/) ASCADE

/ TECHNOLOGY

Open CASCADE Technology
6.9.1

Coding Rules

September 25, 2015

CONTENTS i

Contents
1 Introduction. e 1
1.1 Scopeofthedocument e 1
2 Naming Conventions L 2
21 Generalnamingrules e 2
2.2 Namesofdevelopmentunits 2
2.3 Namesofvariables e 3
3 Formattingrules 6
4 Documentationrules 10
5 Applicationdesign 11
6 General C/C++rules L e 12
7 Portabilityissues 14
8 Stabilityissues 15
9 Performanceissues e e e 18
10 Draw Harnesscommand L e 19
11 Examples e 21

(c) Open CASCADE 2015

1 Introduction 1

1 Introduction

The purpose of this document is to define a common programming style for Open CASCADE Technology.

The common style facilitates understanding and maintaining a code developed cooperatively by several program-
mers. In addition, it enables construction of tools that incorporate knowledge of these standards to help in the
programming.

OCCT programming style follows common and appropriate best practices, so some guidelines have been excerpted
from the public domain.

The guide can be improved in the future as new ideas and enhancements are added.

1.1 Scope of the document

Rules in this document refer to C++ code. However, with minor exceptions due to language restrictions, they are
applicable to any sources in Open CASCADE Technology framework, including:

* C/C++
* GLSL programs
* OpenCL kernels

» TCL scripts and test cases

(c) Open CASCADE 2015

2 Naming Conventions 2

2 Naming Conventions

2.1 General naming rules

The names considered in this section mainly refer to the interface of Open CASCADE Technology libraries or source
code itself.

International language [MANDATORY]

Open CASCADE Technology is an open source platform available for an international community, thus all names
need to be composed of English words or their abbreviations.

Meaningful names

Names should be meaningful or, at least, contain a meaningful part. To better understand this requirement, let us
examine the existing names of toolkits, packages, classes and methods:

» Packages containing words Geom or GeomZ2d in their names are related to geometrical data and operations.
» Packages containing words TopoDS or BRep in their names are related to topological data and operations.

+ In OCAF, packages that define transient, persistent data classes and drivers to map between them, have
similar names prefixed by T, P, and M correspondingly (e.g. TDocStd, PDocStd, MDocStd).

» Packages ending with ... Test define Draw Harness plugins.

» Methods starting with Get... and Set... are usually responsible for correspondingly retrieving and storing data.

Related names
Names related to a logically connected functionality should have the same prefix (start with the same letters) or, at

least, have any other common part. For example, method GetCoord returns a triple of real values and is defined for
directions, vectors and points. The logical connection is obvious.

Camel Case style
Camel Case style is preferred for names. For example:

Standard_Integer awidthofbox; // this is bad
Standard_Integer width_of_box; // this is bad
Standard_Integer aWidthOfBox; // this is OK

2.2 Names of development units

Usually a unit (e.g. a package) is a set of classes, methods, enumerations or any other sources implementing a
common functionality, which is self-contained and independent from other parts of the library.

No underscores in unit names [MANDATORY]

Names of units should not contain underscores, unless the use of underscores is allowed explicitly.

(c) Open CASCADE 2015

2.3 Names of variables 3

File name extensions [MANDATORY]

The following extensions should be used for source files, depending on their type:
+ .cdl - CDL declaration files
» .cxx - C++ source files

e .hxx - C++ header files

* .Ixx - headers with definitions of inline methods (CDL packages)

Prefix for toolkit names [MANDATORY]

Toolkit names are prefixed by TK, followed by a meaningful part of the name explaining the domain of functionality
covered by the toolkit (e.g. TKOpenGl).

Names of classes

Usually the names of source files located in a unit start from the unit name separated from the other part of the file
name by underscore "_"

Thus, the names of files containing sources of C++ classes that belong to a package are constructed according to
the following template:

<package-name>_<class—-name>.cxx (or .hxx, or .cdl)

For example, file Adaptor2d_Curve2d.cxx belongs to the package Adaptor2d

Files that contain sources related to the whole unit are called by the unit name with appropriate extension.

Names of functions

The term function here is defined as:

» Any class method
» Any package method

« Any non-member procedure or function

It is preferred to start names of public methods from an upper case character and to start names of protected and
private methods from a lower case character.

class MyPackage_MyClass
{

public:

Standard_Integer Value () const;

void SetValue (const Standard_Integer theValue);
private:

void setIntegerValue (const Standard_Integer theValue);

}i

2.3 Names of variables

There are several rules that describe currently accepted practices for naming variables.

(c) Open CASCADE 2015

2.3 Names of variables 4

Naming of variables

Name of a variable should not conflict with the existing or possible global names (for packages, macros, functions,
global variables, etc.).

The name of a variable should not start with an underscore.

See the following examples:

Standard_Integer Elapsed_Time = 0; // this is bad - possible class name

Standard_Integer gp = 0; // this is bad - existing package name
Standard_Integer aGp = 0; // this is OK
Standard_Integer _KERNEL = 0; // this is bad

Standard_Integer THE_KERNEL = 0; // this is OK

Names of function parameters

The name of a function (procedure, class method) parameter should start with prefix the followed by the meaningful
part of the name starting with a capital letter.

See the following examples:

void Package_MyClass::MyFunction (const gp_Pnt& p); // this is bad
void Package_MyClass::MyFunction (const gp_Pnt& theP); // this is OK
void Package_MyClass::MyFunction (const gp_Pnt& thePoint); // this is preferred

Names of class member variables

The name of a class member variable should start with prefix my followed by the meaningful of the name starting
with a capital letter.

See the following examples:

Standard_Integer counter; // This is bad
Standard_Integer myC; // This is OK
Standard_Integer myCounter; // This is preferred

Names of global variables

It is strongly recommended to avoid defining any global variables. However, as soon as a global variable is neces-
sary, its name should be prefixed by the name of a class or a package where it is defined followed with _my.

See the following examples:

Standard_Integer MyPackage_myGlobalVariable = 0;
Standard_Integer MyPackage_MyClass_myGlobalVariable = 0;

Static constants within the file should be written in upper-case and begin with prefix THE_:

namespace
{

static const Standard_Real THE_CONSTANT_COEF = 3.14;
Vi

Names of local variables

The name of a local variable should be distinguishable from the name of a function parameter, a class member
variable and a global variable.

It is preferred to prefix local variable names with a and an (or is, to and has for Boolean variables).

See the following example:

Standard_Integer thel; // this is bad
Standard_Integer i; // this is bad
Standard_Integer index; // this is bad

Standard_Integer anIndex; // this is OK

(c) Open CASCADE 2015

2.3 Names of variables 5

Avoid dummy names

Avoid dummy names, such as j, j, k. Such names are meaningless and easy to mix up.

The code becomes more and more complicated when such dummy names are used there multiple times with
different meanings, or in cycles with different iteration ranges, etc.

See the following examples for preferred style:

void Average (const Standard_Realx* theArray,

Standard_Integer theRowsNb,
Standard_Integer theRowLen,
Standard_Realé& theResult)

{ theResult = 0.0;
f (Standard_Integer aRow = 0; aRow < aRowsNb; ++aRow)
{ for (Standard_Integer aCol = 0; aCol < aRowLen; ++aCol)
(theResult += theArray[aRow] [aCol];
éheResult /= Standard_Real (aRowsNb * aRowLen);
}

(c) Open CASCADE 2015

3 Formatting rules 6

3 Formatting rules

To improve the open source readability and, consequently, maintainability, the following set of rules is applied.

International language [MANDATORY]

All comments in all sources must be in English.

Line length

Try to stay within the limit of 120 characters per line in all sources.

C++ style comments

Prefer C++ style comments in C++ sources.

Commenting out unused code

Delete unused code instead of commenting it or using #define.

Indentation in sources [MANDATORY]

Indentation in all sources should be set to two space characters. Use of tabulation characters for indentation is
disallowed.

Separating spaces
Punctuation rules follow the rules of the English language.

+ C/C++ reserved words, commas, colons and semicolons should be followed by a space character if they are
not at the end of a line.

» There should be no space characters after '(' and before ’)’. Closing and opening brackets should be sepa-
rated by a space character.

+ For better readability it is also recommended to surround conventional operators by a space character. See
the following examples:

W (true) // NOT: while(true

{ DoSomething (theA, theB, theC, theD); // NOT: DoSomething(theA, theB,theC,theD);
?r (anIter = 0; anlIter < 10; ++anlIter) // NOT: for (anIter=0;anIter<l10;++anlIter) {
(theA = (theB + theC) x theD; // NOT: theA=(theB+theC) «theD

}

Separate logical blocks

Separate logical blocks of code with one blank line and comments.

See the following example:

// check arguments

Standard_Integer anArgsNb = argCount ();
(anArgsNb < 3 || isSmthInvalid)

{

(c) Open CASCADE 2015

3 Formatting rules 7

eturn THE_ARG_INVALID;
}

// read and check header

// do our job

Notice that multiple blank lines should be avoided.

Separate function bodies [MANDATORY]

Use function descriptive blocks to separate function bodies from each other. Each descriptive block should contain
at least a function name and purpose description.

See the following example:

//

// function : TellMeSmthGood

// purpose : Gives me good news
//

void TellMeSmthGood ()
{

}

//

// function : TellMeSmthBad

// purpose : Gives me bad news
//

void TellMeSmthBad ()
{

}

Block layout [MANDATORY]

Figure brackets { } and each operator (for, if, else, try, catch) should be written on a dedicated line.

In general, the layout should be as follows:

(expression)

Entering a block increases and leaving a block decreases the indentation by one tabulation.

Single-line operators
Single-line conditional operators (if, while, for, etc.) can be written without brackets on the following line.

(!myIsInit) return Standard_False; // bad

(thePtr == NULL) // OK
return Standard_False;

(!'theAlgo.IsNull()) // preferred
{
DoSomething () ;
}

Having all code in the same line is less convenient for debugging.

(c) Open CASCADE 2015

3 Formatting rules 8

Alignment

Use alignment wherever it enhances the readability. See the following example:

MyPackage_MyClass anObject;

Standard_Real aMinimum = 0.0;
Standard_Integer aVal = theval;
Switc (aval)
{
0: computeSomething(); reak;

> 12: computeSomethingElse (aMinimum); break;

t: computeSomethingElseYet (); oreak;

Indentation of comments

Comments should be indented in the same way as the code to which they refer or they can be in the same line if
they are short.

The text of the comment should be separated from the slash character by a single space character.

See the following example:

(expression) //bad comment

// this is a long multi-line comment
// which is really required
DoSomething () ; // maybe, enough
DoSomethingMore(); // again

Early return statement

Use an early return condition rather than collect indentations.

Write like this:
Standard_Integer ComputeSumm (const Standard_Integerx theArray,
const Standard_Size theSize)
{
Standard_Integer aSumm = 0;
(theArray == NULL || theSize == 0)

{
return 0;

}

. computing summ ...
eturn aSumm;

Rather than:

Standard_Integer ComputeSumm (const Standard_Integer* theArray,
const Standard_Size theSize)
{
Standard_Integer aSumm = 0;
(theArray != NULL && theSize != 0)
{
. computing summ ...

}

rn asumm;

This helps to improve readability and reduce the unnecessary indentation depth.

Trailing spaces

Trailing spaces should be removed whenever possible. Spaces at the end of a line are useless and do not affect
functionality.

(c) Open CASCADE 2015

3 Formatting rules 9

Headers order

Split headers into groups: system headers, headers per each framework, project headers; sort the list of includes
alphabetically.

This rule improves readability, allows detecting useless multiple header inclusions and makes 3rd-party dependen-
cies clearly visible.

// system headers
#include <iost
#include <wind

// Qt headers
#include <QDataStream>
#include <QString>

// OCCT headers

#include <gp_Pnt.hxx>

#include Vec.hxx>

#include <NCollection_List.hxx>

(c) Open CASCADE 2015

4 Documentation rules 10

4 Documentation rules

The source code is one of the most important references for documentation. The comments in the source code
should be complete enough to allow understanding the corresponding code and to serve as basis for other docu-
ments.

The main reasons why the comments are regarded as documentation and should be maintained are:

« The comments are easy to reach - they are always together with the source code;
« It is easy to update a description in the comment when the source is modified;

» The source by itself is a good context to describe various details that would require much more explanations
in a separate document;

» As a summary, this is the most cost-effective documentation.

The comments should be compatible with Doxygen tool for automatic documentation generation (thus should use
compatible tags).

Documenting classes [MANDATORY]

Each class should be documented in its header file (.hxx or .cdl). The comment should give enough details for the
reader to understand the purpose of the class and the main way of work with it.

Documenting class methods [MANDATORY]

Each class or package method should be documented in the header file (.hxx or .cdl).

The comment should explain the purpose of the method, its parameters, and returned value(s). Accepted style is:
//! Method computes the square value.
//! @param theValue the input value

//! @return squared value
Standard_Export Standard_Real Square (Standard_Real theValue);

Documenting C/C++ sources

It is very desirable to put comments in the C/C++ sources of the package/class.
They should be detailed enough to allow any person to understand what each part of code does.

It is recommended to comment all static functions (like methods in headers), and to insert at least one comment per
each 10-100 lines in the function body.

There are also some rules that define how comments should be formatted, see Formatting Rules.

Following these rules is important for good comprehension of the comments. Moreover, this approach allows
automatically generating user-oriented documentation directly from the commented sources.

(c) Open CASCADE 2015

5 Application design 11

5 Application design

The following rules define the common style, which should be applied by any developer contributing to the open
source.

Allow possible inheritance

Try to design general classes (objects) keeping possible inheritance in mind. This rule means that the user who
makes possible extensions of your class should not encounter problems of private implementation. Try to use
protected members and virtual methods wherever you expect extensions in the future.

Avoid friend declarations

Avoid using 'friend’ classes or functions except for some specific cases (for example, iteration) 'Friend’ declarations
increase coupling.

Set/get methods

Avoid providing set/get methods for all fields of the class. Intensive set/get functions break down encapsulation.

Hiding virtual functions [MANDATORY]

Avoid hiding a base class virtual function by a redefined function with a different signature. Most of the compilers
issue warning on this.

Avoid mixing error reporting strategies

Try not to mix different error indication/handling strategies (exceptions or returned values) on the same application
level.

Minimize compiler warnings [MANDATORY]

When compiling the source pay attention to and try to minimize compiler warnings.

Avoid unnecessary inclusions

Try to minimize compilation dependencies by removing unnecessary inclusions.

(c) Open CASCADE 2015

6 General C/C++ rules 12

6 General C/C++ rules

This section defines the rules for writing a portable and maintainable C/C++ source code.

Wrapping of global variables [MANDATORY]

Use package or class methods returning reference to wrap global variables to reduce possible name space conflicts.

Avoid private members

Use protected members instead of private wherever reasonable to enable future extensions. Use private fields if
future extensions should be disabled.

Constants and inlines over defines [MANDATORY]

Use constant variables (const) and inline functions instead of defines (#define).

Avoid explicit numerical values [MANDATORY]

Avoid usage of explicit numeric values. Use named constants and enumerations instead. Numbers produce diffi-
culties for reading and maintenance.

Three mandatory methods

If a class has a destructor, an assignment operator or a copy constructor, it usually needs the other two methods.

Virtual destructor

A class with virtual function(s) ought to have a virtual destructor.

Overriding virtual methods

Declaration of overriding method should contains specifiers "virtual" and "override" (using Standard_OVERRIDE
alias for compatibility with old compilers).

class MyPackage_BaseClass
{
public:

Standard_EXPORT virtual Standard_Boolean Perform();

class MyPackage_MyClass : public MyPackage_BaseClass
{

public:
Standard_EXPORT virtual Standard_Boolean Perform() Standard_OVERRIDE;

bi

This makes class definition more clear (virtual methods become highlighted).

Declaration of interface using pure virtual functions protects against incomplete inheritance at first level, but does not
help when method is overridden multiple times within nested inheritance or when method in base class is intended
to be optional.

(c) Open CASCADE 2015

6 General C/C++ rules

13

And here "override" specifier introduces additional protection against situations when interface changes might be

missed (class might contain old methods which will be never called).

Default parameter value

Do not redefine a default parameter value in an inherited function.

Use const modifier

Use const modifier wherever possible (functions parameters, return values, etc.)

Usage of goto [MANDATORY]

Avoid goto statement unless it is really needed.

Declaring variable in for() header

Declare a cycle variable in the header of the for() statement if not used out of cycle.

Standard_Real aMinDist = Precision::Infinite();
for (NCollection_Sequence<gp_Pnt>::Iterator aPntIter (theSequence);
aPntIter.More(); aPntIter.Next ())
{
aMinDist = Min (aMinDist, theOrigin.Distance (aPntIter.Value()));

}

Condition statements within zero
Avoid usage of C-style comparison for non-boolean variables:

void Function (Standard_Integer theValue,
Standard_Realx* thePointer)
{

(!thevalue) // bad style - ambiguous logic
{
DoSome () ;
}
(thevValue == 0) // OK
{
DoSome () ;
}
(thePointer != NULL) // OK, predefined NULL makes pointer comparison cleaner to reader
{ // (nullptr should be used instead as soon as C++11 will be available)

DoSome?2 () ;

(c) Open CASCADE 2015

7 Portability issues 14

7 Portability issues

This chapter contains rules that are critical for cross-platform portability.

Provide code portability [MANDATORY]
The source code must be portable to all platforms listed in the official 'Technical Requirements’. The term ’portable’
here means ’able to be built from source’.

The C++ source code should meet C++03 standard. Any usage of compiler-specific features or further language
versions (for example, C++11, until all major compilers on all supported platforms implement all its features) should
be optional (used only with appropriate preprocessor checks) and non-exclusive (an alternative implementation
compatible with other compilers should be provided).

Avoid usage of global variables [MANDATORY]

Avoid usage of global variables. Usage of global variables may cause problems when accessed from another shared
library.

Use global (package or class) functions that return reference to static variable local to this function instead of global
variables.

Another possible problem is the order of initialization of global variables defined in various libraries that may differ
depending on platform, compiler and environment.

Avoid explicit basic types
Avoid explicit usage of basic types (int, float, double, etc.), use Open CASCADE Technology types from pack-

age Standard: Standard_Integer, Standard Real, Standard_ShortReal, Standard_Boolean, Standard_CString and
others or a specific typedefinstead.

Use sizeof{() to calculate sizes [MANDATORY]

Do not assume sizes of types. Use sizeof() instead to calculate sizes.

Empty line at the end of file [MANDATORY]

In accordance with C++03 standard source files should be trailed by an empty line. It is recommended to follow this
rule for any plain text files for consistency and for correct work of git difference tools.

(c) Open CASCADE 2015

8 Stability issues 15

8 Stability issues

The rules listed in this chapter are important for stability of the programs that use Open CASCADE Technology
libraries.

Use OSD::SetSignal() to catch exceptions

When using Open CASCADE Technology in an application, call OSD::SetSignal() function when the application is
initialized.
This will install C handlers for run-time interrupt signals and exceptions, so that low-level exceptions (such as access

violation, division by zero, etc.) will be redirected to C++ exceptions that use try {...} catch (Standard_Failure) {...}
blocks.

The above rule is especially important for robustness of modeling algorithms.

Cross-referenced handles

Take care about cycling of handled references to avoid chains, which will never be freed. For this purpose, use a
pointer at one (subordinate) side.

See the following example:
In MyPackage.cd :
class MyFirstHandle;

class MySecondHandle;
pointer MySecondPointer to MySecondHandle;

In MyPackage MyFirstHandle.cdl :

class MyFirstHandle from MyPackage
is

SetSecondHandleA (me: mutable; theSecond: MySecondHandle from MyPackage);
SetSecondHandleB (me: mutable; theSecond: MySecondHandle from MyPackage);

fields
mySecondHandle : MySecondHandle from MyPackage;

mySecondPointer : MySecondPointer from MyPackage;

end MyFirstHandle from MyPackage;

In MyPackage MySecondHandle.cd! :

class MySecondHandle from MyPackage

is

-.éetFirstHandle (me: mutable; theFirst: MyFirstHandle from MyPackage);
fields

.‘ﬁyFirstHandle : MyFirstHandle from MyPackage;

end MySecondHandle from MyPackage;

In C++ code:

void MyFunction (

{
Handle (MyPackage_MyFirstHandle) anObjl new MyPackage_MyFirstHandle () ;
Handle (MyPackage_MySecondHandle) anObj2 new MyPackage_MySecondHandle () ;
Handle (MyPackage_MySecondHandle) anObj3 = new MyPackage_MySecondHandle () ;

(c) Open CASCADE 2015

8 Stability issues 16

anObjl->SetSecondHandleA (anObj2) ;
anObjl->SetSecondHandleB (anObj3) ;
anObj2->SetFirstHandle (anObjl) ;
anObj3->SetFirstHandle (anObjl) ;

// memory is not freed here !!!
anObjl.Nullify();
anObj2.Nullify();

// memory is freed here
anObj3.Nullify();

C++ memory allocation

In C++ use new and delete operators instead of malloc() and free(). Try not to mix different memory allocation
techniques.

Match new and delete [MANDATORY]

Use the same form of new and delete.

aPtrl = new TypeA[n]; ... ; deletel] abPtrl;
aPtr2 = new TypeB(); ... ; delete abPtr2;
aPtr3 = Standard::Allocate (4096); ... ; Standard::Free (aPtr3);

Methods managing dynamical allocation [MANDATORY]

Define a destructor, a copy constructor and an assignment operator for classes with dynamically allocated memory.

Uninitialized variables [MANDATORY]
Every variable should be initialized.

Standard_Integer aTmpVarl; // bad
Standard_Integer aTmpVar2 = 0; // OK

Uninitialized variables might be kept only within performance-sensitive code blocks and only when their initialization
is guaranteed by subsequent code.

Do not hide global new

Avoid hiding the global new operator.

Assignment operator

In operator=() assign to all data members and check for assignment to self.

Float comparison

Don’t check floats for equality or non-equality; check for GT, GE, LT or LE.
1if (Abs (theFloatl - theFloat2) < theTolerance)
{
DoSome () ;
}

Package Precision provides standard values for S| units and widely adopted by existing modeling algorithms:

(c) Open CASCADE 2015

8 Stability issues 17

* Precision::Confusion() for lengths in meters;

* Precision::Angular() for angles in radians.

as well as definition of infinite values within normal range of double precision:

* Precision::Infinite()
* Precision::Isinfinite()
* Precision::IsPositivelnfinite()

* Precision::IsNegativelnfinite()

Non-indexed iteration
Avoid usage of iteration over non-indexed collections of objects. If such iteration is used, make sure that the result
of the algorithm does not depend on the order of iterated items.

Since the order of iteration is unpredictable in case of a non-indexed collection of objects, it frequently leads to
different behavior of the application from one run to another, thus embarrassing the debugging process.

It mostly concerns mapped objects for which pointers are involved in calculating the hash function. For example,
the hash function of TopoDS_Shape involves the address of TopoDS_TShape object. Thus the order of the same
shape in the TopTools_MapOfShape will vary in different sessions of the application.

Do not throw in destructors

Do not throw from within a destructor.

Assigning to reference [MANDATORY]

Avoid the assignment of a temporary object to a reference. This results in a different behavior for different compilers
on different platforms.

(c) Open CASCADE 2015

9 Performance issues 18

9 Performance issues

These rules define the ways of avoiding possible loss of performance caused by ineffective programming.

Class fields alignment

Declare fields of a class in the decreasing order of their size for better alignment. Generally, try to reduce misaligned
accesses since they impact the performance (for example, on Intel machines).

Fields initialization order [MANDATORY]
List class data members in the constructor’s initialization list in the order they are declared.

class MyPackage_MyClass
{

public:

MyPackage_MyClass ()
: myPropertyA (1)
myPropertyB (2) {}

// NOT
// : myPropertyB (2),
// myPropertyA (1) {}

private:

Standard_Integer myPropertyA;
Standard_Integer myPropertyB;

i

Initialization over assignment
Prefer initialization over assignment in class constructors.

MyPackage_MyClass ()
: myPropertyA (1) // preferred
{
myPropertyB = 2; // not recommended
}

Optimize caching

When programming procedures with extensive memory access, try to optimize them in terms of cache behavior.
Here is an example of how the cache behavior can be impacted:

On x86 this code

Standard_Real anArray[4096][2];
fo (Standard_Integer anlIter = 0; anlIter < 4096; ++anlIter)

{

anArray[anIter] [0] = anArray[anIter][1l];

}

is more efficient then

Standard_Real anArray[2][4096];
for (Standard_Integer anlIter = 0; anlIter < 4096; ++anlIter)
{

anArray[0] [anIter] = anArray[l][anIter];

}

since linear access does not invalidate cache too often.

(c) Open CASCADE 2015

10 Draw Harness command 19

10 Draw Harness command

Draw Harness provides TCL interface for OCCT algorithms.

There is no TCL wrapper over OCCT C++ classes, instead interface is provided through the set of TCL commands
implemented in C++.

There is a list of common rules which should be followed to implement well-formed Draw Harness command.

Return value

Command should return 0 in most cases even if the executed algorithm has failed. Returning 1 would lead to a TCL
exception, thus should be used in case of a command line syntax error and similar issues.

Validate input parameters

Command arguments should be validated before usage. The user should see a human-readable error description
instead of a runtime exception from the executed algorithm.

Validate the number of input parameters

Command should warn the user about unknown arguments, including cases when extra parameters have been
pushed for the command with a fixed number of arguments.

(theArgsNb != 3)
{
std::cout << "Syntax error - wrong number of arguments!\n";
rn 1;
}

Standard_Integer anArglter
Standard_CString aResName
Standard_CString aFaceName
TopoDS_Shape aFaceShape
(aFaceShape.IsNull ()

| | aFaceShape.ShapeType ()
{

std::cout << "Shape " << aFaceName << " is empty or not a Face!\n";

rn 1;

1;

theArgVec[anArglter++];
theArgVec[anArglter++];
DBRep: :Get (aFaceName) ;

!= TopAbs_FACE)

}
DBRep::Set (aResName, aFaceShape);
r rn 0;

Message printing

Informative messages should be printed into standard output std::cout, whilst command results (if any) - into Draw
Interpreter.

Information printed into Draw Interpreter should be well-structured to allow usage in TCL script.
Long list of arguments

Any command with a long list of obligatory parameters should be considered as ill-formed by design. Optional
parameters should start with flag name (with *-" prefix) and followed by its values:

1 myCommand -flagl valuel value2 -flag2 value3

Arguments parser

* Integer values should be read using Draw::Atoi() function.

(c) Open CASCADE 2015

10 Draw Harness command

20

+ Real values should be read using Draw::Atof() function.

» Flags names should be checked in case insensitive manner.

Functions Draw::Atof() and Draw::Atoi() support expressions and read values in C-locale.

Standard_Real aPosition[3] = {0.0, 0.0, 0.0};
fo (Standard_Integer anArglter = 1; anArglter < theArgsNb; ++anArglter)

{
Standard_CString

anArg = theArgVeclanArglter];

TCollection_AsciiString aFlag (anArg);

aFlag.LowerCase(); //!< for case insensitive comparison
(aFlag == "position"
{
((anArgIt + 3) >= theArgsNb)

{
std::cerr <<
return 1;
}
aPosition[0]
aPosition[1l] =
aPosition[2] =

"Wrong syntax at argument ’" << anArg << "/ !\n";

= Draw::Atof (theArgVec[++anArglt])

i
Draw: :Atof (theArgVec[++anArgIt]);
Draw::Atof (theArgVec[++anArgIt]);

std::cout << "Syntax error! Unknown flag ’" << anArg << "’\n";

return 1;

(c) Open CASCADE 2015

11 Examples

11 Examples

Sample documented class

class Package_Class

{
public: //! @name public methods
//! Method computes the square value.

//! @param theValue the input value
//! Qreturn squared value

Standard_Export Standard_Real Square (const Standard_Real theValue);

private: //! \@name private methods

//! Auxiliary method
void increment () ;

private: //! \@name private fields
Standard_Integer myCounter; //!< usage counter

Vi

#include <Package_Class.hxx>

//

// function : Square

// purpose : Method computes the square value
//

Standard_Real Package_Class::Square (const Standard_Real theValue)
{

increment () ;

return theValue % theValue;

}
//

// function : increment
// purpose
//
void Package_Class::increment ()
{

++myCounter;

}

TCL script for Draw Harness

1 # show fragments (solids) in shading with different colors

2 proc DisplayColored {theShape} {

3 set aSolids [uplevel #0 explode $theShape so]

4 set aColorIter 0

5 set THE_COLORS {red green bluel magental yellow cyanl brown}
6 foreach aSolIter $aSolids {

7

8

uplevel #0 vdisplay $aSollter
uplevel #0 vsetcolor $aSollIter [lindex S$THE_COLORS [expr
STHE_COLORS] 1]
9 uplevel #0 vsetdispmode $aSolIter 1
10 uplevel #0 vsetmaterial $aSolIter plastic
11 uplevel #0 vsettransparency $aSolIter 0.5
12 }
13 }
14

15 # load modules
16 pload MODELING VISUALIZATION

18 # create boxes
19 box bc 0 0 0
20 box br 1 00
21 compound bc br c

111
112

23 # show fragments (solids) in shading with different colors
24 vinit Viewl

25 vclear

26 vaxo

27 vzbufftrihedron

28 DisplayColored c

29 vfit

30 vdump $imagedir/${casename}.png 512 512

[incr aColorIter]

3
S

[1length

(c) Open CASCADE 2015

11 Examples

22

GLSL program:

vec3 Ambient; //!< Ambient contribution of light sources
vec3 Diffuse; //!< Diffuse contribution of light sources
vec3 Specular; //!< Specular contribution of light sources

//! Computes illumination from light sources
vecd4 ComputelLighting (in vec3 theNormal,

in vec3 theView,

in vec4 thePoint)

// clear the light intensity accumulators
Ambient = occLightAmbient.rgb;
Diffuse = vec3 (0.0);
Specular = vec3 (0.0);
vec3 aPoint = thePoint.xyz / thePoint.w;
for (int anIndex = 0; anIndex < occLightSourcesCount; ++anIndex)
{

int aType = occlight_Type (anIndex);

1f (aType == OccLightType_Direct)

{

directionallight (anIndex, theNormal, theView);

else 1f (aType == OccLightType_Point)

pointLight (anIndex, theNormal, theView, aPoint);

return vecd (Ambient, 1.0) %= occFrontMaterial_Ambient ()
+ vecd (Diffuse, 1.0) x= occFrontMaterial_Diffuse()
+ vec4 (Specular, 1.0) x occFrontMaterial_ Specular();
}

//! Entry point to the Fragment Shader
void main ()
{
gl_FragColor = computeLighting (normalize (Normal),
normalize (View),
Position);

(c) Open CASCADE 2015

	Introduction
	Scope of the document

	Naming Conventions
	General naming rules
	Names of development units
	Names of variables

	Formatting rules
	Documentation rules
	Application design
	General C/C++ rules
	Portability issues
	Stability issues
	Performance issues
	Draw Harness command
	Examples

