//HASCADE

/ TECHNOLOGY

Open CASCADE Technology
6.9.1

VTK Integration Services (VIS)

September 25, 2015

CONTENTS i

Contents
1 Introduction. e 1
2 Component Architecture L 2
2.1 Commonstructure L e e 2
2.2 IVIkpackage 3
23 IVIKOCCpackage o o e e 3
24 IVIKVIKpackage e 4
25 IVikToolspackage o e e 4
3 Using high-level APl (simplescenario) 5
3.1 OCCT shape presentation in VTK viewer i 5
3.2 Colorschemes e 5
3.2.1 Default OCCT colorscheme i 5
3.2.2 Customecolorscheme 5
3.2.3 Setting custom colors for sub-shapes L L L 6
3.2.4 Usingcolorschemeof mapper e 6
3.3 Display modes e e e 6
3.4 Interactive selection L 7
3.4.1 Selectionof sub-shapes 9
4 Using of low-level APl (advanced scenario) 10
4.1 Shapepresentation 10
4.2 Usage of OCCT picking algorithm 11
5 DRAW TestHarness 12

(c) Open CASCADE 2015

1 Introduction 1

1 Introduction

VIS component provides adaptation functionality for visualization of OCCT topological shapes by means of VTK
library. This User's Guide describes how to apply VIS classes in application dealing with 3D visualization based on
VTK library.

Mapping fo Qpeniil
primitives

G » @D (O =) =+

O o WTE slandand
SOUFCEE

There are two ways to use VIS in the application:

+ Use a high-level API. It is a simple scenario to use VTK viewer with displayed OCCT shapes. It considers
usage of tools provided with VIS component such as a specific VTK data source, a picker class and specific
VTK filters. Basically, in this scenario you enrich your custom VTK pipeline with extensions coming from VIS.

» Use a low-level API. It is an advanced scenario for the users with specific needs, which are not addressed
by the higher-level utilities of VIS. It presumes implementation of custom VTK algorithms (such as filters)
with help of low-level API of VIS component. This document describes both scenarios of VIS integration into
application. To understand this document, it is necessary to be familiar with VTK and OCCT libraries.

(c) Open CASCADE 2015

2 Component Architecture 2

2 Component Architecture

2.1 Common structure
VIS component consists of the following packages:

« IVtk — common interfaces which define the principal objects playing as foundation of VIS.

» IVtkOCC - implementation of interfaces related to CAD domain. The classes from this package deal with
topological shapes, faceting and interactive selection facilities of OCCT;

+ IVtkVTK — implementation of interfaces related to VTK visualization toolkit;

IVtkTools — high-level tools designed for integration into VTK visualization pipelines.

OCCT VTK

3

Figure 1: Dependencies of VIS packages

The idea behind the mentioned organization of packages is separation of interfaces from their actual implementa-
tions by their dependencies from a particular library (OCCT, VTK). Besides providing of semantic separation, such
splitting helps to avoid excessive dependencies on other OCCT toolkits and VTK.

* IVtk package does not depend on VTK libraries at all and needs OCCT libraries only because of collections
usage (TKernel library);
+ Implementation classes from IVtkOCC package depend on OCCT libraries only and do not need VTK;

» IVIkVTK package depends on VTK libraries only and does not need any OCCT functionality except collec-
tions.

(c) Open CASCADE 2015

2.2

IVtk package 3

VIS

Fresentation Selection

Shape Dala Sowrce
Shape Picker
Dhsplay’ Mode Tilled

Sub-shapes iker

Ltikties (looks for scakar mapping, meshing etc)

Figure 2: Dependencies of VIS packages

Basically, it is enough to use the first three packages in the end user’s application (/Vik, IVtkOCC and IVtkVTK) to
be able to work with OCCT shapes in VTK viewer. However, [VitkTools package is also provided as a part of the
component to make the work more comfortable.

2.2

IVtk package

IVtk package contains the following classes:

23

 |Vtk_Interface - Base class for all interfaces of the component. Provides inheritance for Handle (OCCT “smart
pointer”) functionality.

 |Vtk_IShape - Represents a 3D shape of arbitrary nature. Provides its ID property. Implementation of this
interface should maintain unique IDs for all visualized shapes. These IDs can be easily converted into original
shape objects at the application level.

 IVik_IShapeData - Represents faceted data. Provides methods for adding coordinates and cells (vertices,
lines, triangles).

» |Vtk_IShapeMesher - Interface for faceting, i.e. constructing /Vik_IShapeData from IVitk_IShape input shape.

 |Vtk_IShapePickerAlgo - Algorithmic interface for interactive picking of shapes in a scene. Provides methods
for finding shapes and their parts (sub-shapes) at a given location according to the chosen selection mode.

* |Vitk_IView Interface for obtaining view transformation parameters. It is used by /Vtk_IShapePickerAlgo.

IVtkOCC package

IVtkOCC package contains the implementation of classes depending on OCCT:

» IVtkOCC_Shape - Implementation of /Vtk_IShape interface as a wrapper for TopoDS_Shape.

» IVtkOCC_ShapeMesher - Implementation of /Vtk IShapeMesher interface for construction of facets from
TopoDS shapes.

» IVtkOCC_ShapePickerAlgo Implementation of interactive picking algorithm. It provides enabling/disabling of
selection modes for shapes (/Vtk_IShape instances) and picking facilities for a given position of cursor.

(c) Open CASCADE 2015

2.4 IVtkVtk package 4

» IVtkOCC _ViewerSelector - Interactive selector, which implements Pick() methods for the picking algorithm
IVtkOCC_ShapePickerAlgo and connects to the visualization layer with help of abstract /View interface.

IVtkOCC_ViewerSelector is a descendant of OCCT native SelectMgr_ViewerSelector, so it implements OCCT
selection mechanism for IVtkVTK_View (similarly to StdSelect ViewerSelector3D which implements SelectMgr_-
ViewerSelector for OCCT native V3d_View). IVtkOCC_ViewerSelector encapsulates all projection transformations
for the picking mechanism. These transformations are extracted from vtkCamera instance available via VTK Ren-
derer. IVikOCC_ViewerSelector operates with native OCCT SelectMgr_Selection entities. Each entity represents
one selection mode of an OCCT selectable object. ViewerSelector is an internal class, so it is not a part of the
public API.

» IVtkOCC_SelectableObject - OCCT shape wrapper used in the picking algorithm for computation of selection
primitives of a shape for a chosen selection mode.

2.4 IVtkVtk package
IVtkVTK package contains implementation classes depending on VTK:

» IVtkVTK_ShapeData - Implementation of /Vtk_IShapeData interface for VTK polydata. This class also stores
information related to sub-shape IDs and sub-shape mesh type /Vtk_MeshType (free vertex, shared vertex,
free edge, boundary edge, shared edge, wireframe face or shaded face). This information is stored in VTK
data arrays for cells.

» IVikVTK_View - Implementation of /Vtk_/View interface for VTK viewer. This implementation class is used to
connect IVtkOCC _ViewerSelector to VTK renderer.

2.5 [IVikTools package

IVtkTools package gives you a ready-to-use toolbox of algorithms facilitating the integration of OCCT shapes into
visualization pipeline of VTK. This package contains the following classes:

* |VtkTools_ShapeDataSource - VTK polygonal data source for OCCT shapes. It inherits vtkPolyDataAlgorithm
class and provides a faceted representation of OCCT shape for visualization pipelines.

* |VtkTools_ShapeObject - Auxiliary wrapper class for OCCT shapes to pass them through pipelines by means
of VTK information keys.

* |VtkTools_ShapePicker - VTK picker for shape actors. Uses OCCT selection algorithm internally.

« |VikTools_DisplayModeFilter - VTK filter for extracting cells of a particular mesh type according to a given
display mode IVitk_DisplayMode (Wireframe or Shading).

* |VtkTools_SubPolyDataFilter - VTK filter for extracting the cells corresponding to a given set of sub-shape
IDs.

Additionally, /VtkTools package contains auxiliary methods in /VtkTools namespace. E.g. there is a convenience
function populating vtkLookupTable instances to set up a color scheme for better visualization of sub-shapes.

(c) Open CASCADE 2015

3 Using high-level API (simple scenario) 5

3 Using high-level API (simple scenario)

3.1 OCCT shape presentation in VTK viewer
To visualize an OCCT topological shape in VTK viewer, it is necessary to perform the following steps:

1. Create /VtkOCC_Shape instance (VIS wrapper for OCCT shape) and initialize it with TopoDS_Shape object
containing the actual geometry:

TopoDS_Shape aShape;
// Initialize aShape variable: e.g. load it from BREP file

IVtkOCC_Shape: :Handle aShapeImpl = new IVtkOCC_Shape (aShape);

2. Create VTK polygonal data source for the target OCCT topological shape and initialize it with created /VtkO-
CC_Shape instance. At this stage the faceter is implicitly plugged:

vtkSmartPointer<IVtkTools_ShapeDataSource> DS = vtkSmartPointer<IVtkTools_ShapeDataSource>::New();

DS->SetShape (aShapelImpl) ;

3. Visualize the loaded shape in usual VTK way starting a pipeline from the newly created specific source:

vtkSmartPointer<vtkPolyDataMapper> Mapper = vtkSmartPointer<vtkPolyDataMapper>::New () ;

Mapper->SetInputConnection (aDS->GetOutputPort ());
vtkSmartPointer<vtkActor> Actor = vtkSmartPointer<vtkActor>::New();

Actor->SetMapper (Mapper) ;

It is always possible to access the shape data source from VTK actor by means of dedicated methods from /Vik-
Tools_ShapeObject class:

IVtkTools_ShapeDataSourcex DS = IVtkTools_ShapeObject::GetShapeSource (Actor);

IVtkOCC_Shape: :Handle occShape = IVtkTools_ShapeObject::GetOccShape (Actor);

It is also possible to get a shape wrapper from the shape data source:

IVtkOCC_Shape: :Handle occShape = DS->GetShape();

3.2 Color schemes
3.2.1 Default OCCT color scheme

To colorize different parts of a shape according to the default OCCT color scheme, it is possible to configure the
corresponding VTK mapper using a dedicated auxiliary function of /VtkTools namespace:

IVtkTools: :InitShapeMapper (Mapper) ;

It is possible to get an instance of vtkLookupTable class with a default OCCT color scheme by means of the following
method:

vtkLookupTablex Table = IVtkTools::InitLookupTable();

3.2.2 Custom color scheme

To set up application-specific colors for a shape presentation, use InitShapeMapper function with an additional
argument passing a custom lookup table:

IVtkTools::InitShapeMapper (Mapper, Table);

(c) Open CASCADE 2015

3.3 Display modes 6

3.2.3 Setting custom colors for sub-shapes

It is also possible to bind custom colors to any sub-shape type listed in /Vtk_MeshType enumeration. For example,
to access the color bound to free edge entities, the following calls are available in /VtkTools namespace:

SetLookupTableColor
SetLookupTableColor
GetLookupTableColor
GetLookupTableColor

aLookupTable, MT_FreeEdge, R, G, B);
aLlookupTable, MT_FreeEdge, R, G, B, A);
alookupTable, MT_FreeEdge, R, G, B);
aLookupTable, MT_FreeEdge, R, G, B, A);

Here R, G, B are double values of red, green and blue components of a color from the range [0, 1]. The optional
parameter A stands for the alpha value (the opacity) as a double from the same range [0, 1]. By default alpha value
is 1, i.e. a color is not transparent.

3.24 Using color scheme of mapper

As VTK color mapping approach is based on associating scalar data arrays to VTK cells, the coloring of shape
components can be turned on/off in the following way:

Mapper->ScalarVisibilityOn(); // use colors from lookup table
Mapper->ScalarVisibilityOff(); // use a color of actor’s property

For example, the scalar-based coloring can be disabled to bind a single color to the entire VTK actor representing
the shape.

3.3 Display modes

The output of the shape data source can be presented in wireframe or shading display mode. A specific filter
from class /VtkTools_DisplayModeFilter can be applied to select the display mode. The filter passes only the cells
corresponding to the given mode. The set of available modes is defined by /Vtk_DisplayMode enumeration.

Shape DS) me { Display rﬂndﬁ.a — —

N o QP T
S nibile
IIII vl WL

For example, the shading representation can be obtained in the following way:

vtkSmartPointer<IVtkTools_ShapeDataSource> DS = vtkSmartPointer<IVtkTools_ShapeDataSource>::New();

vtkSmartPointer<IVtkTools_DisplayModeFilter> DMFilter = vtkSmartPointer<IVtkTools_DisplayModeFilter>: :New (

7

DMFilter->AddInputConnection (DS->GetOutputPort ());
DMFilter->SetDisplayMode (DM_Shading) ;

vtkSmartPointer<vtkDataSetMapper> M = vtkSmartPointer<vtkDataSetMapper>::New () ;
M->SetInputConnection (DMFilter—->GetOutputPort ());
By default, the display mode filter works in a wireframe mode.

TIP: to make the shading representation smooth, use additional vikPolyDataNormals filter. This filter must be applied
after the display mode filter.

(c) Open CASCADE 2015

34

Interactive selection 7

without normals with normals

3.4

Interactive selection

IVtkTools package provides /VtkTools_ShapePicker class to perform selection of OCCT shapes and sub-shapes in
VTK viewer and access the picking results. The typical usage of /VtkTools _ShapePickertool consists in the following
sequence of actions:

. Create a picker and set its renderer to your active VTK renderer:

vtkSmartPointer<IVtkTools_ShapePicker> aPicker = vtkSmartPointer<IVtkTools_ShapePicker>::New();

aPicker—->SetRenderer (aRenderer) ;

. Activate the desired selection mode by choosing the corresponding sub-shape types from [Vik_Selection-

Mode enumeration. For example, the following call allows selection of edges on all selectable shape actors
of the renderer:

aPicker->SetSelectionMode (SM_Edge) ;

If it is necessary to limit selection by a particular shape actor, one can use the mentioned SetSelectionMode
method with /Vitk_IShape handle or vtkActor pointer as the first argument:

IVtk_IShape::Handle aShape = new IVtkOCC_Shape (occShape);
aPicker->SetSelectionMode (aShape, SM_Edge); // If shape handle is available
aPicker->SetSelectionMode (anActor, SM_Edge); // If shape actor is available

Different selection modes can be turned on/off for a picker at the same time independently from each other.

aPicker->SetSelectionMode (SM_Edge) ;
aPicker->SetSelectionMode (SM_Face);

To turn off a selection mode, the additional optional Boolean parameter is used with false value, for example:

aPicker->SetSelectionMode (aShape, SM_Edge, false);

. Call Pick method passing the mouse display coordinates:

aPicker->Pick(x, y, 0);

By default, the renderer passed in the step 1 is used. In order to perform pick operation for another renderer
an additional optional parameter can be specified:

aPicker->Pick(x, y, 0, aRenderer);

4. Obtain the top-level picking results as a collection of picked VTK actors:

(c) Open CASCADE 2015

3.4 Interactive selection 8

vtkActorCollectionx anActorCollection = aPicker->GetPickedActors();

or as a collection of picked shape IDs:

IVtk_ShapeIdList ids = aPicker->GetPickedShapesIds();

These methods return a single top picked actor or a shape by default. To get all the picked actors or shapes
it is necessary to send “true” value in the optional Boolean parameter:

anActorCollection = aPicker->GetPickedActors (true);
ids = aPicker->GetPickedShapesIds (true);

5. Obtain the picked sub-shape IDs:

IVtk_ShapeIdList subShapelds = aPicker->GetPickedSubShapesIds (shapeld);

This method also returns a single ID of a top-level picked sub-shape and has the same optional Boolean
parameter to get all the picked sub-shapes of a shape:

subShapeIds = aPicker->GetPickedSubShapesIds (shapeld, true);

It should be noted that it is more efficient to create a sole picker instance and feed it with the renderer only once. The
matter is that the picking algorithm performs internal calculations each time the renderer or some of its parameters
are changed. Therefore, it makes sense to minimize the number of such updates.

OCCT picking algorithm [VtkTools _ShapePicker calculates a new transformation matrix for building of projection
each time some parameters of a view are changed. Likewise, the shape selection primitives for each selection
mode are built once an appropriate selection mode is turned on for this shape in SetSelectionMode method.

WARNING: VIS picker essentially works on the initial topological data structures rather than on the actually visual-
ized actors. This peculiarity allows VIS to take advantage of standard OCCT selection mechanism, but puts strict
limitations on the corresponding visualization pipelines. Once constructed, the faceted shape representation should
not be morphed or translated anyhow. Otherwise, the picking results will lose their associativity with the source ge-
ometry. E.g. you should never use vtkTransform filter, but rather apply OCCT isometric transformation on the initial
model in order to work on already relocated facet. These limitations are often acceptable for CAD visualization. If
not, consider usage of a custom VTK-style picker working on the actually visualized actors.

Folygonal Data

=+ Pipeline

Map of sub-shapen

Topological Shape

VIS: Data Source

Open CASCADE VIS: shape wrapper

T
VIS picker works here

(c) Open CASCADE 2015

3.4 Interactive selection

3.4.1 Selection of sub-shapes

IVtkTools_SubPolyDataFilter is a handy VTK filter class which allows extraction of polygonal cells corresponding
to the sub-shapes of the initial shape. It can be used to produce a vtkPolyData object from the input vtkPolyData

object, using selection results from /VTkTools_ShapePicker tool.

For example, sub-shapes can be represented in VTK viewer in the following way:

// Load a shape into data source (see 3.1)

vtkSmartPointer<IVtkTools_ShapeDataSource> DS = vtkSmartPointer<IVtkTools_ShapeDataSource>
DS->SetShape (shapeImpl) ;

// Create a new sub-polydata filter for sub-shapes filtering
vtkSmartPointer<IVtkTools_SubPolyDataFilter> subShapesFilter = IVtkTools_SubPolyDataFilter

// Set a shape source as an input of the subpolydata filter
subShapesFilter->SetInputConnection (DS->GetOutputPort ());

// Get all picked sub-shapes ids of the shape from a picker (see 3.4)
IVtk_ShapeIdList subShapelds = aPicker->GetPickedSubShapesIds (ds->GetId (), true);

// Set ids to the filter to pass only picked sub-shapes
subShapesFilter->SetData (subShapelIds) ;
subShapesFilter->Modified();

// Output the result into a mapper
vtkSmartPointer<vtkPolyDataMapper> aMapper = vtkPolyDataMapper::New () ;
aMapper—->AddInputConnection (subShapesFilter->GetOutputPort ()) ;

::New () ;

::New () ;

(c) Open CASCADE 2015

4 Using of low-level API (advanced scenario) 10

4 Using of low-level API (advanced scenario)

4.1 Shape presentation

The usage of low-level tools is justified in cases when the utilities from /VtkTools are not enough.

The low-level scenario of VIS usage in VTK pipeline is shown in the figure below. The Mesher component produces
shape facet (VTK polygonal data) using implementation of /IShapeData interface. Then result can be retrieved from
this implementation as a vtkPolyData instance.

IShapeData

IShape
IShape . Mesher . lmpl:::;l}t'?tiun

Figure 3: Low-level VIS usage with VTK

The visualization pipeline for OCCT shape presentation can be initialized as follows:

1. Create an instance of IShape class initialized by OCCT topological shape:
TopoDS_Shape aShape;
// Load or create a TopoDS_Shape in the variable a Shape
i&ékoccishapezzﬂandle aShapeImpl = new IVtkOCC_Shape (aShape);

2. Create an empty instance of IShapeData implementation for VTK:

IVtk_IShapeData::Handle aDataImpl = new IVtkVTK_ShapeData();

3 Create an instance of IShapeMesher implementation for OCCT (any faceter can be used at this stage):

IVtk_IShapeMesher::Handle aMesher = new IVtkOCC_ShapeMesher();

4 Triangulate the OCCT topological shape by means of the Mesher and access the result:

aMesher->Build (aShapeImpl, aDataImpl);

vtkPolyData* aPolyData = aDataImpl->GetVtkPolyData();

The resulting vtkPolyData instance can be used for initialization of VTK pipelines. IVikVTK_ShapeData object is
used to keep and pass the mapping between sub-shapes, their mesh types and the resulting mesh cells through
a pipeline. It stores sub-shape IDs and mesh type in VTK data arrays for each generated cell. As a result, the
generated VTK cells get the following data arrays populated:

» SUBSHAPE_IDS — array of vtkldTypeArray type. It contains the shape IDs the corresponding cells were
generated for. The name of this array is defined in ARRNAME_SUBSHAPE_IDS constant of IVIkVTK -
ShapeData class.

(c) Open CASCADE 2015

4.2 Usage of OCCT picking algorithm 11

« MESH_TYPES - array of vtkShortArray type. It contains the type tags of the shape parts the corresponding
cells were generated for. The name of this array is defined in ARRNAME_MESH_TYPES constant of /VtkV-
TK_ShapeData class.

4.2 Usage of OCCT picking algorithm

It is possible to create a custom VTK picker for interactive selection of OCCT 3D shapes using an instance of the
picking algorithm /Vtk_IShapePickerAlgo.

Picking algorithm uses an instance of viewer selector (OCCT term), which manages picking along with activation
and deactivation of selection modes. VIS component implements OCCT selection principle in IVikOCC_Shape-
PickerAlgo and IVtkOCC_ViewerSelector classes. IVtkOCC_ViewerSelector is an internal class that implements
OCCT selection mechanism applied in IVtkVTK_ View.

IVtkOCC_ShapePickerAlgo has to be used to activate/deactivate selection modes for shapes /Vtk_IShape. IVikO-
CC_ShapePickerAlgo is the implementation of IVik_IShapePickerAlgo interface.

The typical usage of IVtk_IShapePickerAlgo consists in the following sequence of actions:

1. Create an instance of the picker class:

IVtkOCC_ShapePickerAlgo::Handle Picker = new IVtkOCC_ShapePickerAlgo();

2. Set an instance of /Vitk_IView class to the algorithm in order to define the viewer parameters:

IVtkVTK_View: :Handle View = new IVtkVTK_View (Renderer);
Picker->SetView (View) ;

3. Activate the desired selection modes using values from /Vitk_SelectionMode enumeration. For example, the
following call allows selection of edges:

TopoDS_Shape aShape;
// Load or create a TopoDS_Shape in the variable a Shape
IVtk_IShape::Handle shapeImpl = new IVtkOCC_Shape (aShape);

myOccPickerAlgo->SetSelectionMode (occShape, SM_Edge) ;

Different selection modes can be turned on/off for a picker at the same time independently from each other.
To turn off a selection mode the additional optional Boolean parameter is used with false value, for example:

myOccPickerAlgo->SetSelectionMode (occShape, SM_Edge, false);

4. Call Pick method passing the mouse coordinates:

myOccPickerAlgo->Pick (x, vy);

5. Obtain top-level picking results as IDs of the picked top-level shapes:
IVtk_ShapeIdList ids = myOccPickerAlgo->ShapesPicked();

6. Obtain IDs of the picked sub-shapes:

IVtk_ShapeIdList subShapelds
= myOccPickerAlgo->SubShapesPicked (shapeld);

(c) Open CASCADE 2015

5 DRAW Test Harness 12

5 DRAW Test Harness

TKIVtkDraw toolkit contains classes for embedding VIS functionality into DRAW Test Harness with possibility of
simple interactions, including detection and highlighting.

* |VtkDraw_HighlightAndSelectionPipeline - Creates VTK pipeline with OCCT shape data source and properly
initialized VIS filters.

» |VtkDraw _Interactor - Controls simple interactive actions, such as detection and selection of the displayed
shapes.

(c) Open CASCADE 2015

	Introduction
	Component Architecture
	Common structure
	IVtk package
	IVtkOCC package
	IVtkVtk package
	IVtkTools package

	Using high-level API (simple scenario)
	OCCT shape presentation in VTK viewer
	Color schemes
	Default OCCT color scheme
	Custom color scheme
	Setting custom colors for sub-shapes
	Using color scheme of mapper

	Display modes
	Interactive selection
	Selection of sub-shapes

	Using of low-level API (advanced scenario)
	Shape presentation
	Usage of OCCT picking algorithm

	DRAW Test Harness

