
Open CASCADE Technology
6.9.1

OCAF White-Paper

September 25, 2015

CONTENTS i

Contents

1 What is OCAF ? . 1

1.1 Purpose of OCAF . 1

1.2 Overview of the Architecture . 1

1.3 Getting Started . 2

1.4 An example of OCAF usage . 3

2 A Look Inside OCAF . 5

2.1 The Design of OCAF . 5

2.1.1 Reference-key model . 5

2.1.2 Topological naming . 6

2.1.3 Aggregation of attributes . 6

2.1.4 Summary . 6

2.2 The Data Framework . 7

2.2.1 Data structure . 7

2.2.2 Compound documents . 8

2.2.3 Transaction mechanism . 9

2.3 Persistent Data Storage . 10

2.3.1 Introduction . 10

2.3.2 Schemes of Persistence . 11

2.3.3 Basic Data Storage . 11

2.3.4 Persistent Collections . 12

2.3.5 Persistent Geometry . 13

2.3.6 Persistent Topology . 14

2.3.7 Standard Documents . 14

(c) Open CASCADE 2015

1 What is OCAF ? 1

1 What is OCAF ?

1.1 Purpose of OCAF

The Open CASCADE Application Framework (OCAF) is an easy-to-use platform for rapidly developing sophis-
ticated domain-specific design applications. A typical application developed using OCAF deals with two or three-
dimensional (2D or 3D) geometric modeling in trade-specific Computer Aided Design (CAD) systems, manufacturing
or analysis applications, simulation applications or illustration tools.

Developing a design application requires addressing many technical aspects. In particular, given the functional
specification of your application, you must at least:

• Design the architecture of the application — definition of the software components and the way they cooperate

• Define the data model able to support the functionality required — a design application operates on data
maintained during the whole end-user working session

• Structure the software in order to

– synchronize the display with the data — commands modifying objects must update the views

– support generalized undo-redo commands — this feature has to be taken into account very early in the
design process

• Implement the function for saving the data — if the application has a long life cycle, the compatibility of data
between versions of the application has to be addressed

• Build the application user interface

By providing architectural guidance and ready-to-use solutions to these issues, OCAF helps you to develop your
application significantly faster: you concentrate on the application’s functionality.

As you use the architecture provided by OCAF, the design of your application is made easy: as the application
developer you can concentrate on the functionality instead of the underlying mechanisms required to support it.

Also, thanks to the coupling with the other Open CASCADE Technology modules, your application can rapidly be
prototyped. In addition, the final application can be developed by industrializing the prototype — you don’t need to
restart the development from scratch.

Last but not least, you base your application on an Open Source component: this guarantees the long-term useful-
ness of your development.

1.2 Overview of the Architecture

OCAF provides you with an object-oriented Application-Document-Attribute model. This consists of C++ class
libraries. The main class, Application, is an abstract class in charge of handling documents during the working
session. Services provided by this class include:

• Creating new documents

• Saving documents and opening them

• Initializing document views

The document, implemented by the concrete class Document, is the container for the application data. Its main
purpose is to centralize notifications of data editing in order to provide Undo-Redo. Each document is saved in a
single flat ASCII file defined by its format and extension (a ready-to-use format is provided with OCAF).

Application data are attributes, that is, instances of classes derived from the Attribute abstract class, organized
according to the OCAF Data Framework. The OCAF Data Framework references aggregations of attributes using
persistent identifiers in a single hierarchy (the Data Framework is described in the next chapter). A wide
range of attributes come with OCAF, including:

(c) Open CASCADE 2015

1.3 Getting Started 2

• Primitive attributes such as Integer, Real, Name and Comment;

• Shape attribute containing the geometry of the whole model or elements of it;

• Other geometric attributes such as Datums (points, axis and plane) and Constraints (tangent-to, at-a-given-
distance, from-a-given-angle, concentric, etc.)

• Modeling step and Function attributes — the purpose of these attributes is to rebuild objects after they have
been modified (parameterization of models)

• Visualization attributes — these attributes allow data to be visualized in a 2D or 3D viewer

• User attributes, that is, attributes typed by the application

• In addition, application-specific data can be added by defining new attribute classes; naturally, this changes
the standard file format. The only functions that have to be implemented are:

– Copying the attribute

– Converting it from and to its persistent homolog (persistence is briefly presented in the paragraph
Persistent Data Storage)

Figure 1: The Application-Document-Attribute model

OCAF uses other modules of Open CASCADE Technology — the Shape attribute is implemented with the geom-
etry supported by the Modeling Data module and the viewer is the one provided with the Visualization
module. Modeling functions can be implemented using the Modeling Algorithms module.

1.3 Getting Started

At the beginning of your development, you first define an application class by inheriting from the Application abstract
class. You only have to create and determine the resources of the application for specifying the format of your
documents (you generally use the standard one) and their file extension.

Then, you design the application data model by organizing attributes you choose among those provided with OC-
AF. You can specialize these attributes using the User attribute. For example, if you need a reflection coefficient,

(c) Open CASCADE 2015

1.4 An example of OCAF usage 3

you aggregate a User attribute identified as a reflection coefficient with a Real attribute containing the value of the
coefficient (as such, you don’t define a new class).

If you need application specific data not provided with OCAF, for example, to incorporate a finite element model in
the data structure, you define a new attribute class containing the mesh, and you include its persistent homologue
in a new file format.

Once you have implemented the commands which create and modify the data structure according to your specifi-
cation, OCAF provides you, without any additional programming:

• Persistent reference to any data, including geometric elements — several documents can be linked with such
reference;

• Document-View association;

• Ready-to-use functions such as :

– Undo-redo;

– Save and open application data.

Finally, you develop the application’s graphical user interface using the toolkit of your choice, for example:

• KDE Qt or GNOME GTK+ on Linux;

• Microsoft Foundation Classes (MFC) on Windows Motif on Sun;

• Other commercial products such as Ilog Views.

You can also implement the user interface in the Java language using the Swing-based Java Application Desktop
component (JAD) provided with OCAF.

1.4 An example of OCAF usage

To create a useful OCAF-based application, it is necessary to redefine two deferred methods: Formats and
ResourcesName

In the Formats method, add the format of the documents, which need to be read by the application and may have
been built in other applications.

For example:

void myApplication::Formats(TColStd_SequenceOfExtendedString& Formats)
{

Formats.Append(TCollection_ExtendedString ("OCAF-myApplication"));
}

In the ResourcesName method, you only define the name of the resource file. This file contains several definitions
for the saving and opening mechanisms associated with each format and calling of the plug-in file.

Standard_CString myApplication::ResourcesName()
{

return Standard_CString ("Resources");
}

To obtain the saving and opening mechanisms, it is necessary to set two environment variables: CSF_Plugin-
Defaults, which defines the path of the plug-in file, and CSF_ResourcesDefault, which defines the resource file:

SetEnvironmentVariable ("CSF_ResourcesDefaults",myDirectory);
SetEnvironmentVariable ("CSF_PluginDefaults",myDirectory);

The plugin and the resource files of the application will be located in myDirector. The name of the plugin file must
be Plugin.

(c) Open CASCADE 2015

1.4 An example of OCAF usage 4

Resource File

The resource file describes the documents (type and extension) and the type of data that the application can
manipulate by identifying the storage and retrieval drivers appropriate for this data.

Each driver is unique and identified by a GUID generated, for example, with the uuidgen tool in Windows.

Five drivers are required to use all standard attributes provided within OCAF:

• the schema driver (ad696002-5b34-11d1-b5ba-00a0c9064368)

• the document storage driver (ad696000-5b34-11d1-b5ba-00a0c9064368)

• the document retrieval driver (ad696001-5b34-11d1-b5ba-00a0c9064368)

• the attribute storage driver (47b0b826-d931-11d1-b5da-00a0c9064368)

• the attribute retrieval driver (47b0b827-d931-11d1-b5da-00a0c9064368)

These drivers are provided as plug-ins and are located in the PappStdPlugin library.

For example, this is a resource file, which declares a new model document OCAF-MyApplication:

formatlist:OCAF-MyApplication
OCAF-MyApplication.Description: MyApplication Document Version 1.0
OCAF-MyApplication.FileExtension: sta
OCAF-MyApplication.StoragePlugin: ad696000-5b34-11d1-b5ba-00a0c9064368
OCAF-MyApplication.RetrievalPlugin: ad696001-5b34-11d1-b5ba-00a0c9064368
OCAF-MyApplicationSchema: ad696002-5b34-11d1-b5ba-00a0c9064368
OCAF-MyApplication.AttributeStoragePlugin: 47b0b826-d931-11d1-b5da-00a0c9064368
OCAF-MyApplication.AttributeRetrievalPlugin: 47b0b827-d931-11d1-b5da-00a0c9064368

Plugin File

The plugin file describes the list of required plug-ins to run the application and the libraries in which plug-ins are
located.

You need at least the FWOSPlugin and the plug-in drivers to run an OCAF application.

The syntax of each item is Identification.Location Library_Name, where:

• Identification is GUID.

• Location defines the location of the Identification (where its definition is found).

• Library_Name is the name (and path to) the library, where the plug-in is located.

For example, this is a Plugin file:

a148e300-5740-11d1-a904-080036aaa103.Location: FWOSPlugin
! base document drivers plugin
ad696000-5b34-11d1-b5ba-00a0c9064368.Location: PAppStdPlugin
ad696001-5b34-11d1-b5ba-00a0c9064368.Location: PAppStdPlugin
ad696002-5b34-11d1-b5ba-00a0c9064368.Location: PAppStdPlugin
47b0b826-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin
47b0b827-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin

(c) Open CASCADE 2015

2 A Look Inside OCAF 5

2 A Look Inside OCAF

2.1 The Design of OCAF

2.1.1 Reference-key model

In most existing geometric modeling systems, the data are topology driven. They usually use a boundary represen-
tation (BRep), where geometric models are defined by a collection of faces, edges and vertices, to which application
data are attached. Examples of data include:

• a color;

• a material;

• information that a particular edge is blended.

When the geometric model is parameterized, that is, when you can change the value of parameters used to build
the model (the radius of a blend, the thickness of a rib, etc.), the geometry is highly subject to change. In order to
maintain the attachment of application data, the geometry must be distinguished from other data.

In OCAF, the data are reference-key driven. It is a uniform model in which reference-keys are the persistent identi-
fication of data. All accessible data, including the geometry, are implemented as attributes attached to reference-
keys. The geometry becomes the value of the Shape attribute, just as a number is the value of the Integer and Real
attributes and a string that of the Name attribute.

On a single reference-key, many attributes can be aggregated; the application can ask at runtime which attributes
are available. For example, to associate a texture to a face in a geometric model, both the face and the texture are
attached to the same reference-key.

Figure 2: Figure 2. Topology driven versus reference-key driven approaches

(c) Open CASCADE 2015

2.1 The Design of OCAF 6

2.1.2 Topological naming

Reference-keys can be created in two ways:

• At programming time, by the application

• At runtime, by the end-user of the application (providing that you include this capability in the application)

As an application developer, you generate reference-keys in order to give semantics to the data. For example, a
function building a prism may create three reference-keys: one for the base of the prism, a second for the lateral
faces and a third for the top face. This makes up a semantic built-in the application’s prism feature. On the other
hand, in a command allowing the end-user to set a texture to a face he/she selects, you must create a reference-key
to the selected face if it has not previously been referenced in any feature (as in the case of one of the lateral faces
of the prism).

When you create a reference-key to selected topological elements (faces, edges or vertices), OCAF attaches to the
reference-key information defining the selected topology — the Naming attribute. For example, it may be the faces
to which a selected edge is common to. This information, as well as information about the evolution of the topology
at each modeling step (the modified, updated and deleted faces), is used by the naming algorithm to maintain the
topology attached to the reference-key. As such, on a parametrized model, after modifying the value of a parameter,
the reference-keys still address the appropriate faces, even if their geometry has changed. Consequently, you
change the size of the cube shown in the figure 2 above, the user texture stay attached to the right face.

Note As Topological naming is based on the reference-key and attributes such as Naming (selection information)
and Shape (topology evolution information), OCAF is not coupled to the underlying modeling libraries. The only
modeling services required by OCAF are the following:

• Each algorithm must provide information about the evolution of the topology (the list of faces modified, up-
dated and deleted by the algorithm)

• Exploration of the geometric model must be available (a 3D model is made of faces bounded by close wires,
themselves composed by a sequence of edges connected by their vertices)

Currently, OCAF uses the Open CASCADE Technology modeling libraries.

2.1.3 Aggregation of attributes

To design an OCAF-based data model, the application developer is encouraged to aggregate ready-to-use attributes
instead of defining new attributes by inheriting from an abstract root class. There are two major advantages in using
aggregation rather than inheritance:

• As you don’t implement data by defining new classes, the format of saved data provided with OCAF doesn’t
change; so you don’t have to write the Save and Open functions

• The application can query the data at runtime if a particular attribute is available

2.1.4 Summary

• OCAF is based on a uniform reference-key model in which:

– Reference-keys provide persistent identification of data;

– Data, including geometry, are implemented as attributes attached to reference-keys;

– Topological naming maintains the selected geometry attached to reference-keys in parametrized models
;

• In many applications, the data format provided with OCAF doesn’t need to be extended;

• OCAF is not coupled to the underlying modeling libraries.

(c) Open CASCADE 2015

2.2 The Data Framework 7

2.2 The Data Framework

2.2.1 Data structure

The OCAF Data Framework is the Open CASCADE Technology realization of the reference-key model presented in
the previous paragraph. It implements the reference-key as label objects, organized in a tree structure characterized
by the following features:

• A document contains only one tree of labels

• Each label has a tag expressed as an integer value unique at its level in the tree

• A label is identified by a string — the entry — built by concatenation of tags from the root of the tree, for
example [0:1:2:1]

• Attributes are of a type identified by a universal unique identifier (GUID)

• Attributes are attached to labels; a label may refer to many attributes as long as each has a different GUID

As such, each piece of data has a unique persistent address made up of the document path, its entry and the GUID
of its class.

In the image the application for designing coffee machines first allocates a label for the machine unit. It then adds
sub-labels for the main features (glass coffee pot, water receptacle and filter) which it refines as needed (handle
and reservoir of the coffee pot and spout of the reservoir).

You now attach technical data describing the handle — its geometry and color — and the reservoir — its geometry
and material. Later on, you can modify the handle’s geometry without changing its color — both remain attached to
the same label.

(c) Open CASCADE 2015

2.2 The Data Framework 8

Figure 3: Figure 3.The data structure of the coffee machine

The nesting of labels is key to OCAF. This allows a label to have its own structure with its local addressing scheme
which can be reused in a more complex structure. Take, for example, the coffee machine. Given that the coffee
pot’s handle has a label of tag [1], the entry for the handle in the context of the coffee pot only (without the machine
unit) is [0:1:1]. If you now model a coffee machine with two coffee pots, one at the label [1], the second at the label
[4] in the machine unit, the handle of the first pot would have the entry [0:1:1:1] whereas the handle of the second
pot would be [0:1:4:1]. This way, we avoid any confusion between coffee pot handles.

2.2.2 Compound documents

As the identification of data is persistent, one document can reference data contained in another document, the
referencing and referenced documents being saved in two separate files.

Lets look at the coffee machine application again. The coffee pot can be placed in one document. The coffee
machine document then includes an occurrence — a positioned copy — of the coffee pot. This occurrence is
defined by an XLink attribute (the external Link) which references the coffee pot of the first document (the XLink
contains the relative path of the coffee pot document and the entry of the coffee pot data [0:1]).

(c) Open CASCADE 2015

2.2 The Data Framework 9

Figure 4: The coffee machine compound document

In this context, the end-user of the coffee machine application can open the coffee pot document, modify the
geometry of, for example, the reservoir, and overwrite the document without worrying about the impact of the
modification in the coffee machine document. To deal with this situation, OCAF provides a service which allows the
application to check whether a document is up-to-date. This service is based on a modification counter included in
each document: when an external link is created, a copy of the referenced document counter is associated to the
XLink in the referencing document. Providing that each modification of the referenced document increments its own
counter, we can detect that the referencing document has to be updated by comparing the two counters (an update
function importing the data referenced by an XLink into the referencing document is also provided).

2.2.3 Transaction mechanism

The Data Framework also provides a transaction mechanism inspired from database management systems: the
data are modified within a transaction which is terminated either by a Commit if the modifications are validated
or by an Abort if the modifications are abandoned — the data are then restored to the state it was in prior to the
transaction. This mechanism is extremely useful for:

(c) Open CASCADE 2015

2.3 Persistent Data Storage 10

• Securing editing operations (if an error occurs, the transaction is abandoned and the structure retains its
integrity)

• Simplifying the implementation of the Cancel function (when the end-user begins a command, the applica-
tion may launch a transaction and operate directly in the data structure; abandoning the action causes the
transaction to Abort)

• Executing Undo (at commit time, the modifications are recorded in order to be able to restore the data to their
previous state)

The transaction mechanism consists simply of managing a backup copy of attributes. During a transaction, attributes
are copied before their first modification. If the transaction is validated, the copy is destroyed. If the transaction is
abandoned, the attribute is restored to its initial value (when attributes are added or deleted, the operation is simply
reversed).

Transactions are document-centered, that is, the application starts a transaction on a document. So, modifying
a referenced document and updating one of its referencing documents requires two transactions, even if both
operations are done in the same working session.

2.3 Persistent Data Storage

2.3.1 Introduction

In OCAF, persistence, that is, the mechanism used to save a document in a file, is based on an explicit formal
description of the data saved.

When you open a document, the application reads the corresponding file and first creates a memory representa-
tion of it. This representation is then converted to the application data model — the OCAF-based data structure
the application operates on. The file’s memory representation consists of objects defined by classes known as
persistent.

The persistent classes needed by an application to save its documents make the application’s data schema. This
schema defines the way the data are organized in the file — the format of the data. In other words, the file is simply
an ASCII dump of the persistent data defined by the schema, the persistent data being created from the application
data model during the save process.

Only canonical information is saved. As a matter of fact, the application data model usually contains additional data
to optimize processing. For example, the persistent Bézier curve is defined by its poles, whereas its data model
equivalent also contains coefficients used to compute a point at a given parameter. The additional data is calculated
when the document is opened.

The major advantages of this approach are the following:

• Providing that the data format is published, files created by OCAF-based applications can be read without
needing a runtime of the application (openness)

• Although the persistence approach makes the data format more stable, OCAF provides a framework for
managing compatibility of data between versions of the application — modification of the data format is
supported through the versioning of schema.

OCAF includes a ready-to-use schema suitable for most applications. However, it can be extended if needed. For
that, the only things you have to do are:

• To define the additional persistent attributes

• To implement the functions converting these persistent attribute to and from the application data model.

Applications using compound documents extensively (saving data in many files linked together) should implement
data management services. As a matter of fact, it’s out the scope of OCAF to provide functions such as:

• Version and configuration management of compound documents;

(c) Open CASCADE 2015

2.3 Persistent Data Storage 11

• Querying a referenced document for its referencing documents.

In order to ease the delegation of document management to a data management application, OCAF encapsu-
lates the file management functions in a driver (the meta-data driver). You have to implement this driver for your
application to communicate with the data management system of your choice.

2.3.2 Schemes of Persistence

There are three schemes of persistence, which you can use to store and retrieve OCAF data (documents):

• Standard persistence schema, compatible with previous OCAF applications

• XmlOcaf persistence, allowing the storage of all OCAF data in XML form

• BinOcaf persistence, allowing the storage of all OCAF data in binary format form

All schemes are independent of each other, but they guarantee that the standard OCAF attributes stored and
retrieved by one schema will be storable and retrievable by the other. Therefore in any OCAF application you can
use any persistence schema or even all three of them. The choice is made depending on the Format string of stored
OCAF documents or automatically by the file header data - on retrieval.

Persistent data storage in OCAF using the Standard package is presented in:

• Basic Data Storage

• Persistent Collections

Persistent storage of shapes is presented in the following chapters:

• Persistent Geometry

• Persistent Topology

Finally, information about opening and saving persistent data is presented in Standard Documents.

2.3.3 Basic Data Storage

Normally, all data structures provided by Open CASCADE Technology are run-time structures, in other words, tran-
sient data. As transient data, they exist only while an application is running and are not stored permanently. How-
ever, the Data Storage module provides resources, which enable an application to store data on disk as persistent
data.

Data storage services also provide libraries of persistent classes and translation functions needed to translate data
from transient to persistent state and vice-versa.

Libraries of persistent classes

Libraries of persistent classes are extensible libraries of elementary classes you use to define the database schema
of your application. They include:

• Unicode (8-bit or 16-bit character type) strings

• Collections of any kind of persistent data such as arrays.

All persistent classes are derived from the Persistent base class, which defines a unique way of creating and
handling persistent objects. You create new persistent classes by inheriting from this base class.

(c) Open CASCADE 2015

2.3 Persistent Data Storage 12

Translation Functions

Translation functions allow you to convert persistent objects to transient ones and vice-versa. These translation
functions are used to build Storage and Retrieval drivers of an application.

For each class of 2D and 3D geometric types, and for the general shape class in the topological data structure
library, there are corresponding persistent class libraries, which allow you to translate your data with ease.

Creation of Persistent Classes

If you use Unix platforms as well as WOK and CDL, you can create your own persistent classes. In this case, data
storage is achieved by implementing Storage and Retrieval drivers.

The Storage package is used to write and read persistent objects. These objects are read and written by a retrieval
or storage algorithm (Storage_Schema object) in a container (disk, memory, network ...). Drivers (FSD_File objects)
assign a physical container for data to be stored or retrieved.

The standard procedure for an application in reading a container is as follows:

• open the driver in reading mode,

• call the Read function from the schema, setting the driver as a parameter. This function returns an instance
of the Storage_Data class which contains the data being read,

• close the driver.

The standard procedure for an application in writing a container is as follows:

• open the driver in writing mode,

• create an instance of the Storage_Data class, then add the persistent data to write with the function AddRoot,

• call the function Write from the schema, setting the driver and the Storage_Data instance as parameters,

• close the driver.

2.3.4 Persistent Collections

Persistent collections are classes which handle dynamically sized collections of data that can be stored in the
database. These collections provide three categories of service:

• persistent strings,

• generic arrays of data,

• commonly used instantiations of arrays.

Persistent strings are concrete classes that handle sequences of characters based on both ASCII (normal 8-bit)
and Unicode (16-bit) character sets.

Arrays are generic classes, that is, they can hold a variety of objects not necessarily inheriting from a unique root
class. These arrays can be instantiated with any kind of storable or persistent object, and then inserted into the
persistent data model of a user application.

The purpose of these data collections is simply to convert transient data into its persistent equivalent so that it can
be stored in the database. To this end, the collections are used to create the persistent data model and assure
the link with the database. They do not provide editing or query capabilities because it is more efficient, within the
operative data model of the application, to work with transient data structures (from the TCollection package).

For this reason:

• the persistent strings only provide constructors and functions to convert between transient and persistent
strings, and

(c) Open CASCADE 2015

2.3 Persistent Data Storage 13

• the persistent data collections are limited to arrays. In other words, PCollection does not include sequences,
lists, and so on (unlike TCollection).

Persistent string and array classes are found in the PCollection package. In addition, PColStd package provides
standard, and frequently used, instantiations of persistent arrays, for very simple objects.

2.3.5 Persistent Geometry

The Persistent Geometry component describes geometric data structures which can be stored in the database.
These packages provide a way to convert data from the transient "world" to the persistent "world".

Persistent Geometry consists of a set of atomic data models parallel to the geometric data structures described in
the geometry packages. Geometric data models, independent of each other, can appear within the data model of
any application. The system provides the means to convert each atomic transient data model into a persistent one,
but it does not provide a way for these data models to share data.

Consequently, you can create a data model using these components, store data in, and retrieve it from a file or
a database, using the geometric components provided in the transient and persistent "worlds". In other words,
you customize the system by declaring your own objects, and the conversion of the geometric components from
persistent to transient and vice versa is automatically managed for you by the system.

However, these simple objects cannot be shared within a more complex data model. To allow data to be shared,
you must provide additional tools.

Persistent Geometry is provided by several packages.

The PGeom package describes geometric persistent objects in 3D space, such as points, vectors, positioning
systems, curves and surfaces.

These objects are persistent versions of those provided by the Geom package: for each type of transient object
provided by Geom there is a corresponding type of persistent object in the PGeom package. In particular the
inheritance structure is parallel.

However the PGeom package does not provide any functions to construct, edit or access the persistent objects.
Instead the objects are manipulated as follows:

• Persistent objects are constructed by converting the equivalent transient Geom objects. To do this you use
the MgtGeom::Translate function.

• Persistent objects created in this way are used to build persistent data structures that are then stored in a file
or database.

• When these objects are retrieved from the file or database, they are converted back into the corresponding
transient objects from the Geom package. To do this, you use MgtGeom::Translate function.

In other words, you always edit or query transient data structures within the transient data model supplied by the
session. Consequently, the documentation for the PGeom package consists simply of a list of available objects.

The PGeom2d package describes persistent geometric objects in 2D space, such as points, vectors, positioning
systems and curves. This package provides the same type of services as the PGeom package, but for the 2-
D geometric objects provided by the Geom2d package. Conversions are provided by the MgtGeom::Translate
function.

//Create a coordinate system
Handle(Geom_Axis2Placement) aSys;

//Create a persistent coordinate PTopoDS_HShape.cdlsystem
Handle(PGeom_Axis2placement)

aPSys = MgtGeom::Translate(aSys);

//Restore a transient coordinate system
Handle(PGeom_Axis2Placement) aPSys;

Handle(Geom_Axis2Placement)
aSys = MgtGeom::Translate(aPSys);

(c) Open CASCADE 2015

2.3 Persistent Data Storage 14

2.3.6 Persistent Topology

The Persistent Topology component describes topological data structures which can be stored in the database.
These packages provide a way to convert data from the transient "world" to the persistent "world".

Persistent Topology is based on the BRep concrete data model provided by the topology packages. Unlike the
components of the Persistent Geometry package, topological components can be fully shared within a single model,
as well as between several models.

Each topological component is considered to be a shape: a TopoDS_Shape object. The system’s capacity to convert
a transient shape into a persistent shape and vice-versa applies to all objects, irrespective of their complexity: vertex,
edge, wire, face, shell, solid, and so on.

When a user creates a data model using BRep shapes, he uses the conversion functions that the system provides
to store the data in, and retrieve it from the database. The data can also be shared.

Persistent Topology is provided by several packages.

The PTopoDS package describes the persistent data model associated with any BRep shape; it is the persistent
version of any shape of type TopoDS_Shape. As is the case for persistent geometric models, this data structure
is never edited or queried, it is simply stored in or retrieved from the database. It is created or converted by the
MgtBRep::Translate function.

The MgtBRepAbs and PTColStd packages provide tools used by the conversion functions of topological objects.

//Create a shape
TopoDS_Shape aShape;

//Create a persistent shape
PtColStd_DoubleTransientPersistentMap aMap;

Handle(PTopoDS_HShape) aPShape =
aMap.Bind2(MgtBRep::Translate

aShape,aMap,MgtBRepAbs_WithTriangle));

aPShape.Nullify();

//Restore a transient shape
Handle(PTopoDS_HShape) aPShape;

Handle(TopoDS_HShape) aShape =
aMap.Bind1(MgtBRep::Translate

(aPShape,aMap,MgtBRepAbs_WithTriangle));

aShape.Nullify();

2.3.7 Standard Documents

Standard documents offer you a ready-to-use document containing a TDF-based data structure. The documents
themselves are contained in a class inheriting from TDocStd_Application which manages creation, storage and
retrieval of documents.

You can implement undo and redo in your document, and refer from the data framework of one document to that of
another one. This is done by means of external link attributes, which store the path and the entry of external links.
To sum up, standard documents alone provide access to the data framework. They also allow you to:

• Update external links;

• Manage the saving and opening of data;

• Manage undo/redo functionality.

(c) Open CASCADE 2015

	What is OCAF ?
	Purpose of OCAF
	Overview of the Architecture
	Getting Started
	An example of OCAF usage

	A Look Inside OCAF
	The Design of OCAF
	Reference-key model
	Topological naming
	Aggregation of attributes
	Summary

	The Data Framework
	Data structure
	Compound documents
	Transaction mechanism

	Persistent Data Storage
	Introduction
	Schemes of Persistence
	Basic Data Storage
	Persistent Collections
	Persistent Geometry
	Persistent Topology
	Standard Documents

