/) ASCADE

/ TECHNOLOGY

Open CASCADE Technology
6.9.1

Visualization

September 25, 2015

CONTENTS i
Contents

1 Introduction. e 1

2 Fundamental Concepts e 3

2.1 Presentation e 3

2.1.1 Structure of the Presentation 3

2.1.2 Presentationpackages 3

2.1.3 A Basic Example: Howto displaya3Dobject 4

2.2 Selection. e 6

2.2.1 The Sensitive Primitive 8

222 Dynamic Selection 8

2.2.3 SelectionPackages e 9

224 Howtousedynamicselection 12

3 Application Interactive Services 16

3.1 Introduction e e e 16

3.2 Interactive objects e e 17

3.2.1 Presentations 17

3.2.2 HiddenLineRemoval 17

3.2.3 Presentationmodes 18

3.2.4 Selection e 19

3.25 Graphicattributes 20

3.2.6 Complementary SErvices e 21

3.3 Interactive Context. e 23

3.3.1 Rules 23

3.3.2 Groupsoffunctions 23

3.3.3 Management of the Interactive Context, 24

3.4 Local Context e 24

3.4.1 Rulesand Conventions e 24

3.4.2 Managementof Local Context 25

3.4.3 PresentationinaNeutral Point 25

3.4.4 Presentationinthe Local Context.o 26

3.45 Filters e 27

3.4.6 Selectioninthe Local Context 28

3.47 Recommendations 30

3.5 Standard Interactive Object Classes i 33

351 Datum . . . e 33

352 Object 34

3.5.3 Relations 35

3.5.4 DIMensions e e e 35

(c) Open CASCADE 2015

CONTENTS i

3.5.5 MeshVS Mesh e 36

3.6 Dynamic Selection. L 37
3.6.1 Howtogofromtheobjectsto2Dboxes 37

3.6.2 Implementation in an interactive/selectable objecto 38

4 3DPresentations 40
4.1 Glossaryof 3Dterms L e 40
4.2 Graphicprimitives e e 40
421 Structure hierarchies 41
422 Graphicprimitives 41

423 Primitive arrays e e 42
424 Textprimitive L e 44

425 Materials e 45

426 Textures e 46
427 Shaders e 46

4.3 Graphicattributes 46
4.3.1 Aspectpackage overview L L e e e e 46

4.4 3Dviewfacilities L 47
441 OVeIVIEW L e e 47

4.42 Aprogrammingexample 47

443 Defineviewingparameterso e 48
4.4.4 Orthographic Projection e 48
4.4.5 Perspective Projection L 49
4.4.6 Stereographic Projection 49
4.4.7 Viewfrustumeculling. L 49

4.4.8 Underlay and overlay layers management 50

4.4.9 \Viewbackgroundstyles L 51
4.410 Dumping a 3D sceneintoanimagefile. L L Lo 52
4411 Printinga3Dscene e e 53
4412 Vectorimage export. L e e e e e 54
4.413 Raytracing support e e 54
4.414 Display priorities e 55
4415 Z-layer support e e e 55
4416 Clippingplanes e 56
4.417 Automaticbackfaceculling L 57

45 Examples: creatinga3Dscene L 57
451 Createattributes 57

452 Create a3D Viewer (aWindowsexample) 58

453 Createa3Dview (aWindowsexample) 58

454 Create aninteractivecontext 59

(c) Open CASCADE 2015

CONTENTS

iii

455 Create your owninteractive objecto 59

4.5.6 Create primitives in the interactive object oL 59

5 Mesh Visualization Services 61

(c) Open CASCADE 2015

1 Introduction 1

1 Introduction

Visualization in Open CASCADE Technology is based on the separation of:

 on the one hand - the data which stores the geometry and topology of the entities you want to display and
select, and

» on the other hand - its presentation (what you see when an object is displayed in a scene) and selection
(possibility to choose the whole object or its sub-parts interactively to apply application-defined operations to
the selected entities).

Presentations are managed through the Presentation component, and selection through the Selection component.

Application Interactive Services (AlS) provides the means to create links between an application GUI viewer
and the packages, which are used to manage selection and presentation, which makes management of these
functionalities in 3D more intuitive and consequently, more transparent.

AIS uses the notion of the interactive object, a displayable and selectable entity, which represents an element from
the application data. As a result, in 3D, you, the user, have no need to be familiar with any functions underlying AIS
unless you want to create your own interactive objects or selection filters.

If, however, you require types of interactive objects and filters other than those provided, you will need to know the
mechanics of presentable and selectable objects, specifically how to implement their virtual functions. To do this
requires familiarity with such fundamental concepts as the sensitive primitive and the presentable object.

The the following packages are used to display 3D objects:

- AlS;

« StdPrs;

e Prsad,

* PrsMgr;

« Va3q,

» Graphic3d.

The packages used to display 3D objects are also applicable for visualization of 2D objects.

The figure below presents a schematic overview of the relations between the key concepts and packages in visu-
alization. Naturally, "Geometry & Topology" is just an example of application data that can be handled by AIS, and
application-specific interactive objects can deal with any kind of data.

(c) Open CASCADE 2015

1 Introduction 2

AlS '\

Interactive

3D Visualization
T

Selection -
Structure | || Selection I) pmﬂﬂ"mﬂ"l) |§Eﬁ Graphic Structure

T\ | /

- T
Y ¥

Geometry

& Topology

Figure 1: Key concepts and packages in visualization

To answer different needs of CASCADE users, this User’s Guide offers the following three paths in reading it.

» If the 3D services proposed in AIS meet your requirements, you need only read chapter 3 AIS:
Application Interactive Services.

« If you need more detail, for example, a selection filter on another type of entity - you should read chapter 2
Fundamental Concepts, chapter3AIS: Application Interactive Services, and4 3D
Presentations. You may want to begin with the chapter presenting AlS.

For advanced information on visualization algorithms, see our E-1learning & Training offerings.

(c) Open CASCADE 2015

http://www.opencascade.com/content/tutorial-learning

2 Fundamental Concepts 3

2 Fundamental Concepts

2.1 Presentation

In Open CASCADE Technology, presentation services are separated from the data, which they represent, which is
generated by applicative algorithms. This division allows you to modify a geometric or topological algorithm and its
resulting objects without modifying the visualization services.

2.1.1 Structure of the Presentation
Displaying an object on the screen involves three kinds of entities:

 a presentable object, the AIS_InteractiveObject
* aviewer

 an interactive context, the AIS InteractiveContext.

The presentable object

The purpose of a presentable object is to provide the graphical representation of an object in the form of Graphic3d
structure. On the first display request, it creates this structure by calling the appropriate algorithm and retaining this
framework for further display.

Standard presentation algorithms are provided in the StdPrs and Prs3d packages. You can, however, write specific
presentation algorithms of your own, provided that they create presentations made of structures from the Graphic3d
packages. You can also create several presentations of a single presentable object: one for each visualization mode
supported by your application.

Each object to be presented individually must be presentable or associated with a presentable object.
The viewer

The viewer allows interactively manipulating views of the object. When you zoom, translate or rotate a view, the
viewer operates on the graphic structure created by the presentable object and not on the data model of the appli-
cation. Creating Graphic3d structures in your presentation algorithms allows you to use the 3D viewers provided in
Open CASCADE Technology for 3D visualisation.

The Interactive Context

The interactive context controls the entire presentation process from a common high-level API. When the application
requests the display of an object, the interactive context requests the graphic structure from the presentable object
and sends it to the viewer for displaying.

2.1.2 Presentation packages

Presentation involves at least the AIS, PrsMgr, StdPrs and V3d packages. Additional packages, such as Prs3d and
Graphic3d may be used if you need to implement your own presentation algorithms.

» AIS package provides all classes to implement interactive objects (presentable and selectable entities).

» PrsMgr package provides low level services and is only to be used when you do not want to use the services
provided by AIS. It contains all classes needed to implement the presentation process: abstract classes
Presentation and PresentableObject and concrete class PresentationManager3d.

» StdPrs package provides ready-to-use standard presentation algorithms for specific geometries: points,
curves and shapes of the geometry and topology toolkits.

(c) Open CASCADE 2015

2.1 Presentation 4

» Prs3dpackage provides generic presentation algorithms such as wireframe, shading and hidden line removal
associated with a Drawer class, which controls the attributes of the presentation to be created in terms of
color, line type, thickness, etc.

» V3d package provides the services supported by the 3D viewer.
» Graphic3d package provides resources to create 3D graphic structures.
* Visual3d package contains classes implementing commands for 3D viewer.

» DsgPrs package provides tools for display of dimensions, relations and XYZ trihedrons.

2.1.3 A Basic Example: How to display a 3D object

Void Standard_Real dx = ...; //Parameters

Void Standard_Real dy = .. //to build a wedge
Void Standard_Real dz = ..
Void Standard_Real 1ltx = ...

Handle (V3d_Viewer)aViewer = ...;
Handle (AIS_InteractiveContext)aContext;
aContext = new AIS_InteractiveContext (aViewer);

BRepPrimAPI_MakeWedge w(dx, dy, dz, 1ltx);
TopoDS_Solid & = w.Solid();

Handle (AIS_Shape) anAis = new AIS_Shape(S);
//creation of the presentable object

aContext —-> Display (anAis);

//Display the presentable object in the 3d viewer.

The shape is created using the BRepPrimAPI_MakeWedge command. An AIS_Shape is then created from the
shape. When calling the Display command, the interactive context calls the Compute method of the presentable
object to calculate the presentation data and transfer it to the viewer. See figure below.

(c) Open CASCADE 2015

2.1 Presentation 5

Class PresentationManager3d

calls Compute() method of AIS_InteractiveObject to
obtain Graphics3d structure

N\

Compute()y

S| Deferred class
‘ AlS_InteractiveObject

; Declares Compute()
’ method

¢
r i
¢ [
I
i " » rl'
: inheritsf k
i
P
i r
4 I
P ! T
lI -

Class AlS_Shape ;

Creation of
AlS_Shape

Compute() ¢ usest |

uses algonthms of Prs3d 1
and StdPrs packages to p
create Graphics3d structure |

Creation of - odical
topological - GFG ogica
object object

Figure 2: Processes involved in displaying a presentable shape

(c) Open CASCADE 2015

2.2 Selection

2.2 Selection

Objects that may be selected graphically, are displayed as sets of sensitive primitives, which provide sensitive zones
in 2D graphic space. These zones are sorted according to their position on the screen when starting the selection

process.

The position of the mouse is also associated with a sensitive zone. When moving within the window where objects
are displayed, the areas touched by the zone of the mouse are analyzed. The owners of these areas are then
highlighted or signaled by other means such as the name of the object highlighted in a list. That way, you are

XN

<
~

.

X

\

Figure 3: A model

informed of the identity of the detected element.

sensitive
polygon

sensitive
polygon

sensitive
polygon

Figure 4: Modeling faces with sensitive primitives

(c) Open CASCADE 2015

2.2 Selection

Figure 5: In a dynamic selection, each sensitive polygon is represented by its bounding rectangle

h“‘"‘-—. oSO of

\ r the maLse

selected rectange

Mouses postion inscle the sanstive polygon

The oaner i delached and storad

Figure 6: Reference to the sensitive primitive, then to the owner

(c) Open CASCADE 2015

2.2 Selection 8

2.2.1 The Sensitive Primitive

The sensitive primitive along with the entity owner allows defining what can be made selectable, and providing the
link between the applicative object and the sensitive zones defined by the 2D bounding boxes. To be dynamically
selectable, an object has to be represented either as a sensitive primitive or a set of them, e.g. 2D boxes that will
be included in a sorting algorithm.

The use of 2D boxes allows a pre-selection of the detected entities. After pre-selection, the algorithm checks which
sensitive primitives are actually detected. When detected, the primitives provide their owners’ identity.

- segment primitive and
corresponding 2D box

Fi
; =
#\/: ;...— circle primitive

A (sensitive representation
of a face)

mouse position

Figure 7: Example of sensitive primitives

In the example, the sensitive line segment proposes a bounding box to the selector. During selection, positions
1 and 2 of the mouse detect the box but after sorting, only position 2 retains the line segment as selected by the
algorithm.

When the Box associated with the position of the mouse intersects the Box of a sensitive primitive, the owner of the
sensitive primitive is called and its presentation is highlighted.

The notion of sensitive primitive is important for the developer when defining his own classes of sensitive primitives
for the chosen selection modes. The classes must contain Areas and Matches functions.

The former provides the list of 2D sensitive boxes representing the sensitive primitive at pre-selection and the latter
determines if the detection of the primitive by the 2D boxes is valid.

2.2.2 Dynamic Selection

Dynamic selection causes objects in a view to be automatically highlighted as the mouse cursor moves over them.
This allows the user to be certain that the picked object is the correct one. Dynamic Selection is based on the
following two concepts:

+ a Selectable Object (AlS_InteractiveObject)

« an Interactive Context

(c) Open CASCADE 2015

2.2 Selection 9

Selectable Object

A selectable object presents a given number of selection modes which can be redefined, and which will be activated
or deactivated in the selection manager’s selectors.

Note that the selection mode of a selectable object, can refer to the selection mode of the object itself or to the
selection mode of its part.

For each selection mode, a SelectMgr_Selection object class is included in the selectable object. (Each selection
mode establishes a priority of selection for each class of selectable object defined.)

The notion of Selection is comparable to the notion of Display. Just as a display contains a set of graphic primitives
that allow display of the entity in a specific display mode, a Selection contains a set of sensitive primitives, which
allow detection of the entities they are associated with.

Interactive Context

The interactive context is used to manage both selectable objects and selection processes.

Selection modes may be activated or de-activated for given selectable objects. Information is then provided about
the status of activated/de-activated selection modes for a given object in a given selector.

Seealso ATIS: Application Interactive Services.
Let us consider, for example, a 3D selectable shape object, which corresponds to a topological shape.

For this class, seven selection modes can be defined:

» mode 0 - selection of the shape itself
* mode 1 - selection of vertices

* mode 2 - selection of edges

* mode 3 - selection of wires

* mode 4 - selection of faces

* mode 5 - selection of shells

* mode 6 - selection of solids

* mode 7 - selection of compsolids

* mode 8 - selection of compounds

Selection 2 includes the sensitive primitives that model all the edges of the shape. Each of these primitives contains
a reference to the edge it represents.

The selections may be calculated before any activation and are graph independent as long as they are not activated
in a given selector. Activation of selection mode 3 in a selector associated with a view V leads to the projection of
the 3D sensitive primitives contained in the selection; then the 2D areas which represent the 2D bounding boxes of
these primitives are provided to the sorting process of the selector containing all the detectable areas.

To deactivate selection mode 3 remove all those 2D areas.
2.2.3 Selection Packages

Selection of 3D data structures is provided using various algorithms. The following selection packages exist :
SelectBasics, SelectMgr, Select3D and StdSelect.

Basic Selection

SelectBasics package contains the basic classes of the selection:

(c) Open CASCADE 2015

2.2 Selection 10

« the main definition of a sensitive primitive: SensitiveEntity, which is a selectable entity in a view;

« the definition of a sensitive primitive owner: EntityOwner this entity relates the primitive to the application
entity which is to be selected in the view.

« the algorithm used for sorting sensitive boxes: SortAlgo

EntityOwner is used to establish a link from SensitiveEntity to application-level objects. For example, SelectMgr_-
EntityOwner (see below) class holds a pointer to corresponding SelectableObject.

Standard Selections

Select3D package provides definition of all 3D standard sensitive primitives such as point, curve and face. All these
classes inherit from 3D SensitiveEntry from SelectBasics with an additional method, which allows recovery of the
bounding boxes in the 2D graphic selection space, if required. This package also includes the 3D-2D projector.

StdSelect package provides standard uses of the classes described above and main tools used to prevent the
developer from redefining the selection objects. In particular, StdSelect includes standard modes for selection of
topological shapes, definition of several filter standard Selection2d.ap classes and 3D viewer selectors.

Note that each new Interactive Object must have all its selection modes defined.

Selection Management

SelectMgr package is used to manage the whole dynamic selection process.

It provides low level services and classes SelectMgr_SelectionManager and SelectMgr_ViewerSelector. They can
be used when you do not want to use the services provided by A/S.

There are also implementations of ViewerSelector interface for 3D selection in StdSelect package: Viewer-
Selector3d.

SelectMgr manages the process of dynamic selection through the following services:

+ Activating and deactivating selection modes for Interactive Objects.
» Adding and removing viewer selectors.

 Definitions of abstract filter classes.

The principle of graphic selection consists in representing the objects which you want to select by a bounding box
in the selection view. The object is selected when you use the mouse to designate the zone produced by the object.

To realize this, the application creates a selection structure which is independent of the point of view. This structure
is made up of sensitive primitives which have one owner object associated to each of them. The role of the sensitive
primitive is to reply to the requests of the selection algorithm whereas the owner’s purpose is to make the link
between the sensitive primitive and the object to be selected. Each selection structure corresponds to a selection
mode which defines the elements that can be selected.

Example: Selection of a Geometric Model

For example, to select a complete geometric model, the application can create a sensitive primitive for each face of
the interactive object representing the geometric model. In this case, all the primitives share the same owner. On
the other hand, to select an edge in a model, the application must create one sensitive primitive per edge.

void InteractiveBox::ComputeSelection (const Handle (SelectMgr_Selection)& theSel,
const Standard_Integer theMode)
{
(theMode)
{

0: // locating the whole box by making its faces sensitive

(c) Open CASCADE 2015

2.2 Selection 11

Handle (SelectMgr_EntityOwner) anOwner = new SelectMgr_EntityOwner (this, 5);
for (Standard_Integer anIt = 1; anlt <= aFacesNb; anIt++)
{

theSel->Add (new Select3D_SensitiveFace (anOwner, [array of the vertices] face I);

i
1: // locating the edges

(Standard_Integer anIt = 1; anIt <= 12; anIt++)

{
// 1 owner per edge
Handle (mypk_EdgeOwner) anOwner = new mypk_EdgeOwner (this, anIt, 6); // 6->priority
theSel->Add (new Select3D_SensitiveSegment (anOwner, firstpt (anIt), lastpt (anIt));

}

}
}

The algorithms for creating selection structures store the sensitive primitives in a SelectMgr_Selection object. To
do this, a set of ready-made sensitive primitives is supplied in the Select3Dpackage. New sensitive primitives can
be defined through inheritance from SensitiveEntity. For the application to make its own objects selectable, it must
define owner classes inheriting SelectMgr_EntityOwner.

Selection structures for any interactive object are generated in ComputeSelection() method. In the example below
there are different modes of selection on the topological shape contained within the interactive object, selection of
the shape itself, the vertices, the edges, the wires, the faces.

void MyPack_MyClass: :ComputeSelection (
const Handle (SelectMgr_Selection) & theaSelection,
const Standard_Integer theMode)

(theMode)

0:
StdSelect_BRepSelectionTool::Load (theSelection, this, myShape, TopAbs_SHAPE);
i
1:
StdSelect_BRepSelectionTool::Load (theSelection, this, myShape, TopAbs_VERTEX) ;
7
2:
StdSelect_BRepSelectionTool::Load (theSelection, this, myShape, TopAbs_EDGE);
i
3:
StdSelect_BRepSelectionTool::Load (theSelection, this, myShape, TopAbs_WIRE) ;
;
4:
StdSelect_BRepSelectionTool::Load (theSelection, this, myShape, TopAbs_FACE);

7

The StdSelect BRepSelectionTool object provides a high level service which will make the topological shape my-
Shape selectable when the AIS_InteractiveContext is asked to display your object.

Note:

The traditional way of highlighting selected entity owners adopted by Open CASCADE Technology assumes that
each entity owner highlights itself on its own. This approach has two drawbacks:

» Each entity owner has to maintain its own Prs3d_Presentation object, that results in large memory overhead
for thousands of owners.

» Drawing selected owners one by one is not efficient from the OpenGL usage viewpoint.

That is why a different method has been introduced. On the basis of SelectMgr_EntityOwner::IsAutoHilight() return
value AIS_LocalContext object either uses the traditional way of highlighting (/sAutoHilight() returned true) or groups
such owners according to their Selectable Objects and finally calls SelectMgr_SelectableObject::HilightSelected()
or ClearSelected(), passing a group of owners as an argument.

Hence, an application can derive its own interactive object and redefine HilightSelected(), ClearSelected() and
HilightOwnerWithColor() virtual methods to take advantage of such OpenGL technique as arrays of primitives. In
any case, these methods should at least have empty implementation.

The AIS_LocalContext::UpdateSelected (const Handle(AlIS_InteratciveObject)&, Standard Boolean) method can
be used for efficient redrawing a selection presentation for a given interactive object from an application code.

(c) Open CASCADE 2015

2.2 Selection 12

Additionally, the SelectMgr_SelectableObject::ClearSelections() method now accepts an optional Boolean argu-
ment. This parameter defines whether all object selections should be flagged for further update or not. This
improved method can be used to re-compute an object selection (without redisplaying the object completely) when
some selection mode is activated not for the first time.

2.24 How to use dynamic selection
Several operations must be performed prior to using dynamic selection:

1. Implement specific sensitive primitives if those defined in Select3D are not sufficient. These primitives must
inherit from SensitiveEntity from SelectBasics or from a suitable Select3D sensitive entity class when a pro-
jection from 3D to 2D is necessary.

2. Define all the owner types, which will be used, and the classes of selectable objects, i.e. the number of
possible selection modes for these objects and the calculation of the decomposition of the object into sensitive
primitives of all the primitives describing this mode. It is possible to define only one default selection mode for
a selectable object if this object is to be selectable in a unique way.

3. Install the process, which provides the user with the identity of the owner of the detected entities in the
selection loop.

When all these steps have been carried out, follow the procedure below:

1. Create an interactive context.
2. Create the selectable objects and calculate their various possible selections.

3. Load these selectable objects in the interactive context. The objects may be common to all the selectors, i.e.
they will be seen by all the selectors in the selection manager, or local to one selector or more.

4. Activate or deactivate the objects’ selection modes in the selector(s). When activating a selection mode in
a selector for a given object, the manager sends the order to make the sensitive primitives in this selector
selectable. If the primitives are to projected from 3D to 2D, the selector calls the specific method used to carry
out this projection.

At this stage, the selection of selectable entities in the selectors is available. The selection loop informs constantly
the selectors with the position of the mouse and questions them about the detected entities.

Let us suppose that you create an application that displays houses in a viewer of the V3d package and you want to
select houses or parts of these houses (windows, doors, etc.) in the graphic window. You define a selectable object
called House and propose four possible selection modes for this object:

1. selection of the house itself;
2. selection of the rooms
3. selection of the walls

4. selection of the doors.

You have to write the method, which calculates the four selections above, i.e. the sensitive primitives which are
activated when the mode is. You must define the class Owner specific to your application. This class will contain
the reference to the house element it represents: wall, door or room. It inherits from EntityOwner from SelectMgr.
For example, let us consider a house with the following representation:

(c) Open CASCADE 2015

2.2 Selection

13

.
-
-
s =S & s
-
e Rk &0
- [* W
- 1. i
s e "
- - -
- F o 4
& i # i
' "
. ' !
" ' " 4
' i
L)
] o "
-
i i
L "I‘ : g
n £ e
) i il
o
f F
" N '
U
] & i 2
L L LI
- -

CEE R]

Figure 8: Selection of rooms in a house

To build the selection, which corresponds to the mode "selection of the rooms" (selection 2 in the list of selection

modes), use the following procedure:

Void House::ComputeSelection
(Const Handle (SelectMgr_Selection)& Sel,
const Standard_Integer mode {
witch (mode) {
e 0: //Selection of the rooms

{

or (Standard_Integer i = 1; 1 <= myNbRooms; i++)

{

//for every room, create an instance of the owner,

Handle (RoomOwner) aRoomOwner = new RoomOwner

//Room () returns a room and NameRoom() returns its name.

Handle (Select3d_SensitiveBox) aSensitiveBox;
aSensitiveBox = new Select3d_SensitiveBox

(aRoomOwner, Xmin, Ymin, Zmin, Xmax, Ymax, Zmax);

Sel -> Add(aSensitiveBox) ;
}
break;
Case 1: ... //Selection of the doors
} //Switch
) // ComputeSelection

the given room
NameRoom (1)) ;

and its name.

(c) Open CASCADE 2015

2.2 Selection

View 1

Before selection

A LA

17

Figure 9: Activated sensitive boxes corresponding to selection mode 0 (selection of rooms)

Figure 10. Activated sensitive rectangles in the selector during dynamic selection
inview 1

Figure 10: Activated sensitive rectangles in the selector during dynamic selection in view 1

(c) Open CASCADE 2015

15

2.2 Selection

[
s
o 1
- "
-
- '
]
]
=== ca ===y
B T T
s " e i
g oW
" ...|”| y e— [;
] i 3
[o ¢
||||| (e ————— GO A - | p———— | | 1
- s ~ a i * :
- ! g - 3 -
®] L [. i
- N . 0
Y i L U & 1
vy, ' =, ' =y
» w -
msssss b ssassnenasananndanssmss oy
- N . 1 [
- - -
L]] - ' -
x - -
LY ' = ! w
L oy -
L * g
R T T T T I I

View 2

Before selection

t--n---.luuu _.||||||||||||||
- - &
P P -
- - -
L 1 " 1 rl
- i - 1 -
- L -+
¥ i . i -
T - mmmm my
1 - T "
' L ' - 1
+ L} * 1
1 - i -
T o ' . o 1
n o " 1 L .
T R o N T R R] i
1

i

Figure 11: Activated sensitive polygons corresponding to selection mode 1 (selection of doors)

Figure 12: Sensitive rectangles in the selector during dynamic selection in view 2

(c) Open CASCADE 2015

3 Application Interactive Services 16

3 Application Interactive Services

3.1 Introduction

Application Interactive Services allow managing presentations and dynamic selection in a viewer in a simple and
transparent manner.

The central entity for management of visualization and selections is the Interactive Context. It is connected to the
main viewer (and if need be, the trash bin viewer). It has two operating modes: the Neutral Point and the local
visualization and selection context.

The neutral point, which is the default mode, allows easily visualizing and selecting interactive objects loaded into
the context.

Local Contexts can be opened to prepare and use a temporary selection environment without disturbing the neutral
point. It is possible to choose the interactive objects, which you want to act on, the selection modes, which you want
to activate, and the temporary visualizations, which you will execute.

When the operation is finished, you close the current local context and return to the state in which you were before
opening it (neutral point or previous local context).

Interactive Objects are the entities, which are visualized and selected. You can use classes of standard interactive
objects for which all necessary functions have already been programmed, or you can implement your own classes
of interactive objects, by respecting a certain number of rules and conventions described below.

LPrsEd_Drawer is the mother class of: ol AIS_Drawer

An Interactive Object is a "virtual" entity, which can be presented and selected. An Interactive Object can have a
certain number of specific graphic attributes, such as visualization mode, color and material.

When an Interactive Object is visualized, the required graphic attributes are taken from its own Drawer if it has the
required custom attributes or otherwise from the context drawer.

SelectMgr_Filter [is the mother class of
L e L&dSelect_Edganter |:|

—I StdSEIE::tHFac:EFlltar“
—I E?tdSelectﬁShapeTypeFilter!]

| | AlS_AttnbuteFilter —D

— a geriter

_CORegulartyilter

— [E S_Exclusionriter I:I

— Li\IS_Slgnatu reFilter D

iﬁnﬁ ‘,’DEEH[EI I]

It can be necessary to filter the entities to be selected. Consequently there are Filter entities, which allow refining
the dynamic detection context. Some of these filters can be used at the Neutral Point, others only in an open local
context. It is possible to program custom filters and load them into the interactive context.

(c) Open CASCADE 2015

3.2 Interactive objects 17

3.2 Interactive objects

Entities which are visualized and selected in the AIS viewer are objects. They connect the underlying reference
geometry of a model to its graphic representation in AlS. You can use the predefined OCCT classes of standard
interactive objects, for which all necessary functions have already been programmed, or, if you are an advanced
user, you can implement your own classes of interactive objects.

3.2.1 Presentations

An interactive object can have as many presentations as its creator wants to give it.

3D presentations are managed by PresentationManager3D. As this is transparent in AIS, the user does not have to
worry about it.

A presentation is identified by an index and by the reference to the Presentation Manager which it depends on.

By convention, the default mode of representation for the Interactive Object has index 0.

trslﬂgrj’resentabieobjed mother class of_ [Selectiigr_SelectableObject

[__,. LAls_lnteracmeD bject
‘—p-—‘ |NS_C0n nec:tedtnteraswe!]

— = LPrsMgr_Prese ntation2d

—--I PRsMgr_Presentation3d | I

Calculation of different presentations of an interactive object is done by the Compute functions inheriting from
PrsMgr_ PresentableObject::Compute functions. They are automatically called by PresentationManager at a visu-
alization or an update request.

If you are creating your own type of interactive object, you must implement the Compute function in one of the
following ways:

For 3D:

void PackageName_ClassName: :Compute
(const Handle (PrsMgr_PresentationManager3d) & aPresentationManager,
const Handle (Prs3d_Presentation)& aPresentation,
const Standard_Integer aMode = 0);

For hidden line removal (HLR) mode in 3D:

void PackageName_ClassName: :Compute
(const Handle (Prs3d_Projector)& aProjector,
const Handle (Prs3d_Presentation)é& aPresentation);

3.2.2 Hidden Line Removal

The view can have two states: the normal mode or the computed mode (Hidden Line Removal mode). When the
latter is active, the view looks for all presentations displayed in the normal mode, which have been signalled as
accepting HLR mode. An internal mechanism allows calling the interactive object’s own Compute, that is projector
function.

By convention, the Interactive Object accepts or rejects the representation of HLR mode. It is possible to make this
declaration in one of two ways:

(c) Open CASCADE 2015

3.2 Interactive objects 18

« Initially by using one of the values of the enumeration PrsMgr_TypeOfPresentation:

— PrsMgr_TOP_AllView,
— PrsMgr_TOP_ProjectorDependant

« Later by using the function PrsMgr_PresentableObject::SetTypeOfPresentation

AIS_Shape class is an example of an interactive object that supports HLR representation. It supports two types of
the HLR algorithm:

« the polygonal algorithm based on the shape’s triangulation;

« the exact algorithm that works with the shape’s real geometry.
The type of the HLR algorithm is stored in AIS_Drawer of the shape. It is a value of the Prs3d_TypeOfHLR enumer-
ation and can be set to:

* Prs3d_TOH_PolyAlgo for a polygonal algorithm;

* Prs3d_TOH_Algo for an exact algorithm;

* Prs3d_TOH_NotSet if the type of algorithm is not set for the given interactive object instance.

The type of the HLR algorithm used for AIS_Shape can be changed by calling the AIS_Shape::SetTypeOfHLR()
method.

The current HLR algorithm type can be obtained using AIS_Shape::TypeOfHLR() method is to be used.

These methods get the value from the drawer of AIS_Shape. If the HLR algorithm type in the AIS_Drawer is set to
Prs3d_TOH_NotSet, the AIS_Drawer gets the value from the default drawer of AIS_InteractiveContext.

So it is possible to change the default HLR algorithm used by all newly displayed interactive objects. The value
of the HLR algorithm type stored in the context drawer can be Prs3d_TOH_Algo or Prs3d_TOH_PolyAlgo. The
polygonal algorithm is the default one.

3.2.3 Presentation modes
There are four types of interactive objects in AIS:

« the "construction element" or Datum,

+ the Relation (dimensions and constraints)

+ the Object

+ the None type (when the object is of an unknown type).
Inside these categories, additional characterization is available by means of a signature (an index.) By default, the
interactive object has a NONE type and a signature of 0 (equivalent to NONE.) If you want to give a particular type
and signature to your interactive object, you must redefine two virtual functions:

* AIS_InteractiveObject:: Type

» AIS_InteractiveObject::Signature.
Note that some signatures are already used by "standard" objects provided in AIS (see the 1ist of Standard
Interactive Object Classes).

The interactive context can have a default mode of representation for the set of interactive objects. This mode may
not be accepted by a given class of objects.

Consequently, to get information about this class it is necessary to use virtual function AIS_InteractiveObject::-
AcceptDisplayMode.

(c) Open CASCADE 2015

3.2 Interactive objects 19

Display Mode

The functions AIS_InteractiveContext::SetDisplayMode and AlS_InteractiveContext::UnsetDisplayMode allow set-
ting a custom display mode for an objects, which can be different from that proposed by the interactive context.

Highlight Mode

At dynamic detection, the presentation echoed by the Interactive Context, is by default the presentation already on
the screen.

The functions AIS_InteractiveObject::SetHilightMode and AlS_InteractiveObject::UnSetHilightMode allow specify-
ing the display mode used for highlighting (so called highlight mode), which is valid independently from the active
representation of the object. It makes no difference whether this choice is temporary or definitive.

Note that the same presentation (and consequently the same highlight mode) is used for highlighting detected
objects and for highlighting selected objects, the latter being drawn with a special selection color (refer to the
section related to Interactive Context services).

For example, you want to systematically highlight the wireframe presentation of a shape - non regarding if it is
visualized in wireframe presentation or with shading. Thus, you set the highlight mode to 0 in the constructor of the
interactive object. Do not forget to implement this representation mode in the Compute functions.

Infinite Status

If you do not want an object to be affected by a FitAll view, you must declare it infinite; you can cancel its "infinite"
status using AIS_InteractiveObject::SetinfiniteState and AlS_InteractiveObject::IsInfinite functions.

Let us take for example the class called /Shape representing an interactive object :

myPk_IShape: :myPK_IShape
(const TopoDS_Shape& SH, PrsMgr_TypeOfPresentation aType) :
AIS_InteractiveObject (aType), myShape (SH), myDrwr (new AIS_Drawer ()) {SetHilightMode (0); }
void myPk_IShape::Compute
(const Handle (PrsMgr_PresentationManager3d) & PM,
const Handle (Prs3d_Presentation)é& P,
const Standard_Integer TheMode)

~ch (TheMode) {
e 0:
StdPrs_WFDeflectionShape::Add (P, myShape,myDrwr) ; //algo for calculation of wireframe presentation
break;
: 1:
StdPrs_ShadedShape::Add (P,myShape,myDrwr); //algo for calculation of shading presentation.

break;
}
}
void myPk_IsShape: :Compute
(const Handle (Prs3d_Projector)& Prj,
const Handle (Prs3d_Presentation) P)

StdPrs_HLRPolyShape: :Add (P, myShape, myDrwr) ;
//Hidden line mode calculation algorithm

3.24 Selection

An interactive object can have an indefinite number of selection modes, each representing a "decomposition” into
sensitive primitives; each primitive has an Owner (SelectMgr_EntityOwner) which allows identifying the exact entity
which has been detected (see Dynamic Selection chapter).

The set of sensitive primitives, which correspond to a given mode, is stocked in a SELECTION (SelectMgr_-
Selection).

Each Selection mode is identified by an index. By Convention, the default selection mode that allows us to grasp
the Interactive object in its entirety is mode 0.

The calculation of Selection primitives (or sensitive primitives) is done by the intermediary of a virtual function,
ComputeSelection. This should be implemented for each type of interactive object on which you want to make
different type selections using the function AIS_ConnectedInteractive::ComputeSelection.

(c) Open CASCADE 2015

3.2 Interactive objects 20

A detailed explanation of the mechanism and the manner of implementing this function has been given in Dynamic
Selection chapter.

Moreover, just as the most frequently manipulated entity is TopoDS Shape, the most used Interactive Object is
AIS_Shape. You will see below activation functions for standard selection modes are proposed in the Interactive
context (selection by vertex, by edges etc). To create new classes of interactive object with the same behavior as
AIS_Shape - such as vertices and edges - you must redefine the virtual function AIS_ConnectedInteractive::Accept-
ShapeDecomposition.

You can change the default selection mode index of an Interactive Object using the following functions:

» AIS_InteractiveObject::HasSelectionMode checks if there is a selection mode;
+ AIS_InteractiveObject::SelectionMode check the current selection mode;
» AIS_InteractiveContext::SetSelectionMode sets a selection mode;

» AIS_InteractiveContext::UnsetSelectionMode unsets a selection mode.

These functions can be useful if you decide that the 0 mode used by default will not do. In the same way, you
can temporarily change the priority of certain interactive objects for selection of 0 mode to facilitate detecting them
graphically using the following functions:

» AIS_InteractiveObject::HasSelectionPriority checks if there is a selection priority setting for the owner;
» AIS_InteractiveObject::SelectionPriority checks the current priority;
» AIS_InteractiveObject::SetSelectionPriority sets a priority;

» AIS_InteractiveObject::UnsetSelectionPriority unsets the priority.

3.2.5 Graphic attributes

Grapbhic attributes manager, or AIS Drawer, stores graphic attributes for specific interactive objects and for interactive
objects controlled by interactive context.

Initially, all drawer attributes are filled out with the predefined values which will define the default 3D object appear-
ance.

When an interactive object is visualized, the required graphic attributes are first taken from its own drawer if one
exists, or from the context drawer if no specific drawer for that type of object exists.

Keep in mind the following points concerning graphic attributes:

» Each interactive object can have its own visualization attributes.

» The set of graphic attributes of an interactive object is stocked in an AIS_Drawer, which is only a Prs3d_-
Drawer with the possibility of a link to another drawer

» By default, the interactive object takes the graphic attributes of the context in which it is visualized (visualiza-
tion mode, deflection values for the calculation of presentations, number of isoparameters, color, type of line,
material, etc.)

* In the AIS_InteractiveObject abstract class, standard attributes including color, line thickness, material, and
transparency have been privileged. Consequently, there is a certain number of virtual functions, which allow
acting on these attributes. Each new class of interactive object can redefine these functions and change the
behavior of the class.

Change: | AlSPoint :SetColor]: - define; liIE_Drawer: PointAspect

Figure 13: Figure 13. Redefinition of virtual functions for changes in AIS_Point

(c) Open CASCADE 2015

3.2 Interactive objects 21

- redefine
Change LAIE‘_ShE'pE SetColor —_— AIS_Drawer FreeBoundaryAspect

— | AIS Drawer UnFreeBoundarydspeact
—

___ | AIS_Drawer::UlsoAspect D

— | AIS_Draver:VisoAspect
—

L | AlS Drawer ShadingAspect
=~

B ' AIS_Drawer SeenLineAspect
-

L EIS_Dramr HiddenLineAspect |]

Figure 14: Figure 14. Redefinition of virtual functions for changes in AIS_Shape.

The following virtual functions provide settings for color, width, material and transparency:

» AIS_InteractiveObject::UnsetColor

* AIS_InteractiveObject::SetWidth

» AIS_InteractiveObject::UnsetWidth

» AIS_InteractiveObject::SetMaterial (const Graphic3d_NameOfPhysicalMaterial & aName)
» AIS_InteractiveObject::SetMaterial (const Graphic3d_MaterialAspect & aMat)

» AIS_InteractiveObject::UnsetMaterial

» AIS_InteractiveObject::SetTransparency

» AIS_InteractiveObject::UnsetTransparency
For other types of attribute, it is appropriate to change the Drawer of the object directly using:

» AIS_InteractiveObject::SetAttributes

» AIS_InteractiveObject::UnsetAttributes

It is important to know which functions may imply the recalculation of presentations of the object.

If the presentation mode of an interactive object is to be updated, a flag from PrsMgr_PresentableObject indicates
this.

The mode can be updated using the functions Display and Redisplay in AIS_InteractiveContext.

3.2.6 Complementary Services

When you use complementary services for interactive objects, pay special attention to the cases mentioned below.
Change the location of an interactive object

The following functions allow temporarily "moving" the representation and selection of Interactive Objects in a view
without recalculation.

(c) Open CASCADE 2015

3.2 Interactive objects 22

» AIS_InteractiveContext::SetLocation
» AIS_InteractiveContext::ResetLocation
» AIS_InteractiveContext::HasLocation

» AIS_InteractiveContext::Location

Connect an interactive object to an applicative entity

Each Interactive Object has functions that allow attributing it an Owner in form of a Transient.

» AIS_InteractiveObject::SetOwner
» AIS_InteractiveObject::HasOwner

» AIS_InteractiveObject::Owner

An interactive object can therefore be associated or not with an applicative entity, without affecting its behavior.
Resolving coincident topology

Due to the fact that the accuracy of three-dimensional graphics coordinates has a finite resolution the elements of
topological objects can coincide producing the effect of "popping" some elements one over another.

To the problem when the elements of two or more Interactive Objects are coincident you can apply the polygon
offset. It is a sort of graphics computational offset, or depth buffer offset, that allows you to arrange elements (by
modifying their depth value) without changing their coordinates. The graphical elements that accept this kind of
offsets are solid polygons or displayed as boundary lines and points. The polygons could be displayed as lines or
points by setting the appropriate interior style.

The method AIS_InteractiveObject::SetPolygonOffsets (const Standard_Integer aMode, const Standard_Real a-
Factor, const Standard _Real aUnits) allows setting up the polygon offsets.

The parameter aMode can contain various combinations of Aspect_PolygonOffsetMode enumeration elements:

» Aspect POM_None

» Aspect POM_Off

Aspect_ POM_Fill

» Aspect POM_Line

» Aspect POM_Point

» Aspect POM_AII
The combination of these elements defines the polygon display modes that will use the given offsets. You can switch
off the polygon offsets by passing Aspect POM_Off. Passing Aspect POM_None allows changing the aFactor and

aUnits values without changing the mode. If aMode is different from Aspect POM_Off, the aFactor and aUnits
arguments are used by the graphics renderer to calculate the depth offset value:

offset = aFactor x m + aUnits % r

where m is the maximum depth slope for the currently displayed polygons, r is the minimum depth resolution
(implementation-specific).

Negative offset values move polygons closer to the viewer while positive values shift polygons away.
Warning

This method has a side effect - it creates its own shading aspect if not yet created, so it is better to set up the object
shading aspect first.

You can use the following functions to obtain the current settings for polygon offsets:

(c) Open CASCADE 2015

3.3 Interactive Context 23

void AIS_InteractiveObject::PolygonOffsets
(Standard_Integer &aMode,
Standard_Real &aFactor,
Standard_Real &aUnits)

Standard_Boolean AIS_InteractiveObject::HasPolygonOffsets ()

The same operation could be performed for the interactive object known by the AIS_InteractiveContext with the
following methods:

void AIS_InteractiveContext::SetPolygonOffsets
(const Handle (AIS_InteractiveObject) &anObj,
const Standard_Integer aMode,
const Standard_Real aFactor,
const Standard_Real aUnits)

void AIS_InteractiveContext::PolygonOffsets
(const Handle (AIS_InteractiveObject) &anObj,
Standard_Integer &aMode,
Standard_Real &aFactor,
Standard_Real &aUnits)

Standard_Boolean AIS_InteractiveContext::HasPolygonOffsets
(const Handle (AIS_InteractiveObject) &anObj)

3.3 Interactive Context
3.3.1 Rules

The Interactive Context allows managing in a transparent way the graphic and selectable behavior of interactive
objects in one or more viewers. Most functions which allow modifying the attributes of interactive objects, and which
were presented in the preceding chapter, will be looked at again here.

There is one essential rule to follow: the modification of an interactive object, which is already known by the Context,
must be done using Context functions. You can only directly call the functions available for an interactive object if it
has not been loaded into an Interactive Context.

Handle (AIS_Shape) TheAISShape = new AIS_Shape (ashape);
myIntContext->Display (TheAISShape);
myIntContext->SetDisplayMode (TheAISShape ,1);
myIntContext->SetColor (TheAISShape,Quantity NOC_RED) ;

You can also write

Handle (AIS_Shape) TheAISShape = new AIS_Shape (ashape);
TheAISShape->SetColor (Quantity_NOC_RED) ;
TheAISShape->SetDisplayMode (1) ;
myIntContext->Display (TheAISShape) ;

3.3.2 Groups of functions

Neutral Point and Local Context constitute the two operating modes or states of the Interactive Context, which
is the central entity which pilots visualizations and selections.

The Neutral Point, which is the default mode, allows easily visualizing and selecting interactive objects, which
have been loaded into the context. Opening Local contexts allows preparing and using a temporary selection
environment without disturbing the neutral point.

A set of functions allows choosing the interactive objects which you want to act on, the selection modes which you
want to activate, and the temporary visualizations which you will execute. When the operation is finished, you close
the current local context and return to the state in which you were before opening it (neutral point or previous local
context).

The Interactive Context is composed of many functions, which can be conveniently grouped according to the theme:

+ management proper to the context;

* management in the local context;

(c) Open CASCADE 2015

3.4 Local Context 24

+ presentations and selection in open/closed context;

* selection strictly speaking.

Some functions can only be used in open Local Context; others in closed local context; others do not have the same
behavior in one state as in the other.

3.3.3 Management of the Interactive Context

The Interactive Context is made up of a Principal Viewer and, optionally, a trash bin or Collector Viewer.

An interactive object can have a certain number of specific graphic attributes, such as visualization mode, color,
and material. Correspondingly, the interactive context has a set of graphic attributes, the Drawer, which is valid by
default for the objects it controls.

When an interactive object is visualized, the required graphic attributes are first taken from the object's own Drawer
if one exists, or from the context drawer for the others.

The following adjustable settings allow personalizing the behavior of presentations and selections:
+ Default Drawer, containing all the color and line attributes which can be used by interactive objects, which do
not have their own attributes.
» Default Visualization Mode for interactive objects. By default: mode 0 ;
« Highlight color of entities detected by mouse movement. By default: Quantity NOC_CYANT,
 Pre-selection color. By default: Quantity NOC_GREEN,;
+ Selection color (when you click on a detected object). By default: Quantity NOC_GRAY80,

» Sub-Intensity color. By default: Quantity NOC_GRAY40.

All of these settings can be modified by functions proper to the Context.

When you change a graphic attribute pertaining to the Context (visualization mode, for example), all interactive
objects, which do not have the corresponding appropriate attribute, are updated.

Let us examine the case of two interactive objects: obj7 and obj2:

TheCtx->Display (objl, Standard_False); // False = no viewer update
TheCtx->Display (obj2, Standard_True); // True = viewer update
TheCtx->SetDisplayMode (objl, 3, Standard_False);
TheCtx->SetDisplayMode (2) ;

// obj2 is visualised in mode 2 (if it accepts this mode)

// objl stays visualised in its mode 3.

PresentationManager3D and Selector3D, which manage the presentation and selection of present interactive ob-
jects, are associated to the main Viewer. The same is true of the optional Collector.

3.4 Local Context
3.4.1 Rules and Conventions

» Opening a local context allows preparing an environment for temporary presentations and selections, which
will disappear once the local context is closed.

It is possible to open several local contexts, but only the last one will be active.

» When you close a local context, the previous one, which is still on the stack, is activated again. If none is left,
you return to Neutral Point.

Each local context has an index created when the context opens. You should close the local context, which
you have opened.

(c) Open CASCADE 2015

3.4 Local Context 25

The interactive object, which is used the most by applications, is AIS_Shape. Consequently, standard functions are
available which allow you to easily prepare selection operations on the constituent elements of shapes (selection
of vertices, edges, faces etc) in an open local context. The selection modes specific to "Shape" type objects are
called Standard Activation Mode. These modes are only taken into account in open local context and only act on
interactive objects which have redefined the virtual function AcceptShapeDecomposition() so that it returns TRUE.

» Objects, which are temporarily in a local context, are not recognized by other local contexts a priori. Only
objects visualized in Neutral Point are recognized by all local contexts.
» The state of a temporary interactive object in a local context can only be modified while another local context
is open.
Warning

The specific modes of selection only concern the interactive objects, which are present in the Main Viewer. In
the Collector, you can only locate interactive objects, which answer positively to the positioned filters when a local
context is open, however, they are never decomposed in standard mode.

3.42 Management of Local Context

The local context can be opened using method AIS_InteractiveContext::OpenLocalContext. The following options
are available:

« UseDisplayedObjects: allows loading the interactive objects visualized at Neutral Point in the opened local
context. If FALSE, the local context is empty after being opened. If TRUE, the objects at Neutral Point are
modified by their default selection mode.

» AllowShapeDecomposition: AlS_Shape allows or prevents decomposition in standard shape location mode
of objects at Neutral Point, which are type-privileged (see Selection chapter). This Flag is only taken into
account when UseDisplayedObjects is TRUE.

 AcceptEraseOfObjects: authorizes other local contexts to erase the interactive objects present in this context.
This option is rarely used. The last option has no current use.
This function returns the index of the created local context. It should be kept and used when the context is closed.

To load objects visualized at Neutral Point into a local context or remove them from it use methods

AIS_InteractiveContext::UseDisplayedObjects
AIS_InteractiveContext::NotUseDisplayedObjects

Closing Local Contexts is done by:

AIS_InteractiveContext::CloseLocalContext
AIS_InteractiveContext::CloseAllContexts

Warning When the index is not specified in the first function, the current Context is closed. This option can be
dangerous, as other Interactive Functions can open local contexts without necessarily warning the user. For greater
security, you have to close the context with the index given on opening.

To get the index of the current context, use function AIS_InteractiveContext::IndexOfCurrentLocal. It allows closing
all open local contexts at one go. In this case, you find yourself directly at Neutral Point.

When you close a local context, all temporary interactive objects are deleted, all selection modes concerning the
context are canceled, and all content filters are emptied.

3.4.3 Presentation in a Neutral Point
You must distinguish between the Neutral Point and the Open Local Context states. Although the majority of
visualization functions can be used in both situations, their behavior is different.

Neutral Point should be used to visualize the interactive objects, which represent and select an applicative entity.
Visualization and Erasing orders are straightforward:

(c) Open CASCADE 2015

3.4 Local Context 26

AIS_InteractiveContext::Display
(const Handle (AIS_InteractiveObject)& anlIobj,
const Standard_Boolean updateviewer=Standard_True);

AIS_InteractiveContext::Display
(const Handle (AIS_InteractiveObject)& anIobj,

const Standard_Integer amode,

const Standard_Integer aSelectionMode,

const Standard_Boolean updateviewer = Standard_True,

const Standard_Boolean allowdecomposition = Standard_True);

AIS_InteractiveContext::Erase
AIS_InteractiveContext::EraseMode
ATIS_InteractiveContext::ClearPrs
AIS_InteractiveContext::Redisplay
AIS_InteractiveContext::Remove
AIS_InteractiveContext::EraseAll
AIS_InteractiveContext::Hilight
AIS_InteractiveContext::HilightWithColor

Bear in mind the following points:

« Itis recommended to display and erase interactive objects when no local context is opened, and open a local
context for local selection only.

The first Display function among the two ones available in InteractiveContext visualizes the object in its default
mode (set with help of SetDisplayMode() method of InteractiveObject prior to Display() call), or in the default
context mode, if applicable. If it has neither, the function displays it in O presentation mode. The object’s
default selection mode is automatically activated (0 mode by convention).

Activating the displayed object by default can be turned off with help of SetAutoActivateSelection() method.
This might be efficient if you are not interested in selection immediately after displaying an object.

» The second Display function should only be used in Neutral Point to visualize a supplementary mode for
the object, which you can erase by EraseMode (...). You activate the selection mode. This is passed as an
argument. By convention, if you do not want to activate a selection mode, you must set the SelectionMode
argument to -1. This function is especially interesting in open local context, as we will see below.

In Neutral Point, it is not advisable to activate other selection modes than the default selection one. It is
preferable to open a local context in order to activate particular selection modes.

« When you call Erase(Interactive object) function, the Putincollector argument, which is FALSE by default,
allows you to visualize the object directly in the Collector and makes it selectable (by activation of 0 mode).
You can nonetheless block its passage through the Collector by changing the value of this option. In this
case, the object is present in the Interactive Context, but is not seen anywhere.

» Erase() with putinCollector = Standard _True might be slow as it recomputes the object presentation in the
Collector. Set putinCollector to Standard_False if you simply want to hide the object’s presentation temporar-

ily.
« Visualization attributes and graphic behavior can be modified through a set of functions similar to those for the

interactive object (color, thickness of line, material, transparency, locations, etc.) The context then manages
immediate and deferred updates.

» Call Remove() method of InteractiveContext as soon as the interactive object is no longer needed and you
want to destroy it.. Otherwise, references to InteractiveObject are kept by InteractiveContext, and the Object
is not destroyed, which results in memory leaks. In general, if the presentation of an interactive object can be
computed quickly, it is recommended to Remove() it instead of using Erase() method.

3.4.4 Presentation in the Local Context

In open local context, the Display functions presented above can be as well.
WARNING

The function AIS_InteractiveObject::Display automatically activates the object’s default selection mode. When you
only want to visualize an Interactive Object in open Context, you must call the function AIS_InteractiveContext::-
Display.

(c) Open CASCADE 2015

3.4 Local Context 27

You can activate or deactivate specific selection modes in the local open context in several different ways: Use the
Display functions with the appropriate modes.

AIS_InteractiveContext::ActivateStandardMode
//can be used only if a Local Context is opened.
AIS_InteractiveContext::DeactivateStandardMode
AIS_InteractiveContext::ActivatedStandardModes
AIS_InteractiveContext::SetShapeDecomposition

This activates the corresponding selection mode for all objects in Local Context, which accept decomposition into
sub-shapes. Every new Object which has been loaded into the interactive context and which meets the decompo-
sition criteria is automatically activated according to these modes.

WARNING

If you have opened a local context by loading an object with the default options (AllowShapeDecomposition =
Standard_True), all objects of the "Shape" type are also activated with the same modes. You can change the state
of these "Standard" objects by using SetShapeDecomposition(Status).

Load an interactive object by the function AIS_InteractiveContext::Load.

This function allows loading an Interactive Object whether it is visualized or not with a given selection mode, and/or
with the necessary decomposition option. If AllowDecomp=TRUE and obviously, if the interactive object is of the
"Shape" type, these "standard" selection modes will be automatically activated as a function of the modes present
in the Local Context.

Use AIS_InteractiveContext::Activate and AIS_InteractiveContext::Deactivate to directly activate/deactivate selec-
tion modes on an object.

3.4.5 Filters

To define an environment of dynamic detection, you can use standard filter classes or create your own. A filter
questions the owner of the sensitive primitive in local context to determine if it has the desired qualities. If it answers
positively, it is kept. If not, it is rejected.

The root class of objects is SelectMgr_Filter. The principle behind it is straightforward: a filter tests to see whether
the owners (SelectMgr_EntityOwner) detected in mouse position by the Local context selector answer OK. If so, it
is kept, otherwise it is rejected.

You can create a custom class of filter objects by implementing the deferred function IsOk():

class MyFilter : public SelectMgr_Filter { };
virtual Standard_Boolean MyFilter::IsOk
(const Handle (SelectMgr_EntityOwner)& anObj) const = 0;

In SelectMgr, there are also Composition filters (AND Filters, OR Filters), which allow combining several filters. In
InteractiveContext , all filters that you add are stocked in an OR filter (which answers OKif at least one filter answers

OK).

There are Standard filters, which have already been implemented in several packages:

StdSelect EdgefFilter - for edges, such as lines and circles;

StdSelect _FaceFilter - for faces, such as planes, cylinders and spheres;
» StdSelect_ShapeTypefFilter - for shape types, such as compounds, solids, shells and wires;
» AIS_TypekFilter - for types of interactive objects;
» AIS_SignatureFilter - for types and signatures of interactive objects;
» AIS_AttributeFilter - for attributes of Interactive Objects, such as color and width.
As there are specific behaviors on shapes, each new Filter class must, if necessary, redefine AIS_LocalContext:.-

ActsOn function, which informs the Local Context if it acts on specific types of sub-shapes. By default, this function
answers FALSE.

(c) Open CASCADE 2015

3.4 Local Context

28

WARNING

Only type filters are activated in Neutral Point to make it possible to identify a specific type of visualized object. For

filters to come into play, one or more object selection modes must be activated.

There are several functions to manipulate filters:

» AIS_InteractiveContext::AddFilter adds a filter passed as an argument.

» AIS_InteractiveContext::RemoveFilter removes a filter passed as an argument.

» AIS_InteractiveContext::RemoveFilters removes all present filters.

» AIS_InteractiveContext::Filters gets the list of filters active in a local context.

Example

myContext->OpenLocalContext (Standard_False);
// no object in neutral point is loaded

myContext->ActivateStandardMode (TopAbs_Face) ;
//activates decomposition of shapes into faces.

Handle (AIS_Shape) myAIShape = new AIS_Shape (ATopoShape);

myContext->Display (myAIShape, 1, -1, Standard_True, Standard_True) ;

//shading visualization mode, no specific mode, authorization for decomposition into sub-shapes.

Stage, myAIShape is decomposed into faces...
Handle (StdSelect_FaceFilter) Fill= new
StdSelect_FaceFilter (StdSelect_Revol);
Handle (StdSelect_FaceFilter) Fil2= new
StdSelect_FaceFilter (StdSelect_Plane);

myContext->AddFilter (Fill);
myContext->AddFilter (Fil2);

//only faces of revolution or planar faces will be selected

myContext->MoveTo (xpix,ypix,Vue);
// detects the mouse position

3.4.6 Selection in the Local Context

Dynamic detection and selection are put into effect in a straightforward way. There are only a few conventions and

functions to be familiar with. The functions are the same in neutral point and in open local context:

» AIS_InteractiveContext::MoveTo - passes mouse position to Interactive Context selectors

» AIS_InteractiveContext::Select - stocks what has been detected on the last MoveTo. Replaces the previously

selected object. Empties the stack if nothing has been detected at the last move

» AIS_InteractiveContext::ShiftSelect - if the object detected at the last move was not already selected, it is
added to the list of the selected objects. If not, it is withdrawn. Nothing happens if you click on an empty area.

» AIS_InteractiveContext::Select selects everything found in the surrounding area.

» AIS_InteractiveContext::ShiftSelect selects what was not previously in the list of selected, deselects those

already present.

Highlighting of detected and selected entities is automatically managed by the Interactive Context, whether you are
in neutral point or Local Context. The Highlight colors are those dealt with above. You can nonetheless disconnect

this automatic mode if you want to manage this part yourself :

AIS_InteractiveContext::SetAutomaticHilight
AIS_InteractiveContext::AutomaticHilight

If there is no open local context, the objects selected are called current objects. If there is a local context, they
are called selected objects. lterators allow entities to be recovered in either case. A set of functions allows

manipulating the objects, which have been placed in these different lists.

(c) Open CASCADE 2015

3.4 Local Context 29

WARNING

When a Local Context is open, you can select entities other than interactive objects (vertices, edges etc.) from de-
compositions in standard modes, or from activation in specific modes on specific interactive objects. Only interactive
objects are stocked in the list of selected objects.

You can question the Interactive context by moving the mouse. The following functions can be used:

» AIS_InteractiveContext::HasDetected informs if something has been detected;
» AIS_InteractiveContext::HasDetectedShape informs if it is a shape;
» AIS_InteractiveContext::DetectedShape gets the shape if the detected entity is an object;

» AIS_InteractiveContext::Detectedinteractive gets the interactive object if the detected entity is an object.

After using the Select and ShiftSelect functions in Neutral Point, you can explore the list of selections, referred to as
current objects in this context. The following functions can be used:

» AIS_InteractiveContext::InitCurrent initiates a scan of this list;

« AIS_InteractiveContext::MoreCurrent extends the scan;

« AIS_InteractiveContext::NextCurrent resumes the scan;

» AIS _InteractiveContext::Current gets the name of the current object detected in the scan;

» AIS_InteractiveContext::FirstCurrentObject gets the first current interactive object;

» AIS_InteractiveContext::HilightCurrents highlights current objects;

» AIS_InteractiveContext::UnhilightCurrents removes highlight from current objects;

» AIS_InteractiveContext::ClearCurrents empties the list of current objects in order to update it;

» AIS_InteractiveContext::IsCurrent finds the current object.
In the Local Context, you can explore the list of selected objects available. The following functions can be used:

» AIS_InteractiveContext::InitSelected initiates the list of objects;

» AIS_InteractiveContext::MoreSelected extends the list of objects;

« AIS_InteractiveContext::NextSelected resumes a scan;

» AIS_InteractiveContext::SelectedShape gets the name of the selected object;

» AIS_InteractiveContext::HasSelectedShape checks if the selected shape is obtained;
» AIS_InteractiveContext::Interactive gets the picked interactive object;

» AIS_InteractiveContext::HasApplicative checks if the applicative object has an owner from Interactive at-
tributed to it;

» AIS_InteractiveContext::Applicative gets the owner of the detected applicative entity;

» AIS_InteractiveContext::IsSelected gets the name of the selected object.

(c) Open CASCADE 2015

3.4 Local Context 30

Example

myAISCtx->InitSelected();
(myAISCtx->MoreSelected()
{

(myAISCtx->HasSelectedShape)

{

TopoDS_Shape ashape = myAISCtx->SelectedShape();

// to be able to use the picked shape
}

{
Handle_AIS_InteractiveObject anyobj = myAISCtx->Interactive();
// to be able to use the picked interactive object
}
myAISCtx->NextSelected();
}

You have to ask whether you have selected a shape or an interactive object before you can recover the entity in
the Local Context or in the iteration loop. If you have selected a Shape from TopoDS on decomposition in standard
mode, the Interactive() function returns the interactive object, which provided the selected shape. Other functions
allow you to manipulate the content of Selected or Current Objects:

» AIS_InteractiveContext::EraseSelected erases the selected objects;
» AIS_InteractiveContext::DisplaySelected displays them;
» AIS_InteractiveContext::SetSelected puts the objects in the list of selections;

» AIS_InteractiveContext::SetSelectedCurrent takes the list of selected objects from a local context and puts it
into the list of current objects in Neutral Point;

» AIS_InteractiveContext::AddOrRemoveSelected adds or removes an object from the list of selected entities;
» AIS_InteractiveContext::HilightSelected highlights the selected object;
» AIS_InteractiveContext::UnhilightSelected removes highlighting from the selected object;

» AIS_InteractiveContext::ClearSelected empties the list of selected objects.

You can highlight and remove highlighting from a current object, and empty the list of current objects using the
following functions:

AIS_InteractiveContext::HilightCurrents
AIS_InteractiveContext::UnhilightCurrents
AIS_InteractiveContext::ClearCurrents

When you are in an open Local Context, you may need to keep "temporary" interactive objects. This is possible
using the following functions:

» AIS_InteractiveContext::Keep Temporary transfers the characteristics of the interactive object seen in its local

context (visualization mode, etc.) to the neutral point. When the local context is closed, the object does not
disappear.

» AIS_InteractiveContext::SetSelectedCurrent allows the selected object to become the current object when
you close the local context.

You can also want to use function AIS_InteractiveContext::ClearLocalContext to modify in a general way the state
of the local context before continuing a selection (emptying objects, removing filters, standard activation modes).

3.47 Recommendations
The possibilities of use for local contexts are numerous depending on the type of operation that you want to perform:

« working on all visualized interactive objects,

(c) Open CASCADE 2015

3.4 Local Context 31

» working on only a few objects,
» working on a single object.
When you want to work on one type of entity, you should open a local context with the option UseDisplayedObjects

set to FALSE. Some functions which allow you to recover the visualized interactive objects, which have a given
Type, and Signature from the "Neutral Point" are:

AIS_InteractiveContext::DisplayedObjects (AIS_ListOfInteractives& aListOfIO) const;

AIS_InteractiveContext::DisplayedObjects (const AIS_KindOfInteractive WhichKind, const Standard_Integer
WhichSignature;

AIS_ListOfInteractive& aListOfIO) const;

At this stage, you only have to load the functions Load, Activate, and so on.

When you open a Local Context with default options, you must keep the following points in mind:

» The Interactive Objects visualized at Neutral Point are activated with their default selection mode. You must
deactivate those, which you do not want to use.

» The Shape Type Interactive Objects are automatically decomposed into sub-shapes when standard activation
modes are launched.

» The "temporary" Interactive Objects present in the Local Contexts are not automatically taken into account.
You have to load them manually if you want to use them.

The stages could be the following:

1. Open a Local Context with the right options;

2. Load/Visualize the required complementary objects with the desired activation modes.
3. Activate Standard modes if necessary

4. Create its filters and add them to the Local Context

5. Detect/Select/recover the desired entities

6. Close the Local Context with the adequate index.

It is useful to create an interactive editor, to which you pass the Interactive Context. This allow setting up different
contexts of selection/presentation according to the operation, which you want to perform.

Let us assume that you have visualized several types of interactive objects: AIS_Points, AIS_Axes, AlS_Trihedrons,
and AIS_Shapes.

For your applicative function, you need an axis to create a revolved object. You could obtain this axis by identifying:

+ an axis which is already visualized,
* 2 points,
+ arectilinear edge on the shapes which are present,

+ acylindrical face on the shapes (You will take the axis of this face)

myIHMEditor: :myIHMEditor
(const Handle (AIS_InteractiveContext) & Ctx,
P B
myCtx (Ctx),
{
}

myIHMEditor: :PrepareContext ()

{
myIndex =myCtx—->OpenLocalContext ();

(c) Open CASCADE 2015

3.4 Local Context

//the filters

Handle (AIS_SignatureFilter) F1 = new
//filter on the points

Handle (AIS_SignatureFilter) F2
//filters on the axes.

Handle (StdSelect_FaceFilter) F3 =

//cylindrical face filters

/] ...

// activation of standard modes on the shapes..
myCtx—->ActivateStandardMode (TopAbs_FACE) ;
myCtx->ActivateStandardMode (TopAbs_VERTEX) ;
myCTX->Add (F1) ;

myCTX->Add (F2) ;

myCTX->Add (F3) ;

// at
}

this point,

void myIHMEditor::MoveTo (xpix, ypix, Vue)

{ myCTX->MoveTo (xpix,ypix, vue);

// the highlight of what is detected is automatic.

}

Standard_Boolean myIHMEditor::Select ()

{

// returns true if you should
myCTX->Select () ;
myCTX->InitSelected();
1f (myCTX->MoreSelected())

{
£ (myCTX->HasSelectedShape ())
{ const TopoDS_Shape& sh =
if(vertex){
1f (myFirstv...)
{
//if it is the
filter on the points:
mypointl =;
myCtx->RemoveFilters();
myCTX->DeactivateStandardMode (TopAbs_FACE) ;
myCtx->Add (F1);
// the filter on the AIS_Points
myFirstV = Standard_False;
eturn Standard_True;

continue the selection

first vertex, you stock it,

AIS_SignatureFilter (AIS_KOI_Datum,AIS_SD_Point);

new AIS_SignatureFilter (AIS_KOI_Datum,AIS_SD_Axis);

new StdSelect_FaceFilter (AIS_Cylinder);

you can call the selection/detection function

myCTX->SelectedShape () ;

then you deactivate the faces and only keep the

visualize it; and stock it.

mypoint2 =...;
// construction of the axis return Standard_False;
}
}
else
{
//it is a cylindrical face you recover the axis;
return Standard_False;

}

}
// it is not a shape but is no doubt a point.
{

Handle (AIS_InteractiveObject)
SelObj = myCTX->SelectedInteractive();

if (SelObj->Type () ==AIS_KOI_Datum)
{

1f(SelObj->Signature ()==1)
{
if (firstPoint)
{
mypointl =...
return Standard_True;
}
else
{
mypoint2 = ...;
//construction of the axis,

return Standard_False;

// you have selected an axis;
return Standard_False;

}

stock the axis

visualization,

stocking

(c) Open CASCADE 2015

3.5 Standard Interactive Object Classes 33

}
}
}
}
void myIHMEditor::Terminate ()

{
myCtx->CloseLocalContext (myIndex) ;

}

3.5 Standard Interactive Object Classes
Interactive Objects are selectable and viewable objects connecting graphic representation and the underlying refer-
ence geometry.

They are divided into four types:

» the Datum - a construction geometric element;
+ the Relation - a constraint on the interactive shape and the corresponding reference geometry;
+ the Object - a topological shape or connection between shapes;

» None a token, that instead of eliminating the object, tells the application to look further until it finds an accept-
able object definition in its generation.

Inside these categories, there is a possibility of additional characterization by means of a signature. The signature
provides an index to the further characterization. By default, the Interactive Object has a None type and a signature
of 0 (equivalent to None). If you want to give a particular type and signature to your interactive object, you must
redefine the two virtual methods: Type and Signature.

3.5.1 Datum

The Datum groups together the construction elements such as lines, circles, points, trihedrons, plane trihedrons,
planes and axes.

AIS_Point, AIS_Axis, AIS_Line, AIS_Circle, AIS_Plane and AIS_Trihedron have four selection modes:

* mode 0 : selection of a trihedron;
* mode 1 : selection of the origin of the trihedron;
* mode 2 : selection of the axes;

* mode 3 : selection of the planes XQY, YOZ, XOZ.
when you activate one of modes: 1 2 3 4, you pick AIS objects of type:

» AIS_Point
* AIS_Axis (and information on the type of axis)

* AIS_Plane (and information on the type of plane).
AIS_PlaneTrihedron offers three selection modes:

» mode 0 : selection of the whole trihedron;
* mode 1 : selection of the origin of the trihedron;

* mode 2 : selection of the axes - same remarks as for the Trihedron.

For the presentation of planes and trihedra, the default unit of length is millimeter, and the default value for the
representation of axes is 100. If you modify these dimensions, you must temporarily recover the object Drawer.
From it, take the Aspects in which the values for length are stored (PlaneAspect for the plane, FirstAxisAspect for
trihedra), and change these values inside these Aspects. Finally, recalculate the presentation.

(c) Open CASCADE 2015

3.5 Standard Interactive Object Classes 34

352 Object

The Object type includes topological shapes, and connections between shapes.

AIS_Shape has three visualization modes :

» mode 0 : Line (default mode)
* mode 1 : Shading (depending on the type of shape)

* mode 2 : Bounding Box
And at maximum seven selection modes, depending on the shape complexity:

» mode 0 : selection of the AIS_Shape;

« mode 1 : selection of the vertices;

» mode 2 : selection of the edges;

+ mode 3 : selection of the wires;

* mode 4 : selection of the faces;

* mode 5 : selection of the shells;

* mode 6 : selection of the constituent solids.

» AIS_Triangulation is a simple interactive object for displaying triangular mesh contained in Poly_Triangulation
container.

» AIS_Connectedinteractive is an Interactive Object connecting to another interactive object reference, and
located elsewhere in the viewer makes it possible not to calculate presentation and selection, but to deduce
them from your object reference.

» AIS_ConnectedShape is an object connected to interactive objects having a shape; this class has the same
decompositions as AIS_Shape. Furthermore, it allows a presentation of hidden parts, which are calculated
automatically from the shape of its reference.

» AIS_MultipleConnectedinteractive is an object connected to a list of interactive objects (which can also be
Connected objects. It does not require memory hungry calculations of presentation)

» AIS_MultipleConnectedShape is an interactive Object connected to a list of interactive objects having a Shape
(AIS_Shape, AIS_ConnectedShape, AIS_MultipleConnectedShape). The presentation of hidden parts is
calculated automatically.

» AIS_TexturedShape is an Interactive Object that supports texture mapping. It is constructed as a usual AlS-
_Shape, but has additional methods that allow to map a texture on it.

* MeshVS_Meshis an Interactive Object that represents meshes, it has a data source that provides geometrical
information (nodes, elements) and can be built up from the source data with a custom presentation builder.

The class AIS_ColoredShape allows using custom colors and line widths for TopoDS Shape objects and their
sub-shapes.
AIS_ColoredShape aColoredShape = new AIS_ColoredShape (theShape);

// setup color of entire shape
aColoredShape->SetColor (Quantity_Color (Quantity_ NOC_RED)) ;

// setup line width of entire shape
aColoredShape->SetWidth (1.0);

// set transparency value
aColoredShape->SetTransparency (0.5);

// customize color of specified sub-shape
aColoredShape->SetCustomColor (theSubShape, Quantity_Color (Quantity_NOC_BLUELl));

// customize line width of specified sub-shape
aColoredShape->SetCustomWidth (theSubShape, 0.25);

(c) Open CASCADE 2015

3.5 Standard Interactive Object Classes 35

The presentation class AIS_PointCloud can be used for efficient drawing of large arbitrary sets of colored points.
It uses Graphic3d_ArrayOfPoints to pass point data into OpenGl graphic driver to draw a set points as an array of
"point sprites". The point data is packed into vertex buffer object for performance.

» The type of point marker used to draw points can be specified as a presentation aspect.

» The presentation provides selection by a bounding box of the visualized set of points. It supports two display
/ highlighting modes: points or bounding box.

Example:

Handle (Graphic3d_ArrayOfPoints) aPoints = new Graphic3d_ArrayOfPoints (2000, Standard_True);
aPoints->AddVertex (gp_Pnt(-40.0, -40.0, -40.0), Quantity_Color (Quantity_NOC_BLUELl));
aPoints->AddVertex (gp_Pnt (40.0, 40.0, 40.0), Quantity_Color (Quantity_NOC_BLUE2)) ;

Handle (AIS_PointCloud) aPntCloud = new AIS_PointCloud();
aPntCloud->SetPoints (aPoints);

The draw command vpointcloud builds a cloud of points from shape triangulation. This command can also draw a
sphere surface or a volume with a large amount of points (more than one million).

3.5.3 Relations

The Relation is made up of constraints on one or more interactive shapes and the corresponding reference geom-
etry. For example, you might want to constrain two edges in a parallel relation. This constraint is considered as an
object in its own right, and is shown as a sensitive primitive. This takes the graphic form of a perpendicular arrow
marked with the || symbol and lying between the two edges.

The following relations are provided by A/S:

» AIS_ConcentricRelation

» AIS_FixRelation

» AIS_IdenticRelation

» AIS_ParallelRelation

« AIS_PerpendicularRelation
» AIS_Relation

« AIS_SymmetricRelation

» AIS_TangentRelation

The list of relations is not exhaustive.

3.5.4 Dimensions

« AIS_AngleDimension

* AIS_Chamif3dDimension
» AIS_DiameterDimension
» AIS_DimensionOwner

* AIS_LengthDimension

» AIS_OffsetDimension

* AIS_RadiusDimension

(c) Open CASCADE 2015

3.5 Standard Interactive Object Classes 36

3.5.5 MeshVS_Mesh

MeshVS_Mesh is an Interactive Object that represents meshes. This object differs from the AIS_Shape as its
geometrical data is supported by the data source MeshVS_DataSource that describes nodes and elements of the
object. As a result, you can provide your own data source.

However, the DataSource does not provide any information on attributes, for example nodal colors, but you can
apply them in a special way - by choosing the appropriate presentation builder.

The presentations of MeshVS_Mesh are built with the presentation builders MeshVS_PrsBuilder. You can choose
between the builders to represent the object in a different way. Moreover, you can redefine the base builder class
and provide your own presentation builder.

You can add/remove builders using the following methods:

MeshVS_Mesh: :AddBuilder (const Handle (MeshVS_PrsBuilder) &Builder, Standard_Boolean TreatAsHilighter)
MeshVS_Mesh: :RemoveBuilder (const Standard_Integer Index)
MeshVS_Mesh: :RemoveBuilderById (const Standard_Integer Id)

There is a set of reserved display and highlighting mode flags for MeshVS_Mesh. Mode value is a number of bits
that allows selecting additional display parameters and combining the following mode flags, which allow displaying
mesh in wireframe, shading and shrink modes:

MeshVS_DMF_WireFrame
MeshVS_DMF_Shading
MeshVS_DMF_Shrink

It is also possible to display deformed mesh in wireframe, shading or shrink modes usung :

MeshVS_DMF_DeformedPrsWireFrame
MeshVS_DMF_DeformedPrsShading
MeshVS_DMF_DeformedPrsShrink

The following methods represent different kinds of data :

MeshVS_DMF_VectorDataPrs
MeshVS_DMF_NodalColorDataPrs
MeshVS_DMF_ElementalColorDataPrs
MeshVS_DMF_TextDataPrs
MeshVS_DMF_EntitiesWithData

The following methods provide selection and highlighting :

MeshVS_DMF_SelectionPrs
MeshVS_DMF_HilightPrs

MeshVS_DMF _Useris a user-defined mode.

These values will be used by the presentation builder. There is also a set of selection modes flags that can be
grouped in a combination of bits:

* MeshVS_SMF_0D

* MeshVS_SMF _Link

* MeshVS SMF Face

* MeshVS_SMF_Volume

* MeshVS_SMF_Element - groups 0D, Link, Face and Volume as a bit mask ;
* MeshVS_SMF _Node

* MeshVS_SMF_All - groups Element and Node as a bit mask;

* MeshVS_SMF_Mesh

(c) Open CASCADE 2015

3.6 Dynamic Selection 37

* MeshVS_SMF_Group

Such an object, for example, can be used for displaying the object and stored in the STL file format:

// read the data and create a data source
Handle (St1lMesh_Mesh) aSTLMesh = RWStl::ReadFile (aFileName);
Handle (XSDRAWSTLVRML_DataSource) aDataSource = new XSDRAWSTLVRML_DataSource (aSTLMesh);

// create mesh
Handle (MeshVS_Mesh) aMesh = new MeshVS();
aMesh->SetDataSource (aDataSource);

// use default presentation builder
Handle (MeshVS_MeshPrsBuilder) aBuilder = new MeshVS_MeshPrsBuilder (aMesh);
aMesh->AddBuilder (aBuilder, Standard_True);

MeshVS_NodalColorPrsBuilder allows representing a mesh with a color scaled texture mapped on it. To do this you
should define a color map for the color scale, pass this map to the presentation builder, and define an appropriate
value in the range of 0.0 - 1.0 for every node.

The following example demonstrates how you can do this (check if the view has been set up to display textures):

// assign nodal builder to the mesh

Handle (MeshVS_NodalColorPrsBuilder) aBuilder = new MeshVS_NodalColorPrsBuilder
(aMesh,MeshVS_DMF_NodalColorDataPrs | MeshVS_DMF_OCCMask) ;

aBuilder—->UseTexture (Standard_True) ;

// prepare color map

Aspect_SequenceOfColor aColorMap;

aColorMap.Append ((Quantity_NameOfColor) Quantity_NOC_RED) ;
aColorMap.Append ((Quantity_NameOfColor) Quantity_ NOC_BLUEL) ;

// assign color scale map values (0..1) to nodes
TColStd_DataMapOfIntegerReal aScaleMap;

// iterate through the nodes and add an node id and an appropriate value to the map
aScaleMap.Bind (anId, aValue);

// pass color map and color scale values to the builder
aBuilder->SetColorMap (aColorMap) ;
aBuilder->SetInvalidColor (Quantity_NOC_BLACK) ;
aBuilder—->SetTextureCoords (aScaleMap) ;
aMesh->AddBuilder (aBuilder, Standard_True);

3.6 Dynamic Selection

The idea of dynamic selection is to represent the entities, which you want to select by a bounding box in the actual
2D space of the selection view. The set of these zones is ordered by a powerful sorting algorithm. To then find
the applicative entities actually detected at this position, all you have to do is read which rectangles are touched at
mouse position (X,Y) of the view, and judiciously reject some of the entities which have provided these rectangles.

3.6.1 How to go from the objects to 2D boxes
An intermediary stage consists in representing what you can make selectable by means of sensitive primitives and
owners, entities of a high enough level to be known by the selector mechanisms.

The sensitive primitive is capable of:

+ giving a 2D bounding box to the selector.
» answering the rejection criteria positively or negatively by a "Matches" function.
* being projected from 3D in the 2D space of the view if need be.

+ returning the owner which it will represent in terms of selection.

A set of standard sensitive primitives exists in Select3D packages for 3D primitives.

The owner is the entity, which makes it possible to link the sensitive primitives and the objects that you really wanted
to detect. It stocks the diverse information, which makes it possible to find objects. An owner has a priority (5 by
default), which you can change to make one entity more selectable than another.

(c) Open CASCADE 2015

3.6 Dynamic Selection 38

an cwner

Eriy by joc s = |Erirr|ir.r'.rf-__ﬂ |pr||11|t|'-'.—':- E‘![primiti-.fe 31 L - KL

3.6.2 Implementation in an interactive/selectable object

Define the number of selection modes possible, i.e. what you want to identify by activating each of the selection
modes.

For example: for an interactive object representing a topological shape:

» mode 0: selection of the interactive object itself;
* mode 1: selection of the vertices;

» mode 2: selection of the edges;

+ mode 3: selection of the wires;

» mode 4: selection of the detectable faces.

For each selection mode of an interactive object, "model" is the set of entities, which you want to locate by these
primitives and these owners.

There is an "owner" root class, SelectMgr_EntityOwner, containing a reference to a selectable object, which has
created it. If you want to stock its information, you have to create classes derived from this root class. Example:
for shapes, there is the StdSelect BRepOwner class, which can save a TopoDS shape as a field as well as the

Interactive Object.

The set of sensitive primitives which has been calculated for a given mode is stocked in SelectMgr_Selection.
For an Interactive object, the modeling is done in the ComputeSelection virtual function.
Let us consider an example of an interactive object representing a box.

We are interested in two location modes:

« mode 0: location of the whole box.

* mode 1: location of the edges on the box.

For the first mode, all sensitive primitives will have the same owner, which will represent the interactive object. In
the second case, we have to create an owner for each edge, and this owner will have to contain the index for the
edge, which it represents. You will create a class of owner, which derives from SelectMgr_EntityOwner.

The ComputeSelection function for the interactive box can have the following form:

void InteractiveBox::ComputeSelection
(const Handle (SelectMgr_Selection)é& Sel,
const Standard_Integer Mode)

h (Mode)

{ case 0: //locating the whole box by making its faces sensitive...
{

Handle (SelectMgr_EntityOwner) Ownr = new SelectMgr_EntityOwner (this,5);
for (Standard_Integer I=1;I<=Nbfaces;I++)

{
//Array is a TColgp_ArraylOfPnt: which represents the array of vertices. Sensitivity is

Select3D_TypeOfSensitivity value
Sel->Add (new Select3D_SensitiveFace (Ownr,Array,Sensitivity));

}

reak;
7

(c) Open CASCADE 2015

3.6 Dynamic Selection 39

}
se 1t
// locates the edges {
or (Standard_Integer i=1;i<=12;i++)
{
// 1 owner per edge...
Handle (mypk_EdgeOwner) Ownr = new mypk_EdgeOwner (this, i, 6);
//6->priority
Sel->Add (new Select3D_SensitiveSegment (Ownr,firstpt(i),lastpt(i)));
}

break;

Selectable objects are loaded in the selection manager, which has one or more selectors; in general, we suggest
assigning one selector per viewer. All you have to do afterwards is to activate or deactivate the different selection
modes for selectable objects. The SelectionManager looks after the call to the ComputeSelection functions for
different objects.

NOTE: This procedure is completely hidden if you use the ATS Interactive Context

Example

//We have several " interactive boxes " boxl, box2, box3;
Handle (SelectMgr_SelectionManager) SM = new SelectMgr_SelectionManager (
Handle (StdSelect_ViewerSelector3d) VS = new StdSelect_ViewerSelector3d(

SM->Add (VS) ;

SM->Load (box1) ; SM->Load (box2) ; SM->Load (box3) ;

// box load.

SM->Activate (box1,0,VS);

// activates mode 0 of box 1 in the selector VS
SM->Activate (box1l,1,VS);

M->Activate (box3,1,VS);

VS—->Pick (xpix, ypix, vue3d)

// detection of primitives by mouse position.

Handle (EntityOwner) POwnr = VS->OnePicked();

// picking of the "best" owner detected

for (VS->Init () ;VS->More () ; VS—>Next ())

{
VS->Picked () ;
// picking of all owners detected
}
SM->Deactivate (boxl);
// deactivate all active modes of boxl

)
)i

(c) Open CASCADE 2015

4 3D Presentations 40

4 3D Presentations

41 Glossary of 3D terms

» Anti-aliasing This mode attempts to improve the screen resolution by drawing lines and curves in a mixture
of colors so that to the human eye the line or curve is smooth. The quality of the result is linked to the quality
of the algorithm used by the workstation hardware.

» Depth-cueing Reduces the color intensity for the portion of an object further away from the eye to give the
impression of depth. This is used for wireframe objects. Shaded objects do not require this.

« Group - a set of primitives and attributes on those primitives. Primitives and attributes may be added to a
group but cannot be removed from a group, except by erasing them globally. A group can have a pick identity.

 Light There are five kinds of light source - ambient, headlight, directional, positional and spot. The light is
only activated in a shading context in a view.

» Primitive - a drawable element. It has a definition in 3D space. Primitives can either be lines, faces, text,
or markers. Once displayed markers and text remain the same size. Lines and faces can be modified e.g.
zoomed. Primitives must be stored in a group.

« Structure - manages a set of groups. The groups are mutually exclusive. A structure can be edited, adding
or removing groups. A structure can reference other structures to form a hierarchy. It has a default (identity)
transformation and other transformations may be applied to it (rotation, translation, scale, etc). It has no
default attributes for the primitive lines, faces, markers, and text. Attributes may be set in a structure but they
are overridden by the attributes in each group. Each structure has a display priority associated with it, which
rules the order in which it is redrawn in a 3D viewer. If the visualization mode is incompatible with the view it
is not displayed in that view, e.g. a shading-only object is not visualized in a wireframe view.

» View - is defined by a view orientation, a view mapping, and a context view.
» Viewer - manages a set of views.

« View orientation - defines the manner in which the observer looks at the scene in terms of View Reference
Coordinates.

+ View mapping - defines the transformation from View Reference Coordinates to the Normalized Projection
Coordinates. This follows the Phigs scheme.

+ Z-Buffering -= a form of hidden surface removal in shading mode only. This is always active for a view in the
shading mode. It cannot be suppressed.

4.2 Graphic primitives

The Graphic3d package is used to create 3D graphic objects in a 3D viewer. These objects called structures
are made up of groups of primitives and attributes, such as polylines, planar polygons with or without holes, text
and markers, and attributes, such as color, transparency, reflection, line type, line width, and text font. A group
is the smallest editable element of a structure. A transformation can be applied to a structure. Structures can be
connected to form a tree of structures, composed by transformations. Structures are globally manipulated by the
viewer.

Graphic structures can be:

+ Displayed,

+ Highlighted,
« Erased,

+ Transformed,

» Connected to form a tree hierarchy of structures, created by transformations.

(c) Open CASCADE 2015

4.2 Graphic primitives 41

There are classes for:

« Visual attributes for lines, faces, markers, text, materials,
« Vectors and vertices,

» Graphic objects, groups, and structures.

4.2.1 Structure hierarchies

The root is the top of a structure hierarchy or structure network. The attributes of a parent structure are passed to
its descendants. The attributes of the descendant structures do not affect the parent. Recursive structure networks
are not supported.

4.2.2 Graphic primitives

* Markers

— Have one or more vertices,
— Have a type, a scale factor, and a color,

— Have a size, shape, and orientation independent of transformations.
» Polygons

— Have one closed boundary,

Have at least three vertices,

Are planar and have a normal,

Have interior attributes - style, color, front and back material, texture and reflection ratio,

Have a boundary with the following attributes - type, width scale factor, color. The boundary is only
drawn when the interior style is hollow.

* Polygons with holes

Have multiple closed boundaries, each one with at least three vertices,

Are planar and have a normal,

Have interior attributes - style, color, front and back material,

Have a boundary with the following attributes - type, width scale factor, color. The boundary is only
drawn when the interior style is hollow.

* Polylines

— Have two or more vertices,

— Have the following attributes - type, width scale factor, color.
» Text

— Has geometric and non-geometric attributes,

— Geometric attributes - character height, character up vector, text path, horizontal and vertical alignment,
orientation, three-dimensional position, zoomable flag

— Non-geometric attributes - text font, character spacing, character expansion factor, color.

(c) Open CASCADE 2015

4.2 Graphic primitives 42

4.2.3 Primitive arrays

Primitive arrays are a more efficient approach to describe and display the primitives from the aspects of memory
usage and graphical performance. The key feature of the primitive arrays is that the primitive data is not duplicated.
For example, two polygons could share the same vertices, so it is more efficient to keep the vertices in a single
array and specify the polygon vertices with indices of this array. In addition to such kind of memory savings, the
OpenGil graphics driver provides the Vertex Buffer Objects (VBO). VBO is a sort of video memory storage that can
be allocated to hold the primitive arrays, thus making the display operations more efficient and releasing the RAM
memory.

The Vertex Buffer Objects are enabled by default, but VBOs availability depends on the implementation of OpenGi.
If the VBOs are unavailable or there is not enough video memory to store the primitive arrays, the RAM memory will
be used to store the arrays.

The Vertex Buffer Objects can be disabled at the application level. You can use the method Graphic3d_Graphic-
Driver::EnableVBO (const Standard_Boolean status) to enable/disable VBOs:

The following example shows how to disable the VBO support:

// get the graphic driver
Handle (Graphic3d_GraphicDriver) aDriver =
myAISContext->CurrentViewer () ->Driver();

// disable VBO support
aDriver->EnableVBO (Standard_False);

Note that the use of Vertex Buffer Objects requires the application level primitive data provided by the Graphic3d._ -
ArrayOfPrimitives to be transferred to the video memory. TKOpenGl transfers the data and releases the Graphic3d-
_ArrayOfPrimitives internal pointers to the primitive data. Thus it might be necessary to pay attention to such kind
of behaviour, as the pointers could be modified (nullified) by the TKOpenGl.

The different types of primitives could be presented with the following primitive arrays:

» Graphic3d_ArrayOfPoints,

» Graphic3d_ArrayOfPolygons,

» Graphic3d_ArrayOfPolylines,

» Graphic3d_ArrayOfQuadrangles,

» Graphic3d_ArrayOfQuadrangleStrips,
» Graphic3d_ArrayOfSegments,

» Graphic3d_ArrayOfTriangleFans,

» Graphic3d_ArrayOfTriangles,

+ Graphic3d_ArrayOfTriangleStrips.

The Graphic3d_ArrayOfPrimitives is a base class for these primitive arrays.

Method Graphic3d_ArrayOfPrimitives::AddVertex allows adding There is a set of similar methods to add vertices to
the primitive array.

These methods take vertex coordinates as an argument and allow you to define the color, the normal and the texture
coordinates assigned to the vertex. The return value is the actual number of vertices in the array.

You can also modify the values assigned to the vertex or query these values by the vertex index:

* void Graphic3d_ArrayOfPrimitives::SetVertice
« void Graphic3d_ArrayOfPrimitives::SetVertexColor

* void Graphic3d_ArrayOfPrimitives::SetVertexNormal

(c) Open CASCADE 2015

4.2 Graphic primitives 43

+ void Graphic3d_ArrayOfPrimitives::SetVertexTexel

* gp_Pnt Graphic3d_ArrayOfPrimitives::Vertices

» gp_Dir Graphic3d_ArrayOfPrimitives::VertexNormal

* gp_Pnt3d Graphic3d_ArrayOfPrimitives::VertexTexel

* Quantity_Color Graphic3d_ArrayOfPrimitives::VertexColor
* void Graphic3d_ArrayOfPrimitives::Vertices

+ void Graphic3d_ArrayOfPrimitives::VertexNormal

+ void Graphic3d_ArrayOfPrimitives::VertexTexel

* void Graphic3d_ArrayOfPrimitives::VertexColor

The following example shows how to define an array of points:

// create an array
Handle (Graphic3d_ArrayOfPoints) anArray = new Graphic3d_ArrayOfPoints (aVerticiesMaxCount);

// add vertices to the array
anArray->AddVertex (10.0, 10.0, 10.0);
anArray->AddvVertex (0.0, 10.0, 10.0);

// add the array to the structure
Handle (Graphic3d_Group) aGroup = Prs3d_Root::CurrentGroup (aPrs);
aGroup->BeginPrimitives ();

aGroup—>AddPrimitiveArray (anArray);
aGroup->EndPrimitives ();

If the primitives share the same vertices (polygons, triangles, etc.) then you can define them as indices of the
vertices array.

The method Graphic3d_ArrayOfPrimitives::AddEdge allows defining the primitives by indices. This method adds an
"edge" in the range [1, VertexNumber()] in the array.

It is also possible to query the vertex defined by an edge using method Graphic3d_ArrayOfPrimitives::Edge

The following example shows how to define an array of triangles:

// create an array

Standard_Boolean IsNormals = Standard_False;
Standard_Boolean IsColors = Standard_False;
Standard_Boolean IsTextureCrds = Standard_False;

Handle (Graphic3d_ArrayOfTriangles) anArray =
new Graphic3d_ArrayOfTriangles (aVerticesMaxCount,

aEdgesMaxCount,
IsNormals,
IsColors,
IsTextureCrds);
// add vertices to the array
anArray—->AddVertex (-1.0, 0.0, 0.0); // vertex 1
anArray—>AddVertex (1.0, 0.0, 0.0); // vertex 2
anArray->AddVertex (0.0, 1.0, 0.0); // vertex 3
anArray->AddvVertex (0.0,-1.0, 0.0); // vertex 4
// add edges to the array
anArray->AddEdge (1); // first triangle
anArray->AddEdge (2);
anArray->AddEdge (3);
anArray->AddEdge (1); // second triangle
anArray->AddEdge (2);
anArray->AddEdge (4);
// add the array to the structure
Handle (Graphic3d_Group) aGroup = Prs3d_Root::CurrentGroup (aPrs);
aGroup->BeginPrimitives ();
aGroup->AddPrimitiveArray (anArray);
aGroup->EndPrimitives (0);

If the primitive array presents primitives built from sequential sets of vertices, for example polygons, then you can
specify the bounds, or the number of vertices for each primitive. You can use the method Graphic3d_ArrayOf-
Primitives::AddBound to define the bounds and the color for each bound. This method returns the actual number of
bounds.

(c) Open CASCADE 2015

4.2 Graphic primitives 44

It is also possible to set the color and query the number of edges in the bound and bound color.

Standard_Integer Graphic3d_ArrayOfPrimitives::Bound
Quantity_Color Graphic3d_ArrayOfPrimitives::BoundColor
void Graphic3d_ArrayOfPrimitives::BoundColor

The following example shows how to define an array of polygons:

// create an array

Standard_Boolean IsNormals = Standard_False;
Standard_Boolean IsVertexColors = Standard_False;
Standard_Boolean IsFaceColors = Standard_False;
Standard_Boolean IsTextureCrds = Standard_False;

Handle (Graphic3d_ArrayOfPolygons) anArray =
new Graphic3d_ArrayOfPolygons (aVerticesMaxCount,

aBoundsMaxCount,
aEdgesMaxCount,
IsNormals,
IsVertexColors,
IsFaceColors,
IsTextureCrds) ;

// add bounds to the array, first polygon
anArray->AddBound (3);

anArray->AddVertex (-1.0, 0.0, 0.0);
anArray->AddVertex (1.0, 0.0, 0.0);
anArray->AddVertex (0.0, 1.0, 0.0);

// add bounds to the array, second polygon
anArray->AddBound (4);
anArray->AddVertex (-1.0
anArray->AddVertex (
anArray->AddVertex (
anArray->AddVertex (-

0
0
0
0

o o oo
o o oo

-0)
-0)
-0)
-0)

0.
0.
-1.
-1.

o oo~

1.0,
1.0,
1.0,

// add the array to the structure

Handle (Graphic3d_Group) aGroup = Prs3d_Root::CurrentGroup (aPrs);
aGroup->BeginPrimitives ();

aGroup—>AddPrimitiveArray (anArray);

aGroup->EndPrimitives (0);

There are also several helper methods. You can get the type of the primitive array:

Graphic3d_TypeOfPrimitiveArray
Graphic3d_ArrayOfPrimitives::Type
Standard_CString Graphic3d_ArrayOfPrimitives::StringType

and check if the primitive array provides normals, vertex colors and vertex texels (texture coordinates):

Standard_Boolean Graphic3d_ArrayOfPrimitives::HasVertexNormals
Standard_Boolean Graphic3d_ArrayOfPrimitives::HasVertexColors
Standard_Boolean Graphic3d_ArrayOfPrimitives::HasVertexTexels

or get the number of vertices, edges and bounds:

Standard_Integer Graphic3d_ArrayOfPrimitives::VertexNumber
Standard_Integer Graphic3d_ArrayOfPrimitives::EdgeNumber
Standard_Integer Graphic3d_ArrayOfPrimitives::BoundNumber

4.2.4 Text primitive

The OpenGl graphics driver uses advanced text rendering powered by FTGL library. This library provides vector
text rendering, as a result the text can be rotated and zoomed without quality loss. Graphic3d text primitives have
the following features:

» fixed size (non-zoomable) or zoomable,
+ can be rotated to any angle in the view plane,

* support unicode charset.

(c) Open CASCADE 2015

4.2 Graphic primitives 45

The text attributes for the group could be defined with the Graphic3d_AspectText3d attributes group. To add any
text to the graphic structure you can use the following methods:

void Graphic3d_Group::Text
(const Standard_CString AText,
const Graphic3d_Vertex& APoint,
const Standard_Real AHeight,
const Quantity_PlaneAngle AAngle,
const Graphic3d_TextPath ATp,
const Graphic3d_HorizontalTextAlignment AHta,
const Graphic3d_VerticalTextAlignment AVta,
const Standard_Boolean EvalMinMax),

AText parameter is the text string, APoint is the three-dimensional position of the text, AHeight is the text height,
AAngle is the orientation of the text (at the moment, this parameter has no effect, but you can specify the text
orientation through the Graphic3d_AspectText3d attributes).

ATp parameter defines the text path, AHta is the horizontal alignment of the text, AVta is the vertical alignment of
the text.

You can pass Standard_False as EvalMinMax if you do not want the graphic3d structure boundaries to be affected
by the text position.

Note that the text orientation angle can be defined by Graphic3d_AspectText3d attributes.

void Graphic3d_Group::Text
(const Standard_CString AText,
const Graphic3d_Vertex& APoint,
const Standard_Real AHeight,
const Standard_Boolean EvalMinMax)
void Graphic3d_Group::Text
(const TCcollection_ExtendedString &AText,
const Graphic3d_Vertex& APoint,
const Standard_Real AHeight,
const Quantity_PlaneAngle AAngle,
const Graphic3d_TextPath ATp,
const Graphic3d_HorizontalTextAlignment AHta,
const Graphic3d_VerticalTextAlignment AVta,
const Standard_Boolean EvalMinMax)
void Graphic3d_Group::Text
(const TCcollection_ExtendedString &AText,
const Graphic3d_Vertex& APoint,
const Standard_Real AHeight,
const Standard_Boolean EvalMinMax)

See the example:

// get the group
Handle (Graphic3d_Group) aGroup = Prs3d_Root::CurrentGroup (aPrs);

// change the text aspect

Handle (Graphic3d_AspectText3d) aTextAspect = new Graphic3d_AspectText3d ();
aTextAspect->SetTextZoomable (Standard_True);

aTextAspect->SetTextAngle (45.0);

aGroup->SetPrimitivesAspect (aTextAspect);

// add a text primitive to the structure
Graphic3d_Vertex aPoint (1, 1, 1);
aGroup->Text (Standard_CString ("Text"), aPoint, 16.0);

4.25 Materials
A Graphic3d_MaterialAspect is defined by:

« Transparency;

« Diffuse reflection - a component of the object color;

« Ambient reflection;

 Specular reflection - a component of the color of the light source;

« Refraction index.

(c) Open CASCADE 2015

4.3 Graphic attributes 46

The following items are required to determine the three colors of reflection:

« Color;
« Coefficient of diffuse reflection;
« Coefficient of ambient reflection;

+ Coefficient of specular reflection.

426 Textures
A texture is defined by a name. Three types of texture are available:

+ 1D;
- 2D;

» Environment mapping.

4.2.7 Shaders

OCCT visualization core supports GLSL shaders. Currently OCCT supports only vertex and fragment GLSL shader.
Shaders can be assigned to a generic presentation by its drawer attributes (Graphic3d aspects). To enable custom
shader for a specific AISShape in your application, the following API functions are used:

// Create shader program

Handle (Graphic3d_ShaderProgram) aProgram = new Graphic3d_ShaderProgram();

// Attach vertex shader

aProgram->AttachShader (Graphic3d_ShaderObject::CreateFromFile (
Graphic3d_TOS_VERTEX, "<Path to VS>"));

// Attach fragment shader

aProgram->AttachShader (Graphic3d_ShaderObject::CreateFromFile (
Graphic3d_TOS_FRAGMENT, "<Path to FS>"));

// Set values for custom uniform variables (if they are)
aProgram->PushVariable ("MyColor", Graphic3d_Vec3(0.0f, 1.0f, 0.0f));

// Set aspect property for specific AISShape
theAISShape->Attributes () ->ShadingAspect () ->Aspect () ->SetShaderProgram (aProgram) ;

4.3 Graphic attributes
4.3.1 Aspect package overview
The Aspect package provides classes for the graphic elements in the viewer:

» Groups of graphic attributes;
» Edges, lines, background;

* Window;

* Driver;

» Enumerations for many of the above.

(c) Open CASCADE 2015

4.4 3D view facilities 47

4.4 3D view facilities
441 Overview

The V3d package provides the resources to define a 3D viewer and the views attached to this viewer (orthographic,
perspective). This package provides the commands to manipulate the graphic scene of any 3D object visualized in
a view on screen.

A set of high-level commands allows the separate manipulation of parameters and the result of a projection (Rota-
tions, Zoom, Panning, etc.) as well as the visualization attributes (Mode, Lighting, Clipping, Depth-cueing, etc.) in
any particular view.

The V3d package is basically a set of tools directed by commands from the viewer front-end. This tool set contains
methods for creating and editing classes of the viewer such as:

 Default parameters of the viewer,

» Views (orthographic, perspective),

« Lighting (positional, directional, ambient, spot, headlight),

« Clipping planes (note that only Z-clipping planes can work with the Phigs interface),
« Instantiated sequences of views, planes, light sources, graphic structures, and picks,

+ Various package methods.

4.42 A programming example

This sample TEST program for the V3d Package uses primary packages Xw and Graphic3d and secondary pack-
ages Visual3d, Aspect, Quantity, Phigs and math.

//Create a default display connection
Handle (Aspect_DisplayConnection) aDisplayConnection = new Aspect_DisplayConnection();

//Create a Graphic Driver from the default Aspect_DisplayConnection
Handle (OpenGl_GraphicDriver) GD = new OpenGl_GraphicDriver (aDisplayConnection);

//Create a Viewer to this Driver
Handle (V3d_Viewer) VM = new V3d_Viewer (GD, 400.,
// Space size
V3d_Xpos,
// Default projection
Quantity_NOC_DARKVIOLET,
// Default background
V3d_ZBUFFER,
// Type of visualization
V3d_GOURAUD,
// Shading model
V3d_WAIT) ;
// Update mode
// Create a structure in this Viewer
Handle (Graphic3d_Structure) S = new Graphic3d_Structure(VM->Viewer()) ;

// Type of structure
S->SetVisual (Graphic3d_TOS_SHADING) ;

// Create a group of primitives in this structure
Handle (Graphic3d_Group) G = new Graphic3d_Group(S) ;

// Fill this group with one polygon of size 100
Graphic3d_ArraylOfVertex Points(0,3) ;

Points (0) .SetCoord(-100./2.,-100./2.,-100./2.
Points (1) .SetCoord(-100./2., 100./2.,-100./2.
Points (2) .SetCoord(100./2., 100./2.,-100./2.
Points (3) .SetCoord(100./2.,-100./2.,-100./2.
Normal.SetCoord(0.,0.,1.) ;

G->Polygon (Points,Normal) ;

// Create Ambient and Infinite Lights in this Viewer
Handle (V3d_AmbientLight) L1 = new V3d_AmbientLight
(VM, Quantity_NOC_GRAYS50) ;
Handle (V3d_DirectionalLight) L2 = new V3d_DirectionalLight
(VM, V3d_Xneg¥YnegzZneg, Quantity_ NOC_WHITE) ;

(c) Open CASCADE 2015

4.4 3D view facilities 48

// Create a 3D quality Window with the same DisplayConnection
Handle (Xw_Window) W = new Xw_Window (aDisplayConnection, "Test Vv3d",0.5,0.5,0.5,0.5) ;

// Map this Window to this screen
W->Map () ;

// Create a Perspective View in this Viewer

Handle (V3d_View) aView = new V3d_View (VM) ;

aView—->Camera () ->SetProjectionType (Graphic3d_Camera::Projection_Perspective);
// Associate this View with the Window

aView ->SetWindow (W) ;

// Display ALL structures in this View

VM->Viewer () ->Display () ;

// Finally update the Visualization in this View

aView->Update () ;

As an alternative to manual setting of perspective parameters the V3d_View::ZfitAll() and V3d_View::FitAll() func-
tions can be used:

// Display shape in Viewer VM

Handle (AIS_InteractiveContext) aContext = new AIS_InteractiveContext (VM);
aContext->Display (shape);

// Create a Perspective View in Viewer VM

Handle (V3d_View) V = new V3d_View (VM);

aview—->Camera () ->SetProjectionType (Graphic3d_Camera::Projection_Perspective);

// Change Z-min and Z-max planes of projection volume to match the displayed objects
V->ZFitAll () ;

// Fit view to object size

V->FitAll();

4.4.3 Define viewing parameters

View projection and orientation in OCCT v3d view are driven by camera. The camera calculates and supplies
projection and view orientation matrices for rendering by OpenGL. The allows to the user to control all projection
parameters. The camera is defined by the following properties:

» Eye - Defines the observer (camera) position. Make sure the Eye point never gets between the Front and
Back clipping planes.

» Center - defines the origin of View Reference Coordinates (where camera is aimed at).

+ Direction - defines the direction of camera view (from the Eye to the Center).

+ Distance - defines the distance between the Eye and the Center.

+ Front Plane - Defines the position of the front clipping plane in View Reference Coordinates system.

» Back Plane - Defines the position of the back clipping plane in View Reference Coordinates system.

» ZNear - defines the distance between the Eye and the Front plane.

» ZFar - defines the distance between the Eye and the Back plane.
Most common view manipulations (panning, zooming, rotation) are implemented as convenience methods of V3d-
_ View class, however Graphic3d_Camera class can also be used directly by application developers:

Example:

// rotate camera by X axis on 30.0 degrees

gp_Trsf aTrsf;

aTrsf.SetRotation (gp_Axl (gp_Pnt (0.0, 0.0, 0.0), gp_Dir (1.0, 0.0, 0.0)), 30.0);
aView—->Camera () ->Transform (aTrsf);

4.4.4 Orthographic Projection

The following code configures the camera for orthographic rendering:

// Create an orthographic View in this Viewer

Handle (V3d_View) aView = new V3d_View (VM) ;

aView—>Camera () ->SetProjectionType (Graphic3d_Camera::Projection_Orthographic);
// update the Visualization in this View

aView->Update () ;

(c) Open CASCADE 2015

4.4 3D view facilities 49

4.45 Perspective Projection

Field of view (FOVy) - defines the field of camera view by y axis in degrees (45 is default).

The following code configures the camera for perspective rendering:

// Create a perspective View in this Viewer

Handle (V3d_View) aView = new V3d_View (VM) ;

aView->Camera () ->SetProjectionType (Graphic3d_Camera::Projection_Perspective);
aView->Update () ;

4.4.6 Stereographic Projection

10D - defines the intraocular distance (in world space units).

There are two types of IOD:

« IODType_Absolute : Intraocular distance is defined as an absolute value.

» IODType_Relative : Intraocular distance is defined relative to the camera focal length (as its coefficient).

Field of view (FOV) - defines the field of camera view by y axis in degrees (45 is default).
ZFocus - defines the distance to the point of stereographic focus.

To enable stereo projection, your workstation should meet the following requirements:

» The graphic card should support quad buffering.
* You need active 3D glasses (LCD shutter glasses).

» The graphic driver needs to be configured to impose quad buffering for newly created OpenGl contexts; the
viewer and the view should be created after that.

In stereographic projection mode the camera prepares two projection matrices to display different stereo-pictures
for the left and for the right eye. In a non-stereo camera this effect is not visible because only the same projection is
used for both eyes.

To enable quad buffering support you should provide the following settings to the graphic driver opengl_caps:

Handle (OpenGl_GraphicDriver) aDriver = new OpenGl_GraphicDriver();
OpenGl_Caps& aCaps = aDriver—->ChangeOptions();
aCaps.contextStereo = Standard_True;

The following code configures the camera for stereographic rendering:

// Create a Stereographic View in this Viewer

Handle (V3d_View) aView = new V3d_View (VM) ;
aView->Camera () ->SetProjectionType (Graphic3d_Camera::Projection_Stereo);
// Change stereo parameters

aView->Camera () ->SetIOD (IODType_Absolute, 5.0);

// Finally update the Visualization in this View

aView->Update () ;

4.4.7 View frustum culling

The algorithm of frustum culling on CPU-side is activated by default for 3D viewer. This algorithm allows skipping the
presentation outside camera at the rendering stage, providing better performance. The following features support
this method:

» Graphic3d_Structure::CalculateBoundBox() is used to calculate axis-aligned bounding box of a presentation
considering its transformation.

» V3d_View::SetFrustumCulling enables or disables frustum culling for the specified view.

(c) Open CASCADE 2015

4.4 3D view facilities 50

+ Classes OpenGl_BVHCIipPrimitiveSet and OpenGl_BVHTreeSelector handle the detection of outer objects
and usage of acceleration structure for frustum culling.

* BVH_BinnedBuilder class splits several objects with null bounding box.

4.4.8 Underlay and overlay layers management

In addition to interactive 3d graphics displayed in the view you can display underlying and overlying graphics: text,
color scales and drawings.

All V3d view graphical objects in the overlay are managed by the default layer manager (V3d_LayerMgr). The V3d
view has a basic layer manager capable of displaying the color scale, but you can redefine this class to provide your
own overlay and underlay graphics.

The method V3d_View::SetLayerMgr(const Handle (V3d_LayerMgr)& aMgr) allows assigning a custom layer man-
ager to the V3d view.

There are three virtual methods to prepare graphics in the manager for further drawing: setting up layer dimensions
and drawing static graphics. These methods can be redefined:

void V3d_LayerMgr::Begin ()
void V3d_LayerMgr::Redraw ()
void V3d_LayerMgr::End ()

The layer manager controls layers (Visual3d_Layer) and layer items (Visual3d_Layerltem). Both the overlay and
underlay layers can be created by the layer manager.

The layer entity is presented by the Visual3d Layer class. This entity provides drawing services in the layer, for
example:

void Visual3d_Layer::DrawText
void Visual3d_Layer::DrawRectangle
void Visual3d_Layer::SetColor
void Visual3d_Layer::SetViewport

The following example demonstrates how to draw overlay graphics by the V3d LayerMgr:

// redefined method of V3d_LayerMgr

void MyLayerMgr::Redraw ()

{
Quantity_Color aRed (Quantity_ NOC_RED) ;
myOverlayLayer—->SetColor (aRed);
myOverlayLayer—->DrawRectangle (0, 0, 100, 100);

The layer contains layer items that will be displayed on view redraw. Such items are Visual3d_Layerltem entities.
To manipulate Visual3d_Layerltem entities assigned to the layer’s internal list you can use the following methods:

void Visual3d_Layer::AddLayerItem (const Handle (Visual3d_LayerItem)é& Item)
void Visual3d_Layer::RemovelayerItem (const Handle (Visual3d_LayerItem)é& Item)
void Visual3d_Layer::RemoveAllLayerItems ()

const Visual3d_NListOfLayerItem& Visual3d_Layer::GetLayerItemList ()

The layer’s items are rendered when the method void Visual3d_Layer::RenderLayerltems() is called by the graphical
driver.

The Visual3d_Layerltem has virtual methods that are used to render the item:

void Visual3d_LayerItem::RedrawLayerPrs ()
void Visual3d_LayerItem::ComputeLayerPrs ()

The item presentation can be computed before drawing by the ComputeLayerPrs method to save time on redraw. It
also has an additional flag that is used to tell that the presentation should be recomputed:

void Visual3d_LayerItem::SetNeedToRecompute (const Standard_Boolean NeedToRecompute)
Standard_Boolean Visual3d_LayerItem::IsNeedToRecompute

(c) Open CASCADE 2015

4.4 3D view facilities 51

An example of Visual3d_Layerltemis V3d_ColorScalelLayerltem that represents the color scale entity as the layer’s
item. The V3d_ColorScalelLayerltem sends render requests to the color scale entity represented by it. As this entity
(V3d_ColorScale) is assigned to the V3d_LayerMgr it uses its overlay layer’s services for drawing:

Example

// tell V3d_ColorScale to draw itself
void V3d_ColorScalelayerItem::RedrawLayerPrs ()
{
Visual3d_LayerItem::RedrawLayerPrs ()
if (!MyColorScale.IsNull ())
MyColorScale->DrawScale)

}

// V3d_ColorScale has a reference to a LayerMgr
void V3d_ColorScale::DrawScale ()
{
// calls V3d_ColorScale::PaintRect, V3d_ColorScale::PaintText, etc.
}

// PaintRect method uses overlay layer of LayerMgr to draw a rectangle
void V3d_ColorScale::PaintRect
(const Standard_Integer X, const Standard_Integer Y,
const Standard_Integer W, const Standard_Integer H,
const Quantity_Color aColor,
const Standard_Boolean aFilled)
{
const Handle (Visual3d_Layer)& thelayer = myLayerMgr->Overlay ();

theLayer—->SetColor (aColor);
thelLayer->DrawRectangle (X, Y, W, H);

4.49 View background styles

There are three types of background styles available for V3d_view: solid color, gradient color and image.

To set solid color for the background you can use the following methods:

void V3d_View::SetBackgroundColor
(const Quantity_TypeOfColor Type,
const Quantity_Parameter V1,
const Quantity_Parameter V2,
const Quantity_Parameter V3)

This method allows you to specify the background color in RGB (red, green, blue) or HLS (hue, lightness, saturation)
color spaces, so the appropriate values of the Type parameter are Quantity TOC_RGB and Quantity TOC_HLS.

Note that the color value parameters V1,V2,V3 should be in the range between 0.0-1.0.

void V3d_View::SetBackgroundColor (const Quantity_Color &Color)
void V3d_View::SetBackgroundColor (const Quantity_NameOfColor Name)

The gradient background style could be set up with the following methods:

void V3d_View::SetBgGradientColors
(const Quantity_Color& Colorl,
const Quantity_Color& Color2,
const Aspect_GradientFillMethod FillStyle,
const Standard_Boolean update)

void V3d_View::SetBgGradientColors
(const Quantity_NameOfColor Colorl,
const Quantity_NameOfColor Color2,
const Aspect_GradientFillMethod FillStyle,
const Standard_Boolean update)

The Color1 and Color2 parameters define the boundary colors of interpolation, the FillStyle parameter defines the
direction of interpolation. You can pass Standard_True as the last parameter to update the view.

The fill style can be also set with the method void V3d_View::SetBgGradientStyle(const Aspect_GradientFillMethod
AMethod, const Standard _Boolean update).

To get the current background color you can use the following methods:

(c) Open CASCADE 2015

4.4 3D view facilities 52

void V3d_View::BackgroundColor
(const Quantity_TypeOfColor Type,
Quantity_Parameter &V1,
Quantity_Parameter &V2,
Quantity_Parameter &V3)
Quantity_Color V3d_View::BackgroundColor ()
void V3d_View::GradientBackgroundColors (Quantity_Color& Colorl, Quantity_Color& Color2)
Aspect_GradientBackground GradientBackground()

To set the image as a background and change the background image style you can use the following methods:

void V3d_View::SetBackgroundImage
(const Standard_CString FileName,
const Aspect_FillMethod FillStyle,
const Standard_Boolean update)
void V3d_View::SetBgImageStyle
(const Aspect_FillMethod FillStyle,
const Standard_Boolean update)

The FileName parameter defines the image file name and the path to it, the FillStyle parameter defines the method
of filling the background with the image. The methods are:

» Aspect FM_NONE - draws the image in the default position;
» Aspect FM_CENTERED - draws the image at the center of the view;
» Aspect FM_TILED tiles the view with the image;

» Aspect FM_STRETCH stretches the image over the view.

4.4.10 Dumping a 3D scene into an image file

The 3D scene displayed in the view can be dumped in high resolution into an image file. The high resolution
(8192x8192 on some implementations) is achieved using the Frame Buffer Objects (FBO) provided by the graphic
driver. Frame Buffer Objects enable off-screen rendering into a virtual view to produce images in the background
mode (without displaying any graphics on the screen).

The V3d_View has the following methods for dumping the 3D scene:

Standard_Boolean V3d_View::Dump
(const Standard_CString theFile,
const Image_TypeOfImage theBufferType)

Dumps the scene into an image file with the view dimensions.

Standard_Boolean V3d_View: :Dump
(const Standard_CString theFile,
const Aspect_FormatOfSheetPaper theFormat,
const Image_TypeOfImage theBufferType)

Makes the dimensions of the output image compatible to a certain format of printing paper passed by theFormat
argument.

These methods dump the 3D scene into an image file passed by its name and path as theFile.

The raster image data handling algorithm is based on the Image_PixMap class. The supported extensions are

n.pngvv, ".bmp", u.png", u.png".

The value passed as theBufferType argument defines the type of the buffer for an output image (RGB, RGBA,
floating-point, RGBF, RGBAF). Both methods return Standard_True if the scene has been successfully dumped.

There is also class Image_AlienPixMap providing import / export from / to external image files in formats supported
by Freelmage library.

Note that dumping the image for a paper format with large dimensions is a memory consuming operation, it might
be necessary to take care of preparing enough free memory to perform this operation.

(c) Open CASCADE 2015

4.4 3D view facilities 53

Handle_Image_PixMap V3d_View::ToPixMap
(const Standard_Integer theWidth,
const Standard_Integer theHeight,
const Image_TypeOfImage theBufferType,
const Standard_Boolean theForceCentered)

Dumps the displayed 3d scene into a pixmap with a width and height passed as theWidth and theHeight arguments.

The value passed as theBufferType argument defines the type of the buffer for a pixmap (RGB, RGBA, floating-point,
RGBF, RGBAF). The last parameter allows centering the 3D scene on dumping.

All these methods assume that you have created a view and displayed a 3d scene in it. However, the window used
for such a view could be virtual, so you can dump the 3d scene in the background mode without displaying it on the
screen. To use such an opportunity you can perform the following steps:

+ Create display connection;

« Initialize graphic driver;

+ Create a window;

» Set up the window as virtual, Aspect_Window::SetVirtual() ;
« Create a view and an interactive context;

« Assign the virtual window to the view;

» Display a 3D scene;

» Use one of the functions described above to dump the 3D scene.

The following example demonstrates this procedure for WNT_Window :

// create a dummy display connection
Handle (Aspect_DisplayConnection) aDisplayConnection;

// create a graphic driver
Handle (Graphic3d_GraphicDriver) aDriver = Graphic3d::InitGraphicDriver (aDisplayConnection);

// create a window

Standard_Integer aDefWidth = 800;
Standard_Integer aDefHeight = 600;
Handle (WNT_WClass) aWClass = new WNT_WClass ("Virtual Class",DefWindowProc,

CS_VREDRAW | CS_HREDRAW, 0, O,
::LoadCursor (NULL, IDC_ARROW));

Handle (WNT_Window) aWindow = new WNT_Window ("VirtualWnd", aWClass,
WS_OVERLAPPEDWINDOW, 0, O,
aDefWidth, aDefHeight);

// set up the window as virtual
aWindow—>SetVirtual (Standard_True);

// create a view and an interactive context

Handle (V3d_Viewer) aViewer = new V3d_Viewer (aDriver,
Standard_ExtString ("Virtual"));
Handle (AIS_InteractiveContext) aContext = new AIS_InteractiveContext (aViewer);

Handle (V3d_View) aView = aViewer->CreateView ();

// assign the virtual window to the view
aView—>SetWindow (aWindow) ;

// display a 3D scene

Handle (AIS_Shape) aBox = new AIS_Shape (BRepPrimAPI_MakeBox (5, 5, 5));
aContext->Display (aBox) ;

aView—->FitAll();

// dump the 3D scene into an image file
avView->Dump ("3dscene.png");

4.411 Printing a 3D scene

The contents of a view can be printed out. Moreover, the OpenGl graphic driver used by the v3d view supports
printing in high resolution. The print method uses the OpenGl frame buffer (Frame Buffer Object) for rendering the
view contents and advanced print algorithms that allow printing in, theoretically, any resolution.

(c) Open CASCADE 2015

4.4 3D view facilities 54

The method void V3d_View::Print(const Aspect Handle hPrnDC, const Standard_Boolean showDialog, const
Standard_Boolean showBackground, const Standard CString filename, const Aspect_PrintAlgo printAlgorithm)
prints the view contents:

hPrnDC is the printer device handle. You can pass your own printer handle or NULL to select the printer by the
default dialog. In that case you can use the default dialog or pass Standard_False as the showDialog argument to
select the default printer automatically.

You can define the filename for the printer driver if you want to print out the result into a file. If you do not want
to print the background, you can pass Standard_False as the showBackground argument. The printAlgorithm
argument allows choosing between two print algorithms that define how the 3d scene is mapped to the print area
when the maximum dimensions of the frame buffer are smaller than the dimensions of the print area by choosing
Aspect PA_STRETCH or Aspect PA TILE

The first value defines the stretch algorithm: the scene is drawn with the maximum possible frame buffer dimensions
and then is stretched to the whole printing area. The second value defines TileSplit algorithm: covering the whole
printing area by rendering multiple parts of the viewer.

Note that at the moment the printing is implemented only for Windows.

4.412 Vector image export

The 3D content of a view can be exported to the vector image file format. The vector image export is powered
by the GL2PS library. You can export 3D scenes into a file format supported by the GL2PS library: PostScript
(PS), Encapsulated PostScript (EPS), Portable Document Format (PDF), Scalable Vector Graphics (SVG), LaTeX
file format and Portable LaTeX Graphics (PGF).

The method void Visual3d_View::Export (const Standard CString FileName, const Graphic3d_ExportFormat For-
mat, const Graphic3d_SortType aSortType, const Standard_Real Precision, const Standard _Address ProgressBar-
Func, const Standard_Address ProgressObject) of Visual3d_View class allows exporting a 3D scene:

The FileName defines the output image file name and the Format argument defines the output file format:

» Graphic3d_EF_PostScript (PS),

» Graphic3d_EF_EhnPostScript (EPS),
« Graphic3d_EF_TEX (TEX),

« Graphic3d_EF_PDF (PDF),

» Graphic3d_EF_SVG (SVG),
 Graphic3d_EF_PGF (PGF).

The aSortType parameter defines GL2PS sorting algorithm for the primitives. The Precision, ProgressBarFunc and
ProgressObject parameters are implemented for future uses and at the moment have no effect.

The Export method supports only basic 3d graphics and has several limitations:

» Rendering large scenes could be slow and can lead to large output files;
» Transparency is only supported for PDF and SVG output;

+ Textures and some effects are not supported by the GL2PS library.

4.413 Ray tracing support
OCCT visualization provides rendering by real-time ray tracing technique. It is allowed to switch easily between
usual rasterization and ray tracing rendering modes. The core of OCCT ray tracing is written using GLSL shaders.

The ray tracing has a wide list of features:

* Hard shadows

(c) Open CASCADE 2015

4.4 3D view facilities 55

+ Refractions

+ Reflection

» Transparency

» Texturing

» Support of non-polygon objects, such as lines, text, highlighting, selection.

» Performance optimization using 2-level bounding volume hierarchy (BVH).

The ray tracing algorithm is recursive (Whitted’s algorithm). It uses BVH effective optimization structure. The
structure prepares optimized data for a scene geometry for further displaying it in real-time. The time-consuming
re-computation of the BVH is not necessary for view operations, selections, animation and even editing of the scene
by transforming location of the objects. It is only necessary when the list of displayed objects or their geometry
changes. To make the BVH reusable it has been added into an individual reusable OCCT package TKMath/BVH.

There are several ray-tracing options that user can switch on/off:

* Maximum ray tracing depth
+ Shadows rendering
 Specular reflections

« Adaptive anti aliasing

+ Transparency shadow effects

Example:

Graphic3d_RenderingParams& aParams = aView->ChangeRenderingParams () ;
// specifies rendering mode

aParams.Method = Graphic3d_RM_RAYTRACING;

// maximum ray-tracing depth

aParams.RaytracingDepth = 3;

// enable shadows rendering

aParams.IsShadowEnabled = Standard_True;

// enable specular reflections.
aParams.IsReflectionEnabled = Standard_True;

// enable adaptive anti-aliasing
aParams.IsAntialiasingEnabled = Standard_True;

// enable light propagation through transparent media.
aParams.IsTransparentShadowEnabled = Standard_True;

// update the view

aView->Update () ;

4.4.14 Display priorities

Structure display priorities control the order, in which structures are drawn. When you display a structure you specify
its priority. The lower is the value, the lower is the display priority. When the display is regenerated, the structures
with the lowest priority are drawn first. The structures with the same display priority are drawn in the same order as
they have been displayed. OCCT supports eleven structure display priorities.

4.415 Z-layer support

OCCT features depth-arranging functionality called z-layer. A graphical presentation can be put into a z-layer. In
general, this function can be used for implementing "bring to front" functionality in a graphical application.

Example:

// set z-layer to an interactive object

Handle (AIS_InteractiveContext) aContext = ...
Handle (AIS_InteractiveObject) anInterObj = ...
Standard_Integer anId = 3;

aViewer->AddZLayer (anId);

aContext->SetZLayer (anInterObj, anId);

(c) Open CASCADE 2015

4.4 3D view facilities 56

For each z-layer, it is allowed to:

» Enable / disable depth test for layer.
» Enable / disable depth write for layer.
» Enable / disable depth buffer clearing.

» Enable / disable polygon offset.

The corresponding method SetZLayerOption (...) is available in Graphic3d_GraphicDriver interface. You can get the
options using getter from Visual3d_ViewManager and V3d_Viewer. It returns Graphic3d_ZLayerSettings cached in
Visual3d_ViewManager for a given Layerld.

Example:

// change z-layer settings

Graphic3d_ZLayerSettings aSettings = aViewer->ZLayerSettings (anId);
aSettings.EnableSetting (Graphic3d_ZLayerDepthTest);
aSettings.EnableSetting (Graphic3d_ZLayerDepthWrite);
aSettings.EnableSetting (Graphic3d_ZLayerDepthClear);
aSettings.EnableSetting (Graphic3d_zZLayerDepthOffset);
aViewer—->SetZLayerSettings (anId, aSettings);

4.4.16 Clipping planes

The ability to define custom clipping planes could be very useful for some tasks. OCCT provides such an opportunity.

The Graphic3d_ClipPlane class provides the services for clipping planes: it holds the plane equation coefficients
and provides its graphical representation. To set and get plane equation coefficients you can use the following
methods:

Graphic3d_ClipPlane: :Graphic3d_ClipPlane (const gp_Pln& thePlane)

void Graphic3d_ClipPlane::SetEquation (const gp_Pln& thePlane)
Graphic3d_ClipPlane: :Graphic3d_ClipPlane (const Equation& theEquation)
void Graphic3d_ClipPlane::SetEquation (const Equation& theEquation)
gp_Pln Graphic3d_ClipPlane::ToPlane() const

The clipping planes can be activated with the following method:

void Graphic3d_ClipPlane::SetOn (const Standard_Boolean theIsOn)

The number of clipping planes is limited. You can check the limit value via method Graphic3d_GraphicDriver::-
InquirePlaneLimit();

// get the limit of clipping planes for the current view
Standard_Integer aMaxClipPlanes = aView->Viewer ()->Driver ()->InquirePlanelLimit ();

Let us see for example how to create a new clipping plane with custom parameters and add it to a view or to an
object:

// create a new clipping plane

const Handle (Graphic3d_ClipPlane)& aClipPlane = new Graphic3d_ClipPlane();
// change equation of the clipping plane

Standard_Real aCoeffA = ...

Standard_Real aCoeffB = ...

Standard_Real aCoeffC = ...

Standard_Real aCoeffD = ...

aClipPlane->SetEquation (gp_Pln (aCoeffA, aCoeffB, aCoeffC, aCoeffD));
// set capping

aClipPlane->SetCapping (aCappingArg == "on");

// set the material with red color of clipping plane
Graphic3d_MaterialAspect aMat = aClipPlane->CappingMaterial();
Quantity_Color aColor (1.0, 0.0, 0.0, Quantity_TOC_RGB) ;

aMat .SetAmbientColor (aColor);

aMat .SetDiffuseColor (aColor);

aClipPlane->SetCappingMaterial (aMat);

// set the texture of clipping plane

Handle (Graphic3d_Texture2Dmanual) aTexture = ...

(c) Open CASCADE 2015

4.5 Examples: creating a 3D scene 57

aTexture—->EnableModulate () ;
aTexture->EnableRepeat () ;
aClipPlane->SetCappingTexture (aTexture);

// add the clipping plane to an interactive object
Handle (AIS_InteractiveObject) aIObj
aIObj->AddClipPlane (aClipPlane);
// or to the whole view
aView->AddClipPlane (aClipPlane);
// activate the clipping plane
aClipPlane->SetOn (Standard_True);
// update the view

aView->Update () ;

4.417 Automatic back face culling

Back face culling reduces the rendered number of triangles (which improves the performance) and eliminates ar-
tifacts at shape boundaries. However, this option can be used only for solid objects, where the interior is actually
invisible from any point of view. Automatic back-face culling mechanism is turned on by default, which is controlled
by V3d_View::SetBackFacingModel().

The following features are applied in StdPrs_ToolShadedShape::IsClosed(), which is used for definition of back face
culling in ShadingAspect:

« disable culling for free closed Shells (not inside the Solid) since reversed orientation of a free Shell is a valid
case;

« enable culling for Solids packed into a compound;

« ignore Solids with incomplete triangulation.
Back face culling is turned off at TKOpenGi level in the following cases:

+ clipping/capping planes are in effect;
« for translucent objects;

+ with hatching presentation style.

4.5 Examples: creating a 3D scene
To create 3D graphic objects and display them in the screen, follow the procedure below:

1. Create attributes.

2. Create a 3D viewer.

3. Create a view.

4. Create an interactive context.

5. Create interactive objects.

6. Create primitives in the interactive object.

7. Display the interactive object.

4.5.1 Create attributes

Create colors.

(c) Open CASCADE 2015

4.5 Examples: creating a 3D scene

Quantity_Color aBlack (Quantity_NOC_BLACK) ;

Quantity_Color aBlue (Quantity_NOC_MATRABLUE) ;

Quantity_Color aBrown (Quantity_NOC_BROWN4) ;

Quantity_Color aFirebrick (Quantity_ NOC_FIREBRICK) ;
Quantity_Color aForest (Quantity_NOC_FORESTGREEN) ;
Quantity_Color aGray (Quantity_NOC_GRAY70);

Quantity_Color aMyColor (0.99, 0.65, 0.31, Quantity_TOC_RGB) ;
Quantity_Color aBeet (Quantity_NOC_BEET) ;

Quantity_Color aWhite (Quantity_ NOC_WHITE) ;

Create line attributes.

Handle (Graphic3d_AspectLine3d) anAspectBrown = new Graphic3d_AspectLine3d();
Handle (Graphic3d_AspectLine3d) anAspectBlue = new Graphic3d_AspectLine3d();
Handle (Graphic3d_AspectlLine3d) anAspectWhite = new Graphic3d_AspectLine3d();
anAspectBrown—->SetColor (aBrown);
anAspectBlue —->SetColor (aBlue);
anAspectWhite->SetColor (aWhite);

Create marker attributes.

Handle (Graphic3d_AspectMarker3d aFirebrickMarker = new Graphic3d_AspectMarker3d();
// marker attributes

aFirebrickMarker->SetColor (Firebrick);

aFirebrickMarker—->SetScale (1.0);

aFirebrickMarker->SetType (Aspect_TOM_BALL);

// or this

// it is a preferred way (supports full-color images on modern hardware).
aFirebrickMarker->SetMarkerImage (theImage)

Create facet attributes.

Handle (Graphic3d_AspectFillArea3d) aFaceAspect = new Graphic3d_AspectFillArea3d();
Graphic3d_MaterialAspect aBrassMaterial (Graphic3d_NOM_BRASS) ;
Graphic3d_MaterialAspect aGoldMaterial (Graphic3d_NOM_GOLD) ;
aFaceAspect->SetInteriorStyle (Aspect_IS_SOLID);

aFaceAspect->SetInteriorColor (aMyColor);

aFaceAspect—->SetDistinguishOn () ;
aFaceAspect—->SetFrontMaterial (aGoldMaterial);
aFaceAspect—->SetBackMaterial (aBrassMaterial);

aFaceAspect->SetEdgeOn () ;

Create text attributes.

Handle (Graphic3d_AspectText3d) aTextAspect = new Graphic3d_AspectText3d (aForest, Graphic3d_NOF_ASCII_MONO,

1.0, 0.0);

452 Create a 3D Viewer (a Windows example)

// create a default connection

Handle (Aspect_DisplayConnection) aDisplayConnection;

// create a graphic driver from default connection

Handle (OpenGl_GraphicDriver) aGraphicDriver = new OpenGl_GraphicDriver (GetDisplayConnection());
// create a viewer

TCollection_ExtendedString aName ("3DV");

myViewer = new V3d_Viewer (aGraphicDriver,aName.ToExtString(), "");
// set parameters for V3d_Viewer

// defines default lights -

// positional-light 0.3 0.0 0.0

// directional-light V3d_XnegYposZpos

// directional-light V3d_XnegYneg

// ambient-light

a3DViewer—->SetDefaultLights () ;

// activates all the lights defined in this viewer
a3DViewer—->SetLightOn () ;

// set background color to black
a3DViewer—->SetDefaultBackgroundColor (Quantity_ NOC_BLACK) ;

4.5.3 Create a 3D view (a Windows example)

It is assumed that a valid Windows window may already be accessed via the method GetSafeHwnd().

Handle (WNT_Window) aWNTWindow = new WNT_Window (GetSafeHwnd());
myView = myViewer->CreateView () ;
myView->SetWindow (aWNTWindow) ;

(c) Open CASCADE 2015

4.5 Examples: creating a 3D scene 59

4.5.4 Create an interactive context

myAISContext = new AIS_InteractiveContext (myViewer);

You are now able to display interactive objects such as an AIS_Shape.

TopoDS_Shape aShape = BRepAPI_MakeBox (10, 20, 30).Solid();
Handle (AIS_Shape) anAISShape = new AIS_Shape (aShape);
myAISContext->Display (anAISShape);

4,55 Create your own interactive object

Follow the procedure below to compute the presentable object:

1. Build a presentable object inheriting from AIS_InteractiveObject (refer to the Chapter on Presentable
Objects).

2. Reuse the Prs3d_Presentation provided as an argument of the compute methods.

Note that there are two compute methods: one for a standard representation, and the other for a degenerated
representation, i.e. in hidden line removal and wireframe modes.

Let us look at the example of compute methods

Void
myPresentableObject: :Compute
(const Handle (PrsMgr_PresentationManager3d) & thePrsManager,
const Handle (Prs3d_Presentation) & thePrs,
const Standard_Integer theMode)
(
/]
)

void
myPresentableObject: :Compute (const Handle (Prs3d_Projector)é& ,
const Handle (Prs3d_Presentation)& thePrs)
(
/).
)

4.5.6 Create primitives in the interactive object
Get the group used in Prs3d_Presentation.

Handle (Graphic3d_Group) aGroup = Prs3d_Root::CurrentGroup (thePrs);

Update the group attributes.

aGroup->SetPrimitivesAspect (anAspectBlue);

Create two triangles in aGroup.

Standard_Integer aNbTria = 2;

Handle (Graphic3d_ArrayOfTriangles) aTriangles = new Graphic3d_ArrayOfTriangles (3 * aNbTria, O,
Standard_True) ;

Standard_Integer anIndex;

for (anIndex = 1; anIndex <= aNbTria; nt++)

{

aTriangles->AddVertex (anIndex * 5., 0., 0., 1., 1., 1.);
aTriangles->AddVertex (anIndex * 5 + 5, 0., 0., 1., 1., 1.);
aTriangles->AddVertex (anIndex = 5 + 2.5, 5., 0., 1., 1., 1.);

}

aGroup->BeginPrimitives () ;
aGroup->AddPrimitiveArray (aTriangles);
aGroup->EndPrimitives () ;

(c) Open CASCADE 2015

4.5 Examples: creating a 3D scene 60

The methods BeginPrimitives() and EndPrimitives() are used when creating a set of various primitives in the same
group. Use the polyline function to create a boundary box for the thePrs structure in group aGroup.

Standard_Real Xm, Ym, Zm, XM, YM, ZM;
thePrs->MinMaxValues (Xm, Ym, Zm, XM, YM, ZM);
Handle (Graphic3d_ArrayOfPolylines) aPolylines = new Graphic3d_ArrayOfPolylines (16, 4);
aPolylines->AddBound (4);
aPolylines->AddVertex (Xm, Ym, Zm);
aPolylines->AddVertex (Xm, Ym, ZM);
aPolylines->AddVertex (Xm, YM, ZM);
aPolylines->AddVertex (Xm, YM, Zm);
aPolylines->AddBound (4);
aPolylines->AddVertex (Xm, Ym, Zm);
aPolylines->AddVertex (XM, Ym, Zm);
aPolylines->AddVertex (XM, Ym, ZM);
aPolylines->AddVertex (XM, YM, ZM);
aPolylines->AddBound (4);
aPolylines->AddVertex (XM, YM, Zm);
aPolylines->AddVertex (XM, Ym, Zm);
aPolylines->AddVertex (XM, YM, Zm);
aPolylines->AddVertex (Xm, YM, Zm);
aPolylines->AddBound (4);
aPolylines->AddVertex (Xm, YM, ZM);
aPolylines->AddVertex (XM, YM, ZM);
aPolylines->AddVertex (XM, Ym, ZM);
aPolylines->AddVertex (Xm, Ym, ZM);

aGroup—>BeginPrimitives () ;
aGroup—>AddPrimitiveArray (aPolylines);
aGroup->EndPrimitives () ;

Create text and markers in group aGroup.

static charx texte[3] =
{

"Application title",

"My company",

"My company address."
i

Handle (Graphic3d_ArrayOfPoints) aPtsArr = new Graphic3d_ArrayOfPoints (2, 1);
aPtsArr->AddVertex (-40.0, -40.0, -40.0);
aPtsArr—->AddVertex (40.0, 40.0, 40.0);
aGroup->BeginPrimitives () ;
aGroup->AddPrimitiveArray (aPtsArr);
aGroup->EndPrimitives () ;
Graphic3d_Vertex aMarker (0.0, 0.0, 0.0);
for (i=0; 1 <= 2; i++)
{
aMarker.SetCoord (-(Standard_Real)i * 4 + 30,
(Standard_Real)i x 4,
—(Standard_Real)i * 4);

aGroup->Text (texte[i], Marker, 20.);

(c) Open CASCADE 2015

5 Mesh Visualization Services 61

5 Mesh Visualization Services

MeshVS (Mesh Visualization Service) component extends 3D visualization capabilities of Open CASCADE Tech-
nology. It provides flexible means of displaying meshes along with associated pre- and post-processor data.

From a developer’s point of view, it is easy to integrate the MeshVS component into any mesh-related application
with the following guidelines:

 Derive a data source class from the MeshVS DataSource class.

* Re-implement its virtual methods, so as to give the MeshVS component access to the application data model.
This is the most important part of the job, since visualization performance is affected by performance of data
retrieval methods of your data source class.

» Create an instance of MeshVS_Mesh class.

» Create an instance of your data source class and pass it to a MeshVS_Mesh object through the SetData-
Source() method.

» Create one or several objects of MeshVS_PrsBuilder-derived classes (standard, included in the MeshVS
package, or your custom ones).

» Each PrsBuilder is responsible for drawing a MeshVS_Mesh presentation in a certain display mode(s) spec-
ified as a PrsBuilder constructor’s argument. Display mode is treated by MeshVS classes as a combination
of bit flags (two least significant bits are used to encode standard display modes: wireframe, shading and
shrink).

 Pass these objects to the MeshVS_Mesh::AddBuilder() method. MeshVS_Mesh takes advantage of improved
selection highlighting mechanism: it highlights its selected entities itself, with the help of so called "highlighter”
object. You can set one of PrsBuilder objects to act as a highlighter with the help of a corresponding argument
of the AddBuilder() method.

Visual attributes of the MeshVS_Mesh object (such as shading color, shrink coefficient and so on) are controlled
through MeshVS_Drawer object. It maintains a map "Attribute ID --> attribute value" and can be easily extended
with any number of custom attributes.

In all other respects, MeshVS_Mesh is very similar to any other class derived from AIS_InteractiveObject and it
should be used accordingly (refer to the description of AIS package in the documentation).

(c) Open CASCADE 2015

	Introduction
	Fundamental Concepts
	Presentation
	Structure of the Presentation
	Presentation packages
	A Basic Example: How to display a 3D object

	Selection
	The Sensitive Primitive
	Dynamic Selection
	Selection Packages
	How to use dynamic selection

	Application Interactive Services
	Introduction
	Interactive objects
	Presentations
	Hidden Line Removal
	Presentation modes
	Selection
	Graphic attributes
	Complementary Services

	Interactive Context
	Rules
	Groups of functions
	Management of the Interactive Context

	Local Context
	Rules and Conventions
	Management of Local Context
	Presentation in a Neutral Point
	Presentation in the Local Context
	Filters
	Selection in the Local Context
	Recommendations

	Standard Interactive Object Classes
	Datum
	Object
	Relations
	Dimensions
	MeshVS_Mesh

	Dynamic Selection
	How to go from the objects to 2D boxes
	Implementation in an interactive/selectable object

	3D Presentations
	Glossary of 3D terms
	Graphic primitives
	Structure hierarchies
	Graphic primitives
	Primitive arrays
	Text primitive
	Materials
	Textures
	Shaders

	Graphic attributes
	Aspect package overview

	3D view facilities
	Overview
	A programming example
	Define viewing parameters
	Orthographic Projection
	Perspective Projection
	Stereographic Projection
	View frustum culling
	Underlay and overlay layers management
	View background styles
	Dumping a 3D scene into an image file
	Printing a 3D scene
	Vector image export
	Ray tracing support
	Display priorities
	Z-layer support
	Clipping planes
	Automatic back face culling

	Examples: creating a 3D scene
	Create attributes
	Create a 3D Viewer (a Windows example)
	Create a 3D view (a Windows example)
	Create an interactive context
	Create your own interactive object
	Create primitives in the interactive object

	Mesh Visualization Services

