IsotonicRegressionModel

class pyspark.ml.regression.IsotonicRegressionModel(java_model=None)[source]

Model fitted by IsotonicRegression.

New in version 1.6.0.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getFeatureIndex()

Gets the value of featureIndex or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getIsotonic()

Gets the value of isotonic or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getWeightCol()

Gets the value of weightCol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)

Predict label for the given features.

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeatureIndex(value)

Sets the value of featureIndex.

setFeaturesCol(value)

Sets the value of featuresCol.

setPredictionCol(value)

Sets the value of predictionCol.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

boundaries

Boundaries in increasing order for which predictions are known.

featureIndex

featuresCol

isotonic

labelCol

numFeatures

Returns the number of features the model was trained on.

params

Returns all params ordered by name.

predictionCol

predictions

Predictions associated with the boundaries at the same index, monotone because of isotonic regression.

weightCol

Methods Documentation

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getFeatureIndex()

Gets the value of featureIndex or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getIsotonic()

Gets the value of isotonic or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getWeightCol()

Gets the value of weightCol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)[source]

Predict label for the given features.

New in version 3.0.0.

classmethod read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeatureIndex(value)[source]

Sets the value of featureIndex.

setFeaturesCol(value)[source]

Sets the value of featuresCol.

New in version 3.0.0.

setPredictionCol(value)[source]

Sets the value of predictionCol.

New in version 3.0.0.

transform(dataset, params=None)

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write()

Returns an MLWriter instance for this ML instance.

Attributes Documentation

boundaries

Boundaries in increasing order for which predictions are known.

New in version 1.6.0.

featureIndex = Param(parent='undefined', name='featureIndex', doc='The index of the feature if featuresCol is a vector column, no effect otherwise.')
featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')
isotonic = Param(parent='undefined', name='isotonic', doc='whether the output sequence should be isotonic/increasing (true) orantitonic/decreasing (false).')
labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')
numFeatures

Returns the number of features the model was trained on. If unknown, returns -1

New in version 3.0.0.

params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')
predictions

Predictions associated with the boundaries at the same index, monotone because of isotonic regression.

New in version 1.6.0.

weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')