Dakota Technical Design Document

Surrogates: Emulating computer simulations

B. Adams! R. Hooper? John D. Jakeman} A. Rushdi*
March 2017

1 Introduction

1.1 Purpose

This library will provide a suite of algorithms for emulating expensive computer simulations.

1.2 Scope

This library will replace the existing surrogate tools in Dakota and enrich these existing tools with
additional state of the art surrogates and algorithms.

1.3 Overview

This library will consist of 5 main software components visible to the user at the highest level of
abstraction:

» Function - A class, from which surrogates is derived whose interface represents the mathematical
properties of a C5 continous function, e.g supports evaluation of values, gradients and Hessians.
evaluated

» Variables - A class defining the properties of the function variables, e.g. probability distribution,
ranges, etc. We will support all current Dakota Variable types in addition to blocks of correlated
variables whose distribution is known, data-based-variables whose distribution is computed from
data, and compositions of all variables.

» Data - A class to store data returned by function and the associated samples of the function
variables. This class will also contain fault information. We must provide modules that convert
simple structures such as matrices and vectors of samples and values into this class.

» SurrogateFactory - A factory to construct a surrogate/approximation. Typical workflow will be
generate a set of samples, evaluate function at those samples and build approximation. This call
structure can be repeated iteratively to build up surrogates adaptively. We will also support the
use and enrichment of archived data. This factor will support typical Dakota use-cases, however
uses will be easily able to develop and add there own methods for building surrogates.

Disclosure: This work was supported by ASC software. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Correspondence author: John D. Jakeman (jdjakem@sandia.gov)

*Sandia National Laboratories, Albuquerque, New Mexico, USA

2 Adams, Hooper, Jakeman, Rushdi

» SurrogateAnalyzer - A factory for running various types of analysis on surrogate models, e.g.
compute moments, sobol indices, etc. If certain surrogates support fast operations to compute
these values, e.g. PCE can compute mean and variance analytically these specialized functions
will be envoked, but other wise a default will be called.

Currently the above notions of function and surrogate builders and analysis are heaverly intertwined in
Dakota. Our design will allow these distinct components to be separated. This will allow surrogates to
become a standalone part of the dakota Model hierarchy and surrogate analyzers to become lightweight
Dakota Iterators.

1.4 Requirements

The following is a list of requirements

» User flexibity. Design must support 'push-button’ users that want hired wired behavior and
power users that wish to develop their own surrogate methods or expose low-level functionality.

» Serialization of surrogates - Ability to save and load surrogate objects
» Python interface - be able to call both high-level and low-level functions using Python.

» Gaussian Process consolidation - Consolidate GP methods in Dakota. Extend GP to include
estimation of hyper-parametersa and use PCE trend function.

» Surrogates for multiple QOI - Build a single surrogate for multiple QOI. Allow for composition
of surrogate types.

» Exending variable class - Support all Dakota variable types as well as blocks of correlated variables
whose distribution is known, data-based-variables whose distribution is computed from data, and
compositions of all variables. Retirement of AleatoryDistParams in Dakota.

» Simple approximation classes. Separation of approximation and the code used to construct it.
Particularly relevant in Pecos. RegressOrthogPolynomial contains PCE object but also regression
methods used to build the PCE. Similarly for Sparse grids need to seperate approximation, either
lagrange polynomials or PCE, from refinement tools For example, split current subspaces which
are part of approximation from active subspaces being considered for refinement which should
only been known to sparse grid builder

» Function Data. The function data class should have no notion of active and stored data we shold
just use indexing to access the data needed.
2 Design

2.1 High-level interface

The following is an example of the typical workflow used to build a surrogate

Dakota Technical Design Document 3

Construct Surrogate Demonstration

// Configure options used to build surrogate

Teuchos :: ParameterList factor_opts;

factory_opts.set (function, ”target_function”);
factory_opts.set(data, ”optional_archived._data”);
factory_opts.set (PCE, ”approximation_type”);

factory_opts.set (”regression”, ”construction._.method”);
//factory_opts.set (”adapted—regression”, ”construction method”);
factory_opts.set ("OMP”, ”"regression._solver”);

factory_-opts.set ("random” , ”sample_type”);

//factory_opts.set (” optimal”, ”sample type”);

// Build surrogate
Teuchos : : RCP<Approximation> approx = SurrogateFactory(factory_opts);

// Analyze surrogate

Teuchos :: ParameterList analyzer_opts;

analyzer_opts.set (MOMENTS, ”analysis_type”);

Teuchos : :RCP<AnalyzerMetrics> result = SurrogateAnalyzer (approx, analyzer_opts);

// Print metrics
std :: cout << "Mean: .” << result.get(”mean”) << std::endl;
std :: cout << ”Variance:.” << result.get(”variance”) << std::endl;

2.2 Surrogate Interface

We will use a factory pattern to build a surrogate. The Surrogate factory will call lower level factories
which are specific to each type of approximation. Approximation types can be added at these levels
without the call to surrogate factory being modified. These new types can just be created by passing
appropriate options via Teuchos::ParameterList.

Surrogate Factory

enum ApproxType {PCE,GP};
Teuchos : : RCP<Approximation> surrogate_factory (const Teuchos:: ParameterList opts){
ApproxType approx-type = opts.get<ApproxType>(” approximation_type”);
switch (approx_type){
case PCE : {
return PCEFactory(opts, approx);

case GP : {
return GPFactory(opts, approx);

3
default : {

throw (std :: runtime_error (" Incorrect _approximation._type”));
}

}
}

2.3 Surrogate Analyzer

The surrogate analyzer will be implemented using a factory pattern. The analyzer will support various
types of analysis on surrogate models, e.g. the computation of moments, sobol indices, etc. If certain

4 Adams, Hooper, Jakeman, Rushdi

surrogates support fast operations to compute these values, e.g. PCE can compute mean and variance
analytically these specialized functions will be envoked, but other wise a default will be called.

Surrogate Analyzer

enum AnalysisType {MOMENTS, SOBOL_INDICES};

Teuchos : :RCP<AnaylzerMetrics> surrogate_anaylzer_factory (const Teuchos:: ParameterLi
AnalysisType analysis_type = opts.get<AnalysisType>("analysis_type”);
switch (analysis_type){

case MOMENTIS : {
RealVector means, variances;
Teuchos :: ParameterList moment_opts;
moment_opts.set (false , ”compute_mean”);
moment_opts. set (false , ”compute_variance”);
if (lapprox.get(”mean” ;means))
// if specialized method does not exist use default
moment_opts.set (true, ”compute_mean”);
if (!approx.get(”variance” ,variances))
// if specialized method does not exist use default
moment_opts.set (true, ”compute_variance”);
compute_moments_using_sampling_carlo (
approx , moment_opts , means, variances)
break;

}
case SOBOLINDICES : {
RealMatrix sobol_indices;
if (!approx.get(”sobol_indices” ,sobol_indices))
// if specialized method does not exist use default
// opts can contain options like restricted indices
compute_sobol_indices_using_sampling (approx,opts,sobol_indices);

break ;
¥
default : {
throw (std :: runtime_error (” Incorrect _approximation._type”));

}
}
}

2.4 Approximations

Approximations will all be derived from a base function class. The interface of the function class will
be restricted to only those functions that represents the mathematical properties of a Cs continous
function, e.g supports evaluation of values, gradients and Hessians. Each approximation will only
contain the methods relevant to its construction, e.g. PCE has build_basis_matrix and set_coefficients
and GP has build_correlation_matrix and set_correlation_lenghts.

The basic approximation class hierarchy is depicted in Figure 1. This hierarchy will be extended
as additional approximation types are added.

| Surrogates:Function |

| Surrogates:Approximation | ‘ Surrogates:CppFunction
| Surrogates:Polynomialapproximation |
Surrogates:Manomial ‘ | Surrogates:PolynomialChaosExpansion | ‘ Surrogates:PalynomialChagsExpansion

Figure 1: Function class hierarchy.

t opts,

Approxim

Dakota Technical Design Document 5

2.4.1 Function base class

Here we describe the abstract base class representation of a function f(z) for a multivariate variable
x. Functions derived from this class can either be Cy, Cy or C5 continuous. Regardlesd of the function
regularity any derived class must implement value(), C; functions must implement gradient() and
jacobian() and Cy functions must implement hessian().

To avoid complexity of the function hierarchy we do not create seperate classes for Cy, C7 and Co
functions but rather only implement the functions necessitated by the function regularity. All other
functions must raise an exception if called (these exceptions are implemented in this base class)

Public Member Functions

Function ()
Default constructtor. More...

virtual ~Function ()
Destructor. More...

virtual void value (const RealMatrix &samples, RealMatrix &values_out)=0
evaluate the vector-valued function j{z) at a set of samples x. More...

virtual void gradient (const RealMatrix &samples, int qoi, RealMatrix &gradients)
evaluate the gradient of the ith Qol Vvf;(x) of a vector valued function f(z) at a set of samples x. More...

virtual void jacobian (const RealVector &sample, RealMatrix &jacobian)
evaluate the Jacobian Vv f(x) of a vector valued function f(z) at a single samples x. More...

virtual void hessian (const RealMatrix &samples, int qoi, RealMatrixList &hessians)
evaluate the Hessian of the ith Qol Af;(zx) of a vector valued function f(z) at a set of samples x. More...

virtual void set_options (const Teuchos::ParameterList &opts)
set options specific to the model More...

virtual void get_options (Teuchos::ParameterList &opts)
get the model specific options More...

Figure 2: Function base class member functions.

QUESTION: Do we have functions for value, gradient, hessian or do we have a function value(samples,opts)
where opts specifies what of the three data to return.

2.5 Variables

Variables is a class defining the properties of the function variables, e.g. probability distribution, ranges,
etc. There is almost no functionality in the base class except num_vars. The rest of the functionality is
implemented in the derived class and variable transformations or approximations which use the derived
class must know what additional functions are implemented. An example of a variable class is shown
in Figure 3.

2.5.1 Variable Transformations

Surrogates will sometimes the users provided variables to be mapped to a set of variables that the
approximation can use. E.g a PCE requires variables on canonical domains such as Uniform on [—1, 1].
These mappings are peformed by variable transformations. An example implementation for an affine
transformation of bounded variables is shown below.

6 Adams, Hooper, Jakeman, Rushdi

Public Member Functions

Real ub (inti)const
return the upper bound of the ith variable More...

Real Ib (inti) const
return the lower bound of the ith variable More...

void set_ranges (RealVector &ranges)
set the ranges of the variables. More...

void set_options (const Teuchos::ParameterList &opts)
Set options specific to the model. More...

¢ Public Member Functions inherited from Surrogates::Variables

Figure 3: Example of a variables class.

Example of variable transformation code

void AffineVariableTransformation ::
map_samples_from_user_space (const RealMatrix &samples,
RealMatrix &transformed_samples) const {
int num_vars = boundedVars_—>num_vars ();
if (samples.numRows() != boundedVars.—>num_vars())
throw(std::runtime_error (”Samples_have_incorrect _number_of_random_variables”)

int num_samples = samples.numCols ();
transformed_samples.shapeUninitialized (num_vars, num_samples);
for (int j=0; j<num-_samples; j++){
for (int i=0; i<num_vars; i++){
transformed_samples(j,i) =
(samples(i,j)+1)/2.%(boundedVars.—>ub(i)—boundedVars_—>1b (i))+boundedVars_—

Here is an example of using a variable transformation

3 Approximation Builders

The approximation factories call approximation builders. An example of how a builder may work
is given below. This builder consists of two steps defining the approximation and the sampling the
function and solving for its coefficients using regression. builders may call other builder in an inner
loop. For example we may wish to iteratively add samples. In which case we would call this builder
in an inner loop until an error estimate reaches a desired level of accuracy. In the example below we
pass in a function but we could also pass in existing data.

Dako

ta Technical Design Document 7

Example of a surrogate builder

//

//

Define the function variables
RealVector ranges;
define_homogeneous_ranges (num_vars, 0., 1., ranges);
Teuchos: :RCP<Variables> variables (new BoundedVariables());
Teuchos:: rcp_dynamic_cast <BoundedVariables >(variables)—>set_ranges (ranges);

// Define the variable transformation. Need to decide if a seperate

// transformation should exist for approximation and for mapping samples

// generated. For example approximation accepts samples in user x—space

// but operates in a standardized u—space. But sample generator produces

// samples in (possibly another standardized space) and must map these to

// x—space, or even to approximation u—space.

Teuchos : :RCP<VariableTransformation> var_transform (new AffineVariableTransformatioj
var_transform —>set_variables (variables);

Initialize the approximation

Teuchos :: ParameterList monomial_opts;

monomial_opts.set (”max_total_degree” ;degree ,
"max._degree._of_total—degree_polynomial._space”);

monomial_opts.set (”num-_qoi”, num-_qoi, "number_of_quantites_of_interest.”);

Monomial monomial;

monomial. set_options (monomial_opts);

monomial. set_variable_transformation (var_transform);

IntMatrix basis_indices;

compute_hyperbolic_indices (num-_vars, degree, 1., basis_indices);

monomial. set_basis_indices (basis_indices);

// Generate the approximation coefficients using a regression based method
Teuchos :: ParameterList regression_opts;
regression_opts.set(’regression_type” ,SVD_LEAST_SQ-REGRESSION) ;
regression_opts.set (’num_samples” ,num_samples);
regression_opts.set(”sample_type” ,” probabilistic-MC”);

RegressionBuilder builder;

builder.set_target_function (model);

builder . build (regression_opts , monomial);

QUESTION: DO we pass in target function and any data through ParameterList opts or through

memb

3.1

er functions?

Regression methods

For a given approximation type, there are a number of ways one might want to construt the approxi-

mation. For example we can use different types of regression to build a PCE, neural net etc, or we may
want to build a pseudo spectral pce using different types of quadrature. In these cases we need factories
to choose the builder sub-component, e.g. least squares or 11 minimization for regression based pce, or
monte carlo or sparse grid quadrature for pseudo spectral pce. An example of such builders is given

below.

8 Adams, Hooper, Jakeman, Rushdi

Example builder for regression based approximations

// Generate samples to build approximation
int num_samples = opts.get<int >("num_samples”);
std :: string sample_type = opts.get<std::string >("sample_type”);

// Create mc sampler and pass in sample type.

// For now hack support for uniform mc sampler

RealMatrix samples;

int seed = 1337;

Teuchos : :RCP<VariableTransformation> var_transform =
approx.get_variable_transformation ();

generate_uniform_samples (approx.num_vars (), num_samples, seed,

xvar_transform , samples);

// Evaluate the function at the build samples
RealMatrix values;
targetFunction-—>value (samples, values);

//\todo consider having opts have multiple parameterLists
//each associated with a particular aspect of build
//e.g. opts = (sample_opts, regression_opts)
PolynomialApproximation& poly_approx =
dynamic_cast<PolynomialApproximation&>(approx);

// Generate matrix of the linear system to be used in
// regression solve

RealMatrix basis_matrix;
poly_approx.generate_basis_matrix (samples, basis_matrix);

// Solve regression problem to get coefficients

Teuchos : :RCP<LinearSystemSolver> solver =
regression_solver_factory (opts);

RealMatrix coeffs , metrics;

solver —>solve (basis_matrix , values, coeffs, metrics, opts);

// Set the approximation coefficients
poly_approx.set_coefficients (coeffs);

The solvers inheritance diagram is depicted in Figure 4. The hierarchy lets each class define spe-
cialized implementations of things like cross validation. Sparse solvers have a default implementation
of iterative reweighting which they can call, the definition of this function DOES NOT exist in the
base class. Specialization of sparse solver is shown in Figure 5

‘ Surrogates:Linearsolve rBase ‘

i
[| |

Surrogates Equamycnnstramams@smvar| ‘ Surmgates:LS@S0lver ‘ | Surmgates:SparseSolver ‘

i
[|

‘ Surragates:LARSSalver ‘ | Surrogates:OMPSalver

Figure 4: The regression solver hierarchy.

4 Integration with Dakota

Currently the notions of Approximation (DataFitSurrogate) and surrogate builders and analysis are
heaverly intertwined in Dakota. Our design will allow these distinct components to be separated. This
will allow Approximation to become a standalone part of the dakota Model hierarchy and surrogate
analyzers to become lightweight Dakota Iterators.

Dakota Technical Design Document

Public Member Functions

void solve (const RealMatrix &A, const RealMatrix &B, RealMatrix &result_0, RealMatrix &result 1,
Teuchos::ParameterList ¶ms)
Find a sparse solutionto Ax = g where g can have multiple columns. More...

virtual void unweighted_solve (const RealMatrix &A, const RealVector &b, RealMatrix &result_0, RealMatrix
&result_1, Teuchos::Parameterlist ¶ms, Teuchos::ParameterList &out)
Function for solving sparse problem for 1 RHS that must be implemented in the derived classes.
More...

void cross_validated_unweighted_solve {const RealMatrix &A, const RealVector &b, RealMatrix &result_0,
RealMatrix &result_1, Teuchos::ParameterList ¶ms, Teuchos::ParameterList &out)
Specialization of cross validation that takes adavantage of properties of solver. More...

void iterative_reweighting_solve (const RealMatrix &A, const RealVector &b, RealMatrix &result_0,
RealMatrix &result_1, Teuchos::ParameterList ¶ms)
Solve problem using iterative reweighting with repeated calls to unweighted_solve(). 1 reweighting
iters is the special case of single unweighetd solve. More. ..

Figure 5: Sparse solver member functions. Only solve exists in baseclass

10 Adams, Hooper, Jakeman, Rushdi

5 Variables

The Variables class is intended to encapsulate the creation, augmentation and realization of random
variables. Single variables are characterized by such properties as probability distribution, ranges,
hyperparameters, etc. A base class provides only the bare minimum via a num_vars attribute and a
pure virtual realize() method. The rest of the functionality is implemented in the derived classes and
require that variable transformations or approximations which use the derived classses to know what
additional functions are implemented. (These could change.)

5.1 Requirements

The following are requirements the the Variables class must support in any design and implementation:

1. Functionality and use cases currently supported in the Pceos::RandomVariable class must be
preserved.

2. Appropriate leveraging of Boost’s stastical distributions should be preserved.

3. Consistent and performant extensions to available distributions should be added as needed, eg
distributions based on underlying user-supplied data.

4. Extensions to multivariables ranging in type from iids to aggregations of varying distributions
should be implemented in a way that preserves good performance while scaling up to high
dimensions.

5. Correlations among variables should be able to be specified at construction or updated thereafter.

6. Transformations (including inverse when possible) should be supported with checks for appro-
priateness and consistency.

7. Where appropriate transformations should support distributions, e.g. return a new distribution,
and realizations, e.g. map realizations from one underlying distribution to a value coreresponding

to another distribution.

8. The previous transformation reuirements should apply to multivariables irespecting correlations
where appropriate.

9. Variables (single and multiple) should be able to be serialzied for the purpose of export/import,
e.g. for supporting restart capabilitiy

5.2 Creation APIs

The following examples illuatrate candidate APIs for creating single and multi-variable instances.

Example of single variable construction

Teuchos:: ParameterList & var_opts;

var_opts.set (” distribution”, ”Uniform”);
var_opts.set (”alpha”, 7 —-1.0");
var_opts.set (”beta” , 71.07);

auto sVar = VariableFactory :: create <>(var_-opts);

Dakota Technical Design Document

11

Example of creating an independent, IID multivariable

Teuchos:: ParameterList & var_optsl;

var_optsl.set (7 distribution”, ”Uniform”);
var_optsl.set (”alpha”, 7 —1.0");
var_optsl.set (”beta” , 71.07);

auto sVar = VariableFactory :: create <>(var_optsl);

// Create a 10—dim uniform(—1.0, 1.0) iid multivariable
auto iidVar = VariableFactory ::IID(sVar, 10);

Example of creating an independent joint multivariable

Teuchos:: ParameterList & var_optsl;

var_optsl.set (”distribution”, ”Uniform”);
var_optsl.set (”alpha”, 7 —1.0");
var_optsl.set (”beta” , 71.07);

auto sVarl = VariableFactory :: create<>(var_optsl);

Teuchos :: ParameterList & var_opts2;
var_opts2.set (”distribution”, ”Standard—Normal”);
auto sVar2 = VariableFactory :: create<>(var_opts2);

auto mVar = VariableFactory :: Joint (std:: vector<VariableBase> {sVarl, sVar2});

5.3 Sampling APIs

The following examples demonstrate how to obtain variates (realizations of random variables).

Example of variable realization (sampling)

auto sample = mVar.realize (); // would return a vector<Real> of size 2
// using the multivariable creation example

5.4 Modification APIs

The following examples demonstrate how to reset existing instances of random variables and provide

a possible means of efficient variate realizations for large dimension variables.

Resetting an existing uniform variable configuration

auto suVar = VariableFactory :: create<>(var_opts);

std :: cout << ”Value_l_=.” << suVar.realize () << std::endl;

auto old_config = suVar.param ();

suVar.param(Surrogate :: UniformDistribution <>::param_type {—1.0, 1.0});
std :: cout << ”Value_.2.=.” << suVar.realize () << std::endl;

suVar.param(old_range);
std :: cout << ”Value_3.=.” << suVar.realize () << std::endl;

