pyspark.pandas.MultiIndex.from_arrays

static MultiIndex.from_arrays(arrays: List[List], sortorder: Optional[int] = None, names: Optional[List[Union[Any, Tuple[Any, …]]]] = None) → pyspark.pandas.indexes.multi.MultiIndex[source]

Convert arrays to MultiIndex.

Parameters
arrays: list / sequence of array-likes

Each array-like gives one level’s value for each data point. len(arrays) is the number of levels.

sortorder: int or None

Level of sortedness (must be lexicographically sorted by that level).

names: list / sequence of str, optional

Names for the levels in the index.

Returns
index: MultiIndex

Examples

>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> ps.MultiIndex.from_arrays(arrays, names=('number', 'color'))  
MultiIndex([(1,  'red'),
            (1, 'blue'),
            (2,  'red'),
            (2, 'blue')],
           names=['number', 'color'])