert or
SelectionX.Enumerate with mgr, and copy or move that file into this folder. > >

Y
-- Initialization procedures

InitAtoms: PROCEDURE = { ,
open « Atom.MakeAtom["Open"L];
props « Atom.MakeAtom["Props”L];
canYouTakeSelection « Atom.MakeAtom{"CanYouTakeSelection"L];
canYouTakeSelectionBackground «
Atom.MakeAtom(["CanYouTakeSelectionBackground™L];
takeSelection « Atom.MakeAtom["TakeSelection"L];
takeSelectionCopy ¢ Atom.MakeAtom["TakeSelectionCopy“L];
takeSelectionCopyBackground «
Atom.MakeAtom("TakeSelectionCopyBackground”L];
menu « Atom.MakeAtom(["Menu"L];
freeMenu « Atom.MakeAtom(["FreeMenu"L];

}

Setimplementation: PROCEDURE = {
newimpl: Containee.implementation « Containee.Getimpiementation [
foiderfileType];
newlimpl.genericProc « FolderGenericProc;
oldimpl & Containee.Setimplementation [folderFileType, newimpl];

Y

-- Mainline code
InitAtoms]];
Setimplementation(];

17-13

1 7 Containee

17.4.2 ChangeProc example -_—
The folder property sheet is used to demonstrate a callback to a ChangeProc.

DataObject: TYPe = RECORD [
fh: NsFile.Handle,
changeProc: Containee.ChangeProc «Nit,
changeProcData: LONG POINTER e NIL];

Data: TYPE = LONG POINTER TO DataObject;

MakePropertySheet: PROCEDURE [. -
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «Nit,
changeProcData: LONG POINTER «NiL]
RETURNS [pSheetShell: starwindowshell.Handle] = {

-- Pass changeProc to Makeitems through clientData.

mydata: Data « zone.NEW[DataObject « [
fh: NSFile.OpenByReference{@data.reference],
changeProc: changeProc,
changeProcData: changeProcData]];

pSheetShell « propertysheet.Create | -
formWindowitems: Makeltems, ' ’
menultemProc: MenultemProc, :
menultems: [done: TRUE, cancel: TRUE, defaults: TRUE],
title: xMessage.Get [...],
formWindowitemsLayout: DolLayout,
display: FALSE,
clientData: mydatal;
)7

Makeltems: Formwindow.MakeltemsProc = {
-- Make property sheet items with calls to Formwindow.MakeXXX!tem.

MenultemProc: Propertysheet. MenuitemProc = {
< < [shell: starwindowsheill. Handle, formWindow: window.Handle,
menultem: PropertySheet. MenultemType, clientData: LONG POINTER]
RETURNS [destroy: BOOLEAN « FALSE] > >
mydata: Data = clientData;
SELECT menultem FROM
done = > reTurn[destroy: ApplyAnyChanges[formWindow, mydata].ok];
cancel = > ReTURN([destroy: TRUE];
defaults = > ...
ENDCASE;
RETURN[destroy: FaLSE]; _

}:

17-14

ViewPoint Programmer’s Manual 1 7

ApplyAnyChanges: PrROC [fw: window.Handle, mydata: Data] RETURNS [0k: BOOLEAN] = {
-- Collect any changes in the property sheet items.
NSFile.ChangeAttributes [mydata.fh, ...];

BEGIN -- Call the changeProc.

data: Containee.Data « [NSFile.GetReference [mydata.fh] |;

IF mydata.changeProc # NIL THEN
mydata.changeProc[mydata.changeProcData, @data, changedAttributes];

END;

RETURN [0k TRUE];

Y
17.4.3 Error and Signal Usage

This client catches an NSFile.Error and raises Containee.Error, passing along the ERROR and the
NsFile.ErrorRecord:

message: xstring.ReaderBody;
errorRecord: NsFile.ErrorRecord;
"signal: --GENERIC-- SIGNAL « NIL;
file « NsFile.OpenByReference [reference: ... !
NSFile.Errar = > {
errorRecord « error;
signal «LOOPHOLE[NSFile.Error, SIGNAL];
GOTO ErrorExit}];
< < Operate on the file.> >
NSFile.Close[file];
EXITS
ErrorExit = > {
message « xstring. FromSTRING["nsFile.Error"L];
Containee.Error [msg: @message, error: signal, errorData: @errorRecord];

17-15

17

Containee

17.5 Index of Interface Items

17-16

Item Page

ChangeProc: TYPE

Data: TYPE

DataHandle: Tyre
DefaultFileConvertProc: Selection.ConvertProc
Error:ERROR .
GenericProc: TYPE

GetCachedBusy: PROCEDURE
GetCachedName: PROCEDURE
GetCachedNameX: PROCEDURE
GetCachedType: PROCEDURE
GetCachedTypeX: PROCEDURE
GetContaineeDataContext: SIGNAL
GetDefaultimplementation: PROCEDURE
Getimplementation: PROCEDURE
ignoreType:NSFile

implementation: Type

ad

puy
NLQOQOWANVINOOVLOYLYLOHLH-L08bdN

InvalidateCache: PROCEDURE 1
-‘invalidateWholeCache: PROCEDURE 1
nullData:Data

PictureProc: TYPE

PictureState: TYPE 4.7
ReturnTicket: PROCEDURE 10
SetCachedBusy: PROCEDURE 10
SetCachedName: PROCEDURE 10
SetCachedType: PROCEDURE 10
SetDefaultimplementation: PROCEDURE 9
Setimplementation: PROCEDURE 2
Signal:siGNAL 11
SmallPictureProc:Type 3
Ticket: Type 10

18

ContainerCache

18.1 Overview
The ContainerCache interface provides the writer of a ContainerSource with a cache for

the container’s items. ContainerCache supports storing strings and client data with each
item.

18.2 Interface Items

| 18.2.1 Cache Allocation and Management
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE;
AllocateCache2: PROCEDURE [useProcessAbort: BOOLEAN « TRUE] RETURNS [Handle];

AllocateCache2 returns a handle on a cache that can be filled with BeginFill. The client
should call ResetCache before calling BeginFill. useProcessAbort indicates whether
Process.Abort should be raised by ContainerCache when the fill process is aborted--for
example, when the cache is destroyed while still filling. It is intended to accommodate
clients that cannot properly handle ABORTED. AllocateCache2 is actually in
ContainerCacheExtra2.mesa.

AllocateCache: PROCEDURE RETURNS [Handle];

AllocateCache returns a handle on a cache that can be filled with BeginFill. The client
should call ResetCache before calling BeginFill.

GetLength: PROCEDURE [cache: Handle] ReETURNS [cachelength: CARDINAL];

GetLength returns the number of items in the cache. GetLength is actually in
ContainerCacheExtra.mesa.

ResetCache: PROCEDURE [Handlel;

18-1

18

ContainerCache

18-2

ResetCache clears the cache so that, for example, the cache can be refilled by calling
BeginFill.

FreeCache: PROCEDURE [Handle];

Frees the resources used by a cache.

18.2.2 Filling the Cache

The client initially fills a cache with items by calling BeginFiil with a FillProc. The FillProc
adds items to the cache by repeatedly calling Appenditem.

FillProc: TYPe = PROCEDURE [cache: Handle]
RETURNS [errored: BOOLEAN « FALSE];

The client provides a FillProc to the BeginFill procedure. The FillProc should fill the cache
by using Appendlitem. errored is an indication of whether an error occurred during the
filling of the cache (errored = TRUE).

BeginFill: PROCEDURE [
cache: Handle,
fillProc: FillProc,
clients: LONG POINTER,
fork: BOOLEAN «TRUE];

Clients: PROCEDURE [cache: Handle]
RETURNS [clients: LONG POINTER];

BeginFill begins filling the cache. fillProc is called to add items to the cache. If fork is TRUE,
then fillProc is forked as a separate process. clients is stored with the cache and may be
retrieved by calling Clients.

CacheFillStatus: Tvyre = {no, inProgress, inProgressPendingAbort,
inProgressPendingloin, yes, yesWithError, spare };

StatusOfFill: PROCEDURE [cache: Handle]
RETURNS [CacheFillStatus];

StatusOfFill returns the current status of the cache fill. yes indicates that the fill has
successfully completed; no means the cache has not been filled yet; inProgress indicates
that the fill is running right now. inProgressPendingAbort indicates that an abort has
been received but the fillProc has not yet returned. inProgressPendingJoin, yesWithError,
and spare are not currently used.

18.2.3 Item Operations

ItemHandle: TYPE = LONG POINTER TO ItemObject;

ItemObject: TyYrE;

ViewPoint Programmer’s Manual 1 8

AddData: TYPE = RECORDI[
clientData: LONG POINTER, -- TO ARRAY [0..0) OF WORD
clientDataCount: CARDINAL,
clientStrings: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBodyl;

An AddData record is passed to the Appenditem, Insertitem, and Replaceitem procedures.
clientData should contain any data that the client wants to cache with the item, usually
some type of reference to the actual item. clientDataCount is the size (in words) of the
clientData. clientData is copied into the cache; therefore the clientData should contain no
pointers to other data. clientStrings should contain the strings to be displayed for the item.
clientStrings are also copied into the cache, allowing the client to free them.

The standard use of clientStrings is to implement the ContainerSource.StringOfltemProc,
which can be accessed efficiently by using ItemNthString. (See the section on item content
operations for more details on accessing the contents of items.) Caution: There are
restrictions on the total length of an item (strings plus client data) that may be added to a
cache. Currently, no item should be longer than 512 bytes.

Appendlitem: PROCEDURE [
cache: Handle,
addData: AddData]
RETURNS [handle:itemHandle];

Appenditem appends an item to the end of cache. It is usually called repeatedly from
within a FillProc. handle is a pointer that can be used to access the new item.

DeleteNitems: PROCEDURE [
cache: Handle,
item: CARDINAL,
nitems: CARDINAL «1];

DeleteNitems deletes one or more consecutive items from cache, starting at item. Fine point:
Because the cache is maintained as a contiguous string of bits, this operation is likely to be slow compared to
Appenditem and GetNthitem.

GetNthitem: PROCEDURE [cache: Hahdle, n: CARDINAL]
RETURNS [ItemHandle];

GetNthitem returns the nth item in cache. The items are numbered from zero. It returns NiL
if no such item exists. The ItemHandle returned is not guaranteed to be valid after any
operation that modifies the cache (DeleteNlItems, Insertitem, Replaceitem). If the cache
status is inProgress (if someone is in the process of filling the cache), GetNthitem does not
return until the nth item has been appended to the cache or until the fill is complete.

18-3

18 ContainerCache

Insertitem: PROCEDURE [
cache: Handle, Sl
before: CARDINAL,
addData: AddData]
RETURNS [handle: itemHandle];

Insertitem inserts an item in cache. The new item is inserted before the item before. Note
that all the items after this item will be renumbered. Fine point: Because the cache is maintained as
a contiguous string of bits, this operation is likely to be slow compared to Appenditem and GetNthitem.
Replaceitem: PROCEDURE [

cache: Handle,

item: CARDINAL,

addData: AddData]

RETURNS [handle: ItemHandle];
Replaceitem replaces the contents of item in cache with the information in addData. Fine

point: This operation is impleinented as DeleteNitems followed by insertitem, and so is likely to be slow compared
to Appanditem and GetNthitem.

18.2.4 Item Content Operations
Itemindex: PROCEDURE [item: ItemHandle] RETURNS [index: CARDINAL];
Given the_handlo; item, ltemindex returns its index in the cache. -~
ItemClients: PROCEDURE [item: ltemHandlei RETURNS [clientData: LONG POINTER]; |

Returns the client data associated with item. If the client data passed in was NIL,
clientData is NIL.

ItemClientsLength: PROCEDURE [item: ItemHandle] RETURNS [dataLength: CARDINAL];
Returns the length of the client data passed in with item.

ItemStringCount: Paﬁcsouns [item: itemHandle] RETURNS [strings: CARDINAL];

Returns the number of client strings associated with item.

ItemNthString: PROCEDURE [item: ItemHandle, n: CARDINAL] RETURNS [Xstring.ReaderBody];

Returns the nth client string associated with item. This operation can be used to
implement a ContainerSource.StringOfltemProc .

18.2.5 Marking Items in the Cache

Whenever items are deleted or inserted in a ContainerCache, all the items are renumbered.
This allows a client to keep track of items by marking them. ContainerCache keeps track of
the marked items across any changes to the cache. A mark is a handle on a cache item that s,
tracks the item when the item number changes. This facility is handy for

18-4

ViewPoint Programmer’s Manual » 18

container source implementations that use ContainerCache and want to perform all the
various combinations of moving and copying items within the source.

Mark: TYPE = LONG POINTER TO MarkObject;
MarkObject: TYPEe;

SetMark: PROCEDURE [
cache: ContainerCache.Handle, index: CARDINAL]
RETURNS [mark: Mark];
-- set a mark atindex

IndexFromMark: PROCEDURE [mark: Mark]
RETURNS [index: CARDINAL];
-- get the current value of this mark

MoveMark: PROCEDURE [mark: Mark, newindex: CARDINAL];
-- allows the resetting of a mark without using a new one

FreeMark: PROCEDURE {mark: Mark];
-- mark no longer needed

18.3 Usage/Examples .

After the client allocates a cache, the client starts filling the cache by calling BeginFill with
a FillProc. BeginFill immediately calls the FillProc. Inside the FillProc, the client usually
does some kind of enumeration on the source backing (for example, if the source is backed
by files, the client does an NsFile.List). For each item enumerated by the FillProc, the client
builds the required strings for that item and then passes the strings along with any item
data to Appenditem. The item data is usually some information that is needed to identify
the item uniquely (for the file example, this might be a file ID). This process continues
until all the items in the source have been enumerated, at which time the FilIProc returns.

The call to BeginFill may indicate that the FillProc should be forked into a separate process.
This allows the enumeration of the source’s items to go on in the background, which is an
advantage if the source has a large number of items. If the source is being displayed in a
ContainerWindow while this background fill is taking place, the window displays each
new item as it is appended to the cache. Fine point: ContainerWindow can display the items as they are
added because GetNthitem will wait during the filling of the cache until the requested item is in the cache instead
of returning with an indication that the requested item is not available.

Once the cache has been created, operations on the container source that owns the cache
may cause items in the cache to become invalid. One way to bring the cache back into
synch is to invoke BeginFill and rebuild the cache. If reenumerating the items in the source
is expensive, items in the cache can be updated with the operations DeleteNIitems,
Insertitem, and Replaceltem. The disadvantage of these operations is that they may cause
performance degradation. Fine Point: The current implementation tries to maintain the cache as a
contiguous series of strings of bits to minimize swapping. Using these operations may move large amounts of data
around or fragment the cache data. If a large number of changes are to be made, it may pay to rebuild the cache.

18-5

18

ContainerCache

18-6

Use of ContainerCache may not always be appropriate. In some cases, the structure of
items in a source may be simple enough that a simple data structure may suffice to hold all
the information necessary to respond to source operations.

18.5.1 Example of ContainerCache Use

The following example is taken from the implementation of FileContainerSource. It gives
an example FillProc that uses Appenditem to build the cache.

ReaderSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF Xstring.ReaderBody);
ReaderSeqPtr: TYPE = LONG POINTER TO ReaderSeq;

WriterSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF XString. WriterBody];
WriterSeqPtr: TYPE = LONG POINTER TO WriterSeq;

FillCachelnBackground: ContainerCache.FillProc =
< < [cache: Handle] RETURNS [errored: BOOLEAN « FALSE]> >
BEGIN
fs: FS « ContainerCache.Clients{cache]; -- get container source context
parentHandle: nsFile.Handle;
writers: WriterSeqPtr « AllocateWriters [fs.columns.length];
readers: ReaderSeqPtr « z.NEW [ReaderSeq[fs.columns.length]];

Enumerator: NsFile.AttributesProc =
BEGIN
itemData: ItemFileData;
addData: ContainerCache.AddData;

addData « BuildRow [fs, writers, readers, @itemData, attributes];
[] & containerCache.Appenditem [cache, addData];

RETURN; :

END; ’

BEGIN
parentHandle « nsrile.OpenByReferenca [fs.parentReference];
Process.SetPriority [Process.priorityBackground];
Nsrile.List [directory: parentHandle, proc: Enumerator,
selections: fs.selections, scope: fs.scope];
NSFile.Close [parentHandle];
END;
z.FREE [@readers];
FreeWriters [writers];

RETURN;
END;

BuildRow: PROCEDURE [
fs: FS,
writers: LONG POINTER TO WriterSeq,
readers: LONG POINTER TO ReaderSeq,
itemData: ItemFileDataHandle,
attributes: NSFile.Attributes]

ViewPoint Programmer’s Manual 1 8

RETURNS [addData: ContainerCache.AddData] =
BEGIN

attr: NSFile.Attribute;

¢i: Containee.lmplementation;

ci ¢ Containee.Getimplementation [attributes.type];
FOR i: CARDINAL IN [0..fs.columns.length) Do

xstring.ClearWriter [@writers(ill;

-- Decide the type of column we have (passed in as Column info to
FileContainerSource.Create) and call proper format proc to format attribute(s)
into a string --

wWiTH column: fs.columns[i] SELECT FROM

attribute = > {
attr « AttributeFromAttributeRecord [
attributes, column.attr];
column.formatProc [ci, attr, @writers(ill; };
extendedAttribute = > {
attr « ExtendedAttributeFromAttributeRecord |
attributes, column.extendedAttri;
column.formatProc [ci, attr, @writers{ill; };
multipleAttributes = >
column.formatProc [ci, attributes, @writers[il];
ENDCASE;
ENDLOOP;

itemData 1 « [id: attributes.filelD, type: attributes.typel;

FOR i: CARDINAL IN [0..writers.length) DO
readers[i] e (xstring.ReaderFromWriter [@writers(ill) 1;
ENDLOOP;

addData e[
clientData: itemData,
clientDataCount: size{ItemFileData],
clientStrings: DescripToR[readers]];

ReTUrRN[addDatal;
END;

18-7

18

ContainerCache

18.4 Index of Interface Items

18-8

Item

AddData: Tyre
AilocateCache2: PROCEDURE
AllocateCache: PROCEDURE
Appenditem: PROCEDURE
BeginFill: PROCEDURE
CacheFillStatus: TYpe
Clients: PROCEDURE
DeleteNitems: PROCEDURE
FillProc: TypE

FreeCache: PROCEDURE
FreeMark:PROCEDURE
GetLength: PROCEDURE
GetNthitem: PROCEDURE
Handle: Tyre
IndexFromMark:PROCEDURE
Insertitem: PROCEDURE
ItemClients: PROCEDURE

itemClientsLength: PROCEDURE

ItemHandle: TYPE
Itemindex: PROCEDURE
ItemNthString: PROCEDURE
ItemObject: TYPe
ItemStringCount: PROCEDURE
Mark:Type
MarkObject:Tyre
MoveMark:Procedure
Object: Tyre
Replaceltem: PROCEDURE
ResetCache: PROCEDURE
SetMark:PROCEDURE
StatusOfFill: PROCEDURE

v
&
]

NN =TV ENBEAENLGLEAN S W=20NNWVNNNWRD W

19

JRRRRANIA

ContainerSource

19.1 Overview

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user.
ViewPoint Folders are a typical example of such an application. ContainerWindow
provides the user interface for containers. It displays each item as a list of strings and.
handles selection highlighting, scrolling, and so forth. When a ContainerWindow is
created, a record of procedures is passed in. ContainerWindow obtains the strings of each
item by calling one of these procedures. ContainerWindow also performs user operations
on items, such as open, props, delete, insert, take the current selection, and selection
conversion by calling other procedures in the record. This record of procedures and their
implementation is called a container source. A container source can be thought of as a
supply (source) of items for a ContainerWindow. A container source is responsible for
implementing container source operations on its underlying representation of the items in
-the source.

The ContainerSource interface contains the procedure TYpes that make up the record of
procedures that a container source must implement. These procedure definitions
encompass all the operations that a source of items must be able to perform.
ContainerSource also provides a place to save data specific to a particular container source.

The procedure TYPes defined by ContainerSource fall into three categories:

® ActOnProc, CanYouTakeProc, GetLengthProc, and TakeProc are operations on the
source as a whole.

® ConvertitemProc, DeleteltemsProc, ItemGenericProc, and StringOfitemProc are
operations on the individual items within the source.

® SetGlobalChangeProcProc, GetGlobalChangeProcProc, 1sBusyProc, SetBusyProc,
SetMarkProc, FreeMarkPro¢, IndexFromMarkProc, and MoveOrCreateMarkProc are
housekeeping kinds of operations that support background (concurrent) move and
copy operations within a source.

Note that the items in a container must exhibit behavior similar to the behavior defined by
the Containee interface, such as open, props, take selection, convert. However, also note
- that the Containee interface defines the behavior of NSFiles, whereas ContainerSource is

19-1

19

ContainerSource

totally independent of NSFile. The items in a container may be backed by anything. The
FileContainerSource interface is an example of a container source that is backed by
NSFiles. The ViewPoint Directory application contains examples of container sources that
are backed by Clearinghouse entries (such as the Filing and Printing dividers) and by
simple strings in virtual memory (such as a domain divider).

The ContainerCache interface provides a mechanism for caching the strings and item-
specific data for the items in a container source. The implementor of a container source
might find ContainerCache to be handy.

19.2 Interface Items

19-2

19.2.1 Handle, Procedures, and ProceduresObject

Handle: TYPE = LONG POINTER TO Procedures;
Procedures: TYPE = LONG POINTER TO ProceduresObject;

ProceduresObject: TYPE = RECORD [
actOn: ActOnProc,
canYouTake: CanYouTakeProc,
columnCount: ColumnCountProc,
convertitem: ConvertitemProc,
deleteltems: DeleteitemsProc,
getLength: GetLengthProc,
itemGeneric: temGenericProc,
stringOfitem: StringOfitemProc,
take: TakeProc];

ContainerSource€xtra.Procedures: TYPE a ‘
LONG PQINTER TO ContainerSourceExtra.ProceduresObject;

ContainerSourceExtra.PraceduresObject: TYPE = RECORD [
canYouTakeX: CanYouTakeProcX,
takeX: TakeProcX,
setGlobalChangeProc: SetGlobalChangeProcProc,
getGlobalChangeProc: GetGlobalChangeProcProc,
isBusy: 1sBusyProc,
setBusy: SetBusyProc,
setMark: SetMarkProc «nNui,
freeMark: FreeMarkProc «NiL,
indexFromMark: IndexfromMarkProc «niL,
moveOrCreateMark: MoveOrCreateMarkProc «Nit];

Handle identifies a particular container source. Handle is a pointer to a pointer
(Procedures) to a record of procedures (ProceduresObject) that are implemented by the
container source. A container source typically EXPORTs a Create procedure that return a
Handle. This Handle is then passed to Containerwindow.Create. Whenever
ContainerWindow needs the container source to do something, it calls the appropriate
procedure in the ProceduresObject by using Handle 1 T, and passing in the Handle. Note:
Every procedure in the ProceduresObject takes a Handle as its first parameter. Fine Point:

<~

ViewPoint Programmer’s Manual 19

Actually, ContainerWindow will call the INLINE procedures described in the INLINE section, which in turn call
the procedures in the ProceduresQbject.

Handle is a pointer to a pointer (rather than just a pointer to the ProceduresObject) to
allow a container source to save data specific to the source. For example, a file-backed
source would need to keep a pointer to the file. See the section on Usage/Examples for an
explanation of how this is done.

ContainerSourceExtra.ProceduresObject are extra procedures to support concurency in
containers. These procedures logically belong in the ContainerSource.ProceduresObject. No
ContainerSourceExtra.Handle is provided because these procedures are auxiliary to the
main ContainerSource.Procedures. A source that supports these operations will export a Create
operation that returns a ContainerSource.Handle and a ContainerSourceéxtra.Procedures.
ContainerWindowExtrad.CreateXX takes both a ContainerSource.Handle and a
ContainerSourceExtra.Procedures. This procedure must be used when the client wants to create
a container that uses ContainerSourceExtra.Procedures.

19.2.2 Procedures That Operate on Individual Items

Itemindex: TYPE = CARDINAL;
nullitem: Itemindex = [temindex.LAST;

All the procedures that operate on individual items take a Handle and an Itemindex. An
Itemindex is simply a caRDINAL that uniquely identifies an item in the source. Note: A
container source is an ordered list of items. An Itemindex of "n” indicates the "nth” item in
the source. An Itemindex of zero corresponds to the first source item. An Itemindex should
be thought of as a loose binding: the index of a particular item may change as a result of
changes to the source. For example, if an item is deleted, all the items below it will be
renumbered. nullltem is a constant used to represent no item or unknown item.

If concurrency is supported within the source, each of the procedures that take an
itemindex as a parameter (StringOfltemProc, ItemGenericProc, ConvertitemProc,
DeleteitemsProc, and TakeProc/TakeProcX) must be able to support a “between calls lock”
on the source that lasts from the time the client calls IndexFromMarkProc to the time one
of the following procedures is entered. See §19.2.5 for a discussion of IndexFromitem,
§19.2.6 for a discussion of locking, and the example in §19.4.3 for one way to implement
this locking.

StringOfitemProc: TYPE = PROCEDURE |
source: Handle,
itemindex: Itemindex,
stringindex: CARDINAL]
RETURNS [XString.ReaderBody];

The source’s StringOfltemProc should return the string stringindex of item itemindex in
source. Each item’s display is composed of strings, one for each column of the container
window. For example, an open Folder shows four columns: the icon picture, the name, the
size, and the date. stringindex will be IN [0..source.columnCount[]) (see also
ColumnCountProc in the next section). If there is no such item (if itemindex is greater than
the number of items in the source, for example), StringOfltemProc should raise
Error[noSuchitem]. StringOfltemProc is used extensively and its implementation should

19-3

19 ContainerSource

be efficient. If the source supports concurrency, this procedure must support the “between P
calls lock” convention. See §19.2.5 for more details. N

ItemGenericProc: TYPE = PROCEDURE [
source: Handle,
itemindex: itemindex,
atom: Atom.ATOM,
changeProc: ChangeProc «NiL,
changeProcData: LONG POINTER «Nit]
RETURNS [LONG UNSPECIFIED];

The source’s ItemGenericProc is invoked to perform an operation on one of the items in the
container. itemindex indicates which item to operate on. The operation is specified by
atom. Some of the typical atoms are: Open, Props, CanYouTakeSelection, TakeSelection,
TakeSelectionCopy. This procedure is just like the genericProc that a
Containee.Implementation must provide, see the Containee interface for a complete
description of the atoms and their return values. changeProc must be called if the
ItemGenericProc causes the source to change. changeProc and changeProcData are -
described in more detail below in the section on changeProc types.

If the source supports concurrency, this procedure must support the "bet.ween calls lock”
conventxon See §19.2.5 for more details.

ConvertitemProc: TYPE = PROCEDURE [. .
source: Handle,
itemindex: Itemindex, . ' =
n: CARDINAL « 1,
target: selection.Target,
zZone: UNCOUNTED ZONE,
info: selaction.Conversioninfo « [convert(]], -
changeProc: ChangeProc «Nit,
changeProcData: LONG POINTER « NiL]
RETURNS {value: Selection.Value];

The source’s ConvertitemProc is invoked to convert one or more of the items in source, just
as if the item was the current selection and Selection.Convert had been called. itemindex
indicates the first item to convert. n indicates how many consecutive items to convert.
target, zone, info, and value are all identical to the parameters for Selection.ConvertProc
(see the Selection interface). If n> 1, then info is the enumeration variant; otherwise, it is
the convert variant. changeProc must be called if the ConvertitemProc causes the source to
change, for example, when an item is moved out of the source. changeProc and
changeProcData are described in more detail in the section on changeProc types.

If the source supports concurrency, this procedure must support the “between calls lock”
convention. See §19.2.5 for more details.

DeleteitemsProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex, o,
n: CARDINAL « 1,

19-4

ViewPoint Programmer’s Manual 19

changeProc: ChangeProc «NiL,
changeProcData: LONG POINTER «NIL];

The source’s DeletelitemsProc is invoked to delete consecutive items from source.
itemindex is the first item to delete. n is the number of items to delete. changeProc must
be called if the DeleteitemsProc causes the source to change, that is, if the deletion is
successful. changeProc and changeProcData are described in more detail in the section on
changeProc types.

If the source supports concurrency, this procedure must support the “between calls lock”
convention. See §19.2.5 for more details.

19.2.3 Procedures That Operate on the Entire Source
ColumnCountProc: TYPE = PROCEDURE [source: Handle] ReTURNS [columns: CARDINAL];

The source’s ColumnCountProc should return the number of columns in source, that is, the
number of strings in each item. Fine point: typically, the number of columns is the same as COUNT
[ContainerWindow.ColumnHeadaers].

GetLengthProc:_rvpe = PROCEDURE [source: Handle]
RETURNS [length: caroiNAL, totalOrPartial: TotalOrPartial __totall;

TotalOrPartial: Tyre = {total, partial};

The source’s GetLengthProc should return the total number of items currently in the
source. This operation is performed often and should be efficient. Some container sources
have indeterminate length until after an initial enumeration has completed (for example,
clearinghouse enumerations). These sources may return [totalOrPartial: partial] while the
initial enumeration is in progress. This lets the ContainerWindow display mechanism
-know that there are more items coming, while giving it some information along the way.
Once a source knows how many items are in the source, (or for those sources that know
right from the start how many items are in the source, (such as NSFile-backed sources), the
GetLengthProc should return [totalOrPartial: total].)

ActOnProc: TYPe = PROCEDURE [source: Handle, action: Action];
Action: Tvpe = {destroy, reList, sleep, wakeup};

The source’s ActOnProc is invoked to request some action of the source. Action indicates
what the source should or can do.

destroy The term destroy means that the source should destroy itself,
freeing all storage and releasing all resources associated with the
container source instance.

sleep The term sleep means that the source should release whatever
resources it can without losing information; it is a hint that the
container source will not be used for a while.

19-5

1 9 ContainerSource

wakeup The term wakeup means that the source is going to be used and _gm,
should resume its normal state, undoing whatever was done for =~
sleep.

relist The term reList means that the source should re-enumerate itself

because its backing store has been changed.

CanYouTakeProc: TYPE = PROCEDURE {
source: Handle,
selection: selection.ConvertProc «NiL}
RETURNS [yes: BOOLEAN];

CanYouTakeProcX: TYPE = PROCEDURE |
source: Handle,
background: BOOLEAN «FALSE]
RETURNS [yes: BOOLEAN];

The source’s CanYouTakeProc is invoked to determine if the container source can take the
current selection. selection is an obsolete parameter that is not used. If the
CanYouTakeProc returns yes = TRUE, then the source’s TakeProc may be called.
CanYouTakeProcX takes a parameter background that asks if the source can take the
current selection in the background. CanYouTakeProcX is exported by
ContainerSourceExtra. Fine point: Supplying a CanYouTakeProcX is optional. However, if- the source
supplys the CanYouTakeProcX, it must also still provide a a CanYouTakeProc, even though the implementation of
one may call the other. N

This routine is intended to provide an efficient check on the compatibility of the objects
being copied or moved. The common use of this routine is to provide feedback to the user. If
a CanYouTakeProc returns TRUE, the client may choose to highlight the target. This is
normally at the level of a file-type check. More elaborate checking is not necessary; for
example, a file-backed container source would not want to check the source for protection
or uniqueness violations. These should be handled by the TakeProc.

TakeProc: TYPE = PROCEDURE |
source: Handle,
copyOrMove: selection.CopyOrMove,
afterHint: Itemindex « nullitem,
withinSameSource: BOOLEAN « FALSE,
changeProc: ChangeProc «NiL,
changeProcData: LONG POINTER «NIL,
selection: selection.ConvertProc e Ni.]
RETURNS [OK: BOOLEAN];

TakeProcX: TYPE = PROCEDURE [
source:Handle,
copyOrMove: selection.CopyOrMove,
afterHint:Itemindex «nullitem,
withinSameSource: BOOLEAN « FALSE, .
changeProc:ChangeProc «NiL, -~
changeProcData: LONG POINTER « NIL,

19-6

ViewPoint Programmer’s Manual | 19

mgr: SelectionX.Saved « SelectionX.nuliManager]
RETURNS [Ok: BOOLEAN];

beforeitemZero: itemindex = Itemindex.LAsT-1;

The source’s TakeProc is invoked to add items to the container source. copyOrMove tells
the source whether to do a move or a copy of the current selection (which can be obtained
by Selection.Convert). afterHint indicates the item the new item should be inserted after.
Fine point: This is only a hint to the container source, since the uitimate position of the new item may dependona
sort order built in to the source. afterHint defaults to nullitem, which indicates that the caller
doesn't care where the new item goes. If afterHint = beforeitemZero, the source should
insert the new item before the first item. changeProc must be called if the TakeProc causes
the source to change. withinSameSource = TRUE indicates to the source that the item(s)
being moved or copied into the source are also in that same source; such as when the user
moves or copies something from one place in a container to another place in the same
container. This case usually involves some special case processing by the source (especially
for move). changeProc and changeProcData are described in more detail in the next
section. selection is an obsolete parameter that is not used. ok indicates whether the
TakeProc was successful or not. The use of this routine is usually be preceded by a call to
the source’s CanYouTakeProc.

TakeProcX is the same as TakeProc with the addition of the mgr parameter that indicates
the source of the items to be copied or moved. If mgr = Selectionx.nullMgr, the source is the
current selection. Otherwise, mgr is an encapsulated selection that can be converted with
Selectionx.ConvertX. See the Selection chapter for more information on encapsulated

"gelections. Fine point: Suppiying a TakeProcX is optional. However, if the source supplies the TakeProcX, it
must also still providea a TakePfoc, even though the implementation of one may call the other.

If the source supports concurrency, these procedures must support the “between calls lock”
convention. See §19.2.5 for more details.

19.2.4 ChangeProc Types

A source’s ConvertProc, DeleteltemsProc, ItemGenericProc, and TakeProc all take a
ChangeProc as an input parameter. This ChangeProc must be called by the source
whenever any item or items in the source changes. This allows the ContainerWindow
display code to keep the display up to date with the source. For example, a call to the
source’s ItemGenericProc with an atom of Props will cause a property sheet to be displayed
for an item. If the user then edits, for example, the name of the item, and then closes the
property sheet, the source must detect this change, update its backing, and call the
ChangeProc that was passed into the ItemGenericProc. This ChangeProc (supplied by
ContainerWindow) then causes the changed item(s) to be redisplayed.

ChangeProc: TYPE = PROCEDURE [
changeProcData: LONG POINTER,
changeinfo: Changeinfo|;

A ChangeProc and changeProcData are passed to a source’s ConvertProc,
DeleteltemsProc, ItemGenericProc, and TakeProc . Since the changeProcData had to be
allocated from someplace the changeProc must always be called, even if there were no

19-7

19

ContainerSource

19-8

changes to the source. The source must call the ChangeProc with the changeProcData and
any changeinfo.

Changelnfo: TYPE = RECORD [
var: SELECT changeType: ChangeType FROM
replace = > [item: Itemindex],
insert = > [insertinfo: LONG DESCRIPTOR FOR ARRAY OF Editinfo],
delete = > [delateinfo: Editinfo],
all, noChanges = > NULL,
ENDCASE |;

ChangeType: Type = { replace, insert, delete, all, noChanges};

Changelnfo is passed to the ChangeProc to tell the display code exactly what changed. A
container source can be smart and pass specific Changeinfo (for example, “3 items were
inserted after item 4 and 2 items were inserted after item 6” may be constructed with the
insert variant), or be dumb and simply pass the all variant, which causes a total repaint of
the container display. replace indicates that a single item has changed. insert indicates
that one or more items have been inserted. delete indicates that one or more items have
been deleted. all indicates that the entire source has been changed.

Editinfo: TYPE = RECORD [
afteritem: itemindex,
nitems: CARDINAL];

Editinfo is used with the insert and delete variants of Changeinfo to indicate how many
items have been inserted or deleted, and where they were inserted at or deleted from.

19.2.5 Marks

A container source is defined as a sequence of items from [0..length). Every time a item is
inserted or deleted in the source, the rest of the items in the source are effectively
renumbered. This causes trouble for ContainerWindow. If the user selects the fifth item,
the container window must be able to continue to tie the selection to the object the user
pointed at, even if other items have been added or deleted by concurrent operations.

We define marks to get around this problem. A mark is a handle on a item in the source
that tracks that item when its item number changes.

The ContainerCache interface supports marks which can be used to implement
ContainerSource marks. See the ContainerCache chapter for more information.

Mark: TYPE = LONG POINTER;

SetMarkProc: TYPE = PROCEDURE [
source:Handle,
index:itemindex]

RETURNS [mark: Mark];

ViewPoint Programmer’s Manual ' 19

To mark an item, the client calls the SetMarkProc for a source and supplies an index to
indicate the item to be marked. This creates a new mark. Mark and SetMarkProc are
defined in ContainerSourceExtra.

IndexFromMarkProc: TYPE = PROCEDURE {
source:Handle,
mark: Mark,
lockSource: BOOLEAN «FALSE]
RETURNS [index:itemindex];

IndexFromMarkProc takes a mark created with SetMarkProc or MoveOrCreateMarkProc
and returns the current item index for mark as index .

A typical use of marks is to get the value of a mark and then call one of the source procs
that takes an item index (i.e. StringOfitemProc, ItemGenericProc, ConvertitemProc,
DeleteitemsProc, SetBusy, and TakeProc/TakeProcX). But with concurrency, the item
index for a particular mark could change inbetween the time we call IndexFromMarkProc
and when we call the source procedure. We establish a “between-calls lock” convention to -
address this problem. Calling IndexFromMarkProc with lockSource « TRUE tells the
container source to lock itself until client calls back to a procedure that takes an itemIndex
or until the client unlocks the source with SetBusy (see §19.2.6). Thus the name “between-
calls lock”: the container source is only locked inbetween the call to IndexFromMarkProc
and the next proc that takes an itemindex. The other approach to use would be to lock the
source, call IndexFromMarkProc, call source proc with the index, and unlock the source.
This would result in the source being locked for the call to the source proc. This may be a
undesirable if source proc might take a long time. Using lockSource unlocks the source
again as soon as the source proc is called. Important peint: if IndexFromMarkProc is
called with locksource = TRUE and a source proc is not called, the client must call SetBusy
to unlock the source. '

indexFrommarkProc is defined in ContainerSourceExtra.

FreeMarkProc: TYPE = PROCEDURE [
source:Handle,
mark: Mark];

FreeMarkProc frees mark when the client is done with it. FreeMarkProc is defined in
ContainerSourceExtra.

MoveOrCreateMarkProc: TYPE = PROCEDURE [
source:Handle,
mark: Mark,
newlindex:ltemindex]
RETURNS [newMark: Mark];

MoveOrCreateMarkProc is useful for pointing an existing mark at another item newindex.
If mark is Nit, the effect is the same as calling SetMark: a new mark is created. newMark is
either the old mark updated, or the newly created mark . Even if mark is non-nil, the client
must reassign mark to newMark because the value of mark may have changed.
MoveOrCreateMarkProc is defined in ContainerSourceExtra.

19-9

19

ContainerSource

19.2.6 ContainerSource locking and Busy routines

If a container source supports concurrency, it must support locking individual items and
locking the entire container source. ContainerWindow locks individual items (or makes
them ‘busy’) in response to user operations such as background copy out or background
drop-on. The container source is responsible for knowing that a particular item is busy and
responding with a busy status if queried.

SetBusyProc: TYPE = PROCEDURE [
source:Handle,
item:itemindex, - if Itemindex is nullitem, refers to whole source,
newBusyState: BOOLEAN]
RETURNS [succeeded: BOOLEAN];

IsBusyProc: TYPE = PROCEDURE [
source:Handle,
item:itemindex --if/temindex is nullitem, refers to whole source
I
RETURNS [busy: BOOLEAN];

SetBusyProc changes the state of item. If newBusyState is TRUE, item should be made busy,
if FALSE, item should be made unbusy. IsBusyProc gets the state of item. If the item is busy,
it returns TRUE.

Ifitemindex is nullitem, Set/IsBusyProc refer to the entire source rather than an individual
item. When the entire source is locked, no items should be added or deleted to the source
until the source is unlocked again. If the source is already locked when SetBusyProc is
called, the call should wait until the source is unlocked.

Important implementation point: Because of the callback design of containers,
SetBusyProc may be called in a nested fashion to lock a source: i.e., ContainerWindow may
call SetBusyProc[newBusystate: TRUE] and later make the same call again with call with
newBusyState: FALSE in the mean time to unlock the source. The container source should
implement source locking such that nested calls to SetBusyProc from the same process do
not lock, but a call from a different process will lock. Thus the first call from a given
process locks the source for that process. §19.4.3 gives one example of how to implement a
source locking scheme that will support these conventions. Fine paint: if possible, this procedure
should be relatively cheap. ContainerWindow will call it frequently: it will be called while tracking the selection
for the user, for example.

19.2.7 Errors

19-10

A container source may raise Error or Signal as appropriate.

Error: eRROR [code: ErrorCode, msg: XString.Reader «niL,
error: ERROR «— Nit, errorData: LONG POINTER TO UNSPECIFIED «— NiL];

Signal: siGNAL [code: ErrorCode, msg: XString.Reader « NiL,
error: ERROR «— NIL, errorData: LONG POINTER TQ UNSPECIFIED « NiL];

A source's ItemGenericProc (and ConvertltemProc and DeleteitemsProc) should never
assume that it has been called by a ContainerWindow, and therefore should never call

-~

ViewPoint Programmer’s Manual 19

such facilities as Attention.Post or UserTerminal.BlinkDisplay. (The application might be
called by CUSP, for example.) Rather, the source should raise ContainerSource.Error or
Signal with an appropriate message. The caller of the source's ItemGenericProc should
catch these errors and do the appropriate thing. In the typical case, the ContainerWindow
will call the source's ItemGenericProc and catch the error and call Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file. msg is the
message to display to the user. error is the actual lower-level error that ocurred that caused
Error or Signal to be raised. errorData points to any additional data that accompanied the
lower level error.

ErrorCode: TYPE = MACHINE DEPENDENT {invalidParameters(0), accessError, fileError,
noSuchitem, other, last(15)};

invalidParameters indicates that some parameters were invalid; for example, the
source was not the correct type (the Procedures did not match).

accessError indicates an attempt to perform an operation that violates the
created access option (for sources that implement access
controls).

fileError indicates a file system error (for sources that are backed by files).

noSuchitem A container source implementation should raise

Error[noSuchitem] if one of the container source's procedures is
called with an Itemindex for an item that is not in the source.

other) may be raised to indicate any other problem.

Fine point: Error and Signal are EXPORTed by the FileContainerSource implementation since ContainerSource has
no implementation.

19.2.8 Global change proc

GetGlobalChangeProcProc: TYPE = PROCEDURE [
source: ContainerSource.Handle]
RETURNS {
changeProc:ChangeProc,
data: LONG POINTER,
window: window.Handle];

SetGlobalChangeProcProc: TYPE = PROCEDURE |
source:Handle,
changeProc:ChangeProc,
data: LONG POINTER,
window: window.Handle «nNiL];

If SetGlobaiChangeProcProc is supplied by the source, container window will call this
procedure during the Containerwindow.Create call to supply a global change proc and data
that the source can call anytime to update the container window. The container window
may also give the source the window.Handle for the container window so that clients of the
source can get at the window if necessary. window may be NiL if the client of the source is

19-11

19

ContainerSource

not ContainerWindow. GetGlobalChangeProcProc allows any client of the source to get
this information.

One example of where this is used is in the Busylcon implementation. FileContainerSource
provides a way for Busylcon to find all the file-backed sources, and once Busylcon finds the
source a particular file is in, it calls the SetBusyProc to make the file, the calls
GetGlobalChangeProcProc to get the change proc to allow it to update the container
window display. ;

GetGlobalChangeProcProc¢ and SetGlobalChangeProcProc are defined in
ContainerSourceExtra. ‘

19.2.9 INLINES

The following INLINE procedures are provided as a convenience to clients who wish to use
object notation when calling a container source. ContainerWindow is the main client of
these procedures.

ActOn: ActOnProc = INLINE {...};

‘CanYouTake: CanYouTakeProc = INUINE {...};

ColumnCount: ColumnCountProc = INUNE {...}; -
Convertitem: ConvertitemProc¢ = INLINE {...};
Deleteitems: DeleteitemsProc = INLINE {...};
Getlength: GetLengthProc = INUNE {...};
ItemGeneric: ItemGenericProc = INUNE {...};
StringOfitem: StringOfitemProc = INLINE {...};
Take: TakeProc = INLINE {...};

19.3 ContainerSource and concurrency

The ContainerSourceExtra interface defines a number of new container source procedures
necessary to make concurrent move and copy work in a container source. If a particular
type of container source does not create a ContainerSourceExtra.Procedures, the container
window will realize from the absence of these procedures that it cannot support
concurrency and will not start background operations to or from the source.

19.4 Usage/Examples

The reason that Handle is a pointer to a pointer (rather than just a pointer to the
ProceduresObject) is to allow a container source to save data specific to the source. For
example, a file-backed source would need to keep a pointer to the file. This is done in the
following example.

19.4.1 ContainerSource Example

19-12

1. Declare a Containersource.ProceduresObject in the global frame of the module and fill it
with the appropriate procedures.

mySourceProcs: ContainerSource.ProceduresObject [
acton: MyActOn,
canYouTake: CaniTake,

ViewPoint Programmer’s Manual].9

columnCount: MyColumnCount,
convertitem: ConvertMyitem,
deleteltems: DeleteMyitems,
getLength: GetMyLength,
itemGeneric: MyitemGeneric,
stringOfitem: StringOfMyitem,
take: MyTakel; '

2. Declare a record that has a ContainerSource.Procedures (Procedures, not
ProceduresObject!) as its first field and initialize this field to point to the
ProceduresObject declared in the global frame. The rest of the record should contain
whatever data the source needs in order to perform all the operations it will be
requested to perform. Also declare a pointer to this record.

MySource: TYPE = LONG POINTER TO MySourceObject;

MySourceObject: TYPE = RECORD |
procs: ContainerSource.Procedures « @mySourceProcs,
otherStuff:...];

3. When creating the source, allocate the MySourceObject record. and fill it with any
relevant data. Return a pointer to the Procedures field of the record (@ms.procs
below). Note: This return value is a pointer to a ContainerSource.Procedures, which is a
ContainerSource.Handle. :

Create: PUBLIC PROCEDURE [otherStuff: . . .] RETURNS [source: ContainorSource.‘Handle] ={
ms: MySource « z.New [MySourceObject [otherStuff: otherStuff]];
RETURN[@ms.procs];

}

4. The first thing that every procedure in the ProceduresObject should do is LOOPHOLE the
ContainerSource.Handle that was passed in into a pointer (MySource) to the source’s data
record (MySourceObject). After the LOOPHOLE, the fields of the source’s data record can
be directly accessed, e.g., ms.otherStuff. This all works because the first field in the
source’s data record is a Procedures. Note that the LOOPHOLE is actually performed in a
procedure that also checks to be sure that the Procedures field of the passed source
actually points to this source’s procedures (iF source 1 # @mySourceProcs THEN).

ActOnFile: ContainerSource. ActOnProc = {
ms: MySource = ValidMySource{source];

... ms.otherStuff...
Y

ValidMySource: PROCEDURE [sOurce: ContainerSource.Handle] RETURNS [ms: MySource] a {
IFsource = NIL THEN ContainerSource.Error [invalidParameters] ;
IFsource T # @mySourceProcs THEN ContainerSource.Error{invalidParameters];

}:

19-13

19

ContainerSource

19.4.2 Errors and Signals

For example, this client catches an NSFile.Error and raises Containee.Error, passing along the
ERROR and the NSFile.ErrorRecord:

maeassage: Xstring.ReaderBody;
errorRecord: NsFile.ErrorRecord;
signal: --GENERIC-- SIGNAL < NIL;
file «~Nsrile.OpenByReference [reference: ... !
NsFile.Error = > {
errorRecord « error;
signal « LOOPHOLE([NSFile.Error, SIGNAL];
GOTO ErrorExit}];
-- Operate on the file.--
Nsrile.Close[file];
EXITS
ErrorExit = > {
message « Xstring. FromSTRING{"NsFile.Error"L];
ContainerSource.Error [
code: fileError, msg: @message, error: signal, errorData: @errorRecord];

19.4.3 Source locking for concurrency

19-14

-If a source supports background move and copy via the procedures defined in

ContainerSourceExtra, it must also provide a means of locking the container source. As
described in §19.2.5 and §19.2.6, this locking must support a number of conventions:

1. ContainerWindow must be able to lock the entire source by calling SetitemBusyProc .
This lock prevents any items from being added or deleted in the source except by the
calling process.

2. This locking must be reentrant: one process must be able to call by into the same source
without getting monitor locked. Other processes must be locked out.

3. We must be able to support the “between calls” locking convention described in §19.2.5
-under the discussion of IndexFromitemProc.

This can be a tricky set of constaints to satisfy. Number 2 is particularly tricky because
conventional Mesa object locking doesn’t do what we want: if we call an ENTRY procedure
from within another ENTRY procedure, we deadlock. Number 1 implies the container source
must lock itself whenever it modifies the source so that another call to lock the source will
block until the modification is complete.

The example we present is taken from the FileContainerSource implementation. It
provides a locking scheme that has proved easy to use and satisifies the requirements
given above. This example shows code from from the implementation that has been
modified slightly for clarity.

FSOps.FileSourceObject: TYPE = MACHINE DEPENDENT RECORD [
procs (0:0..31): ContainerSource.Procedures,
monitorLock (2:0..15): MONITORLOCK, -- object lock field for the source implementation

-- other source specific fields ...

ViewPoint Programmer’s Manual 19

lock (21:0..79): RECORD [
process (0:0..15): PROCESS « NIL,
entryCount (1:0..15): CARDINAL «0,
lockedBetweenCalls (2:0..15): BOOLEAN « FALSE,
exiting(3:0..31): CONDITION]

I

Enter: puBLIC PROC [fs: FS, how: EnterType « normal] ;
Exit: pusLIc PrOC [fs: FS]; ‘

EnterType: TYPE = {
normal, -« just do normal enter
getBetweenCallsLock, -- set betweenCalls boolean
lockifNotBetweencCalls -- if betweenCalls boolean not set, lock; otherwise nothing

5

To implement our locking, we define two procedures: Enter and Exit. We also define a lock
record as part of the source specific data to support these two procedures. Every procedure
we would normally make an ENTRY procedure now calls Enter and Exit around the critical
code. For any particular source fs, Enter allows a process into the monitor if there are no
other processes running in the monitor. Once a particular process has the monitor, it can
call Enter as many times as it wants so long as all Enters and Exits are paired. Any other
process trying to get into the monitor waits until the running process has done its last Exit.

To support the "between calls” convention, we add a parameter to Enter to give some
infomation about what our situation is.. Most ordinary clients call with how = normal,
which says 'l want to lock the source.’

Clients that take an itemindex and must support “between call” locks call Enter with
how = lockifNotBetweencCalls. This says “if IndexFromitemProc was just called and the
client wanted a between calls lock, don’t lock the monitor again; otherwise, acquire the
monitor.” The logic here is that at the end of the ItemIndex procedure we call Exit. If we
were not in the between calls case, the Exit unlocks the Enter at the beginning of the
procedure. If we were in the between.calls case, the Exit unlocks the Enter done in the
indexFromitemProc.

Finally, to set up the between calls state, IndexFromitemProc calls Enter with
how = getBetweencallsLock.

The implementation below give the implementation for Enter and Exit. Much of the logic is
dedicated to making sure the between calls logic works correctly. Exit includes some
debugging code to raise a signal if the number of Exits is more than the number of Enters.
The entire module is an object monitor on the monitorLock field of the source object.

FileContainerSourcelmpl: MONITOR LOCKS fs.monitorLock usING fs: FSOps.FS = BEGIN

Enter: PUBLIC ENTRY PROC [fs: FS, how: EnterType « normal] =
BEGIN ENABLE UNWIND = > {};
me: PROCESS = Process.GetCurrent(];
SELECT fs.lock.process FROM
me = >
{ir “(how = lockifNotBetweenCalls AnND fs.lock.lockedBetweencCalls) THEN {
fs.lock.entryCount « fs.lock.entryCount + 1;

19-15

1 9 ContainerSource

IF ~fs.lock.lockedBetweenCalls anD how = getBetweencCailsLock THEN {
fs.lock.lockedBetweencalls « TRUE;
Y
}
eLSE fs.lock.lockedBetweenCalls « FALSE
RETURN};
NIL = > NULL;
- ENDCASE = > {
waitCount « waitCount + 1;
WHILE fs.lock.process # NiL DO waAIT fs.lock.exiting; eENpDLOOP;
waitCount « waitCount-1;

} R

fs.lock.process « me;

fs.lock.entryCount « 1;

fs.lock.lockedBetweencCalls « how = getBetweenCallsLock;
END;

UnbalancedFileContainerSourcelocks: SIGNAL = CODE;

Exit: PUBLIC ENTRY PROC [fs: FS] =
BEGIN ENABLE UNWIND = > {};
me: PROCESS = Process.GetCurrent(];
ir fs.lock.entryCount = 0 THEN 5IGNAL UnbalancedFileContainerSourceLocks(] ;
fs.lock.entryCount « fs.lock.entryCount - 1;
i fs.lock.entryCount = 0 THEN
{fs.lock.process «nu;
NOTIFY fs.lock.exiting};
--must not be BROADCAS T, only the next process on the queue should be allowed
torun
END;

ConvertFileltem is an example of a typical procedure that takes an ItemIndex and
supports the between calls.convention.

ConvertFileltem: ContainerSource.ConvertitemProc =
BEGIN
fs: FS = ValidFileSource[source];

Enter([fs, lockifNotBetweendCalls]; -- get a lock if we don’t have one
BEGIN ENABLE UNWIND = > Exit[fs];
I inLock THEN Exit[fs];
-- implement Convertitem
Exit[fs];
END; -- enable
END; -- ConvertFileitem

IndexFromMark also supports the between calls convention.
IndexFromMark: ContainerSourceExtra.lndexFromMarkProc = {

fs: FS = ValidFileSource[source];
IflockSource THEN Enter[fs, getBetweenCallsLock];

19-16

ViewPoint Programmer’s Manual 19

index « IF mark # NIL THEN ContainerCache.indexFromMark[mark]
ELSE ContainerSource.nullltem;
-- don't unlock: that will be done in callbacks.

5

SetBusy has the dual function of locking individual items (which uses the between calls
logic) and locking the entire source.

SetBusy: ContainerSourceExtra.SetBusyProc =
BEGIN
IFitem # ContainerSource.nullitem THEN {
Enter{fs, lockifNotBetweenCalls];
BEGIN ENABLE UNWIND = > Exit[fs];
-- set busy status for item
Exit[fs, 2100];
END;-- enable
"~}
ELSE -- lock source
IF newBusyState THEN Enter[fs] ELSE Exit(fs]};
END;

19-17

19

ContainerSource

19.5 Index of Interface Items

19-18

Item

Action: TYpe

ActOn: ActOnProc

ActOnProc: TYPE
beforeltemZero: itemindex
CanYouTake: CanYouTakeProc
CanYouTakeProc: Type
CanYouTakeProcX: TyYre
Changeinfo: TYpe

ChangeProc: TYPE
ChangeType: TYPE
ColumnCount: ColumnCountProc
ColumnCountProc: TYPE _
Convertitem: ConvertitemProc
ConvertitemProc: TYPE
Deleteltems: DeleteitemsProc
DeleteltemnsProc: TYpe
Editinfo: TYPe

Error: ERROR

ErrorCode: TYPE

FreeMarkProc: TYpe
GetGlobalChangeProcProc: TYpe
GetLength: GetLengthProc
GetLengthProc: TYpe

Handle: Type
indexFromMarkProc: TYpe
IsBusyProc: TYPE

ItemGeneric: ItemGenericProc
ItemGenericProc: TYPE
Itemindex: TYpe

Mark: Type
MoveOrCreateMarkProc: TYpe
nullitem: Itemindex
Procedures: TYPE

ContainerSourceExtra.Procedures: TYPE

ProceduresObject: TYPe

ContainerSourceExtra.ProceduresObject: TYPe

SetBusyProc: TYPE
SetGlobalChangeProcProc: Type
Signal: siGNAL

StringOfitem: StringOfitemProc
StringOfitemProc: Type

Take: TakeProc

TakeProc: TYpe
TotalOrPartial:Type

o
O |
)

and

- b =D b -
@ =2 W WNBNOENUVUNODODIOINMNRNAINNNBNWG

- b
ONUBN=2O

20

MMM

ContainerWindow :

20.1 Overview

The ContainerWindow interface supports the creation of ViewPoint-like container
windows. A container window provides a user interface that operates on a list of objects.
The objects are displayed in rows. Each container window has one or more columns, with
all rows displaying the same number of columns.

The ContainerWindow implementation maintains the display and manages user-invoked
actions such as scrolling, selection, notifications, open within, show next/previous, and so
forth. ContainerWindow takes a body window, a ContainerSource, and a specification of
the columns and makes the window behave like a container. Note: This interface does not
depend on NSFile: the objects represented by rows in the container do not have to be backed
by NSFiles.

20.2 Interface Items

20.2.1 Create and Destroy a ContainerWindow

Create: PROCEDURE [
window: window.Handle,
source: ContainerSource. Handle,
columnHeaders: ColumnHeaders,
firstitem: ContainerSource.ltemindex « 0]
RETURNS [regularMenultems, topPusheeMenuitems: MenuData.ArrayHandle];

CreateX: PROCEDURE [
window: window.Handle,
source: ContainerSource. Handle,
columnHeaders: ColumnHeaders,
firstitem: ContainerSource.ltemindex 0,
access: Access « fullAccess]
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle];

CreateXX: PROCEDURE |
window: window.Handle,

20-1

20

ContainerWindow

20-2

source: ContainerSource.Handle,

sourceX: ContainerSourceExtra.Procedures,

columnHeaders:ColumnHeaders,

firstitem: ContainerSource.ltemindex «0,

access:Access «fullAccess]

RETURNS [regularMenuitems, topPusheeMenultems: MenuData.ArrayHandle];

ColumnHeaders: TYPE = LONG DESCRIPTOR FOR ARRAY OF ColumnHeaderinfo;

ColumnHeaderinfo: TYPE = RECORD [
width: CARDINAL,
Wrap: BOOLEAN,
heading: xstring.ReaderBodyl;

Access: TYPE = PACKED ARRAY AccessType Of BooleanFalseDefault;
BooleanFalseDefault: TYPE = BOOLEAN «FALSE;

AccessType: TYPe = {open, dropOn, convert, add, delete, props};

fullAccess: Access = ALL [TRUE];

readOniyAccess: Access = [open: mﬁe, convert: TRUE, props: TRUE];
dividerAccéss: Access = [open: TRUE, dropOn: TRUE, convert: TRUE, props: TRUE];

Create turns an ordinary window into a container window. window must be a
StarWindowsShell body window. source supplies a source of items to be displayed and
manipulated (see the ContainerSource and FileContainerSource interfaces).

CreateX is just like Create, but with the additional access parameter. ContainerWindow
displays an appropriate message to the user if s/he tries to do something for which proper
access is not provided. open, delete, and props access give the user the capability to open
icons, delete them, or open a property sheet on them. dropOn allows the user to drop
something on an item, convert controls whether the ContainerWindow supports
Selection.Convert (and thus copy and move out). add controls whether the user is allowed to
add anything to the container display itself.

CreateX, Access, AccessType, fullAccess, readOnlyAccess, and dividerAccess are defined in
ContainerWindowExtra3.mesa.

CreateXX is just like Create and CreateX, but adds the sourceX parameter to provide extra
container source procedures needed for concurrency. (See the ContainerSource chapter for
more information on concurrency in containers.) CreateXX is defined in
ContainerWindowExtra4.mesa.

columnHeaders describes the column widths and supplies column headings. The columns
will be displayed in the order given by this array. For each column, width is the number of
bits the column should take, and heading is a string that will be displayed at the top of the
column. wrap indicates what to do when a string that the container window wants to
display is wider than width. If wrap = TRUE , the string should be wrapped around,
otherwise, it will be truncated. Fine Point: columnHeaders is copied by Create, so this structure may be in
the client’s local frame. N

ViewPoint Programmer’s Manual 20

firstitem indicates the item that should be displayed first when the container window is
initially displayed.

regularMenuitems and topPusheeMenultems are the menu items that the container
window needs to have in the StarWindowsShell. They should be added (by the client) to the
menu that is installed in the StarWindowShell which this container window is a part of
(these contain menu items such as Show Next and Show Previous).

Destroy: PROCEDURE [window: window.Handle];

Destroys the data associated with the container window. Does not destroy the window
itself. May raise Error [notAContainerWindow].

20.2.2 Item operations

The individual containees in a container window are referred to as items (from
ContainerSource.ltemindex) They are sequentially numbered starting with zero.

DeleteAndShowNextPrevious: PROCEDURE [
window: window.Handle,
item: ContainerSource.ltemindex,
direction: Direction « next];

DeleteAndShowNextPrevious: PROCEDURE [
window: window.Handle,
iteam: ContainerSource.ltemindex,
direction: Direction « next]
RETURNS [newOpensShell: starwindowsheil. Handle};

Direction: TYre = {next, previous};

DeleteAndShowNextPrevious deletes item from the container source and the display, then
displays the next or previous item. When this proc is called, the container window shell is
expected to be on top. In particular, the shell of the item named in the item parameter
should have been destroyed. So to implement this, if this item is opened within the
container window, the client should call starWindowshelt.Pop until the shell returned from
that call is equal to the container window shell. The second DeleteAndShowNextPrevious
is defined in ContainerWindowExtra2.mesa. It is identical to the first one, but
additionally returns the shell just opened. May raise Error[notAContainerWindow] or
Error[noSuchitem]. .

GetOpenitem: PROCEDURE [window: window.Handle]
RETURNS [item: ContainerSource.ltemindex e ContainerSource.nullitem];

Returns the item that is currently open within the container. If no item is open, returns
ContainerSource.nullitem . May raise Error[notAContainerWindow].

20-3

20

ContainerWindow

20-4

GetSelection: PROCEDURE [window: Window.Handle]
RETURNS [first, lastPlusOne: ContainerSource.ltemindex];

Returns the items currently selected in the ContainerWindow. first = last =
ContainarSource.nullitem means there is no selection.

Selectitem: PROCEDURE [window: window.Handle,
item: ContainerSource.ltemindex];

Selects the specified item and implicitly calls MakeltemVisible. MakeltemVisible is in a
friends-level interface. Note: MakeltemVisibie Forces item to be visible in window. If there
is more than a screenful of items left following item, it is put at the top of the window. If
less than a screenful remains, item is put at the bottom of the window with as many items
as will fit before it. May raise Error[notAContainerWindowl] or Error{noSuchitem].

20.2.3 Operations on a ContainerWindow

Isit: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];
Returns TRUE if the window passed in is a ContainerWindow.

GetSource: PROCEDURE [window: window.Handle]
RETURNS [source: ContainerSource.Handle];

Returns the ContainerSource associated with this window. May raise
Error[notAContainerWindow]. SetSource allows the client to change the source and the
SourceModifyProc allows the client to modify the source. :

KeepWindowOpen: PROCEDURE [window: window.Handle];
Window<CancClose: PROCEDURE [window: window.Handle];

KeepWindowOpen prevents the use from closing the container window. If the user tries to
close the window, the message “Can'’t close that container while background operations are
going on inside it.” is posted. WindowCanClose allows the user to close the window again.
In BWS 4.3, these proceduresin are ContainerWindowEztraé.

SetSource: PROCEDURE [
window: window.Handle, newSource: ContainerSource.Handle]
RETURNS [oldSource: Handle];
SourceModifyProc: TYPE = PROCEDURE [
window: window.Handle, source: ContainerSource.Handle]
RETURNS [changeinfo: Changeinfo];
ModifySource: PROCEDURE [window: window.Handle, proc: SourceModifyProc];
ModifySource calls the source modification proc from within its monitor.

Update: PROCEDURE [window: window.Handle];

Called when the correspondence between the source and the display is invalid. Items in the
display will be redisplayed to reflect any changes in the source. May raise

-

ViewPoint Programmer’s Manual 20

ErrorinotAContainerWindow]. Fine Point: Clients will not normally need to call this routine unless they
manipulate the source directly. All user-initiated operations on a ContainerWindow cause the display to be
updated automatically.

20.2.4 Errors
Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = MACHINE DEPENDENT {notAContainerWindow(0), noSuchitem, last(7)};

Any operations that operate on a container window may raise this error.
notAContainerWindow is raised if the window passed in is not a container window (i.e.,
was not passed to Create). noSuchitem may be raised if an operation specifies a non-
existent item.

20.3 Usage/Examples

The following example is taken from the implementation of the FileContainerShelil
interface. It illustrates the steps involved in creating a container window: creating a
container source, creating a StarWindowsShell, creating a body window inside the shell,
creating the container window, and finally merging the menu items returned by
ContainerWindow.Create with its own menu commands and installing those commands in the
shell. It also gives a sample StarWindowsShell transition procedure that will destroy the
container source and the container window.

- From FileContainerShelilimpl.mesa

MenultemSeq: TYPE = nec'ono[
SEQUENCE length: CARDINAL OF MenuData.ltemHandle};

Create: PUBLIC PROCEDURE [
file: nsrile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenuitems, topPusheeMenultems: MenuData.ArrayHandle « niL,
scope: NSFile.Scope « (],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options « {]]
RETURNS [shell: starwindowsheil.Handle] =

BEGIN

body: window.Handle « Ni;

source: ContainerSource.Handle « NiL;
cwRegularMenultems, cwTopPusheeMenultems: MenuData.ArrayHandle;
mergedMenultems: LONG POINTER TO MenultemSeq « NIL;
menu: MenuData.MenuHandle;

name: xstring.ReaderBody;

ticket: Containee.Ticket;

data: containee.Data « [file];

type: NsFile.Type;

smallPicture: xstring.Character;

)

20-5

20

ContainerWindow

20-6

if file = NsFile.nullReference THEN RETURN [[NiL]];
source « FileContainerSource.Create [

file: file,

columns: columnContents,

scope: scope,

options: options];

[name, ticket] « Containee.GetCachedName [@data];
type « Containee.GetCachedType[@data);
smallPicture « Containee.Getimpilementation(type].smaliPicture;

shell « starwindowshell.Create [
name: @name,
namePicture: smallPicture,
sleeps: FALSE,
transitionProc: DestroyProc];

Containee.ReturnTicket [ticket];
body ¢ starwindowsheil.CreateBody [sws: shell, box: [[0,0],[700, 29999]]];

[cwRegularMenultems, cwTopPusheeMenultems] « Containerwindow.Create [
window: body,
source: source,
columnHeaders: columnHeaders,
firstitem: position];

mergedMenultems « MergeMenuArrays [cwRegularMenuitems, regularMenultems];
IF mergedMenuitems # NIL THEN
BEGIN
menu « MenuData.CreateMenu [
zone: Starwindowshell.GetZone[shell],
title: NiL,
array: DESCRIPTOR[mergedMenuitems],
copyltemsintoMenusZone: TRUE];
Starwindowshall.SetRegularCommands [shell, menu];
z.FREE[@mergedMenuitems]; '
END;

mergedMenuitems « MergeMenuArrays [cwTopPusheeMenultems,
topPusheeMenultems];
menu « MenuData.CreateMenu [

zone: Starwindowshell.GetZone(shell],

title: NiL,

array: DESCRiPTOR[mergedMenultems],

copyltemsintoMenusZone: FALSE |;
StarwindowsShell.SetTopPusheeCommands [shell, menu];
RETURN [shell]; '
END;

ViewPoint Programmer’s Manual 20

DestroyProc: StarWindowShell.TransitionProc =
< <[sws: StarWindowsShell.Handle, state: StarWindowsShell.State]> >
BEGIN
iF state = dead THEN {
<w: Window.Handle « GetContainerWindow({sws];
source: ContainerSource.Handle «~ GetContainerSource{sws];
ContainerSource.ActOn [source, destroyl;
ContainerWindow.Destroy[cw]; }:
RETURN;
END;

MergeMenuArrays: PROC [itemArray1, itemArray2: MenuData.ArrayHandle]
RETURNS [mergedSeq: LONG POINTER TO MenuitemSeq] =
BEGIN
i: CARDINAL ¢ 0;
IFitemArray1 = NILAND itemArray2 = NiL THEN RETURN[NIL];
mergedSeq « z.NEW [MenultemSeqg[itemArray1.LENGTH + itemArray2.LENGTH]];
FOR j: CARDINAL IN [0..itemArray1.LENGTH) DO
mergedSeq[i] « itemArray1(jl;
ie=i+1;
ENDLOOP;
FOR j: CARDINAL IN [0..itemArray2.LENGTH) DO
mergedSeq[i] « itemArray2(jl;
ie—i+1;
ENDLOOP;
RETURN[mergedSeq];
END; ‘

20-7

20

ContainerWindow

20.4 Index of Interface Items

20-8

Item

v
8
®

®

Access: TYPE

AccessType: TYPE
BooleanFalseDefault: Type
ColumnHeaderinfo: Tyre
ColumnHeaders: TYPe
Create: PROCEDURE

CreateX: PROCEDURE
CreateXX: PROCEDURE
DeleteAndShowNextPrevious: PROCEDURE
Destroy: PROCEDURE
Direction: Type
dividerAccess: Access
Error: ERROR

ErrorCode: TYPE

fullAccess: Access
GetOpenitem: PROCEDURE
GetSelection:PROCEDURE
GetSource: PROCEDURE

isit: PROCEDURE
MakeltemVisible: PROCEDURE
ModifySource:PROCEDURE
readOnlyAccess: Access
Selectitem:PROCEDURE
SetSource:PROCEDURE
SourceModifyProc:PROCEDURE
Update: PROCEDURE

S DD AOAENDWLHELDWNUWUNWWIW®=2cDaNNNN

Context

21.1 Overview

In performing various functions, an application may wish to save and retrieve state from
one notification to the next. This is an immediate consequence of the notification scheme,
for a tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus the application must explicitly store its state in data. Because
most notification calls to the application provide a window handle, it is natural to associate
these contexts with windows. The context mechanism provides an alternative to the
application’s having to build its own associative memory to retrieve its context, given a
window handle. ' : '

Typically, an application obtains a unique Type for its context data by calling UniqueType
in the startup code for the application. Whenever a window is created, the client allocates
some context data and calls Create to associate that data with the window. Whenever the
client is called to perform some operation on the window (for example, to display the
contents of the window or to handle a notification), it calls Find to retrieve the data saved
with the window. Finally, when the window is being destroyed, the client (orViewPoint)
calls Destroy, which calls the client's DestroyProcType to give the client an opportunity to
free the data.

21.2 Interface Items
21.2.1 Creating/Destroying a Context

UniqueType: PROCEDURE RETURNS [type: Typel;

The procedure UniqueType is called if a client needs a unique Type not already in use
either by ViewPoint or by another client. If no more unique types are available, the ERROR
Error{tooManyTypes] is raised.

Create: PROCEDURE [
type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

21-1

21

Context

21-2

The procedure Create creates a new context of type type that contains data. The context is
associated with window; it is said to "hang" on the window. If window already has a
context of the specified type, it raises the ERROR Error[duplicateType]. If the window is niL,
it raises the eRROR Error{windowisNIL]. The proc is supplied so that when the window is
destroyed, all of the context can be destroyed (deallocated).

Type: TYPE = MACHINE DEPENDENT{
all(0), first(1), lastAllocated(377378), last(377778)};

Type is unique for each client of the context mechanism. An argument of this type is passed
to most of the procedures in this interface so that the correct client data can be identified.

Data: TYPE = LONG POINTER TO UNSPECIFIED;

Data is the value that a client may associate with each window. It is typncally a pointer to a
record containing the client's state for some window.

DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle];

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. This may be the result of the window being destroyed.

Destroy: PROCEDURE [type: Type, window: Window.Handle};

The procedure Destroy destroys a context of a specific type on window. If the -context
exists on the window, it calls the DestroyProcType for the context being destroyed.

DestroyAll: prOCEDURE [window: Window.Handle];
The procedure DestroyAll destroys all the contexts on window. Fine point: DestroyAll can be

very dangerous because ViewPoint keeps its window-specific data in contexts on the window. DestroyAll should
not be used except in special circumstances. It is called by the routines that destroy windows.

NopDestroyProc: DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients that
do not want to create their own do-nothing DestroyProcType to pass to Create.

SimpleDestroyProc: DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

21.2.2 Finding a Context on a Window

Find: PROCEDURE [type: Type, window: Window.Handle] ReTurns [Data];

The procedure Find retrieves the data field from the specified context for window. NiL is -

returned if no such context exists on the window.

ViewPoint Programmer’s Manual 2 1

FindOrCreate: PROCEDURE | N
type: Type, window: Window.Handle, createProc: CreateProcType] RETURNS [Data];

The procedure FindOrCreate resolves the race that exists when creating new contexts in a
multi-process environment. If a context of type type exists on window, it returns the
context's data; otherwise, it creates a context of type by calling createProc and then
returns data. If the window is NiL, it raises the ERROR Error{windowisNIL].

CreateProcType: TYPE = PROCEDURE RETURNS [Data, DestroyProcTypel;

CreateProcType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot be
found.

Set: PROCEDURE [type: Type, data: Data, window: window.Handle];

The procedure Set changes the actual data pointer of a context. Subsequent Finds will
return the new data. Note: The client can change the data that the data field of a context
points to at any time. This could lead to race conditions if multiple processes are doing

Finds for the same context and modifying the data. It is the client’s responsibility to
MONITOR the data in such cases. If the window is NiL, it raises the ERROR Error[windowisNIL].

21.2.3 Acquiring/Releasing the Context

Acquire: PROCEDURE [type: Type, window: Window.Handle] ReTurns [Data];

The p}ocedure Acquire retrieves the data field from the specifiedi window. It returns NiL if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release. '

Release: PROCEDURE [type: Type, window: Window.Handle];

The procedure Release releases the lock on the specified context object for window that

was locked by the call on Acquire. If the specified context cannot be found or if it is not
“locked, Release is a no-op.

21.24 Errors
ErrorCode: Tyre = {duplicateType, windowisNIL, tooManyTypes, other};

duplicateType is raised by Create if a context of the given type already exists on the
window passed as an argument.

-windowlisNIL is raised if the client has passed in a NIL window.
tooManyTypes is raised if UniquaType has been called too many times.
Error: ERROR [code: ErrorCode];

Error is the only error raised by any of the Context procedures.

21-3

21

Context

21.3 Usage/Examples

21-4

Acquire and Release can be used in much the same way as a Mesa MONITOR (See the Mesa
Language Manual: 610E00150). It is important that the client call Release for every
context that has been obtained by Acquire; this is not done automatically. The cost of doing
an Acquire is barely more than entering a MONITOR and doing a Find. Using this technique
allows the client to monitor its data rather than its code.

If several tools must share global data, it is possible to place a context on
Window.rootWindow that is never destroyed, even when the bitmap is turned off. To share
a Type without having to EXPORT a variable, use one in the range (lastAllocated..last].
Contact the support organization to have one allocated to you.

21.3.1 Example

myContextType: Context.Type ¢ Context.UniqueType(];
MyContext: TYPE = LONG POINTER TO MyContextObject;
MyContextObject: TYPE = RECORD [...];

SysSZ: UNCOUNTED ZONE ¢ Heap.SystemZone;

MakeShellAndBodyWindow: PROCEDURE = { :
myContext: MyContext « sysZ.New [MyContextObject « [
-- initialize fields of MyContextObject --] I; :
-- Note: If some field of MyContextObject were a pointer to some more allocated
storage, then the Context.SimpleDestroyProc would not be used. A client-supplied
DestroyProcType that freed both MyContextObject and the storage pointed to by
MyContextObject would have to be provided.

shell: starwindowshell.Create [...];
body: starwindowshell.CreateBody [sws: shell,
repaintProc: MyRepaint,
bodyNotifyProc: MyNotify];
Context.Create [type: myContextType,
~ data: myContext,
proc: Context.SimpleDestroyProc,
window: bodyl;

}

P

ViewPoint Programmer’s Manual 21

MyRepaint: PROCEDURE [window: window.Handle] = {
myContext: MyContext « FindContext [window];

¥

MyNotify: nie.NotifyProc = {
myContext: MyContext « FindContext [window];

) 5

FindContext: PROCEDURE [window: window.Handle]
RETURNS [myContext: MyContext] = {
myContext « Context.Find [myContextType, window];
IF myContext = NIL THEN ERROR;

)

21-5

21

Context

21.4 Index of Interface Items

21-6

Item

Acquire: PROCEDURE

Create: PROCEDURE
CreateProcType: TYPE

Data: Type

Destroy: PROCEDURE
DestroyAll: PROCEDURE
DestroyProcType: TYPE
Error: ERROR

ErrorCode: TYPE

Find: PROCEDURE
FindOrCreate: PROCEDURE
NopDestroyProc: PROCEDURE
Release: PROCEDURE

Set: PROCEDURE
SimpleDestroyProc: PROCEDURE
Type: TYPE

UniqueType: PROCEDURE

Page

D NNWWNWNWUBNNNMDNW-SW

22

Il

Cursor

22.1 Overview

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. This interface defines several cursor shapes as well as
operations for client-defined cursors. Because there is a single global cursor, it should be
manipulated only through this interface and only from the notifier process.

The major data structure defined in this interface is the Object, which defines not only the
array of bits that represents the picture of the cursor but also its hot spot. The hot spot of a
cursor consists of the coordinates within the 16-by-16 array that indicate the screen
position pointed to by the mouse. The hardware position of the cursor is always in the
upper-left corner of the bit array. For many cursor shapes, this position is not where the
cursor points. For example, the pointRight cursor shape is a right-pointing arrow whose
hot spot is at the tip of the arrow.

There can be up to 256 different cursors, limited by the size of the Type enumeration. The
first several types are system-defined. Clients may call UniqueType to allocate an unused
type for their own use.

This interface is typically used to change the cursor either by calling Set to set it to one of
the system-defined cursors or by calling Store. To restore the cursor, save it into an Object
by calling Fetch before it is changed.

22.2 Interface Items

22.2.1 Major Data Structures
Handle: TYPE = LONG POINTER TO Object;
Object: TYPe = RECORD [info: Info, array: userTerminal.CursorArrayl:

Info: TYPE = RECORD [type: Type, hotX: [0..16), hotY: [0..16)];

22-1

22

Cursor

Type: TYPE =’ MACHINE DEPENDENT{
biank(0), bullseye(1), confirm(2), ftpBoxes(3), hourGlass(4), lib(5), menu(6),
mouseRed(7), pointDown(8), pointLeft(9), pointRight(10), pointUp(11),
questionMark(12), scrolilDown(13), scrollLeft(14), scrollLeftRight(15), scroliRight(16),
scroliUp(17), scrollUpDown(18), textPointer(19), groundedText(20), move(21),
copy(22), sameAs(23), adjust(24), row(25), column(26), last(3778)}:

Object defines the type and hot spot of the cursor as well as the 16-by-16 array of bits that
represent the cursor's picture.

Info contains the type and the hot spot of a cursor.
Defined: TYPE = Type[blank..column];.

Defined is the subrange of Type that contains the system-defined cursors.

22.2.2 Setting the Cursor Picture
Set: PROCEDURE [type: Defined];
Set sets the displayed cursor to be one of the system-defined cursors.
Store: PROCEDURE [h: Handle];
Store sets the displayed cursor to the cursor described by h.
StofeCharacter: PROCEDURE [c: xChar.Characterj;

StoreCharacter stores the system font picture of character ¢ into the cursor. The info is set
to [type: column.succ, hotX: 8, hotY: 8].

StoreNumber: PROCEDURE [n: CARDINAL];
StoreNumber sets the cursor picture to be the number n MOD 100. If n is less than 10, the

single digit is centered in the cursor. The info is set to [type: column.succ.succ, hotX: 8,
hotY: 8].

22.2.3 Getting Cursor Information
Fetch: PROCEDURE [h: Handle];
Fetch copies the current cursor object into the object pointed to by h.
Getinfo: PROCEDURE RETURNS [info: Info];
Getinfo returns the hot spot and type of the current cursor.
FetchFromType: PROCEDURE [h: Handle, type: Defined];

FetchFromType copies the system-defined cursor object corresponding to type into the M
object pointed to by h.

22-2

ViewPoint Programmer’s Manual _ 22

22.2.4 Miscellaneous Operations

MaveintoWindow: PROCEDURE [
window: window.Handle, place: window.Place];

MovelntoWindow moves the cursor to the window-relative place in window.
Swap: PROCEDURE [old, new: Handle];

Swap places the displayed cursor object in old 1 and Stores the new. It is equivalent to
Fetchlold]; Store[new].

22.2.5 Client-Defined Cursors
UniqueType: PROCEDURE RETURNS [Type];
UniqueType lets clients assign a unique type to their defined cursors. It returns a Type

that is different from all predefined types and from any that have previously been returned
by UniqueType. The value is only valid during the current boot session.

22.2.6 Cursor Picture Manipulation
Invert: PROCEDURE RETURNS [BOOLEAN];

Invert inverts each bit of the cursor picture and inverts the positive/negative state of the
picture. It returns TRUE if the new state of the cursor is positive.

MakeNegative: PROGEDURE;

MakeNegative is equivalent to MakePositive followed by Invert. It sets the
positive/negative state of the cursor to negative.

MakePositive: PROCEDURE;

MakePositive sets the positive/negative state of the cursor to positive. The state is set to
positive whenever Set or Store is invoked.

22.3 Usage/Examples

The following example shows a client setting the cursor to an hourglass while performing
some time-consuming action. It first saves the current cursor and restores it when it is
done, if the action did not change the cursor. If the client knew what the cursor should be,
the cursor would not have to be saved but could be unconditionally set .

savedCursor: Cursor.Object;

Cursor.Fetch[@savedCursor];

Cursor.Set[hourGlass]

-- Do action --

IF Cursor.Getinfo[]l.type = hourGlass THEN Cursor.Store[@savedCursor];

22-3

22

Cursor

22-4

StoreCharacter is typically used to put small pictures in the cursor by using characters
obtained from SimpleTextFont. AddClientDefinedCharacter.

ViewPoint Programmer’s Manual 22

22.4 Interface Item Index

Item

0
5

Defined: Type

Fetch: PROCEDURE
FetchFromType: PROCEDURE
Getinfo: PROCEDURE

Handle: TYpe .
Info: TYPe

Invert: PROCEDURE
MoveintoWindow: PROCEDURE
MakeNegative: PROCEDURE
MakePositive: PROCEDURE
Object: TYPe

Set: PROCEDURE

Store: PROCEDURE
StoreCharacter: PROCEDURE
StoreNumber: PROCEDURE
Swap: PROCEDURE

Type: TYPE

UniqueType: PROCEDURE

WNWNNNNSGWWWW=2NNNN

22-5

22 Cursor

22-6

23

Directory

23.1 Overview

Directory allows for clients to add dividers to the directory icon. Directory maintains a
directory divider containing three top-level dividers: the workstation divider, containing
those objects that exist on a per-workstation basis; the user divider, containing those
objects that exist on a per-user or per-desktop basis; and the network divider, containing
those objects that exist in the internet. (See the Divider and CHDivider interfaces for more
information about dividers.)

23.1.1 Predefined Divider Structure

Directory automatically creates a top-level divider that backs the directory icon. To this
divider it adds the workstation divider, the user divider, and the network divider. It adds
three entries to the workstation divider: the prototype folder, the office aids divider, and
the local devices divider. The user divider is emptied at each logout. Clients of the user
divider should add their entries at‘each logon. Directory also automatically adds the
organization divider to the network divider and the domain divider to the organization
divider. Clients can add entries to the domain divider (see Figure 23.1). (See the Prototype
interface for details of how to add prototype icons to the prototype folder and the Divider
interface for details of how to add entries to the office aids, local devices, and user dividers.)

23.2 Interface Items

23.2.1 Adding Items to a Predefined Divider
DividerType: TYPe = {top, ws, user, domain, localDevices, officeAids};

A parameter of type DividerType is passed to AddDividerEntry to specify one of the
predefined dividers. A value of top specifies adding a new top-level divider.

AddDividerEntry: PROCEDURE [
divider: DividerType,
type: NsFile.Type,

23-1

23 Directory

label: xstring.Reader,

data: LONG POINTER &= NiL,

convertProc: Divider.ConvertProc «NiL,
genericProc: Divider.GenericProc «NiL];

AddDividerEntry adds an entry to the divider specified by divider. If divider is equal to top,
a new top-level divider is added. type specifies the NSFile.Type of the entry. It is used to
obtain the Containes.Implementation for the entry. label is used to label the entry when it
appears in the divider's container window. The xstring.Reader bytes are copied. data is an
optional data pointer to be supplied in subsequent calls to the GenericProc and the
ConvertProc. convertProc is a Divider.ConvertProc for the entry, and genericProc is a
Divider.GenericProc for the entry. (See the Divider interface for details.) Fine point: The
predefined dividers are actually implemented by using the Divider interface. AddDividerEntry is actually the
same as Divider.AddEntry, with the handle arguement replaced by a Directory.DividerType.

23.2.2 GetDividerHandle
GetDividerHandle: PROCEDURE [divider: Divi'derType] RETURNS [handle: Divider.Handle];
GetDividerHandle returns the Divider.handle for the predefined divider specified by divider.

Clients can use this handle to manipulate the predefined divider with the Divider
interface. (See the Divider chapter for more information.)

23.3 Usage/Examples

See the Divider and CHDivider interfaces for examples of how to add entries to the
directory. The Divider interface also shows the implementation of AddDividerEntry.

23-2

-

ViewPoint Programmer’s Manual 23

—

Directory

.
)
4+—

Workstation Network User

=] l]

' _’ o —\— Basic Documents,
Folders, and Organizations
Record Files
D B @ | ®
W oy T
_’ . Office Aids T .
‘ Domains
o
ol ™ oy
_’ Local Devices

B &

Figure 23.1 Predefined Divider Structure

23-3

23

Directory

23.4 Index of Interface Items

23-4

Item

AddDividerEntry: PROCEDURE
GetDividerHandle: PROCEDURE
DividerType: Tyre

Page

b N o

24

.

Display

24.1 Overview

The Display interface provides elementary routines for painting into windows on the
display screen. Procedures are provided for painting points; lines; bitmaps; repeating
patterns; boxes filled with black, gray, white, or small patterns; circles; circular arcs;
ellipses; conics; as well as for painting a brush as it moves along an arbitrary trajectory.
Another procedure allows shifting the current content of a window. Procedures for painting
text are available in the SimpleTextDisplay interface.

The Window interface supplies facilities for manéging windows. The introduction section
of the Window chapter describes the window coordinate system and the process of painting
into a window. The reader should be familiar with that material.

As described in the Window chapter, the display background color, which is represented by
a pixel value of zero, is commonly called wkite, and a value of one, called black. Note
however, that the display hardware can also render the picture using zero for black and one
for white. Clearing or erasing an area of the screen means setting all of its pixels to zero, or
white.

The Display interface currently contains procedures that apply te text--namely Block,
MeasureBlock, ResolveBlock, Character, Text, and Textinline. They are not supported. The
SimpleTextDisplay interface provides text painting operations.

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window responds by calling back into the

client’s display procedure to do the painting. Nonstandard ways of painting are discussed
in the Usage/Examples section of this chapter.

24.2 Interface Items

24.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines

Handle: TYyPe = window.Handle;

24

Display

24-2

Black: PROCEDURE [window: window.Handle, box: window.Box];
Invert: PROCEDURE [window: window.Handle, box: window.Box];
White: PROCEDURE [window: window.Handle, box: window.Box];

Black and White paint black and white boxes. invert changes all black pixels to white and
all white pixels to black in the box. These procedures perform their operation on the
specified box in window. Horizontal and vertical black lines can be painted by using Black
with a box that is one pixel wide or tall.

Display.Handle is provided for backward compatibility.

24.2.2 Painting Bitmaps and Gray Bricks

The procedures in this section allow the client to paint bitmaps and gray bricks into a
window. Bitmaps and gray bricks are described in the Mesa Processor Principles of
Operation. :

The first items below define some convenience types and constants that are used with
bitmaps and painting.

BitAddress: TYPE = Environment.BitAddress;

DstFunc: TYPE = BitBit.DstFunc;

BitBItFlags: TYPE = aitnn.sitaltFlags;

A BitBit.BitBItFlags is an argument of the Bitmap and Trajectory operations. These flags
control how source pixels and existing display pixels are combined to produce the final
display pixels. The flag constants defined below cover most of the common cases.
sitsit. BitBItFlags are described in detail in the Mesa Processor Principles of Operation.

replaceflags: BitBitFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceFlags paints opaque black and opaque white from a bitmap. Source pixels from the
bitmap overwrite the previous display pixels.

textFlags, paintFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: or, reserved: 0];

textFlags and its synonym paintFlags paint opaque black and transparent white from a
bitmap source. Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xorFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0];

ViewPoint Programmer’s Manual 24

xorflags is used with a source bitmap to selectively video invert existing display pixels.
Video inverting is the process of changing white to black and black to white. Black source
pixels invert the existing display pixels. White source pixels leave display pixels
unchanged.

paintGrayFlags, bitFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: or, reserved: 0];

paintGrayFlags paints opaque black and transparent white from a gray brick source. Black
source pixels cause black display pixels. White source pixels leave display pixels
unchanged. -

replaceGrayFlags, boxFlags: BltBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: nuil, dstFunc: null, reserved: 0];

replaceGrayFlags paints opaque black and opaque white from a gray brick source. Source
pixels overwrite the previous display pixels.

xorGrayFlags, xorBoxFlags: BitBitFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: xor, reserved: 0];

xorGrayFlags is used with a source gray brick to selectively video invert existing display
pixels. Black source pixels invert the exxstmg display pixels. White source pxxels leave
display pixels unchanged.

eraseFlags: BitBItFlags = |
direction: forward, disjoint: FALSE, disjointitems: FALSE, gray: FALSE,
srcFunc: complement, dstFunc: and, reserved: 0];

eraseFlags erases objects. Previous display pixels are overwritten.

Bitmap: PROCEDURE [
window: window.Handle, box: window.Box, address: Environment.BitAddress,
bitmapBitWidth: carDINAL, flags: Bitsit.BitBItFlags « paintFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in window,
using flags to control the interaction with pixels already being displayed. Bitmap may be
used to display a gray pattern that is not aligned relative to the window origin. box.dims.w
must be less than or equal to bitmapBitWidth; this is not checked. flags.gray is ignored.

BitAddressFromPlace: PROCEDURE [
base: Environment.BitAddress, X, y: NATURAL, raster: CARDINAL]
RETURNS [Environment.BitAddress];

BitAddressFromPlace returns the Environment.BitAddress of the pixel at coordinates x and y
in the bitmap described by base. raster is the number of pixels per line in the bitmap. This
procedure is useful for calculating the address parameter of Bitmap.

24-3

24 Display

Brick: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL;

Bricks are used by Gray and Trajectory to describe a repeating pattern to fill an area. The
maximum size of a Brick is 16 words; each word is one row of the pattern.
fiftyPercent: Brick;
fiftyPercent is a brick containing a 50% gray pattern.
Gray: PROCEDURE [
window: window.Handle, box: window.Box, gray: Brick « fiftyPercent,
dstFunc: Bitait.DstFunc « null];
Gray uses the source gray brick to completely fill box in window. If the content of the brick
to be displayed is not aligned with the window origin, use Bitmap instead. The table below
describes the effect of dstFunc.
dstFunc resulting display pixels
nuil Source pixels overwrite display pixels.
or Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.
xor Black source pixels cause the existing display pixels to be inverted. White
source pixels leave display pixels unchanged.
and Black source pixels cause black display pixels wherever the display pixels are -~
already black. All other display pixels will be made white.
24.2.3 Painting Points, Slanted Lines, and Curved Lines
The procedures below paint points, oblique straight lines, and circular arcs and conics.
Point: PROCEDURE [window: window.Handle, point: window.Place];
Point makes the single pixel at point in window black.
LineStyle: TYPE = LONG POINTER TO LineStyleObject;
LineStyleObject: TYPE = RECORD [
widths: ARRAY [0..DashCnt) OF CARDINAL,
thickness: CARDINAL];
DashCnt: CARDINAL = 6;
LineStyle describes the style of lines for the Line, Circle, Ellipse, Arc, and Conic operations.
thickness defines the width of the line in pixels. widths defines the dash structure. Each
pair of elements is the number of pixels of black followed by the number of pixels of white.
For example [widths: [4,2,0,0,0,0], thickness: 2] defines the style for a dashed line two
pixels thick, where the dashes are four pixels on and two off.

24-4

ViewPoint Programmer’s Manual 24

Line: PROCEDURE [
window: window.Handle, start, stop: window.Place, lineStyie: LineStyle «nuw,
bounds: window.BoxHandle « NIL];

Line paints a line from start to stop in window. If bounds # NiL, the line is clipped to the
box bounds. If lineStyle is defaulted, the line is solid and is a single pixel wide.

Circle: PROCEDURE [
window: window.Handle, place: window.Place, radius: INTEGER,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle «NiL];

Circle paints a circle centered at place in window, with the given radius. If bounds # niL,
the circle is clipped to the box bounds. If lineStyle is defaulted, the circle is solid and is a
single pixel wide.

Ellipse: PROCEDURE [
window: window.Handle, center: window.Place, xRadius, yRadius: INTEGER,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle «niL];

Ellipse paints an ellipse with axes centered at center with an x radius of xRadius and a y
radius of yRadius in window. The axes of the ellipse are parallel to the x-y coordinate
system. Ellipses with oblique axes may be displayed by using Conic. If bounds # Ni, the
ellipse is clipped to the box bounds. If lineStyle is defaulted, the ellipse is solid and is a
single pixel wide.

Arc: PROCEDURE [,
‘ window: window.Handle, place: window.Place, radius: INTEGER,
startSector, stopSector: CARDINAL, start, stop: window.Place,
lineStyle: LineStyle «NiL, bounds: window.BoxHandle «nNiL];

Arc paints a portion of a circular arc centered at place in window, with the given radius.
The arc goes from the angle defined by start in the startSector to stop in the stopSector.
Sectors are simply octants numbered from 1 to 8, with northeast being 1 and increasing
clockwise. If bounds # Nit, the arc is clipped to the box bounds. IflmeSter is defaulted, the
arc is solid and is a single pixel wide.

Conic: PROCEDURE [
window: window.Handle, a, b, ¢, d, e, errorTerm: LONG INTEGER,
start, stop, errorRef: window.Place,
sharpCornered, unboundedStart, unboundedStop: BOOLEAN,
lineStyle: LineStyle «Ni, bounds: window.BoxHandle «NiL];

Conic paints the portion of the curve of the equation ax2 + by2 + cxy +dx + ey + f=0in
window from start to stop. Instead of passing in the last coefficient £, this procedure takes
the errorTerm resulting from substituting start into the equation. If the conic contains
points whose radius of curvature is less than or equal to two pixels, it must be displayed by
using multiple calls with sharpCornered set to TRUE; otherwise ,sharpCornered should be
FALSE. These "sharp-cornered” conics must be broken up into segments where the corners
become a new segment’s start and stop points. For example, a very long skinny ellipse must
be displayed in two pieces. errorRef, unboundedStart, and unboundedStop are

24-5

24 Display

ignored. If bounds # NiL, the conic is clipped to the box bounds. If lineStyle is defaulted, the
conic is solid and is a single pixel wide.

24.2.4 Painting Parallelograms and Trapezoids
These types and procedures are used to paint parallelograms and trapezoids:

FixdPtNum: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
wholeThing = > [li: LONG INTEGER],
parts = > [frac: CARDINAL, int: INTEGER],
ENDCASE];

A FixdPtNum is a fixed-point integer with 16 bits of fraction and 16 bits of integer part.
These numbers can be added and subtracted in a straightforward manner, while division
and multiplication are more difficult. By using the overlaid record, the fraction and integer
part may be obtained without shifting or dividing. FixdPtNum can express all practical
slopes with only small errors.

Interpolator: TYPE = RECORD [
val, dVal: FixdPtNum];

lnterbo|ator is used to define parallelograms and trapezoids. The dVal term is the
derivative with respect to y; for example, x.dVal is dx/dy.

‘BlackParallelogram: proc [’
window: Handle, p: Parallelogram, dstFunc: DstFunc « null];

Parallelogram: TYPE = RECORD [
x: Interpolator, y: INTEGER, -- upper left
wW: NATURAL, -- across top, must be positive
h: NATURAL];

BlackParallelogram paints the parallelogram defined by p in window. dstFunc acts as in
the procedure Gray. The parallelogram is defined as below with the slope of the
parallelogram being p.x.dVal. In Figure 24.1 the slope is two fifths. BlackParallelogram

(p.x.val, p.y) ~ |4,_ p.w _’I

Figure 24.1 Parallelogram definition

optimizes a common case (such as diagonal lines) and runs about twice as fast as

24-8

ViewPoint Programmer’s Manual 24

GrayTrapezoid by avoiding the second interpolation, the noninteger width, and the gray
alignment calulations:

GrayTrapezoid: PROC [
window: Handle, t: Trapezoid, gray: Brick « fiftyPercent, dstFunc: DstFunc « nuil];

Trapezoid: TYPE = RECORD [
x: Interpolator, y: INTEGER, -- upper left
w: Interpolator, -- across top; must be positive
h: NATURAL];

GrayTrapezoid paints the trapezoid defined by t in window. gray and dstFunc act as in the
procedure Gray. The trapezoid is defined in Figure 24.2 with the slope of the left side of the
trapezoid being t.x.dVal and the slope of the right side of the trapezoid being t.x.dVal minus
t.w.dVal. In Figure 24.2, t.x.dVal is minus one half and t.w.dVal is nine tenths.

(t.x.val, t.y) \‘|¢_—__ t.w.val . —’{

—r
1

Figure 24.2 Trapezoid defi hition

24.2.5 Painting Along Trajectories, Shifting Window Contents
Shift: PROCEDURE [window: window.Handle, box: window.Box, newPlace: window.Place]; -

Shift does a block move of a rectangular portion of window’s current content. This
operation does not invoke any client display procedures. box describes the region of
window to be moved to newPlace. If Display does not have the pixels for a visible area of
the destination box, that area is filled with trash and marked invalid. The client should
validate the window when it has finished altering the window content. Shift does not
invalidate the areas vacated by the move; if they are repainted, the client should invalidate
them. If Shift is executed from within a display procedure, it does not clip the region
painted to window’s invalid area list. Invalid area lists are explained in the Window
chapter.

24

Display

Trajectory: PUBLIC PROCEDURE [
window: window.Handle, box: Window.Box « window.nullBox, proc: TrajectoryProc,
SOUrce: LONG POINTER « NiL, bpl: CARDINAL < 16, height: CARDINAL «- 16,
flags: sitsit.BitBItFlags « bitFlags, missesChildren: BOOLEAN «FALSE,
brick: Brick «NiL];

TrajectoryProc: TYPE = PROCEDURE [Handle] RETURNS [window.Box, INTEGER];

Trajectory repeatedly calls proc and paints a brush where proc specifies. The brush may be
either a gray brick or a portion of the bitmap source. Trajectory avoids much of the
overhead of successive calls to the normal Display routines. box is the window region in
which painting may occur. The client must not try to paint outside box; this is not checked.
flags controls the type of painting performed. If flags.gray = TRUE, the gray brick is painted;
otherwise, a bitmap is painted. Trajectory repeatedly calls proc for instructions. If proc
returns a box having dims.w = 0 (such as window.nullBox), iteration ceases and Trajectory
returns. Otherwise dims.w # 0; Trajectory paints the brush and then loops to call proc
again. The brush paints the returned Box in the window as follows. If a gray brick is being
painted, the brick completely fills the returned Box. If a bitmap is being painted, the
bitmap starts at a bit offset of <INTEGER> from source, is Box.dims.h high, and has bpl
pixels per line. The client may wish to alter the brush content along the trajectory by
having source be a large bitmap containing several different brush patterns and having
proc return the bit offset and Box.dims of the desired portion. (8itsit.BitBItFlags are
described in §24.2.2.) height and missesChildren are unused. pro¢ must not call any
procedures in Display or Window; doing so will result in a deadlock.

24.3 stage/Examples

24-8

24.3.1 Special Topic: Direct Painting

As described in the Window chapter, the standard way for a client:to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window responds by calling back into the
client’s display procedure to do the painting.

The client may also paint directly into a window without going through window.Validate.
However, this direct-painting approach is subject to several pitfalls and system bugs.

Clients commonly choose direct painting only when high painting performance is required, .

such as dynamically extending an inverted selection while tracking the mouse or
implementing a blinking caret.

Pitfall 1: One consequence of doing direct painting is that the window’s display prccedure
must not depend on Window clearing invalid areas for it. As described in the Window
chapter, if clearingRequired = TRUE, Window guarantees that when the display procedure
is called to paint the window, all of the window’s pixels that should be white indeed are
white. In that situation, the window might contain any combination of its previous
contents and erased areas. Notice that the following sequence of events might occur:
Window clears invalid area; then the client direct paints into some part of the invalid area;
then Window calls the window’s display procedure. In this situation, the parallel direct-
paint activity has voided Window’s guarantee of the content of the invalid area. To

ViewPoint Programmer’s Manual 24:

handle this case, the display routine must erase or otherwise completely overpaint the
invalid areas itself.

Pitfall 2: A client can get into trouble when it wishes to change the state of the backing
data being displayed within a display procedure and attempts to make the change by
painting from the display procedure rather than by invalidating the affected area and
painting later. The display procedure’s paint is clipped to its invalid area list and thus fails
to achieve the desired effect. There are several ways to solve this problem:

@ Do not change the backing data inside a display procedure. This approach matches
nicely with the intended function of a display procedure. Do not expect a display
procedure to change data—its job is to repaint.

® Have the display procedure just invalidate the areas affected by the data being
changed. Because a validate is already in progress, it is not necessary to call
window.Validate. When the display procedure returns, it is called back with any new
invalid areas that are waiting for it.

e Have the display procedure call window.FreeBadPhosphorList before changing the
data. This allows paint from the display procedure to affect the entire window, not
just the invalid areas.

24.3.2 Example 1

_ The program fragments below demonstrate the use of Display in a window’s display
procedure..

-- Enumerated TYPEs for displaying the games background.
Background: Tyre = {gray, white};
background: Background « gray;

DisplayBoardSW: proc [window: window.Handle] = {
-- This is the body window’s display procedure.
vLine, hLine: window.Box;
left, right, top, bottom: INTEGER;

FindBounds: PROC [window: window.Handle, box: window.Box] = {
left «—min([left, box.place.x]; ‘
top «MiN{top, box.place.y];
right «~max[right, box.place.x + box.dims.w];
bottom «max[bottom, box.place.y + box.dims.h]};

-- Paint borders and background.
Display.Black{window: window, box: boardAndBorderB8ox];
PaintBackground[window: window, box: boardBox];
vLine « [upperLeft, [lineWidth, (boardSize - 1)*unitH + 1]];
hLine « [upperLeft, [(boardSize - 1)*unitW + 1, lineWidth]];
THROUGH [firstDimboardSize] o

Display.Black[window, vLine];

Display.Black[window, hLine];

viine.place:x « vline.place.x + unitw;

24-9

24

Display

24-10

hLine.place.y « hlLine.place.y + unitH;
ENDLOOP;

left «- tOp ¢~ INTEGER.LAST;
right < bottom «INTEGER.FIRST;
window.EnumerateinvalidBoxes{FindBounds]

Y

PaintBackground: PROC [window: window.Handle, box: window.Box] = {

SELECT background FrRom
gray = > Display.Gray[window, box};
white = > pisplay.White[window, box];
ENDCASE

}

PaintStone: pusLIC PROC [who: BlackWhite, u, v: Dim, play: CARDINAL] = {

center: window.Place;
stoneBox: window.BOXx;
numStr: STRING « [3];

i -ValidCoords{u, v] THEN RETURN;

center « BoardToPlace{u, v];

stoneBox « [:

place: [center.x - stoneRadius, center.y - stoneRadius],
dims: [stoneSize, stoneSize]];

-- paint a bitmap that represents game pieces.
Display.Bitmap(
window: boardSW, box: stoneBox, address: outerStone,
bitmapBitWidth: stoneBpl, flags: pisplay.paintFlags];
iFwho = white THEN

Display.Bitmap(

window: boardSW, box: stoneBox, address: innerStone,
bitmapBitWidth: stoneBpl, flags: eraseFlags];

Y

CreateGoSWS: puBLIC PROCEDURE [

reference: NsFile.ReferenceRecord, name: environment.Block]
RETURNS [Starwindowshell. Handle] = {

-= This procedure is invoked via a system menu.

$2: StarWindowShell.Handle;

StarWindowshell.SetPreferredDims [sz, [592, 661]];
-- The display procedure is set here.
boardSW & starwindowshell.CreateBaody [

SWs: sz,

ViewPoint Programmer’s Manual

24

repaintProc: DisplayBoardSW,
bodyNotifyProc: TIPMe |;

24-11

24

Display

24.4 Index of Interface Items

24-12

Item

Arc: PROCEDURE

BitAddress: TYPE
BitAddressFromPlace: PROCEDURE
BitBItFlags: TYpe

bitFlags: sitsit.BitBItFlags
Bitmap: PROCEDURE

Black: PROCEDURE
BlackParallelogram: PROCEDURE
boxFlags: sitsit.BitBltFlags
Brick: TYpe

Circle: PROCEDURE

Conic: PROCEDURE

DashCnt: PROCEDURE

DstFunc: TYpe

Ellipse: PROCEDURE .
eraseFlags: sitsie.BitBItFlags
fiftyPercent: Brick
FixdPtNum: TYpe

Gray: PROCEDURE
GrayTrapezoid: PROCEDURE
Handle: Type

Interpolater: TYPE

Invert: PROCEDURE

Line: PROCEDURE

LineStyle: Type
LineStyleObject: Type
paintBitFlags:sitsit.BitBltFlags
paintFlags: sitsit.BitBltFlags
paintGrayFlags: sitsit.BitBltFlags
Parallelogram: Type

Point: PROCEDURE
replaceboxFlags: sitsit.BitBItFlags
replaceFlags: sitsit.BitBltFlags
replaceGrayFlags: sitsit.BitBltFlags
Shift: PROCEDURE

textFlags: sitBit.BitBitFlags
Trajectory: PROCEDURE
TrajectoryProc: TYPE
Trapezoid: TYPE

White: PROCEDURE
xorBoxFlags: sitsit.BitBItFlags
xorFlags: sitsit.BitBItFlags
xorGrayFlags: sitsit.BitBitFlags

e
®
)

WNWNNOONNWNWLRBAWNWGSG DUNOGG= NLENMNREWAONDUVNEWONWWNWNWGN

25

il

Divider

I

25.1 Overview

Divider maintains a table of entries in memory, each representing an icon. The entries may
or may not be backed by files. Divider does not operate on these entries directly; it uses a
Divider.ConvertProc and a Divider.GenericProc associated with each entry. '

Also associated with each entry is an NSFile.Type used to identify the entry's
Containee.lmplementation, a label, and a pointer to instance-specific data for the entry.

Associated with each divider when it is created is an NsFile.Type. Divider automatically sets
a Containee.Implementation for this file type that supports converting the divider to a file
and opening the divider as a container window displaying the entries.

Also associated with each divider is a cH.Pattern specifying a clearinghouse domain and
organization. It is inherited from a parent divider and is passed to all entries through the
Divider.ConvertProc and the Divider.GenericProc associated with each entry. When the
divider is converted to a file, the pattern is automatically encoded in an attribute of the file.

25.2 Interface Items

25.2.1 Creating and Destroying
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE;

Create: PROCEDURE [
type: NsFile. Type,
name: xstring.Reader,
initialSize: CARDINAL « Divider.defaultinitialSize,
increment: CARDINAL « Divider.defaultincrement,
zone: UNCOUNTED ZONE & NiL]
RETURNS [handle: Handle];

25-1

25

Divider

25-2

Create creates a divider. type specifies the NSFile.Type the divider has if it is converted to a
file. A Containee.Implementation is automatically set for this type. name specifies the name
of the divider. It appears in the window header when the divider is opened, and it is the
name of the file if the divider is converted to a file. The xString.Reader bytes are copied. The
divider is created with a table large enough to hold initialSize entries. If an entry is added
when the table is full, the table grows by increment entries. Storage for the divider is
allocated from zone. If zone is defaulted, storage is allocated from a heap maintained by
Divider.

Destroy: PROCEDURE [handle: Handle];

This releases all storage associated with the given divider. handle is no longer valid when
this procedure returns.

25.2.2 ConvertProc and GenericProc

ConvertProc: TYPE = PROCEDURE [
data: LONG POINTER,
pattern: cH.Pattern,
target: Selection.Target,
zZone: UNCOUNTED ZONE,
info: Selection.Conversioninfo « [convert(]]]
RETURNS [value: Selection.Value];

A ConvertProc is the same as a Selection.ConvertProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. (See the Selection
interface for the definition of the other arguments.) Whenever the divider is requested to
convert one of its entries, it calls the ConvertProc associated with an entry, with pattern
set to the domain and organization associated with the divider,

GenericProc: TYPE = PROCEDURE [
atom: Atom.ATOM,
data: LONG POINTER,
pattern: cH.Pattern,
changeProc: Containee.ChangeProc «nit,
changeProcData: LONG POINTER ¢ NiL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is the same as a Containee.GenericProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. (See the Containee
interface for the definition of the other arguments.) Whenever the divider is requested to
operate on one of its entries, it calls the GenericProc associated with an entry, with pattern
set to the domain and organization associated with the divider.

DividerConvertProc: ConvertProc;
DividerGenericProc: GenericProc;
These procedures may be associated with entries that themselves are dividers. In this case

the Handle associated with the divider should be provided as the instance-specific data
handle. See below for an example of a divider contained in another divider.

ViewPoint Programmer’s Manual 25

25.2.3 Adding and Finding Entries

AddEntry: PROCEDURE [
handle: Handle,
type: NsFile.Type,
label: xstring.Reader,
data: LONG POINTER «NIL,
convertProc: ConvertProc «Ni.,
genericProc: GenericProc «NiL|;

AddEntry adds an entry to the divider specified by handle. type obtains the
Containee.Implementation for the entry. label is used to label the entry in the divider's
container window. The xstring.Reader bytes are copied. data is item-specific data for the
entry that is passed to the ConvertProc and GenericProc associated with the entry. If
convertProc or genericProc is defaulted, the divider uses the corresponding procedure in
the entry’s Containee.Implementation. .

FindEntry: PROCEDURE [handle: Handle, type: NsFile.Type,
iabel: xstring.Reader]
RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindEntry finds the entry in the divider handle with the specified type and label. found
indicates whether the item was in the divider. entryData is the data associated with the
entry, if it was found. FindEntry is defined in DividerExtra.mesa.

FindOrAddEntry: PrRoceDure [handle: Handle, type: NsFile.Type,
label: xstring.Reader, data: LONG POINTER «—NIL,
convertProc: ConvertProc «NiL,
genericProc: GenericProc « Nit]

RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindOrAddEntry finds the entry in the divider handle with the specified type and label,
and adds an entry if it was not found. found indicates whether the item was in the divider.
entryData is the data associated with the entry, if it was found. FindOrAddEntry is defined
in DividerExtra.mesa.

25.3 Usage/Examples

25.3.1 Fragment from DirectoryImpl.mesa

This fragment is from Directorylmpl.mesa, which implements the Directory interface. It
shows the implementation of Directory.AddDividerEntry and the mainline code to create the
top-level directory dividers. See the CHDivider interface for more examples.

-- File types for the directory implementation --
directory: starfileTypes.FileType = ...;

folder: starFileTypes.FileType =...;

workstation: StarfileTypes.FileType = ...;

user: starfileTypes.FileType = ._.;

domain: starfileTypes.FileType =...;

25-3

25

Divider

25-4

-= The reference for the prototype folder --
prototypeReference: NsFile.Reference «-...;

- Handles for the top-level dividers --
dividers: ARRAY Directory.DividerType OF Divider.Handle « ALL [NIL];

AddDividerEntry: PuBLIC PROCEDURE {
divider: Directory.DividerType,
type: NSFile.Type,
label: xstring.Reader,
data: LONG POINTER ¢ NIL,
convertProc: Divider.COnvertProc « NiL,
genericProc: Divider.GenericProc «-NiL] =
BEGIN
Divider.AddEntry [
handle: dividers{divider],
type: type,
label: label,
data: data,
convertProc: convertProc,
genericProc: genericProc];
END;

.= Create the top-level dividers (top will back the directory icon) --

dividers{top] « Divider.Create [directory, stringDirectory];
dividers{ws] « Divider.Create [workstation, stringWorkstation]; -
dividers{user] « Divider.Create [user, stringUser]; '

«= Insert the workstation divider into the directory --
Directory.AddDividerEntry [

divider: top,

type: workstation,

label: stringWorkstation,

data: dividers{ws],

convertProc: Divider.DividerConvertProc,

GenericProc: Divider.DividerGenericProc];

- Insert the user divider into the directory --
Directory.AddDividerEntry [

divider: top,

type: user,

label: stringUser,

data: dividers[user],

convertProc: Divider.DividerConvertProc,

genericProc: pivider.DividerGenericProc];

-- Insert the prototype folder into the workstation divider --
-- (Note: this is an actual file that will use the folder implementation) --
Directory.AddDividerEntry [

divider: ws,

ViewPoint Programmer’s Manual 25

type: folder,
label: stringPrototypes,
data: @prototypeReference];

25-5

25

Divider

25.4 Index of Interface Items

25-6

Item

AddEntry: PROCEDURE
ConvertProc: TYPE

Create: PROCEDURE

Destroy: PROCEDURE
Divider.CONvertProc:TYPE
DividerConvertProc: ConvertProc
DividerGenericProc: GenericProc
FindEntry: PROCEDURE
FindOrAddEntry: PROCEDURE
GenericProc: TYPe

Handle: TYpe

Object: TYPe

v
[
o

®

- A NWWRWRNNNN==SNW

26

Event

26.1 Overview

ViewPoint provides a facility that permits clients to register procedures that are to be
called when specified events occur. For example, a client may wish to be notified whenever
a document is closed, or perhaps just the next time a document is closed. Clients need not
'know which module can cause the event. '

26.2 Interface Items

26.2.1 Registering Dependencies

A client wishing to be notified of some future event calls either AddDependency or
AddDependencies, specifying the EventType and an AgentProcedure to be called when the
event occurs. Note: ViewPoint need not know in advance what EventType is implemented,
nor which modules implement them.

AddDependency: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
event: EventType,
remove: FreeDataProcedure « NiL]
RETURNS [dependency: Dependency];

AddDependencies: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
events: LONG DESCRIPTOR FOR ARRAY OF EventType,
remove: FreeDataProcedure « NiL]
RETURNS [dependency: Dependency];

AgentProcedure: TYPE = PROCEDURE [
event: EventType,
- eventData, myData: LONG POINTER TO UNSPECIFIED]
RETURNS [remove, veto: BOOLEAN ¢« FALSE];

26-1

26

Event

26-2

FreeDataProcedure: TYPE = PROCEDURE [mydata: LONG POINTER TO UNSPECIFIED];
Dependency: TYpe [2]; -- Opaque --

A dependency may be added to an event or an entire set of events by calling
AddDependency or AddDependencies. Both of these procedures return a private type,
Dependency, that uniquely identifies that set of dependencies. The value returned may be
saved and subsequently used in a call to RemoveDependency, which removes the
dependency or dependencies associated with the earlier AddXXX call. The AgentProcedure
may also remove the dependency, as discussed below.

When the specified event occurs, agent is called with the EventType, the eventData for the
event, and the client data passed as myData. If a client wishes to veto the event (for
instance, to disallow a world-swap), its AgentProcedure should return veto: TRUe. This
aborts the notification; that is, no other clients dependent on the event are notified.
However, there is no guarantee of the order in which multiple clients are notified. If any
client vetoes the event, the call to Notify returns TRUE. There is no way to prevent a client
from vetoing; instead, implementors of events that should not be vetoed should raise an
ERROR if Notify returns TRUE. To remove its dependency on an event, a client’'s
AgentProcedure should return remove: TRUE. If the dependency is removed and a
FreeDataProcedure was provided, it is called at this time to allow the client to free any
private data.

EventType: TYPE = Atom.ATOM;

The ATOM (strings) used to identify different events must of course be distinct. The
following examples are possibilities of how this could be managed. (1) By a central
authority whose job it is to guarantee uniqueness of EventTypes. This could be the same
person in charge of other such allocations, such as NSFile types. (2) By a hierarchical
naming structure, managed by a distributed authority. (3) By a file that lists all known
EventTypes within a given system,; this file is managed by the Librarian to ensure against
parallel allocation of new EventTypes. (In effect, this is the same as case 1, but the
Librarian takes the place of the central authority.)

RemoveDependency: PrOC [dependency: Dependency];
NoSuchDependency: ERROR;

If RemoveDependency is called with a Dependency that is invalid (possibly because the
dependency has already been removed), it raises the error NoSuchDependency.

26.2.2 Notification

Notify: PROCEDURE [event: EventType, eventData: LONG POINTER TO UNSPECIFIED ¢ NiL]
RETURNS [veto: BOOLEAN];

When the event occurs, the implementor calls Notify, giving it the EventType for the event
and any implementation-specific data (eventData) required by the client. (Presumably it is
uncommon for a single operation to wish to Notify more than one event; this is why Notify
does not take an ARRAY argument.) The Event interface then invokes each AgentProcedure
that is dependent on the EventType. Each AgentProcedure is given the

ViewPoint Programmer’s Manual 26

EventType causing the notification, the client data provided when the dependency was
created, and the eventData given by the implementor in the call to Notify.

26.3 Usage/Examples

The Event database is monitored to disallow changes while a Notify is in progress. An
AgentProcedure is allowed to call Notify; that is, one event may trigger another. However,
an AgentProcedure must not call AddDependency or RemoveDependency, or deadlock
will result. Because it is relatively common for an AgentProcedure to wish to remove its
own dependency, the AgentProcedure can return remove: TRUE to cause the dependency to
be removed. If the dependency was added via AddDependencies, then all of the
dependencies created by that call are removed. The dependency is removed even though
some later client of the same event might choose to veto the event. (If an earlier client has
already vetoed, of course, then this AgentProcedure never gets called.) If an application
requires that a dependency be removed only if the event is not vetoed, the implementor can
notify a second event that informs clients whenever the first event is vetoed.

Three notes regarding the preceding paragraph: First, an AgentProcedure may get called
twice even if it always returns remove: TRUE because two separate processes may be doing
parallel calls to Notify. Once an AgentProcedure returns remove: TRUE, no subsequent
calls to Notify invoke that dependency, but any parallel calls in progress complete
normally. Second, because an AgentProcedure might be invoked at any time, it is a bad
idea to call Add/RemoveDependency from within a private monitor, lest it lock trying to
modify the Event database while a Notify is inside the AgentProcedure trying to grab the
lock. However, the Notify call may very well be within the implementor’s monitor, which
means the AgentProcedure’s use of the eventData is typically limited. Finally, if an
AgentProcedure needs to call Add/RemoveDependency, it may get the desired effect by
FORKing the call so that it takes place shortly after the Notify already in progress.

26.3.1 Example 1

-- Module interested in an event
eventType: Event.EventType « Atom.MakeAtom [“SampleEvent”L];

EventAction: Event.AgentProcedure = {
-- Do appropriate thing for eventType -- };

event.AddDependency [
agent: EventAction,
myData: niL,
event: eventType];

== Module that signals the event

eventType: event.EventType « Atom.MakeAtom ["SampleEvent”L];
eventData: -- Relevant info, a record, a window handle, etc. --;

[] « Event.Notify [event: eventType, eventData: eventData];

26-3

26

Event

26-4

26.3.2 Example 2

-- Declare event and eventData --
desktopWindowAvailable: event.EventType;
desktopWindowHandle: window.Handle «NiL;

-- Declare AgentProcedure --

StartUp: event.AgentProcedure = {
If eventData = NIL THEN RETURN [veto: TRUE];
desktopWindowHandle « eventData };

-- Register event-- this is mainline code --
[] « event.AddDependency [StartUp, NiL, desktopWindowAvailable];

-- In Desktop code, another module, notify occurrence of the event --
[] «=Event.Notify [desktopWindowAvailable, window];
-- Window is desktop window --

ViewPoint Programmer’s Manual

26

26.4 Index of Interface Items
Item

AddDependencies: PROCEDURE
AddDependency: PROCEDURE
AgentProcedure: TYPE
Dependency: TYPE

EventType: TYPE
FreeDataProcedure: TYPE
NoSuchDependency: ERROR
Notify: PROCEDURE
RemoveDependency: PROCEDURE

U
&
®

NNNNNN®==D=

26-5

26 Eveni;

26-6

27

FileContainerShell

27.1 Overview

FileContainerShell provides a simple way to implement a container application that is
backed by an NSFile. FileContainerShell takes an NSFile and column information (such as
headings, widths, formatting) and creates a FileContainerSource, a StarWindowsShell, and
a ContainerWindow body. (See also the FileContainerSource, ContainerSource,
StarWindowsShell, and ContainerWindow interfaces). Most NSFile-backed container
applications can use this interface, thereby greatly simplifying the writing of apphcatxons
such as Folders and File Drawers.

27.2 Interface Items

27.2.1 Create a FileContainerShell

CreateX3: PROCEDURE [
file: NsFile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenuitems: MenuData. ArrayHandle «NIL,
scope: NSFile.Scope «[],
position: ContainerSource.itemindex « 0,
options: FileContainerSource.Options «[],
access: ContainerWindowExtra3.Access ¢ ContainerwindowExtral.fullAccess,
considerShowingCoverSheet: B00LEAN]
RETURNS [shell: starwindowshell.Handle];

CreateX: PROCEDURE [
file: NsFile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle « NI,
scope: NsFile.Scope « [],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options « (],

27-1

27

FileContainerShell

27-2

access: ContainerWindowExtra3.Access « ContainerWindow€xtra3.fullAccess]
RETURNS [shell: starwindowshell.Handle];

Create: PROCEDURE [
file: Nsrile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenuitems: MenuData.ArrayHandle «ni,
scope: NSFile.Scope «[],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options « []]
RETURNS [shell: starwindowsShell. Handle]; .

Create, CreateX, and CreateX3 create a StarWindowShell with a container window as the
body window. file is the backing for the container; it must be an NSFile with children.
columnHeaders and columnContents specify all the necessary information about the
columns to be displayed for the open container. (See the ContainerWindow and
FileContainerSource interfaces for the specifics of the headers and contents.) scope
specifies ordering, filtering, and direction, if any. position indicates the item that should be
displayed first. access specifies the ContainerWindow access. (See the ContainerWindow
interface for details. regularMenultems and topPusheeMenultems are the menu items
that the client would like to put in the header of the StarWindowShell. Create puts these

. items in the header along with its own menu items, such as Show Next and Show Previous.

considerShowingCoverSheet specifies whether the resulting shell will be allowed to have
a coversheet. TRUE means that the shell will have a coversheet if one is define; FALSE means
that the coversheet will not be shown and the menu item "Show Coversheet” is not !
displayed. Fine point: The client is responsible for putting any bottomPusheeCommands in the window
header. CreateX is defined in FileContainerShellExtra.mesa, CreateX3 is defined in
FileContainerShellExtra3.mesa '

27.2.2 Operations on the Shell

GetContainerWindow: PROCEDURE [shell: starwindowshell. Handle]
RETURNS [window: window.Handle];

Returns the container window that was created by the Create procedure. May raise
ContainerWindow.Error[notAContainerWindow] if the shell does not have a container
window in it.

GetContainerSource: PROCEDURE [shell: starwindowsShell.Handle]

RETURNS [source:ContainerSource.Handle];

Returns the container source that was created by the Create procedure. May raise
ContainerWindow.Error{notAContainerWindow] if the shell does not have a container
window in it.

ViewPoint Programmer’s Manual . 27

27.3 Usage/Examples

27.3.1 Example: Creating a FileContainerShell and Specifying Columns

The following example presents the procedure CreateFileSWS, which takes an
NSFile.Reference and creates a file container shell with two columns: the name of the file
and a version date. (See the ContainerSource interface for details on columns.) The name
column uses the predefined ContainerSource.NameColumn; the version column is given in the
example. The version column differs from the standard ContainerSource.DateColumn in that
it displays the last modified date for directories instead of -—.

ContentSeq: TYPE = RECORD [

SEQUENCE cOlS: CARDINAL OF FileContainerSource.ColumnContentsinfo];
HeaderSeq: TYPE = RECORD [

SEQUENCE cols: CARDINAL OF ContainerWindow.ColumnHeader{nfo];
NumberOfColumns: CARDINAL = 2;
2: UNCOUNTED ZONE = ...;

- CreateFileSWS: PROCEDURE [refarence: Nsrile.Reference]
RETURNS [Starwindowshell. Handle] =
‘BEGIN
shell: starwindowshell.Handle;
headers: LONG POINTER TO HeaderSeq « MakeColumnHeaders{];
contents: LONG POINTER TO ContentSeq « MakeColumnContents(];
shell « FileContainerShell.Create{ 4
file: reference,
columnHeaders: oescrirTOR[headers],
columnContents: DESCRIPTOR[contents]];
z.FREE[@headers];
z.FREE[@contents];
RETURN([shell];
END;

DateFormatProc: FileContainerSource. MultiAttributeFormatProc =
BEGIN
-- If non-directory, show createdOn date. For directory, show last date modified
(the last time anything was changed in directory) --
template: xstring.ReaderBody «
xString. FromSTRING[" €2>-<6>-<4> <8>:<9>:<10>"L];
XTime.Append[
displayString,
IF attrRecord.isDirectory THEN attrRecord.modifiedOn ELSE attrRecord.createdOn,
@template]};
END;

MakeColumnContents: PROCEDURE
RETURNS [columnContents: LONG POINTER TO ContentSeq] =
BEGIN
dateSelections: NSFile.Selections ¢« [interpreted:
isDirectory: TRUE, createdOn: TRUE, modifiedOn: TRUE]];

27-3

27

FileContainerShell

27-4

columnContents « z.NEW[ContentSeq[NumberOfColumns];
columnContents[0] « FileContainerSource.NameColumn(]; -
columnContents[1] « [multipleAttributes [attrs: dateSelections, formatProc:

DatefFormatProc]];

RETURN [columnContents];
END;

MakeColumnHeaders: PROCEDURE

RETURNS [columnHeaders: LONG POINTER TO HeaderSeq] =
BEGIN
columnHeaders « 2.NEW([HeaderSeq[NumberOfColumns]];
columnHeaders{0] « [

width: 367,

heading: XString.FromSTRING["NAME"“] |;
columnHeaders{1] « [

width: 135,

heading: xstring.FromSTRING["VERSION OF"]];
RETURN [columnHeaders];
END;

ViewPoint Programmer’s Manual

27

27.4 Index of Interface Items

Item

Create: PROCEDURE

CreateX: PROCEDURE
GetContainerSource: PROCEDURE
GetContainerWindow: PROCEDURE

Page

NN o =

27-5

27 FileContainerShell

27-6

28

FileContainerSource

28.1 Overview

FileContainerSource supports the creation of NSFile-backed container sources (see
ContainerSource). It also provides facilities for specifying the columns that will be
displayed for each item in the source. .

FileContainerSource implements all of the procedure types described in the
ContainerSource interface, as well as all the procedures described below.

28.2 Interface Items

28.2.1 Creation

Options: TYPE = RECORD [
readOnly: BOOLEAN ¢ FALSE];

Create: PROCEDURE [
file: NsFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope «],
options: Options «[]]
RETURNS [source: ContainerSource.Handle];

CreateX: PROCEDURE [
file: NsFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope «[],
options: Options «[]]
RETURNS [source: ContainerSource.Handle, sourceX: ContainerSourceExtra.Procedures];

Creates a container source backed by file, which must be an NSFile with children. columns
desecribes the information that should be displayed for each entry in the container. columns
is copied by this procedure, so the client may release any storage associated with columns
after calling Create. scope specifies the range of files that will be displayed. The caller of
Create is responsible for the storage in the scope parameter; FileContainerSource will not
copy it. It can be destroyed at the same time the source is destroyed. Typically the client

28-1

28

FileContainerSource

28-2

will save the pointer to scope storage in same place as source handle. options specifies
global information about the container source. Display formatting is managed by the
container window. (See the ContainerWindow and FileContainerSheil interfaces.) CreateX
is identical to Create, except that it returns the additional ContainerSousceextra.Procedures
needed for concurrency. (See the ContainerSource chapter for details on these procedures).
Fine point: CreateX is exported by FileContainerSourceExtra3.

28.2.2 Specifying Columns

When a file container source is created, columns may be specified. Each column represents
information that will be displayed for each item. The container window requests the
columns one at a time in the form of strings. In a file container source, each column must be
based on some combination of NSFile attributes. For each column, the creator of file
container source specifies which attributes are required to format a string for that column
and supplies a procedure that will be called with the specified attributes. When the files in
the source are enumerated, the procedure for a particular column is called with the values
of the specified attributes for each file, which should be used to generate the string for that
file. :

ColumnContents: TYPE =
LONG DESCRIPTOR FOR ARRAY OF ColumnContentsinfo;

ColumnContents describes a set of columns, where each column is some information that is
displayed for each item in the container display. The columns are displayed in the order
given by this array.

ColumnType:TYPe = {attribute, extendedAttribute, multipleAttributes};

ColumnContentsinfo: TYPE = RECORD [
info: seLECT type: ColumnType FROM
attribute = > |
attr: NSFile.AttributeType,
formatProc: AttributeFormatProc «NiL],
needsDataHandle: BOOLEAN « FALSE],
extendedAttribute = > [
extendedAttr: NsFile.ExtendedAttributeType,
formatProc: AttributeFormatProc «NiL,
extendedAttribute = > [
extendedAttr: NsFile.ExtendedAttributeType,
formatProc: AttributeFormatProc «niL],
multipleAttributes = > |
attrs: NsFile.Selections,
formatProc: MultiAttributeFormatProc « NiL],
ENDCASE];

ColumnContentsinfo describes a single column of information that can be displayed for
each item in a container display. Each column may be backed by one of three things: an
NSFile interpreted attribute (the attribute variant), and NSFile extended attribute (the
extendedAttribute variant), or some combination of several attributes (the
multipleAttributes variant). The attribute and extendedAttribute variants both take a
specification of what attribute is being described (attr and extendedAttr) and an
AttributeFormatProc that is called to render the attribute as a string. If needsDataHandle

ViewPoint Programmer’s Manual 28

= TRUE, then a valid Containee.DataHandle is passed to the format procedure as the
containeeData parameter, else the containeeData parameter is NiL. If the column needs a
Containee.DataHandle in order to format it, then needsDataHandle should be TRuE. This
addition is for performance: obtaining a Containee.DataHandle requires an extra access to
the file, thus slowing up the enumeration. The multipleAttributes variant is for columns
that may require more than one attribute. (The typical example is the SIZE column in
folders, in which some items display the nhumberOfChildren attribute and others display
the sizeinPages attribute, depending on the isDirectory attribute.) attrs specifies all the
attributes required for this column. formatProc is the procedure that will be called to
format the column.

See the common types of columns provided below in the section on commonly used columns.

AttributeFormatProc: TYPE = PROCEDURE [
containeelmpl: Containee.Implementation,
containeeData: Containee.DataHandle,
attr: NSFile.Attribute,
displayString: xstring.Writer];

When the container display mechanism displays a column that represents an NSFile
attribute, it calls the AttributeFormatProc specified for that column. attr contains the
attribute to be formatted for display. displayString is used to return a formatted string that
represents the desired attribute. containeelmpl may be used to make calls on the
underlying implementation of the item being displayed.

MultiAttributeFormatProc: TYPE = PROCEDURE [
containeelmpl: Containee.lImplementation,
containeeData: Containee.DataHandle,
attrRecord: NSFile.Attributes, -- LONG POINTER TO NSFile. AttributesRecord
displayString: xstring.Writer];

When the container display mechanism displays a column that represents multiple NSFile
attributes, it calls the MultiAttributeFormatProc specified for that column. attrRecord
contains the attributes to be formatted for display. displayString is used to return a
formatted string that represents the desired attribute. containeeimpl may be used to make
calls on the underlying implementation of the item being displayed.

28.2.3 Operations on Sources

Getiteminfo: PROCEDURE [
source: ContainerSource.Handle, itemindex: ContainerSource.ltemindex]
RETURNS [file:NsFile.Reference, type: NsFile.Type];

Returns an NsFile.Reference and type for the specified item.

info: PROCEDURE [source: ContainerSource.Handle]
RETURNS [
file: NsFile.Reference,
columns: ColumnContents,
scope: NSFile.Scope,
options: Options];

28-3

28

FileContainerSource

28-4

InfoX: PROCEDURE{ -_—
source: ContainerSource.Handle] ‘
RETURNS [sourceX: ContainerSourceExtra.Procedures];

The Info procedure returns information about a file container source; the information
returned is the same information that was used to create the source (see the Create
procedure). If the source was created using CreateX, InfoX returns the extra procedures
defined in ContainerSourceExtra.Procedures. Fine point:InfoX is defined in ContainerSourceExtra.

Isit: PROCEDURE [source: ContainerSource.Handle] RETURNS [BOOLEAN];
Isit returns TRUE if source is a file container source.
ChangeScope: PROCEDURE [source: ContainerSource.Handle, newScope: Nsrile.Scope];

Allows the scope (passed in to Create) to be changed. A call to ChangeScope is typically
followed by a source.ActOn(relist], then a Containerwindow.Update.

Rebuilditem: PROCEDURE [source: ContainerSource.Handle, item: ContainerSource.ltemindex];

Rebuilditem causes the FileContainerSource to rebuild item, for example after a client has
changed an attribute that is displayed in a column of the source. Note that the client must
call the appropriate ChangeProc in order to get the ContainerWindow to repaint properly.
Fine point: Rebuilditem is exported by FileContainerSourceExtra2.

SourceEnumProc: TYPE = PROCEDURE [sOurce: ContainerSource.Handle] -
RETURNS [StOp: BOOLEAN «FALSE]; ‘

EnumerateSources: PROCEDURE [enumProc: SourceEnumProc];

EnumerateSources will enumerate all existing FileContainerSources and call enumProc
with each source. The enumerate will stop early if the enumProc sets stop to TRUE. Fine
point: EnumerateSources and SourceEnumProc are defined in FileContainerSourceExtra3.

TakeFilterProc: TYPe = PROCEDUER [fs: ContainerSource.Handle, aboutToTake: NsFile.Reference]
RETURNS [Ok: BOOLEAN];

SetTakeFilterProc: PROCEDURE : [fs; ContainerSource. Handle, p: TakeFilterProc];

Clients can use SetTakeFilterProc to set a TakeFilterProc¢ that will be called just before each
file is about to be moved or copied into the source. The TakeFilterProc returns a boolean: if
ok is TRUE, the move or copy goes ahead, otherwise that file is not copied/moved into the
source and the enumeration continues on to the next file. No message is posted if the
TakeFilterProc vetos the copy, so feedback is up to the client. This procedure is provided to
allow clients some control over what files are copied into the source; clients may use this to
make sure their source only gets files of certain types. This proc has no effect on copies onte
the closed container; clients must set up a separate filter mechanism for that case. For BWS
4.3, these two procedures are in FileContainerSourceExtrad.

ViewPoint Programmer’s Manual 28

28.2.4 Commonly Used Columns
These predefined procedures can be used in building a ColumnContents array.

lconColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfoj;

lconColumn represents a column with a small icon picture in it. The small picture is
obtained from the containeelmpl.smallPicture that is passed in.

NameColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfo];

NameColumn represents a column with the file’s name in it.

SizeColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

SizeColumn represents a column with the file’s size in it, as follows: If the file has the
isDirectory attribute, the numberOfChildren attribute is displayed with the label
“Objects”; if the file does not have the isDirectory attribute, the sizelnPages attribute is
displayed with the label “Disk Pages”.

DateColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

DateColumn represents a column with the file’s creation date in it, as follows: If the file
has the isDirectory attribute, dashes (---) are displayed; if the file does not have the
isDirectory attribute, the createDate attribute is displayed.

VersionColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfo];

VersionColumn represents a column with the file’s version in it. VersionColumn is defined
in FileContainerSourceExtra.mesa.

NameAndVersionColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfol;

NameAndVersionColumn represents a column with the file’s name and version appended

together with an exclamation point in between, e.g. Foo!3. NameAndVersionColumn is
defined in FileContainerSourceExtra.mesa.

28.3 Usage/Examples

28.3.1 Example: Specifying Columns using FileContainerSource

The following example presents the procedure MakefFolderLikeShell, which takes an
NSFile.Reference (Containee.DataHandle) and creates a file container shell with the
number of columns dependent on some internal procedures. (See the ContainerSource

28-5

28

FileContainerSource

28-6

interface for details on columns.) The columns use the predefined columns such as
ContainerSource.NameColumn.

Columns: Tyre = {icon, name, version, nameAndVersion, size, createDate};
HeaderSeq: TYPE = RECORD [SEQUENCE cOls: CARDINAL OF ContainerWindow.ColumnHeaderinfol;
ContentSeq: TYPE = RECORD [
SEQUENCE cOlS: CARDINAL OF FileContainerSource.ColumnContentsinfol;
ColumnArray:TYpe = ARRAY {icon, name, version, size, date} Of CARDINAL;

.columnWidths: LONG POINTER TO ColumnArray « z.New[ColumnArray e NuLL];

ClientsGenericProc: Containee.GenericProc =

< <[atom: Atom. ATOM,

data: Containee.DataHandle,

changeProc: Containee.ChangeProc « Nit,

changeProcData: LONG POINTER ¢ NiL]

RETURNS [LONG UNSPECIFIED] > >

BEGIN

SELECT atom FROM
open = > RETURN [
MakefolderLikeShell

data: data,
changeProc: changeProc,
changeProcData: changeProcData] |;

ENDCASE a > RETURN [oldFolder.genericProc [atom, data] |;
END;

FreeColumnContents: pusLIC PROCEDURE [columnContents: LONG POINTER TO ContentSeq] =
BEGIN
z.Frree[@columnContents];
END;

FreeColumnHeaders: PuBLIC PROCEDURE [columnHeaders: LONG POINTER TO HeaderSeq] =
BEGIN

2.FRee[@columnHeaders];

END;

MakeFolderLikeShell: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NiL]
RETURNS [shell: starwindowshell. Handle] = {
file: NsFile.Reference;
columnHeaders: LONG POINTER TO HeaderSeq « MakeColumnHeaders[];
columnContents: LONG POINTER TO ContentSeq « MakeColumnContents{];

mydata: Data « z.New [DataObject « [
cd: data,

ViewPoint Programmer’s Manual 28

changeProc: changeProc,
changeProcData: changeProcData]];
isLocal: BOOLEAN;
BEGIN ENABLE
UNWIND = > {
z.rRee{@mydata);
FreeColumnHeaders [columnHeaders];
FreeColumnContents {columnContents];

)5

shell ¢« rileContainersheil.Create [
file: file,
columnHeaders: DesCRIPTOR[columnHeaders],
columnContents: DEsCRIPTOR{columnContents],
regularMenultems: if “isLocal THEN remoteRegularMenultems ELSE NIL];

IF shell = NIL THEN RETURN [shell];

Starwindowshell.SetisCloseLegalProc [shell, Closing];
Context.Create[context, mydata, DestroyContext, shell];
FreeColumnHeaders [columnHeaders};
FreeColumnContents [columnContents];
starwindowshell.SetPreferredDims [shell, [700, 0]];

RETURN [shell];
END; -- ENABLE

}

MakeColumnContents: PUBLIC PROCEDURE RETURNS [columnContents: LONG POINTER TO
ContentSeq] =
BEGIN
i2 INTEGER &=-1;
columnContents « z.New[ContentSeq[CountColumns(]]];
IF Showlicon[] THEN
columnContents[i «i + 1] «FilaContainerSource.lconColumn(];
-- Procedures called below are not neccessary to the example.
columnContents[i =i + 1] «
ir ShowNameAndVersion(]
THEN FileContainerSourceExtra.NameAndVersionColumn(]
ELSE FileContainerSource.NameColumn(];
iF ShowVersion(] THEN
columnContents[i «~i + 1] «FilaContainerSourceExtra.VersionColumnl];
it ShowsSize(] THEN
columnContents{i «i + 1] «FileContainerSource.SizeColumn(];
I ShowCreateDate[] THEN
columnContents[i «i + 1] e FileContainerSource.DateColumni];
RETURN [columnContents];
END;

28-7

28

FileContainerSource

28.4 Index of Interface Items

28-8

Item

AttributeFormatProc: TYpe
ChangeScope:PROCEDURE
ColumnContents: TYPe
ColumnContentsinfo: TYpe
ColumnType: TYPE

Create: PROCEDURE

CreateX: PROCEDURE
DateColumn: PROCEDURE
EnumerateSources: PROCEDURE
Getiteminfo: PROCEDURE
lconColumn: PROCEDURE

Info: PROCEDURE

InfoX: PROCEDURE

islt: PROCEDURE
MultiAttributeFormatProc: TYPE
NameColumn: PROCEDURE
NameAndVersionColumn: PROCEDURE
Options: TYPE

Rebuildltem: PROCEDURE
SizeColumn: PROCEDURE
SourceEnumProc: PROCEDURE
VersionColumn: PROCEDURE

o
®
(]

NHaEVNE=SUaEWAEArLWAWADWN=aDNNNEW

29

(AR

FormWindow

29.1 Overview

The FormWindow interface provides clients the ability to create and manipulate form
items in a window.

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained and set by the client and user. The user obtains the current value of an
item by simply looking at it and sets the current value -of an item by pointing at it
appropriately with the mouse. The client obtains and sets the value of items by calling
appropriate FormWindow procedures.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item’s value is of type BOOLEAN.

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choicelndex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A
multiplechoice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string. It contains nonattributed text only. A text item’s
value is of type xstring.ReaderBody.

A decimal item is a text item that has a value of type XLReal.Number.
An integer item is a text item that has a value of type LONG INTEGER.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow. It can contain whatever
the client desires. A window item’s value is a Window.Handle. A client must provide its own
Tip.NotifyProc and window display proc for the window item.

29-1

29 FormWindoW

29.1.1 Creating a FormWindow -

A client creates a FormWindow by calling Formwindow.Create. Create does not actually
create a window, but rather it takes an already existing window and turns it into a
FormWindow. Windows are usually created by calling starwindowSheli.CreateBody.

The client supplies a MakeltemsProc and optionally a LayoutProc to Formwindow.Create.
Create calls these two client procedures, first the MakeitemsProc¢, then the LayoutProc. In
the MakeltemsProc, the client creates the individual items in the form by calling
FormWindow procedures that make items (see §29.1.2 and §29.2.2). In the LayoutProc, the
client specifies where each created item should be positioned in the window by calling
FormWindow procedures that specify layout (see the sections labeled Layout in this
chapter). '

29.1.2 Making Form Items

There is a procedure for making each type of item: MakeBooleanitem, MakeChoiceitem,
MakeCommanditem, MakeDecimalltem, Makeintegeritem, MakeMultipleChoiceltem,
MakeTagOnlyitem, MakeTextitem, MakeWindowltem. Each item must have a unique
"key", a FormWindow.ltemKey. This is a CARDINAL supplied by the client to each
MakeXXXitem call. This key is then used in any future calls to manipulate that item, such
as to get the value of the item. The key must be unique within the FormWindow.

All items have some common characteristics and some type-unique characteristics. The
common ones are described here. Every item can have a tag that will appear to the left of -
the item and a suffix that will appear to the right of the item. An item can have a box
drawn around it or not. The default is to draw the box. [tems can be read-only, that is the

user cannot change the value of the item. Items can be visible or invisible, and invisible

items can either take up white space in the window or not. See §29.2.2 for more details.

29.1.3 Getting and Setting Values

Every item that has a value that the user can change (all except tagonly and command
items) also has procedures for the client to get and set the value. These are:

GetBooleanltemValue DonelLookingAtTextitemValue
GetChoiceltemValue SetBooleanitemValue
GetDecimalitemValue SetChoiceltemValue
GetintegerltemValue SetDecimalitemValue
GetMultipleChoiceltemValue SetintegeritemValue
GetTextitemValue SetMultipleChoiceitemValue
GetWindowltemValue SetTextitemValue

LoookAtTextltemValue

29-2

ViewPoint Programmer’s Manual 29

Note: All allocation of storage for values of items is handled by FormWindow. The client
need not keep copies of item values while the FormWindow exists. Obtaining the current
value of an item is a simple call to one of the GetXXXitemValue procedures. This makes it
easy to ensure that the internal value of an item is always in sync with the display. (See
§29.2.3 for more details.) Fine Point: This storage allocation scheme is opposite to the one used by XDE’s
FormSW, where the client owns the storage for items.

29.1.4 "Changed” BOOLEAN

Every item that has a value that the user can change (all except tagonly, command, and
window items) has a “changed” boolean associated with it. All items are created with this
boolean set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the
user changes the item. This allows the client to determine which items have changed
when, for example, the user selects "Done" or "Apply" on a property sheet. The client is
responsible for resetting the changed boolean to false by calling ResetChanged or
ResetAllChanged after examining the changed boolean with HasBeenChanged or
HasAnyBeenChanged. See §29.2.1 for more detail.

Boolean and choice items can have a client-supplied procedure that will be called whenever
the item’s value changes (see BooleanChangeProc and ChoiceChangeProc in §29.2.1 and
29.2.2. The client may also supply a GlobalChangeProc that will be called whenever any
item changes (see §29.2.1).

29.1.5 Visibility

Each item is either displayed in the form window or not. If an item is displayed in the form
window, it is visible. If an item is not currently displayed, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on the screen, that is any
items below it move up to take its screen space. If an item is invisibleGhost, the space that
it would occupy were it visible is white on the screen. An item’s visibility can be changed at
any time by calling SetVisibility (see §29.2.5.)

29.1.6 Layout

The exact layout of items in a form window is done by calling various layout procedures
after creating the items to be laid out. If an item is not explicitly laid out, it will not appear
in the form window at all. A DefaultLayout procedure is provided that places each created
item on a separate line.

A form window consists of horizontal lines with zero or more items on each line. Each line
may be a different height. Any desired vertical spacing may be accomplished by using
appropriate heights for lines. Any desired horizontal spacing may be accomplished by
using appropriate margins between items. Items may be lined up horizontally by using
TabStops. Lines are created by calling AppendLine or InsertLine. Items are placed on a line
by calling Appendltem or Insertitem. (See §29.2.6 for more detail.)

29.1.7 Neutral Properties

Any item (except command items) can take on a neutral state, which indicates that the
item has no value at all. This property makes it possible for a client to indicate to the user
that the item’s value is no longer valid in the current context of the form window, or that

29-3

29

FormWindow

the value for this item is obtained from somewhere other then this form window. Items in
the neutral state appear without any indications of value and have their tag, suffix, and
value box fields painted over with gray diagonal stripes. Since the item actually has no
value, client calls to GetXXXitemValue for an item in the neutral state result in an error.

Items can be placed into (and removed from) a neutral state by calls to SetitemNeutrainess.
A neutral item automatically returns to a normal state when the user selects a value for
that item, or when the item receives the text input focus (in the case of text, integer, and
decimal items). (See §29.2.8 for more detail.)

29.2 Interface Items

29-4

29.2.1 Creating a FormWindow, etc.

Create: PROCEDURE([
window: window.Handle,
makeltemsProc: MakeltemsProc,
layoutProc: LayoutProc « Nit,,
windowcChangeProc: GlobalChangeProc «ni,
minDimsChangeProc: MinDimsChangeProc «Nit,
Zone: UNCOUNTED ZONE - NiL, :
clientData: LONG POINTER «~NIL];

Create takes an ordinary window and makes it a form window.

window is a window created by the client. Windows are usually created by calling
StarWindowShell.CreateBody.

makeltems is a client-supplied procedure that is called to make the form items in the
window. makeltems should call various Formwindow.MakeXXXItem procedures (see
§29.2.2). Fine Point: makeltems is not called after Create returns, so makeltems can be a nested procedure.

layoutProc is a client-supplied procedure that is called to specify the desired position of the
items in the window. layoutProc is called after makeltems has been called. layoutProc
should call various layout procedures (see §29.2.6), such as AppendLine and Appenditem.
If the default is taken, the DefaultLayout of one item per line will be used.

windowChangeProc is the global change proc for the entire window. Any time any item in
the window changes, this procedure is called.

zone is the zone from which storage for the items will be allocated. FormWindow uses a
private zone if none is supplied.

clientData is passed to makeltems, layoutProc, and windowChangeProc when called.

May raise Error{alreadyAFormWindow].
DefaultLayout: LayoutProc;
The default for the Create layoutProc parameter. Specifies a layout of one item per line.

Destroy: PROCEDURE [window: window.Handle];

ViewPoint Programmér’s Manual 29

Destroy destroys all FormWindow data associated with window, turning it back into an
ordinary window. All form items are destroyed, but the window itself is not destroyed. May
raise Error[notAFormWindow].

GetClientData: PROCEDURE [window: window.Handle]
RETURNS [clientData: LONG POINTER];

GetClientData returns the clientData that was passed to Create. May raise
Error[notAFormWindow].

GlobalChangeProc: TYPE = PROCEDURE [
window: window.Handle, '
item: ItemKey,
calledBecauseOf: ChangeReason,
clientData: LONG POINTER];

The client may supply a GlobalChangeProc to Create. Any time the value of any item in the
window is changed, the GlobalChangeProc is called with the key of the item that was
changed. If more than one item was changed at one time (such as by a client call to
FormWindow.Restore), nullitemKey will be passed in and the client must examine the
"changed" boolean of all items to see what was changed (see §29.2.4). calledBecauseOf
indicates what kind of action caused the GlobalChangeProc to be called. clientData is the
LONG POINTER that was passed to Create.

GetGlobalChangeProc: PROCEDURE [window: window.Handle]
RETURNS [proc: GlobalChangeProc]; :

GetGlobalChangeProc returns the GlobalChangeProc that was passed to Create. May raise
Error[notAFormWindow].

SetGlobalChangeProc: PROCEDURE [window: window.Handle,
proc: GlobalChangeProc] RETURNS [old: GlobalChangeProc];

SetGlobalChangeProc changes the GlobalChangeProc that was passed to Create. May raise
Error[notAFormWindow]. '

MinDimsChangeProc: TYPE = PROCEDURE [window: window.Handle,
old, new: window.Dims];

Whenever the minimum dimensions of the FormWindow change, the client supplied
MinDimsChangeProc is called. This is useful for form windows that are nested as window
items inside another outer form window. Whenever the dimensions of the nested form
window change (due to items being made visible or invisible or a text item growing or
shrinking or new items being added or...), the client that created the window item and the
nested form window can be called so that it can make the window item bigger or smaller for
the nested form window to be completely visible. See also NeededDims.

SetMinDimsChangeProc: PROCEDURE [window: Window.Handle,
proc: MinDimsChangeProc] RETURNS [old: MinDimsChangeProc];

29-5

29

FormWindow

29-6

SetMinDimsChangeProc changes the MinDimsChangeProc that was passed to Create. May

raise Error [notAFormWindow]. SetMinDimsChangeProc is defined in & ™

FormWindowExtra2.mesa.

GetZone: PROCEDURE [window: window.Handle]
RETURNS [zONne: UNCOUNTED ZONE];

GatZone returns the zone associated with the FormWindow. May raise
Error[notAFormWindow].

Isit: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];

Isit is used to determine if a window is a form window. If window was made into a form
window by calling Formwindow.Create, then isit returns TRUE, else FALSE.

LayoutProc:TYPe = PROCEDURE [window: window.Handle, clientData: LONG POINTER];

The client supplies a LayoutProc to Create to specify the location of items created by the
MakeltemsProc. See §29.2.6 for details of layout.

MakeltemsProc: TYPE = PROCEDURE [
window: window.Handle,
clientData: LONG POINTER];

The client supplies a'MakeltemsProc to Create to make the form items in the window.
Create will call the client’s MakeltemsProc, and it should call various MakeXXXitem
procedures (see §29.2.2) to make the items. window should be passed to the various
MakeXXXltem. clientData is the same as that passed to Create. Fine point for clients of
PropertySheet: clientData can be passed to PropertySheet.Create and will be passed on to FormWindow.Create
and the MakeitemsProc.

NeededDims: PROCEDURE [window: window.Handle]
RETURNS [Window.Dims];

NeededDims returns the minimum dimensions required for a window to hold all the
currently visible items in the form.

NumberOfltems: PROCEDURE [window: Window.Handle] RETURNS [CARDINAL];

NumberOfitems returns the current number of form items in window. This count will
include visible and invisible items. This is useful for clients that create additional items
dynamically after the form has been created. May raise Error[notAFormWindow].

Repaint: PROCEDURE [window: window.Handle];

Repaint causes a Window.Validate on window. This is used in conjunction with the
SetXXXIltemValue, SetVisibility, Appenditem, and Insertitem procedures. All these
procedures take a repaint: BOOLEAN parameter. To minimize screen flashing while
changing several items at the same time, the client may call these procedures with repaint
= FALSE, then call Formwindow.Repaint. The form window will not be repainted until Repaint
iz called. Warning: After calling any procedure with repaint = FALSE, Formwindow.Repaint

o~

ViewPoint Programmer’s Manual 29

29.2.2

must be called. Otherwise, the ‘screen will be inconsistent with the internal values. May
raise Error{notAFormWindow].

Making Form Items, etc.

Create procedures are provided for each type of item. These MakeXXXlitem routines are
used to originally create items in a form window as well as to add items to an existing
window.

A number of parameters to each MakeXXXItem procedure are identical and are described
here, rather than with each procedure. If all of the defaults are taken for an item, it will be
boxed, with no tags and not read-only. All of these may raise Error[notAFormWindowl];

window is the form window the item is contained in. It should be the same as the window
passed to the client’s MakeltemsProc.

myKey is a client-defined key (ItemKey) for the item. The item key uniquely identifies the
item and should be used-to make calls on other FormWindow procedures, such as
GetXXXltemValue. Caution: The key must be unique within this form window.

tag is the text to be displayed before (to the left of) the item on the same line. (To put a tag
on a separate line, use MakeTagOnlyitem.)

suffix is the text to be displayed after (to the right of) the item on the same line.

~ visibility indicates whether the item should be displayed on the screen.

boxed indicates whether the item should have a box drawn around it or not.
readOnly = TRUE indicates that the item can not be edited by the user. The item can still be
changed by calling a SetXXXItemValue procedure.

ItemKey: TYPE = CARDINAL;

ItemKey uniquely identifies an item. An ItemKey is supplied by the client whenever an
item is made (MakeXXXltem) and should be used thereafter to identify the item to
FormWindow, such as then calling GetXXXItemValue or SetVisibility.

IterhType: TYPE = MACHINE DEPENDENT {choice(0), muitiplechoice, decimal, integer, boolean,
text, command, tagonly, window, last(15)};

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained (GetXXXItemValue) and set (SetXXXltemValue).

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choiceindex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A multiple
choice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string, and contains only nonattributed text. A text
item’s value is of type xstring.ReaderBody.

A decimal item is a text item that has a value of type xLReal.Number.

An integer item is a text item that has a value of type LONG INTEGER.

29-7

29 FormWindow

A boolean item is an item with two.states (on and off, or TRUE and FALSE). A boolean
item’s value is of type BOOLEAN.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow and can contain whatever
the client desires. A window item’s value is a window.Handle. A client must provide its own
Tip.NotifyProc and window display procedure for the window item.

nullitemKey: ItemKey;

nuilltemKey is used to indicate no item.

29.2.2.1 Boolean Items

MakeBooleanitem: PROCEDURE {
window: window.Handle,
myKey: ItemKey,
tag: xString.Reader «NiL,
suffix: xString.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
changeProc: BooleanChangeProc «Nit,
label: BooleanitemLabel,
initBoolean: BOOLEAN « TRUE];

MakeBooleanitem creates a boolean item. A boolean item value is of type 8BOOLEAN. When
the value is TRUE, the item is highlighted. When FALSE, it is not highlighted. When the user
clicks over the label part of a boolean item, the value toggles.

Tag LABEL suffix

Unhighlighted boolean item, value = FALSE

changeProc is a client-supplied procedure that will be called whenever the value of the
item changes.

label is the string or bitmap that the user points at to toggle the item’s value. If label is a
string, the string is copied. If label is a bitmap, the bits are not copied, so the client must
ensure that the bitmap pointer is valid for the lifetime of the form window.

initBoolean is the initial value of the item.
May raise Error[notAFormWindow, duplicateltemKey].
BooleanitemLabel: TYPE = RECORD [

var: SELECT type: BooleanitemLabelType FROM
string = > [string: xstring.ReaderB8ody],

29-8

ViewPoint Programmer’s Manual 29

bitmap = > [bitmap: Bitmap]
ENDCASE];

BooleanitemLabelType: TYPe = {string, bitmap};

A BooleanitemLabel is passed to MakeBooleanitem. It is the part of the item that the user
points at and is or is not highlighted, depending on the value of the item. A label may be
either a string or a bitmap. (See §29.2.10 on Miscellaneous TYPEs for the definition of
Bitmap). If label is a string, the string is copied. If label is a bitmap, the bits are not copied,
so the client must ensure that the bitmap pointer is valid for the lifetime of the form
window.

BooleanChangeProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
calledBecauseOf: ChangeReason,
newValue: BOOLEAN];

The client may provide a BooleanChangeProc to MakeBooleanitem. Whenever the item’s
value changes (TRUE to FALSE or FALSE to TRUE), this procedure is called. window is the form
window that the item is in. item is the key of the boolean item to which this
BooleanChangeProc is attached. calledBecauseOf indicates what kind of action caused the
change proc to be called. newValue is the vew value of the item. The item will already have
the new value when this procedure is called.

~ Caution: Ifa BooleanChangeProc does a'SetXXXItemValue, the client should take extreme
care to prevent infinite recursion. (See §29.3.1)

29.2.2.2 Choice Items

MakeChoiceltem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader «ni,
suffix: xstring.Reader «nNiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
values: Choiceltems,
initChoice: Choicelndex,
fullyDisplayed: BOOLEAN « TRUE,
verticallyDisplayed: BOOLEAN «FALSE,
hintsProc: ChoiceHintsProc « i,
changeProc: ChoiceChangeProc «Nit,
outlineOrHighlight: OutlineOrHighlight « highlight];

MakeChoiceltem creates a choice item. A choice item is an enumerated list of choices, only
one of which can be selected at any time . The choices can be displayed to the user as either
strings or bitmaps, or some of each. The current choice is highlighted. When the user clicks
on a choice, it becomes the current choice and is highlighted. Each choice has a client-

29-9

29

FormWindow

29-10

defined Choicelndex associated with it that uniquely identifies that choice. The value of a
choice item is of type Choiceindex.

values is the list of all the possible choices. An indication of where to wrap the display
around to the next line can be made by specifying a wrapindicator variant in the
appropriate place in the values array. If a choice is a string, the string is copied. If a choice
is a bitmap, the bits are not copied, so the client must ensure that the bitmap pointer is
valid for the lifetime of the form window.

initChoice is the value of the initial choice.

fullyDisplayed indicates whether all the choices should be displayed or not. If
fullyDisplayed = TRUE, all the choices are displayed. If fullyDisplayed = FALSE, only the
current choice is displayed, with the rest of the choices being accessed via a popup menu.
Caution: bitmaps cannot appear in popup menus, so fullyDisplayed = rALSE should not be
used if the choices are bitmaps.

verticallyDisplayed indicates whether the choices should be displayed vertically or
horizontally. If fullyDisplayed = FraLSE, the value of verticallyDisplayed is ignored. Any
wrapindicators are skipped over when choices are displayed vertically.

If hintsProc is supplied, it is called to make a popup hint menu. If the default is taken, the
form window will make a hint menu with all choices. Note: Since menus can only contain
strings (not bitmaps), a bitmap choice will appear in the hints menu as a number
indicating the choice’s position. Note: This is not the same as the Choiceindex for that
choice.

If changeProc is supplied, it is called whenever the choice changes.

May raise Error[notAFormWindow,duplicateltemKey, invalidChoiceNumber].
OutlineOrHighlight: Tyre a {outline, highlight};

Normally the selected choice for a choice item is indicated by highlighting the choice. The
outlineOrHighlight parameter allows the selected choice to be indicated by outlining the
choice with a black box. This is intended to support the Shading choice item on, for
example, the triangle and ellipse property sheets in the ViewPoint editor.

Choiceltems: TYPE = LONG DESCRIPTOR FOR ARRAY Choicelndex oF Choiceltem;

Choiceltems is the list of possible choice for a choice item. A Choiceltems ARRAY is passed to
MakeChoiceltem. The choices are displayed in the order they appear in the Choiceltems
ARRAY.

Choiceltem: TYPE = RECORD [

var: SELECT type: ChoiceltemType FROM

string = > [
choiceNumber: Choiceindex,
string: xstring.ReaderBody],

bitmap = >|
choiceNumber: Choiceindex,
bitmap: Bitmap],

wrapindicator = > NULL];

ChoiceltemType: TYpPe a {string, bitmap, wrapindicator};

ViewPoint Programmer’s Manual 29

Choiceindex: TYPE = CARDINAL[0..377778B];

A choice item consists of an array of choices (Choiceltems). Each choice (Choiceltem)
consists of a unique number that identifies the choice (Choicelndex) and either a stringor a
bitmap to display to the user. In addition, the Choiceltems array can contain a
wrapindicator wherever the client desires the choices be wrapped around to begin another
line of choices. A wrapindicator Choiceltem is not a real choice and serves only as
additional layout information for the FormWindow. If Choiceitem is a string, the string is
copied. If Choiceltem is a bitmap, the bits are not copied, so the client must ensure that the
bitmap pointer is valid for the lifetime of the FormWindow.

The client must construct a Choiceltems array before calling MakeChoiceltem. This can be
simplified if all the choices are strings by using the FormWindowMessageParse interface.
This allows all the choices for a choice item to be stored as a single XMessage with
embedded syntax indicating individual choice strings and choice numbers. (See
FormWindowMessageParse for more detail.)

ChoiceChangeProc: TYPE = PROCEDURE [
window: window.Handle,
item: itemKey,
calledBecauseOf: ChangeReason,
oldValue, newValue: Choiceindex];

The client may provide a ChoiceChangeProc to MakeChoiceitem. Whenever the choice
changes, this procedure is called. window is the form window that the item is in. item is
the key of the choice item to which this ChoiceChangeProc is attached. calledBecauseOf
indicates what kind of action caused the change proc to be called. oldValue and newValue
correspond to the choice numbers assigned to the choices in MakeChoiceltem. The item will
have the new value when this procedure is called.

Caution: If a ChoiceChangeProc does a SetXXXltemValue, the client should take extreme
care to prevent infinite recursion. See §29.3.1, Calling ChangeProcs.

ChoiceHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS |
hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
freeHints: FreeChoiceHintsProc];

FreeChoiceHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ltemKey, ‘
-hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

The client may provide a ChoiceHintsProc to MakeChoiceltem. Whenever the user points
at the mouse menu for a choice item, this procedure is called and the hints returned are
used to construct a popup menu that is displayed. If the user selects one of the choices from
the popup menu, that choice becomes the current choice.

window is the form window that the item is in.

item is the key of the choice item to which this ChoiceHintsProc is attached.

29-11

29

FormWindow

hints is an array of choice numbers for the choices that the client wants to appear in the
menu. This allows a client to show a subset of all the choices to the user for situations in
which not all the choices make sense. hints must be allocated by the client.

freeHints is a procedure that will be called after the hint menu has been taken down to
allow the client to free any storage that was allocated when creating the hints array.

MakeMultipleChoiceltem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader «niL,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
values: Choiceltems,
initChoice: LONG DESCRIPTOR FOR ARRAY OF Choiceindex,
verticallyDisplayed: BOOLEAN « FALSE,
hintsProc: ChoiceHintsProc «NiL,
changeProc: MultipieChoiceChangeProc «NiL];

May raise Error{notAFormWindow, duplicateitemKey].

MuitipleChoiceChangeProc: TYPE = PROCEDURE [
‘window: wWindow.Handle,
item: ltemKey,
calledBecauseOf: ChangeReason,
oldValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
newValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

A multiple choice item is identical to a choice item, except that it may have more than one
initial value. See MakeChoiceltem above for details of choice items. A multiple choice item
is useful for showing the properties of a heterogenous selection, such as the font property of
a text selection that has more than one font.

29.2.2.3 Command Items

MakeCommandlitem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NiL,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxad: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
commandProc¢: CommandProc,
commandName: XString.Reader,
clientData: LONG POINTER & NIL];

Creates a command item. A command item allows a user to invoke a command. When the
user clicks over the commandName, commandProc is called. If boxed is TRUE, the
commandName appears with a rounded corner box drawn around it (rather than a square-

29-12

ViewPoint Programmer’s Manual 29

corner