org.apache.spark.ml.classification
Check whether the given schema contains an input column.
Check whether the given schema contains an input column.
Parameter name for the input column.
SQL DataType of the input column.
Create a copy of the model.
Create a copy of the model. The copy is shallow, except for the embedded paramMap, which gets a deep copy.
Returns the documentation of all params.
Returns the documentation of all params.
param for features column name
param for features column name
:: DeveloperApi ::
:: DeveloperApi ::
Returns the SQL DataType corresponding to the FeaturesType type parameter.
This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.
The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
Fitting parameters, such that parent.
Fitting parameters, such that parent.fit(..., fittingParamMap) could reproduce the model.
Gets the value of a parameter in the embedded param map.
Gets the value of a parameter in the embedded param map.
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
param for label column name
param for label column name
param for max number of iterations
param for max number of iterations
Number of classes (values which the label can take).
Number of classes (values which the label can take).
Internal param map.
Internal param map.
Returns all params.
Returns all params.
The parent estimator that produced this model.
The parent estimator that produced this model.
Predict label for the given feature vector.
Predict label for the given feature vector. The behavior of this can be adjusted using threshold.
:: DeveloperApi ::
:: DeveloperApi ::
Predict the probability of each class given the features. These predictions are also called class conditional probabilities.
WARNING: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
This internal method is used to implement transform() and output probabilityCol.
:: DeveloperApi ::
:: DeveloperApi ::
Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform() and output rawPredictionCol.
vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
param for prediction column name
param for prediction column name
param for predicted class conditional probabilities column name
param for predicted class conditional probabilities column name
param for raw prediction column name
param for raw prediction column name
param for regularization parameter
param for regularization parameter
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
param for threshold in (binary) prediction
param for threshold in (binary) prediction
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
input dataset
additional parameters, overwrite embedded params
transformed dataset
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
input dataset
optional list of param pairs, overwrite embedded params
transformed dataset
:: DeveloperAPI ::
:: DeveloperAPI ::
Derives the output schema from the input schema and parameters. The schema describes the columns and types of the data.
Input schema to this stage
Parameters passed to this stage
Output schema from this stage
Derives the output schema from the input schema and parameters, optionally with logging.
Derives the output schema from the input schema and parameters, optionally with logging.
Validates parameter values stored internally.
Validates parameter values stored internally. Raise an exception if any parameter value is invalid.
Validates parameter values stored internally plus the input parameter map.
Validates parameter values stored internally plus the input parameter map. Raises an exception if any parameter is invalid.
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
input schema
additional parameters
whether this is in fitting
SQL DataType for FeaturesType. E.g., org.apache.spark.mllib.linalg.VectorUDT for vector features.
output schema
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
:: AlphaComponent ::
Model produced by LogisticRegression.