pyspark.pandas.DataFrame.reindex_like¶
-
DataFrame.
reindex_like
(other: pyspark.pandas.frame.DataFrame, copy: bool = True) → pyspark.pandas.frame.DataFrame[source]¶ Return a DataFrame with matching indices as other object.
Conform the object to the same index on all axes. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.
- Parameters
- otherDataFrame
Its row and column indices are used to define the new indices of this object.
- copybool, default True
Return a new object, even if the passed indexes are the same.
- Returns
- DataFrame
DataFrame with changed indices on each axis.
See also
DataFrame.set_index
Set row labels.
DataFrame.reset_index
Remove row labels or move them to new columns.
DataFrame.reindex
Change to new indices or expand indices.
Notes
Same as calling
.reindex(index=other.index, columns=other.columns,...)
.Examples
>>> df1 = ps.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium
>>> df2 = ps.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium
>>> df2.reindex_like(df1).sort_index() temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN None 2014-02-15 35.1 NaN medium